CHAPTER 6

Homology

6.1. Simplexes and simplicial complexes

6.1.1. Simplexes. Simplexes are building blocks of a polyhedron. A 0-simplex $\langle p_0 \rangle$ is a point, and a 1-simplex $\langle p_0 p_1 \rangle$ is a line. A 2-simplex $\langle p_0 p_1 p_2 \rangle$ is a triangle with its interior included. A r-simplex is a r-dimensional object, hence its vertices must be geometrically independent, that is no (r-1)-dimensional hyperplane contains all r + 1 vertices.

DEFINITION 6.1 (*r*-simplex). Let $\{p_0, p_1, \cdots, p_r\}$ be *r* geometrically in-dependent points in \mathbb{R}^m $(m \ge r)$. A *r*-simplex σ^r also denoted by $\langle p_0 \cdots p_r \rangle$) is the subset

(6.1)
$$\sigma^{r} \equiv \{x \in \mathbb{R}^{m} | x = \sum_{i=0}^{r} c_{i} p_{i}, c_{i} \ge 0, \sum_{i=0}^{r} c_{i} = 1\}.$$

• $\{c_i\}$ are barycentric coordinates of x. Remark 6.2.

- σ^r is bounded and closed subset of \mathbb{R}^m , hence σ^r is compact.
- In some literature, a simplex is defined to include shapes with some vertices *glued* together. We will not call such shape simplex here.

DEFINITION 6.3 (q-face). Let q be an integer $0 \leq q \leq r$. and $\{p_{i_0}, \dots, p_{i_q}\}$ be q+1 points out of $\{p_0, \cdots, p_r\}$. The q-simplex $\sigma^q = \langle p_{i_0}, \cdots, p_{i_q} \rangle$ is called a *q*-face of σ^r . We write $\sigma^q \leq \sigma^r$ if σ^q is a face of σ^r . Moreover, if $\sigma^q \neq \sigma^r$, we call σ^q is a proper face of σ^r , denoted as $\sigma^q < \sigma^r$.

Remark 6.4. • A q-face σ^q is be definition a subset of σ^p . The barycentric coordinates of points in σ^q are points with $c_i = 0$ for $i \notin \{i_0, \cdots, i_q\}$. • A *r*-simplex has $\begin{pmatrix} r+1\\ q+1 \end{pmatrix} q$ -faces. $\begin{pmatrix} \gamma^{(\ell)}\\ q \notin \end{pmatrix}$

EXAMPLE 6.5. A tetrahedron is a 3-simplex (figure 6.1).

6.1.2. Simplicial complexes, polyhedra, and triangulation.

DEFINITION 6.6 (Simplicial complex). Let K be a set of simplexes. K is a *simplicial complex* if it satisfies the following two conditions • If $\sigma \in K$ and $\sigma' \leq \sigma$ then $\sigma' \in K$. In other words, an arbitrary face of a simplex of K is belongs to K. 6. HOMOLOGY

- 1-face $\langle p_1 p_3 \rangle$ and 0-face p_3 .
- If $\sigma, \sigma' \in K$, then either $\sigma \cap \sigma' = \emptyset$ or $\sigma \cap \sigma' \leq \sigma$ and $\sigma \cap \sigma' \leq \sigma'$. That is, the intersection of two simplexes of K is either empty or a common face.

REMARK 6.7. • In our definition of simplicial complex, the intersection of two elements is always a simplex.

- By definition each $\sigma \in K$ can be embedded in some \mathbb{R}^m . However, different elements of K may be embedded in \mathbb{R}^m in different ways. This point is important in triangulation.
- The union of all elements of the simplical complex K is called a *polyhedron* |K| of K.
- **EXAMPLE 6.8.** A simplex together with all its faces form a simplicial complex. For example, the tetrahedron in figure 6.1 gives a simplicial complex

