
CHAPTER 6

Homology

6.1. Simplexes and simplicial complexes

6.1.1. Simplexes. Simplexes are building blocks of a polyhedron. A 0-simplex
xp0y is a point, and a 1-simplex xp0p1y is a line. A 2-simplex xp0p1p2y is a triangle
with its interior included. A r-simplex is a r-dimensional object, hence its ver-
tices must be geometrically independent, that is no pr ´ 1q-dimensional hyperplane
contains all r ` 1 vertices.

Definition 6.1 (r-simplex). Let tp0, p1, ¨ ¨ ¨ , pru be r geometrically in-

dependent points in R
m (m • r). A r-simplex �r (also denoted by xp0 ¨ ¨ ¨ pry)

is the subset

(6.1) �r
” tx P R

m
|x “

rÿ

i“0

cipi, ci • 0,
rÿ

i“0

ci “ 1u.

Remark 6.2. ‚ tciu are barycentric coordinates of x.
‚ �r is bounded and closed subset of Rm, hence �r is compact.
‚ In some literature, a simplex is defined to include shapes with some ver-
tices glued together. We will not call such shape simplex here.

Definition 6.3 (q-face). Let q be an integer 0 § q § r. and tpi0 , ¨ ¨ ¨ , piqu

be q ` 1 points out of tp0, ¨ ¨ ¨ , pru. The q-simplex �q
“ xpi0 , ¨ ¨ ¨ , piqy is called

a q-face of �r. We write �q
§ �r if �q is a face of �r. Moreover, if �q

‰ �r,
we call �q is a proper face of �r, denoted as �q

† �r.

Remark 6.4. ‚ A q´face �q is be definition a subset of �r. The barycen-
tric coordinates of points in �q are points with ci “ 0 for i R ti0, ¨ ¨ ¨ , iqu.

‚ A r-simplex has

ˆ
r ` 1
q ` 1

˙
q-faces.

Example 6.5. A tetrahedron is a 3-simplex (figure 6.1).

6.1.2. Simplicial complexes, polyhedra, and triangulation.

Definition 6.6 (Simplicial complex). Let K be a set of simplexes. K
is a simplicialcomplex if it satisfies the following two conditions

‚ If � P K and �1
§ �, then �1

P K. In other words, an arbitrary face
of a simplex of K is belongs to K.
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56 6. HOMOLOGY

p0

p1

p2

p3

Figure 6.1. The 3-simplex xp0p1p2p3y with its 2-face xp0p1p2y,
1-face xp1p3y and 0-face p3.

‚ If �, �1
P K, then either � X �1

“ H or � X �1
§ � and � X �1

§ �1.
That is, the intersection of two simplexes of K is either empty or a
common face.

Remark 6.7. ‚ In our definition of simplicial complex, the intersection
of two elements is always a simplex.

‚ By definition each � P K can be embedded in some Rm. However, di↵erent
elements of K may be embedded in R

m in di↵erent ways. This point is
important in triangulation.

‚ The union of all elements of the simplical complexK is called a polyhedron

|K| of K.

Example 6.8. ‚ A simplex together with all its faces form a simplicial
complex. For example, the tetrahedron in figure 6.1 gives a simplicial
complex

K “ txp0p1p2p3y, xp0p1p2y, xp1p2p3y, xp2p3p0y, xp3p0p1y,

xp0p1y, xp0p2y, xp0p3y, xp1p2y, xp1p3y, xp2p3y,

xp0y, xp1y, xp2y, xp3yu.

(6.2)

‚ The left diagram in figure 6.2 is a simplicial complex while the right is
not.

‚ The simplicial complex may not be connected as in figure 6.3.

Definition 6.9 (Triangulation). Let X be a topological space. If there
exists a simplicial complex K and a homeomorphism f : |K| Ñ X, then X is
said to be triangulable and the pair pK, fq is called a triangulation of X.

Remark 6.10. Given a triangulable X, its triangulation is far from unique.
However, the minimum triangulation (triangulation with least member) depends
on the topology of X as we will see in the following examples.
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Figure 6.2. Left: a simplicial complex with 1 2-simplex, 6 1-
simplexes and 5 0-simplexes. Right: not a simplicial complex.

Figure 6.3. Simplicial complex can also have multiple connected
components.

