CHAPTER 5

Homotopy ﬁ,{ 7% WWEAEN.C

5.1. Homotopy of maps

In physics literature, one encounters phrases like ”continuous change of solu-
tions/path”, ”X is continuously deformed to Y”, and etc, which means homotopy
in mathematics

DEeFINITION 5.1 (Homotopy of maps). Let f and g be continuous maps

from topological space X to Y. A h between f and g is a continuous
map

(5.1) 2: X x[0,1] =Y,

such that, for any x € X, q(z.0) = f(z) and o(x,1) = g(x), i.e. o defines a
path from f(z) to g(z) in C[X;YT. ~—

REMARK 5.2. f and g are called homotopic if there exists a homotopy between

f and g, denoted by f ~ g. A function f who is homotopic to a constant function
N e

D f’\ f < is also denoted as nummopic. 0{’6 .
\ A : e e
= f") \%ITION 5.3. Let X and Y be topologzcal spaces. [ is homotopic to g
SCall ‘ (f ~ g) is an equivalence relation on C[X;Y]. W 1 S
——— A
® f:’_‘ T 6‘ ff REMARK 5.4. We denote the quotient set C[X; Y]/ ~ as 1@ The homotopy

class (the equivalent class under ~) of the map 1s enoted as

ﬂél(_f(x),l) B 3(‘6‘) 3

_ EXAMPLE 5.5. Let P be a space with only ¢ en there is a one to
6. (fo),0) =Ho
one correspondence between continuous functions from P to topological space X

L. 6 (fM, ~¢) . and points in X. Two homotopic maps f and g from P to X gives a path from
f(P) to g(P) on X. Homotopic relation on C[P;X] is the same e relation
”path-connectedness” on X. Therefore C[P; X|/ ~ is the same as (to(X) as a set
where my(X) is the set of all path-connected components on X.

PROPOSITION 5.6. Let X, Y and Z be topological spaces. Assume continuous
maps f: X =Y, f'+ X =Y are homotopic to each other, and continuous maps
g:Y — Z, g Y = Z are homotopic to each other. Then g o f is homotopic to

gt
g
REMARK 5.7. The compaosition of maps
(5.2) CIX;Y] % ClY; Z] = C[X; 2] : (f,9) » go f

induces a composition of homotopy classes

(5.3) (XY < [Y5Z] = [X; 7]« ([f],9]) = [g o f].
N —

5.1.1. Homotopy equivalence.
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DEerINITION 5.8 (Homotopy equivalence). Topological spaces X and

Y are called homotopy equivalent if there exist continuous maps$ f: X — Y

and g : Y — X such that [f o g] = [Idy] and [go f] = [Idx] (i.e.lf o g ~ Idy,

—Q&EH@E)' Each of the maps f and g is called a homotopy equmd
g is said to be a homotopy inverse to f (and vice versa). 5 A lﬂ f@ Z

REMARK 5.9. e One can think of homotopy equivalentﬁaces as spaces,

which can bhe deformed continuo into one another.
e Any homeomorphism f : X — Y is a homotopy equivalence, with homo-
topy inverse f~!, but converse does not necessarily hold.

ProrosiTioN 5.10. f : X — Y is a homotopy equivalence. Then for any
topological space T, natural maps
[T5X] = [T5Y]: £ = [f] o &,

(5.4) [YV:T] = [X;T): ¢ — 1o [f]

are bijections.

REMARK 5.11. If T" is a space with only one point, there is a bijection between
7o(X) and m(Y") following example 5.5.
— 7/
72
DEFINITION 5.12 (Contractible space). A space X is called contractible

if X is homotopic equivalent to a point. X is contractible if and only if Idx
is null-homotopic.

PROOF. ("If” part) Idx is null-homotopic. Let P = {p} be the topological
space of one point. Let ¢ :: X — P : x +— p be a constant map from X to P.
Let g: P — X : p— x9.9g0c(x) = xq is a constant map from X to itself, then
g oc~Idx by assumption. Clearly cog = Idp. So c is a homotopy equivalence
between X and P.

(”Only if” part) Let f : X — P be a homotopy equivalence. Let g : P — X
be the homotopy inverse of f. Then go f ~ Idx which means Idx is homotopic to
the constant function go f: X — X. O

EXAMPLE 5.13. Any interval in R is contractible. Actually, any star-shape
region in R™ (see remark 4.33) is contractible.

