CHAPTER 6

Homology

6.1. Simplexes and simplicial complexes

%4
6.1.1. Simplexes. Simplexes are building blocks of a po}%/Zedron. A 0-simplex
{pp) is a point, and a 1-simplex {(pop1) is a line. A 2-simplex {pop1p2) is a triangle
with its interior included. A r-simplex is a r-dimensional object, hence its ver-

tices must be geometrically independent, that is no (r — 1)-dimensional hyperplane

contains all » + 1 vertices.
\_/—/'\N

DEFINITION 6.1 (r-simplex). Let {pg,p1,.—,p+} be r geometrically in-
dependent points in R™ (m > r). A r—simplealso denoted by {pg - - - pr»)
————

is the subset

(6.1) o' ={xeR"z = Z ¢ipi, ¢ = 0, Z ¢ = 1}@

=0 =0

REMARK 6.2. o {c;} are barycentric coordinates of x.
e 0" is bounded and closed subset of R™, hence o" is compact.
e In some literature, a simplex is defined to include shapes with some ver-
tices M’to;get,her. We will not call such shape simplex here.

DEFINITION 6.3 (g-face). Let g be an integer 0 < ¢ < r. and {p;,,--- ,ps, }
be ¢+ 1 points out of {pg,---,p,}. The g-simplex 07 = (p;;,--- ,p;,) is called
a g-face of o”. We write 0¢ < o” if 09 is a face of o”. Moreover, if g9 # 0",
we call o9 is a proper face of ¢”, denoted as 07 < o”.

EMARK 6.4. e A g—face 07 1is be definition a su v@ The barycen-
tric coordinates of points in o9 are points wit @o i ¢ {io, - ,iq}-
J — N

e A r-simplex has < gi} > g-faces.

7+
EXAMPLE 6.5. A tetrahedron is a 3-simplex (figure 6.1).
(g N

6.1.2. Simplicial complexes, polyhedra, and triangulation.

DEFINITION 6.6 (Simplicial complex). Let K be a f simplexes. K
is a simplicialcomplex if it satisfies the following two conditions
o If and then o' € K. In other words, an arbitrary face

of a’simplex o is belongs to K.
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FIGURE 6.1. The > \ with its 2-face {(pop1p2),
1-face {p1p3) and ——

e
. Ifa,a’eK,theneitherama’zgorama’<0andama’<i o'

T is;the intersection of two simplexes of K is either e
ommon facg.

REMARK 6.7. e In our definition of simplicial complex, the intersection
of two elements is always a simplex.

e By definition each o € K can be embedded in some R". However, different
elements of K may be embedded in R™ in different ways. This point is
important in triangulation. T

e The union of all elements of the simplical complexK is called a polyhedron

|K| of K.

EXAMPLE 6.8. o A simplex together with all its faces form a simplicial
complex. For example, the tetrahedron in figure 6.1 gives a simplicial
complex

K = {{pop1p2p3), Pop1p2), {P1P2p3), P2pP3P0), {P3DPOP1):
(6.2) {pop1), Pop2), {Pop3), {P1P2), (P1P3), {P2p3),

<p0>v <p1>’ <p2>v <P3>}

e The left diagram in figure 6.2 is a simplicial complex while the right is
not.
e The simplicial complex may not be connected as in figure 6.3.

DEFINITION 6.9 (Triangulation). Let X be a topological space. If there
exists a simplicial complex K and a homeomorphism f : |[K| — X, then X is
said to be triangulable and the pair (K, f) is called a friangulation of X.

REMARK 6.10. Given a triangulable X, its triangulation is far from unique.
However, the minimum triangulation (triangulation with least member) depends
on the topology of X as we will see in the following examples.
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FIGURE 6.2. Left: a simplicial complex with 1 2-simplex, 6 1-
simplexes and 5 0-simplexes. Right: not a simplicial complex.

FIGURE 6.3. Simplicial complex can also have multiple connected
components.

The allowed triangulation can be quite different for different topological space.
For example:

EXAMPLE 6.11. e Let X = [0,1], then Kx = {X, {0}, {1}} is a triangu-
lation of X. One can also add any points 0 = pg < p1 <+ < pPp < Ppa1 =
Land define K (p1 - pn) = {{pop1), - s PnPn+1)s {Po}s {01} 5 {Pn s {Pns 1},
then K(p; - - py) is also a triangulation of X. However, there is no trian-
gulation of X with less elements than Kx (Figure 6.4 a and b).

e Let Y = S!, the minimal triangulation has at least three vertices (0-
simplexes) (Figure 6.4 c). If we mark only two points on S!, the result is
not a simplicial complex in our definition (Figure 6.4 d).

