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Chapter 1

Introduction to Groups

1.1 Disclaimer

This is a course on applications of group theory to physics, with a strong bias toward condensed matter
physics, which, after all, is the very best kind of physics. Abstract group theory is a province of math-
ematics, and math books on the subject are filled with formal proofs, often rendered opaque due to the
efficient use of mathematical notation, replete with symbols such as ∩, ⋊, ∃,⊕, ⊳, ♭, c©, ♠, ♥, ✸, ♣, etc. In
this course I will keep the formal proofs to a minimum, invoking them only when they are particularly
simple or instructive. I will try to make up for it by including some good jokes. If you want to see the
formal proofs, check out some of the texts listed in Chapter 0.

1.2 Why Study Group Theory?

1.2.1 Discrete and continuous symmetries

Group theory – big subject! Our concern here lies in its applications to physics (see §1.1).

Why is group theory important? Because many physical systems possess symmetries, which can be
broadly classified as either continuous or discrete. Examples of continuous symmetries include space
translations and rotations in homogeneous and isotropic systems, Lorentz transformations, internal ro-
tations of quantum mechanical spin and other multicomponent quantum fields such as color in QCD,
etc. Examples of discrete symmetries include parity, charge conjugation, time reversal, permutation sym-
metry in many-body systems, and the discrete remnants of space translations and rotations applicable
to crystalline systems.

In each case, the symmetry operations are represented by individual group elements. Discrete sym-
metries entail discrete groups, which may contain a finite or infinite number of elements1. Continuous

1An example of a finite discrete group is the two-element group consisting of the identity I and space inversion (parity) P ,
otherwise known as Z2. An example of a discrete group containing an infinite number of elements is the integers Z under

5



6 CHAPTER 1. INTRODUCTION TO GROUPS

Figure 1.1: Western theories of beauty date to the pre-Socratic Greek philosophers (6th - 5th c. BCE),
such as the Pythagoreans, who posited a connection between aesthetic beauty and mathematical prop-
erties of symmetry and proportion. Left: Symmetry in the natural world (aloe vera plant). Center: The
beautiful Rose Window at the Durham Cathedral (originally 15th c.). Right: A non-symmetric image.

symmetries entail continuous (Lie) groups. Lie groups are themselves smooth manifolds endowed with a
group structure. Necessarily, they contain an infinite number (continuum) of elements, and they can be
either compact or noncompact2.

1.2.2 Symmetries in quantum mechanics

In quantum mechanics, symmetries manifest themselves as unitary operators U which commute with the
system Hamiltonian, H . (An important exception which we shall study later is the case of anti-unitary
symmetries, such as time-reversal.) Any operator Θ transforms under the symmetry as Θ′ = U †ΘU .
The simplest example is space inversion, also known as parity, and denoted by the symbol P. One then
has P†r P = −r and P†p P = −p. Clearly P2 = 1, so P† = P−1 = P, i.e. P is Hermitian as well as unitary.

For a single particle Hamiltonian of the form H = p2

2m + V (r) , we have [H, P] = 0 if V (r) = V (−r).
This means that H and P are simultaneously diagonalizable, which means that energy eigenstates may
be chosen to be parity eigenstates. Clearly the eigenvalues of P are ±1.

Now let |n 〉 denote any one-body quantum state, i.e. a vector in Hilbert space. The position space
wavefunction is ψn(r) = 〈 r |n 〉. Since P | r 〉 = | −r 〉, we have that the parity-flipped wavefunction is
given by3 ψ̃n(r) = 〈 r | P |n 〉 = ψn(−r) . If |n 〉 is a parity eigenstate, i.e. if P |n 〉 = ±|n 〉, then we have

ψ̃n(r) = ψn(−r) = ±ψn(r). Furthermore, if |n 〉 and |n′ 〉 are parity eigenstates with eigenvalues σ and
σ′, respectively, then for any even parity (parity-invariant) operator Θe = P†Θe P, we have

〈n |Θe |n′ 〉 = 〈n | P†Θe P |n′ 〉 = σσ′〈n |Θe |n′ 〉 , (1.1)

addition.
2In mathematical parlance, compact means ‘closed and bounded’. An example of a compact Lie group is SU(2), which describes
spin rotation in quantum mechanics. An example of a noncompact Lie group is the Lorentz group, O(3,1).

3Note 〈r | P |n 〉 = 〈−r |n 〉 .
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and therefore if σσ′ = −1, meaning that |n 〉 and |n′ 〉 are states of opposite parity, then 〈n |Θe |n′ 〉 = 0.
This is an example of a selection rule : operators which preserve a symmetry cannot mix states which
transform differently under that symmetry. Another consequence of this analysis is that any odd-parity
operator, for which P†Θo P = −Θo , will only have nonzero matrix elements between opposite parity
states. Thus, if [H, P] = 0, and the eigenstates are all chosen to have definite parity, any perturbation
V = λΘo will result in no energy shifts within first order perturbation theory.

1.3 Formal definition of a discrete group

1.3.1 Group properties

What is a group? A discrete group G consists of distinct elements ga and a group operation called multi-
plication, satisfying the following conditions:

(i) Closure : The product of two group elements is also a group element.

(ii) Associativity : In taking the product of three group elements, it doesn’t matter if you first multiply
the two left ones and then the right one, or first the two right ones and then the left one.

(iii) Identity : There exists a unique identity element, which is the same for both left and right multi-
plication.

(iv) Inverse : Each group element has its own unique inverse, which is both a left and a right inverse4.

Mathy McMathstein says it this way:

(i’) ∀ ga, gb ∈ G, ∃ gc ∈ G s.t. ga gb = gc .

(ii’) ga gb gc = (ga gb) gc = ga (gb gc) ∀ a, b, c.

(iii’) ∃! E ∈ G s.t. gaE = Ega = ga ∀ a.

(iv’) ∀ ga ∈ G, ∃ g−1
a ∈ G s.t. ga g

−1
a = g−1

a ga = E.

These properties hold for continuous groups as well, in which case the group elements g(λ) are labeled
by a continuous parameter. Some remarks:

• If ga gb = gb ga for all a, b, the group is said to be abelian. Otherwise, it is nonabelian.

• For discrete groups, |G| ≡ NG denotes the number of elements in G, which is the order of G. This
may be finite

(
|S3| = 6

)
, finite but ridiculously large

(
|M | ∼ 8 × 1053 for the Monster group

)
, or

infinite
(
Z under addition

)
.

4Tony Zee pithily summarizes this property as “there’s nothing you can do that can’t be undone”. Real life is not like this!
There is no inverse operation applicable to late homework, for example.
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1.3.2 The Cayley table

All the information about any discrete group is provided by its multiplication table (also called a Cayley
table). Our convention for group multiplication tables is given in Tab. 1.1 We shall write the group
elements as {g1, g2, . . . , gNG

}, where g1 ≡ E is always taken to be the identity, and where NG is the

number of elements in the group. Note the following salient features of the Cayley table:

• The rows and columns range over all the symmetry operations (i.e. group elements) g, so that the
entry for row ga and column gb is the result of the combined operation ga · gb ≡ ga gb.

• The identity occurs once in each row and in each column; furthermore ga gb = E means gb ga = E
as well. Thus, each element g has a unique inverse g−1, which is both a left and a right inverse.

• Indeed, each group element occurs precisely once in each row and in each column. If the same
element h were to appear more than once in the gth row, it would mean that there would exist two
distinct elements, ga and gb such that gga = ggb = h. But applying the inverse g−1 on the left says
ga = gb, which contradicts our assumption that these elements are distinct. Such a table is called a
Latin square, i.e. an n × n array of n different symbols, each of which appears exactly once in each
row and column.

If the Cayley table is symmetric, the multiplication operation is commutative. Alas, there is no simple
test to check, from a given Cayley table, whether the multiplication operation is associative, which is
necessary in order for G to be a group. In principle, one must test whether g · (h · k) = (g · h) · k for all
g, h, k ∈ G, which involves verifying |G|3 equalities5.

G g1 g2 g3 g4 · · ·
g1 g1 g2 g3 g4 · · ·
g2 g2 g22 g2 g3 g2 g4 · · ·
g3 g3 g3 g2 g23 g3 g4 · · ·
g4 g4 g4 g2 g4 g3 g24 · · ·
...

...
...

...
...

. . .

Table 1.1: Convention for group multiplication tables. The identity element is E ≡ g1.

1.3.3 Loops and groups

A finite loop6 is a set L consisting of |L| ≡ NL elements plus a binary operation (i.e. multiplication) such
that if ℓ, ℓ′ ∈ L, then each of the equations ℓ ·x = ℓ′ and y ·ℓ = ℓ′ has a unique solution in L. Furthermore,
the loop possesses a unique identity element E such that E · ℓ = ℓ · E = ℓ for all ℓ ∈ L. If we order

5A procedure known as Light’s associativity test can sometimes simplify this tedious task.
6See ”Non-Associative Loops for Holger Bech Nielsen”, https://arxiv.org/pdf/hep-th/0111292.pdf .

https://arxiv.org/pdf/hep-th/0111292.pdf
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the loop elements as
{
ℓ1, ℓ2, . . . , ℓNL

}
, with ℓ1 = E, then the multiplication table for L is a Latin square

whose first row and first column are identical. If the multiplication operation is associative, then the
loop is a group!

It turns out that all loops with |L| ≤ 4 are associative, i.e. they are groups. At order N = 5 there is one
discrete group, Z5 , corresponding to clock arithmetic modulo 5. There are also four non-associative loops.
At order |L| = 6 there are two groups: Z2 × Z3, which is abelian, and C3v

∼= D3, which is nonabelian
and which we shall discuss in detail in §1.3.4 below. There are also 107 non-associative loops. A non-
associative loop may nevertheless be abelian! A particularly interesting and beautiful non-associative
loop is that of the eight element octonions7. In Tabs. 1.2 and 1.3, we present the Cayley tables for two
non-associative loops, one (L5) of order 5 and one (L6) of order 6. In each case the identity element is
denoted as a. Note that within L5 we have (c · d) · e = b · e = c , but c · (d · e) = c · b = e . The Cayley table
for L6 is symmetric, hence the loop L6 is abelian, but (b · c) · d = f · d = c while b · (c · d) = b · b = a , so it
is non-associative.

L5 a b c d e

a a b c d e

b b a d e c

c c e a b d

d d c e a b

e e d b c a

Table 1.2: A non-associative loop of order 5.

L6 a b c d e f

a a b c d e f

b b a f e c d

c c f a b d e

d d e b a f c

e e c d f a b

f f d e c b a

Table 1.3: A non-associative loop of order 6.

1.3.4 The equilateral triangle : C3v and C3

Contemplating the symmetries of the lowly equilateral triangle is an instructive introductory exercise.
Consider the left panel of Fig. 1.2. The equilateral triangle has the following six symmetries:

(i) identity E (ii) rotation by 2π
3 , R (iii) rotation by −2π

3 , W

(iv) reflection σ (v) reflection σ′ (vi) reflection σ′′

Taken together, these symmetry operations constitute a discrete group known as C3v
8. Note that R and

W commute, since they are rotations about the same axis. Indeed, W = R−1 = R2. However, staring at
the figure for a little while, one can deduce that Rσ = σ′′ while σR = σ′ , so R and σ do not commute!
Thus, the group C3v is nonabelian.

To construct the Cayley table of C3v , we must evaluate the binary products of various group operations.
Clearly R2 = W since two 120◦ rotations combine to give a 240◦ rotation. Similarly, W 2 = R, since
rotating twice by 240◦ yields a 480◦ ∼= 120◦ rotation. More attention is required when working out the

7See http://math.ucr.edu/home/baez/octonions/ .
8In the group Cnv , the C stands for “cyclic”, the subscript n refers to the n-fold symmetry axis, and the subscript v signifies
the presence of n reflection planes, each containing that axis.

http://math.ucr.edu/home/baez/octonions/
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Figure 1.2: Left: The symmetry group C3v of the equilateral triangle contains six elements, which are
the identity E, counterclockwise and clockwise 120◦ rotations R and W , and three reflections σ, σ′, and
σ′′. Right: The black regions break the reflection symmetries, resulting in a lower symmetry group C3,
which contains only the two rotations and the identity.

products of the rotations {R,W} and the mirrors {σ, σ′, σ′′}. For example, consider the product Rσ.
First applying the σ operation, the labels of the vertices are permuted from {1, 2, 3}, starting at the top
and proceeding counterclockwise, to {1, 3, 2}. Rotating by 120◦ results in the labeling {2, 1, 3}, which is
also obtained by applying the σ′′ operation to the labels {1, 2, 3}. Reasoning thusly, one obtains the full
Cayley table for C3v , given in Tab. 1.4 below.

C3v E R W σ σ′ σ′′

E E R W σ σ′ σ′′

R R W E σ′′ σ σ′

W W E R σ′ σ′′ σ

σ σ σ′ σ′′ E R W

σ′ σ′ σ′′ σ W E R

σ′′ σ′′ σ σ′ R W E

Table 1.4: Multiplication table for the group C3v.

Group representations : first encounter

We can represent the various symmetry operations via a map D(2) : C3v → O(2) from C3v to the space of
2× 2 orthogonal matrices:

D(2)(E) =

(
1 0
0 1

)
D(2)(R) =

1

2

(
−1 −

√
3√

3 −1

)
D(2)(W ) =

1

2

(
−1

√
3

−
√
3 −1

)
(1.2)
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Figure 1.3: A function f : X → Y maps a set X (the domain) to a set Y (the codomain). The range of
a function f is the set f(X). (a) Are you f’ing kidding me?! This is not a function. (b) This function
is injective (one-to-one), i.e. f(x) 6= f(x′) whenever x 6= x′. (c) This function is surjective (onto), i.e.
f(X) = Y . (d) This function is bijective (one-to-one and onto).

and

D(2)(σ) =

(
−1 0
0 1

)
D(2)(σ′) =

1

2

(
1
√
3√

3 −1

)
D(2)(σ′′) =

1

2

(
1 −

√
3

−
√
3 −1

)
. (1.3)

Here the superscript (2) denotes the fact that our representation is in terms of two-dimensional matrices.
One can check that D(2)(g)D(2)(g′) = D(2)(gg′) for all g and g′. Restricted to this subset of O(2), the
mapping D(2) is bijective (i.e. one-to-one and onto), which means that D(2)(C3v) is a faithful representation
of our group C3v. See Fig. 1.3 for a reminder of the meanings of the terms injective, surjective, and
bijective.

Formally, a representation of a group G on a vector space V over a field F is a group homomorphism ρ
from G to GL(V), the general linear group on V , i.e.

ϕ : G→ GL(V) (1.4)

such that ϕ(ga gb) = ϕ(ga)ϕ(gb). The vector space V is then called a G-module. If the module V has
a nontrivial invariant proper subspace, the representation is said to be reducible. When V is of finite
dimension n ∈ Z+ , we may identify GL(V) with GL(n,F), which is the group of invertible n×nmatrices
on F. Typically the field F is the real or complex numbers under addition and multiplication. In the case
of D(2)(C3v), the vector space is V = R

2, the field is R, and n = 2.
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1.3.5 Symmetry breaking

Breaking C3v to C3

Consider now the right panel of Fig. 1.2. The figure is still fully symmetric under the operations
{E,R,W}, but no longer is symmetric under any of the reflections {σ, σ′, σ′′}. The remaining sym-
metry group is denoted C3, and consists only of the identity and the two rotations, since the reflection
symmetries are broken. This corresponds to restricting ourselves to the upper left 3×3 block of Tab. 1.4,
which satisfies all the desiderata for a multiplication table of a group with three elements. One says that
C3v has been broken down to its subgroup C3. Note that the cyclic group C3 is equivalent to modulo 3
arithmetic, i.e. C3

∼= Z3 .

Upon inspection of Tab. 1.4, it is apparent that C3v has other subgroups. For example, the elements
{E, σ} form a closed set under multiplication, with E2 = σ2 = E and Eσ = σE = σ. This corresponds
to the group Z2 (equivalent to C2). What is special about the C3 subgroup {E,R,W} is that it is a normal
(or invariant) subgroup. More on this in §1.4 below.

Spontaneous symmetry breaking

In quantum mechanics, as we shall see, the eigenstates of a Hamiltonian H0 which commutes with all
the generators of a symmetry group G may be classified according to the representations of that group.
Typically this entails the appearance of degeneracies in the eigenspectrum, with degenerate states trans-
forming into each other under the group operations. Adding a perturbation V to the Hamiltonian which
breaks G down to a subgroup H will accordingly split these degeneracies, and the new multiplets of
H = H0 + V are characterized by representations of the lower symmetry group H .

In quantum field theory, as a consequence of the infinite number of degrees of freedom, symmetries may
be spontaneously broken. This means that even if the Hamiltonian H (or action S) for the field theory is
invariant under a group G of symmetry transformations, the ground state may not be invariant under
the full symmetry group G. The presence or absence of spontaneous symmetry breaking (SSB), and its
detailed manifestations, will in general depend on the couplings, or the temperature in the case of quan-
tum statistical mechanics. SSB is usually associated with the presence of a local order parameter which
transforms nontrivially under some group operations, and whose whose quantum statistical average
vanishes in a fully symmetric phase, but takes nonzero values in symmetry-broken phase9. The parade
example is the Ising model,H = −∑i<j Jij σi σj , where each σi = ±1, the subscript i indexes a physical
location in space, such as a site Ri on a particular lattice. The model is explicitly Z2 symmetric under
σi → εσi for all i, where ε ∈ {+1,−1}, yet if the interaction matrix Jij = J(Ri − Rj) is short-ranged
and the space dimension d is greater than one, there is a critical temperature Tc below which SSB sets in,
and the system develops a spontaneous magnetization φ = 〈σi〉. You know how in quantum mechan-
ics, the eigenstates of a particle moving in one-dimensional double-well potential V (x) = V (−x) can
be classified by their parity eigenvalues, and the lowest two energy states are respectively symmetric
(P = +1) and antisymmetric (P = −1) , and are delocalized among both wells. For a quantum field

9While SSB is generally associated with the existence of a phase transition, not all phase transitions involve SSB. Exceptions
include topological phases, which have no local order parameter.
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theory, however, with (Euclidean) Lagrangian density LE = 1
2(∇φ)2 + V (φ), for d > 1 and T < Tc ,

the system actually picks the left or the right well, so that 〈φ(r)〉 6= 0. Another example is the sponta-
neously broken O(2) invariance of superfluids, where the boson annihilation operator ψ(r) develops a
spontaneous average

〈
ψ(r)

〉
=
√
n0 e

iθ, where n0 is the condensate density and θ the condensate phase.

Truth be told, the above description is a bit of a swindle. In the ferromagnetic (Jij > 0) Ising model, for
example, at T = 0, there are still two ground states, |⇑ 〉 ≡ |↑↑↑ · · · 〉 and |⇓ 〉 ≡ |↓↓↓ · · · 〉 . The (ergodic)
zero temperature density matrix is ρ0 = 1

2 |⇑ 〉〈 ⇑| + 1
2 |⇓ 〉〈 ⇓| , and therefore 〈σi〉 = Tr

(
ρ0 σi

)
= 0. The

order parameter apparently has vanished. WTF?! There are at least two compelling ways to resolve this
seeming conundrum:

(a) First, rather than defining the order parameter of the Ising model, for example, to be the ex-
pected value m = 〈σi〉 of the local spin10, consider instead the behavior of the correlation function
Cij = 〈σi σj〉 in the limit dij = |Ri − Rj | → ∞ . In a disordered phase, there is no correla-
tion between infinitely far separated spins, hence limdij→∞Cij = 0 . In the ordered phase, this is
no longer true, and we define the spontaneous magnetization m from the long distance correlator:
m2 ≡ limdij→∞〈σi σj〉 . In this formulation, SSB is associated with the emergence of long-ranged

order in the correlators of operators which transform nontrivially under the symmetry group.

