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1 Introduction

“It is difficult to overstate the importance of conformal field theories (CFTs)” [1]. That
such a sentence might be written at the start of paper in 2014 is indicative of the genuine
progress in our understanding of CFTs in more than two dimensions over the last few years
and the resurgence of the conformal bootstrap as surprisingly accurate calculational tool.
There are now insightful introductions to this rapidly developing field [2], [3], [1].

Two dimensional CFTs have been explored in great detail from the 1980’s and par-
tially classified, motivated by applications in string theory and statistical physics. This
is described and reviewed in the compendious book [5]. However many of the techniques
used in understanding two dimensional CFTs do not extend to higher dimensions. In two
dimensions there is the infinite dimensional Virasoro algebra whereas in higher dimensions
the conformal group is finite dimensional. The subject of CFT's in four, and later three, di-
mensions was revitalised in 2008 [6] when it was shown that the bootstrap equations, which
follow just from crossing and unitarity, are tractable numerically and lead to significant
constraints on the spectrum of operators and their dimensions and spins.

Conformal transformations may be defined as preserving angles and are more general
than translations and rotations, or Lorentz transformations, which preserve lengths, or their
relativistic equivalent space-time interval. They were considered in the 19th century, for
a history see [7], but were first applied in a fundamental physics context by Bateman [3]
who showed how the four dimensional scalar wave equation was invariant under conformal
transformations and then Bateman [9] and Cunningham [10] extended this to Maxwell’s
equations for electromagnetic field.! However conformal transformations do not play a
significant role in classical electrodynamics, they do not survive as a symmetry when coupled
to matter and there are issues with causality.

In the modern context CFTs are relevant for quantum field theories at RG fixed points.
For Lorentz invariant quantum field theories in d-dimensions the trace of the energy momen-
tum tensor is a linear combinations of scalar operators of dimension d, with coefficients the
RG p-functions, and also if present contributions involving lower dimension operators with
derivatives and mass terms. At RG fixed points the S-functions vanish and if this leads to
zero trace for the energy momentum tensor the fixed point defines a CF'T. In these lectures
we show how CFTs can be analysed using the basic requirements of conformal symmetry
in association with the locality and unitarity conditions satisfied by quantum field theories
to significantly constrain the spectrum of operators and their scale dimensions as well as
other quantities which define a CFT. Although perhaps pedestrian these lectures are not
intended just for pedestrians and cover in part different material from [2, 3, 1].

'Ebenezer Cunningham and Harry Bateman were both senior wranglers in the Cambridge mathematical
tripos, Cunningham (St. Johns) in 1902 and Bateman (Trinity) in 1903, although he tied.



2 Conformal Transformations
The basic definition of a conformal transformations is a transformation of coordinates z# —
a'"(z) such that infinitesimal line elements are invariant up to a local scale factor

dz'? = Q(z)? dz?, da? = n,,dztda” (2.1)

with 7n,, = diag.(—1,1...,1) the Minkowski flat space metric or 7,, = J,, the usual
Euclidean metric. For = 1 these reduce to translations and rotations with also Lorentz
transformations in the Minkowski case. For the more general conformal transformations we
consider infinitesimal transformations such that

o't =t + ot (), Qz)=1+o0(z). (2.2)
To first order in v, o (2.1) requires
Ouvy + 0yvy =20 Ny - (2.3)
An immediate consequence is that v determines o through
ot =do, d=nt". (2.4)
To find solutions of (2.3) we consider
%(ap(auvv + Oyvp) + 04 (B0uvp + Opvp) — Ou(Dpvn + &,vp))
= 00,0 = 0p0 Ny + 000 Nyp — O Npy (2.5)
Acting with 0" gives
(d—2)0,0,0 = —npd*c = (d-1)0%c=0 = (d—1)(d—2)9,0,0=0. (2.6)

Clearly, except in one dimension which is trivial, 9?c = 0 and then, so long as d # 2,
0,0,0 = 0 and hence o is linear in z,

o=kK—2ba". (2.7)

From (2.5)
apal/U,u, = —=2bp M +2buMpy — 2by Ny (2'8)

which can be integrated, consistent with (2.4), to give

v 2 v
v(z) = ay wwr” +rx, +byax* —2x,b,2", Wy = —Wyy - (2.9)
A
translations rotations scale special conformal
-1 1

The total number of parameters defining conformal transformations, so long as d # 2, is
therefore 1(d + 1)(d + 2). The solutions of (2.3) are conformal Killing vectors.

Two dimensions are different. In the Euclidean case with complex coordinates z, Z, dz? =

dzdz, so that 7.: = 3, then z — 2/ = f(2),Z = Z = f(z) for any f is a conformal
transformation since da'? = f/(2)f'(z) d2?. Infinitesimally v* = v(z), v* = ¥(Z) and then



(2.3) gives 0 = $(v/(2) + ¥/(2)) which is a general solution of 9?0 = 0 in two dimensions.

A basis of two dimensional conformal Killing vectors is given by v,(z) = 22 4,(2) =
Z"*+2 n € Z. which is clearly infinite dimensional.

The generators of infinitesimal conformal transformations satisfy
[v“&u v”'a,,] = [v, v/]”au , [v, V'] = V" O 0" — "MD" (2.10)
It is convenient to define
Oy = Oy N + Do, Do = — Wy - (2.11)
so that with (2.9) @y = wuw — 2(byx, — byxy). As a consequence of (2.5)
Op Wy = 0oy Npw — 0Ty Npy - (2.12)
From (2.10) also

1)“8“ Oy — U/Mau Ov = Own']

V'O Dyt iy — VMO o+ Do Ot av — Do Dot ap = Do) o - (2.13)
For an infinitesimal interval dz then
dpdat = dov*(x) = oy (z) dzt — @&,* )y (z) da”, (2.14)
and for two points z,y

So(z —y)? = (v"(2)0ap + v"(y)Oyu) (z — y)?
= Q(Uu(x) - Uu( )( —y)H = (6 vu(T )+0 LU (Y ))(x —y)"(z —y)*
= (ou(@) + u(y)) (& —y)*. (2.15)

Finite conformal transformations can be obtained by integrating

d
— it = vt (zy), xd =t . (2.16)
dt
Writing
dzt = U (z) Rt (x) da”, det[R/# )] =1, (2.17)
then from (2.14) and (2.16)
d
aQt( x) = oy(e) U(z), Qo(z) =1,
d
T Rty (x) = — 00 (xy) Ry (), Ry, (x) = 0%, . (2.18)

The solutions satisfy the group property

Qurii(2) = Qur () (), Ry (2) = Ro'o(@e) Ry (). (2.19)



From (2.15)

d

&(ﬂﬁt —y)® = (ou(@e) + ou(ye)) (we —)* = (31— y)® = (@) U(y)(z —y)*. (2.20)

For v in (2.9) restricted to just special conformal transformations (2.16) and (2.18)

give?
1
— 2 —
ot = Qu(z) (2" + b 27), Wy (z) = T 2th 2 12022 (2.21)
In general for conformal transformation x — x’ then
ox'H 5
O = Q(z) R*, (), me“p(ﬂ?)R (z) = Npr - (2.22)

so that R is an orthogonal, or pseudo-orthogonal, rotation matrix, and hence R € O(d) or
ReO(d—1,1), and
(@' —y')? = Ua)Qy) (x —y)*. (2.23)

To form a conformal invariant it is necessary to have at least four points. There are
then invariant cross ratios
x;i? T°
Wikl = :1;:2 xji? ’ i FjFREL, vy =2 — x5, (2.24)
since from (2.23) the factors §(z;) all cancel. The {u;ji} are not independent and obey
various identities, such as w;j = ugi; = wjir = uikﬂ_l and uijkm/uijkl = Ujimk. For n
points a basis is provided by wuior, 3 < k < I < n, and u139, 4 < [ < n, which gives
%n(n — 3) possible invariants. However for any given dimension this overcounts invariants
when n > d + 2 since there are further relations between different :cijQ. If the conformal
group acts transitively on n points there are just Ng, = nd — %(d + 1)(d + 2) invariants.
When Ng,, < %n(n — 3) the number of invariants is then reduced to Ny, but if n < d + 2
then Ny, > in(n — 3) and 3n(n — 3) provides the correct counting. In this case there is
a residual subgroup of the conformal group which leaves the n points invariant. Thus for
d=4and n=4,5,6,7 there are 2,5,9, 13 independent conformal invariants with the extra
restrictions first relevant when n = 7.

2.1 Inversion Tensor and Conformal Vectors

An important role is played by inversions for which

o
ot = (2.25)

22’

2The solution for x; may be obtained by writing " = a(t) 2" + 8(t) b* where a(0) = 1, B(0) = 0. The
differential equation reduces to & = —2a%b - x — 2a8 b2, ﬂ = o?2? — $%b?. These may be decoupled giving
L(B+Aa) = —b*(B+Aa)? for A°b* = 2Xb-z —2” which integrates to S+ Aa = A/(1+A*b*t). Eliminating 3
then & = 2(Ab* —b-x)a® — 22 b% o/ (1 + A*b*t) and hence o = 1/(1+2tb -z +t* b*2?) which with 8 = a2t
gives (2.21).



in which case 1

dz;* = e ", (z) dz”, (2.26)

where the inversion tensor for vectors is given by

ztx,
I, (@) = 3, — 2 — (2.27)
satisfying 1, [ o () IV (x) = nap so that dz;? = dz?/(2?)? and, for two points,
1
(z—y)? = (2, —y)? = 27 (z —y)?. (2.28)

Inversions are therefore discrete conformal transformations not connected to the identity,
since det[I#,] = —1, but they can be used to generate finite special conformal transforma-
tions by considering an inversion followed by a translation and then another inversion,

22 22 (%+b)2_1—|—2b~x—|—b2x2’

(2.29)

identical to (2.21) for ¢t = 1. To first order in b this reduces to the result for special conformal
transformations in (2.9)

Since L )
19,0, In(z —y)? = ALY 2.30
2 n=y ( y) ($ — y)g ( )
then as In(z' — 3/)? = In(x — )2 + In Q(z) + In Q(y) we have from (2.22)
I/u/(x —y) = Im—(x/ - 3//) Rp,u(x)RTV(y) )
I;w(x - y) = Ip'r(xi - yz) Ipu(x)ITV(y) . (2'31)

For infinitesimal transformations using (2.15)

(Up(x)axp + ’Up(y)ayp)lm,(x - y) = _L:)v,up(x) Ipl/(m - y) + Iup(x - y) djvpl/(y) . (2'32)

For three points z,y, z we may define

L 0pun ((x — )%/ (2 — 2)?) = Ei — z;g - Ez — z))g =X, (2.33)

From (2.23) under a conformal transformation x,y,2 — /,3/,2’ then X — X’ and also
from (2.28) under an inversion x,y, z — x;, y;, z; similarly X — X; where

1
Xy = X Ru@)Qe) . Xy = Xip ()= - (2.34)

so that X, transforms as vector at z. In a similar fashion

Y, = %ayuln ((y—z)2/(y—a:)2) ’ Zy = %azuln ((Z_l')2/(2_y)2) s (235)



are vectors at y, z. It is easy to see that
2 2 2
X2 _ (y _ Z) Y2 (Z — ﬂf) 22 — (:’U B y) ) 2.
G-Pe- | G-ePu— C Ge—ore—gp O

Infinitesimally (2.34) corresponds to

(v(2)P0zp + v(y)PDyp + v(2)PD.p) X = —0u(x) X\ + Xo &Y () . (2.37)
Under y < 2, X, = =X, Y, <& —Z,.

Directly from (2.33)
v=—T— 5 1, (x - y) ) (238)

%
so that by evaluating X? 0y, We obtain
_ )2
XML (z—y) = —(x? Y,. (2.39)

By cyclically permuting z,y, 2

YL (y —2) = —g:iiz Zy, ZF1Ly (2 —x) = —E;:Z))z X, . (2.40)
Rewriting (2.39) as
G2 Ye= (=) XP Lz —y) (2.41)
and using
0¥y =~ Te—y), 0pXy= —— Lo(z— ). (2.42)
EEmE =)
we obtain
LG =) L(Y) = LA —2) Lu(z — ). (2.43)
Similarly
LP(2) Iz = y) = L, (2 — ) Ly (x = y) (2.44)

with other identities following from permuting x, v, z.

2.2 Conformal Transformations of Fields

Acting on fields ¢, where I is a spin index for the rotation group O(d) or O(d — 1,1), we
can define the action of a conformal transformation such that z — 2’ on the field by

or— ¢, @) = Q@) 2R (2) ds(2) . (2.45)

where A is the scale dimension of ¢; and R;” is the matrix corresponding to R”, in the
representation of O(d) or O(d — 1, 1) determined by ¢;. For an inversion (2.45) becomes

(i) = () I () da (), (2.46)



where Z;7 (A\z) = Z;7(x) and Z;% (2) I’ (x) = §;7. Fields satisfying (2.45) or (2.46) are
called conformal primary fields. In general the transformation ¢ — ¢’ for an inversion
may not be possible. If the inversion (2.30) is combined with a reflection x! — —z! then
the resulting transformation belongs to the identity component of the conformal group
SO(d + 1,1) or SO(d,2). To show this we may consider the combination of a special
conformal and scale transformation with a translation given by

(14 A?)a# 1 (1+ 22) (2! + X 2?)
A 1+ X222 42 217 n# L A + 1+ 2222 42X 21 (2.47)
Clearly zo* = z* and, as A — oo, T\* — rlm“/mQ for rxt = at, w # 1, rizt = —z1. The

corresponding action on fields is therefore defined in any CFT. For chiral CFTs when parity
is not a symmetry neither is invariance under inversions.

Infinitesimally, when dz# = v*, the corresponding change in ¢ resulting from (2.45) is
dupr = —0M8ud1 — 00 Adr + 5 0 (s0)1” 61, (2.48)
with s,,, the appropriate spin matrices satisfying
[Suvs Spr| = Nup Sur — Nup Spr — Npr Sup + MorSpp - (2.49)

For a Euclidean metric, so that in (2.49) 7,, — J,, and s,, are the generators for a
representation of SO(d), then we may take the spin matrices to be anti-hermitian, Swj =
—5u,. Together with (2.13), (2.49) ensures [0y, 0y |¢1 = Ov /101

For an irreducible spin representation R the quadratic Casimir becomes
(s ™)1 = —Cror”. (2.50)
For a vector field A, the vector representation Ry is defined by spin matrices
(S )A” = 0, Nux — 6,° 1 (s ™)\ =—CvéyY, Cy=d—1. (2.51)

If s, is complex there is a conjugate spin matrix 5,,, also satisfying (2.49), and the
conjugate conformal primary transforms as

Sup; = —v'8ubr — oy b7 A — L0 d 5 (5,)7 (2.52)

In order to discuss spinor fields 1,1 we it is necessary to define gamma matrices. In
even dimensions, d = 2n, we may define 2"~ ! x 2"~! chiral gamma matrices such that

7u'7u+7u’7u:2nuu]la %%+%’Yu:277uuﬂa (2'53)

where 7,,%, are inequivalent matrices and we distinguish the identity matrices for chiral
and anti-chiral spinors. With a Minkowski metric we may impose the hermeticity conditions

’YJ = > /?,U«T = _/7#’ ’(L = ¢T ) (254)

and hence we must require 1T = 1. For odd dimensions, d = 2n—1, there are also 21 x 271
gamma matrices v, satisfying (2.53) with 7, = v,. For d odd it is important to recognise
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that v, and —v, define inequivalent representations of the Dirac algebra. In this case we
may take

BylB ==, =98, p=pT=p". (2.55)
For a Euchdean metric, 7, = 0,,, the hermeticity conditions become WJ = 7y, for d odd
and 7,/ =4, for d even but then in (2.53) we must take 17 =1, 11 = 1.