 $K = \{ \langle p_0 p_1 p_2 p_3 \rangle, \langle p_0 p_1 p_2 \rangle, \langle p_1 p_2 p_3 \rangle, \langle p_2 p_3 p_0 \rangle, \langle p_3 p_0 p_1 \rangle, \langle p_3 p_0 \rangle, \langle p_3 p_0 p_1 \rangle, \langle p_3 p_0 \rangle, \langle p_3 p_0 p_1 \rangle, \langle p_3 p_0 \rangle, \langle p_3$

$$\begin{array}{l} \langle p_0 p_1 \rangle, \langle p_0 p_2 \rangle, \langle p_0 p_3 \rangle, \langle p_1 p_2 \rangle, \langle p_1 p_3 \rangle, \langle p_2 p_3 \rangle, \\ \langle p_0 \rangle, \langle p_1 \rangle, \langle p_2 \rangle, \langle p_3 \rangle \}. \end{array}$$

- (6.2)
- The left diagram in figure 6.2 is a simplicial complex while the right is not.
- The simplicial complex may not be connected as in figure 6.3.

DEFINITION 6.9 (**Triangulation**). Let X be a topological space. If there exists a simplicial complex K and a homeomorphism $f : |K| \to X$, then X is said to be *triangulable* and the pair (K, f) is called a *triangulation* of X.

REMARK 6.10. Given a triangulable X, its triangulation is far from unique. However, the minimum triangulation (triangulation with least member) depends on the topology of X as we will see in the following examples.

FIGURE 6.2. Left: a simplicial complex with 1 2-simplex, 6 1-simplexes and 5 0-simplexes. Right: not a simplicial complex.

FIGURE 6.3. Simplicial complex can also have multiple connected components.

The allowed triangulation can be quite different for different topological space. For example:

- **EXAMPLE 6.11.** Let X = [0, 1], then $K_X = \{X, \{0\}, \{1\}\}$ is a triangulation of X. One can also add any points $0 = p_0 < p_1 < \cdots < p_n < p_{n+1} = 1$ and define $K(p_1 \cdots p_n) = \{\langle p_0 p_1 \rangle, \cdots, \langle p_n p_{n+1} \rangle, \{p_0\}, \{p_1\}, \cdots, \{p_n\}, \{p_{n+1}\}\},$ then $K(p_1 \cdots p_n)$ is also a triangulation of X. However, there is no triangulation of X with less elements than K_X (Figure 6.4 a and b).
 - Let $Y = \mathbb{S}^1$, the minimal triangulation has at least three vertices (0-simplexes) (Figure 6.4 c). If we mark only two points on \mathbb{S}^1 , the result is not a simplicial complex in our definition (Figure 6.4 d).

EXAMPLE 6.12. Now look at two dimensional examples. Let $X = \mathbf{I}^2 = [0, 1]^2 \subset \mathbb{R}^2$.

• The triangulation of X with minimal triangles contains only two triangles (2-simplexes) as in figure 6.5.

FIGURE 6.4. a): minimal triangulation of [0, 1]. b): a generic triangulation of [0, 1]. c): minimal triangulation of a circle. d): not a triangulation in our sense because the intersection of left arc and right arc contains two points (0-simplexes).

FIGURE 6.5. Two different triangulations of \mathbf{I}^2 with minimal triangles.

• Now let Y be X with left and right edge identified, then topologically Y is a cylinder with finite length. A proper triangulation of Y has no less than six triangles as shown in figure 6.6.

6.2. Chain group, cycle group and boundary group 6.2.1. Oriented simplexes.

DEFINITION 6.13 (Orientation of simplexes). Let $\{i_0, i_1, \dots, i_r\}$ be a permutation of $\{0, 1, \dots, r\}$. $\sigma^r(p_{i_0}p_{i_1}\cdots p_{i_r})$ has the same orientation with $\sigma^r(p_0p_1\cdots p_r)$ if and only if $\{p_{i_0}, p_{i_1}, \dots, p_{i_r}\}$ and $\{p_0, p_1, \dots, p_r\}$ differ by an even permutation. If we denote an oriented r-simplex by $(p_0p_1\cdots p_r)$, then (6.3) P ($p_{i_0}p_{i_1}\cdots p_{i_r}$) = sign $(P)(p_0p_1\cdots p_r)$ with P being the permutation from $\{p_0, p_1, \dots, p_r\}$ to $\{p_{i_0}, p_{i_1}, \dots, p_{i_r}\}$.