(ii) Second, we could impose an external field which explicitly breaks the symmetry, such as a Zeeman
termH ′ = −h∑i σi in the Ising model. We now compute the magnetization (per site)m(T, h, V ) =
〈σi〉 as a function of temperature T , the external field h, and the volume V of our system. The order
parameter m(T ) in zero field is then defined as

m(T ) = lim
h→0

lim
V→∞

m(T, h, V ) . (1.5)

The order of limits here is crucially important. The thermodynamic limit V → ∞ is taken first,
which means that the energy difference between |⇑ 〉 and |⇓ 〉, being proportional to hV , diverges,
thus infinitely suppressing the |⇓ 〉 state if h > 0 (and the |⇑ 〉 state if h < 0). The magnitude of the
order parameter will be independent on the way in which we take h→ 0, but its sign will depend
on whether h→ 0+ or h→ 0−, with sgn(m) = sgn(h). Physically, the direction in which a system
orders can be decided by the presence of small stray fields or impurities. An illustration of how
this works in the case of ideal Bose gas condensation is provided in the appendix §1.6 below.

Note that in both formulations, SSB is necessarily associated with the existence of a local operator Oi
which is identified as the order parameter field. In (i) the correlations

〈
OiOj

〉
exhibit long-ranged order

in the symmetry-broken phase. In (ii) Oi is the operator to which the external field hi couples.

1.3.6 The dihedral group Dn

In the mathematics literature, the symmetry group of the planar n-gon is called the dihedral group11, Dn.
Elements of Dn act on two-dimensional space as (i) rotations about a central point by multiples of 2π/n

10We assume translational invariance, which means 〈σi〉 is independent of the site index i.
11The word dihedral means “two faces” and probably has its origins in Greek political rhetoric.
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and (ii) reflections in any of n lines each containing the central point, and oriented at multiples of π/n
from some fiducial axis. Dn thus contains 2n elements. If we denote by r the group element which
rotates (counterclockwise, say) by 2π/n, and we denote by σ any one of the mirror symmetries of the
n-gon, then the following are True Facts: (i) rn = 1, (ii) σ2 = 1, and (iii) σrσ = r−1. The first two
are obvious. The third is also obvious after a moment’s thought: by reflecting, rotating, and reflecting
again, the sense of rotation is reversed. One says that r and σ are the generators of Dn, and the three
True Facts are relations satisfied by the generators. Below in §1.4.6, we shall discuss how the full group
multiplication table, which can be quite unwieldy for groups with many elements, can be replaced by a
group presentation, denoted 〈 G |R 〉, where G are the generators and R the relations. Thus, the presentation
for Dn is 〈 r , σ | rn = 1 , σ2 = 1 , σrσ = r−1 〉. Dn’s 2n elements then nicely divide into two subsets:
{E , r , . . . , rn−1} and {σ , σr , . . . , σrn−1}. The first of these is itself the group Cn

∼= Zn.

Apologia pro vita mea : Dn versus Cnv

What is the difference betweenDn and Cnv? As we’ve just definedDn above, it is identical to Cnv. Each
of the reflections is an improper rotation, i.e. it is represented by a 2 × 2 orthogonal matrix whose deter-
minant is −1. According to crystallographers, however, the definition of Dn is the group of symmetry
operations consisting of a single n-fold axis plus n equally splayed twofold axes each perpendicular to
the n-fold axis. In other words, Dn in three space dimensions is a subgroup of SO(3), and as such it
involves only proper rotations. Could anything be more awful?12 We will revisit the distinction when we
discuss crystallographic point groups, but at the level of group theory this is all a tempest in a teapot,
because Dn and Cnv are isomorphic – their elements may be placed in one-to-one correspondence, and
their multiplication tables are the same. One way to think about it is to take the six 2×2 matrices D(2)(g)
faithfully representing the elements of C3v and add a third row and column, padding the additional
entries with zeroes except in the lower right (3, 3) corner, where we place a 1. Clearly the multiplication
table is the same. But we could also choose to place a 1 in the (3, 3) slot for g ∈ {E,R,W}, and a (−1)
there for g ∈ {σ, σ′, σ′′}. The multiplication table remains the same! The representation is still faithful!
And now each of our six 3× 3 matrices has determinant +1. So let’s all just chill and accept that Cnv is a
perfectly acceptable notation for the symmetries of the planar n-gon, as our crystallographer forebears
have wisely decreed13.

1.3.7 The permutation group Sn

A permutation of the symbols {1, 2, . . . , n} is a rearrangement {σ1, σ2, . . . , σn} of those same symbols,
commonly denoted by

σ ≡
(

1 2 3 · · · n
σ(1) σ(2) σ(3) · · · σ(n)

)
. (1.6)

12Well, of course it could. Cancer, for example.
13Crystallography is a subset of solid state physics, and solid state physics is a subset of condensed matter physics. And

condensed matter physics is the very best kind of physics, as we pointed out in §1.1.
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The meaning of the above notation is the following. We are to imagine an ordered set of n boxes, each
of which contains an object14. Applying the operation σ means that the contents of box 1 are placed in
box σ(1), the contents of box 2 are placed in box σ(2), etc. The inverse operation is given by

σ−1 =

(
σ(1) σ(2) σ(3) · · · σ(n)
1 2 3 · · · n

)
, (1.7)

and the rule for composition (multiplication) of permutations is then

µσ =

(
1 2 · · · n

µ(1) µ(2) · · · µ(n)

)(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

=

(
1 2 · · · n

µ
(
σ(1)

)
µ
(
σ(2)

)
· · · µ

(
σ(n)

)
)

,

(1.8)

and thus the initial contents of box k wind up in box µ
(
σ(k)

)
. These operations form a discrete group,

since the composition of two rearrangements is another rearrangement, and since, as anyone who has
rearranged furniture to satisfy the whims of a fussy spouse can attest, you can always “just put it back
the way it was”, i.e. each element has its inverse. This group of operations is known as the permutation
group (or symmetric group), and is abbreviated Sn.

Clearly Sn has n! elements, so the size of the multiplication table is n!×n! . Furthermore, we can represent
each element σ ∈ Sn as an n×nmatrix consisting of zeros and ones, such that

[
D(n)(σ)

]
ij
= 1 if i = σ(j)

and 0 otherwise. This generates the desired permutation when acting on the column vector v whose
transpose is vT = (1 2 3 · · · n).

We will study Sn in more detail below (see §1.4.3), but for now let’s consider the case n = 3, which is
the permutation group for three objects. Consulting the left panel of Fig. 1.2 once more, we see to each
element of C3v there corresponds a unique element of S3:

E =

(
1 2 3
1 2 3

)
R =

(
1 2 3
2 3 1

)
W =

(
1 2 3
3 1 2

)

(1.9)

σ =

(
1 2 3
1 3 2

)
σ′ =

(
1 2 3
3 2 1

)
σ′′ =

(
1 2 3
2 1 3

)
.

Note we can write R = (123), W = (132), σ = (23), σ′ = (13), and σ′′ = (12), using the cycle notation.
The above relations constitute a bijection between elements ofC3v and elements of S3. The multiplication
tables therefore are the same. Thus, in essence, S3 is C3v. In mathematical notation, we write S3

∼= C3v ,
where the symbol ∼= denotes group isomorphism.

We mentioned above how Sn has a representation in terms of n × n matrices. We may write the 3 × 3

14The objects are arbitrary, and don’t necessarily have to be distinct themselves. Some boxes could contain nothing at all.
Others might contain a magnificent present for your group theory instructor.
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matrices D(3)(g) for S3 as

D(3)(E) =



1 0 0
0 1 0
0 0 1


 D(3)(R) =



0 0 1
1 0 0
0 1 0


 D(3)(W ) =



0 1 0
0 0 1
1 0 0




(1.10)

D(3)(σ) =



1 0 0
0 0 1
0 1 0


 D(3)(σ′) =



0 0 1
0 1 0
1 0 0


 D(3)(σ′′) =



0 1 0
1 0 0
0 0 1


 .

One can check that these matrices yield the same multiplication table as for S3
∼= C3v . Thus, we have thus

far obtained two faithful representations of this group, one two-dimensional and one three-dimensional.
Remember the interpretation that the permutation σ places the former contents of box j into box σ(j)
for all j. We can arrange these boxes in a column vector of length n. If in our n = 3 case we start with ♣
in box 1, ✶ in box 2, and ✵ in box 3, application of the element R results in



0 0 1
1 0 0
0 1 0





♣
✶

✵


 =



✵

♣
✶


 , (1.11)

and now we have ♣ in box 2, ✶ in box 3, and ✵ in box 1.

1.3.8 Our friend, SU(2)

SU(2) is an example of a continuous group known as a Lie group. We shall introduce Lie groups more
thoroughly in §1.5 below. For the moment, recall that a matrix U ∈ U(2) is a 2×2 complex-valued matrix
which satisfies U † = U−1, i.e. U †U = E, where E is the identity matrix. This entails |detU | = 1, and
requiring U ∈ SU(2) imposes the additional constraint detU = 1. Now let us parameterize U , initially
in terms of four complex numbers, and examine the matrices U † and U−1:

U =

(
w x
y z

)
⇒ U † =

(
w∗ y∗

x∗ z∗

)
, U−1 =

1

detU

(
z −x
−y w

)
. (1.12)

Since detU = 1, we conclude z = w∗ and y = −x∗, hence we may parameterize all matrices in SU(2) in
terms of two complex numbers, w ∈ C and x ∈ C, viz.

U =

(
w x
−x∗ w∗

)
, U−1 = U † =

(
w∗ −x
x∗ w

)
(1.13)

and subject to the constraint
detU = |w|2 + |x|2 = 1 . (1.14)

Thus, SU(2) is topologically equivalent to the 3-sphere S3 sitting inside C
2 ∼= R

4.

We can check the closure:

U1U2 =

(
w1 x1
−x∗1 w∗

1

)(
w2 x2
−x∗2 w∗

2

)
=

(
w1w2 − x1x∗2 w1x2 + x1w

∗
2

−w∗
1x

∗
2 − x∗1w2 w∗

1w
∗
2 − x∗1x2

)
. (1.15)
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Thus, U1U2 is of the appropriate form, provided its determinant is indeed unity. We have

det (U1U2) = |w1w2 − x1x∗2|2 + |w1x2 + x1w
∗
2|2

= |w1|2 |w2|2 + |x1|2 |x2|2 + |w1|2 |x2|2 + |x1|2 |w2|2

=
(
|w1|2 + |x1|2

)(
|w2|2 + |x2|2

)
= detU1 detU2 = 1 ,

(1.16)

and so closure is verified. Of course, we knew in advance this would work out, i.e. that determinant of
a product is the product of the determinants.

Another useful parameterization of SU(2) is in terms of the Pauli matrices:

g(α, n̂) ≡ exp
(
− i

2 α n̂ · σ
)
= cos α2 − i sin α

2 n̂ · σ , (1.17)

where n̂ is a three-dimensional unit vector and where α ∈ [0, 2π). The inverse operation is given by
g−1(α, n̂) = exp

(
i
2 α n̂ ·σ

)
. Recall that g(α, n̂) rotates a spinor by an angle α about the n̂ axis in internal

spin space. Note that g(2π, n̂) = −1, so rotation by 2π about any axis is equivalent to multiplication by
−1. We shall comment more fully on this in future chapters. Writing the unit vector n̂ in terms of a polar
angle θ and azimuthal angle φ, note that

w = cos α2 − i sin α
2 cos θ , x = −i sin α

2 sin θ e
−iφ . (1.18)

and thus
(
Reω, Imω,Re x, Im x

)
is a real four-component unit vector lying on S3.

We already know that it must work out, but it is somewhat instructive to verify closure in this parame-
terization. This means that g(α, n̂) g(β, m̂) = g(γ, k̂) for some angle γ and unit vector k̂. We can evaluate
the product explicitly:

g(α, n̂) g(β, m̂) =
(
cos α2 − i sin α

2 n̂ · σ
)(

cos β2 − i sin
β
2 m̂ · σ

)
(1.19)

= cos α2 cos
β
2 − i

(
sin α

2 cos β2 n̂+ cos α2 sin
β
2 m̂

)
· σ − sin α

2 sin β
2 (n̂ · σ)(m̂ · σ)

=
(
cos α2 cos

β
2 − sin α

2 sin
β
2 n̂ · m̂

)

− i
(
sin α

2 cos β2 n̂+ cos α2 sin β
2 m̂+ sin α

2 sin β
2 n̂× m̂

)
· σ ,

where we have invoked σασβ = δαβ + i ǫαβγ σ
γ . We therefore have

cos γ2 = cos α2 cos
β
2 − sin α

2 sin
β
2 n̂ · m̂

sin γ
2 =

∣∣ sin α
2 cos β2 m̂+ cos α2 sin β

2 n̂+ sin α
2 sin β

2 n̂× m̂
∣∣

=
√

1
2(1− cosα cosβ) + 1

2 sinα sin β n̂ · m̂+ 1
4 (1− cosα)(1 − cos β)

[
1− (n̂ · m̂)2

]
,

(1.20)

from which one verifies cos2
(γ
2

)
+ sin2

(γ
2

)
= 1. The vector k̂ is then given by

k̂ =

sin α
2 cos β2 m̂+ cos α2 sin β

2 n̂+ sin α
2 sin β

2 n̂× m̂

∣∣ sin α
2 cos β2 m̂+ cos α2 sin β

2 n̂+ sin α
2 sin β

2 n̂× m̂
∣∣

(1.21)
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and the angle γ by

γ = 2cos−1
(
cos α2 cos

β
2 − sin α

2 sin
β
2 n̂ · m̂

)
(1.22)

with γ ∈ [0, 2π). We see that
[
g(α, n̂) , g(β, m̂)

]
= 0 if n̂ × m̂ = 0, i.e. if the two rotations are about the

same axis.

1.4 Aspects of Discrete Groups

1.4.1 Basic features of discrete groups

Here we articulate a number of key concepts in the theory of discrete groups.

GROUP HOMOMORPHISM : A group homomorphism is a map φ : G 7→ G′ which respects multiplication,
i.e. φ(ga)φ(gb) = φ(ga gb), where ga,b ∈ G and φ(ga,b) ∈ G′. If φ is bijective (one-to-one and onto), it is an

isomorphism, and we write G ∼= G′. This means that G and G′ are the same group. The maps D(2)(C3v) and
D(3)(C3v) discussed above in §1.3.4 and §1.3.7 are isomorphisms.

The kernel of a homomorphism φ is the set of elements in G which get mapped to the identity in G′,
whereas the image of φ is the set of elements in G′ which have a pre-image in G . Thus15,

ker(φ) =
{
g ∈ G

∣∣φ(g) = E′} , im(φ) =
{
φ(g)

∣∣ g ∈ G
}

. (1.23)

As an example, consider the homomorphism which maps C3v to Z2 , where φ(E) = φ(R) = φ(W ) = +1
and φ(σ) = φ(σ′) = φ(σ′′) = −1. Then ker(φ) =

{
E,R,W

}
. Consider next the map D(2) : C3v 7→ O(2)

in Eqn. 2.123. Clearly, not every element in O(2) has a preimage in C3v , as O(2) is a continuous group
with an infinite number of elements! im

(
D(2)

)
is then the six matrices defined in Eqn. 2.123.

REARRANGEMENT THEOREM : Let the set of group elements be
{
E, g2, g3 , . . . , gN

}
, where N = |G|.

Call this particular ordering the sequence S1. Then for any ga ∈ G, the sequenceS2 =
{
gaE, ga g2 , . . . , ga gN

}

contains every element in G.

The proof is elementary. First note that each element occurs in S2 at least once, since for any b one has
g−1
a gb ∈ G, hence ga

(
g−1
a gb

)
= gb is a member of S2. This is all we need to show, since S1 and S2 contain

the same number N of elements, and every element in S1 is contained in S2. Therefore S2 is merely a
rearrangement of S1.16

SUBGROUPS : A collectionH of elements {hj} is called a subgroup ofG if each hj ∈ G and ifH itself forms
a group under the same multiplication law. One expresses this as H ⊂ G. Some examples: C3 ⊂ C3v ,
SO(2) ⊂ SO(3) , Sn ⊂ Sn′ if n < n′. Note Z2 ⊂ Z4 but Z2 6⊂ Z5 (more on this below)17. The identity
element {E} always forms its own (trivial) subgroup18.

15Be aware, in my notation, that im means ’image’, whereas Im means ’imaginary part’.
16Just to put a fine point on it, suppose there is a repeating element in S2 , i.e. suppose ga gb = ga gc for b 6= c . Then applying
g−1
a on the left, we have gb = gc , which is a contradiction.

17Recall Zn, the group of “clock arithmetic base n”, is the same group as Cn , i.e. n-fold rotations about a single axis, or the set{
e2πij/n

∣∣ j ∈ {0, 1, . . . , n− 1}
}

under complex multiplication.
18If you do not understand why, please kill yourself .
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COSETS AND LAGRANGE’S THEOREM : If G is of finite order, and H ⊂ G, then M ≡ |H| is a divisor
of N ≡ |G|. The proof is somewhat instructive. Consider some ordering

{
E, g2, g2 , . . . , gN

}
of all the

elements ofG and pick the first element in this set which is not a member ofH . Call this element g. Then
form the left coset gH ≡

{
gE, g h2 , . . . , g hM

}
. Note that gH is not a group because it cannot contain the

identity19. Note also that gH contains M unique elements, none of which is a member of H . To see this,
first assume ghj = ghk for some distinct j and k (with h0 = E). Applying g−1 on the left yields hj = hk,

which is a contradiction. Next, assume ghj = hk. This means g = h−1
j hk, which is again a contradiction

since H is a group and therefore h−1
j hk ∈ H , but by assumption g /∈ H . Now take the first element from

G which is neither a member of H nor of gH , and call this g′. We form the corresponding coset g′H . By
the same arguments, g′H contains M distinct elements, none of which appears in H . But is g′H distinct
from gH? Indeed it is, for if ghj = g′hk for some j and k, then g′ = ghjh

−1
k ∈ gH , since hjh

−1
k ∈ H . But

this contradicts our assumption that g′ /∈ gH . We iterate this procedure, forming g′′H , etc. Since G is of
finite order, this business must eventually end, say after the construction of l such cosets. But then we
have managed to divide the entire N elements of G into l+1 sets, each of size M (H plus its l iteratively
constructed cosets). We then say that H is a subgroup of index l + 1. QED

Thus, Z2 6⊂ Z5 , and furthermore no group of prime order can have a nontrivial subgroup.

ABELIAN SUBGROUPS : Let G be a finite discrete group. Then for any g ∈ G, there exists n > 0
such that gn = E (prove it!). The smallest such n is called the order of the element g. Therefore the set{
E, g, g2 , . . . , gn−1

}
constitutes an abelian subgroup of G, itself of order n. For example,

{
E, σ

}
⊂ C3v is

the abelian subgroup Z2.
{
E,R,W = R2

}
⊂ C3v is the abelian subgroup C3.

CENTER OF A GROUP : The center Z(G) of a groupG is the set of elements which commute with all other
elements. I.e.

Z(G) =
{
z ∈ G

∣∣ zg = gz ∀g ∈ G
}

. (1.24)

Clearly Z(G) ⊂ G. The center of any abelian groupG isG itself. For the dihedral groupsDn, the content
of the center depends on whether n is even or odd. One has Z(D2k+1)

∼= {E} and Z(D2k)
∼= {E,Rk} ,

where R rotates by π/k about the central axis. I.e. Z(D2k)
∼= Z2 .