The spin matrices for chiral/anti-chiral spinors are then for d = 2n
Sy = 3 Vi V] » S = —3 Vi V] » SWT = S, (2.56)

which obey (2.49) by virtue of

Suv Yo — Vo Spv = Mup Yo — Mop Yu = Yo (Su)p Suv Vp = Vp Sy = Mup Vv — Mwp Y - (2.57)
For d = 2n — 1 identical relations are obtained so long as we identify 5,, = s, and now
SWT = —f3suwB. The quadratic Casimir from (2.50) becomes

Ssuws =—Csl, 15,8 =-Cd, Cy=4idd-1). (2.58)

If 4,7 are conformal primary chiral spinors then under infinitesimal conformal trans-
formations

Suth = —vFO — oy A + 50 s 0, Suth = —0FO) — oy h A — F 0 5. (2.59)
If we apply (2.59) for the conformal transformation in (2.47)

d 1
S = 5 (=) o+ 200 PA() + 8201 ()
2

(vozq-—m7y ) w@:)) : (2.60)

Solving this equation gives

1
14 2222 —2) 21 ATl —Ay-z 7
) Loy oWy, (2.61)

" :< L+ A2 (1+22)3

For A - o )
Ua(@) = — (@) 2 2y ay (ra/a?) (2.62)

with rq reflection in the 1-direction.

When d is even for theories which are parity invariant then it is necessary for there to
be spinors x, x of opposite chirality to v, and which transform similarly to (2.59)

dox = —v"0ux — o A x + %d)v“l’guyx, doX = —v"OuX — oy X A — %d)v’“’i Suv - (2.63)

The parity transformation is then ¥ (z) — 1 x(r1z). In this case the action of inversion is
given by

(@) > (@) A7y wx(e/a?). (2.64)
For d odd inversions can be defined on spinor fields in general by
b@) = @Ay we(e/e), d(@) - (@) A2 (/a?) y e (2.65)



2.3 Derivative Constraints

In general derivatives of primary fields are not primary. From (2.48) and using (2.12)
8o Orpr = — ' 0udrpr — o0 (A +1) Ordr — Gu X pbr + 500" (s0) 1”7 Oriy
— (A5 s + (830) 17 ) s 070 (2.66)
Only if the second line vanishes is 0\¢; also a conformal primary as well as ¢;. Imposing
(AT 8T — M) =0, (2.67)
where, using the vector representation for the spin matrices in (2.51),
My™ = =317 = 5 (su)1r”7 (8")A7, (2.68)

gives an eigenvalue equation for A which ensures fMdy¢; are conformal primaries. The
matrix M in (2.68) commutes with SO(d), or alternatively SO(d — 1, 1), so that to solve
(2.67) it is sufficient to decompose f* into irreducible representations. If ¢ belongs to the
representation space Vj for a representation Ry and

R¢ ® Ry ~ @; R;, (2.69)
then, acting on the tensor product Vg x Vy/,
= 5 (51700 + 01" (s.u)3°) (") k765 + 07 (),7) = 32, Cry (P)ar™, (2.70)

with P; the projector onto the irreducible representation space V; C Vy X V. The eigen-
value A; corresponding to the irreducible representation R; is, as a consequence of (2.67),
determined by the Casimir eigenvalues according to

A; = %(C¢ +Cy — CZ) . (2.71)

Since My = 0 the eigenvalues A are in general both positive and negative as their sum,

Simple cases can be analysed directly. For spinless fields trivially A = 0. For a vector,
¢ — Ay, (2.67) becomes

f)\p (A 5PU Mr + N Nor — o077 77p)\) =0, (2.72)
which has solutions
= A=d-1, =M A=1 =) g =0, A=—1. (273)

Thus 0" A, is a conformal primary if A =d—1asis 9,4, —0, A4, for A = 1. The eigenvalue
sum is then d — 1+ 3d(d — 1) — 3(d + 2)(d — 1) = 0. For a rank two tensor field T,, the
equations become

f)\!w (A 6M05Vp e + 0,° (627 Nur — 67 77#>\) + 5/;7(5)\;; Nur — 677 771/)\)) =0. (2.74)



For 15, = T}, n°P1T,, = 0, this has solutions

f)\,uu _ 77/\”611 + 77’\V€“ _ 3,7#'/6/\’ A=d,
A pAvp f(A;w) =0, f/\lwmw =0, A=1,
v — pOw) P, =0, A=-2. (2.75)
Thus 0T}, is a conformal primary for A = d. For T, = —T},, the solutions are
P ey e A=d—2,
f)‘“” _ fP\W} ’ A=2,
JR— f[Auu] -0, f)\,u’/n)\u =0, A=—-1, (2.76)

with the first two conditions corresponding to 9"T},,, d\T},,], being conformal primaries.

If the derivative generates a conformal primary then it is possible to impose a constraint
on the fields such that this vanishes. In the above examples 0#T),, = 0 is the conservation
equation for the symmetric traceless energy momentum tensor whereas dj\F),,) = 0 is the
Bianchi identity for the abelian field strength F),,, the field equation 0/ F),, = 0 is then
conformally consistent only for d = 4.

More generally if we consider symmetric traceless tensors of rank ¢, corresponding to
a representation Ry, corresponding to a Young tableau with just a single row of £ boxes
2 1114, then Ry = R(l) and

Ry ® R(1) = Rp—1) ® Ripy1) @ Ry (2.77)
where R, 1) denotes the mixed symmetry representation corresponding to . Using
Cuoy=Ltl+d-2), Cieny=UL+1){l+d-3), (2.78)

(2.71) gives
Ag_py=L+d—-2,10>1, Aggry = 4, Agpy=1,0>1. (2.79)

This of course corresponds to (2.75) when £ = 2. For d = 3, Ry 1) =~ Ry).

For representations Ry, ,,,) defined by mixed symmetry tensors corresponding to tableaux

Rim) @ Rty ~ Rin—1,m) © Ring1,m) © Ram—1) © Rinmt1) © Rinm1) s (2.80)

with

Cnm) = n(n+d=2)+m(m+d—4), Cpmi) =n(n+d—2)+(m+1)(m+d—>5). (2.81)
Hence we get, assuming n > m > 1,
Ap_imy=n+d=2,n>m, Apiim=-n, ADpm =2,
Apm-1y=m+d—3, Apmyny=-m+1, n>m. (2.82)

The results (2.82) reproduce (2.76) for n = m = 1. For d = 4 in (2.80) we may identify
Ry = Ray, By =0, m > 2 whereas for d = 5, Ry, 1) =~ Rnm) and then (2.82)
encompasses all tensorial representations.
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2.4 Two Point Functions

For any CFT the natural observables are the correlation functions for arbitrarily many
conformal primary fields. Conformal invariance determines the form of the two point func-
tion in terms of the scale dimension and spin. For a conformal primary and its conjugate
satisfying (2.48) and (2.52) then

(o) 31(0)) = (10 (2.89)

where conformal invariance requires

(V" (2) Oy + v"(y)Oyu) Tr7(x — y) )
= %@v“”(x)(sw)[JIJj(x —y) — IIJ(ZC - ) %@vuy(y)(gpw)Jf (2.84)

Z;7(x — y) is an interwiner between a spin representation and its conjugate at z,y. For
general representations formed from tensor products of vectors, which are self-conjugate,
then from (2.32) Z;7 can be constructed in terms of corresponding products of the inversion
tensor. For spinors we use, from (2.11) and (2.57),

(" (2) Dy + 0" ()Dyu) (& — y)P7p = (v°(x) — 0P (y))
= 3 (050" (2) + 050" (y)) (x — y) ")
= %(UU(‘T) + Uv(y)) (‘T - y)p’Yp
+ %‘Z’vuy(x)suv (v — y)p'Yp — (- y)p7p % @U“V(y)gw ) (2.85)

since (W™ (z) — @™ (y)) (S0 (@ — y)Pyp + (T — Y)P7p 5) = 0, together with its conjugate
with 4, — 7y, s <> 5. For a self conjugate scalar

(6(0) 60) = sz (2.86)
while for a real vector V), and spinor fields 1, W
Vi) Vo)) = 229 )y = W )
g ((z )22’ (z — y)2) A+

Two point functions for conformal primary fields belonging to more general spinorial or
tensorial representations are formed from the reduction of the tensor products of the results
in (2.87).

2.5 Dirac Algebra

We analyse here in more detail the structure of Dirac gamma matrices, defined by (2.53). Various
properties have significant differences according to the dimension modulo 8.

To construct expressions for gamma matrices in even or odd dimensions it is convenient to start,
for n = 1,2,..., from 2n — 1, 2*~! x 27~! dimensional, generalised Pauli matrices o; which are

11



hermitian and traceless and obey®

0;0; +Uj0'i:26ij1l- (288)
Defining
o= 01092 ...09pn—-1 — (—1)'”_10'2”,10‘2",2 ...01, (289)
then
6,00 =0, &=(-1)""'"1 = &=pl, p=+i""". (2.90)

The two choices for p are inequivalent and are related by taking o; — —o;. From (2.88)
tI‘(O'IL' O'j) = 2“71 6”‘ . (291)
The (2";1) matrices
Tiy.iy = Oliy 04 ] 5 s=1,2,...n—1, (2.92)

are all linearly independent and traceless and, together with 1, span the space of 271 x 271
matrices. Hence if [0;, X] = 0 then X « 1.

The gamma matrices for Minkowski signature are then given by, for d = 2n — 1 odd,
7o =104, Yi = 0i, = 1a"'72n_1a tr(VH’YV) :2n7177ul/' (293)

and, for d = 2n even,
70:’70:7:]]-7 72:_’72220-27 i:]-v"w?n_]-a tr(v#ﬁu):2n_l77ﬂl/7 (294)

It is easy to see that with this basis 7, ¥, satisfy (2.54) and that (2.93) obeys (2.55) with 8 = o9,_1.
From (2.90)

YoY1Y2---Yon—1=p1, Yov1Y2---Yon—1=—p1. (2.95)

To discuss charge conjugation and time reversal it is necessary to know the properties of the
Dirac matrices under transposition and complex conjugation, which are linked by hermeticity. For
the 2n — 1 matrices o; the charge conjugation C' matrix satisfies*

CoC = (=1)""to, (2.96)

n—1 T

where the sign (—1) is determined by requiring C6C~! = 67 in accord with (2.90). Since o;
are hermitian [0;, CTC] = 0 and also from (2.96) [0;,C~'CT] = 0 so that CTC, C~1CT « 1. For

C =707 it follows that 72 = 1 or 7 = 1. By rescaling C' we may then require
cct=1, C=(-1)C-DcT, (2.97)

The sign for 7 assumed in (2.97) is determined by counting of symmetric/antisymmetric matrices.
The matrices defined in (2.92) satisfy, from (2.96),

CUZ'I.J;SC_]‘ = (—1)%'8(2”_1_8) Uil,..iST 5 (298)
3Such matrices can be constructed iteratively. If o{>"~1) are matrices for d = 2n — 1 we may define
Ui(2n+1> = Ji@nil) ® ((1) (1)) fOI‘ = 15 . .,27’L -1 and 0—2"<2n+1) =1 ® ([7,) 62)7 U2n+1<2n+1) =1 & ((1) —01)

Beginning from ;") = 1 this of course gives the usual Pauli matrices for d = 3. With this definition in
(290) p(2n+1) _ ip(2n—1).

“4For the o; constructed in the previous footnote we may take C?"+1) = ¢2»~D g ( o (1)) forn=1,3,...
and CC®"D ==V g (L 0) forn=2,4,....
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and the set of all matrices {C,Coy,. ;. : s=1,...,n— 1} form a linearly independent basis, which
are alternately either symmetric or antisymmetric, for 2*~1 x 2"~ matrices. As a consequence of

“2n—1 = 2 —1
Z < n-— ) — 92(n-1) : Z(_l)%s@n—l—s) ( n— ) _ (_1)%n(n—1) gn—1 , (299)
s=0 § s=0 s

the requirement for there to be %2”*1(2”*1 + 1) symmetric/antisymmetric matrices in this basis

determines the sign in (2.97) (to verify the second binomial sum we may use (—1)zs(2n—1-5) —

\/ﬁcos%(28+1),n=2,4,..., \/ﬁsing(2s+1),n:1,3,...).

These results for C' immediately demonstrate that for d = 2n — 1 from (2.93)

Cy Ot = (—1)" L, Cs, 07 = =5, C= (-1 ot oot = (—1)ntpT

(2.100)
For d = 2n from (2.94)
C”yuc_’_l = "yHT, C_'f’yMC_l = 'yHT, C’SWC'_1 = —SWT, C_'EWC_'_1 = —EWT,
C=(-1)"CT, C=(-1)2"CT, n=24,..., (2.101)
and
CrC =71, 3,07 =7, CsC ' =—5,", C=(-1):"DCT n=13,. ...
(2.102)

Although (2.101), for d = 4,8, ..., is derived here for C' = C it is convenient to generalise to distinct
C,C with Ct = C~L

For d = 2n and n even then defining
7/_)0 = 6717/_}713 djc = chv (2103)

gives charge conjugate spinors of opposite chirality satisfying (2.63) for y = 1, x = °. Similarly
X¢ =xTC, x¢ = C71xT transform as ¢, ¢ and ()¢ = (—1)%"1@ (¥9)¢ = (—1)%7%. For d = 2n
and n odd (2.103), with C' = C, gives spinors of the same chirality as v, ¢ and in this case acting
twice ()C = (=1)2(=Dg, (4©)C = (=1)2(De). For d = 2 mod 8 then we may impose 1 = <
giving Majorana-Weyl spinors in these dimensions.

For Lorentz transformations we can write

g'Yug_l:’YuAyua 9%9_12%1\”/“ g—lng’ d even,
979 = AN, g =898, d odd, (2.104)

The traces tr(vy,7,) = 2" 'n,, for d even, or tr(y,v,) = 2" 'n,, for d odd, ensure that the
metric is an invariant tensor, 1., = 1,-A%,AT,. For d = 2n and n even, or d odd, ¢TCg = C and
det g = £1. When d = 4, CT = —(C, this implies, for det g = 1, that g € SI(2,C).

2.6 Three, Four, Six and Five Dimensions

For particular low dimensions the rotation groups SO(d) or SO(d — 1,1) are isomorphic
to other groups in which tensorial and spinorial representations are unified which allows
significant simplifications.
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With «,8 = 1,2 spinorial indices for d = 3 there are three independent ~-matrices
(vu)o” and also three linearly independent spin matrices (su)o” = —3 ('y[ﬂfyy})aﬂ which
form a basis for traceless 2 X 2 matrices and hence

— (sp)a” (5")2° = 5 (y)a” ()50 = 00’ 0,7 = 1607 6,7, (2.105)

which of course implies —% (s, 7)o" = 36,7 as required by (2.58) when d = 3. Equiva-
lently they are a basis for symmetric 2 x 2 matrices since

() = (Cn)*=, (Cou)® = (Cs), € = —P (2.106)
For any spin representation matrices {(s,,);”} we can then define an equivalent basis
(Sa®) 17 = (5u) 17 (5")a", (su)1” = —(Sa”) 1 (s)5° - (2.107)
From (2.49) using (2.105) these have the commutation relations
[S0”, 8,°] =6 80° — 6.0 8,7, (2.108)

which corresponds to the Lie algebra sly. For

[9a"] = <§3 S§3> , (2.109)

then S3,S5+ obey the usual angular momentum commutation relations and the Casimir
operator becomes

— L8 =18,755% = S5(S5 + 1) + S-S . (2.110)

Irreducible representations R, are just labelled by s = 0, %, 1..., and can be described

in terms of the representation space V; formed by symmetric rank 2s spinors ¥,  a,, =
W (a,...as,) Where of course dim Vs = 2s + 1 and the associated Casimir Cs = s(s + 1). The
vector representation requires s = 1. Corresponding to (2.69) we now have

Rs® Ry ~ Rs_1 ® Ry ® Ryy1, (2.111)

and the formula (2.71) then gives for the critical scaling dimensions for the three represen-
tations appearing in (2.111)

Ag1=14s,s>1, A;=1,5>5  Agy=-s. (2.112)

The first two cases correspond to (C’yﬁ‘@u)aﬂlﬂa[galma%ﬁ and (’y“iﬂu)(alﬂ Vos...an,)p being
conformal primaries. Imposing them to be zero gives a conserved current and a solution of
the free Dirac equation respectively. For s = ¢ =0, 1, ... the conditions in (2.112) of course
match (2.79) when d = 3.