REMARK 6.14. • When r = 0, we formally define the oriented 0-simplex simply as (p_0) .

- As a set $(p_{i_0}p_{i_1}\cdots p_{i_r})$ is the same as $(p_0p_1\cdots p_r)$.
- **EXAMPLE 6.15.** An oriented 1-simplex (p_0p_1) is a directed line segment pointing from p_0 to p_1 , while (p_1p_0) is pointing from p_1 to p_0 , and by definition we have $(p_0p_1) = -(p_1p_0)$. See figure 6.7(a).

FIGURE 6.6. Triangulation of a cylinder. a): Not a triangulation because two triangles share two edges. b): Not a triangulation because $\langle p_1 p_2 p_3 \rangle \cap \langle p_0 p_1 p_3 \rangle = \{p_1\} \cup \{p_3\}$. c): Minimal triangulation. d): Another visualization of minimal triangulation.

• Similarly the orientation of 2-simplex defines "counterclockwise". By definition we have

(6.4)
$$(p_0p_1p_2) = (p_1p_2p_0) = (p_2p_0p_1) = -(p_0p_2p_1) = -(p_2p_1p_0) = -(p_1p_0p_2)$$

See figure 6.7(b).

6.2.2. Chain group. Let K be a simplicial complex. We regard each element in K as an oriented simplex.

DEFINITION 6.16 (**Chain group**). The *r*-chain group $C_r(K)$ of a simplicial complex K is a free Abelian group generated by the oriented *r*-simplexes of K. If $r > \dim K$, $C_r(K)$ is defined to be 0 (the group containing only the unit element). An element of $C_r(K)$ is called an *r*-chain.

REMARK 6.17. • As a set $C_r(K) = \{\sum_i z_i \sigma_i^r | z_i \in \mathbb{Z}, \sigma_i^r \in K\}$. Let $c = \sum_i z_i \sigma_i^r \in C_r(K)$ and $d = \sum_i w_i \sigma_i^r \in C_r(K), c + d \equiv \sum_i (z_i + w_i) \sigma_i^r$. The identity element of $C_r(K)$ is the element with all $z_i = 0$ $(0 = \sum_i \theta \sigma_i^r)$. 6. HOMOLOGY

FIGURE 6.7. An oriented 1-simplex (a) and 2-simplex (b).

The inverse of $c = \sum_i z_i \sigma_i^r \in C_r(K)$ is $(-c) = -\sum_i z_i \sigma_i^r = \sum_i z_i (-\sigma_i^r)$ where $-\sigma_i^r$ is the *r*-simplex with opposite orientation relative to σ_i^r .

• By the above explanation, one can see that $C_r(K)$ is a free abelian group of rank I_p where I_r is the number of *r* simplexes in K_r i.e.

(6.5)
$$C_r(K) \simeq \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z} \equiv \mathbb{Z}^{I_r}.$$

A

- If we treat the collection of r-simplexes of K as a base $\{\sigma_i^r\}$. $C_r(K)$ can be viewed as a subset of $\operatorname{span}_{\mathbb{R}}(\{\sigma_i^r\})$ whose elements have integer coefficients. (i.e. integer points in the real vector (linear) space spanned by $\{\sigma_i^r\}$). Apparently a vector space is an abelian group under the addition of vectors.
- Let $\int_{\sigma^r} f$ and $\int_{\tilde{\sigma}^r} f$ being integrals over σ^r and $\tilde{\sigma}^r$ (*f* being a *r*-form). One can understand $\int_{\sigma^r + \tilde{\sigma}^r} f$ as $\int_{\sigma^r} f + \int_{\tilde{\sigma}^r} f$.

EXAMPLE 6.18. We compute some chain groups for examples in figure 6.4.