CENTRALIZER AND NORMALIZER : The centralizer CG(z) of a group element z ∈ G is the set of all
elements of G which commute with z , i.e. CG(z) =

{
g ∈ G

∣∣ gz = zg
}

. The centralizer of a subgroup
H ⊂ G is the set of all elements of G which commute with every element of H . Clearly the centralizer
of any element or of any subgroup will contain Z(G), the center of the group.

The normalizer of a subgroup H ⊂ G, denoted NG(H), is the set of all g ∈ G such that g−1Hg = H ,
which is equivalent to gH = Hg. Note that CG(H) ⊆ NG(H), because g ∈ CG(H) requires gh = hg for
all h ∈ H , but g ∈ N (G) satisfies the weaker requirement that for all h ∈ H , there exists h′ ∈ H with
gh = h′g.

DIRECT PRODUCTS : Given two groupsG andH , one may construct the product group F = G×H , whose
elements are ordered pairs (g, h) where g ∈ G and h ∈ H . Multiplication in the product group is given
by the natural extension (g, h)(g′, h′) = (gg′, hh′). Note |F | = |G| · |H|.

CONJUGACY : Two elements g and g′ are said to be conjugate to each other if ∃ f ∈ G such that g′ = f−1gf .

19By assumption g /∈ H , so g 6= h−1
j for all j, meaning ghj 6= E for all j.
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This has odors of the similarity transformation from linear algebra. Note that if g is conjugate to g′

and g′ is conjugate to g′′, then ∃ f, h such that g′ = f−1gf and g′′ = h−1g′h, from which we derive
g′′ = (hf)−1g(fh), i.e. g and g′′ are also conjugate. Thus, conjugacy is transitive.

The set of distinct elements
{
f−1gf

∣∣ f ∈ G
}

is called the conjugacy class (or equivalency class) of the
element g. Note that g0 ≡ E is always in its own conjugacy class, with no other elements. Similarly, in
abelian groups, each element is its own class. For C3v there are three conjugacy classes:

{
E
}

,
{
R,W

}
,

and
{
σ, σ′, σ′′

}
. All elements in a given conjugacy class have the same order, for if gn = E, then clearly(

f−1gf
)n

= f−1Ef = E.

NORMAL (INVARIANT) SUBGROUPS : A subgroup H ⊂ G is called a normal (or invariant) subgroup if
g−1Hg = H for all g ∈ G. Thus, any normal subgroup must be expressible as the union of some
conjugacy classes. For example, C3 ⊂ C3v is a normal subgroup, and the union of conjugacy classes {E}
and {R,W}. But Z2 ⊂ C3v consisting of (E, σ) is not, because W−1σW = σ′. Instead of writing “H is an
invariant subgroup of G,” Mathy McMathstein writes H ⊳ G. Note that if F = G ×H , then G ⊳ F and
H ⊳ F .

SIMPLE GROUP : Any group G which contains no invariant subgroups is said to be simple. Tony Zee
explains this beautifully. He says that we’d like to be able to articulate a notion of simplicity, mean-
ing that a group can’t be broken up into smaller groups. One might think we should then demand
that G have no nontrivial subgroups20 at all in order for it to be simple. Alas, as Zee points out,
“subgroups are a dime a dozen”. Indeed, as we’ve already seen, one can form an abelian subgroup{
E, g, g2 , . . . , gn−1

}
, where n is the order of g, starting with any group element. But while you find

subgroups everywhere, invariant subgroups are quite special. Clearly any group of prime order is sim-
ple. So are the alternating groups21 An for n > 4. The classification of all finite simple groups has
been a relatively recent triumph in mathematics22. Other examples of finite simple groups include the
classical and exceptional Chevalley groups, the Mathieu groups, the McLaughlin group23, the Baby
Monster group, with 4154781481226426191177580544000000 elements, and the Monster group24, which
has 808017424794512875886459904961710757005754368000000000 elements25.

COSETS AND FACTOR GROUPS : We have already introduced the concept of a left coset, gH , formed by
multiplying each element of a subgroupH ⊂ G on the left by a given element g ∈ G. (Of course, one can
just as well define the right cosets ofH , i.e. {Hg}.) Consider now the left cosets of an invariant subgroup
H ⊳ G. Now here’s something cool and mathy: cosets can be multiplied. The result is rather simple:

(gahm)(gbhn) = ga gb (g
−1
b hm gb)hn ≡ ga gb hl hn , (1.25)

where hl ≡ g−1
b hm gb ∈ H , since H is an invariant subgroup. Thus, (gaH)(gbH) = (ga gb)H . This means

the left cosets {gH} themselves form a group under multiplication. This group is called the quotient

20I.e. no subgroups other than the identity and G itself.
21In §1.4.3 we will learn that An is the subgroup consisting of all even permutations in Sn.
22See https://en.wikipedia.org/wiki/List_of_finite_simple_groups
23See e.g. https://www.youtube.com/watch?v=mx9Ue9XLGW8 . I always thought the McLaughlin group had five members, but

Wikipedia says it has 898128000.
24The Monster group is the largest of the sporadic simple groups.
25If, as a summer student project, one endeavored to associate each atom contained in planet earth with a unique element of

the Monster group, one would eventually run out of atoms.

https://en.wikipedia.org/wiki/List_of_finite_simple_groups
https://www.youtube.com/watch?v=mx9Ue9XLGW8
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group, G/H . Note that |G/H| = |G|/|H| , because there are |H| elements in each coset, and therefore
there must be |G|/|H| cosets in total. In general, the quotient group is not a normal subgroup of G.
Example: C3v/C3 = Z2.

COMMUTATOR SUBGROUP : Recall the algebraic notion of the commutator [X,Y ] = XY − Y X. For
group operations, the commutator

〈
•, •
〉

is defined as

〈
g, h
〉
= g−1h−1gh . (1.26)

The inverse of this operation is
〈
g, h
〉−1

=
〈
h, g
〉
. Note that if gh = hg, then

〈
g, h
〉
= E. Also note that

upon conjugation,
s−1
〈
g, h
〉
s =

〈
s−1gs, s−1hs

〉
. (1.27)

Now the product of two commutators under group multiplication is not in general another commutator.
However, we can use the commutators

〈
ga, gb

〉
to generate a closed set under group multiplication, i.e.

〈
G,G

〉
=
{〈
ga1 , ga2

〉〈
ga3 , ga4

〉
· · ·
〈
ga2n−1

, ga2n

〉 ∣∣∣n ∈ N, gak
∈ G ∀ k

}
(1.28)

Clearly
〈
G,G

〉
satisfies all the axioms for a group, and is a subgroup ofG. We call

〈
G,G

〉
the commutator

(or derived) subgroup of G. And because the set of commutators is closed under conjugation,
〈
G,G

〉
is

an invariant subgroup of G :
〈
G,G

〉
⊳ G. Some examples:

(i)
〈
Sn, Sn

〉 ∼= An , the group of even permutations (see §1.4.3 below).

(ii)
〈
An, An

〉 ∼= An for n > 4, but
〈
A4, A4

〉 ∼= Z2 × Z2 .

(iii)
〈
Q,Q

〉 ∼= Z2 , where Q is the quaternionic group (see §1.4.5 below).

As Zee explains, the size of the commutator subgroup tells us roughly how nonabelian the group itself
is. For abelian groups,

〈
G,G

〉 ∼= {E}. When
〈
G,G

〉 ∼= G, the group is maximally nonabelian in some
sense. The quotient group Gab ≡ G/

〈
G,G

〉
is called the abelianization of G. A group is called perfect if it

is isomorphic to its own commutator subgroup. The smallest nontrivial perfect group is A5.

GROUP ALGEBRA : The group algebra G for any finite discrete group G is defined to be the set of linear
combinations of the form x =

∑
g∈G xg g , where each xg ∈ C is a complex number. Note that both

addition and multiplication are defined for elements of G, for if y =
∑

g∈G yg g , then

x+y =
∑

g∈G
(xg+yg) g , x ·y =

∑

g∈G

∑

h∈G
xg yh hg =

∑

g∈G

(xy)g︷ ︸︸ ︷(
∑

h∈G
xh−1g yh

)
g ≡

∑

g

(xy)g g . (1.29)

We can think of the group elements as basis elements of a vector space A which acts on itself by multi-
plication as well as addition26. This structure we have just described is known in mathematical parlance
as an algebra. An (associative) algebra is a linear vector space which is closed under some multiplication

26The vector space spanned by g ∈ G is not necessarily normed.
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law. Thus there are two types of multiplication in an algebra. As a vector space over a field F, one has
ordinary multiplication by scalars in F, e.g. real or complex numbers. But the individual basis elements,
which in our case are group elements, have their own multiplication rule, specified by the Cayley ta-
ble for the group. Another example which will be relevant to us is that of a Lie algebra, which, for our
purposes, is also a vector space over R or C, but where multiplication of two elements X and Y in the
algebra is defined by the Lie bracket,

[
X,Y

]
. We will mainly be concerned with matrix Lie groups, in

which case the Lie bracket is the familiar commutator.

The concept of an algebra is very close to that of another mathematical structure known as a ring. A ring
R is a set endowed with the binary operations of addition and multiplication which is an abelian group
under addition, a monoid under multiplication27, and where multiplication distributes over addition28.

1.4.2 Other math stuff

Here are some other math definitions which may be useful to clarify before going forward. They don’t
really belong in this section on discrete groups, but I thought it would be fun to hide them here anyway.

MONOID : A monoid is a triple (M , · , 1) where M is a set which is closed under the associative binary
product ·, and where 1 is the multiplicative identity (i.e.m · 1 = 1 ·m = m for all m ∈M ).

RING : A ring is a set R where (R , + , 0) is an abelian group under addition, (R , · , 1) is a monoid, and
multiplication distributes over addition, viz.

a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c .

(1.30)

Examples of rings include Z, R, C, the set
{
m+n

√
2 |m,n ∈ Z

}
, real continuous functions f : [0, 1]→ R

with f(x) = 0 the additive identity and f(x) = 1 the multiplicative identity, etc.

IDEAL : A left ideal I is a subset of a ring I ⊂ R where (I , + , 0) is an abelian group, and where ri ∈ I
for all r ∈ R and i ∈ I . For a right ideal the requirement is that ir ∈ I . If we require both ir ∈ I and
ri ∈ I , this defines an ideal (i.e. no need to specify left or right). Example: I = 2Z ⊂ Z , i.e. the set of even
integers, is an ideal in the ring Z.

QUOTIENT RING : If I ⊂ R is an ideal in R, the quotient ring R ≡ R/I is the set of elements of R modulo
I , any of which we can write in the form a+ I where a ∈ R. Thus, two elements a and a′ in the quotient
ring R are equivalent if their difference lies in I (i.e. a ≡ a′ ⇔ a− a′ ∈ I). Within R we then have

(a+ I) + (b+ I) = a+ b+ I

(a+ I) · (b+ I) = a · b+ I .
(1.31)

27A monoid is a set with a closed, associative binary operation and with an identity element. The difference between a monoid
and a group is that each element of the monoid needn’t have an inverse. In physics, the ”renormalization group” should
more appropriately be called the ”renormalization monoid” since RG processes have no inverse.

28The formal difference between a ring R an an algebra A is that in a ring, the algebraic structure is entirely internal, but in
an algebra there is additional structure because it allows for multiplication by an external ring R′ in such a way that the two
multiplication properties are compatible. So an algebra is actually two compatible rings. If this is confusing, take comfort in
the fact that for our purposes, the external ring R

′ is just the complex numbers.
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Thus, Z/2Z = {0, 1}.

DOMAIN : LetR be a ring and R∗ = R− 0 the set of its nonzero elements (using − for set subtraction). If
(R∗ , · , 1) is a monoid then R is a domain. How on earth could (R∗ , · , 1) fail to form a monoid, I hear
you thinking. Well, let R be the ring of real smooth functions29 and define f(x) =

(
1
2 − x

)
Θ
(
1
2 − x

)
and

g(x) =
(
x − 1

2

)
Θ
(
x − 1

2

)
, where Θ(u) is the step function. Then both f(x) and g(x) lie within R∗, but

their product f(x) · g(x) = 0 6∈ R∗. So R is not a domain.

DIVISION RING : Let R be a ring and again let R∗ = R − 0. If (R∗, ·, 1) is a group, we say that R is a
division ring. A commutative division ring is a field.

VECTOR SPACE : A vector space V over a scalar field F consists of a set V and operations + and · such that
(i) (V , + , 0) is an abelian group, (ii) V is closed under scalar multiplication by any c ∈ F, (iii) scalars
and vectors may be multiplied, and the · operation is, commutative, associative, and distributes over
addition, and (iv) for all v ∈ V , 1 · v = v · 1 = v.

ASSOCIATIVE ALGEBRA : As mentioned above, an associative algebra is a vector space which is closed
under some multiplication law. Thus there are two types of multiplication in an algebra.

1.4.3 More about permutations

Recall the general form of a permutation of n elements:

σ ≡
(

1 2 3 · · · n
σ(1) σ(2) σ(3) · · · σ(n)

)
. (1.32)

Each such permutation can be factorized as a product of disjoint cycles, a process known as cycle decompo-
sition. A k-cycle involves cyclic permutation of k elements, so (i1 i2 · · · ik) means σ(i1) = i2 , σ(i2) = i3 ,
etc., and finally σ(ik) = i1. Consider, for example, the following element from S7 :

σ =

(
1 2 3 4 5 6 7 8
7 2 6 8 1 3 5 4

)
= (1 7 5) (2) (3 6) (4 8) . (1.33)

Thus σ is written as a product of one three-cycle, two two-cycles, and two one-cycles. The one-cycles of
course do nothing. Written in this way, the cycle decomposition obeys the following sum rule: the sum
of the lengths of all the cycles is the index n of Sn. Denoting all the one-cycles is kind of pointless, though,
and typically we omit them in the cycle decomposition; in this case we’d just write σ = (1 7 5) (3 6) (4 8).
Alas, by virtue of suppressing the one-cycles, the sum rule no longer holds.

In fact, any k-cycle may be represented as a product of k − 1 two-cycles (also called transpositions):

(i1 i2 · · · ik) = (i1 i2)(i2 i3) · · · (ik−1 ik) . (1.34)

Note that the two-cycles here are not disjoint. The decomposition of a given k-cycle into transpositions
is not unique, save for the following important feature: the total number of transpositions is preserved

29Parsing disambiguation: by ”real smooth functions” I mean functions f(x) which are both real and in the class C∞, as
opposed to functions which are somehow like Luther Vandross.
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modulo 2. This feature allows us to associate a sign sgn(σ) with each permutation σ, given by (−1)r ,
where r is the number of transpositions in any complete decomposition of σ into two-cycles. An equiv-
alent definition: sgn(σ) = ǫσ(1) σ(2) ···σ(n) , where ǫα1 α2 ···αn

is the completely antisymmetric tensor of

rank n , with ǫ1 2 3 ···n = +1. Note that sgn(σσ′) = sgn(σ) sgn(σ′). This distinction allows us to define a
subgroup of Sn known as An , the alternating group, consisting of all the even permutations in Sn. Clearly
An contains the identity, and since the product of two even permutations is itself an even permutation,
we may conclude that An is itself a group. Indeed, since sgn(σ̃−1σσ̃) = sgn(σ), conjugacy preserves the
sign of any element of Sn , and we conclude An ⊳ Sn , i.e. the alternating group is a normal subgroup of
the symmetric group.

Let me conclude with a few other details about the symmetric group. First, the mapping sgn : Sn 7→ Z2

is a group homomorphism. This means that D(1)(σ) = sgn(σ) is a one-dimensional representation of
Sn, called the sign representation. Of course it is not a faithful representation, but fidelity is so 1990s30.
Second, recall from §1.3.7 the representation D(n)(Sn) in terms of n× n matrices, where

[
D(n)(σ)

]
ij
= 1

if i = σ(j) and 0 otherwise. This is called the defining representation, and it is faithful. One then has
that sgn(σ) = det

[
D(n)(σ)

]
. Finally, we consider a cyclic decomposition of any permutation σ into ν1

1-cycles, ν2 2-cycles, etc. The sum rule is then
∑n

k=1 k νk = n. Now any such decomposition is invariant
under (i) permuting any of the k-cycles, and (ii) cyclic permutation within a k-cycle. Consider our friend
σ = (1 7 5) (2) (3 6) (4 8) from Eqn. 1.33. Clearly n1 = 1 , n2 = 2 , and n3 = 1 with 1 ·n1+2 ·n2+3 ·n3 = 8 .
Furthermore, we could equally well write σ = (1 7 5) (2) (4 8) (3 6), permuting the two 2-cycles, or as
σ = (7 5 1) (2) (4 8) (6 3), cyclically permuting within the 3-cycle and one of the 2-cycles. This leads us to
the following expression for the number N(ν1, ν2, . . . , νn) of possible decompositions into ν1 1-cycles, ν2
2-cycles, etc. :

N(ν1, ν2, . . . , νn) =
n!

1ν1 ν1! 2
ν2 ν2! · · · nνn νn!

. (1.35)

The sign of each permutation is then uniquely given by its cyclic decomposition:

sgn(σ) = (+1)ν1(−1)ν2(+1)ν3(−1)ν4 · · · = (−1)# of cycles of even length . (1.36)

Finally, let’s check that the sum over all possible decompositions gives the order of the group, i.e. that

∞∑

ν1=0

· · ·
∞∑

νn=0

N(ν1, ν2, . . . , νn) δν1+2ν2+...+nνn , n
= n! , (1.37)

or, equivalently,

Fn ≡
∞∑

ν1=0

· · ·
∞∑

νn=0

δν1+2ν2+...+nνn , n

1ν1 ν1! 2
ν2 ν2! · · · nνn νn!

= 1 . (1.38)

This must be true for all nonnegative integers n, with F0 ≡ 1. In dealing with the constraint, recall the
treatment of the grand canonical ensemble in statistical physics. We write the generating function

F (z) ≡
∞∑

n=0

Fnz
n =

∞∏

k=0

∞∑

νk=0

zkνk

kνk νk!
, (1.39)

30Please don’t tell my wife I wrote that.
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in which case

Fn =

∮

|z|=1

dz

2πiz

F (z)

zn
. (1.40)

Thus, Fn is simply the coefficient of zn in the Taylor expansion of F (z). But now,

F (z) =

∞∏

k=0

∞∑

νk=0

1

νk!

(
zk

k

)νk
=

∞∏

k=0

exp
(
zk/k

)

= exp

( ∞∑

k=0

zk

k

)
= e− ln(1−z) =

1

1− z = 1 + z + z2 + . . . ,

(1.41)

and so indeed Fn = 1 for all n ≥ 0. Ta da!

1.4.4 Conjugacy classes of the dihedral group

Let’s count the conjugacy classes of Dn. First, we note that Dn = Zn ∪ σZn , where Zn
∼= Cn is the cyclic

group of order n, which is abelian, and σ is any one of the n twofold axes. Let r denote the primitive
rotation by 2π/n, and consider any of the elements rk ∈ Zn, with k ∈ {1, . . . , n − 1}.31 If we conjugate
rk → g−1rkg by any g ∈ Zn, we recover rk because Zn is abelian. So consider g = σrl ∈ σZn. Using
σrσ = r−1, we readily obtain g−1rkg = r−k. We conclude that for n odd, there are 1

2(n + 1) two element

conjugacy classes of the form
{
r, rn−1

}
through

{
r(n−1)/2, r(n+1)/2

}
, to which we add the one element

class
{
E
}

. For n even, though, there are 1
2 (n + 2) such classes: two element classes

{
r, rn−1

}
through{

r(n−2)/2, r(n+2)/2
}

plus one element classes
{
E
}

and
{
rn/2

}
.