The allowed triangulation can be quite di↵erent for di↵erent topological space.
For example:

Example 6.11. ‚ Let X “ r0, 1s, then KX “ tX, t0u, t1uu is a triangu-
lation ofX. One can also add any points 0 “ p0 † p1 † ¨ ¨ ¨ † pn † pn`1 “

1 and defineKpp1 ¨ ¨ ¨ pnq “ txp0p1y, ¨ ¨ ¨ , xpnpn`1y, tp0u, tp1u, ¨ ¨ ¨ , tpnu, tpn`1uu,
then Kpp1 ¨ ¨ ¨ pnq is also a triangulation of X. However, there is no trian-
gulation of X with less elements than KX (Figure 6.4 a and b).

‚ Let Y “ S
1, the minimal triangulation has at least three vertices (0-

simplexes) (Figure 6.4 c). If we mark only two points on S
1, the result is

not a simplicial complex in our definition (Figure 6.4 d).

Example 6.12. Now look at two dimensional examples. LetX “ I2 “ r0, 1s
2

Ä

R
2.

‚ The triangulation of X with minimal triangls contains only two triangles
(2-simplexes) as in figure 6.5.
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p0 p1 ¨ ¨ ¨ pn pn`1

aq : KX

p0 p1

bq : Kpp1 ¨ ¨ ¨ pnq cq : KY

p0

p1

p2

dq

Figure 6.4. a): minimal triangulation of r0, 1s. b): a generic
triangulation of r0, 1s. c): minimal triangulation of a circle. d):
not a triangulation in our sense because the intersection of left arc
and right arc contains two points (0-simplexes).

p0

p1 p2

p3

Figure 6.5. Two di↵erent triangulations of I2 with minimal triangles.

‚ Now let Y be X with left and right edge identified, then topologically Y
is a cylinder with finite length. A proper triangulation of Y has no less
than six triangles as shown in figure 6.6.

6.2. Chain group, cycle group and boundary group

6.2.1. Oriented simplexes.

Definition 6.13 (Orientation of simplexes). Let ti0, i1, ¨ ¨ ¨ , iru be a
permutation of t0, 1, ¨ ¨ ¨ , ru. �r

ppi0pi1 ¨ ¨ ¨ pir q has the same orientation with
�r

pp0p1 ¨ ¨ ¨ prq if and only if tpi0 , pi1 , ¨ ¨ ¨ , piru and tp0, p1, ¨ ¨ ¨ , pru di↵er by an
even permutation. If we denote an oriented r-simplex by pp0p1 ¨ ¨ ¨ prq, then

(6.3) ppi0pi1 ¨ ¨ ¨ pir q “ signpP qpp0p1 ¨ ¨ ¨ prq

with P being the permutation from tp0, p1, ¨ ¨ ¨ , pru to tpi0 , pi1 , ¨ ¨ ¨ , piru.

Remark 6.14. ‚ When r “ 0, we formally define the oriented 0-simplex
simply as pp0q.

‚ As a set ppi0pi1 ¨ ¨ ¨ pir q is the same as pp0p1 ¨ ¨ ¨ prq.

Example 6.15. ‚ An oriented 1-simplex pp0p1q is a directed line seg-
ment pointing from p0 to p1, while pp1p0q is pointing from p1 to p0, and
by definition we have pp0p1q “ ´pp1p0q. See figure 6.7(a).
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p0

p1

p0

p1

p2

p3

aq bq

cq dq

Figure 6.6. Triangulation of a cylinder. a): Not a triangulation
because two triangles share two edges. b): Not a triangulation be-
cause xp1p2p3yXxp0p1p3y “ tp1uYtp3u. c): Minimal triangulation.
d): Another visualization of minimal triangulation.

‚ Similarly the orientation of 2-simplex defines ”counterclockwise”. By def-
inition we have

pp0p1p2q “ pp1p2p0q “ pp2p0p1q

“ ´pp0p2p1q “ ´pp2p1p0q “ ´pp1p0p2q.
(6.4)

See figure 6.7(b).

6.2.2. Chain group. Let K be a simplicial complex. We regard each element
in K as an oriented simplex.

Definition 6.16 (Chain group). The r-chain group CrpKq of a simpli-
cial complex K is a free Abelian group generated by the oriented r-simplexes
of K. If r ° dimK, CrpKq is defined to be 0 (the group containing only the
unit element). An element of CrpKq is called an r-chain.