• Let K_Y be the simplicial complex equal to the triangulation in 6.4a. We have

(6.6)

$$C_{0}(K) = \{z_{0}(p_{0}) + z_{1}(p_{1}) | z_{i} \in \mathbb{Z}\} \simeq \mathbb{Z}^{2},$$

$$C_{1}(K) = \{z_{0}(p_{0}p_{1}) | z_{0} \in \mathbb{Z}\} \simeq \mathbb{Z},$$

$$C_{n \ge 2}(K) = 0.$$

• Similarly, let K_Y be the simplicial complex equal to the triangulation in 6.4c. We have $C_0(K_Y) = \{z_0(p_0) + z_1(p_1) + z_2(p_2) | z_i \in \mathbb{Z}\} \simeq \mathbb{Z}^3$ and $C_1(K_Y) = \{z_0(p_0p_1) + z_1(p_1p_2) + z_2(p_2p_0) | z_i \in \mathbb{Z}\} \simeq \mathbb{Z}^3$ and $C_{n \ge 2}(K_Y) = 0$.

EXAMPLE 6.19. The chain group of the triangulation K in the left plot of figure 6.5 is

(6.7)

$$C_{0}(K) = \{\sum_{i=0}^{3} z_{i}(p_{i}) | z_{i} \in \mathbb{Z}\} \simeq \mathbb{Z}^{4},$$

$$C_{1}(K) = \{\sum_{i=0}^{3} z_{i}(p_{i}p_{i+1}) + z_{4}(p_{0}p_{2}) | z_{i} \in \mathbb{Z}, p_{4} \equiv p_{0}\} \simeq \mathbb{Z}^{5},$$

$$C_{2}(K) = \{z_{0}(p_{0}p_{1}p_{3}) + z_{1}(p_{1}p_{2}p_{3}) | z_{i} \in \mathbb{Z}\} \simeq \mathbb{Z}^{2},$$

$$C_{n \geq 3}(K) = 0.$$

6.2.3. Boundary operator, cycle group and boundary group. By definition 6.1 of simplexes, we see the *boundary* $\partial_r \sigma^r$ of a *r*-simplex σ^r is a collection of (r-1)-simplexes. ∂_r should be understood as an operator acting on σ^r to and the result is a (r-1)-chain in $C_{r-1}(K(\sigma^r))$, where $K(\sigma^r)$ is the simplicial complex containing σ^r and all its faces. In general we have

DEFINITION 6.20 (Boundary operator). Let K be a simplicial complex. The boundary operator $\partial_r : C_r(K) \to C_{r-1}(K)$ is a group homomorphism, i. e. ∂_r is linear in coefficients $\underline{z_i}$

(6.8)
$$\partial_r \left(\sum_i z_i \sigma_i^r\right) = \sum_i z_i \partial_r (\sigma_i^r).$$

For an oriented r-simplex $\sigma^r = (p_0 p_1 \cdots p_r)$ its boundary $\partial_r \sigma^r$ is defined to be the (r-1)-chain

(6.9)
$$\partial_r(p_0p_1\cdots p_r) \equiv \sum_{i=0}^r (-1)^i (p_0p_1\cdots \hat{p}_i\cdots p_r),$$

where \hat{p}_i means the point p_i is omitted. And we formally define $\partial_0 \sigma^0 = 0$.

REMARK 6.21. We only have to define the action of ∂_r on the generators of the *r*-chain group. The action on other elements are obtained from linearity.

EXAMPLE 6.22. \hat{p}_i means removing p_i from the simplex $(p_0p_1 \cdots p_r)$ and the result is a (r-1)-face of $(p_0p_1 \cdots p_r)$ with the orientation determined by how many vertices on the left of p_i . For example

(6.10)
$$\partial_2(p_0p_1p_2) = (p_1p_2) - (p_0p_2) + (p_0p_1) = (p_1p_2) + (p_2p_0) + (p_0p_1),$$

$$\partial_3(p_0p_1p_2p_3) = (p_1p_2p_3) - (p_0p_2p_3) + (p_0p_1p_3) - (p_0p_1p_2).$$

EXAMPLE 6.23. We again go back to examples in figure 6.4.