Next, we start with a general element σrk ∈ σZn and generate its conjugates. If g = rl, we have
g−1σrkg = σr2l+k, whereas if g = σrl, we have g−1σrkg = σr2l−k. Thus if n is odd, we obtain one more
conjugacy class, which is σZn itself, with n elements. If, on the other hand, n is even, then σZn splits
into two conjugacy classes: {σr2j

}
and σr2j+1

}
, each with j ∈ {0, . . . , 12n − 1}, each of which has 1

2n
elements. In the latter case, the two classes consist of all twofold axes which preserve a pair of vertices,
and all twofold axes which preserve a pair of edges.

Putting it all together, we conclude that for n odd, Dn has 1
2(n + 5) conjugacy classes, while for n even

Dn has 1
2(n+ 6) conjugacy classes.

1.4.5 Quaternion group

The group Q is a nonabelian group consisting of eight elements, {±1,±i,±j,±k}, where E = 1. Its
multiplication table is defined by the relations

i2 = j2 = k2 = −1 , ij = −ji = k , jk = −kj = i , ki = −ik = j . (1.42)

31Recall that the identity E is always its own conjugacy class.
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Note that Q has the same rank as C4v ( ∼= D4), but has a different overall structure, i.e. Q is not isomor-
phic toD4. Indeed,D4 andQ are the only two non-Abelian groups of order eight32. Q has five conjugacy
classes: {1}, {−1}, {i,−i}, {j,−j}, and {k,−k}. It has six subgroups, all of which are invariant sub-
groups:

{1} , {1,−1} , {1,−1, i,−i} , {1,−1, j,−j} , {1,−1, k,−k} , (1.43)

as well as Q itself. The quaternion group can be faithfully represented in terms of the Pauli matrices,
with i→ −iσx, j→ −iσy , and k→ −iσz .

Incidentally, how do we know that Q 6∼= D4 ? Both groups have eight elements and both have five
conjugacy classes! However, upon further inspection, Q has one element of order two (−1) and six of
order four (±i,±j,±k). D4 , on the other hand, has five elements of order two (r2, σ, σr, σr2, σr3} and
two of order four (r, r3). So the groups cannot have identical multiplication tables.

When we speak of quaternions, or of quaternionic numbers, we refer to an extension of complex numbers
z = x+ iy to h = a+ ib+ jc+ kd , with a, b, c, d ∈ R, and the set of quaternionic numbers is denoted H.
The quaternion algebra is not commutative! If u = u0 + iu1 + ju2 + ku3 and v = v0 + iv1 + jv2 + kv3 ,
then representing these in terms of the Pauli matrices, u = u0 − iu · σ and v = v0 − iv · σ, and therefore

uv = (u0 − iu · σ)(v0 − iv · σ)
= u0 v0 − u · v − i(u0 v + v0 u− u× v) · σ ,

(1.44)

which differs from vu whenever u × v 6= 0. Hence multiplication is not commutative for quaternions.
Complex conjugation of quaternions is defined as h∗ = a− ib− jc− kd. Note that h∗∗ = h, which says
that conjugation is its own inverse operation, as in the case of complex numbers (Mathy McMathstein
says it this way: conjugation is an involution.) Note however that (h1h2)

∗ = h∗2 h
∗
1 , i.e. the conjugate

of a product of quaternions is the product of their conjugates, but in the reverse order. The norm of a
quaternion is defined as

|h| =
√
h∗h =

√
a2 + b2 + c2 + d2 , (1.45)

and the distance between two quaternions is accordingly d(h1, h2) = |h1 − h2| . The inverse of the
quaterion h = a+ ib+ jc+ kd is

h−1 =
a− ib− jc− kd

a2 + b2 + c2 + d2
=

h∗

|h|2 . (1.46)

Recall that the real numbers R and complex numbers C are fields. A field is a set together with the
operations of addition and multiplication such that both operations are individually commutative (i.e.
a+ b = b+ a and ab = ba), both operations are associative, both operations have identities and inverses,
and that multiplication distributes over addition. Since multiplication within H is not commutative, H is
not a field. Rather, Mathy McMathstein tells us, H is an associative division algebra over the real numbers.

A unit quaternion u = exp(−i ξ n̂ ·σ/2) = cos(ξ/2)−i sin(ξ/2) n̂ ·σ may be used to effect rotations. Define
the quaternion R = −iR · σ with no constant component. Then one can show directly that

R′ = uRu−1 = −iR′ · σ
R′ = cos ξR+ (1− cos ξ) (n̂ ·R) n̂− sin ξ n̂×R (1.47)

32Hence if G is a nonabelian group of order eight, then either G ∼= D4 or G ∼= Q.
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order abelian G nonabelian G order abelian G nonabelian G

2 Z2
∼= S2

∼= D1 none 9 Z
2
3 , Z9 none

3 Z3
∼= A3 none 10 Z2 × Z5 D5

4 Z2 × Z2
∼= V , Z4 none 11 Z11 none

5 Z5 none 12 Z
2
2 × Z3 , Z3 × Z4 D6 , A4

6 Z2 × Z3 S3 13 Z13 none

7 Z7 none 14 Z2 × Z7 D7

8 Z
3
2 , Z2 × Z4 , Z8 D4 ; Q 15 Z3 × Z5 none

Table 1.5: Table of discrete groups up to order |G| = 15. Note that Zn ∼= Cn and that Zp × Zq
∼= Zpq

when p and q are relatively prime.

which is the rotation ofR about n̂ by θ. Thus the algebra of SO(3) rotations is simply the algebra of unit
quaternions!

True story: Alexander Hamilton invented quaternions while he was Treasury Secretary of the United
States, and his quaternionic arithmetic proved so useful in reducing the computational effort involved
in overseeing the Treasury Department that he was honored by having his portrait on the $10 bill33.

1.4.6 Group presentations

Tab. 1.5 lists all discrete groups up to order 15. Note that at order |G| = 4 there are two distinct groups,
Z4 and Z2 × Z2; the latter is also called the Klein group, V . Both are abelian, but Z4 is not the same group
as Z2 × Z2. These two groups have different multiplication tables. Z4 is generated by a single element r
which satisfies r4 = 1. Z2×Z2 is generated by two elements σ and τ such that σ2 = τ2 = 1 and στ = τσ.

While Z4 6∼= Z2 × Z2, it is the case that Z6
∼= Z2 × Z3. Let’s understand why this is the case. The group

Z2 × Z3 is generated by two elements, σ and ω, where σ2 = ω3 = 1 and σω = ωσ. Now define r ≡ σω.
Clearly the order of the element r is six, i.e. r6 = 1. One can write σ = r3 and ω = r4, as well as ω2 = r2

and σω2 = r5. That accounts for all the elements once we include the identityE. Similarly, Z10
∼= Z2×Z5

and Z15
∼= Z3 × Z5. Can you see a generalization to cyclic groups whose order is a product of unique

prime factors?

At order eight, there are three inequivalent abelian groups: Z2×Z2 ×Z2 (i.e. Z3
2 ), Z2×Z4 , and Z8. Z3

2 is
generated by elements (σ, τ, ρ) which all mutually commute and for which σ2 = τ2 = ρ2 = 1. Z2 × Z4

is generated by (σ, δ) which mutually commute and which satisfy σ2 = δ4 = 1. Finally, Z8 has a single
generator r satisfying r8 = 1.

Indeed, more economically than providing the full group multiplication table with its |G|2 entries, a
group can be defined by a presentation in which one specifies a set G of generators and a set R of relations
which the generators satisfy. We then say that the group G has the presentation

〈
G
∣∣R
〉
. The group

33This is not a true story.
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group order presentation group order presentation

Zn n
〈
r
∣∣ rn

〉
S3 6

〈
a, b
∣∣ a2, b3, (ab)2

〉

Zm × Zn mn
〈
r, s
∣∣ rm, sn, rs = sr

〉
T ∼= A4 12

〈
a, b
∣∣ a2, b3, (ab)3

〉

Dn 2n
〈
r, σ

∣∣ rn, σ2, (rσ)2
〉

O ∼= S4 24
〈
a, b
∣∣ a2, b3, (ab)4

〉

DCn 4n
〈
r, σ

∣∣ r2n, rn = σ2, σrσ−1 = r−1
〉

E ∼= A5 60
〈
a, b
∣∣ a2, b3, (ab)5

〉

Q 8
〈
a, b
∣∣ aba = b , bab = a

〉
SL(2,Z) ∞

〈
a, b
∣∣ aba = bab, (aba)4

〉

Q16 16
〈
a, b, c

∣∣ a4 = b2 = c2 = abc
〉

PSL(2,Z) ∞
〈
a, b
∣∣ a2, b3

〉

π1(S) ∞
〈
{xn, yn}

∣∣ 〈x1, y1〉 · · · 〈xg, yg〉
〉

FG ∞
〈
G
∣∣ ∅
〉

Table 1.6: Examples of discrete group presentations. DCn is the dicyclic group, which is order 4n. T , O,
and E are the tetrahedral, octahedral (cubic), and icosahedral groups, respectively, which describe the
rotational symmetries of those regular polyhedra. Q16 is the generalized quaternion group. π1(S) is the
fundamental group of a surface of genus g, which is generated by 2g loops and 〈•, •〉 is the commutator.

elements are then given by all possible products of the generators, subject to the relations R. For ex-
ample, the presentation for Cn

∼= Zn would be
〈
r
∣∣ rn = 1

〉
, which is usually abbreviated simply as

〈 r | rn 〉. The dihedral group Dn has the presentation
〈
r, σ

∣∣ rn, σ2, (rσ)2
〉
. Z2 × Z4 has the presentation〈

σ, δ
∣∣σ2, δ4, σδ = δσ

〉
. Note how in the last example we had to specify in R that σ and δ commute.

While every group has a presentation, presentations are not necessarily unique. More examples are
presented (hah!) in Tab. 1.6. The free group FG on the set G of generators is simply all possible products.
For example, if G = {a, b}, FG would be an infinite nonabelian group with elements

FG =
{
E, a, b, a−1, b−1, a2, ab, ba, b2, a3, a2b, aba, ba2, . . .

}
. (1.48)

Note that if G has presentation
〈
G
∣∣R
〉

and H has presentation
〈
H
∣∣S
〉
, then the direct product G×H

has presentation
〈
G,H

∣∣R,S, [G,H]
〉
. where [G,H] signifies that all generators from the set G commute

with all generators from the setH. The free product G ⋆H has presentation
〈
G,H

∣∣R,S
〉
. Thus, since the

presentation of the dihedral group D4 is
〈
r, σ

∣∣ r4, σ2, (rσ)2
〉
, the presentation of D4h = D4 × Z2 is

〈
r, σ, c

∣∣ r4, σ2, (rσ)2, c2, rc = cr, σc = cσ
〉

. (1.49)

In the presentation for Q, a = i and b = j. How can we show a4 = 1 ? From a = bab and b = aba,
we have a2 = a(bab) = (aba)b = b2. Then a3 = a2a = b2a = b(bab)b−1 = bab−1. It follows that
a4 = a(bab−1) = (aba)b−1 = bb−1 = 1, and of course b4 = (b2)2 = (a2)2 = a4 = 1 as well. Similarly,
from the above presentation for Q16, one can show that a4 = b2 = c2 = abc are all of order two, and
an equivalent presentation is

〈
a, b
∣∣ a4 = b2 = abab

〉
. Note that some groups have no finite presentation,

but necessarily they must be of infinite order.
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1.5 Lie Groups

1.5.1 Definition of a Lie group

Algebra and topology – two great tastes that taste great together! A Lie group is a manifold34 G which
is endowed with a group structure such that multiplication G × G 7→ G : (g, g′) → gg′ and inverse
G 7→ G : g → g−1 are smooth.

This definition is perhaps a bit too slick. Let’s say we have a smooth manifoldM and a map g :M 7→ G,
where G is our Lie group. That is to say, the group operations consists of

{
g(x)

∣∣ x ∈ M
}

where
g(x) g(y) = g(z) for some z(x, y). Here x, y, and z are points onM. There are two important axioms:

(i) smoothness of group composition : The function z(x, y) is differentiable.

(ii) smoothness of inverse : The function y = ψ(x), where
[
g(x)

]−1
= g(y), is differentiable.

As an example, consider the group SL(2,R), which is the set of real 2 × 2 matrices with determinant 1,

also known as ”the special linear group of rank two over the reals”. Each element g =

(
a b
c d

)
∈ SL(2,R)

can be parameterized by the three real numbers {a, b, c}, since ad − bc = 1 requires d = (1 + bc)/a. (A
different parameterization much be chosen in the vicinity of a = 0.) SL(2,R) is an example of a matrix
group. Other examples include GL(n,R) (real invertible n×nmatrices), O(3) (rank three real orthogonal
matrices), Sp(4,R) (rank four real symplectic matrices), SU(3)×SU(2)×U(1) (some contrived group the
particle physicists seem to think is important - as if ! ), etc. See §1.3.8 above on SU(2).

Lie groups that are not matrix groups

It is quite convenient that every Lie group we will study is a matrix group, hence algebraically the only
operations we will need are matrix multiplication and matrix inversion. The metaplectic group Mp(2n,R),
which is a double cover of the symplectic group Sp(2n,R), is an example of a Lie group which is not a
matrix group, but, truth be told, I have no idea what the hell I’m talking about here.

Hall35 provides a concrete example of a Lie group which is not a matrix group:

G = R× R× S2 =
{
g ≡ (x, y, w)

∣∣ x ∈ R, y ∈ R, w ∈ S1 ⊂ C

}
(1.50)

under the group operation G×G 7→ G defined by

(x1, y1, w1) · (x2, y2, w2) = (x1 + x2 , y1 + y2 , e
ix1y2 w1w2) . (1.51)

34There are two broad classifications of manifolds: intake manifolds, which distribute fuel and air to engine cylinders, and
exhaust manifolds, which direct exhaust to the rear of the vehicle. Also a manifold is a topological space that is everywhere
locally homeomorphic to R

n for some fixed integer n.
35B. C. Hall, Lie Groups, Lie Algebras, and their Representations, 2nd edition, p. 25. (Henceforth ”Hall”.)
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Note that w1,2 are expressed as unimodular complex numbers. The inverse operation is

g−1 = (−x , −y , eixyw) . (1.52)

One can check that G under the above multiplication law satisfies the axioms for a Lie Group. Yet it can
be proven (see Hall, §4.8) that there is no continuous injective homomorphism of G into any GL(n,C),
so G is not a matrix Lie group.

1.5.2 The big happy family of matrix Lie groups

First, a mathy definition:

DEFINITION : A matrix Lie group is any subgroup G of GL(n,C) (i.e. complex invertible n × n
matrices) such that if An is any sequence of matrices in G and An converges to some matrix A,
then either A ∈ G or A is noninvertible36. Thus, G is a closed subgroup of GL(n,C).

Perhaps the best way to appreciate the content of this definition is to provide some examples of sub-
groups of GL(n,C) which fail to be Lie groups37. Consider, for example the group G of all real n × n
invertible matrices with all rational entries. Since the limit of a sequence of rational numbers may be
irrational, this group is not a Lie group. Another example: let G be the set of 2 × 2 matrices of the form

M(θ) = diag
{
eiθ, eiθ

√
2
}

with θ ∈ R. Clearly the matrix −1 /∈ G, since eiθ = −1 requires θ = (2n + 1)π,

and since (2n+1)
√
2π is not an odd multiple of π for any n. However, one can easily find a sequence of

rationals of the form (2k+1)/(2n+1) with converges to
√
2 , so the corresponding sequence of matrices

converges to an invertible matrix, −1, which is not in G.

Now let’s meet the family:

• General and special linear groups : The Lie group GL(n,R) denotes the group of invertible n × n
matrices A with real entries. It is a manifold of dimension n2, corresponding to the number of real
freedoms associated with a general n × n matrix38. Similarly, GL(n,C) is the group of invertible
n× n matrices A with complex entries, of real dimension 2n2. One can also define the quaternionic
general linear group GL(n,H) to be all invertible n × n matrices A with quaternionic entries. Its
dimension is then 4n2.

In each case, we can apply the further restriction that the determinant is detA = 1. This im-
poses one real constraint on GL(n,R), resulting in the MLG SL(n,R), whose real dimension is
dimSL(n,R) = n2 − 1 . Applied to GL(n,C), the determinant condition amounts to one com-
plex constraint, hence the real dimension is dimSL(n,C) = 2(n2 − 1) . For quaternionic matrices,
detA = 1 imposes four real constraints, so dimSL(n,H) = 4(n2 − 1) .

36Convergence of the matrix sequence An → A means that each matrix element ofAn converges to the corresponding element
of A.

37Hall, ch. 1.
38The invertibility condition does not change the dimension.
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• Orthogonal and special orthogonal groups : The orthogonal group O(n) consists of all matrices

R ∈ GL(n,R) such that RTR = E, where RT denotes the matrix transpose of R , i.e. R†
ij = Rji.

Orthogonal transformations of vectors preserve the inner product 〈x|y〉 =∑i xi yi , i.e. 〈Rx|Ry〉 =
〈x|RTR|y〉 = 〈x|y〉. Note that this entails detR = ±1. Orthogonal matrices with detR = +1
are known as proper rotations, while those with detR = −1 are improper rotations. This distinction
splits the O(n) into two disconnected components. One cannot continuously move throughout the
group manifold of O(n) between a proper and an improper rotation. The special orthogonal group
SO(n) consists of proper rotations only. Thus SO(n) ⊂ O(n) ⊂ GL(n,R).

We can count the real dimension of O(n) by the following argument. The condition RTR = E
entails n constraints along the diagonal and 1

2n(n− 1) constraints above the diagonal39. Thus, we
have 1

2n(n+1) constraints on n2 real numbers, and we conclude dimO(n) = dimSO(n) = 1
2n(n−1).

• Generalized orthogonal groups : The general orthogonal group O(n, k) is defined to be the sub-
group of matrices L ∈ GL(n+ k,R) such that LTIn,kL = In,k , where

In,k =

(
1n×n 0n×k
0k×n −1k×k

)
. (1.53)

This is a generalization of the orthogonality condition, and one which preserves the metric

〈x|y〉 =
n∑

i=1

xi yi −
n+k∑

j=n+1

xj yj . (1.54)

One can check that again one has detL = ±1 and that dimO(n, k) = 1
2 (n+ k)(n + k − 1). Perhaps

the most famous example is the Lorentz group O(3, 1). Whereas O(n) and SO(n) are compact Lie
groups, O(n, k) is noncompact when nk 6= 0.

• Unitary and special unitary groups : The unitary group U(n) consists of all matrices U ∈ GL(n,C)

such that U †U = E, where U † denotes the Hermitian conjugate of U , i.e. U †
ij = U∗

ji. Unitary
transformations of vectors preserve the complex inner product 〈x|y〉 = ∑i x

∗
i yi , which says that

〈Ux|Uy〉 = 〈x|U †U |y〉 = 〈x|y〉. Note that this entails |detU | = 1, i.e. detU = eiα for some α ∈
[0, 2π). The special unitary group SU(n) consists of those U ∈ U(n) with detU = 1. Thus we have
SU(n) ⊂ U(n) ⊂ GL(n,C).

Let’s count the real dimension of U(n). The matrix U †U is Hermitian by construction, so once
again we total up the constraints associated with its diagonal and off-diagonal elements. Along the
diagonal, we have n real constraints. Above the diagonal, we have 1

2n(n− 1) complex constraints,
which is equivalent to n(n − 1) real constraints. Thus, we have n2 real constraints on n2 complex
elements of U , and we conclude that the real dimension of U(n) is dimU(n) = n2. For SU(n),
setting the determinant detU = 1 adds one more real constraint (on the phase of detU ), and thus
dimSU(n) = n2 − 1.