Remark 6.17. ‚ As a set CrpKq “ t
∞

i
zi�r

i
|zi P Z,�r

i
P Ku. Let

c “
∞

i
zi�r

i
P CrpKq and d “

∞
i
wi�r

i
P CrpKq, c ` d ”

∞
i
pzi ` wiq�r

i
.

The identity element of CrpKq is the element with all zi “ 0 (0 “
∞

i
0 �r

i
).
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p0 p1

aq

p0 p1

p2

bq

Figure 6.7. An oriented 1-simplex (a) and 2-simplex (b).

The inverse of c “
∞

i
zi�r

i
P CrpKq is p´cq “ ´

∞
i
zi�r

i
“

∞
i
zip´�r

i
q

where ´�r

i
is the r-simplex with opposite orientation relative to �r

i
.

‚ By the above explanation, one can see that CrpKq is a free abelian group
of rank Ir where Ir is the number of r-simplexes in K, i.e.

(6.5) CrpKq » Z ˆ Z ˆ ¨ ¨ ¨ ˆ Zloooooooomoooooooon
Ir

” Z
Ir .

‚ If we treat the collection of r-simplexes of K as a base t�r

i
u. CrpKq

can be viewed as a subset of spanRpt�r

i
uq whose elements have integer

coe�cients. (i.e. integer points in the real vector (linear) space spanned
by t�r

i
u). Apparently a vector space is an abelian group under the addition

of vectors.
‚ Let

≥
�r f and

≥
�̃r f being integrals over �r and �̃r (f being a r-form). One

can understand
≥
�r`�̃r f as

≥
�r f `

≥
�̃r f .

Example 6.18. We compute some chain groups for examples in figure 6.4.

‚ Let KY be the simplicial complex equal to the triangulation in 6.4a. We
have

C0pKq “ tz0pp0q ` z1pp1q|zi P Zu » Z
2,

C1pKq “ tz0pp0p1q|z0 P Zu » Z,

Cn•2pKq “ 0.

(6.6)

‚ Similarly, let KY be the simplicial complex equal to the triangulation in
6.4c. We have C0pKY q “ tz0pp0q ` z1pp1q ` z2pp2q|zi P Zu » Z

3 and
C1pKY q “ tz0pp0p1q ` z1pp1p2q ` z2pp2p0q|zi P Zu » Z

3 and Cn•2pKY q “

0.

Example 6.19. The chain group of the triangulation K in the left plot of figure
6.5 is

C0pKq “ t

3ÿ

i“0

zippiq|zi P Zu » Z
4,

C1pKq “ t

3ÿ

i“0

zippipi`1q ` z4pp0p2q|zi P Z, p4 ” p0u » Z
5,

C2pKq “ tz0pp0p1p3q ` z1pp1p2p3q|zi P Zu » Z
2,

Cn•3pKq “ 0.

(6.7)
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6.2.3. Boundary operator, cycle group and boundary group. By defi-
nition 6.1 of simplexes, we see the boundary Br�r of a r-simplex �r is a collection
of pr ´ 1q-simplexes. Br should be understood as an operator acting on �r to and
the result is a pr´ 1q-chain in Cr´1pKp�r

qq, where Kp�r
q is the simplicial complex

containing �r and all its faces. In general we have

Definition 6.20 (Boundary operator). Let K be a simplicial complex.
The boundary operator Br : CrpKq Ñ Cr´1pKq is a group homomorphism, i.
e. Br is linear in coe�cients zi

(6.8) Br

˜
ÿ

i

zi�
r

i

¸
“

ÿ

i

ziBrp�r

i
q.

For an oriented r-simplex �r
“ pp0p1 ¨ ¨ ¨ prq its boundary Br�r is defined to be

the pr ´ 1q-chain

(6.9) Brpp0p1 ¨ ¨ ¨ prq ”

rÿ

i“0

p´1q
i
pp0p1 ¨ ¨ ¨ p̂i ¨ ¨ ¨ prq,

where p̂i means the point pi is omitted. And we formally define B0�0
“ 0.

Remark 6.21. We only have to define the action of Br on the generators of the
r-chain group. The action on other elements are obtained from linearity.