• For the triangulation K_X in figure 6.4a,

(6.11)
$$\partial_1 : \underbrace{C_1(K_X) \to C_0(K_X) : (p_0 p_1) \mapsto (p_1) - (p_0). }_{(p_1) \to (p_1) \to (p_2) \to (p_1) \to (p_2) \to$$

• For the triangulation K_X in figure 6.4c,

$$\partial_1(p_0p_1) = (p_1) - (p_0), \qquad \partial_1(p_2p_1) = (p_2) - (p_1), \qquad \partial_1(p_2p_0) = p_0 - p_2.$$

REMARK 6.24. Here we see the reason for the minus sign in the definition of ∂_r : $(p_0p_1) + (p_1p_2)$ is the arc from p_0 to p_2 , hence its boundary is two points p_0 and p_2 . By linearity, we have

(6.13)
$$\partial_1((p_0p_1) + (p_1p_2)) = (p_1) - (p_0) + (p_2) - (p_1) = (p_2) - (p_0),$$

which is consistent with the fact that when gluing two connected arcs, their shared boundary is not a boundary in the new arc. Similar idea holds for *r*-simplexes. Notice the shared boundary of two simplexes always have different orientation in either one. $\partial_1(p_0p_1) = p_1 - p_0$ is also related to the Newton-Leibniz formula

(6.14)
$$\int_{(p_0p_1)} f(t)dt = F(p_1) - F(p_0).$$

We will return to this when talking about cohomology.

Zr (k) = { c ∈ Cr(k) | drc=0}

6. HOMOLOGY

Since ∂_r is a group homomorphism, it is also interested to consider its *image* $\operatorname{Im} \partial_r$ and kernel $\operatorname{Ker} \partial_r$. They also have geometric interpretations.

DEFINITION 6.25 (*r*-cycle group). The kernel $\partial_r \operatorname{Ker} \partial_r = \{c \in C_r(K) | \partial_r c =$ 0) is a subgroup of $C_r(K)$, also called the r-cycle group and denoted by $Z_r(K)$. $c \in \operatorname{Ker} \partial_r$ is called an *r*-cycle.

- If r = 0, $\partial_0 c = 0$ automatically. Remark 6.26.
 - Elements in $Z_r(K)$ have no boundary. When r = 1, they are closed loops.

DEFINITION 6.27 (*r*-boundary group). The *image* of $\partial_{r+1} \operatorname{Im} \partial_{r+1} \equiv$ $\{c \in C_r(K) | \exists d \in C_{r+1}(K), c = \partial_{r+1}d\}$ is a subgroup of $C_r(K)$, also called the *r*-boundary group and denoted by $B_r(K)$.

Remark 6.28. • Elements in $B_r(K)$ are boundaries of certain elements in $C_{r+1}(K)$

• Let n be the dimension of K, $B_n(K)$ is defined to be 0.

EXAMPLE 6.29. Let K be the triangulation in the left plot of figure 6.5

• Ker $\partial_2 = \{0\}.$

62

P

P

- $\operatorname{Im}\partial_2 = \operatorname{span}_{\mathbb{Z}}\{(p_2p_3) (p_0p_3) + (p_0p_2), (p_1p_2) (p_0p_2) + (p_0p_1)\}.$
- Ker $\partial_1 = \operatorname{span}_{\mathbb{Z}}\{(p_2p_3) (p_0p_3) + (p_0p_2), (p_1p_2) (p_0p_2) + (p_0p_1)\}.$
- $\operatorname{Im}\partial_1 = \operatorname{span}_{\mathbb{Z}} \{ p_0 p_1, p_0 p_3, p_0 p_2 \}.$

In this example we see $\operatorname{Im}\partial_2 = \operatorname{Ker}\partial_1$ in particular.

An important property is that the boundary of a simplex has no boundary, hence the following proposition.

PROPOSITION 6.30. Let K be a simplicial complex. The composition $\partial_r \circ \partial_{r+1}$: $C_{r+1}(K) \to C_{r-1}(K)$ is a zero map, i.e. $\partial_r(\partial_{r+1}c) = 0$ for any $c \in C_{r+1}(K)$.