As with the orthogonal groups, we may generalize the unitary groups to

U(n, k) =
{
U ∈ GL(n,C) |U †In,k U = In,k

}
(1.55)

where In,k is as defined in Eqn. 1.53.

39Since RTR is symmetric by construction, there are no new conditions arising from those elements below the diagonal.
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• Symplectic groups40 : Here we encounter a bit of an embarrassing mess, because the notation
and definition for the different MLGs known as symplectic groups is inconsistent throughout the
literature. The first symplectic MLG we shall speak of is Sp(2n,R), defined to be real matrices
M ∈ GL(2n,R) which satisfy MTJM = J , where

J =

(
0n×n 1n×n
−1n×n 0n×n

)
. (1.56)

Note that J2 = −E. This is again a generalization of the orthogonality condition41. In counting
the dimension of Sp(2n,R), note that MTJM is a real, antisymmetric matrix of rank 2n. There
are then n2 conditions on the upper right n × n block, and 1

2n(n − 1) conditions on the above-
diagonal elements in each of the upper left and lower right blocks, for a grand total of n(2n − 1)
constraints on 4n2 elements, hence dimSp(2n,R) = n(2n + 1). At first sight, it might seem that
detM = ±1, but a nifty identity involving Pfaffians provides an further restriction. The Pfaffian of
any antisymmetric matrix B = −BT is defined as

PfB ≡ 1

2n n!

∑

σ∈S2n

sgn(σ)Bσ(1) σ(2) Bσ(3) σ(4) · · · Bσ(2n−1) σ(2n) . (1.57)

One can show that detB = (PfB)2. For our purposes, the following identity, which holds for any
invertible matrix A, is very useful:

Pf(ATJA) = (detA) (Pf J) . (1.58)

Setting A = M ∈ Sp(2n,R), we find detM = +1. This says that symplectic matrices are both
volume preserving as well as orientation preserving. Clearly any M ∈ Sp(2n,R) preserves the
bilinear form 〈x|J |y〉 =∑n

i=1(xi yi+n − xi+n yi), where 〈x|y〉 is the usual Euclidean dot product:

〈Mx |J |My 〉 = 〈x |MTJM |y 〉 = 〈x |J |y 〉 . (1.59)

The group Sp(2n,R) is noncompact. Note that we could reorder the row and column indices by

interleaving each group and instead define J to consist of repeating 2 × 2 blocks

(
0 1
−1 0

)
along

its diagonal, i.e. Jij = +1 if (i, j) = (2l − 1, 2l), and −1 if (i, j) = (2l, 2l − 1), and 0 otherwise.

The group Sp(2n,C) consists of all matrices Z ∈ GL(2n,C) satisfying ZTJZ = J . Note that it is still
the matrix transpose and not the Hermitian conjugate which appears in the first term. Sp(2n,C),

40Wikipedia tells us that the term ”symplectic” was coined by Hermann Weyl in an effort to obviate a previous terminological
confusion. It is a calque of the word ”complex”. A calque is a word-for-word or root-for-root translation of an expression
imported from another language. The word ”superconductor” is a calque from the Dutch supergeleider. ”Thought experi-
ment” of course calques the German Gedankenexperiment. ”Rest in peace” calques the Latin requiescat in pace. Hilariously,
French Canadian ”chien chaud” calques English hot dog. Prior to Weyl, what we call today the symplectic group Sp(2n,R)
was called the ”line complex group”. The English word ”complex” comes from the Latin com-plexus, meaning ”together
braided”. In Greek, this becomes συµπλεκτικoς , or sym-plektikos.

41The notion of symplectic structure is strongly associated with Hamiltonian mechanics, where phase space is even-
dimensional, consisting of n coordinates qσ and n conjugate momenta pσ. Defining the rank 2n vector ξT = (qT , pT) ,
the equations of motion are ξ̇j = Jij ∂H/∂ξj . A canonical transformation to a new set of generalized coordinates and
momenta Ξ must preserve this form of the equations of motion, which means that it must preserve the Poisson bracket
{A,B}ξ =

∑
i,j Jij(∂A/∂ξi)(∂B/∂ξj). Requiring {A,B}ξ = {A,B}Ξ then entails MTJM = J , where Mai = ∂Ξa/∂ξi is the

Jacobian of the transformation.
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like Sp(2n,R), is noncompact. Counting constraints, we have n2 complex degrees of freedom in
the upper right n × n block of the complex antisymmetric matrix ZTJZ , and 1

2n(n − 1) complex
freedoms above the diagonal in each of the upper left and lower right blocks, for a total of n(2n−1)
complex constraints on 4n2 complex entries in Z . Thus, the number of real degrees of freedom in
Sp(2n,C) is dimSp(2n,C) = 2n(2n+ 1), which is twice the dimension of Sp(2n,R).

There is also the group Sp(n) = Sp(2n,C) ∩ U(2n) , sometimes denoted USp(2n)42, because it is
isomorphic to the group of unitary symplectic matrices of rank 2n. One also has Sp(n) ∼= U(n,H),
the quaternionic unitary group of rank n. Sp(n) is compact and of real dimension n(2n+ 1).

Finally, consider the group G(2n) defined by

G(2n) =
{
M ∈ GL(n,C) |M †JM = J

}
, (1.60)

which is the group of conjugate symplectic matrices of rank 2n. If we define the unitary matrix

V ≡ 1√
2

(
1n×n 1n×n
i1n×n −i1n×n

)
, (1.61)

then we have that V †JV = iIn,n. Thus, defining M̃ = V †MV , we have

M̃ †In,n M̃ = V †M †(V In,nV †)MV = V †M †(− iJ
)
MV = −iV †JV = In,n , (1.62)

which says that M̃ ∈ U(n, n). Thus we have that G(2n) ∼= U(n, n).

Again, do not be surprised if in the literature you find different notation. Sometimes Sp(2n,R) is
abbreviated as Sp(2n), and sometimes even as Sp(n).

• Euclidean and Poincaré groups : The Euclidean group E(n) in n dimensions is the group of all
bijective, distance-preserving automorphisms43 of Rn. It can be shown that any element T ∈ E(n)
can be expressed as a rotation (proper or improper) followed by a translation. Thus each such T
may be represented as a rank n+ 1 real matrix,

T ≡ (d, R) =

(
R d

0 1

)
, (1.63)

where R ∈ O(n), d ∈ R
n is an n-component column vector, and 0 = (0 , . . . , 0) is an n-component

row vector. Clearly dimE(n) = dimO(n) + dimR
n = 1

2n(n + 1). Acting on the vector v ∈ R
n+1

whose transpose is vT = (x1, . . . , xn, 1
)
, one has

Tv =

(
R d

0 1

)(
x

1

)
=

(
Rx+ d

1

)
, (1.64)

Note that

T−1 =

(
R−1 −R−1d

0 1

)
= (−R−1d, R−1) . (1.65)

42Note that if G and H are both Lie groups, then their intersection G ∩H is also a Lie group.
43An endomorphism is a map from a set to itself. An invertible endomorphism is called an automorphism.
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The group multiplication rule is

(d2, R2)(d1, R1) =

(
R2 d2
0 1

)(
R1 d1
0 1

)
=

(
R2R1 R2d1 + d2
0 1

)
= (d2 +R2 d1, R2R1) . (1.66)

Note that E(n) is not simply a direct product of the orthogonal group O(n) and the group of
translations R

n (under addition), because (d2 , R2)(d1 , R1) 6= (d1 + d2, R2R1). Rather, we write
E(n) = R

n
⋊ O(n), which says that the Euclidean group is a semidirect product of Rn and O(n) (see

§1.5.3 below). Note that Rn ⊳ E(n), i.e. Rn is a normal subgroup, but O(n) is not a normal subgroup
of E(n).

To define the Poincaré group P(n, 1), simply increase the dimension to add a ’time’ coordinate. A
general element of P(n, 1) is written

(d, L) =

(
L d

0 1

)
, (1.67)

where L ∈ O(n, 1) and d ∈ R
n+1. The multiplication law is the same as that for E(n), and the

Poincaré group also has a semidirect product structure: P(n, 1) = R
n+1

⋊ O(n, 1) . Accordingly,
dimP(n, 1) = 1

2(n+ 1)(n + 2).

• Less common cases : One can define the complex orthogonal group O(n,C) as the set of matrices
W ∈ GL(n,C) such that W TW = E. This rarely arises in physical settings. Clearly detW = ±1,
and dimO(n,C) = n(n− 1). One can then restrict SO(n,C) to thoseW ∈ O(n,C) with determinant
one, with no further reduction in dimension. Personally I am not so sure that O(n,C) should be
counted as part of our big happy family of matrix Lie groups. He’s more like your weird hairy
uncle who lives in your grandparents’ basement apartment. We might include him, but only for
tax purposes44.

The subset of all matrices A ∈ GL(n,R) with Aij = 0 whenever i > j is an abelian Lie group
consisting of all real n×n upper triangular matrices. It is a good exercise to show how the inverse
of any given element may be constructed. The unitriangular group UT(n,R) is defined to be the
subgroup of GL(n,R) consisting of all matrices A for which Aij = 0 whenever i > j and Aii = 1.
That is, all the elements below the diagonal are 0, all the elements along the diagonal are 1, and all
the elements above the diagonal are arbitrary real numbers.

1.5.3 More on semidirect products

Given a group G with a subgroup H and a normal subgroup N ⊳ G, then G = N ⋊ H if and only
if G = NH where N ∩ H = {E}. This last condition is equivalent to requiring that for any g ∈ G,
there exist unique h ∈ H and n ∈ N such that g = nh.45 This may be taken as a definition of the
semidirect product. Although this subsection is located within the material on Lie groups, the notion of
semidirect product applies equally well to discrete groups. One can even form the semidirect product
of a continuous group with a discrete group.

44O(n,C) is very different from SU(n). For starters, O(n,C) is not compact.
45Or that g = hn, for that matter – but generally with different h and n, than in the decomposition g = nh, of course!
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More generally, though, let G and K be groups, and let ϕ : K × G → K with (k, g) → ϕg(k). The
semidirect product K ⋊ G with respect to ϕ is defined to be the set of elements (k, g) with k ∈ K and
g ∈ G subject to the multiplication law

(k2, g2) (k1, g1) =
(
k2 ϕg2(k1) , g2 g1

)
. (1.68)

One then has that K ⋊G satisfies the group axioms provided

ϕg(kk
′) = ϕg(k)ϕg(k

′) and ϕg
(
ϕg′(k)

)
= ϕgg′(k) , (1.69)

which are required for associativity of multiplication in K ⋊ G. Please note that there are three group
multiplication laws in play here: (i) multiplication in G (i.e. gg′), (ii) multiplication inK (i.e. kk′), and (iii)
multiplication in K ⋊G (i.e. Eqn. 1.69). Note also that ϕg(k)ϕg′(k

′) is the K-product of two elements of
K , i.e. ϕg(k) and ϕg′(k

′). In our example of E(n) = R
n
⋊ O(n), group multiplication in K = R

n is vector
addition, group multiplication in G = O(n) is matrix multiplication, and the map ϕ is matrix-vector
multiplication.

Consider the semidirect productG ≡ Zn⋊Z2 where Zn
∼= {E, r, . . . , rn−1}with rn = E and Z2

∼= {E, σ}
with σ2 = E. Now let ϕσ(r

ℓ) = σrℓσ act by conjugation46. To completely define ϕ, we must specify the
image of ϕσ(r

ℓ) = σrℓσ in Zn for each ℓ, and we choose σrℓσ = rn−ℓ = r−ℓ. Now I claim that G ∼= Dn ,
where the group isomorphism ψG → Dn maps (rℓ, E) ∈ G to rℓ ∈ Dn, and (rℓ, σ) ∈ G to rℓσ ∈ Dn .
Thus, the semidirect product of two abelian groups may be nonabelian, depending on the features of
the mapping ϕ.

1.5.4 Topology of the happy family

You already know that compact means ”closed and bounded” in the context of subsets of Rn, for ex-
ample. The same criteria may be applied to matrix groups. A matrix Lie group G is compact if the
following two conditions hold:

• If An ∈ G is a sequence in G which converges to some matrix A, then A ∈ G.

• There exists a positive real number C such that, for any A ∈ G, |Aij | < C for all i, j.

The first condition says G is closed, and the second condition says it is bounded.

Two other terms that pop up in describing continuous spaces are connected and simply connected. A con-
nected manifold is one where any two points may be joined by a continuous curve47. Any disconnected
Lie groupGmay be uniquely decomposed into a union of its components. The component which contains
the identity (there can be only one) is then a subgroup of G. The group O(n) is not connected, because
there is no continuous path in the space of orthogonal matrices which connects a proper rotation and an
improper rotation. Nor is GL(1,R), i.e. the group of nonzero real numbers under multiplication, because
the two components R+ and R− cannot be connected by a continuous path which goes not go through

46Note that σ−1 = σ.
47Topologists call this property path connectedness as opposed to connectedness per se, which is a somewhat weaker condition.

But it turns out that a matrix Lie group is connected if and only if it is path connected.
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Figure 1.4: The double torus, with fundamental group generators a1 (blue), b1 (orange), a2 (red), and b2
(purple).

zero. Thus, GL(1,R) has two components, as does O(n). For the same reason, GL(n,R) is also discon-
nected and breaks up into components with positive and negative determinant. If A(t) with t ∈ [0, 1] is
a smooth path in the space of n×n real matrices with detA(0) > 0 and detA(1) < 0, then by the interme-
diate value theorem there must be a t∗ ∈ [0, 1] for which detA(t∗) = 0, which means A(t∗) /∈ GL(n,R).
Note that GL(n,C) is connected for all n, because the determinant is complex, and we can always choose
a path connecting any two complex matrixes A(0) and A(1) which ”goes around” the the set of matrices
with detA = 0.

A simply connected manifold is one where every closed curve can be continuously contracted to a
point. The 2-sphere S2 and the 2-torus T 2 are both connected, but S2 is simply connected whereas T 2 is
not, since a closed path which has net winding around either (or both) of the toroidal cycles cannot be
continuously contracted to a point. The group of unimodular complex numbers under multiplication,
U(1), is isomorphic to a circle S1, with the identification of z = eiθ . Thus, it is the same group as the real
numbers modulo 1 under addition. Clearly the MLG U(1) is connected, but it is not simply connected,
since the path z(t) = e2πint for t ∈ [0, 1] winds n times around the circle and is non-contractable.

Continuous deformation of closed loops on any manifoldM allows us to define equivalence classes of
loops. Two loops are in the same equivalence class if they can be smoothly deformed into one another.
These loop equivalence classes themselves form a group, where the group operation is defined by at-
taching loops to each other. The inverse of a given loop is that same loop executed in reverse. This group
of loop equivalence classes is called the fundamental group (or first homotopy group) of the manifold, and
is denoted π1(M). If M is simply connected, π1(M) is trivial. Else π1(M) may be either abelian or
nonabelian. Clearly π1(S

1) ∼= Z, as closed loops on the circle may be classified by their winding number,
and paths of different winding number cannot be continuously deformed into one another. One has
π1(T

2) ∼= Z × Z, but the fundamental group of the double torus, which is to say a torus with an extra
handle48 (see Fig. 1.4), is an infinite nonabelian group with the presentation

〈
a1, b1, a2, b2

∣∣ a1 b1 a−1
1 b−1

1 a2 b2 a
−1
2 b−1

2

〉
. (1.70)

One sometimes sees the notation π0(M), apparently denoting the ”zeroth homotopy group” ofM. This

48The double torus is a Riemann surface of genus g = 2. It resembles some sort of exotic breakfast pastry.
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G compact? π0(G) π1(G) G compact? π0(G) π1(G)

GL(n,R) no 2 − GL(n,C) no 1 Z

Sp(2n,R) no 1 Z Sp(2n,C) no 2 −
SL(n,R) (n ≥ 3) no 1 Z2 SL(n,C) no 1 {1}

SL(2,R) no 1 Z SO(2) yes 1 Z

O(n) yes 2 − SO(n) (n ≥ 3) yes 1 Z2

U(n) yes 1 Z SU(n) yes 1 {1}
Sp(n) yes 1 {1} UT(n,R) yes 1 {1}

SO(n, 1) no 2 − O(n, 1) no 4 −
E(n) no 2 − P(n, 1) no 4 −

Table 1.7: Topological properties of matrix Lie groups.

is a misnomer, since π0(M) is not a group, but rather a set, corresponding to the connected components
ofM. The order of this set is the number of connected components, and it is convenient to simply define
π0(M) to be this number. Thus π0

(
O(n)

)
= 2, corresponding to the proper and improper rotations. Tab.

1.7 summarizes the topological properties of our happy family of matrix Lie groups49.

Finally, consider the familiar case of SO(3), which consists of rotations in three dimensional Euclidean
space by an angle ξ about an axis n̂ ∈ S2. Thus, each pair (ξ, n̂) labels an element g(ξ, n̂) ∈ SO(3). If
we let ξ ∈ [0, 2π) , then we have g(2π− ξ,−n̂) = g(ξ, n̂), which means that points in the group manifold
with (ξ′, n̂′) = (2π−ξ,−n̂) are identified. Now we might as well do away with all values of ξ greater than
π, since they are all redundant labels, and take ξ ∈ [0, π] . The group manifold of SO(3) is then a solid
sphere in R

3 of radius π, with the following important distinction: antipodal points on the boundary are
identified: g(π, n̂) = g(π,−n̂) . This means that SO(3) is not simply connected, as shown in Fig.. 1.5.

1.5.5 Matrix exponentials and the Lie algebra

Another mathy definition:

DEFINITION : The Lie algebra g of a matrix Lie group G is the set of all matrices X such that
exp(tX) ∈ G for all t ∈ R. Alternatively, g is the tangent space to G at its identity E, i.e. the set
of derivatives of all smooth curves in G passing through E.

I’m assuming you all know that the matrix exponential exp(X) is defined through its Taylor series, which
is convergent for any real or complex matrix X. You should also know that for any matrix function f(A)
with a convergent power series expansion, one has

C−1f
(
A
)
C = f

(
C−1AC

)
,
[
f(A)

]
T
= f

(
AT
)

,
[
f(A)

]∗
= f∗

(
A∗) , (1.71)

49A topologist, it is said, is someone who is unable to distinguish between a donut and a coffee cup.
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Figure 1.5: The fundamental group of SO(3) is Z2. Left: a contractible loop. Center: another contractible
loop. Points A and A′ are identified, as are B and B′. If B is moved toward A along the boundary, then
B′ moves toward A′. Right: a noncontractible loop. Points C and C′ are identified, and the blue path
connecting them is a non-contractable loop. In all cases, the black sphere corresponds to group elements
with ξ = π and different values of n̂.

where f∗(X) is defined by the same power series as f(X), after complex conjugation of all the coeffi-
cients. In particular, the above are all true for f(X) = exp(X). Another handy True Fact is that for any
nonsingular matrix A, ln detA = Tr lnA.

Warning! Physicists generally define the Lie algebra g of G from the map X → exp(−itX) rather than
X → exp(tX). We will hold by the math convention for now.

We now state three Important Facts about matrix Lie algebras:

(i) If X,Y ∈ g then αX + βY ∈ g where α and β are scalars in some field F.

(ii) If X,Y ∈ g then [X,Y ] = XY − Y X ∈ g .