N 12
A1 & Y Vjg
DEFINITION 5.14 (Deformation retraction). Let X be a topological
space and A be a subspace of X. A deformation retraction is a homotopy

(5.5) reX % [0,1] — X
such that ¢(z,0) = z, r(z,1) & A and for any point a € A and t € [0, 1],

r(a,t) =a (ie. r(z,t)|a =Idy for any t € [0,1]).

REMARK 5.15. e The subspace A is called a deformation retract of X
if there exists a deformation retraction from X to A.
e If A is a deformation retract of X, then X is homotopy equivalent to A,
because the deformation retraction r gives the homotopy inverse of the
inclusion map A — X.

= Jelx
X 2
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EXAMPLE 5.16 (Examples of deformation retractions). o r(Z,t) =

=7 7o 8ives a deformation retraction from R\ {0} to S™.
e Thecentral circle is a deformation retract of the Moebius strip.

We are interested in homotopic invariants in this section. Clearly all homeo-
morphic invariants are also homotopic invariants.

5.2. Homotopy of paths and the fundamental group

Recall a path on space X is a continuous map 7 : [0,1] — X. A loop is a path
7 which y(0) =~7(1).  _  »
\W) =,

DEFINITION 5.17. Loop X be a topological spaces. A loop based at x € X

is a path v with y(0) =~(1) = z.

REMARK 5.18. Let ¢ : [0,1] — S* be a quotient map such that ¢(0) = ¢(1) =
o € S, then a loop based at z is also a continuous map [ : S' — X such that
l(o) = x.

DEFINITION 5.19 (Inverse path). Let v be a path from z to a’. TIts
inverse path v~ : [0,1] = X is
(5.6) it (1 —t),

N
which is a path from z’ to x.

DEFINITION 5.20 (Constant path). A constant path based at z € X is

the constant map t —>a.__

Since paths are also continuous maps, we can apply the concept of homotopy

n them _
HLEENER
DEFINITION 5.21 (Path homotopy). A path homotopg hetween two

aths cg and ¢ is a homoto
p 0 1 Py O/-\ (
(5.7) o:[0,1] x [0,1] = X, C
—_— N ——

which satisfies ¢(0,t) = co(0) = ¢1(0) and o(1,%) = co(1) = c1(1). In particu-
lar ¢g and ¢; have the same start and end. If ¢p is path homotopic to ¢1, we
denote as cy >, ci.

N—""~—

REMARK 5.22. Denote all paths from z € X toy € X as A, ,(X). Path
homotopy gives an equivalence relation on A, ,(X).

DEFINITION 5.23 (Product of paths). Let a and 8 be two paths in X,
and «(1) = $(0) (i.e. the end of « is the start of 8). Their product path « x
is

if0<s<1/2,
(5.8) (axpB)(s) = { 5((2%;2?1 if 1/2<s 3/1.

REMARK 5.24. The continuity of « * 8 follows from pasting lemma.

PROPOSITION 5.25. Let ¢ be a path on X. Then ¢~ % ¢ path homotopic to the
constant path based at c(1).
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(1,1)

3 gl t

FIGURE 5.1. The associativity of products of [a], [f], and [7].

PROOF. Let v4(t) = ¢((1 — s)t + s). Then
(5.9) F(t,s) =7 (t) % 7s(t)
is the path homotopy we need. O

PROPOSITION 5.26. Let av and 8 be paths on X satisfying (1) = B(0). Assume
there exist paths o and B’ such that —

(5.10) o ~a, B8 ~ 8,
— e
then o x 3 ~, o' x 3.
T ~—————

REMARK 5.27. This proposition tells us that the path product * induces a
well-defined product * on path homotopy classes

(5.11) [a] « [B] = [a = 5]
for any paths o and 3 satisfying «(1) = 5(0).

PROOF. Let F be the homotopy between a and ', and G be the homotopy
between 3 and 3'. Define

_ F(2s,t) if 0<s<1/2,
(5-12) His,t) = { G(2s—1,t) if1/2<s<1.
—
H gives the path homotopy we need. g

PROPOSITION 5.28. Let o, 8 and y be three paths on X. And a(1) = B(0) and
B(1) =~(0). Then T
(5.13) ax (Bx7) 2 (axf) 7.

REMARK 5.29. Usually a * (8 * ) is not the same as (a * ) x~.