Therefore an r-boundary is always an r-cycle

COROLLARY 6.31. Let K be a simplicial complex. Then its r-boundary group $B_r(K) \equiv (\operatorname{Im} \partial_{r+1})$ is always a subset of its r-cycle group $Z_r(K) \equiv \operatorname{Ker} \partial_r$ (6)

$$B_r(K) \subset Z_r(K) \subset C_r(K).$$

6.3. Simplicial homology

A simplicial complex K and its chain groups $C_r(K)$ of a topological space is not a topological invariant. However, it leads to homology groups which are topological invariants. Firstly, we consider a general situation.

DEFINITION 6.32 (Chain complex). A chain complex $(C_{\bullet}, d_{\bullet})$ (or (C_{\bullet}, d)) of abelian groups $(C_n)_{n\in\mathbb{Z}}$ and homomorphisms of abelian groups (6.16) $d_n: C_n \to C_{n-1},$ subject to the condition $d_n \circ d_{n+1} = 0$ for all $n \in \mathbb{Z}$.

REMARK 6.33. We also represent a chain complex $(C_{\bullet}, d_{\bullet})$ graphically as

 $\cdots \xleftarrow{d_{-1}} C_{-1} \xleftarrow{d_0} C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} \cdots$ (6.17)

and the condition $d_n \circ d_{n+1} = 0$ simplified as $d^2 = 0$.

One can also consider maps between chain complexes.

DEFINITION 6.34 (Chain maps). Let $(C_{\bullet}, d_{\bullet})$ and $(C'_{\bullet}, d_{\bullet})$, A chain map is a collection of homomorphisms $(f_n : C_n \to C'_n)_{n \in \mathbb{Z}}$ such that

(6.18) $f_n \circ d_{n+1} = d'_n \circ f_{n+1}.$

Graphically

Zz AZ

J2C2

= 0

-	v								
		 $\xleftarrow{d_{-1}}$	C_{-1}	\leftarrow	C_0	\leftarrow^{d_1}	C_1	\leftarrow^{d_2}	
(6.19)			$\int f_{-1}$	Q	$\int f_0$	Q	$\int f_1$		
		 $\overleftarrow{d_{-1}}$	C'_{-1}	$\overleftarrow{d_0}$	C'_0	$\overleftarrow{d_1}$	C'_1	$\overleftarrow{d_2}$	

From the definition 6.32 of chain complex, one can a associate a chain complex to a simplicial complex K and its chain groups $C_r(K)$ by formally adding elements identified to 0.

DEFINITION 6.35 (Chain complex of a simplicial complex). Let K be a simplicial complex and n be its dimension. The chain complex $C(K) = (C_{\bullet}, d_{\bullet})$ associated with K is defined as the following

•
$$C_r = \begin{cases} \frac{C_r(K) & 0 \le r \le n}{0} & \text{otherwise} \end{cases}$$

• $d_r = \begin{cases} \frac{\partial_r & 0 \le r \le n}{0 \mapsto 0} & \text{otherwise} \end{cases}$.

C(K) can be represented graphically as (6.20) $\cdots 0 \xleftarrow{d_{-1}:0 \mapsto 0} 0 \xleftarrow{\partial_0} C_0(K) \xleftarrow{\partial_1} C_1(K) \xleftarrow{\partial_2} C_2(K) \cdots \xleftarrow{\partial_n} C_n(K) \xleftarrow{0 \mapsto 0} 0 \cdots$

REMARK 6.36. $d^2 = 0$ follows from proposition 6.30 $\partial_r \circ \partial_{r+1} = 0$.

DEFINITION 6.37 (Homology group). Let (C_{\bullet}, d) be a chain complex of abelian groups. Define the *r*-th homology group of (C_{\bullet}, d) , denoted by $H_r(C_{\bullet}, d)$ (or simplify $H_r(C_{\bullet})$, $H_r(C)$), to be the quotient group

(6.21)
$$H_r(C_{\bullet}, d) = \frac{\operatorname{Ker}(d_r : C_r \to C_{r-1})}{\operatorname{Im}(d_{r+1} : C_{r+1} \to C_r)} = \operatorname{Ker} d_r / \operatorname{Im} d_{r+1}.$$

REMARK 6.38. • Each element in H_r is called a *homology class*

• Elements in Ker d_r is also called d_r -closed, while elements in Im d_{r+1} is also called d_{r+1} -exact. Two d_r -closed elements belong to the same equivalence class in H_r if their difference is d_{r+1} -exact,