(iii) The Jacobi identity holds for all X,Y,Z ∈ g :

[
X, [Y,Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0 . (1.72)

We won’t prove any of these50. The first says that g is a vector space over the field F. The second
introduces the Lie bracket [•, •] , known to us physicists as the commutator, and says that g is closed
under the bracket. The third follows from the definition of the Lie bracket51.

To provide some motivation to the second Important Fact, consider the product eX eY using Dynkin’s

50See Hall §3.3 for the proofs.
51The formal definition of a finite-dimensional real/complex Lie algebra is a finite-dimensional real/complex vector space g

together with a map [•, •] from g × g into g called the Lie bracket, such that (i) [•, •] is bilinear, (ii) [X, Y ] = −[Y,X] for all
X,Y ∈ g , and (iii)

[
X, [Y,Z]

]
+

[
Y, [Z,X]

]
+

[
Z, [X,Y ]

]
for all X,Y, Z ∈ g . For Lie algebras of matrix Lie groups, the Lie

bracket is the commutator.
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expression of the Baker-Campbell-Hausdorff (BCH) formula52,

ln
(
eX eY ) =

∞∑

n=1

(−1)n−1

n

∑

r
1
,s
1

r
1
+s

1
>0

· · ·
∑

rn,sn
rn+sn>0

[
Xr1Y s1Xr2Y s2 · · ·XrnY sn

]
∑n

i=1(ri + si) ·
∏n
j=1 rj! sj !

, (1.73)

where

[
Xr1Y s1Xr2Y s2 · · ·XrnY sn

]
=
[
X,
[
X, · · ·

[
X

︸ ︷︷ ︸
r1

,
[
Y,
[
Y, · · ·

[
Y

︸ ︷︷ ︸
s1

, · · ·
[
X,
[
X, · · ·

[
X

︸ ︷︷ ︸
rn

,
[
Y,
[
Y, · · ·

[
Y

︸ ︷︷ ︸
sn

]]
· · ·
]]

.

(1.74)
Thus,

exp(X) exp(Y ) = exp

(
X + Y + 1

2

[
X,Y

]
+ 1

12

[
X,
[
X,Y

]]
+ 1

12

[
Y,
[
Y,X

]]
+ . . .

)
. (1.75)

Notice that every term inside the round bracket on the RHS, other than X + Y , is formed from nested
commutators. Thus if [X,Y ] ∈ g for all X,Y ∈ g , then the product eX eY = eZ with Z ∈ g.

Why should we care about Lie algebras?

Why are we interested in Lie algebras to begin with? Aren’t their corresponding Lie groups enough?
One reason is that Lie algebras describe the infinitesimal form of continuous symmetries53. A Lie algebra
g is the linearization of a Lie groupG. In this sense, Lie algebras are much simpler than Lie groups because
they describe only the latter’s tangent space in the vicinity of its identity. Mathematically, Lie groups
are homogeneous structures in which any given point locally ”looks like” any other point: if g is in the
neighborhood of g0 , then h ≡ gg−1

0 h0 is in the neighborhood of h0
54. Thus, from an understanding

of g , we can deduce almost all the properties of G itself55. The inverse of linearization, which takes us
from g to G , is the exponential map. Since algebras are vector spaces, we may apply in the study of Lie
algebras many of the powerful tools of linear algebra, such as basis vectors and inner products. For two

infinitesimal group operations g = eǫX and h = eǫY , their product is gh = eǫ(X+Y )+O(ǫ2). Thus, group
composition of two elements in the vicinity of the identity corresponds to simple vector addition in the
Lie algebra! However, when we evaluate the group commutator 〈g, h〉 = g−1h−1gh, we find that the
O(ǫ) term vanishes, and

e−ǫXe−ǫY eǫXeǫY = exp
(
ǫ2[X,Y ] +O(ǫ3)

)
. (1.76)

Thus consideration of the infinitesimal group commutator 〈•, •〉 requires the introduction of additional
structure in the linear vector space of g , i.e. the notion of the Lie bracket.

52See https://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula .
53In physics, much useful information is deduced from the consideration of infinitesimal continuous symmetries. For example,

the existence of conserved currents via Noether’s theorem.
54For this reason, the properties of the neighborhood of any point in G are reduced to a study of the properties of the neigh-

borhood of E, which is to say the Lie algebra g of G.
55One obvious thing we can’t infer from g is whether G has any disconnected parts. The Lie algebras corresponding to O(n)

and SO(n) are both o(n).

https://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula
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Some concrete examples of Lie algebras

GL(n,R) : The Lie algebra gl(n,R) is the set of all real n × n matrices. Similarly, gl(n,C) is the set of all
complex n× n matrices.

SL(n,R) : Adding the determinant condition puts a restriction on sl(n,R) , namely that det exp(tX) = 1.
Taking the logarithm, we obtain the condition TrX = 0. Hence sl(n,R) is the set of all real traceless n×n
matrices. And of course sl(n,C) is the set of all complex traceless n× n matrices.

O(n) : Now we demand exp(tXT) exp(tX) = E , hence exp(tXT) = exp(−tX) . Taking the logarithm,
we obtain XT = −X. Thus, o(n) is the set of all real antisymmetric n× n matrices. This is easy!

U(n) : Mutatis mutandis, u(n) consists of the set of complex antihermitian n× n matrices, i.e. matrices A
for which Aji = −A∗

ij .

Sp(2n,R) : We require exp(tXT)J exp(tX) = J . Multiplying on the right by − exp(−tX)J , we obtain
exp(tXT) = −J exp(−tX)J = exp(tJXJ), since J−1 = −J . Thus, we arrive at the condition XT = JXJ
for any real n× n matrix X ∈ sp(2n,R). It is straightforward to show that this means X is of the form

X =

(
A B
C −AT

)
, (1.77)

where A is an arbitrary n × n matrix, and B = BT and C = CT are arbitrary symmetric n × n matrices.
The same conditions hold for any complex n × n matrix X ∈ sp(2n,C). Finally, we may conclude
sp(n) = sp(2n,C) ∩ u(2n).

1.5.6 Structure constants

We noted above that the Lie algebra g of a matrix Lie groupG is the set of all smooth curves in G passing
through the identity E. Consider, for example, the group SL(2,R) , which is of real dimension three. In
the vicinity of the identity, we can write

g(x1, x2, x3) =

(
1 + x1 x2

x3 1+x2x3

1+x1

)
. (1.78)

One can check by inspection that det g(x1, x2, x3) = 1 and that g(0, 0, 0) = E. Now expand in the three
local coordinates {x1, x2, x3} :

g(x1, x2, x3) =

(
1 0
0 1

)
+

(
1 0
0 −1

)
x1 +

(
0 1
0 0

)
x2 +

(
0 0
1 0

)
x3 +O(x2)

≡ E +

3∑

a=1

xaXa +O(x2) ,

(1.79)

where

X1 =

(
1 0
0 −1

)
, X2 =

(
0 1
0 0

)
, X3 =

(
0 0
1 0

)
(1.80)
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are a set of generators for the Lie algebra sl(2,R) which may be taken as basis vectors in the vector space
of that algebra. Note in general that if {Xa} are taken as a set of basis vectors for some Lie algebra g
that we may write exp(xaXa) exp(y

aXa) = exp(zaXa), where z = z(x, y), which follows from Dynkin’s
version of BCH.

Can we reconstruct the Lie group G from its Lie algebra g ? Not always. By employing exponentiation,
we can form the group consisting of all matrices of the form exp(xaXa) (note summation convention
here). For sl(n,R), there are a total of n2−1 generators, and via exponentiation we can indeed reconstruct
all of SL(n,R). But suppose we try to do this with o(n) and O(n). In that case the generators are a
1
2n(n − 1) element basis of real traceless antisymmetric matrices, hence det exp(xaXa) = 1, and we are
missing the improper rotations. So via exponentiation, we can in general only reconstruct from g alone
the component of G which contains the identity E.

Since each Lie algebra g is closed under the action of the Lie bracket (commutation), the generators Xa

must satisfy [
Xa,Xb

]
= C c

ab Xc , (1.81)

for some sets of numbers C c
ab , which are called the structure constants of the Lie algebra. Note that

C c
ab = −C c

ba owing to the antisymmetry of the Lie bracket. Taking, for example, the three generators
of sl(2,R) from Eqn. 1.80, one finds

[
X1,X2

]
= 2X2,

[
X1,X3

]
= −2X3, and

[
X2,X3

]
= X1. Thus

C 2
12 = −C 2

21 = 2, C 3
13 = −C 3

31 = −2, and C 1
23 = −C 1

32 = 1, with all other Cabc = 0. Again, in the
physics literature one generally finds this written as

[
T a, T b

]
= if c

ab T c for the generators {T a}, where
Xa = −iT a and f c

ab = C c
ab .

Since g is a vector space, any complete and linearly independent set of generators will do. For example,
we could have chosen

X1 =

(
1 0
0 −1

)
, X2 =

(
0 1
1 0

)
, X3 =

(
0 1
−1 0

)
, (1.82)

in which case one finds the nonzero structure constants C 3
12 = 2, C 2

13 = −2, and C 1
32 = −2. In

addition, we could have multiplied each of the generators by an arbitrary nonzero scale factor, with cor-
responding consequences for the C c

ab . One way to mitigate this ambiguity is to choose a normalization
condition for the generators, such as

Tr
(
XaXb

)
= λa δ

ab (no sum) . (1.83)

If the Lie algebra is semisimple, one can further restrict |λa| = 1 for all a, but we cannot change the sign
of any of the λa.

One last tidbit: As a consequence of the Jacobi identity, the structure constants obey the relation

C d
bc C e

da + C d
ab C e

dc + C d
ca C e

db = 0 . (1.84)

Thus, if we define the matrices X c
ab ≡ −C c

ab , Eqn. 1.84 may be written as

−X d
bc X e

ad − C d
ab X e

dc +X d
ac X e

bd = 0 , (1.85)

which says
[
Xa,Xb

]
ce

= C d
ab

(
Xd

)
ce

, i.e.
[
Xa,Xb

]
= C c

ab Xc . In other words, the structure constants
themselves generate a representation of the algebra, called the adjoint representation. For example, if we
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choose the structure constants computed from Eqn. 1.82, we obtain the 3× 3 representation

X1 =



0 0 0
0 0 −2
0 2 0


 , X2 =



0 0 2
0 0 0
2 0 0


 , X3 =




0 −2 0
−2 0 0
0 0 0


 . (1.86)

One can then check
[
Xa,Xb

]
= C c

ab Xc .

1.6 Appendix : Ideal Bose Gas Condensation

We begin with the grand canonical Hamiltonian K = H − µN for the ideal Bose gas,

K =
∑

k

(εk − µ) b†kbk −
√
N
∑

k

(
νk b

†
k + ν̄k bk

)
. (1.87)

Here b†k is the creation operator for a boson in a state of wavevector k, hence
[
bk , b

†
k′

]
= δ

kk′ . The
dispersion relation is given by the function εk, which is the energy of a particle with wavevector k. We
must have εk − µ ≥ 0 for all k, lest the spectrum of K be unbounded from below. The fields {νk, ν̄k}
break a global O(2) symmetry.

Students who have not taken a course in solid state physics can skip the following paragraph, and be
aware that N = V/v0 is the total volume of the system in units of a fundamental ”unit cell” volume v0 .
The thermodynamic limit is then N → ∞. Note that N is not the boson particle number, which we’ll
call Nb.

Solid state physics boilerplate : We presume a setting in which the real space Hamiltonian is defined
by some boson hopping model on a Bravais lattice. The wavevectors k are then restricted to the first
Brillouin zone, Ω̂, and assuming periodic boundary conditions are quantized according to the condition
exp
(
iNl k · al

)
= 1 for all l ∈ {1, . . . , d}, where al is the lth fundamental direct lattice vector and Nl is

the size of the system in the al direction; d is the dimension of space. The total number of unit cells is
N ≡ ∏lNl . Thus, quantization entails k =

∑
l(2πnl/Nl) bl , where bl is the lth elementary reciprocal

lattice vector (al ·bl′ = 2πδll′) and nl ranges overNl distinct integers such that the allowed k points form

a discrete approximation to Ω̂ .

To solve, we first shift the boson creation and annihilation operators, writing

K =
∑

k

(εk − µ)β†kβk −N
∑

k

|νk|2
εk − µ

, (1.88)

where

βk = bk −
√
N νk

εk − µ
, β†k = b†k −

√
N ν̄k

εk − µ
. (1.89)

Note that
[
βk , β

†
k′

]
= δ

kk′ so the above transformation is canonical. The Landau free energy Ω =

−kBT lnΞ , where Ξ = Tr e−K/kBT , is given by

Ω = NkBT

∞∫

−∞

dε g(ε) ln
(
1− e(µ−ε)/kbT

)
−N

∑

k

|νk|2

εk − µ
, (1.90)
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where g(ε) is the density of energy states per unit cell,

g(ε) =
1

N

∑

k

δ
(
ε− εk

)
−−−−→
N→∞

v0

∫

Ω̂

ddk

(2π)d
δ
(
ε− εk

)
. (1.91)

Note that

ψk ≡
1√
N

〈
bk
〉
= − 1

N

∂Ω

∂ν̄k
=

νk
εk − µ

. (1.92)

In the condensed phase, ψk is nonzero.

The Landau free energy (grand potential) is a function Ω(T,N, µ, ν, ν̄). We now make a Legendre trans-
formation,

Y (T,N, µ, ψ, ψ̄) = Ω(T,N, µ, ν, ν̄) +N
∑

k

(
νkψ̄k + ν̄kψk

)
. (1.93)

Note that
∂Y

∂ν̄k
=
∂Ω

∂ν̄k
+Nψk = 0 , (1.94)

by the definition of ψk. Similarly, ∂Y/∂νk = 0. We now have

Y (T,N, µ, ψ, ψ̄) = NkBT

∞∫

−∞

dε g(ε) ln
(
1− e(µ−ε)/kbT

)
+N

∑

k

(εk − µ) |ψk|2 . (1.95)

Therefore, the boson particle number per unit cell is given by the dimensionless density,

n =
Nb

N
= − 1

N

∂Y

∂µ
=
∑

k

|ψk|2 +
∞∫

−∞

dε
g(ε)

e(ε−µ)/kBT − 1
, (1.96)

and the relation between the condensate amplitude ψk and the field νk is given by

νk =
1

N

∂Y

∂ψ̄k

= (εk − µ)ψk . (1.97)

Recall that νk acts as an external field. Let the dispersion εk be minimized at k = K . Without loss of
generality, we may assume this minimum value is εK = 0 . We see that if νk = 0 then one of two must
be true:

(i) ψk = 0 for all k

(ii) µ = εK , in which case ψK can be nonzero.

Thus, for ν = ν̄ = 0 and µ > 0, we have the usual equation of state,

n(T, µ) =

∞∫

−∞

dε
g(ε)

e(ε−µ)/kBT − 1
, (1.98)
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which relates the intensive variables n, T , and µ. When µ = 0, the equation of state becomes

n(T, µ = 0) =

n0︷ ︸︸ ︷∑

K

|ψK |2 +

n>(T )︷ ︸︸ ︷
∞∫

−∞

dε
g(ε)

eε/kBT − 1
, (1.99)

where now the sum is over only those K for which εK = 0 . Typically this set has only one member,
K = 0, but it is quite possible, due to symmetry reasons, that there are more such K values. This last
equation of state is one which relates the intensive variables n, T , and n0 , where

n0 =
∑

K

|ψK |2 (1.100)

is the dimensionless condensate density. If the integral n>(T ) in Eqn. 1.99 is finite, then for n > n0(T )
we must have n0 > 0. Note that, for any T , n>(T ) diverges logarithmically whenever g(0) is finite. This
means that Eqn. 1.98 can always be inverted to yield a finite µ(n, T ), no matter how large the value of n,
in which case there is no condensation and n0 = 0. If g(ε) ∝ εα with α > 0, the integral converges and
n>(T ) is finite and monotonically increasing for all T . Thus, for fixed dimensionless number n, there
will be a critical temperature Tc for which n = n>(Tc). For T < Tc , Eqn. 1.98 has no solution for any µ
and we must appeal to eqn. 1.99. The condensate density, given by n0(n, T ) = n− n>(T ) , is then finite
for T < Tc , and vanishes for T ≥ Tc .

In the condensed phase, the phase of the order parameter ψ inherits its phase from the external field ν,
which is taken to zero, in the same way the magnetization in the symmetry-broken phase of an Ising
ferromagnet inherits its direction from an applied field h which is taken to zero. The important feature
is that in both cases the applied field is taken to zero after the approach to the thermodynamic limit.



Chapter 2

Theory of Group Representation

2.1 Basic Definitions

This chapter is not about the legalities of class action lawsuits. Rather, when we speak of a group repre-
sentation, we mean a map from the space of elements of some abstract group G to a space of operators
D̂(G) which act linearly on some vector space V . The fancy way to say this is that a representation is a
map from G to End(V), the space of endomorphisms of V .1

2.1.1 Group elements cry out for representation

Check it:

DEFINITION : Let G be a group and let V be a vector space. A linear representation2 of G is a homo-
morphism D̂ : G 7→ End(V) . The dimension of the representation is dim(V). The representation is
faithful if D̂(G) is an isomorphism. Otherwise it is said to be degenerate.

In plain English: each group element g ∈ G maps to an operator3 D̂(g) which acts on the vector space V .
For us, V will be a finite-dimensional subspace of the full Hilbert spaceH, for some quantum mechanical
Hamiltonian, which transforms into itself under symmetry group operations. If V is n-dimensional, we

can choose a basis
{
| ei 〉

}
with i ∈ {1, . . . , n}. The action of D̂(g) on each basis state is given by

D̂(g) | ek 〉 = | ei 〉D
(n)
ik (g) , (2.1)

where D(n)(g) ∈ GL(n,C) is an n × n matrix. That D̂ is a homomorphism means D̂(g) D̂(g′) = D̂(gg′),
which entails D(n)(g)D(n)(g′) = D(n)(gg′).̇ We shall interchangeably refer to both D̂(G) as well as

1An endomorphism is a map from a set to itself. An automorphism is an invertible endomorphism.
2We use the term ”linear representation” to distinguish it from what is called a ”projective representation”, which we introduce
in §2.1.5. Most of the time we shall abbreviate the former as simply ”representation”.

3Here and henceforth we shall endeavor to properly attire all our operators with stylish hats.

45
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D(n)(G) as representations, though formally one is in terms of operators acting on V and the other in
terms of matrices, which presumes some choice of basis for V . If the representation is unitary, we may
write it as Û(G).

2.1.2 Equivalent and reducible representations

LetD(n)(G) and D̃(n)(G) be two n-dimensional matrix representations ofG, and suppose ∃ S ∈ GL(n,C)

such that D̃(n)(g) = S−1D(n)(g)S for all g ∈ G. Then D and D̃ are said to be equivalent representations.

How can we test for equivalence? One diagnostic we can apply is based on the identity Tr (S−1AS) =
TrA. We call

χ(g) ≡ TrD(g) (2.2)

the character of g in the representation D(G). Note that all group elements in a given equivalence class
have the same character, because χ(h−1gh) = χ(g). So one thing we can say at this point is that if the

characters of the same class differ in D and D̃, then the representations are not equivalent.

Now let’s talk about reducibility. Two definitions:

DEFINITION : Let D̂(G) be a representation of G acting on the vector space V . A subspace V1 ⊂ V
is invariant if D̂(g) |ψ〉 ∈ V1 ∀ |ψ〉 ∈ V1 . An invariant subspace is called minimal (or proper) if it
contains no nontrivial invariant subspaces4.