For d = 4 there are two inequivalent chiral spinors with spinorial indices o, & = 1,2. The
gamma matrices then become (Y. )ads (7u)** (Yu)aa(3#)7F = 265%6%,% which construct,

*From (2.94), (Yu)ae =1 (0p)ad, (Ju)*® =i (5,)** where 0., 5, are Wess and Bagger spin matrices.
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according to (2.56), two inequivalent 2 x 2 spin matrices (Su)a”, (5u)%. These satisfy
analogous completeness relations to (2.105)

() (57),0 = 802 6,7 = 10270,0 . —(8) %5 (7Y 5 = 075675 — 19%5 675, (2.113)

as well as (s,,)a” (3")% = 0. The six spin matrices (s, )7’ can be rewritten just as in
(2.107) B |
(Sa) 17 = 3 (su)r? (5")a” . (S%) 17 =3 (s)1” (3)%5. (2.114)

and satisfy from (2.49)

[Sa?, 85T = 6,7 Su® =00 5,7, [8%, §%] = 6% 8% — 6% 5%, [Su”, §%] =0,

(2.115)
with the quadratic Casimir becoming
— Lo 5" = o2 95% + 5955, . (2.116)
The Lie algebra is then isomorphic to sly x sls. As in (2.109)
8 Ss Sy S Ss 5}

[5.°] = <S_ _SS> (8% = <S_ %), (2.117)
define two commuting sets of angular momentum generators. Irreducible representations
are given by R, g, 5,5 = =0,1 3> 1,..., with a representation space V[, 5 formed by spinors
Wi ang s .dins) = \Il(al..,azs)7(a1...a2§)a so that dim V(, 5 = (2s 4+ 1)(25+ 1) and the Casimir

Cls5) = 2s(s +1) +25(5+1). (2.118)

The matrix corresponding to (2.68) here takes the form
Maar P77 = —(8,°)17 (s57)a? 6% — (575) 17 (5°5)Pa 67 , (2.119)

and (2.69) becomes
= By s3] © Rlo—gae4) O By 541 © Rlor gy (2.120)
In this case the eigenvalues are just

A1 =3(Cls5 +3 = Clo.3) » (2.121)
for s’ = s+ %, 5 =5+ % This gives

Ay =2+85+8 5525, Dpppay=—s—5,
Ap_pssy=1+s5-5,5>3, Afrrs-y=1+5-5,5>3. (2.122)
The different conditions are related by elements of the Weyl group Zo x Zo which is here
generated by the reflections [s, 5] — [-s — 1, 5] and [s, 5] — [s, —5 — 1]. Symmetric trace-
less tensorial representations correspond to s = § and then (2.122) coincides with (2.79)
for [s,s] — (2s). The results for mixed symmetry tensors in (2.82), excluding A, ,, 11,
correspond to taking [s,5] @ [5,s] = (s + §,|s — §|), s # 5, s — 5 € Z.
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In six dimensions Weyl spinors 1, have four components and the 15 spin matrices
(sw)aﬁ form a basis for traceless 4 x4 matrices. In consequence they satisfy the completeness

relation
- (sul/)cvﬁ (Suu)'yé =26," 5«/3 - % 8" 576 ; (2.123)

so that any matrix X = [X,”] can be expressed as X = 1 tr(X) 1 — & tr(s"*X) s, Hence
any six dimensional spin matrix can be written in a spinorial basis, (s,,)r7 — (S.2) 17, by

(8a”)1” = 3 (s)1” (5")a” . (2.124)

The Lie algebra (2.49) gives
[Sa?, 85°117 = (s 7)a” (s7) (sy)r” (2.125)
With the completeness condtiion (2.123) and using s*, "7 = —% 1428, st 55,877 =

O, 1 — in“" Sop — 2 5[U(“Sp]”), (2.125) becomes
[Sa”, 8,°] =6 8a° — 6.2 8,7, (2.126)
which corresponds to the Lie algebra sly.

It is convenient to decompose the sl spin generators as

i(3h1+2h2+h3) €1 €12 €123
[5.°] = fi 1(=h1+2hy+h3) e €23
“ J12 f2 —2(h1+2ha—hs) e3 ’
fi23 fa3 f3 —1(h1+2ha+3h3)
€12 = [61, 62] y €23 = [62, 63] y €123 = [61, [827 63]] ) [61, 83] =0,
fiz=—=[fi. o], fas=—[fo, f3], frezs=[f1,[fo, 3]l [f1.f3] =0. (2.127)

In this basis h; are the generators of the Cartan subalgebra and e; correspond to the simple
roots. In general i = 1,...,r with r the rank, here r = 3 and {e;, fi, h;} satisfy the
commutation relations, corresponding to a Chevalley basis, for the Lie algebra,

[hi, hj] = O, [61‘, f]] = (5,‘]‘ hj s [hi, ej} = ejKji, [hi, f]] = _ijji7 1o sum on j, (2.128)

with Kj; defining the r x r Cartan matrix, here
[Kijl=1-1 2 -1]. (2.129)

Evidently {h;,e;, fi} generate a sly subalgebra for each i.

The representation space for an irreducible representation are generated by the action
of the lowering operators { f;} on a highest weight vector v satisfying

ev=0, hv=sv, i=1,...,r, (2.130)
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giving here, for r = 3, a representation space Vi, s, s;] and spin representation B[, s, s,]-
For finite dimensional representations s; are positive integers or zero and then

dim Vi, 5, 55] = 15 (514 82+ 53+ 3)(s1+ 52 +2) (52 + 53 +2)(s1+1)(s2+1)(s3+1) . (2.131)
The quadratic Casimir becomes
—% Suw M = Saﬁsﬁa = %(hf +hi) + % hihs 4+ 3(h1 + h3) 4+ ha(ha + hi + hg + 4)
+2(fie1 + fae2 + fzez + fizeiz + fiaze12s) . (2.132)

For representations defined by a highest weight vector as in (2.130)
Clsy,50,55) = 51(81 +3) + 53(s3 +3) — %(31 —53)% + s9(sy + 51+ 53 +4). (2.133)

The vector representation has a highest weight [0, 1, 0] and it decomposes under the action
of the lowering operators f; according to the weight diagram

fl/‘ [_1’07 1] \ f3
0,1,0] 21, -1,1] [~1,1,-1] %[0, -1,0].

f3\( 1,0, —1] s
Consequently in general

Ry 50,55 @ L90,1,00 = Bsy 511,53 D sy 41,00 1s541] D By 1,50,55+1)

@ R[31+1,32,33—1] EB R[S1—1,82+1,S3—1} @ R[81752—1,83] 5 (2134)
with R, s, = 0 if any s; = —1. Using (2.71) with (2.133) and (2.134) gives the critical
scaling dimensions

A[31782+1,83] = — 82— %(51 + 83) ) A[sl,3271,33} =4 + 52 + %(Sl + 53) , S2 Z 1)
A[5171,52,53+1] =2+ %(81 - 33) ; 5121, A[S1+1,82,537].] =2- %(31 - 33) , s3> 1,

A[sl—f—l,sz—l,sg,—l—l] =1- %(31 + 53) , S22 1, A[51—1752—&—1,53—1] =3+ %(51 + 83) , 81,83 > 1.

(2.135)
The Weyl group for sl is the permutation group &4 and is generated by reflections r;,
where r? = 1, with respect to the simple roots, [s1,s2, s3] = [—s1 — 2,81 + s2 + 1, 53],
[s1,52,83]" = [s1+ 82+ 1,—s2 — 2,89 + s3 + 1], [s1,82,83]"3 = [s1,82 + s3 + 1, —s3 —
2], (r1r3)? = (r1r2)® = (ror3)® = 1. Symmetric traceless rank ¢ tensors correspond to
[s1, s2,83] = [0, ¢, 0] and the results (2.82) for mixed symmetry (n,m) tensors correspond to
[s1, 82, 83] = [m,n —m,m].

In five dimensions spinors v, also have four components while the 10 spin matrices
(8,0C Vaps (Csp)*? are symmetric with the completeness relation

— (50 Vap (CsM )0 = 6.7 55 + 0.0 04" . (2.136)
Hence we can express spin matrices in a spinorial basis by

(Sa”) 17 = (s)1” (8")a” (2.137)
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The commutation relations (2.49) require
(507, 8,17 = 4 ()’ (") (s r” (2.138)
where

A($1)0” (17,7 = 8,7 (87)a = 87 (5)7 4+ C Ly (C5)70 4 O (#7071 1y
(2.139)

The form of the right hand side of (2.139) is dictated by the completeness of the symmetric
matrices s**C~1, and also that the relation must be invariant under Yu — —Vu, and the
coeflicient may be determined from s*, s = —nt" 1 + % s". As a consequence of (2.139)
(2.138) becomes

[Sa”, 8,°] = 6,7 5a° — 6.2 S, + C 7Ly (C)P + CP (SC™ )y, (2.140)
which defines the Lie algebra sp(4).

Choosing a basis such that

o1y = <_0]1 g) e = <g —0]1> , (2.141)

then
hi+hs e €112 €12
h e 2e
S.8] = f1 2 12 2 9149
[5a”] fiiz  fiz —hi—hy —fi |’ ( )
fi2 2fs —e1 —ho
e12 = [er,ea], eng =ler,[en,ea]],  fiz = —[f1, fo], fuz = [f1,[f1, fol] - (2.143)

In this basis e; correspond to the simple roots with h; the Cartan generators so that
{es, fi, h;} satisfy the commutation relations (2.128) for rank r = 2 and Cartan matrix

(K] = (_22 _21> : (2.144)

As before the representation space Vi, s, for irreducible representations Rj, s,; may
be defined in terms of highest weight vectors satisfying (2.130). For finite dimensional
representations, so that s; are positive integers or zero,

dim Vg, 5, = (51 + 1) (52 + 1)(s1 + s2 4 1)(s1 + 252 + 3).. (2.145)
The quadratic Casimir is also

—% Sy sM = %Saﬁsaﬁ = %hl(hl +4) + ha(ha + hy + 3)
+fier+2faea+ frzern + 5 frzens, (2.146)

and therefore acting on V[, ,,) the Casimir eigenvalue is

Cloy,so] = 3 51(51 +4) + 52(s2 + 51+ 3). (2.147)

18



The vector representation is labelled by [0, 1] and the associated weight diagram becomes
f2 f1 fi f2
0,1] 25 [2, 1] 25 [0,0] 25 [-2,1] 2% [0, —1]. (2.148)
Hence
Risy 50 @ Rio1) = Risy sy11) D Risy42,50-1) B Ry 60] B Risy—2,5041) © Rl sp-17 - (2:149)

For s; = 0 the tensor product is truncated since R|_5,,1) =~ —R[ps,) and also we take
Ri_1 s,); Bs,,—1) = 0. Implementing (2.71) gives
A[sl,SQ—I—l} = — 82— %51 ) A[sl+2,52—1} =1- %51 , s2 21, A[sl,sg} =2, 821,

A[51,2752+1} =2+ % 81, 81> 2, A[Sl,SQ*l] =34+ s+ % 81, S2 > 1, (2.150)

for the critical dimensions when derivatives generate conformal primaries. The Weyl group
for sp(4), Dy ~ Zo X Zy, is generated by reflections r1, 7o with respect to the short and long

simple roots which give [s1, s2]™ = [—$1—2, 51 +s2+1] and [s1, $2]™ = [s1+2s2+2, —s9 —2],
(r172)* = 1, links the different conditions in (2.150). Symmetric traceless rank £ tensors
correspond to [s1, s3] = [0, /] and for mixed symmetry [n, m]-tensors [s1, s2] = [2m,n — m].

3 Embedding Space

The action of conformal transformations in d-dimensions on z € R? is nonlinear, as exem-
plified in (2.9) or (2.29). By extending to X € R¥? it is possible to define linear group
transformations which reduce to conformal transformations under appropriate restrictions,
[11, 12]. Defining coordinates

X4, A=0,1,...,d—1,d+1,d+2, (3.1)
then a d-dimensional space is obtained by imposing
0= napXAxE = N XPXY + (X2 _ (xd+2y2
= XPXY + XTXT ) XE = xIF 4 xdr2 (3.2)
and also requiring that the overall scale of X is arbitrary so that
XA~ AXx4, (3.3)

With these conditions {X4} are coordinates for a d-dimernsional projective null cone em-
bedded in R%2. The natural isometry group is clearly by

X4 GAB B, NCD GCAGDB =NAB = [GAB] € O0(d+1,1) or O(d,?2). (3.4)

To make the connection with conformal transformations on = we define for X+ # 0

XH

= (3.5)

xH

19



which is well defined since this is invariant under (3.3). Conversely

ot — XA(z) for (X, X+, X7) =X (2" 1,-2%), X+ #0. (3.6)
From (3.2)
27, X*dXY +dXTX +XTdX =0, (3.7)
and using this relation
napdX*dXP = (X)?n,,datda” + 21, X"dXY d;((: + N XH XY <‘§:> 2 +dXtdx~
= (X1)? pudatda” . (3.8)

Hence for any transformation X4 — X’4 as in (3.4) napdX4dX? is invariant and with
XA 5 g/t XA — x# defined by (3.5)

X—l—

2
T +> N datdz” | (3.9)

nudz’tdz’” = <

which demonstrates that z# — 2/# determined by [G4p] is a conformal transformation.
Furthermore since dim O(d+1,1) = dim O(d, 2) = 3(d+1)(d+2) the number of parameters
match.

From (3.6) we may define

) 9?
A _ A A _ A
ei () = —aqu (), 836“8:6")( () = nu P, (3.10)
and then e, (7)Xa(z) =0, PAXa(z) == —(X*)2. With these definitions

e (@)e” (@nap = (XH) 0,
e, x)e,f(x) = (X T8 + XA(2)PP + PAXB(2), O (z) =nuPt.  (3.11)
and
PA=_2x*t54. (3.12)
An inversion (2.25) corresponds in the embedding space to a reflection

Xd+1 N X/d+1 — _Xd+17 (313)

or X* <3 —X~. The transformation given in (2.47) connected to the identity is just a
rotation
X = cos X £ sinfd X', X4 =cosf X' —sinh X, (3.14)

with A = 2tan %9 which clearly demonstrated the simplicity of the embedding formalism.
For two points X4, Y? on the null cone if
XY =-2n4XYE, (3.15)

then
X Y=(x—-y? XY, (3.16)

Although X -V is invariant under (3.4) it is of course not an invariant on the projective
null cone. Such invariants need four points as in (2.24).
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3.1 Scalar and Vector Fields on the Null Cone

Fields may also be extended to the null cone. For a scalar we may take
d(x) = P(X), (3.17)

with X satisfying (3.8), and to ensure it is defined on the projective null cone so that (3.3)
holds then @ is required to be homogeneous,

P(AX) = A2 P(X), (3.18)

where the scale dimension A determines the weight. For any such ®(X) satisfying (3.18)
then conversely ® — ¢ by taking

¢(z) = (XF)2 (X (2)). (3.19)
Correspondingly for a vector field
Vi(z) = Va(X),  Va(AX) =22 Va(X), (3.20)
but to reduce the spin degrees of freedom from d 4 2 to d it is also necessary to require
XWA(X)=0,  Va(X)~Va(X)+ Xas(X), (3.21)

for arbitrary s(X), s(AX) = A7 5(X). The constraint and freedom in (3.21) reduce the
degrees of freedom from d + 2 to d. In this case V}, is then given, with e, defined in (3.10),
by

V(@) = (X )2 e (2) Va(X (2)) - (3.22)

Since e, (z)Xa(z) = 0 it is easy to see that V), is invariant under the equivalence relation
in (3.21) and also X4 — \(z)X* for arbitrary A(z).