ProoF. We illustrate the construction of the homotopy in figure 5.1. The
reader should try to write it explicitly. O

From propositions above we see that although the path product is not a ”good”
operation on paths, it is a ”good” operation on path-homotopy classes. Moreover,
since any two loops based at  can make path product, it is then natural to consider
the set of all loops based at x up to path homotopy.
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DEeFINITION 5.30 (The fundamental group). Let X be a topological
space. For any point € X, let m (X, x) be the quotient set

(5.14) a( X x) = Ay o (X)/ >,
i.e. the se classes of loops hased at z. (71 (X, z),*) forms a

group under the path product *, which is called the fundamental group of X
— N
at x.

PROOF. To show that (71 (X, ), x) forms a group. We need to show the asso-
ciativity of %, the existence of a unit element, and the existence of a inverse of any
element.

e Associativity: follows from proposition 5.28.
e Unit: the homotopy class of constant loop based at x.
e Inverse: the inverse of [y] is [y~] because of proposition 5.25.

O

REMARK 5.31. A path-connected topological space is called simply connected
by paths if for any x € X, m1(X,z) = {1} is a trivial group.

PROPOSITION 5.32. The fundamental group is invariant under homotopy, i.e.
homotopy equivalent topological spaces have isomorphic fundamental groups.

EXAMPLE 5.33. R? is not homeomorphic to R™ for n > 2. Because R? with the
origin removed is not simply path-connected, while R™ for n > 2 with the origin
removed are.

5.3. Basic properties of the fundamental groups

5.3.1. Dependence on the base point. The definition the fundamental
group depends on the choice of the base point, the following proposition basically
says that the fundamental group is "independent” of the choice of base points for
path-connected spaces.

PROPOSITION 5.34. Let X be a path connected topological space. Then for any
x,y € X, the fundamental group m (X, x xp D @hzc to m (X, y).

PROOF. We need to construct a\b 1(X,2) — m(X,y) such that

flaxB) = f(a) * f(B).

Because X is path-connected, let § be the path from z to y. Define the map
5) 5 m1(X,y) = (X, 2) : [y] = [0]7" * [v] * [d].

e

(5.1

disa group h011n morphlsm because

(5.16) &([a]*[8]) = [6] " +[a]*[B]x[5] = 3]~ *[a]+[8]%[6] " +([B]%[6] = 6([o])x3([B)).
§ is an invertible mam h

(5.17) 0t (X, ) = m(X,y) : [o] = [6] % o] % [0] "

Therefore 4 is a bijection. Sinct it is also a group homomorphism, $ is an isomor-
phism between 71 (X, z) and 71 (X, y). O

COROLLARY 5.35. Let X be a topological space. The following statements are
equivalent.

[0.1]"
d 1., va%

dof  tr Luop.
F: 1a

<t

= X

ol :Xé)(
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d|ld-
T

FiGURE 5.2. Constructing a loop based at x which is freely ho-
motopic to the loop c.

o (X, x) is trivial.
e Any two paths_start d_have same._e e_homotopy equiv-

o Any loop based at x is homotopy equivalent to the constant path based at

x.

B

EXAMPLE 5.36. Consider any loop [ : St — R™ based at the origin of R™. Define
L:S'%x[0,1] = R", L(6,t) = (1 —¢)I(f). Then L is a path homotopy between [
and the constant path based at the origin. Hence for any = € R™, =1 (R", z) = {1}.

5.3.2. Freely homotopic loops.

DEFINITION 5.37 (Freely homotopic loops). Two loops ¢y and ¢; on
topological space X are freely homotopic if there exists a homotopy

(5.18) o:[0,1] x [0,1] = X,

such that o(t,0) = ¢o(t), o(t,1) = ¢1(¢t) and ¢(0,8) = o(1,s) (i.e. for any
s € [0,1], sigmaf(t, s) is a loop).

REMARK 5.38. "freely” means we do not choose a base point. Its relation with
homotopy based on a point is discuss in the following proposition.

PROPOSITION 5.39. Let X be a path-connected space, and x € X. Then any
loops on X is freely homotopic to some loop based at x.