DEFINITION : A representation D̂(G) acting on V is irreducible if there is no nontrivial invariant sub-
space V1 ⊂ V under the action of D̂(G). Otherwise the representation is reducible. If the orthogonal
complement5 V⊥1 is also invariant, the representation is said to be fully reducible.

What does reducibility entail for a matrix representation D(n)(G)? Let the reducible subspace V1 be

spanned by vectors
{
|e1〉 , . . . , |en1

〉
}

, with its complement V⊥1 spanned by
{
|en1+1〉 , . . . , |en1+n2

〉
}

,
where n1 + n2 ≡ n = dim(V). According to Eqn. 2.1, we must have

D(n)(g) =



D(n1)(g) C(n1,n2)(g)

0 D(n2)(g)


 (2.3)

where D(n1)(G) and D(n2)(G) are each smaller matrix representations of G, and, adopting an obvious
and simplifying notation,

C(gh) = D1(g)C(h) + C(g)D2(h) , (2.4)

with C(E) = 0. Note that transitivity is then satisfied, i.e.

C(ghk) = D1(gh)C(k) + C(gh)D2(k)

= D1(g)C(hk) + C(g)D2(hk)

= D1(gh)C(k) +D1(g)C(h)D2(k) + C(g)D2(hk) .

(2.5)

4I.e. no invariant subspaces other than V1 itself and the null vector {0}.
5An unexpected and out-of-context accolade. For example, ”Get the hell out of this lane before we run into that truck!!” followed
by ”Dude, those are really nice cufflinks.”
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If V⊥1 is invariant, then C(n1,n2)(g) = 0 for all g and D(n)(G) is block diagonal, meaning that D(n)(G) is
fully reducible.

We may now prove the following theorem:

⋄ Any unitary representation D̂(G) that is reducible is fully reducible.

The proof is trivial. In Eqn. 2.3, the upper right n1 × n2 rectangular block of D†D = 1 is D†
1 C = 0. But

D1 is invertible, hence C = 0. Full reducibility means that we can express any unitary representation as
a direct sum over irreducible representations, viz.

D(g) =

nΓ
1
times

︷ ︸︸ ︷
DΓ1(g) ⊕ · · · ⊕DΓ1(g) ⊕

nΓ
2
times

︷ ︸︸ ︷
DΓ2(g)⊕ · · · ⊕DΓ2(g) ⊕ · · ·

=
⊕

Γ

nΓ D
Γ (g) ,

(2.6)

where each irreducible representation Γj appears n(Γj) ≡ nΓj
times. If we call D(g) ≡ DΨ(g) the matrix

of g in the Ψ representation, then the reduction of Ψ is

Ψ = nΓ1
Γ1 ⊕ nΓ2

Γ2 ⊕ · · · . (2.7)

2.1.3 Conjugate and adjoint representations

If the matrices D(G) form a representation Γ of the group G, then their complex conjugates D(G)∗ also
form a representation of G, which we call Γ ∗, called the conjugate representation of Γ . This is because,
defining D∗(g) = [D(g)]∗,

D∗(g)D∗(h) =
[
D(g)D(h)

]∗
= D∗(gh) . (2.8)

If D(G) is a real representation, then Γ ∗ ∼= Γ .

Similarly, the matrices [D(G)T]−1, i.e. the inverse transposes of D(G), also form a representation, called
the adjoint representation of Γ . This is because, with DT(g) ≡ [D(g)]T and D(g) ≡ [DT(g)]−1,

D(g)D(h) = [DT(g)]−1[DT(h)]−1 = [DT(h)DT(g)]−1 =
[
[D(g)D(h)]T

]−1
= [DT(gh)]−1 = D(gh) . (2.9)

Note that for unitary representations, the complex and adjoint representations are one and the same.

It is left as an exercise to the student to prove that D(G), D∗(G), and D(G) are either all reducible or all
irreducible.

2.1.4 Unitary representations of finite groups

So it turns out that every representation D(n)(G) of a finite group is equivalent to a unitary representa-
tion. To show this, we need to find an invertible matrix S such that S−1D(n)(g)S ∈ U(n) for all g ∈ G. It
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almost seems too much to ask, but as we’re about to see, it is quite easy to construct such an S. We’ll sup-
press the superscript on D(n)(g) and remember throughout that we are talking about an n-dimensional
representation.

Start by forming the matrix

H =
∑

g∈G
D†(g)D(g) . (2.10)

Clearly H = H† is Hermitian, which means it can be diagonalized by a unitary matrix V ∈ U(n). We
write

V †HV = Λ = diag(λ1, . . . , λn) , (2.11)

with λj > 0 for all j (you should prove this). Now define D̃(g) = V †D(g)V , in which case

Λ = V †HV =
∑

g∈G
D̃†(g) D̃(g) , λk =

∑

g∈G

n∑

l=1

∣∣D̃lk(g)
∣∣2 . (2.12)

We may now form the matrices Λ±1/2, and define

B(g) = Λ1/2 D̃(g)Λ−1/2 . (2.13)

We now show that B(g) is unitary for all g:

B†(g)B(g) = Λ−1/2 D̃†(g)ΛD̃(g)Λ−1/2 = Λ−1/2
∑

h∈G
D̃†(g) D̃†(h) D̃(h) D̃(g)Λ−1/2

= Λ−1/2

Λ︷ ︸︸ ︷∑

h∈G
D̃†(hg) D̃(hg) Λ−1/2 = 1 ,

(2.14)

where we have invoked the rearrangement theorem to write the sum over all hg for fixed g as a sum
over group elements. So we have shown B(g) = S−1D(g)S is unitary for all g, with S = VΛ−1/2. Note
that not all symmetries can be realized unitarily. For example, time-reversal, which we shall discuss in
due time, is an anti-unitary symmetry.

The above proof relies on the convergence of the sum for H in Eqn. 2.10. For discrete groups of finite
order, or for compact continuous (Lie) groups, this convergence is guaranteed. But for groups of infinite
order or noncompact Lie groups, convergence is not guaranteed. The Lorentz group, for example, has
nonunitary representations.

2.1.5 Projective representations

I highly recommend you skip this section.

What? You’re still here? OK, but strap in as we introduce the concept of a projective representation6 . In a
projective representation, the multiplication rule is preserved up to a phase, i.e.

D̂(g) D̂(h) = ω(g, h) D̂(gh) , (2.15)

6I am grateful to my colleague John McGreevy for explaining all sorts of crazy math shit to me.
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where ω(g, h) ∈ C for all g, h ∈ G is called a cocycle. Hence D̂(G) is no longer a homomorphism. We still
require associativity, meaning

D̂(g) D̂(h) D̂(k) =
[
D̂(g) D̂(h)

]
D̂(k) = ω(g, h) D̂(gh) D̂(k) = ω(g, h)ω(gh, k) D̂(ghk)

= D̂(g)
[
D̂(h) D̂(k)

]
= ω(h, k) D̂(g) D̂(hk) = ω(g, hk)ω(h, k) D̂(ghk) , (2.16)

which therefore requires
ω(g, h)

ω(h, k)
=
ω(g, hk)

ω(gh, k)
. (2.17)

Perhaps the simplest discrete example is that of the abelian group Z2×Z2 , which consists of the elements{
E, σ, τ, στ

}
, with σ2 = τ2 = E and στ = τσ. Consider now the projective representation where

D(σ) = Z =

(
1 0
0 −1

)
, D(τ) = X =

(
0 1
1 0

)
, D(στ) = iY ≡ Λ =

(
0 1
−1 0

)
, (2.18)

where X,Y,Z are the familiar Pauli matrices, and D(E) is of course the 2 × 2 identity matrix. Then
ω(σ, τ) = ω(σ, στ) = ω(στ, τ) = 1 but ω(τ, σ) = ω(στ, σ) = ω(τ, στ) = −1. Below we shall find that rep-
resentation of abelian groups are always one-dimensional. Not so for projective representations! Here
we have an example of an abelian group with a two-dimensional irreducible projective representation.
Incidentally, we can lift the projective representation to a conventional linear representation, of a differ-

ent group G̃, acting on the same two-dimensional vector space. G̃ is called a central extension of G.7 In

our case, G̃ ⊂ SU(2) consists of the eight elements
{
± E, ±Z, ±X ±Λ

}
, with the multiplication table

given by
(±E)2 = (±Z)2 = (±X)2 = E , (±Λ)2 = −E (2.19)

and
ZX = −XZ = Λ , ZΛ = −ΛZ = X , ΛX = −XΛ = Z . (2.20)

Clearly G̃ is nonabelian, and as we remarked in chapter 1, there are only two distinct nonabelian groups

of order eight. So G̃ must either be the dihedral group D4 or the quaternion groupQ. You should figure
out which one it is for yourself before proceeding to the next paragraph.

To be more clear, an extension G̃ of a group G by an abelian group A is given by an exact sequence of
homomorphisms,

1 A G̃ G 1 .
ψ π (2.21)

Exactness means that the kernel of every map in the sequence is the image of the map which precedes

it, and that ψ is injective while π is surjective. Furthermore im(ψ) ⊳ G̃, i.e. the image of ψ in G̃ is a normal

subgroup. The extension is said to be central if im(ψ) ⊆ Z(G̃), i.e. if the image ψ(A) lies within the center

of G̃. The first map in the sequence, 1 −→ A, is a trivial injection of the one element group Z1 = {1} to
the identity in A (it is so trivial we don’t bother distinguishing it with a name). Similarly the last map
G −→ 1 is the trivial surjection onto Z1.

In our previous example, the group G = Z2 × Z2 is lifted to G̃ = D4 by means of the abelian group
A = Z2. Thus, let Z2 = {1,m} , Z2 × Z2 = {1, τ, σ, στ}, and D4 = {E,−E,Λ,−Λ,X,−X,Z,−Z}. We

7For example, the central extension for UCSD is 858-534-2230.
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write the exact sequence vertically from top to bottom, and next to it the action of the maps ψ and π on
the group elements, as well as the trivial initial injection and final surjection from/to the group Z1 :

1

Z2

D4 :

Z2 × Z2

1

ψ

π

1

E m

E −E Λ −Λ X −X Z −Z

E E στ στ τ τ σ σ

1 1 1 1 1 1 1 1

ψ ψ

π π π π π π π π

A central extension is not necessarily unique. For example, Z2 × Z2 can also be lifted via Z2 to the
quaternion group Q.

Student exercise : Check that all this stuff works out. I.e. that ψ and π are group homomorphisms, that

im(ψ) = ker(π), that im(ψ) ⊳ G̃, etc.

One can also have projective representations of continuous groups. Consider, for example, the case of
U(1) ∼= O(2). The group elements are labeled by points z ∈ S1 which live on the circle, i.e. unimodular(
|z| = 1

)
complex numbers. I.e. z = eiθ with θ ∈ [ 0, 2π), which is called the fundamental domain of θ. Let

us represent U(1) projectively, via Û(θ) = exp(iqθ) where q ∈ Z+ 1
2 , i.e. q is a half odd integer. Now let’s

multiply. At first it might seem quite trivial: Û(θ) Û(θ′) = Û(θ + θ′). What could possibly go wrong? Well,
the problem is that θ + θ′ doesn’t always live in the fundamental domain. The group operation on the
original U(1) should be thought of as addition of the angles modulo 2π, in which case

Û(θ) Û(θ′) = ω(θ, θ′) Û(θ + θ′ mod 2π) , ω(θ, θ′) =

{
+1 if 0 ≤ θ + θ′ < 2π

−1 if 2π ≤ θ + θ′ < 4π .
(2.22)

We saw above how each element of Z2×Z2 could be associated with two elements in its central extension
D4 via the lift (E, σ, τ, στ) → (±E,±Z,±X,±Λ). One could loosely say that D4 is a ”double cover” of
Z2 × Z2. The collocation covering group refers to the central extension of a Lie group. For example, the
group SU(2) is a double cover of SO(3) , because each matrix R ∈ SO(3) can be assigned to two matrices
±U in SU(2). Accordingly, SO(3) can be projectively represented by SU(2). To see the double cover
explicitly, let U(ξ, n̂) = exp

(
− i

2 ξ n̂ · σ
)
∈ SU(2). It is left as an exercise to the student to show that

U σa U † = Rab σ
b , (2.23)

with
Rab = na nb +

(
δab − na nb

)
cos ξ − ǫabc nc sin ξ . (2.24)

For example, if n̂ = ẑ we have

R =



cos ξ − sin ξ 0
sin ξ cos ξ 0
0 0 1


 . (2.25)
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Clearly R ∈ SO(3), and each R(ξ, n̂) labels a unique such group element, aside from the identification
R(π, n̂) = R(π,−n̂). Yet both ±U map to R , hence the double cover. Another way to say this is
SU(2)/Z2

∼= SO(3).

A more familiar example to condensed matter physicists is that of the magnetic translation group, which is
the group of space translations in the presence of a uniform magnetic field. Let’s first consider ordinary
translations in d = 3 dimensions. The translation operator is t̂(d) = exp(ip · d/~) = exp(d ·∇). Note
that t̂(d)ψ(r) = ψ(r + d). Since the different components of p commute, we have t̂(d) t̂(d′) = t̂(d+ d′),
hence t̂

(
R
3,+

)
is a representation of the group R

3, where the group operation is vector addition.

In the presence of a uniform magnetic field B, the kinetic energy becomes T̂ = π2/2m , where the
cyclotron momentum π is given by π = p + e

cA and ∇ × A = B. Its different components in general

do not commute. Rather,
[
πα, πβ

]
= −i(~e/c) εαβγBγ . One then defines the guiding center momentum

operator κ ≡ π − e
cB × r, and finds

[
κα, κβ

]
= +i(~e/c) εαβγB

γ as well as
[
κα, πβ

]
= 0 . The magnetic

translation operator is then defined as t̂B(d) ≡ exp(iκ · d/~). This commutes with the kinetic energy, but
one finds

t̂B(d) t̂B(d′) = exp
(
− iπB · d× d′/φ0

)
t̂B(d+ d′) , (2.26)

where φ0 = hc/e is the Dirac flux quantum. In this case, then, we have a projective representation of the
abelian group of translations in R

3. Note that
[
t̂B(d) , t̂B(d′)

]
= 0 if and only ifB · d× d′ = qφ0 , where

q ∈ Z , which says that the parallelogram with sides d and d′ encloses an area containing an integer
number of Dirac quanta.

2.2 The Great Orthogonality Theorem

We now return to the warm, comforting safe-space of discrete groups with finite dimension, and their
proper representations, and embark on a path toward a marvelous result known as the ”Great Orthog-
onality Theorem”. To reach this sublime state of enlightenment, we first need two lemmas8 due to I.
Schur9.

2.2.1 Schur’s first lemma

LEMMA : Let D̂(G) be an irreducible representation of G on a vector space V , and Ĉ an arbitrary
linear operator on V . If

[
D̂(g), Ĉ

]
= 0 for all g ∈ G, then Ĉ = λ1̂ is a multiple of the identity.

We’ve already seen how any irreducible representation of a finite group is equivalent to a unitary rep-
resentation, hence without loss of generality we may assume D̂(G) is unitary. We will also assume Ĉ is
Hermitian. This imposes no restriction, because from an arbitrary Ĉ we may form Ĉ+ = 1

2(Ĉ + Ĉ†) and

Ĉ− = 1
2i(Ĉ − Ĉ†), both of which are Hermitian, and prove the theorem for Ĉ± separately.

8”[A lemma] is a stepping stone on the path to proving a theorem” - some math blog.
9Awful pun: We can trust in these lemmas because their author was Schur.
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With Ĉ = Ĉ†, we may find a unitary operator Ŵ such that Ŵ †Ĉ Ŵ = Λ̂ , where Λ̂ is diagonal in our
basis. In other words, we may use Ŵ to transform to a new basis |ẽaµ〉 where Ĉ |ẽaµ〉 = λa|ẽaµ〉. Here

a labels the distinct eigenvalues of Ĉ , and µ is an auxiliary index parameterizing the subspace Va ⊂ V
with eigenvalue λa. Since D̂(g) commutes with Ĉ for all g ∈ G, each Va is an invariant subspace. But by
assumption D̂(G) is an irreducible representation, in which case the only invariant subspace is V itself.
In that case, Ĉ can only have one eigenvalue, hence Ĉ = λ1̂ for some λ ∈ R. QED

COROLLARY : If G is abelian, its irreducible representations are all of dimension one.

To prove the corollary, note that if G is abelian, then for any h ∈ G, we have
[
D̂(g), D̂(h)

]
= 0 for

all g ∈ G. By the lemma, D̂(h) = λh1̂ for all h ∈ G. As an example, consider the cyclic group Cn ,

consisting of elements
{
E,R,R2, . . . , Rn−1

}
. The operator R̂ must then correspond to a unimodular

complex number eiθ, and R̂n = 1 requires θ = 2πj/nwith j ∈ {0, 1, . . . , n−1} labeling the representation.
Thus, Cn has n one-dimensional representations, each of which is of course irreducible.

2.2.2 Schur’s second lemma

LEMMA : Let D̂1(G) and D̂2(G) be two irreducible representations of a finite group G, acting on
vector spaces V1 and V2 , respectively. Let L̂ : V2 7→ V1 be a linear operator such that L̂D̂2(g) =
D̂1(g)L̂ for all g ∈ G. Then either (i) L̂ = 0 or (ii) V1 ∼= V2 and D̂1(G) is equivalent to D̂2(G).

Note that this means that the matrices D
(n1)
1 (g) and D

(n2)
2 (g) satisfy LD

(n1)
1 (g) = D

(n2)
2 (g)L, where L is a

n2 × n1 rectangular matrix corresponding to L̂.

To prove this lemma, we start by considering the space im(L̂) =
{
L̂ |ψ2〉

∣∣∣ |ψ2〉 ∈ V2
}

, which is the image

of the operator L̂. This is an invariant subspace for D̂1(G) because

D̂1(g) L̂ |ψ2 〉 = L̂ D̂2(g) |ψ2 〉 = L̂ | ψ̃2 〉 ∈ im(L̂) ∀ g ∈ G . (2.27)

But if D̂1(G) is an irreducible representation, either im(L̂) = 0 or im(L̂) = V1.

Next, consider the kernel ker(L̂) =
{
|ψ2〉 ∈ V2

∣∣∣ L̂ |ψ2〉 = 0
}

. This is invariant under D̂2(G) because

L̂ D̂2(g) |ψ2 〉 = D̂1(g) L̂ |ψ2 〉 = 0 . (2.28)

So either ker(L̂) = 0 or ker(L̂) = V2.

So we conclude that either

(i) im(L̂) = 0 and ker(L̂) = V2 or (ii) im(L̂) = V1 and ker(L̂) = 0 .

Case (i) says L̂ = 0, i.e. every vector V2 maps to zero. Case (ii) says V1 ∼= V2 and L̂ is an isomorphism.
Hence L̂ is invertible and we may write D̂2(g) = L̂−1 D̂1(g) L̂ for all g ∈ G, which is to say the two
representations are equivalent10.

10Mathematicians call a lemma like this where there are two possible cases a dilemma.



2.2. THE GREAT ORTHOGONALITY THEOREM 53

2.2.3 Great Orthogonality Theorem

Someone wise once said, ”when life gives you lemmas, make a proof”.

THEOREM : Let G be a finite group, Γ an irreducible representation of G, and DΓ (g) the matrix of
g in the representation Γ . Then

∑

g∈G
DΓ
ki(g

−1)DΓ ′

i′k′(g) =
NG

dΓ
δΓΓ ′ δii′ δkk′ (2.29)

where NG = |G| is the order of G and dΓ = dim(Γ ) is the dimension of the representation Γ .