EXAMPLE 6.12. Now look at two dimensional examples. Let X = I? = [0,1]? <
R2.

e The triangulation of X with minimal triangls contains only two triangles
(2-simplexes) as in figure 6.5.
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a) : KX
Po P1--- Pn DPn+1 P
*—o—10—0
Po
¢): Ky d)

b) : K(p1---pn)

FIGURE 6.4. a): minimal triangulation of [0,1]. b): a generic
triangulation of [0,1]. ¢): minimal triangulation of a circle. d):
not a triangulation in our sense because the intersection of left arc
and right arc contains two points (0-simplexes).

pogpg E
p1 b2
FIGURE 6.5. Two different triangulations of I? with minimal triangles.

e Now let Y be X with left and right edge identified, then topologically Y
is a cylinder with finite length. A proper triangulation of Y has no less
than siz triangles as shown in figure 6.6.

6.2. Chain group, cycle group and boundary group
6.2.1. Oriented simplexes.

DEFINITION 6.13 (Orientation of simplexes). Let {io, i1, - ,%,} be a
permutation of {0,1,---,r}. o"(pipi, - - pi,) has the same orientation with
@pl -+ py) if and only if {p;,, piy, - ,pi.} and {po,p1,- - ,p,} differ by an

7/ permutation. If we denote an oriented r-simplex by (pop1 - - - pr), then

6.3) “& 7{[ (PioPiy -+~ pi,) = sign(P)(pop1 - - - pr)
with P being the permutation from {pg,p1, - ,pr} t0 {Dig, Piy, ", Pi, }-

REMARK 6.14. e When r = 0, we formally define the oriented 0-simplex
simply as (pa).

e As aset (p;,pi, - - pi,.) is the same as (pop1 - - - pr)-

EXAMPLE 6.15. e An oriented 1-simplex (pop;) is a directed line seg-
ment pointing from pg to py, while (p1pp) is pointing from p; to pg, and
by definition we have (pop1) = —(p1po). See figure 6.7(a).
N —~——~——
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Do D2 Do
p1 3 h
a) b)
c) d)

FIGURE 6.6. Triangulation of a cylinder. a): Not a triangulation
because two triangles share two edges. b): Not a triangulation be-

cause (p1p2p3)N{pop1psy = {p1}u{ps}. c): Minimal triangulation.
d): Another visualization of minimal triangulation.

e Similarly the orientation of 2-simplex defines ” counterclockwise”. By def-
inition we have

(Poplpz) = (p1p2po) = (P2P0P1)
—(pop2p1) = —(p2p1po) = —(P1P0P2)-

See figure 6.7(b).

6.2.2. Chain group. Let K be a simplicial complex. We regard each element
in K as an oriented simplex.

DEFINITION 6.16 (Chain group). The r-chain group C.,.(K) of a simpli-
cial complex K is a free Abelian group generated by the oriented r-simplexes
of K. If r > dim K, C 1s defined to be 0 (the group containing only the
unit element). An element of C,.(K) is called an r-chain.
e~ ~—

REMARK 6.17. o As a set Cn.(K) = {3, %0]|z € Z,0] € K}. Let
c=>,%z0] €C(K)and d = Y, wio] € Cr.(K), c+d = (2 Jol.
The identity element of C-(K)1s the element wit ;=
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b2

a) b)

FIGURE 6.7. An oriented 1-simplex (a) and 2-simplex (b).

The inverse of ¢ = ). zi0] € Cp(K) is (—¢) = =), zio] = >, zz( ol)
where —o7 is the r-simplex with opposite orlentatlon relatlve to o]

e By the-above explanation, one can see tha K) is a free abehan group
of @ where I, is the number of r 5 ie.
(6.5) Co(K)~ZXZx-xL=17"
|

I . \f/ % V-3 W‘/\[) Z,Zx/@wg /%j /ﬂ

e If we treat the collection of /~simplexes of \K as a base {o]}. C,.(K)
viewed as a subset/of spang({o?}) whose elements have integer
efficients. (i.e. integer points in the real vector (linear) space spanned
. Apparently a vector space is an abelian group under the addition

e Let SUT f and S&T f being integrals over ¢” and " (f being a r-form). One
can understand § ... fas{ . f+,. f.
EXAMPLE 6.18. We compute some chain groups for examples in figure 6.4.