(6.22)
$$[c_1] = [c_2] \in H_r, \text{if } \partial_r c_1 = \partial_r c_2 = 0, \ c_1 - c_2 = \partial_{r+1} d.$$

k

=)

• Let K be a simplicial complex. When $0 \le r \le n$, by definition $\operatorname{Ker} d_r = Z_r(K)$ and $\operatorname{Im} d_{r+1} = B_r(K)$, then $H_r(C(K)) = Z_r(K)/B_r(K)$. Elements of $H_r(C(K))$ are r-cycles which are not boundaries. Two elements of $H_r(C(K))$ belong to the same equivalent class if their difference is a boundary.

C. BCT

Although triangulations and chain groups are not, homology groups are topological invariants. $\mu = \frac{z}{\tau_2}$

- 2)

6. HOMOLOGY

THEOREM 6.39. Let X and Y be two homeomorphic topological spaces, and let (K, f) and (L, g) be triangulations of X and Y respectively, then

(6.23)
$$H_r(K) \simeq H_r(L).$$

EXAMPLE 6.40. Homology groups of $\mathbf{I} = [0, 1]$. Let K be the triangulation of figure 6.4a. Previous example tells us

(6.24)
$$\frac{C_0(K) = \{z_0(p_0) + z_1(p_1) | z_i \in \mathbb{Z}\} \simeq \mathbb{Z}^2}{C_1(K) = \{z_0(p_0p_1) | z_0 \in \mathbb{Z}\} \simeq \mathbb{Z}}.$$

and

 $C_1(K) \to C_0(K) : (p_0 p_1) \mapsto p_1 - p_0.$ (6.25)C(K) is then

(6.26)
$$\cdots C_{-1} \xleftarrow{0 \to 0}{C_0} C_0 \xleftarrow{(p_0 p_1) \mapsto p_1 - p_0}{C_1} C_1 \xleftarrow{0 \to 0}{C_2 \cdots} C_2 \cdots$$

,

Next we compute the $Z_r(K)$ and $B_r(K)$. The cycle groups are

(6.27)
$$Z_r(K) = \begin{cases} \operatorname{span}_{\mathbb{Z}} \{p_0, p_1\} \simeq \mathbb{Z}^2 & r = 0\\ 0 & \text{otherwise} \end{cases}$$

and the boundary groups are

(6.28)
$$B_r(K) = \begin{cases} \operatorname{span}_{\mathbb{Z}} \{p_1 - p_0\} \simeq \mathbb{Z} & r = 0\\ 0 & \text{otherwise} \end{cases}$$

In the end we get the homology groups of **I**

(6.29)
$$H_0(\mathbf{I}) = \operatorname{span}_{\mathbb{Z}}\{[p_0]\} \simeq \mathbb{Z}, \quad H_{r\neq 0}(\mathbf{I}) = 0.$$

 p_0 and p_1 belong to the same homology class because

(6.30)
$$p_1 = p_0 + (p_1 - p_0) = p_0 + \partial_1(p_0 p_1).$$

One can also compute homology groups of \mathbf{I} using the triangulation in figure 6.4b and the result is the same. The homology groups of I is the same as that of a point.

EXAMPLE 6.41. Homology groups of \mathbb{S}^1 . Let K be the triangulation of figure 6.4c. Then C(K) is (6.31)

with

(6.32)
$$\partial_1(p_0p_1) = (p_1) - (p_0), \ \partial_1(p_2p_1) = (p_2) - (p_1), \ \partial_1(p_2p_0) = p_0 - p_2.$$