PROOF. Assume c is a loop on X with ¢(0) = y. Let d be a path from z to y.
We need to show that the loop d * ¢ * d~ based on z is freely homotopic to c¢. The
homotopy is given by

(5.19) o(t,s) =d((1—s)t+s)xcxd((1—s)t+s)7,
as illustrated in figure 5.2. d

5.3.3. Fundamental group of the product space.

PROPOSITION 5.40. Let (X;)i=1,... n be a collection of topological spaces. X =
[T, Xi. Let @ = (z1,22, - ,an) be a point in X, then m (X, z) is isomorphic to
the product group T[]\, m1 (X, ;).
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FIGURE 5.3. The covering map p : R — S! : ¢+ (cos 27t, sin 27t).
The preimage of the left half-circle (red) is the union of disjoint
intervals on R.

5.3.4. Fundamental group of S".

PROPOSITION 5.41. o Any freely homotopic loops on R?\{0} have the
same winding number.
o The winding number of loops gives the group isomorphism w1 (R*\{0}) —
7.

COROLLARY 5.42. The fundamental group of S is isomorphic to the additive
group 7.

PROPOSITION 5.43. Let U; and Uy be two path-connected and simply path-
connected open sets of X. If X = Uy UUy and Uy N Us is path-connected, then X
18 path-connected and simply path-connected.

COROLLARY 5.44. m1(S™) is trivial for n > 2.

EXAMPLE 5.45. The fundamental group of the torus S' x S! is isomorphic to
the additive group Z? (proposition 5.40). Hence, the torus is not homeomorphic to
S™.

5.4. Covering spaces and lifting lemma

A useful tool to compute the fundamental group is the covering space. Loops
of different homotopy type are lifted to different paths in the covering space.

DEFINITION 5.46 (Covering space). Let (£, p) be a space over B such
that p ontinuous. p is a\cgfgigg\l_nav, or (E,p) is a covering space

b € B,)there exists an open neighborhood U of b such that
Y

(5.20) p U

. { & <4 @y
where U,’s are disjoint open subspace of E and pps
phism. —

REMARK 5.47. Covering space is the modern way of saying ”multi-valued
function”. In particular if E is a covering space of C, a multi-valued funcfi
isf: E— C.

: U; = U is a homeomor-

NN
EXAMPLE 5.48. p : R — S : ¢t + (cos2wt,sin27t) is a covering map. The
preimage of an arc between (61,603) and 0y — 01 < 27 is Upez(n + %,n + g%r)

Tllustrated imfigate 53— ——
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EXAMPLE 5.49. p:S? — RP? : ¥ — [#] which maps antipodal points on S? to
the same point in RP? is a covering map. It is also called a double cover because
for each b € RP2, there exists an open neighborhood of b whose preimage under p
is disjoint union of two open subspaces of S2.

Because different points in covering space may map to the same point in base.
The image of a path in E under p maybe a loop in B, such path is a "lift” of the
loop in E. One can then discuss homotopy class of loops in B by looking at their

lifts in F. g}i/ﬁ\ g ’ J/QL

LemMA 5.50 (Lifting lemma). Letpy E — B be a covering map. Let c :
[0,1].— B be a path with c¢(0) = b. Let = b then there exists a

¢ miquepah in B

(5.21) 01— B, d0)=bh [t p ()= C @7
—

' ¢ is called a lifting of c.

REMARK 5.51. If f : E — C is a multi-valued function. Fixing b is the same
as fixing a branch of f. If ¢ is a loop (¢(1) = ¢(0) = b), &(1) € p~1(b) but not
necessarily ¢(1) = b.

The homotopy between paths on B is the same as the homotopy of their lifting
because of the following proposition.

PROPOSITION 5.52. Let p : E — B be a covering map. o : [0,1] x [0,1] — B
is a path homotopy between co : [0,1] — B and ¢; : [0,1] — B. Let b € E such

that p(b) = b. Then lifting ¢y and & starting from b are also path homotopic. In
particular éo(1) = é1(1).

EXAMPLE 5.53. As an application of this proposition, we can show that the
identity map on S' is not homotopic to the constant map on S', because the lifting
of the identity map on S' is ¢ : [0,1] — R : ¢t — ¢. In particular ¢0) = 0 and
¢(1) = 1. One can also generalize this result to see that 71 (S!) ~ Z.

How do we construct covering maps? One method is to use the homogeneous
action of a group.