Example 6.22. p̂i means removing pi from the simplex pp0p1 ¨ ¨ ¨ ¨ ¨ ¨ prq and the
result is a pr ´ 1q-face of pp0p1 ¨ ¨ ¨ ¨ ¨ ¨ prq with the orientation determined by how
many vertices on the left of pi. For example

B2pp0p1p2q “ pp1p2q ´ pp0p2q ` pp0p1q

“ pp1p2q ` pp2p0q ` pp0p1q,

B3pp0p1p2p3q “ pp1p2p3q ´ pp0p2p3q ` pp0p1p3q ´ pp0p1p2q.

(6.10)

Example 6.23. We again go back to examples in figure 6.4.

‚ For the triangulation KX in figure 6.4a,

B1 : C1pKXq Ñ C0pKXq : pp0p1q fiÑ pp1q ´ pp0q.(6.11)

‚ For the triangulation KX in figure 6.4c,

B1pp0p1q “ pp1q ´ pp0q, B1pp2p1q “ pp2q ´ pp1q, B1pp2p0q “ p0 ´ p2.
(6.12)

Remark 6.24. Here we see the reason for the minus sign in the definition of
Br: pp0p1q ` pp1p2q is the arc from p0 to p2, hence its boundary is two points p0
and p2. By linearity, we have

(6.13) B1ppp0p1q ` pp1p2qq “ pp1q ´ pp0q ` pp2q ´ pp1q “ pp2q ´ pp0q,

which is consistent with the fact that when gluing two connected arcs, their shared
boundary is not a boundary in the new arc. Similar idea holds for r-simplexes.
Notice the shared boundary of two simplexes always have di↵erent orientation in
either one. B1pp0p1q “ p1 ´ p0 is also related to the Newton-Leibniz formula

(6.14)

ª

pp0p1q
fptqdt “ F pp1q ´ F pp0q.

We will return to this when talking about cohomology.

- -
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Since Br is a group homomorphism, it is also interested to consider its image

ImBr and kernel KerBr. They also have geometric interpretations.

Definition 6.25 (r-cycle group). The kernel Br KerBr ” tc P CrpKq|Brc “

0u is a subgroup of CrpKq, also called the r-cycle group and denoted by ZrpKq.
c P KerBr is called an r-cycle.

Remark 6.26. ‚ If r “ 0, B0c “ 0 automatically.
‚ Elements in ZrpKq have no boundary. When r “ 1, they are closed loops.

Definition 6.27 (r-boundary group). The image of Br`1 ImBr`1 ”

tc P CrpKq|Dd P Cr`1pKq, c “ Br`1du is a subgroup of CrpKq, also called the
r-boundary group and denoted by BrpKq.

Remark 6.28. ‚ Elements in BrpKq are boundaries of certain elements
in Cr`1pKq.

‚ Let n be the dimension of K, BnpKq is defined to be 0.

Example 6.29. Let K be the triangulation in the left plot of figure 6.5

‚ KerB2 “ t0u.
‚ ImB2 “ spanZtpp2p3q ´ pp0p3q ` pp0p2q, pp1p2q ´ pp0p2q ` pp0p1qu.
‚ KerB1 “ spanZtpp2p3q ´ pp0p3q ` pp0p2q, pp1p2q ´ pp0p2q ` pp0p1qu.
‚ ImB1 “ spanZtp0 ´ p1, p0 ´ p3, p0 ´ p2u.

In this example we see ImB2 “ KerB1 in particular.

An important property is that the boundary of a simplex has no boundary,
hence the following proposition.

Proposition 6.30. Let K be a simplicial complex. The composition Br ˝ Br`1 :
Cr`1pKq Ñ Cr´1pKq is a zero map, i.e. BrpBr`1cq “ 0 for any c P Cr`1pKq.

Therefore an r-boundary is always an r-cycle

Corollary 6.31. Let K be a simplicial complex. Then its r-boundary group

BrpKq ” ImBr`1 is always a subset of its r-cycle group ZrpKq ” KerBr

(6.15) BrpKq Ä ZrpKq Ä CrpKq.

6.3. Simplicial homology

A simplicial complex K and its chain groups CrpKq of a topological space is not
a topological invariant. However, it leads to homology groups which are topological
invariants. Firstly, we consider a general situation.

Definition 6.32 (Chain complex). A chain complex pC‚, d‚q (or pC‚, dq)
of abelian groups pCnqnPZ and homomorphisms of abelian groups

(6.16) dn : Cn Ñ Cn´1,

subject to the condition dn ˝ dn`1 “ 0 for all n P Z.