e Let Ky be the simplicial complex equal to the triangulation in 6.4a. We
have

Co(K) = {zo(po) + 21(p1)]2 € Z} ~
(6.6) C1(K) = {z0(pop1)|20 € Z} ~
Crs2(K) =0.
e Similarly, let Ky be the simplicial complex equal to the triangulation in
6.4c. We have Co(Ky) = {z0(po) + 21(p1) + 22(p2)|2i € Z} ~ Z3 and
Ci(Ky) = {z0(pop1) + z1(p1p2) + 22(p2po)|2i € Z} ~ 7 and Cpzo(Ky) =
0.

ExXAMPLE 6.19. The chain group of the triangulation K in the left plot of figure
6.5 is

3
Co(K) = {) ] zi(pi)|zi € 2} ~
i=0
3
(6.7) C(K) = {Z {(Pipis1) + za(pop2)|2i € Z,pa = po} ~ L7,
i=0
Ca2(K) = {z0(pop1p3) + 21(p1p2ps)|zi € Z} ~
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6.2.3. Boundary operator, cycle gd boundary group. By defi-

nition 6.1 of simplexes, we see the boundar of a r-simplex ¢” is a collection
of (r — 1)-simplexes™\0, should be-understood as an operator acting on o’ to and
ain i where K (0") is the simplicial complex

V N
DEFINITION 6.20 (Boundary operator). Let K be a simplicial complex.
The boundary operator 0, : Cp(K) — Cr_1(K) is a group homomorphism, i.
e. O, is linear in coefficients z;

For an oriented r-simplex ¢” = (popy - - - pr) its boundary é,0" is defined to be
the (r — 1)-chain
—_—

(6.9) Or(pop1 -+ pr) = i(—l)i(pom P D), \g?(

NI ———— ———~—r
where p; means the point p; is omitted. And we formally deﬁn@

SN———
REMARK 6.21. We only have to define the action of 0, on the generators of the
r-chain group. The action on other elements are obtained from linearity.

EXAMPLE 6.22. p; means removing p; from the simplex (popy -« - - - pr) and the
result is a (r — 1)-face of (popy------ pr) with the orientation determined by how
many vertices on the left of p;. For example

O2(pop1p2) = (P1p2) — (Pop2) + (Pop1)
(6.10) = (p1p2) + (P2po) + (pop1),
03(pop1p2p3) = (p1p2p3) — (pop2ps) + (Pop1ps) — (Pop1p2)-

EXAMPLE 6.23. We again go back to examples in figure 6.4.
e For the triangulation Kx in figure 6.4a,

(6.11) 01 : C1(Kx) — Co(Kx) : (pop1) = (p1) — (po)-
—_
e For the triangulation Kx in figure 6.4c,
(6.12)

d1(pop1) = (p1) — (po), d1(p2p1) = (p2) — (p1), d1(p2po) = po — pa-

REMARK 6.24. Here we see the reason for the minus sign in the definition of
Or: (pop1) + (p1p2) is the arc from pg to pe, hence its boundary is two points pg
and ps. By linearity, we have

(6.13) 21((pop1) + (p1p2)) = (P1) — (Po) + (P2) — (p1) = (P2) — (Po),

which is consistent with the fact that when gluing two connected arcs, their shared
boundary is not a boundary in the new arc. Similar idea holds for r-simplexes.
Notice the shared boundary of two simplexes always have different orientation in
either one. 01(pop1) = p1 — po is also related to the Newton-Leibniz formula

(6.14) j( S0t = F(pn) ~ Plp)

We will return to this when talking about cohomology.
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Since 0, is a group homomorphism, it is also interested to consider its image
Imo, and kernel Kerd,. They also have geometric interpretations. A

NG
/) DEFINITION 6.25 (r-cycle group). The kernel 0, Ke@é {ceC c=
0} is a subgroup of C,.(K), also called the r-cycle group and denoted by g
¢ € Kerd, is called an r-cycle. =

——

REMARK 6.26. o If r =0, dyc = 0 automatically.
e Elements in Z,(K) have n6 boundary. When r = 1, they are closed loops.