Extending (3.11) to tensor fields there is a correspondence T}, (z) — Tap(X), where,
with the obvious modification of (3.21), X4Typ = 0, XBTyp = 0 and Tup ~ Tap+Xavp+
v'4Xp for arbitrary vp, v4 of the necessary homogeneity. As a consequence of (3.11) the
traceless condition n4BT4p(X) = 0 is equivalent to 7**T}, (z) = 0.

For infinitesimal conformal transformations the action on the fields is just, for arbitrary
AB BA
wt = —w

)

wAPLAp®, Lip =—XA0p + XBOa,

WwABL Ve —weP Vp. (3.23)

6.® =3
0 Vo = %
The conformal algebra is then

[Las, Lep] = nac Lep — e Lap —nap Lec +nsp Lac - (3.24)

1 1 1AC

Hence [5 wABL g, & w’CDLCD] = — 1w, ABL A, where [w, W]AP = WACW P —WAC LD

2 2

and [d,,, 0] = Ojw,w]. Consistency with (3.21) follows from %wABLABXC = —X4w,C.
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Since X is null it is necessary to be careful in the definition of 4. For derivatives 04
acting on f(X) restricted to the null cone X2 = 0 the usual rules of differentiation lead
to apparent inconsistencies as 94X? = 2 X4 so that it is necessary to include additional
contributions proportional to X 4 beyond the result obtained by differentiation disregarding
the constraint X2 = 0. These extra terms disappear in L4z and

L+7XA‘XHX(:E) - %(Waﬂ - Xt0.)X (@), LlWXA’XaX(:p) = (2.0, — xvau)XA(l”) )
Loy Xy = — 3 0uX"(2),
LWXA\XHX(DT) = (=20, + 22,270, — 22, X T0.) X (2). (3.25)

With these results d,® coincides under the reduction (3.19) with d,¢ in (2.48) for v* given
by (2.9) if w™# = 2a*, Wt = 2k, W = —2b. For the reduction d,Ve — 8,V it is
necessary also to use —v”0, eMC + equDC = d}u”eyc + 2 bMXC(x).

3.2 Spinors

To discuss spinor fields in the embedding formalism requires extending the usual d-dimensional
gamma matrices to d + 2 dimensions. For d = 2n these are required to satisfy the Dirac
algebra

CaTg+TrTA=2n4p1, I'yTp+TpTa=2n4p1, (3.26)

and may be obtained from v, ¥, satisfying (2.53) by taking

¥, 0 — ol 0
be = <0M _7#> ’ b= (0“ —W> ’
= 0 1 — 0O 1
Fgp1 =Taqp1 = <]l O) , Fgro =Tgp2 = <_]1 O> , (3.27)

and correspondingly

_ 0 1 _ 0 0
r+=r+:<0 0), r_zr_=<]l 0)‘ (3.28)

Assuming (2.54) we may then require

Ty=BTAB, B= (]? g). (3.29)

For d =2n —1 we have 'y T'p + I'pT'4 = 2145 1 and a representation is given by (3.27)
with 4, =+, and in this case from (2.55) with a Minkowski metric

Ta=BT4B, B=B —B"'= <g g) (3.30)

For conformal transformations as in (3.4) when d = 2n

GIraG 1 =TpGB,, GG 1 =TpGB4, (3.31)
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where from (3.30)
Gl'=BG¢'B, ¢G'=BG'B, = GBG' =B, GBG =B. (3.32)
Alternatively for d = 2n — 1
GILAG ' =TpGBs, G '=BGB. (3.33)
The associated conformal generators are defined similarly to (2.56)
Sap=—-5Talp,  Sap=—3TaTg, (3.34)
and satisfy, analogously to (2.57),
SapTo—Tc Sap=nacTe—npcTa,  SapTc—TcSap=nacTp—npcTa, (3.35)
so that Sap, Sap have the same Lie algebra as Lap in (3.24).

From (2.100) when d = 2n — 1

CraCT = (1" T, eBCT =BT, = (e §)- (3.36)

where € = (—1)27(+1) €T and C'C = 1, For d = 2n from (2.101), (2.102)

craCct=r,, Cract=r., cBC'=B, n=24,...,
cryct=-r,L, ¢cract=-1,", cBC'=-B, n=13,..., (3.37)

where with the representation (3.27)

0o C - 0 -C 0 C
C:(_C O), CZ(O O), n=24,..., C:(—C O)’ n=13,..., (338)

where € = (—=1)2"CT, (=1)2(tDCT respectively.
In (3.31) we may then take
clgtc=G"1, n=24,.., c'¢lc=¢"1, c'¢l'c=G"1 n=13,..., (3.39)

and in (3.33)
clgfc=g"' = glcg=c. (3.40)

For spinors an extension to corresponding spinor fields defined on the null cone and
transforming covariantly

b(x) = U(X), d(x) = F(X), TOX)=A2T20(X), TOX)=A2T20(X), (3.41)

then requires doubling the number of spinor components. Assuming (3.29), or (3.30),
requires ¥ = WTB. The degrees of freedom of ¥, ¥ are reduced to those for 1, ¢ by imposing

DA XA9(X)=0, P(X)I4Xx4=0. (3.42)
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With these conditions in the representation provided by (3.27),

= A ’7X X+ A ’)/X X+
TaX _<X_ _7_X>, T4X _(X_ Sox) (3.43)

the converse to (3.41), U(X) — ¢(z), ¥(X) — (z), is given by

<_ W) )Z(XUA%\P(X@:)L (D)7 -z P(x)) = (X272 §(X(2), (3.44)

Y) = (XA 2e@)U(X (),  dla) = (XT)A72 (X (2)) e(x). (3.45)

with € defined by

el (2)E@)Ta =7, (x), e(x)&(x)Ta=7,éx), &a)T-=¢€x)T_-=0, (3.46)
and similarly for e.

Alternatively to (3.41) spinor fields may be extended to the null cone as

Ble) = V(X), Ple) > V(X), POX) =AA2(X), WOX) = AT (),
(3.47)
where the degrees of freedom are now halved by imposing the equivalence relations

V(X)) ~U(X)+TaX2C(X), U(X)~T(X)+(X)ToX4, (3.48)

for arbitrary spinors ¢(X), ((X) of appropriate homogeneity. The equivalence to (3.41) is
obtained by taking

U(X) =T X' (X), O(X)=0(X)T,X". (3.49)

The infinitesimal conformal transformation in (3.23) extends to spinor fields by taking
0,0 = 2wB(Lap + Sap)¥, 6,0 =2wB(LapV — U Sap). (3.50)

Under the reduction ¥ — ¢, U — 1} given by (3.44) %wAB Sap¥ — %wv’“’sww - %UU Y,
%wAB U Sag — %wv‘“’w S + % o, 1. Corresponding to (3.47)

(
5,V = %wAB(LAB + S'AB)‘IJ', VA %wAB (LAB\P' - SAB) ) (3.51)
These transformations show that
Va(X) = ¥ (X)T4¥'(X), (3.52)

transforms as a vector field as required in (3.23) with scale dimension 2A. Furthermore the
constraint (3.42) and the arbitrariness (3.48) translate into (3.22) and V4 ~ —¥' T4 ¥. The
transformations (3.50) and (3.51) suggest YW and ¥'¥’ are scalars but ¥W¥ = 0 and /¥’
is not invariant under (3.48) and so does not correspond to a scalar on the projective null
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cone. In odd dimensions, when I'y and I can be identified, U¥’ = ¥’V is a scalar which is
invariant under (3.48).

The transformations corresponding to (3.14) are obtained by a rotation in the 1-(d + 1)
plane, B
Uy(X) = (cos 301 —sin 36 T'1Tg11) U(X_p). (3.53)

It is easy to check that this is consistent with (3.42) and on reduction is identical with
(2.61).

The two point function for ®

() 9() = (3.54)

is determined by invariance under O(d + 1,1) or O(d,2) and (3.18) and is easily seen to be
equivalent to (2.86). Corresponding to (2.87)

 nap X Y +2YaXp+aXaYp

(VA(X) Vi (Y)) S ,
- A XATRYE
(U(X)B(Y)) = &Y)Z : (3.55)

with « arbitrary. These results are equivalent to (3.20) and (3.42). To reduce the vector
two point function we may note that e, (z)Ya(y) = (y — @), e,2(v)Xp(z) = (z — y),.

3.3 Reduction to Low Dimensions

In the obviously interesting cases of three and four dimensions the embedding formalism
and the special properties of Dirac matrices allow further simplifications.

In four dimensions from (3.39) G =C1G7C determines G in terms of G. Furthermore
from (3.31) and (3.37)

Gric—tgt =1rpc1GB,, (T HT =-Irac™t, (3.56)

requires no restriction on G since the six I'4C~! form a basis for antisymmetric 4 x 4
matrices. Hence G is constrained just by (3.32), G BGT = B, and since, up to an equivalence,
B~ (§2) this requires G € SU(2,2) and the conformal group SO(4,2) ~ SU(2,2)/Zs,
with dimension 15.

With explicit indices (TAC™V)ap = —(TAC V)pa, a,b = 1,2,3,4. Since ¢2**? is an invari-
ant tensor for SU(2,2) then we must have, by a choice of normalisation for I'4,

L e (T 4C Ny (TBC ) ea = NaB - (3.57)
This allows '4 to be defined by

(CTA)™ = =3 e (T aC ™ ea, (3.58)
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since

0= 267 (T4 oy (TpCH)ea
=20;°nap — (TaC 1) (CTR)* — (TC™1) a (CTA)™, (3.59)

verifying the Dirac algebra (3.26). For any six dimensional X 4 then equivalently we can
consider 4 x 4 antisymmetric matrices given by

Xy = XA(T4C s, X% = XA(CT )" = L el Xy, (3.60)

where
Pf(X) = L e XXy = nap XX, (3.61)

with Pf denoting the Pfaffian, satisfying Pf(G X GT) = det G Pf(X). For X4 coordinates on
the projective null cone then of course Pf(X’) = 0. The Minkowski space reality condition
requires

X =BX*B. (3.62)
In three dimensions, so that there are five 4 x 4 matrices I 4,

Grac gt =TpCc'GB,, gctgh=c1, cl'=—c, MucHl =-IyCc™t,
(3.63)
where now I'yC~!,C~! form a basis for 4 x 4 antisymmetric matrices. The condition
GC1GT = C~! then implies G € Sp(4). In addition in this case

G=BCc'g*CB, cB)? =cB, (3.64)

which ensures that the representation is equivalent to a real representation, essentially
taking CB = 1, belonging to Sp(4,R), and hence SO(3,2) ~ Sp(4,R)/Z2, with dimension
10. Since I'y = BC~ T 4*CB the Gamma matrices are real if CB = 1.

4 Energy Momentum Tensor

In any local quantum field theory the energy momentum tensor plays an important role. In
an arbitrary CFT such a local field may not be present but if the CFT is derived from a
conformally invariant action then Noether’s theorem provides a construction of the energy
momentum tensor. To show this we assume an action S[p] which is a local functional of
fundamental fields ¢ and various derivatives is conformally invariant so that for a conformal
Killing vector v, there is an action d,¢ so that 0,5[p] = 0. Conformal primary fields
constructed in terms of ¢ then transform as in (2.48) or (2.52).

The energy momentum tensor can be constructed, using a version of Noether’s theorem,
by extending conformal transformations d,¢ so as to allow v, to be unconstrained and also
wH — Wt o, — o, for arbitrary w"¥(z) = —w"#(z), o(z), so that (2.48) becomes

5@,w,a¢] = _vua,u,¢l - UA(bI + %W#V(S/,W)IJ(bJa (41)
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where A may be a matrix. In this case we must have

Spw,oSlp] = /dda: ((@Lv,, — Wy — 0 Ny ) TH
+ (Op wpv — Ouo Npy + 00 ) X
+ (0p0u vy — Npp Ov0 — Ny 0p0 + Ny 0, 0)YHPY + 0,00 Z‘“’) ,
XPHY — _ XPVH YyHe = y e Zm = gvi (4.2)
since the right side vanishes when restricted to an infinitesimal conformal transformation
as a consequence of (2.11), (2.12), (2.5) and (2.6). The equations of motion are obtained
by requiring 0S[¢7] = 0 for arbitrary d¢;. Hence varying v, w””, o independently gives
0Tt = 0,0, Y"PH,
TC[W} = —9,XPH
TIWTCW =2 8uXpW77pv +2 8uypw77pv - 6uYWV77pV + 8#61,2’“’ ) (4.3)
subject to ¢ satisfying its equations of motion. In general T, which may be regarded as the

canonical energy momentum tensor, is neither symmetric or traceless or indeed conserved
in general. However, defining

TH =TI + 8, (XM — X0V — XVPU L YOI _ YIVP _ YUY L DIVOPZ(4.4)

with the differential operator
1

DHVoP y (77“(”8")8” + 77”(”8”)3“ _ ,7u(0np)v32 _ 77‘“’8”8’))
—2
1
— (01O — O )n°P 4.5
which is constructed to satisfy 9,D"?? = 0 and 1, D*?? = —079”, ensures, subject to
the equations of motion,
oT™ =0, TW =0, 5,7 =0. (4.6)

In a CFT taking T"" as the energy momentum tensor ensures that it is symmetric and trace-
less as well as conserved, the additional contributions involving X,Y, Z are ‘improvement’
terms. With the improvement (4.4), (4.2) becomes

5v,w,aS[¢I] = /dd$ (a,uvu — Wy — 0 T]W)T’”’ ) (47)
which directly implies (4.6) subject to the equations of motion.

For any conformal Killing vector satisfying (2.3), (4.6) implies that there is an associated
conserved current

JE =Ty, = OuJM=T"d,v, =0. (4.8)

An alternative prescription for determining the energy momentum tensor is possible if
the theory is extended to an arbitrary curved background with metric g,, so that S[p] —
S[¢, guv). In this case we may define a symmetric energy momentum tensor by

1 0

T =2 ———"S[0,g,]. 4.9
\/—79(59;“/ [SO P] ( )
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Invariance under diffeomorphisms, 6,9 = —L,¢, 6vgu = Vv, + Vv, for £, an appropri-
ate Lie derivative, requires

) 1)
/ddx ( — Ly % + (Vv + Vo) S0

&) Steusprl =0. (4.10)

Varying v ensures conservation

v, T =0, (4.11)

up to terms which vanish on the equations of motion. For Weyl invariant theories S is
invariant under local Weyl rescalings of the metric so that S[e=7%p,e*g,,] = S[p, 9]
Infinitesimally

> S[e: 9] = 0, (4.12)

)
ddm<—A — 4+ 29,
/ SOSO&P s 6guu

which implies by varying o
Guv ™ =0, (413)

so long as ¢ satisfies the equations of motion. If (4.12) holds up to contributions involving
two derivatives of o then these can generally be removed, so as to restore (4.12), by adding
appropriate curvature dependent contributions to S.

Weyl invariant theories reduce to CFTs on flat space since for conformal Killing vectors
the metric variation can be eliminated between (4.10) and (4.12)

0
Vo, + Vv, =206, = /ddzn ( —Lyp+0oA, gp) @ S, gu] =0. (4.14)

Reduced to flat space, g,,, = 7., this ensures that S is conformally invariant.

For a free scalar field ¢ with A, = 3(d — 2) then the extension of (4.29) to a Weyl
invariant action on curved space has the form

Sle, g = /ddfvxﬁ (0"00up + 125 R¢°) (4.15)

with R the scalar curvature. Under a Weyl rescaling g, — 62‘79,“,, /=g — €% /=g, then
R— e (R-2(d—1) V%0 — (d—1)(d - 2) 9"0d,0) and, for ¢ — efé(dfmgcp,

Mpdp — e (O* 0L + %(d - 2)(V2J ©? =V, (0" ch)) + %(d —2)? 00,0 @2) ,
(4.16)

which is sufficient to verify the invariance of S in (4.15). For variations of the metric
Sgv/—9 = 3 9" 8w /=3, 4R = (VHVY — g"V? — R*)§g,,, and it is easy to see that (4.9)
for S given by (4.15) gives an identical result to (4.31) for the energy momentum tensor on
reduction to flat space.