DEFINITION 5.54 (Covering space action). Let X be a topological

space, G be a group. The WG
(5.22) 0:G X—>X: @

is a covering space action if for any y € X, there exists a neighborhood U of
y such that

(5.23) {9 € Glg-UNU A= {e},
where e is the identity element of G (i.e. g1-UNge-U =/if and only if g1 # go).

EXAMPLE 5.55. e The action of Z on R by (n,z) — x + n (translation
by n) is a covering space action.
e The action of Zz on S? by (£1,z) — =z is a covering space action.
e The action of the rotation group on R? by (6, (z,y)) + (z cos 0+ysin§, —x sin 0+
ycos#) is not a covering space action.

This action is called covering map action because it generates a covering map.
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1
Zo v )
t
o 1 1

FI1GURE 5.4. Illustration of a 2—loop. The red part is dIs. The
red and blue part together is Is. Every point on 0I5 is mapped to
the base point xzg.

PROPOSITION 5.56. If the left action of G on X is a covering map action, then
the quotient map

(5.24) p: X = o\X
is a covering map. Here ¢\X is the quotient space of X under the equivalence
relation x ~ g - x for g € G.

One can then use the following theorem to compute the fundamental group.

THEOREM 5.57. Let X be a simply path-connected topological space. G be a
group, and p: G x X — X is a covering map action on X. Then the quotient map
p: X = ¢\X is a covering map, moreover, m (c\X, p(x)) is isomorphic to G.

EXAMPLE 5.58. e (n,x) = = + n is a covering map action of Z on R,
and 7\R 2 S!, therefore 7 (S, z) ~ Z.
e (+1,x) + +x is a covering map action of Zz on S? and z,\S? = RP?.
Since 1 (S?) is trivial, 71 (RP?) ~ Zy. In general we have

(525) Wl(RPn) ~ ZQ, n Z 2.

5.5. Higher homotopy groups

We generalize mo(X) and 71 (X, x) to higher dimensions in this section. Firstly,
we define the generalization of loops in higher dimension. We denote the n—cube
I, =[0,1]" by I, and its boundary by 91, (I is illustrated in figure 5.4).

I, ={(t1, - ,tn) R0 < t; <1},

oI, = {(t1, ,tn) € R"|0 < t; <1, some t; =0 or 1}.
N—— "

(5.26)

DEFINITION 5.59 (n—loop). An n—loop based at xy € X is a continuous

map v : I, = X such that =2

REMARK 5.60. e Figure 5.4 is an illustration of a 2—loop based at xg.
We will denote a generic point in I, by t = (¢1,--- ,t,) € I,.
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e Another point of view of n—loop is to identify 91, as one point, under
this identification 91,/ ~= S™. Therefore an n—loop based at xg can also
be defined as a continuous map v : S — X which maps a point b € S™
to xg.

e We define I as a set of a single point, and dIy = (), therefore we can not
say its base point.

e I =[0,1] and 9I; = {0, 1}, therefore a (1-)loop  requires y(0) = (1) =
Zo-

Similarly we can define homotopy of n—loops.

DEFINITION 5.61 (Homotopy of n—loops). Two loops v and o based
at zg € X are homotopic if there exists a continuous map H : I, xI — X
such that

(5.27) H(t;1) = o(t),

REMARK 5.62. e A homotopy H is a path in C[I,; X].
e Homotopy of n—loops is an equivalent relation.

All operations of loops can also be generalized to n—loops.

DEFINITION 5.63 (Constant n—loop). A constant n—loop e : I, —
based at x¢ is the constant map e(I,) = zo.
—

One can also define the product of n—loops.

DEFINITION 5.64 (Product of n—loops). Let v and o be two n—loops
at g € X. Then their product loop p = o *~ is an n—loop at xg € X defined
as

_ Y2ty b, L t,), 0<t; <1/2,
(528) p(th ;tn)_{ O'(Qtl—l,tg,"' 7t_n_L 1/2§t1§1

REMARK 5.65. e A product of 2—loops is illustrated in figure 5.5.
e Actually one can pick any direction ¢; in the definition, and each definition
is homotopic to each other.

DEFINITION 5.66 (Inverse n—loop). The inverse n—loop v~ : I, - X
of an n—loop v at xzq is the map

(5.29) V(s ) =y (1 =ty gyt
The product and inverse of n—loops are also well-defined on homotopy classes.

Now we can define the higher dimensional generalization of the fundamental
roup.