DEFINITION 6.27 (r-boundary group). The image of 0,11 Imd,,q =
{ce C.(K)|3d € Cr11(K),c = 0, is~a subgroup of C,.(K), also called the
r-boundary group and denoted by B, (K

REMARK i .28. e Elements in B, (K) are@@of certain elements

‘ D e Det7 be the dimension of K, B, (K) is defined to be 0.

‘ 1 EXAMPLE 6.29. Let K be the triangulation in the left plot of figure 6.5
Kerdp = {0}

Imd; = spang{(p2ps) — (pops) + (Pop2), (P1p2) — (Pop2) + (pop1)}-
Kerdy = spang {(p2ps) — (pops) + (pop2), (P1p2) — (Pop2) + (pop1)}-

Y Imdy = spang{po — p1,po0 — P3,po — p2}-
In this example we see Imdy = Kerd; in particular.
~—_ 7 T
An important property is that the boundary of ‘a'simplex has no boundary,
hence the following proposition.

PROPOSITION 6.30. Let K be a simplicial comples, The composition 00 Opyy i
Cri1(K) = Cr_1(K) is a zero map, i.e. =0 for any ce Cr41(K).

Therefore an r-boundary is always an r-cycle

B (K) < Z,(K) < Cy(K).

6.3. Simplicial homology

A simplicial complex K and its chain groups C,.(K) of a topological space is not
a topological invariant. However, it leads to h(lnglog’y_g% which are topological
invariants. Firstly, we consider a general situation.

DEFINITION 6.32 (Chain complex). A chain complezx (C.,,ds) (or (C,,d))
of abelian groups (C},)nez and homomorphisms of abelian groups

(6.16) dy : Cp — Cp_1,
"
subject to the condition @ﬂ\omo for all n € Z.

REMARK 6.33. We also represent a chain complex (C,,d,) graphically as

(6.17) ...(d;1071<d_000<d_101<d_2...

and the condition d,, o d, 1 = 0 simplified as d? = 0.

4 0o %’Zﬁ fr = D

\& 16 hr=2
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One can also consider maps between chain complexes.

DEFINITION 6.34 (Chain maps). Let (C,,d.) and (C%,d.),A chain map
is a collection of homomorphisms (f, : C,, = C! )nez such that

(6.18) Jnodni1 = diz ° fnt1-
Graphically

o e, &g B
(6.19) v 0 |6 o |n

d_
o, L &g &

From the definition 6.32 of chain complex, one can a associate a chain complex

a simplicial complex K and its chain groups C.(K) by formally adding elements
identified to 0

DEFINITION 6.35 (Chain_complex of a simplicial complex). Let K
be a simplicial complex an@oe its dimension. The chain complex C(K) =
(C,,d.) associated with K is defined as the following

oCrz{CT(K 0<r<n

0 otherwise
. d — Or 0<r<n
"7 1 0—~ 0 otherwise

C(K) can be represented graphically as
(6.20)

d_1:0-0

0<% Cy(K) <2 O (K) <2 Oy () - < O (K) 222 0.

REMARK 6.36. d? = 0 follows from proposition 6.30 &, o0 ¢,,.1 = 0.

DEFINITION 6.37 (Homology group). Let (C.,d) be a chain complex
of abelian groups. Define the r-th homology group of (C,,d), denoted by

H,.(C,,d) (or simplfy H,(C.), H,(C)), to be the quotient group

Ker(tdh—~6G—6Er—1)
21 H,.(C,,d) = = Kerd,./Imd, 1.
(6.21) (Ce,d) Im(dy41 : 1> C) w
REMARK 6.38. e Each element in H, is called a hémology cla

e Elements in Kerd,. is also called d,.-closed, while elements in Imd, ;1 is also
called dy.41-ezact. Two dy-closed elements belong to the same equivalence
class in H, if their difference is d,,1-exact,

(622) [Cl] = [62] € HT if arcl = 57«62 = 0, Cl — Cg = 6r+1d.

e Let K be a simplicial complex. When 0 < r < n, by definition Kerd, =
Z.(K) and Imd,; = B,(K), then H.(C(K)) = Z.(K)/B.(K). Ele-
ments of H,(C(K)) are r-cycles which are not boundaries. Two elements
of H.(C(K)) belong to the same equivalent class if their difference is a
Jboundary. T

Although triangulations and chain groups are not, homology groups are topo-

logical invariants. }" _ I

%

Ezvﬁ%ﬁjz jh(;

FNOLC, co S R o C % 9z
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THEOREM 6.39. Let X and Y be two homeomorphic topological spaces, and let
(K, f) and (L, g) be triangulations of X and Y respectively, then