If the theory defined by S[¢] on flat space is just scale invariant, in addition to invariance
under translations and rotations or Lorentz transformations, then it is necessary to restrict
o in (2.3) to be just a constant, so that in (2.9) b, = 0. In such a case (4.2) is relaxed to

5v,w,05[90]8ca1e = 51},50,05[()0] - /ddm aua VM7 (4'17)
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for some vector field V# termed the virial current and where in (4.2) we set Y#? = ZH = (.
The trace condition now becomes

NuwTH = 0,VH. (4.18)
In this case there is a conserved current associated with scale transformations

JM

Scale

=TWgx, —VH, (4.19)
but no associated current associated with special conformal transformations. If

Vi =0,LM", LM = L. (4.20)
then (4.17) becomes equivalent to (4.2) with now Z* = LM so that

T =T 4 DFOPL (4.21)

improved

with DH¥?P defined in (4.5), is an improved conserved traceless energy momentum tensor
and scale invariance extends to the full conformal group.

4.1 Ward Identities

In a CFT correlation functions involving the energy momentum tensor (T#(z)...) satisfy
Ward identities. In two dimensional CFTs the energy momentum tensor, when 7}, (z) —
T(z) = T..(x), T(2) = Tzz(z), (T'(2) X) and (T'(2) X) are fully determined in terms of {X)
by the extended Virasoro identities for any X which is a product of conformal primary fields.
However for d > 2 Ward identities still provide constraints without determining (T (x)...)
completely although the identities do give a precise prescription for the normalisation of
T .

In a Lagrangian theory the correlation functions are determined by functional integrals,
continuing here to a Euclidean metric (the Minkowski identities are obtained by letting

8z —y) = i 0%z —y)),

(pr(z)...) = /d[cp] S r(x)... (4.22)

We assume that the functional measure is invariant under 4, +¢ (of course classical con-
formal invariance of S is generally broken by quantum anomalies but here we assume the
theory is at a fixed point) and then considering variations as in (4.1) and (4.7) we have the
identity

/dd:c (Opvu(2) — Wi () — (@) M ) (T (@) 1 (y) - .. ) + (Svwodr(y) ... ) =0. (4.23)
Varying v, w, o gives three independent Ward identities

axu<TlW(x) or(y) ... > = _5d(x ) ayu<¢l(y) e > )
(T (@) 61 (y) ... ) = 8%z —y) 5(s") 17 (ds(y)...),
M (T () G1(y) - ) = =A 6N & —y) (d1(y) ... ). (4.24)
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However Ward identities involving the energy momentum tensor are not unique since
TH (z) ¢1(y) is arbitrary, as a result of T*” having dimension d, up to contact terms pro-
portional to 6%(z — y). Letting

T () $1(y) — T (2) 1(y) +8%(x — y) (5" )1’ = (X*)17)6(y) (4.25)

for some (X*);7 = (X¥1) ;7 satisfying [X*, 3 w7Psq,] = why XM +w” \ X, requiring then
N (X*) 7 = X 677, With the change (4.25), (4.24) becomes

Dup{TH () G1(y) ...) = — 6%z —y) ) 8y (dr(y)...)

— 0pud(z — ) (3(s") 7 — (X”V)IJ)<¢J(ZJ) )
(T (@) d1(y) ... ) = (X = A) 6%z —y) (d1(y)...), (4.26)
with T = 0 including contact terms. The freedom arising from the choice of (X*¥);/

can be used to recast the Ward identities in various different forms. For scalars taking
X = nt we get

Oz (T (2) $(y) - .. ) y)<¢($)--->,
77,uV<THV T y > 5d l‘ - <§Z5 > (4.27)

and for vectors if (X*),* = n*§, — %(17“)‘(5,,” + 026 /) (4.26) simplifies to

Dup(TH (2) Vo(y) ... ) = 0 6%z —y) (Vp(z)...) =0, 000%(x — 7)) (Wa(z)...),

Nu{TH (@) Vy(y)...) = (d—1—A) 6z —y) (Voly)...). (4.28)
(4.27) and (4.28) are the Ward identities obtained starting from curved space with the
definition (4.9) and considering diffeomorphisms and Weyl scale transformations dg,, =

Vv, + Vyu, + 20 g, and extending (4.10), (4.12) to include sources or couplings dual to
¢r. In (4.28) the trace identity vanishes if V,, is conserved so that A =d — 1.

4.2 Free Fields

As an illustration of the construction of the energy momentum tensor we consider a free
spinless scalar field with an action

Sylp] = — /ddx L0"0 0.0, Ay =1i(d-2). (4.29)

Under transformations of ¢ as in (4.1) the variation of S can be expressed in the form (4.2)
with

TH = 00" — i/ 0Ppdyp,  ZH = —3(d—2)n"¢”. (4.30)
The construction (4.4) then gives for the free scalar field

d—2

THY _ Hi V. 1 pvgp _ - =
M 0¥ — 50" 0D,y = 1)

(0"0” — " 9%)? (4.31)
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from which it is easy to verify
uTH =08, MuwTH = 3(d—2)Poyp, (4.32)
which of course vanish when 9%p = 0.

A less trivial example is the higher derivative non unitary scalar theory with an action
Sealel = — /ddx %82@8290, Ay = %(d —4). (4.33)

In this case, using 9, 9% = 9°(9,p Dpp) — %@L((‘)p(papw),
T;ZC = 2019%p % — %17“” 9?0y, Y:,ZV =P Hpd3p
ZLy=20"p0"p — 1" 0P p0pp + Hd—Hn™ Ppp. (4.34)
From (4.4)
ThY = 2010 8 p — 50" 0°00%p — 90" O p) — 8" (0 8 p) + 0™ 0,(0°p D)

+ 2D (D50 ) — (810 — !V 8%)(8Pp Bpp — 5(d —4) P ), (4.35)

d—1
and then

O,TH, = —0*0*0 9" ¢, nuwTh"

4 p,4 = 7%(d - 4) 828290 @, (436)

with 0202 = 0 the equation of motion.

Free fermions also provide an example of a CFT for any dimension d. In this case we
take

Sulthy 9] = — / Az 50,0, Ay =Aj=Ld-1), (4.37)

where 1, 1 transform as in (2.59). Extending (2.59) as in (4.1) then the variation of S,
using (2.57), is in the form (4.2) with

TH GOy — g 500, XY = LA (438)

Since now X7 — XA — XU = —Lp (s + 5 30)p — L p AR + S AP it
follows that (4.4) gives

T =40 (7 0 5 T w55 T = h (-0 45 0w, (4.39)

=
for 0 = %(8 — 8) The last term, antisymmetric in u, v, vanishes on the equations of
motion. From (4.39)

v 7~ < 174 <_l/— v - _ Rd
TN =9(7-00" = 0"7-0)¢,  muTh =—(d-1)975- ¢, (4.40)

In d = 2n dimensions free conformal field theories are obtained in terms of (n — 1)-forms
Ay, With an action

1
SalA] = — /dQ”a: ol Frv-tn By s Fupown =00 Apspn), Aa=n—1. (4.41)
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(4.1) becomes 8y o Apy .1 = — (v“@M +(n—1) U)Au1...un—1 —(n—1) Wi’ Appz..in_r) and
in (4.2)
qu‘j’c = 4(71_11)! FrEvefn1 gV A % Tl SRR
Xﬁ’“’ = 2(n1_2)! (Fpum“'“"’2Aym...un_2 _ prm"'“"”A#m-..un_z) ) (4.42)
Since X" — XKPY — XPH = (n—lz)! FPrbbn—2Av, =, (4.4) gives
T = (nil)! (FHHn LB iy = g 1 FR R E )
+ gy Op PP 2 AY (4.43)

The last term vanishes subject to the equations of motion, d,F*#t#n-1 = (), leaving then
a symmetric traceless energy momentum tensor. From (4.43)

17 1 v 1
L) = g OuFM 1 O Ay s M Ty “h_2)

9, FHHL-kn-1 A
(n—1)! a

H1---Bn—1 *

(4.44)

4.3 Two Point Function

The energy momentum tensor is present as a conformal primary in all local CFTs. The
correlation functions involving T}, are then of critical interest. The two point function is
determined by conformal invariance as in (2.83) which here takes the form

1
SP(Tun@) To(0)) = Or g5 Tuopla) (4.45)
for the inversion tensor in this case given by
1
Lyw,op(T) = %(Iucr(x)bp(x) + Iﬂp(x)l,,o(:c)) 4 O Ocp » (4.46)

where I,,, is defined in (2.27). The coefficient C7 in (4.45) is an intrinsic property of the
CFT since the normalisation is prescribed by requiring the Ward identity (4.26). In (4.45)

1
273
Sy=——" . 4.47
with the factor on the left hand side introduced for later convenience.
For free scalar fields the basic two point function determined by (4.29) is
1 1
0)) = . 4.48

Since ¢? is a conformal primary it follows that (75" (x) 379°¢?(0)) = 0. To calculate (4.45)
it is therefore sufficient to evaluate (T5"(x) 97 pd”p(0)) with T5” given by (4.31) and also
taking 0% = 0. This gives in this case

d

CT7@ = ﬁ . (4.49)
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For free fermions then from (4.37)

()0} = g, o (4.50)
and (4.39) gives
v o _-(x—y) < F_y(y_x)
(T} (2) T, (y)) = —tr A g YL 9,) ———+ ). (4.51)
v < (@ —y)) " ((y - x>2)2d>
Hence
Cry=3sdtr(l), tr(l)=2""1 ford=2nord=2n-1, (4.52)

with the even dimensional case corresponding to chiral, or equivalently Weyl, fermions.

The theory of free (n — 1)-forms in (2n)-dimensions with an action (4.41) is a gauge
theory and it is necessary to fix the gauge. In a Feynman type gauge

1

Saldl = =50 =

/d2nx 8/\A/L1...un—1 aAAMI---M’nfl , (453)

so that
n—=2)! 1

2 SZn (232)1171
Then, with F' defined in (4.41), the two point function for F', which is gauge independent,
is given by

oy, L gHn—l, (4.54)

<A,LL1~--/an*1 (x) Ayl,..yn_1(0)> =

nn! 1
Son (z2)n
This has the expected form according to (2.83) for F#t#n a conformal primary. Using
(4.55) with the expression (4.43) for the energy momentum tensor and using the identity
alt by 4y, - - - 5“"—1}%71} = (a#by (d—n)+0", a-b(n—1))(d—2)(d—3)...(d—n+1)/(nn!)
for d = 2n then

1wy, (z). .. 17, (z). (4.55)

<Fﬂ1...un () Fyy. (0)> —

_ 2n%(2n — 2)!

Cra= 1) (4.56)

For n = 1 this coincides with the result for a free scalar as expected. The results (4.49),
(4.52) were obtained in [13] and (4.56) in [14].

In four dimensions then for ng free scalars, ny Weyl fermions and n4 gauge vector
fields

Cr=j3ns+4nw +16n4. (4.57)

For the higher derivative theory defined by (4.33) the two point function for the scalar

field is now
1 1

(d—4)(d—2)Sy (2)z(d=0)

(p(@)(0)) = 5 (458)

Using the expression for the energy momentum tensor in (4.35) (it is useful to note that
O (0¥ 0%p) = 0Dy (0" p 07 p) — % OH0¥ (0yp 07 ¢)) determining the energy momentum ten-
sor two point function can be reduced to calculating

(TH1(x) T4(0)) = (T (2) 2070700 p(0)) (4.59)
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since, as ng is a conformal primary, derivatives of lower dimension conformal primaries
in T ;Z can be dropped and also contributions involving 920%¢ vanish at non coincident
points. The result is in accord with (4.45) with

2d(d + 4)

CT,cpA = —m . (4.60)

The negative sign reflects the fact that the theory defined by (4.33) is non unitary, it also
fails to give a well defined energy momentum tensor when d = 2.

5 Operators and States

In a quantum field theory the fields are operators and the symmetry generators also become
operators obeying the appropriate Lie algebra. For the conformal group as O(d + 1,1) or
O(d,2) the Lie algebra generators belong to so(d + 1,1) or so(d,2), which has dimension
3(d+1)(d+2) and a basis Map = —Mpa. For a scalar ®(X) the generators act as

[Map, ®(X)] = Lap®(X). (5.1)
with Lap defined in (3.23). (5.1) implies the Lie algebra
[Map, Mcp] = nac Mpp — npc Map — nap M + np Mac - (5.2)

The generators Mp can be decomposed as

4B~ v d+1 d+2
1
" M —5(Pu+ Ku) 5(Py—Kp)
[MaB) = d+1 | 3(P,+ K,) 0 -D : (5.3)
ir2 \—3(P, — K,) D 0
or
M-y =—-M, = %Puv My =My = %Kua My =-M_, = %D7 (5.4)
so that the algebra (5.2) then gives, using 74— =n_4 = 3,
[Muw MPT] = up Myr — Nyp Mz — Npr Myp + 1 My (5.5)

which is just the Lie algebra for so(d) or so(d — 1,1), and

[Muw Mip] = Mup My — 1yp My, [M/Wv M+*} =0,
[MJr*va] == %Mw ’ [MW, M,,,] = My My~ + %Mﬂ’/ ’ (5.6)

or

[M/W?PP] = Nup P = Mwp Pu [MMV’KP] = Nup Ky = Mwp Ky [M/W’D] =0,
[D,P,] =P,, [D,K,| =-K,, [Ku, Py =210, D +2M, . (5.7)
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In applications an important role is played by Casimir operators, most significantly the
quadratic Casimir

Co= -2 MapM*B = -1 M, M" — P'K, + D(D —d). (5.8)

This of course commutes with all conformal generators. With the representation (3.27) and
the decomposition (5.3) we may write

(5.9)

rtrag = (1D

K, M, +1D

The action of the conformal group generators on conformal primary fields ¢; may be
decomposed as

[M;uu (b[(x)] = Luu¢l(x> - (S/.LV>IJ¢J('T;) ) [D7 (bl(x)] - (33 -0+ A)(ﬁ[(.@) )
[P 61(2)] = 0ur(2),
[Kﬂ, <Z>1(x)] = ( — x28“ +2z,x-0+2 Ax#)dn(:v) - 2x”(s#y)1J¢J(ac) ) (5.10)

Under finite scale transformations
APor(x) e P = (). (5.11)

For the conjugate field qgj

[Mum g?](x)] = Lm:(gl(x) + &J(x) (EW)Jfa [D7 (ZEI_(I)] =(z-0+ A)&T(ﬂf) )
[P d1(2)] = 0u1(2),

[KH, ggf(a:)] = ( — l'QBM +2z,x-0+2A x,,,)ggj(x) + ¢ 5(z (§W)Jj 2z" . (5.12)

~—

Although in general inversion is not a symmetry in CFTs we may use the inversion
tensor to define a dual or conjugate field by

d(2) = () 22N (@) or(x/a®), o'(x) = ()2 br(e/a*) I (), (5.13)
where Z7! () is the inverse of Z;7(z/22) = Z;7(z). From (2.84)

20, T () =0, L I'(2) = Guw) 777 (2) = I (z) ()",
220, T (2) = —227(5,,) 7T (z) = T (2) (s,) 5 227, (5.14)

so that

(M, 8 (@)] = Lyud' (@) = (5)' 167 (2),  [D, 6! ()] = ~(x- 0+ 2)¢' (),
[PM, gZ;I_(:c)] = (:c2(9u - 22,202 Awu)qgl(x) + 22”7 (EW)IquJ(x) ,
[Kud' ()] = = 8¢’ (2), (5.15)

with similar results for qgf .
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For any CFT there is a correspondence between conformal primary fields and states.
For the field ¢5 the associated state is defined by the ket vector

|67) = ¢7(0)]0), (5.16)
and then from (5.12)

_ _ _ N | _

Di¢r) = Alor),  Muwlor) =197 (Sw)’5,  Kulor) =0. (5.17)
For any such conformal primary the associated infinite dimensional representation space is
the Verma module, in integer d dimensions, defined in this case by

Var =span {[[0_, P,""|¢7) :myu =0,1,... }. (5.18)

Here R labels the spin representation in d dimensions to which ¢; belongs. The states in
the basis in (5.18), for n, > 0 for some p, are the descendants of the conformal primary
with ) u the level. The module VA g is obviously closed under the action of P, and the
action of the conformal generators D, M,,, K, on any state in VA g is determined using
the commutators (5.7) and (5.17). Thus at level N all states have scale dimension A 4+ N.
Assuming the spin representation is irreducible so that

— 3 My, M |7) = Crldp), (5.19)

then for the Casimir operator in (5.8) all states in the Verma module have the same eigen-
value so that

CoVar=C(A,R) VAR, C(A,R)=A(A—-d)+Cg. (5.20)

Corresponding to (5.16) there is then an associated dual bra vector given by

(@' = (0l¢"(0), (5.21)
where taking the limit x — 0 is well defined in the Euclidean regime. With the definition
(5.21) ) )

(@ID =2, (9 |Mu = Guw) 7 (&7, (d|P.=0, (5.22)
which define a dual conformal primary. The corresponding dual Verma module is then given
by

VAR:span{HZ:l (qﬁ\KN”“ in,=0,1,...}. (5.23)
The two point function (2.83) determines a scalar product so that
(@'167) = ('(0) 65(0)) = 6';. (5.24)

This can be extended to all descendants defining a scalar product on ]_/A7 R X VA, R assuming
Kf=pr, Di=D,  M,=-M,. (5.25)
which requires the spin matrices s,,,,, 5,, to be anti-hermitian. These hermeticity conditions

in (2.54) are of course consistent with the commutation relations (5.5) and (5.7).