DEFINITION 5.67 (n—homotopy group). Let m,(X,zo) be the set of

homotopy classes of all n—loops based at xg. (m,(X,zo),*) forms a group
under the product * of n—loops. o
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tg t2 t2
To iy Zo Zo
1 1 1
Zo
o Y Zo To o To o Y o Zo
t t
o 1 ! Zo 1 ! Zo Zo
FI1GURE 5.5. Left: the 2—loop . Middle: the 2—loop o. Right:
the product 2—loop p =7y *o0.
REMARK 5.68. e The identity [e] of m,(X,x0) is the homotopy class of

the constant n—loop based at xg.
e The inverse of [y] is [y7].
e Since 01y is empty, we do not specify a base point xg in m(X).

PROPOSITION 5.69. If two path-connected topological spaces X and Y are ho-
motopy equivalent, then
\A_M—_

(530) ﬂ-n(Xv l’o) =~ ﬂ-n(K y0)7
ie. T, (Wotopy invariant.

5.5.1. Properties of higher homotopy groups. A lot of properties of fun-
damental groups can be generalized to higher homotopy groups. For example

(@ J«// ProOPOSITION 5.70. If X is a path-connected topological space, then
531 ﬂ—n(vaO):ﬂ—n(vaO)a VanyOGX'

IQ { L M REMARK 5.71. We sometimes omit xq in 7, (X, xo) when X is path-connected.
(5.3

PROPOSITION 5.72. If@s a deformation retract of X, then
2) (X, a) ~ 1, (A,a),V a € A.

(5'33) ﬂ-n(X X Y, xq X yg) ™~ Wn(Xylﬁ) X 7Tn(Ya yO)'
N

However, there is a crucial difference between higher homotopy groups and the
fundamental group.

PROPOSITION 5.73. Let X and Y be path-connected topological égaces,

PROPOSITION 5.74. TFhe n—homotopy group m,(X,x) is abelian for n > 1.

EXAMPLE 5.75.

ExaMPLE 5.76 (Homotopy groups of S™). We list some homotopy groups
of S™ in table 1.

EXAMPLE 5.77. Homotopy groups of RP™.

o 71 (RP?)
o 71, (RP") ~7,(S") ~ Z for n > 2.

<) n 32 Ay, Abet bvep
405 % (%

ty
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T, v e
0

. T T2 3 5
h s°To 0 0 0 0
7L n ( & ) (//)— 0 Sl 7 0 0 /0 0
. S?|l0 Z Z é Zo Zns
LT vh > /) S0 0 Z Zo Zoy Zio
-~ S0 0 0 Z Zs Zs
S0 0 0 0 Z Z 9%%5\%%

TABLE 1. Homotopy groups of S™. Z/p is the cyclic group of order p.
_——

: N — 7 Ty To T3 T4 T 6
I o /% Kv@ 2 UM=s’ [Z 0 0 0 0 0
SU2)=S® | 0 0 Z Zy Zo Zio

SU(3) 0 0 Z 0 Z Zs

SUmn),n>310 0 Z 0 Z O

SOB)=RP? [ Zy 0 Z 7y Zy 7Zns

50(4) Zo 0 72 72 7% 7%

50(5) Zo 0 Z Zo Zy O

50(6) Zy 0 Z 0 Zy O

SOn),n>6|%Z 0 Z 0 0 0

Eq 0 0 Z 0 0 0

E; 0 0 Z 0 0 0

Eg 0 0 Z 0 0 0

G, 0 0 Z 0 0 Zs

F, 0 0 Z 0 0 0

~ 7Tn<S(3)) @ T (SU(2)) for n > 2.

In general we summarize the homofopy grqups of RP™ as
@ k=0

Z k=1 n-1
nN\ __ =L n=1
(5.34) W@_ 7o k=1, n>1,

7r k>1,n>0.

ExaMPLE 5.78 (Homotopy groups of Lie groups). We list homotopy groups
of some Lie groups in table 2. There are some interesting facts regarding the table
2.

e The Bott periodicity theorem states that

(5.35) e (Un)) ~ 7 (SU(n)) ~ { {2} ’Z?ﬁ
for n > (k4 1)/2. Similarly,
{e} if k=2,4,5,6 (mod 8),
(5.36) m(0(n)) ~ 7, (SO(n)) ~ < Zo if k=0,1 (mod 8),
Z if k=3,7 (mod 8),

forn >k + 2.