Remark 6.33. We also represent a chain complex pC‚, d‚q graphically as

(6.17) ¨ ¨ ¨
d´1

–›› C´1
d0

–› C0
d1

–› C1
d2

–› ¨ ¨ ¨

and the condition dn ˝ dn`1 “ 0 simplified as d2 “ 0.
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One can also consider maps between chain complexes.

Definition 6.34 (Chain maps). Let pC‚, d‚q and pC 1
‚, d‚q,A chain map

is a collection of homomorphisms pfn : Cn Ñ C 1
n

qnPZ such that

(6.18) fn ˝ dn`1 “ d1
n

˝ fn`1.

Graphically

(6.19)

¨ ¨ ¨
d´1

–›› C´1
d0

–› C0
d1

–› C1
d2

–› ¨ ¨ ¨§§ûf´1 ö
§§ûf0 ö

§§ûf1

¨ ¨ ¨
d´1

–›› C 1
´1

d0
–› C 1

0
d1

–› C 1
1

d2
–› ¨ ¨ ¨

From the definition 6.32 of chain complex, one can a associate a chain complex
to a simplicial complex K and its chain groups CrpKq by formally adding elements
identified to 0.

Definition 6.35 (Chain complex of a simplicial complex). Let K
be a simplicial complex and n be its dimension. The chain complex CpKq “

pC‚, d‚q associated with K is defined as the following

‚ Cr “

"
CrpKq 0 § r § n

0 otherwise
.

‚ dr “

"
Br 0 § r § n

0 fiÑ 0 otherwise
.

CpKq can be represented graphically as
(6.20)

¨ ¨ ¨ 0
d´1:0 fiÑ0

–››››› 0
B0

–› C0pKq
B1

–› C1pKq
B2

–› C2pKq ¨ ¨ ¨
Bn

–› CnpKq
0 fiÑ0

–››› 0 ¨ ¨ ¨

Remark 6.36. d2 “ 0 follows from proposition 6.30 Br ˝ Br`1 “ 0.

Definition 6.37 (Homology group). Let pC‚, dq be a chain complex
of abelian groups. Define the r-th homology group of pC‚, dq, denoted by
HrpC‚, dq (or simplfy HrpC‚q, HrpCq), to be the quotient group

(6.21) HrpC‚, dq “
Kerpdr : Cr Ñ Cr´1q

Impdr`1 : Cr`1 Ñ Crq
“ Kerdr{Imdr`1.

Remark 6.38. ‚ Each element in Hr is called a homology class.
‚ Elements in Kerdr is also called dr-closed, while elements in Imdr`1 is also
called dr`1-exact. Two dr-closed elements belong to the same equivalence
class in Hr if their di↵erence is dr`1-exact,

(6.22) rc1s “ rc2s P Hr, if Brc1 “ Brc2 “ 0, c1 ´ c2 “ Br`1d.

‚ Let K be a simplicial complex. When 0 § r § n, by definition Kerdr “

ZrpKq and Imdr`1 “ BrpKq, then HrpCpKqq “ ZrpKq{BrpKq. Ele-
ments of HrpCpKqq are r-cycles which are not boundaries. Two elements
of HrpCpKqq belong to the same equivalent class if their di↵erence is a
boundary.

Although triangulations and chain groups are not, homology groups are topo-
logical invariants.
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Theorem 6.39. Let X and Y be two homeomorphic topological spaces, and let

pK, fq and pL, gq be triangulations of X and Y respectively, then

(6.23) HrpKq » HrpLq.

Example 6.40. Homology groups of I “ r0, 1s. Let K be the triangulation of
figure 6.4a. Previous example tells us

C0pKq “ tz0pp0q ` z1pp1q|zi P Zu » Z
2,

C1pKq “ tz0pp0p1q|z0 P Zu » Z.
(6.24)

and

(6.25) B1 : C1pKq Ñ C0pKq : pp0p1q fiÑ p1 ´ p0.

CpKq is then

(6.26) ¨ ¨ ¨C´1
q
0

0 fiÑ0
–››› C0

q

spanZtp0, p1u

pp0p1q fiÑp1´p0
–››››››››› C1

q

spanZtpp0p1qu

0 fiÑ0
–››› C2

q
0

¨ ¨ ¨ .