For scalar fields the two point function for ¢ and its dual becomes

1

(3) 60)) = [T 32 s (5.26)

which reduces to (5.24) for z,y — 0.

36



5.1 Conformal Generators in a Spinorial Basis

In subsection 2.6 it was shown how for d = 3,4,5,6 the spin generators belonging to
s0(d—1,1), or so(d), may be expressed in equivalent spinorial bases in each case using the
special properties of the Dirac matrices for the particular dimension. Here we extend these
results to the conformal generators satisfying (5.5) and (5.7).

In three dimensions we may re-express M,,,, P,, K, by writing
M,P = M,, (s’“’)aﬁ,
Pog=Pso = 3P, (1WC Vg, K =KP*=1K,(Cy)*". (5.27)

Using completeness conditions in the form

(CY) Y (3,0 Vg = 0708 + 057 0.0, —C L5 CP =688 —o570,  (5.28)
and My, = —M,P(s,)5% then (5.5), (5.7) are equivalent to
(M, M) =6.PMS — 6. M), (M, Pys] = 6, Pas + 65" Pyo — 6 Pys
(M2 K] = —6,KP — 60K 4+ 6,/ K™, [D,Pag] = Pag, [D,K*%] = K%,
(K7, Pag] = 6705 D + 8o\ Mg)* (5.29)

which extends (2.108). For a Euclidean metric s,," = —s,,, (Cv,)T = 7,C 7! then, corre-
sponding to (5.25), the hermeticity conditions in this spinorial basis become

KT =Py, MST = Mo, pi=b. (5.30)

For a = (a, &), b = (B, 5’) the conformal generators are expressible as a 4 X 4 matrix

MyP +6 D 2P, 4
[Mab] — « C/Y / af / ’ Maﬁ — _Mﬁau (531)
—2K¥P M% — 5% D
which satisfies
Moy = M C 7 = My,  MP=C"MSL = M, (5.32)

for

[ 0 a7 w1 [0 =%
[ ab]—<_5a/ﬁ N (] = 5.8 0 ) (5.33)

The commutation relations (5.29) are then equivalent to
(Mo M = 6.2 Mo — 558 M+ CP Mge + C e MO (5.34)
This defines the Lie algebra for sp(4).

In four dimensions we may define

My (5)%5
K, (51) (5.35)

M.? =5 My (s™)o" ., M% =
Pog = 5 Pu(h")ag K% =

D= DO
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Using (2.113) as well as . .
(Wu)ad ('_Y'u)ﬁﬁ =2 5&’8 55&! ) (5.36)

the non zero commutators in this spinorial basis which follow from (5.5), (5.7) are then

(M, M) =6,/ M — 55Mf, (M4, M75) = —3% M75+6 M4,
[MP, Py =6, Poy — L8P, (M, K] = —07 KW + 36,2 K7,
[Mdﬁv ’Y] — 8% Pﬂ+ o ﬂP'Wv [MdB’KW] _5 K% — 5 KW
[D, Pag] = Pag, [D, K9] = —K‘w, (5.37)
as well as
(K9P, Pag) = 6476% D + 6% My — 67 M% . (5.38)
Corresponding to (5.25) the hermeticity conditions in this spinorial basis, with for a Eu-
clidean metric (su)" = —su, 74 = 7, , become
KT = pge . MPT =M, Mt =m%,, Di=D. (5.39)
Defining
M.B + LsBD P.j 6 0
[./\/lab] _ a 2 a af [5ab] _ (% P (5.40)
— K48 M%; —16% D 0 0%

where a = (o, &), b= (8, 8), then the commutators (5.37), (5.38) are equivalent to
[Mab; Mcd] = 5chad - 5andb- (541)
This defines the Lie algebra sly, which is therefore equivalent to (5.2) in this case.

In six dimensions from (2.102) the six matrices C¥,, 7,C~! form a dual basis for anti-
symmetric 4 X 4 matrices with the completeness relation

— (O (1, C 7 Nap = 607 65° — 65 6 . (5.42)
The spinorial basis for the conformal generators is given by

MyP =1 My, (s").”,
Pug= —Pgo =5 P(""'C Vg, K =-K"=_-1K,(Cy)*". (5.43)

Using M, = —MyP(su) 5% then (5.5), (5.7) are equivalent in this case to

(M2 M) =06,/ MS —6.2MF (M, Pys) = 6, Pas + 65" Pyo — 3 0" Pys
(M K] = = 6,7 KP —§,20K7P 4 1 6a5K75, [D,P.g] = Pag, [D,K*]=-K,
(K7, Pog| = 26814765 D + 46, ML (5.44)

The hermeticity conditions are identical to (5.30)
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In a similar fashion to three dimensions, but interchanging symmetric and antisymmet-
ric, the conformal generators can be encoded in terms of an 8 x 8 matrix

M +158D Py
(M.'] = ; C ) Mo = M (5.45)
KP M%g — 15% D
which satisfies
Moy = (MC Nap = =Mpa,  M® = (CM)® = -M", (5.46)

for

. 0 6" b 0 %
= 4 3 = . 4
= (g Y ) = () 47

The commutation relations (5.44) are then equivalent to
(Mo M = 6.2 Mo — 655 M — C Mg — C e MP? (5.48)

or

[Map, Mea] = —Clae Mpg + C e Mg + C g Mpe — Cpg M. (5.49)

This is just the standard form for the Lie algebra of s0(8) albeit in a spinorial basis, which
is a reflection of SO(8) triality, the vector and the two chiral spinor representations each
have dimension 8.

In five dimensions (C,, C), (7,C~1,C™!) form a dual basis of antisymmetric matrices
with the completeness relations

—3((CY)° (uC Nap + CT° Clap) =60 65" — 85 6, (5.50)
implying — 2 (7%)+° (7)o + 6,2 6°) = C7L0 C% — 6,8 6,2, and also

(YC g (VW C N0y = A eapys, C lapC s = —Aeapys
(’VMC_I)[QB (0_1)75} =0, (5.51)

where A = —1 Pf(C~!), with the Pfaffian here defined just as in (3.61). The generators in
a spinorial ba81s are given by

Maﬁ = MMV (Sl“/)aﬁ ) (CMC?l)aﬁ = _Mﬁa )
Pas= — Pou= LBy (0FC s, KO = K = AR (O, (55)

with commutators

(M, M) = 6P M0 — 6 MP + CP (MC ™Yoy + Ch (CM)P,
(Mo, Pys] = 6. Pas + 65" Pyo = C a5 (CP)P + C™la, (CP)Ps,
(M7, mﬂ — 6 K — 6K 4+ 0P (KO, — CP7 (KCTY),
| = Pus. (D K] = K,
Pog] = 2(01705° + 1 C L5 C70)D + 25, My (5.53)

[ Pag

[

39



5.2 Positivity

For unitary representations of conformal symmetry it is necessary that the norm of all
descendants in the Verma module Va g defined in (5.18) should have positive definite norm.
This is only possible if there are restrictions on A. The bounds on A are associated with
singular vectors which are descendants |Oas j7) such that, for some A’ > A

’(’)A/J/) = VA’g, KM‘OA’,I’> =0. (554)

The space spanned by {|Oas ;/)} is invariant under the action of My, and so must form the
representation space for a spin representation R’. The states {|Oas )} therefore satisfy
the conditions (5.17) defining a conformal primary. Hence, just as in (5.18), there is an
associated Verma module Vas gr. Clearly

Varrn CVAR, (5.55)

forms an invariant subspace under the action of the conformal generators. In consequence
VAR is a reducible representation space but this reducibility is eliminated by taking the
vector space quotiemt6

Va,r/Varr - (5.56)
With the scalar product (5.24) extended to Va g X Va g it is evident that
(Onr,r|Oary) =0, (5.57)

and consequently |Oas j/), and all descendants in in Vas p/, have zero norm or are null.
For a unitary representation, with all states having positive norm, it is necessary to set
|OA/’ [/> = 0.

For a conformal primary with arbitrary A and spin representation the norms of all
descendants can be computed using the commutation relations (5.7), with 1., — d,,. To
illustrate we consider first a conformal primary scalar |¢). Then at level one

(G K Pyl = 2 (6](My + 8. D)|6) = 20, A (5.58)

Positivity requires

A>0, (5.59)

and if A = 0 this implies P,|¢) = 0, so that |¢) — |0), the translationally invariant vacuum
|0). At level two

(9| KoK, PuPy|¢) = AA((A + 1) (0op Spp + o pp) — Sorp Opurr) - (5.60)

The eigenvectors are 6*” and e*” = ¢"#, §,,e"” = 0, with eigenvalues 4A(2A 4 2 — d) and
8A(A +1). Hence for (5.60) to give a positive definite norm we must have

A>L(d-2). (5.61)

®For a vector space V with a subspace U the quotient V/U = { |v)/~ : |v) ~ [v) if [v) — [v") € U}, where
it is easy to verify that V/U is a vector space.
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Furthermore we must have

A=Ld-2) = P?¢)=0, (5.62)
which corresponds to ¢ being a free scalar 9%¢) = 0. For A = —1 there is also a null vector
given by e*” P, P,|¢).

For states with spin we have at level one

(@K B, |65) =2(67507% A=M""5), M7 ,5=—(57,)"7 = 5(5u) "7 (58")%, (5.63)
with (8#7)7, = —dH7 8%, + 67 0¥, spin matrices for the vector representation. The matrix
Me1 7 is just the conjugate of that defined in (2.68) and positivity requires in (5.63) that

A > A; the maximum eigenvalue determined by (2.71). Hence from the results in (2.79)
and (2.82) then for symmetric traceless tensors of rank ¢ in general dimensions

A>d—-2+¢, (>1, (5.64)
and for mixed symmetry tensors corresponding to a (n, m) Young tableaux

A>d—24n, n>m>1, A>d—3+m, n=m>1. (5.65)

In general the positivity restrictions require separate considerations for each dimension
for spinorial representations. Here we list results for d = 3,4, 5,6 excluding the spin zero
case where the bound just reduces to (5.59). From (2.112) in three dimensions for spin-s

spinors
14+s, s>1,
A > { 1 (5.66)

9 SZQ

In four dimensions from (2.122) for (s, §) spinors

2+s+5, s,52> % ,
A><1+s, sZ%,EzO, (5.67)
1+5, §>3,5=0,
as was first shown by Mack [15]. When these bounds are saturated, and the representation

becomes reducible, then the corresponding fields are required to obey differential constraints
to ensure irreducibility. This for A = ¢+d—2 the tensor is conserved, and in four dimensions
A =1+ s for § = 0 necessitates that the chiral spinor obeys the Dirac equation.

In six dimensions the bounds for the scale dimension of a primary operator with spin
representation [s1, 2, s3] follow from (2.135)

4+82+%(81+53), So >1,

3+i(si+s , $2 =0, 81,83 >1,

A > f( 1+ s3) 2 b= (5.68)
2+ 381, sg=s83=0,52>1,
24 3 s3, sp=5=0,s>1.
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In five dimensions from (2.150)

3+sa+351, s2>1,

A><24+ 15, s9=0,58 >2, (5.69)
2, S9 = 0, S1 = 1.
Positivity restrictions equivalent to (5.68), (5.69) were obtained in [16] and for general d in

[17] and [18].

6 Conformal and SO(d) Representations

We discuss here some aspects of the representations of the conformal and rotation groups
in various dimensions which are relevant in the understanding of CFTs. The Verma module
defined in (5.18) provides a representation space for the conformal group which has positive
energy in the sense that the scale dimension eigenvalues are bounded below by a mini-
mum A. Since the conformal group is non compact unitary representations are necessarily
infinite dimensional but the Verma module may give rise for particular A to a reducible
representation.

6.1 Singular Vectors

The Verma module gives a reducible representation when there are singular vectors solving
(5.54).”7 The determination of singular vectors in general requires finding all vectors in the
Verma module, at an arbitrary level, annihilated by K, subject to conditions on A and
the spin of the conformal primary state. Here we determine singular vectors in the Verma
module Va4, formed from a conformal primary which is a symmetric traceless tensor of
rank ¢ and therefore satisfies

D’O(Tl...o'[> =A |Oa1...0'g> ) KM‘OUL..O'Z> = 07
Mu|Osy o) = S (= v, [Oor.piory) + 80 [ Oy ory)) (6.1)

so that —%MWMW\(’)(,L_,W> =Cpy |Og,...0,) With Ciy = ¢(¢ 4+ d — 2). For these states the
Casimir eigenvalue is then C'(A,4) = A(A —d) 4+ (£ + d — 2). For arbitrary d the Verma
module in this case can be expressed as a sum over the level N so that VA, ~ ®nVa N
where

Vauen =span{Py, ... Py |0y .o} (6.2)

For simplicity we determine here singular vectors which are symmetric traceless tensors

"Singular vectors are crucial in the representation theory for Lie algebras. For the simple case of sl(2),
with [J4, J_] = 2Js, [J3, J+] = £J4, the highest weight vectors satisfy Jy[j, ) = 0 and then J_211|5.5) is a
singular vector if 25 = 0,1,2,... since then J+J,2j+1\j.j> = 0. Finite dimensional unitary representations,
with J_ = J47, Js = J3, as usual are obtained by setting J_2771|5, j) = 0.
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of rank k and are then expressible as

0 r(0) = (P )* " (P*)"tg, . to, Py - Py | Oy ) »
nk,r=0,1,..., r<k/(, (6.3)

where t,, is a d-dimensional null vector, > = 0. It is easy to check D|OW) . .(t)) =
Ak,n|o(£)k,n+r,r (t)> for Ak,n =A+Ll+k+2n.