629 ) D)
EXAMPLE 6.40. Homology groups of I = [0,1]. Let K be the triangulation of

figure 6.4a. Previous example tells us

Co(K) = {z0(po) + z1(p1)|2i € Z} ~ 77,

C1(K) = {z0(pop1)|20 € Z} ~ Z.

and
(6.25) Cl(K) — Co(K) : (pop1) = p1 — Po-
~—  — ~——

C(K) is then

(6.24)

(6.26) L. Cfl 0—0 CO (Pop1)—P1—P0 Cl 0—0 CQ e
I I I I
0 spanz{po, 1} spanz{(pop1)} 0
W
Next we compute the Z,.(K) and B, (K). The cyyclﬁgmn.p& are
| spang{po,p1} ~ Z* r=20
(6:27) Z;(K) = { ——0  otherwise ’
and the boundary groups are
spany{p1 —po} ~2Z r=20
. = N~ N — .
(6.28) B (K) { 0 otherwise

In the end we get the homology groups of 1
(6.29) Ho(I) = spang{[po]} ~ Z, Hr.o(I)=0.
N ———

po and p; belong to the same homology class because

(6.30) P =Po+ (P = po) = o Ga(popr).

One can also compute homology groups of I using the triangulation in figure 6.4b
and the result is the same. The homology groups of I is the same as that of a point.

EXAMPLE 6.41. Homology groups of S!. Let K be the triangulation of figure
6.4c. Then C(K) is
(6.31)
o, 20 o Bas 4 220 o
I I I I
0 spang,{po, p1, p2} spang{(pop1), (p1p2), (P2po)} 0
with
(6.32)  d1(pop1) = (p1) = (Po), O1(p2p1) = (p2) — (p1), O1(P2p0) = Po — P2
— A —— T —
The cycle groups are

spany{po,p1,p2} =~ A r=20
(6.33) Z,(K) =< spang{(pop1) + (p1p2) + (p2po)} r=1 ;
0 otherwise

and the boundary groups are

— —_— ~ 2 ==
(6.34) B, (K) = { spanz{py —po.pz —pi}f =27 =0
Y 0 otherwise

e

=

72, = 2 2, = 2
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The homology groups of S! are
Ho(S') = spang{[po]} ~ Z,

(6.35) Hy(S") = spang{[(pop1) + (p1p2) + (p2po)]} ~Z,  Hyp0a(S") = 0.

6.4. More examples
6.5. Properties of homology groups

6.5.1. Connectness and homology groups.

( P)ROPOSITION 6.42. Let K be a connected implicial complex, then
6.36

PROPOSITION 6.43. Let K be a stimplicial complex. If K is a disjoint union of
N connected components, K = K1 U Ko U --- U Ky where K; n K; = (&, then

(6.37) H(K) ~ K, (K1) x Ho(K3) x -+ x Ho(Ky).

COROLLARY 6.44. Let K be a simplicial complex. If K is a disjoint union of
N connected components, K = KW U KN where K; n K = (J, then

(6.38) Ho(K)~Z x - x 7.

COROLLARY 6.45. Let K be a simplicial complex. K is connected if and only

if Hy(K) ~Z.
~— ~——

6.5.2. Structure of homology groups. Since H,.(K) is abelian. By group
theory the most general form of an abelian group is

(6.39) HT(K)sz-XZxx~~><Z

[ free part

p torsion part
If we change coefficients in chain _groups from @h ree will not
—

see the torsion part of the homology group, then
(6.40) H,(K;R) ~ R/,
W

6.5.3. Betti numbers and the Euler characteristics.

DEFINITION 6,46 (Betti number). Let K be a simplicial complex. The
rth Betti numbe @ is

(6.41) b, (K) = dim H,(K;R)

which is also the rank of the free abelian part of(H,.(K;Z))

One also defines the Fuler characteristics as

DEFINITION 6.47 (Euler characteristics). Let K be an n-dimensional
simplicial complex and I, be the ber of r-simplexes in K. The Fuler
characteristics x is

(6.42)

Betti numbers and the Euler characteristics are related by the following theo-
rem.

-

z
A k)= 2l Ly
120

o - |t2 ¢ .
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THEOREM 6.48 (Euler-Poincare theorem). Let K be an n-dimensional sim-
plicial complex and I, be the number of r-simplexes in K, then

(6.43) X(K) = > (=1)"b(K).