Next we compute the ZrpKq and BrpKq. The cycle groups are

(6.27) ZrpKq “

"
spanZtp0, p1u » Z

2 r “ 0
0 otherwise

,

and the boundary groups are

(6.28) BrpKq “

"
spanZtp1 ´ p0u » Z r “ 0

0 otherwise
.

In the end we get the homology groups of I

(6.29) H0pIq “ spanZtrp0su » Z, Hr‰0pIq “ 0.

p0 and p1 belong to the same homology class because

(6.30) p1 “ p0 ` pp1 ´ p0q “ p0 ` B1pp0p1q.

One can also compute homology groups of I using the triangulation in figure 6.4b
and the result is the same. The homology groups of I is the same as that of a point.

Example 6.41. Homology groups of S1. Let K be the triangulation of figure
6.4c. Then CpKq is
(6.31)

¨ ¨ ¨C´1
q
0

0 fiÑ0
–››› C0

q

spanZtp0, p1, p2u

B1
–› C1

q

spanZtpp0p1q, pp1p2q, pp2p0qu

0 fiÑ0
–››› C2

q
0

¨ ¨ ¨

with

B1pp0p1q “ pp1q ´ pp0q, B1pp2p1q “ pp2q ´ pp1q, B1pp2p0q “ p0 ´ p2.(6.32)

The cycle groups are

(6.33) ZrpKq “

$
&

%

spanZtp0, p1, p2u » Z
3 r “ 0

spanZtpp0p1q ` pp1p2q ` pp2p0qu r “ 1
0 otherwise

,

and the boundary groups are

(6.34) BrpKq “

"
spanZtp1 ´ p0, p2 ´ p1u » Z

2 r “ 0
0 otherwise

.
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The homology groups of S1 are

H0pS
1
q “ spanZtrp0su » Z,

H1pS
1
q “ spanZtrpp0p1q ` pp1p2q ` pp2p0qsu » Z, Hr‰0,1pS

1
q “ 0.

(6.35)

6.4. More examples

6.5. Properties of homology groups

6.5.1. Connectness and homology groups.

Proposition 6.42. Let K be a connected simplicial complex, then

(6.36) H0pKq » Z.

Proposition 6.43. Let K be a simplicial complex. If K is a disjoint union of

N connected components, K “ K1 Y K2 Y ¨ ¨ ¨ Y KN where Ki X Kj “ H, then

(6.37) HrpKq » KrpK1q ˆ HrpK2q ˆ ¨ ¨ ¨ ˆ HrpKN q.

Corollary 6.44. Let K be a simplicial complex. If K is a disjoint union of

N connected components, K “ K1 Y K2 Y ¨ ¨ ¨ Y KN where Ki X Kj “ H, then

(6.38) H0pKq » Z ˆ ¨ ¨ ¨ ˆ Zlooooomooooon
n

.

Corollary 6.45. Let K be a simplicial complex. K is connected if and only

if H0pKq » Z.

6.5.2. Structure of homology groups. Since HrpKq is abelian. By group
theory the most general form of an abelian group is

(6.39) HrpKq » Z ˆ ¨ ˆ Zloooomoooon
f free part

ˆZk1 ˆ ¨ ¨ ¨ ˆ Zkploooooooomoooooooon
p torsion part

.

If we change coe�cients in chain groups from integers to real numbers, we will not
see the torsion part of the homology group, then

(6.40) HrpK;Rq » R
f .

6.5.3. Betti numbers and the Euler characteristics.

Definition 6.46 (Betti number). Let K be a simplicial complex. The
rth Betti number brpKq is

(6.41) brpKq ” dimHrpK;Rq

which is also the rank of the free abelian part of HrpK;Zq.

One also defines the Euler characteristics as

Definition 6.47 (Euler characteristics). Let K be an n-dimensional
simplicial complex and Ir be the number of r-simplexes in K. The Euler

characteristics � is

(6.42) �pKq ”

nÿ

r“0

p´1q
rIr.

Betti numbers and the Euler characteristics are related by the following theo-
rem.
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Theorem 6.48 (Euler-Poincare theorem). Let K be an n-dimensional sim-

plicial complex and Ir be the number of r-simplexes in K, then

(6.43) �pKq “

nÿ

r“0

p´1q
rbrpKq.
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