From the commutation relations (5.7)
(K., (P-t)*] =2k (P - t)* (t, My + t, (D + K — 1)) ,
(K., (P?)"] = 4n (P Y (P,Myu, + P, (D +n — 1d)). (6.4)
and
K Py, ... Pyy|Ogy0,) =2 —7)A—d=r+1)Ps ., ... Py, |Ouoy.op 1), (6.5)
we may obtain

K, 0G0 (1) = 4n(A 441 —1 — 3d) PM|O(£)k:n—1vT(t)>
2k =) (A4 k4 L+ 20— — 1) 1,00 1, (1)
+ 4nr t#|(’)(€)k71,n71,r—1(t)>
+2(0 =) (A —d—r+1)[0Y, )0 (1))
— 4nr |O(£)H,k,n—1,7"—l(t)> , (6.6)

for

0O, (1) = (P t)F " (PY)" o, .. to, Poyyy oo Poy  [Ovoyoy ) s
n>0,0>1,0<r</-1,k. (6.7)

Using (6.6) there are singular vectors in Va ¢ when

A:%d—m, k=0, m={0+n—r=1,2,..., (6.8a)
A=1—/0—m, n=0,r=0,m=k—(=1,2,..., (6.8b)
A=d+k—-1, n=0,r=%k, k=0,1,...,0—1. (6.8¢)

The case n = 0, r = k = ¢ of course corresponds to the original conformal primary. The
two solutions given by (6.8b), (6.8c) are evident from (6.6). To obtain (6.8a) it is sufficient
to assume the singular vectors are of the form

’Ogﬁ) (t)> = an,[)grgf €r |O(Z)ﬁ,n+r,r(t)> , As=m— %da (6'9)
where €, are required to satisfy

C=r)(A4+204+2n+r—1)e+2n+r+1)(r+1) ey =0,
l—r)(A—d—r+1)e —2(n+r+1)(r+1)ey1 =0. (6.10)
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Consistency requires A = %d — { — n, agreeing with (6.8a) for n — n — r and ensuring
also that the coefficient of P,|OW) ,,_1.(t)) vanishes in (6.6). The solution for the singular
vector in (6.9) is then given, up to an arbitrary factor, by

(- (3d+L+n—1),

(=) (n+7)! (6.11)

€ =

As a special case for £ =0 (0%)"|O) is a singular vector for A = 1d —n. For (6.8b), (6.8c)
the singular vectors are just

OB )) = (P-t)"ty, .. .ty |Ogy0y), k=L4m, Ag=1-1,
OF(8)) =ty ..ty Prrry o Poy |Ooy0y)y, As=d+0—1, (6.12)

k¥ Okt1

and we may directly verify C(Ag, k) = C(A,¢) in each case. For (6.8a), when from (6.9)
Ag=d— A, A(d— A) is invariant. The results for singular vectors in (6.8) were obtained
in [19].

At level one the conditions in (6.8b), (6.8c) match the results obtained directly in (2.79),
while (6.8a) for £ =0, n = 1 corresponds to (5.62).

6.2 SO(d) Tensorial Representations and Null Vectors

Tensorial representations of SO(d) can be defined for arbitrary d. Irreducible representations are
defined in terms of representations of the permutation group and are summarised in terms of Young
tableaux but it is also necessary to impose tracelessness under contraction of tensorial indices. For
symmetrisation and removal of the traces for a set of tensorial indices it is very convenient to contract
them with d-dimensional null vectors.

For the simplest case of totally symmetric rank k tensors it is sufficient to use a single null
vector t,, as was done in (6.3) to ensure that |0, ,, ..(t)) transformed under the action of M, as
an irreducible representation of so(d). The action of the Lie algebra so(d) on arbitrary f(¢) is given
by the differential operator

L,, =—t,0,+1,0,. (6.13)
The action of L, preserves the constraint t* = 0 but more generally to define a derivative acting on
f(t) restricted to t* = 0 it is necessary to extend the usual derivative d,, — V,, [20]. For applications
here V,, is defined by
1
V,ft)=9,ft)—t,—— 0-90f(1), 6.14
£ =0 F(0) ~ by 5 005 (1) (6.14)

assuming f(At) = A" f(t) and where 0, is the conventional derivative, d,t, = J,,, without regard
to the constraint t? = 0. Taking n = 2, (6.14) gives Vi t2 = 0. With the prescription (6.14) the
standard Leibnitz rule for differentiation of a product is then modified to

Yl 09(0)) = Vil (@) 9(0) + 1) Vag(0) — b 5 Tud (O Vogl0), 0= g+, (6.15)
and furthermore
(V.. V] =0, V-V=0. (6.16)

Directly from (6.14) and (6.15)

2n+d)(n+d—2)

tuvuf(t) =nf(t), Vi (t#f(t)) = n4+d—2

F(t). (6.17)
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Applying these relations for [t,, V,]t,V, f(t) we obtain

A=Ay G V(1) = O £(1)., (6.18)

- %LuuLuuf(t) = tuVuf(t) + m+d—2

for the Casimir eigenvalue
C(n) =n(n+d-2), (6.19)

just as in (2.78). The vector space V() formed from symmetric rank n tensors after subtracting
all traces corresponds exactly to homogeneous functions f(¢) of null vectors ¢ with degree n so that
f(t) € V). The formal dimension (this takes integer values for integer d) is then

dim Viny = Nan = 21 (d)n = 5kay (D2 = 5 Cn+d = 2) (d = 1)y 1, (6.20)

with the Pochhammer symbol (a),, defined by

T(a+n)

(a), = T (a)p=ala+1)...(a+n—-1), n>1. (6.21)

From (6.20) N3, = 2n+ 1, Ny, = (n + 1)%

With the definition (6.3) |0, .(t)) is a scalar under rotations generated by M, and L,
(M, + L) OWy . (1)) = 0, so that

%M/WM/LAO(Z)k,n,T(t» = %L/WL/LAO(DIC,H,T@» = *C(k) |O(Z)k,n,r(t)> . (6-22)

Additional irreducible representations of so(d) for general d can be constructed with extra null
vectors. For two such vectors t, s then

L,u.l/ = Lt”u,y + stl“’ . (623)
Acting on f(t,s), f(At, us) = A"u™ f(t, s) then

T LuwLy f(t,s)=— (n(n+d—2)+m(m+d—4))f(t,s)

2n+d—4
Imposing the conditions
Vi Vsf(t,s)=t-Vsf(t,s) =0, (6.25)

ensures f(t,s) € V() forming the representation space for a mixed symmetry irreducible repre-
sentation corresponding to the Young tableaux (n,m,0,...) for m < n, =-- and then
- % L,LLVL,UJ/ f(ta 5) = C(n,m) f(ta 5) ) C(n,m) - n(n +d— 2) + m(m +d— 4) ’ (6'26)

with C, 1y identical to (2.78). For f(t,s) € Vin) ® Vi then t -V f(t,5) € Viyp1) @ Vip—1) and
Vi-Vsf(t,s) € V1) ® Vizn—1). However the conditions in (6.25) are not completely independent
as a consequence of

1
Vt . VS t- VS f(t, S) = m t- VS Vt : st(t, S) € ‘/(n) & ‘/(m_Q) . (627)

This ensures the dimension counting is given by
dim Vi m) = Nan Nam — Nant1 Nam—1 — Nan—1 Nam—1 + Nan Nagm—2
= G (M H1=m)(n+m+d—3)2n+d—-2)2m+d - 4)
X (d—1)p—o(d—3)m-1. (6.28)
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Of course V(,, gy = V() and dim V{;, o) = Ngn, so long as d # 3,4. For d = 4 (6.28) gives dim V(, ) =
2(n+m+1)(n—m+1) and for d = 5,6 (6.28) agrees with (2.145), (2.131) for s; = 2m, ss =n—m
and s; = s3 = m, So = n—m respectively. In three dimensions mixed symmetry representations are
reduced by the identifications

d=3, ‘/(n,m) ~0, m2>2, ‘/(n,l) =~ ‘/(n) ) (629)
which are easily checked to be consistent with the dimension formula (6.28).

Tensor products of symmetric traceless tensors can be reduced to a sum over mixed symmetry
irreducible representations Vi, 1),

min(ni,ne2) min(ny,ne)—m

‘/("1) ® ‘/("2) = @ @ Vv(n1+n2—m—27",m) . (630)
m=0 r=0

With (6.28) we may verify Ny, Ny, = 3 2nmm2) Zfl:i%(nl’m)*m dim Vi, 41y —m—2rm). Ford =3,

m=0

(6.30) using (6.29) reduces to Vi) ® Vin,) = @M V).

r=|ni—n2|

By introducing more null vectors further mixed symmetry representations can be discussed.
For three such vectors and extending the constraints (6.25) irreducible representations of SO(d)
corresponding to Young tableaux with three rows can be obtained. Labelling these by (n,m,1), with
I < m < n, this gives for the Casimir eigenvalues

Conmpy =n(n+d—=2)+m(m+d—4)+1(l+d—-6), (6.31)
and for the dimension of the representation

xnm+m+d-3)n+l+d—4)(m+1+d-5)
X (2n+d—2)(2m+d—4) 2l +d—6) (d— 1)p_3(d — 3)pm_o(d —5)1_1. (6.32)

For | = 0 this reduces to (6.28). For d = 4,5 the decomposition of tensor products as a direct sum
of irreducible spaces can be reduced with the identities

0, m > 2
Vi, m=1
d=5, Viumn=0,1>2, Vim1) = Vim) - (6.33D)

d= 4, Wnﬂn,l) ~0, > 3, Wn,m,l) = { ) ‘/(n,m,Q) = 7Vr(n,m) ,m=>2, (6333’)

For d = 6 the tensorial representation (n,m,!) is related to SO(6) representations with Dynkin
or highest weight labels [s1, s2,s3] by (n,m,0) — [n —m,m,m] and for I > 0 by (n,m,l) —
n—m,m+1Lm—=1+[n—m,m—1m+I.

The representation spaces V(,, ,, 1) arise in tensor products involving V{; ,,) and V(; but now
there is a non trivial multiplicity,

L3¢
Vv(n,m) & ‘/(f) =~ @ @ (]- + t) Vv(n—i—r,m+s,€—2t—|r\—|s|) . (634)

t=0 r,s, |r|+]|s|<l—2t

The representations V{, ;) appearing in the tensor product satisfy n’ >m’ > 1 if n —m,m > (.
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6.3 Representation Space

The Verma module defines a representation space for the conformal algebra. Instead of (6.7) we
define

109, kmr (1)
= IO(Z)a,k,n,T(t» - P<7|O(£)kv”»7'+1(t)>

1
t oo g((k-r=1) tolOUy 11 re1 () — (k=27 — D 1|01 (1)) . (6.35)

This satisfies V|0, k() = to|O@, 1 r(t)) = 0 as required by (6.25) for M = 1 and so
belongs to the [k, 1,0, ...] irreducible representation.

With the definition (6.35)

1 .
PO nirr () = 777 (VulO ki tatrnr () = 110, o (1))
+a® 0Oy (D) + ol £, ]0O) 1 1 (1)) (6.36)
for r < k, £ where
(k) _ (k—r)d+k+r—-3) (k) _ d+2r—4
T vk —d+k-3) T Atk —2)d+kh-3) (6:37)
Similarly
Ku|o(e)k,n+r,r (t»
Lo © (k) 150
= k+1 (7r VM|O k+l,n+r71,r(t>> + (5,,", |O u,k,n+r71,r71(t>>
+ 7+ (vu|o(£)k+1,n+7“,r+1(t)> + ('If - 7") ‘O(e)mk,n—&-r,r(t»))
+ 67(“{3‘”) tﬂ|0(£)k—1»n+r+17r+1(t)> + Bﬁk,n) tu|0(e)k—l,n+r,r(t)>
+ ﬂf“ff—,n) t/t|0(£)k—1,n+r—1,r—1(t)> s (638)
for r < k, ¢ and
W =An ) At Lbn—r—3d), g =20-r)(A-d-r+1),
57Ef€;") = —dn+r)r(A+Ll+k+n—r+1-1d),
glm _ g U=r)k—7)k—rT—-1)(A-d—-7r+1)
mt (d+ 2k —2)(d+k — 3) ’
(kom) (d+2r —4)(A+L+2k+n—7—2+ 5d)
=4
brtl = Aty d+2k—2)(d+k—3) :
4(k —r)
(k) — —7r)(: —r—2)(A—d—r+1
b @roh— @iy T nGd+k—r=2A—d-r+ )1
+n+r)r(A+Ll+n+k—r+1-3d)
4k-r)
The scalar product of symmetric traceless tensor descendants
(OO0 () | OO () = (F - 8)F Gt N (6.40)
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defines a symmetric (¢ + 1) x (4 1), or (k+1) x (k+ 1), if £ < ¢ and n > 0, normalisation matrix
N = [Nr(,k ")}, if n <0 then —n < r,r’ < k,£. The basic normalisation is chosen so that

)
s

(00,0(t)|OWh0 (D) = (- 1), Ny~ =1, (6.41)
or equivalently, using V-V (£- )" = r(d + r — 3) Zﬁ::i (-1,
1 _ _
<OM1---M2 |OH1~--M> = W (V ' V)Z (t ' t)e = Nde, (642)
with nge given by (6.20). Directly from (6.5)
(0950010 00) =200 (A —d =04 2)0 (O 10| O ) s (6.43)
giving
NSO = 280 (A —d— 0+ 2); nge . (6.44)

By considering (O 1y () K |OWg 1 s (1)) and (OWgiy v s—1.6(8)| K| OOy sy (t)) and
using (6.38) and the conjugate of (6.36) we may obtain the matrix recurrence relations

BM(/C—FI,n) _ M(k),n) E(k,n) , A(k) M(k,n) _ M(k-‘rl,n—l) Q(n) , (645)
for
Ag’i) = agk+1) 687‘ + ag’fjl) 63—1 o Cg?) = ’YTH) 651‘ + FYT-&- 63 r+1>
B = I 54 B G B G Prs = 6
0,—n<r<k/, 0,—n<s<k+1,1¢. (6.46)

The relations (6.45) determine A (E:2) for all k,n although there is no simple general expression.
Simpler results are obtained by considering determinants. For k > ¢, n > 0 all matrices in (6.45) are
(+1) x (£+1) giving for this case

detM(k+1’n) _ g+l (k — 0+ 1)g+1 (%d +k+ n)gﬂ (d +k—2)p41 (A + k+ ’n)ul
det A/ Fo) (2d+ k)1 (d+ Kk —2)t+1 ’
det N L) 1 (k—0+1) 41 (d+k—2)p4q

det N TD — 28D (n+ 1)y (A+n+1— 1d) 41 (3d+ ) (d+ k —2)01

(6.47)

For k < {£,n > 0 taking the determinant of P AF) prBn) — Ap(en=1) g(k,n=1) o(n) gives

det /5 _ gA(k+1)
detj\f/‘(k,’nfl) -

When 0 < —n<k</,

(n)k+1 (%d +l+n— 1)k+1 (A +n— %d)k+1 (A +l+n— 1)k+1 . (648)

det N/Fo) = E)pgng1 (A —d—k+1gyn
e %/ E— 2k+n+1(%d+k)k+n+1(d+k_2)k+n+l ( ktnt1 ( . + Dkgntt , (6.49)
det N1 (1 =n)kyns1(5d—n—Dggny1
and if 0 < —n </ <k,
detM(k'H’") _ ot+ntl (k=04 1)p4nt1 (%d + k) ornt1 (d+Hk—2)prnt1 (A+E)prni (6.50)

W (%d + k)Antl (d + k — 2)6n+l
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The results for det A/*™) split into four similar cases according to whether k is larger or less than
¢ and n is positive or negative. For k < ¢, n > 0 we may combine (6.45) to obtain for k =0,1,2,...,
assuming (6.44),

24n+2k+l k+1
det ) = (1)
(3d = 1gt1
k
1
T e P45 b= 20 (3007 G € Do
X(A=1), (A=d—042)p—p (A4 Opir (A+1— 3d)ppr . (6.51)
Starting from k = ¢ then for any k& > ¢, n > 0 (6.47) implies
4ntk+20 \ 1
s - (2
(3d—1),
¢
1
X 1:[0 W(ﬁ P n+r)(k—C+r)(d+k—2), (3d—1),)% (3d+ k)pnir
X (A - 1)7' (A —d—Ll+ 2)@—7‘ (A + e)n-‘rk—e-&-r (A +1- %d)n-i-r . (652)
For n < 0 and k < ¢ using (6.49)
det N ) = (

93n+2k+0 )k+n+1

(3d =g
k+n
< I g(tn=ntrt(k =)l (k+n—r)(d+k =2k (Ad—1),—n(Rd-1),

r=0
$ (d+0—1)pp1 (A—1)p (A —d—L+2)p1nr (A+0), (A+1—3d),,
(6.53)

and for k >/,

det N ) = <

93n+k+2¢ >Z+n+1

(5d—1),
l+n
X 1:[0 gUn=nlrte=n!(k+n—n!(d+k-2), (2d—-1),_, (3d-1),

X (3d4+0-1), (A=1), (A=d—C+2)pn—r (A+Op—rir (A+1—1d),.
(6.54)

6.4 Singular Vectors for Three Dimensional CFTs

There is a general theory [21] for singular vectors in the representations of non compact
groups which extends that for compact groups initiated by Verma. For low dimensional
CF'Ts such results can also be obtained by brute force.