The cycle groups are

(6.33)
$$Z_r(K) = \begin{cases} \operatorname{span}_{\mathbb{Z}} \{p_0, p_1, p_2\} \simeq \mathbb{Z}^3 & r = 0\\ \operatorname{span}_{\mathbb{Z}} \{(p_0 p_1) + (p_1 p_2) + (p_2 p_0)\} & r = 1\\ 0 & \text{otherwise} \end{cases}$$

and the boundary groups are

$$B_{r}(K) = \begin{cases} \operatorname{span}_{\mathbb{Z}} \{p_{1} - p_{0}, p_{2} - p_{1}\} \simeq \mathbb{Z}^{2} & r = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$C_{0} \cong \mathcal{Z}^{3} \qquad C_{1} \cong \mathcal{Z}^{3}$$

$$Z_{0} \cong \mathcal{Z}^{3} \qquad Z_{1} \cong \mathcal{Z}^{\prime}$$

$$B_{2} \cong \mathcal{Z}^{2} \qquad Z_{1} \cong \mathcal{Z}^{\prime}$$

64

6.5. PROPERTIES OF HOMOLOGY GROUPS

The homology groups of \mathbb{S}^1 are

1) 1

(6.35)
$$\begin{aligned} H_0(\mathbb{S}^1) &= \operatorname{span}_{\mathbb{Z}}\{[p_0]\} \simeq \mathbb{Z}, \\ H_1(\mathbb{S}^1) &= \operatorname{span}_{\mathbb{Z}}\{[(p_0p_1) + (p_1p_2) + (p_2p_0)]\} \simeq \mathbb{Z}, \qquad H_{r\neq 0,1}(\mathbb{S}^1) = 0 \end{aligned}$$

6.4. More examples

6.5. Properties of homology groups

6.5.1. Connectness and homology groups.

PROPOSITION 6.42. Let K be a connected simplicial complex, then

(6.36)
$$H_0(K) \simeq \mathbb{Z}.$$

PROPOSITION 6.43. Let K be a simplicial complex. If K is a disjoint union of N connected components, $K = K_1 \cup K_2 \cup \cdots \cup K_N$ where $K_i \cap K_j = \emptyset$, then

(6.37)
$$H_r(\underline{K}) \simeq K_r(\underline{K}_1) \times H_r(\underline{K}_2) \times \cdots \times H_r(\underline{K}_N).$$

COROLLARY 6.44. Let K be a simplicial complex. If K is a disjoint union of N connected components, $K = K_1 \cup K_2 \cup \cdots \cup K_N$ where $K_i \cap K_j = \emptyset$, then

$$H_0(\underline{K}) \simeq \underbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}_{n}.$$

COROLLARY 6.45. Let K be a simplicial complex. K is connected if and only if $H_0(K) \simeq \mathbb{Z}$.

6.5.2. Structure of homology groups. Since $H_r(K)$ is abelian. By group theory the most general form of an abelian group is

(6.39)
$$H_r(K) \simeq \underbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}_{f \text{ free part}} \times \underbrace{\mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_p}}_{p \text{ torsion part}}$$

If we change coefficients in chain groups from integers to real numbers, we will not see the torsion part of the homology group, then

 \mathbb{R}^{f} .

(6.40)
$$H_r(K;\mathbb{R}) \simeq$$

6.5.3. Betti numbers and the Euler characteristics.

DEFINITION 6.46 (Betti number). Let K be a simplicial complex. The rth Betti number $b_r(K)$ is

(6.41)

(6.38)

1-10= 2

 $b_r(K) \equiv \dim H_r(K; \mathbb{R})$ which is also the rank of the free abelian part of $(H_r(K;\mathbb{Z}))$.

One also defines the Euler characteristics as

DEFINITION 6.47 (Euler characteristics). Let K be an n-dimensional simplicial complex and I_r be the number of r-simplexes in K. The Euler characteristics χ is

 $\chi(K) \equiv \sum_{r=0}^{n} (-1)^r I_r.$

(6.42)

Betti numbers and the Euler characteristics are related by the following theorem.

$$\chi(k) = \sum_{r=0}^{\infty} (-1)^r I_r$$

 $0 - 1 + 2 - 3 - \cdots$

65

THEOREM 6.48 (Euler-Poincare theorem). Let K be an n-dimensional simplicial complex and I_r be the number of r-simplexes in K, then

(6.43)
$$\chi(K) = \sum_{r=0}^{n} (-1)^r b_r(K).$$

$$b_r = \{k \mid H_r \simeq z^k\}$$

$$\chi(k) = \overline{Z}(-1)^r br(k)$$