In three dimensions with the spinorial basis in (5.27) and writing M,” in terms of
angular momentum operators, just as in (2.109),

[Mo"] = (jf _st) : (6.55)
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we assume irreducible representations of the conformal algebra (5.29) are defined in terms
of lowest weight vectors satisfying

DIA,s) = AlA,s),  J3|A,s) = —s|A,s), J_|As)=0, K?|A,s)=0, (6.56)

which as [J K??] = 2 K12 [J K'?] = K!! is equivalent to (5.17) in this case. The associated
Verma module is defined by

VA75 = Span {PHU Plgu P22t J+T|A, S> Lv,u, t, r = 0, 1, 2, ce } . (657)

Finite dimensional spin representations dictate s = 0, IR IRERE

The action of J_, K?2, which correspond to short, long simple roots for sp(4), on this
basis in (6.57) is determined by

[J_,Pi’] =20 P 'Pia,  [J_,Pi2"] =uPp P!, [J_,Py'] =0,
[J_,J{ = —rJy M (205 +7 1),

(K%, Pi"] =0 (K22, Pio"] = 3u P 'y + u(u— 1) Py P2,
(T4, Poo'] = 2t PiaPps' ™!, [K??, Pyl =t P (D —Js+t—1),

[K*%,J."] =0 (6.58)

To obtain singular vectors we consider an eigenvector of D, J3 with eigenvalues A’, —s" of
the form

|A,75,>:Zr,t20 ertP11UP12uP22tJ+T‘A’3>7 u=N-2t+r>0,v=8+t—r>0,
N=A+s-A-s5cZ,S=s—scZ, N+S>0, N+25>0. (6.59)

Imposing the conditions that this is annihilated by J_, K22, so that (6.56) defines a descen-
dant satisfying the conditions in (6.56) for A — A’ s — ', gives

2 4+t—r)err + (N =2t +74+2) 61+ (r+1)(25s—7) €414 =0,
IN=2t+7)(N—2t+r—1) e+ 2(N =2t +7r—1) 614

+(t+1) (A" +8 —t—2) 61 =0. (6.60)
There are two immediate solutions
e&rt =000, N=-25 A+s+5=1, (6.61)
so that (6.59) gives the singular vectors
|[1—s,s+n) = Py |[1—s—n,s), s>0, n=1,2,..., (6.62)
and
€t = 0r2s+100, S=-N=2s+1, |A —s—1)=J>As). (6.63)

This singular descendant is set to zero for finite dimensional unitary representations of the
spin group.
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Otherwise solving (6.60) requires integrability conditions to be imposed since €,; for
r,t > 0 can be obtained by more than one route starting from €.9 and €p;. For egg # 0 by
considering €17 we obtain the constraints

AN=3+IN o N=o0, (6.64)
and then from the results for e5; we obtain
ANN=34+IN = 9=00aN=-1-25, N=0= A =2+s. (6.65)
There are thus potential solutions, for S = 0,

27"7215 N! 1

= ' >1 N=12... 6.66
TG V2 QAN ) o MR (660
and for N =0,
or—2t S! 1
— 2 <1 <2 >1 5=1,2 2 6.67
TG St (C2e), 0 SIS s2a S=hBen2s (661
and finally

2r=2t 2N (N + 9)I (N +29)!

= >0, N=-1-25, S+ N=1,2,... . (6.68
T (N2t (S rt-nl T s 5+ 2, - (6.68)
For S > s, corresponding to s’ = —%,—%,...,—s or s = —1,-2,...,—s, in (6.66) the

singular vectors can be discarded by restricting to finite dimensional spin representations
so that (6.66) and (6.67) then give respectively singular vectors

3 1
|§+§N,S>EV3_%N7S, s

v

N=1.2,...,,

1
2
1, S=1,2,...,s]. (6.69)

|2+878_S>€V2+S—S,87 s>

The results given by (6.62), (6.69) correspond to (2.112) for n, N,S = 1 and to (6.8b),
(6.8a), (6.8¢c) for s = ¢ and n = m+ 1, N = 2m, S = m + 1 respectively. The solution
(6.68) corresponds to a singular vector

1—s,—1—s—n) = J 2P 1—s—ns), n=1,2,..., (6.70)

the descendant of (6.9) analogous to (6.63), which is set to zero for finite dimensional spin
representations.

7 Three Point Functions

A crucial consequence of conformal symmetry is that the three point functions of conformal
primary fields are determined uniquely, up to an overall coefficient, if two of the fields
are spinless and in general for all fields with non zero spin there are a finite number of
possibilities. This is a result of the fact that conformal transformations map any three points
on R? to any other three points and there are therefore no conformal invariants. If the three
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points are on a line then SO(d+1,1) — SO(2,1) x SO(d — 1), where SO(2,1) corresponds
to conformal transformations along the line and SO(d — 1) rotations in the transverse space.
For three points in d dimensions then 3d —dim SO(d+1,1)+dim(SO(2,1) x SO(d—1)) = 0.

For three conformal primary scalars ¢; with scale dimensions A; then it is easy to see

that the three point function is given by

C123
2)%(A2+A3*A1) ($312)%(A3+A1*A2) ’

(d1(x1) p2(22) P3(23)) = (2192) 3B1+Aa—A3) ¢

Tij = Xy — Tj . (7.1)

x23

Assuming the normalisation of ¢; is fixed by the two-point function then the coefficients
C123 are, along with the scale dimensions 4A;, fundamental properties of the CFT. Of course
symmetries may entail Cj23 = 0. These results may be quite easily extended to the case
when one of the fields have spin. In d-dimensions for a symmetric traceless tensor conformal
primary ¢, ..., we may define

O (@,t) = Gy (@)t 2 =0, O, M) =N (a,1). (7.2)

Applying the results (2.34) for the conformal vectors defined in (2.33) it is also straightfor-
ward to see that, if ¥ is a conformal primary with scale dimension A,

(p1(x1) da(w2) 31 (23, 1))
Cia,(a,0)

_ Y
= (mng)%(AH—AQ—A—M) ($232)%(A+A2—A1—f) (x312)%(A+A1_A2_€) (Xs-1)", (7.3)

where
1 1

—5 L31py — 5 T32u -
96132 # 37232 .

For fields extended to the embedding space then there are equivalent expressions for
three point functions [22]. For scalars, ¢;(z) — ®;(X) satisfying (3.18) for A = A;, then
(7.1) is equivalent to

X3, = (7.4)

(@1(X1) Pa(X2) B3(X3))

_ Chas (7.5)
(X7 - Xp)2(B1F82=05) (X, . x;)3(B2+Bs—A1) (X, . X )2 (BstAi—A2) '

with X; - X; defined according to (3.15). It is easy to verify that (7.5) satisfies the crucial
homegeneity properties (7.5). For symmetric traceless tensors then (3.20), (3.21) may be
extended to tensors on the null cone

Ppurpe (T) = Pay.a, (X)) (7.6)
subject to
XD, 4,(X) =0, ®aya,(X) ~ Pay 4, (X) 4+ Xa, XA A (X)), i=1,...,0, (1.7)
with A; denoting that this index is omitted. Corresponding to (7.2)
o (x,t) - (X, T) = ®a, a,(X)TH ... TA, T2=X.T=0, (7.8)
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where ) satisfies
(X, T) =X, T+rX), ONX,pT)=1x2p"00(X,T). (7.9)

which is necessary for & (X,T) to be unambiguous since T4 is arbitrary up to T4 —
TA + X XA. For X4 — X4(z) as in (3.6) we may take

T4 = TA(x,t) = (t*,0, —x - 1), (7.10)
which obeys the conditions in (7.8). The result (7.3) is then equivalent to
(®1(X1) Do (X5) @1 (X35, T5))
Ciz,a.0

- Z19(X3,T3)"
(Xl 'X2)%(A1+A2—A+£) (XZ . XS)%(A—&-AQ—Al—Z) (Xg 'Xl)%(A—i_Al_A?_Z) 12( 3 3) )

(7.11)
where, with the definition (3.15),

X1-T3 Xo - T3

(7.12)

is determined by requiring Zi9 (Xg, Tg) = Zq9 (X3, T35+ A Xg)

For three point correlation functions for conformal primaries with spin results are more
involved. Obtaining an explicit form is just a linear algebraic problem although the number
of solutions may depend on the dimension. For primary fields transforming as in (2.48) the
basic conformal Ward identity has the form

Dic123 (V@) + Aj oy(wi)) (D1 (21) P2.15 (22) 3,15 (23))
= 5@ (1) (s10) 17 (01,0 (1) b2, 15 (22) b3,1, (23))
+ 5 Of (22) (s20) 1,7 (S1,1: (1) P20 (22) D315 (3) )
+ 5 " (23) (s3,00) 15" (D11, (1) P21, (w2) B3, (3) ) - (7.13)
Clearly in the spinless case this is satisfied by (7.1). Solutions for particular cases in general
dimensions can be constructed using the inversion tensor and the conformal vectors defined
in (2.33), (2.35) and more generally using the embedding formalism [22, 23]. The identity

(7.13) may be simplified [13, 24] by using the intertwiners Z defined by the two point
function in (2.83) to write the three point function in the form

(@1,1, (x1) b2,1, (2) d3,15(23)) = 11(1;1113(29;151) 22122)(;223) Chlp (X)), (7.14)

with A3 defined in (7.4). To verify the result (7.14) we use, as a consequence of (2.84),

Tin1, (z13) L Ti g1, (z13)
(Zi:l,Svu(xi)ai# + Ay UU($1)> W - %Wvu (331)(31#1/)11J W

Tinn(r13)  Zing(®13) | . . _ 7
=~ Arou(ea) ($11312()A1) B (1‘132()A1> %wvu (x?))(Sl/ﬂ/)wa (7.15)
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and also the corresponding result for Ty, 7, (23)/(7232)32, to rewrite the conformal identity
(7.13) just in terms of C11f2y,

Sic1 20" (@0)0in C1 o, (Xs)
= (A1 + Ag — Ag) 0y (23) CT 21 (X5) + L™ (23) (53,0 ) 1, CTH 25 (X3)
+ L0 (23)(51,) 7 O Py (X)) + 5 0™ (23) (S2,) 27 CTV 1y (X3) . (7.16)
This is satisfied, by extending the transformation rules (2.37) to Xs, if
Ol (N y) = AR Bt 8 Ol () (7.17)

and

Ly CT 21 (y) = (s3,0) 07 CTV 25 (y) + (51,0) 17 CT 1 (y) + (52) 21 CT p(y) . (7.18)

This condition just implies that CT'22,(y) is rotationally covariant under SO(d) trans-
formations. Up to the freedom allowed by (7.17), (7.18) the solution is unique since
there are no conformal invariants. For the spinless case (7.1) is reproduced if we take

C(Xs) = Chaz (Xy2)~2(Br+D2=0g),

Under finite transformations (7.18) integrates to

Cllp (y) = Ril'y, Ro®y, Rar» €2, (y R) (7.19)

with R, Ra, R3 corresponding to the rotation R € SO(d) in the appropriate representa-
tions. Choosing

Ri'is, = T8 (w31) Tikc g, (w12) = T (w32) Tigc 7 (Xa), i =1,2,

Rar,” = Taric(wsa) TR () Xoy = x2132 T3, — 951122 o1y, (7.20)
which depend on (2.43), and using, from (2.40),
Xy, 1P (x32) 1, (X2) = Zz’z Xy s (7.21)
the result (7.14) is equivalent to
(@11, (1) d2,1, (22) P15 (23)) = Ilgll;f)fl)ﬁg’z?’)ffz) ClLE (X)), (7.22)

for B o
ChLl(y) = (¥ Tpn, (y) TP (y) 1 Py (y) - (7.23)

An illustration of these results is given by the three point function involving two scalars
and the energy momentum tensor. The general construction easily gives

1

T, v = 1 1 C v X, )
<¢(Z’1)¢(.’L‘2) 22 ($3)> ([E122)A¢7§d (.’E132 $232)§d I ( 3)
X3, X3, 1
C/W(X?)) = IMV,U,D(«TBQ) C;W(-)Q) = C¢>¢>T< 3‘;323 - g 77,uu> ) (7.24)

o4



with the inversion tensor as in (4.46). The coeflicient Cyyr in (7.24) is later determined by
Ward identities.

Following the definitions in (5.16) and (5.21), with a Euclidean metric, the three point
function (7.14) is equivalent to

(01| 62.0()[63.) = lim (@)L (2) (d1,1() d2,1(y) 3.5 (0))

= (yzl)Az Tp.15(y) CM kc(y/y?) | (7.25)

As an application we may consider the three point function for three symmetric traceless
conformal primaries encoded in terms of three null vectors t;, t# = 0, as in (7.2). In this
case the general expression (7.14) becomes

1
<¢g€1)($1,t1) QS%E?)(.’EQ, t2) ¢(£3)($3,t3)> = (x132)A1 ($232)A2 C(t’latQa t3,Z3) ’

t,iu = til, Iyu(l'iii) y 7 = 1, 2, t/z'Q =0, (7.26)

for

Ct1,ta, t,y) = (y2)2(Brthe—Be—bi=ta=le) (1, )l (4 - )2 (15 )8

tl -t2 y2 "3 tl -t3 y2 n2 t2 -t3 y2 ™
xS cumang .
ti-ytla-y ti-ytz-y to-yt3-y

ni,n9,n3>0
n1+ng<f3,ny+ng<lyngt+ng<ly

(7.27)

An equivalent form was given in [22]. Manifestly each choice of ni,ng2,n3 compatible with
l1, 0o, 3 is linearly independent.

The number of independent terms in (7.27) is given by

Ni,tyts = Z 1. (7.28)

ni,m9,n3>0
n1+ng<ly,n1+ng<ly,natng<ly

Equivalently we may determine the number of common [n,m] representations appearing
in the tensor products (¢1) ® (¢2) and (¢3) ® (¢) for £ = 0,1,2,... using (6.30), where (¢)
corresponds to the symmetric traceless tensor representations which can be formed from y
for any ¢. The (n,m) allowed by (6.30) are then given by

|61 —lo] +m <n <l 4+l —m, (—1)41—%2_7”_":17

03 —n|+m <L <l3+n—m, (—D)ftm=n — 1 0< 4y, 0,03,0<m. (7.29)

The sum over /¢ for fixed (n,m) gives

S s (L (=D)B ™) —min (n 41— m, G+ 1 —m). (7.30)

Choosing
U <y <3, p=1~01+ Ly — U3, (7.31)
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the sum over possible n becomes, ((p) =1, p >0, 0, p < 0),
Zflz_om(él +0lo+1—2m—2r)—0(p— m)ZiE)pim)J (p—m—2r)
=(ti+1-m)(la+1—m)—0(p—m)(z(p—m)(p+2—m)+g(1l—(-1)P™). (7.32)
Finally summing over m =0, ..., ¢; gives, subject to (7.31) so that p — ¢; <0,
Neyooty = (0 +1) (6 +2) (30— £ +3) = 0(p) (37 (0 +2) (20 +5) + 15 (1~ (=1)7)) , (7.33)
as was obtained in [22]. For d = 3 the sum over m is restricted to just m = 0,1 which gives
N a0, = 20000 + 01+ o +1—0(p) 5p(p+ 1) . (7.34)

As a consequence of the identification V{,,) ~ V{;, 1) in (6.29) there are additional independent
contributions to the three point function in three dimensions with counting

Nttty = 200, 1(1 4 (=1)207") min (n, £3)

n=~0o—{1 2
+ 3 (1 (DT min (04 1,65+ 1)
= 2010y + 1 + L2 — O(p) %p(p +1). (7.35)

These terms involve the e-tensor and are parity odd.
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