It is important to stress that equivalent representations are not distinguished; they are considered to be
the same representation. Also, note that if the representations are all unitary, we may write

∑

g∈G
DΓ ∗

ik (g)DΓ ′

i′k′(g) =
NG

dΓ
δΓΓ ′ δii′ δkk′ , (2.30)

whereDΓ ∗
(g) =

[
DΓ (g)

]∗
, i.e. the matrix of g in the conjugate representationΓ ∗ is the complex conjugate

of the matrix of g in the representation Γ . Note that the matrices DΓ ∗
(g) and DΓ

ik(g) are not necessarily
of the same dimension. I.e. i and k in Eqns. 2.29, 2.30 run from 1 to dΓ while i′ and k′ run from 1 to dΓ ′ .
We say that two general (not necessarily irreducible) representations Ψ and Ψ ′ are orthogonal if

∑

g∈G
DΨ∗

ik (g)DΨ ′

i′k′(g) = 0 . (2.31)

We will see that this means that Ψ and Ψ ′, when fully reduced into IRREPs, contain no IRREPs in common.

As an example of the G.O.T. in action, consider the cyclic groupCn, with elements
{
E,R,R2, . . . , Rn−1

}
.

We know that there are n irreducible representations (IRREPs), all of which are one-dimensional. Each
IRREP Γ is labeled by an integer jΓ , with DΓ (Rk) = exp(2πijΓ k/n). Then

n−1∑

k=0

DΓ ∗
(Rk)DΓ ′

(Rk) =

n−1∑

k=0

e2πi(jΓ ′−jΓ )k/n = n δΓΓ ′ . (2.32)

To prove the theorem, let M be a dΓ × dΓ ′ matrix, and

L =
∑

g∈G
DΓ (g−1)M DΓ ′

(g) , (2.33)

which is also of dimensions dΓ × dΓ ′ . By the rearrangement theorem, DΓ (h−1)LDΓ ′
(h) = L for all

h ∈ G , i.e. LDΓ ′
(h) = DΓ (h)L . We now appeal to Schur’s lemmas, and conclude that either (i) Γ 6= Γ ′

and L = 0 , or (ii) Γ = Γ ′ and L = λE. Now choose the matrix M
(kk′)
jj′ = δjk δj′k′ , where k ∈

{
1, . . . , dΓ

}

and k′ ∈
{
1, . . . , dΓ ′

}
are arbitrary. Here (kk′) is a label for a family of dΓ dΓ ′ matrices. We then have

L
(kk′)
ii′ =

∑

g∈G
DΓ
ik(g

−1)DΓ ′

k′i′(g) . (2.34)
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We’ve already noted that if Γ 6= Γ ′, then L(kk′) = 0 . If Γ = Γ ′, we must have L
(kk′)
ii′ = λkk′ δii′ , with

λkk′ =
1

dΓ
TrL(kk′) =

1

dΓ

∑

g∈G
DΓ
ik(g

−1)DΓ
k′i(g) =

1

dΓ

∑

g∈G

[
DΓ (g)DΓ (g−1)

]
k′k

=
NG

dΓ
δkk′ , (2.35)

and we are done!

Without loss of generality, we may restrict our attention to unitary representations. Let us define the
vector

ψ(Γ ik)
g ≡

√
dΓ
NG

DΓ
ik(g) , (2.36)

where (Γ ik) is a label, with i, k ∈
{
1, . . . , dΓ

}
, and where the group element g indexes the components

of ψ. The GOT can then be restated as an orthonormality condition on these vectors, i.e.
〈
ψ(Γ ik)

∣∣ψ(Γ ′i′k′)
〉
= δΓΓ ′ δii′ δkk′ , (2.37)

which is kind of cool. Since each ψ(Γ ik) lives in a vector space of NG dimensions, we know that the total
number of these vectors cannot exceed NG , i.e.

∑

Γ

d2Γ ≤ NG . (2.38)

Indeed, after we discuss the regular representation, we shall prove that the set
{
ψ(Γ ik)

}
is complete as

well as orthonormal. Completeness then entails the equality
∑

Γ d
2
Γ = NG , as well as

∑

Γ

dΓ∑

i,k=1

ψ(Γ ik)
g

(
ψ
(Γ ik)
g′

)∗
=

1

NG

∑

Γ

dΓ

dΓ∑

i,k=1

DΓ
ik(g)D

Γ ∗

ik (g′) = δgg′ , (2.39)

which is also quite wonderful11.

2.3 Group Characters

Recall the definition of the character of the group element g in the representation Γ , χΓ (g) = TrDΓ (g),
where DΓ (G) are the matrices of the representation Γ , which may be taken to be unitary. We remarked
earlier that χΓ (h−1gh) = χΓ (g), due to cyclic invariance of the trace, means that two elements g and g′ in
the same conjugacy class have the same character12. Therefore, it is convenient to focus on the conjugacy
classes themselves, labeling them C. The expressionχΓ (C) then will refer to the character of each element
in the conjugacy class C. The identity element always forms its own class, and we accordingly have the
following important result:

⋄ The dimension of any representation Γ is the character of the identity: dΓ ≡ dim(Γ ) = χΓ (E).

Note also that if a class C contains the inverse of each of its elements, then χΓ (C) is real in every unitary
representation, since then χΓ (g) = χΓ (g−1) =

[
χΓ (g)

]∗
.

11We might well call this the ”Great Completeness Theorem”.
12The fact that character is so intimately associated with class may seem politically incorrect and even distressful to some. If

this makes you feel unsafe, try to remember that we are talking about group theory.
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C → C1 3C2 2C3
Γ ↓ {E} {σ, σ′, σ′′} {R,W}
A1 1 1 1

A2 1 −1 1

E 2 0 −1
Υ 3 1 0

Table 2.1: Character table for C3v
∼= D3. The representationsA1, A2 , and E are irreducible.

2.3.1 Example : D3

Recall the dihedral group D3
∼= C3v

∼= S3 , with elements (E,R,W, σ, σ′, σ′′) . In chapter one, we identi-
fied its three conjugacy classes, C1 = {E}, C2 = {σ, σ′, σ′′}, and C3 = {R,W}, and we met up with four of
its representations. The first two are one-dimensional, and we call them A1 and A2 . The 1 × 1 matrices
of the A1 representation are given by

DA1(E) = 1 , DA1(R) = 1 , DA1(W ) = 1 , DA1(σ) = 1 , DA1(σ′) = 1 , DA1(σ′′) = 1 .
(2.40)

In the A2 representation, the 1× 1 matrices are

DA2(E) = 1 , DA2(R) = 1 , DA2(W ) = 1 , DA2(σ) = −1 , DA2(σ′) = −1 , DA2(σ′′) = −1 .
(2.41)

The third representation, called E, is two-dimensional, with

DE(E) =

(
1 0
0 1

)
DE(R) =

1

2

(
−1 −

√
3√

3 −1

)
DE(W ) =

1

2

(
−1

√
3

−
√
3 −1

)

(2.42)

DE(σ) =

(
−1 0
0 1

)
DE(σ′) =

1

2

(
1
√
3√

3 −1

)
DE(σ′′) =

1

2

(
1 −

√
3

−
√
3 −1

)
.

Finally, recall the defining representation of S3 , which we call Υ :

DΥ (E) =



1 0 0
0 1 0
0 0 1


 DΥ (R) =



0 0 1
1 0 0
0 1 0


 DΥ (W ) =



0 1 0
0 0 1
1 0 0




(2.43)

DΥ (σ) =



1 0 0
0 0 1
0 1 0


 DΥ (σ′) =



0 0 1
0 1 0
1 0 0


 DΥ (σ′′) =



0 1 0
1 0 0
0 0 1


 .

Let’s construct the character table for D3. Taking the traces, we obtain the results in Tab. 2.1. Note the
notation 3C2 and 2C3, which refer to the 3-element class C2 and the 2-element class C3 , respectively. The
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representation Υ is reducible, and it turns out that Υ = A1 ⊕ E. Indeed, one sees that

χΥ (g) = χA1(g) + χE(g) . (2.44)

We shall see how reducible representations may be decomposed further below.

Remark about reality of characters

If a class C contains the inverse of each of its elements, then χΓ (C) is real in every unitary representation,
since then χΓ (g) = χΓ (g−1) =

[
χΓ (g)

]∗
. This is the case for all classes of C3v

∼= D3, for example. It
is not the case in general, and certainly not for most abelian groups in particular, because in an abelian
group, all classes contain a single element, but the only elements which are their own inverses are those
elements of order n = 1 or n = 2. For example, if we eliminate the reflection symmetries, C3v is broken
down to C3

∼= Z3. Without the mirrors, we lose the conjugacy of R and W , since σRσ−1 = σRσ = W ,
which also holds when σ is replaced by either of the other mirrors σ′ and σ′′. Thus, the class 2C3 in C3v

breaks up into two distinct classes C3 (R) and C−1
3 (W ) within C3. In two of the IRREPs, the C±1

3 classes
have complex characters, as shown in Tab. 2.2.

2.3.2 Orthogonality theorem for characters

Taking the trace of each of the matrices in Eqn. 2.29, we obtain13

∑

g∈G
χΓ (g−1)χΓ

′
(g) = NG δΓΓ ′ . (2.45)

Henceforth we shall assume all representations are unitary, in which case χΓ (g−1) =
[
χΓ (g)

]∗
= χΓ

∗
(g).

We may replace the above sum over group elements by a sum over conjugacy classes C, resulting in
∑

C
NC χ

Γ ∗
(C)χΓ ′

(C) = NG δΓΓ ′ , (2.46)

where NC is the number of elements in class C. If we set Γ = Γ ′, we have

∑

C
NC

∣∣χΓ (C)
∣∣2 = NG . (2.47)

Note that for D3 , which has six elements, the representations A1 and A2 in Tab. 2.1 appropriately yield
1 · 12 + 3 · 12 + 2 · 12 = 6. Similarly, for E we have 1 · 22 + 3 · 02 + 2 · (−1)2 = 6. But for Υ the LHS of
Eqn. 2.47 gives 1 · 32 + 3 · 12 + 2 · 02 = 12, hence we can immediately tell that Υ must be reducible. For
irreducible representations, we have the following:

THEOREM : Two IRREPs Γ and Γ ′ are equivalent if and only if χΓ (g) = χΓ
′
(g) for all g ∈ G.

This proof is left as an exercise to the reader. Note that an IRREP Γ is equivalent to its complex conjugate
Γ ∗ if and only if Γ is real.

13In Eqn. 2.29, recall that i, k ∈
{
1, . . . , dΓ

}
and i′, k′ ∈

{
1, . . . , dΓ ′

}
.
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2.3.3 Dirac characters

Recall from chapter 1 the notion of a group algebra G, which consists of linear combinations of the form
x =

∑
g∈G xg g. Consider now the quantity

Ωa =
∑

g∈Ca

g , (2.48)

where the sum is over all group elements in the conjugacy class Ca , where a ranges from 1 to the total
number of classes. Ωa is known as a Dirac character. Unlike the group characters we have discussed thus
far, which are complex numbers, Dirac characters are elements of the group algebra. What makes them
special is that each Ωa commutes with every element of G, because taking g−1Ωa g simply reorders the
terms in the above sum. We shall now prove that any element of G which commutes with the entire
group G must be a linear combination of the Dirac characters. To see this, write a general element x ∈ G

as x =
∑

g∈G xg g, where each xg ∈ C. Then for any r ∈ G,

r−1 x r =
∑

h∈G
xh r

−1hr =
∑

g∈G
xrgr−1 g , (2.49)

and therefore if r−1 x r = x , then equating the coefficients of g we have xg = xrgr−1 for all r ∈ G, which
says that xg is a class function, i.e. it takes the same value for every element of a given conjugacy class.

Since each Ωa commutes with all group elements, so does the product ΩaΩb , and the above result then
entails a relation of the form

ΩaΩb =
∑

c

Fabc Ωc , (2.50)

where the Fabc are called the class coefficients. Recall that the identity element E forms its own class,
which we can always call Ω1, so that F1bc = Fb1c = δbc.

For the group C3v, with classes C1 = {E}, C2 = {R,W}, and C3 = {σ, σ′, σ′′},

Ω2 Ω2 = (R+W )(R+W ) = 2E +R+W = 2Ω1 +Ω2

Ω2 Ω3 = (R+W )(σ + σ′ + σ′′) = σ′′ + σ + σ′ + σ′ + σ′′ + σ = 2Ω3

Ω3 Ω3 = (σ + σ′ + σ′′)(σ + σ′ + σ′′) = 3E + 3R+ 3W = 3Ω1 + 3Ω2 .

(2.51)

Thus,

F111 = F122 = F212 = F133 = F313 = 1

F221 = 2 , F222 = 1 , F233 = F323 = 2 , F331 = 3 , F332 = 3 ,
(2.52)

with all other Fabc = 0. Because the Dirac characters all commute, any equation solved by the Ωa will be
solved by their eigenvalues ωa

14. We always have ω1 = 1. We then must solve the three equations

ω2
2 = 2 + ω2 , ω2 ω3 = 2ω3 , ω2

3 = 3 + 3ω2 . (2.53)

14Eigenvalues?! How are we suddenly talking about eigenvalues? Well, you see, as we noted toward the end of §1.3.1, the group
algebra G is in fact a vector space A with basis vectors g ∈ G, endowed with a linear multiplication law A × A → A. Thus,
any element of the algebra is also a linear operator, and linear operators have eigenvalues. So there.
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If ω3 = 0, the third of these gives ω2 = −1, which is consistent with the first, and thereforeω = (1,−1, 0).
If ω3 6= 0, the second equation gives ω2 = 2, again consistent with the first, and thus ω2

3 = 9, and so there
are two possible solutions ω = (1, 2, 3) and ω = (1, 2,−3).

Relation to group characters

SupposeDΓ (G) is an irreducible matrix representation of G, and define the matrix

Λa =
∑

g∈Ca

DΓ (g) . (2.54)

Then for all h ∈ G, we have DΓ (h−1)ΛaD
Γ (h) = Λa , and by Schur’s first lemma it must be that each

Λa = λa1 is a multiple of the identity matrix. But then

TrΛa = dΓ λa =
∑

g∈Ca

χΓ (g) = NCa χ
Γ (Ca) , (2.55)

and therefore

Λa =
NCa
dΓ

χΓ (Ca)1 . (2.56)

But clearly the Λa satisfy the same algebra as the Ωa , i.e.

Λa Λb =
∑

c

Fabc Λc , (2.57)

which yields the following relation for group characters:

χΓ (Ca)χΓ (Cb) = dΓ
∑

l

fabc χ
Γ (Cc) , (2.58)

where fabc ≡
(
NCc

/
NCaNCb

)
Fabc .

2.4 Decomposition of Representations

2.4.1 Reducible representations

We claim that the reduction of a reducible representation Ψ into IRREPs is unique. To see this, suppose

Ψ =
⊕

Γ

nΓ (Ψ)Γ ⇒ χΨ (C) =
∑

Γ

nΓ (Ψ)χ
Γ (C) . (2.59)

We now derive an explicit formula for the decomposition {nΓ (Ψ)}. Using the character orthogonality
equation, we have

∑

C
NC χ

Γ ∗
(C)χΨ (C) =

∑

Γ ′

nΓ ′(Ψ)

NG δΓΓ ′︷ ︸︸ ︷∑

C
NC χ

Γ ∗
(C)χΓ ′

(C)= NG nΓ (Ψ) . (2.60)
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Thus, the number of times the IRREP Γ appears in the decomposition of Ψ is

nΓ (Ψ) =
1

NG

∑

C
NC χ

Γ ∗
(C)χΨ (C) . (2.61)

Note that if Ψ = Γ ′ is itself an IRREP, the above formula correctly gives nΓ (Γ
′) = δΓΓ ′ .

Note further that we can define the vectors

V Γ
C =

√
NC
NG

χΓ (C) , (2.62)

which are labeled by IRREPs Γ , and whose indices run over the equivalence classes C. Character orthog-
onality then entails

〈
V Γ

∣∣V Γ ′ 〉
=

1

NG

∑

C
NC χ

Γ ∗
(C)χΓ ′

(C) = δΓΓ ′ . (2.63)

Note that the vector space
{
V Γ
}

is spanned by the vectors corresponding to all IRREPs, and that these
vectors must be complete if every representation can be decomposed into IRREPs. Thus, we conclude
the following:

⋄ The number of IRREPs is the number of classes:
∑

Γ 1 =
∑

C 1.

Completeness then entails
∑

Γ |V Γ 〉〈V Γ | = 1 , i.e.

∑

Γ

χΓ
∗
(C)χΓ (C′) = NG

NC
δCC′ , (2.64)

from which it follows that
χΨ (C) =

∑

Γ

nΓ (Ψ)χ
Γ (C) , (2.65)

i.e. the characters of a reducible representation are given by the sums of the characters of their con-
stituents. This is quite obvious when one considers that any reducible representation may be brought to
block diagonal form, where the individual blocks are the constituent IRREPs.

2.4.2 Projection onto a particular representation

Suppose, on your birthday, you are given a unitary matrix representation ∆(G) of a popular finite dis-
crete group. You have reason to believe∆(G) is reducible15, and you are a very impatient person, so you
don’t want to spend your time sifting through ∆(G) for your favorite IRREPs – especially not on your
birthday. You would like to access them directly! How to do it?

The first thing to do is to go borrow a set of matrices DΓ
µν for all the IRREPs of G. Then construct the

following expressions:

ΠΓ
µν =

dΓ
NG

∑

g∈G
DΓ ∗

µν (g)∆(g) , (2.66)

15It may have come in a very large box, for example.
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which for each set of labels (Γ, µ, ν) is a matrix of the same rank as ∆(G). The ΠΓ
µν are projection matrices

onto the µth row of the IRREP Γ . The following three marvelous things are true:

(i) The product of projectors is

ΠΓ
µν Π

Γ ′

µ′ν′ = δΓΓ ′ δνµ′ Π
Γ
µν′ . (2.67)

(ii) Hermitian conjugate:
(
ΠΓ
µν

)†
= ΠΓ

νµ , i.e.

(
ΠΓ
µν

)∗
ji
=
(
ΠΓ
νµ

)
ij

. (2.68)

(iii) Resolution of identity (where there is an implied sum on µ):

∑

Γ

ΠΓ
µµ = 1 , (2.69)

You will have fun proving these results for yourself! Note that PΓµ ≡ ΠΓ
µµ with no sum on µ satisfies

PΓµ P
Γ ′

µ′ = δΓΓ ′ δµµ′ P
Γ
µ , (2.70)

i.e. each PΓµ is a rank one projector onto the µ row of the Γ IRREP. Summing over all rows of all IR-

REPs yields
∑

Γ,µ P
Γ
µ = 1. However, note that it is the projectors of fixed column index which transform

according to a particular IRREP, because16

∆(g)ΠΓ
µν =

∑

ρ

ΠΓ
ρν D

Γ
ρµ(g) . (2.71)

Finally let’s take the trace on µ and ν in Eqn. 2.66 and form ΠΓ =
∑

µΠ
Γ
µµ =

∑
µ P

Γ
µ , i.e.

ΠΓ ≡ dΓ
NG

∑

g∈G
χΓ

∗
(g)∆(g) . (2.72)

This also acts as a projection matrix onto Γ , since ΠΓΠΓ ′
= δΓΓ ′ ΠΓ .

Consider now an arbitrary vector ψ, and form the vector ψ(Γµ) = ΠΓ
µν ψ. The index ν is fixed and

suppressed in ψ(Γµ). That is, we form the vector whose ith component is

ψ
(Γµ)
i =

dΓ
NG

∑

g∈G
DΓ ∗

µν (g)∆ij(g)ψj . (2.73)

Then, appealing to Eqn. 2.71,

∆ij(g)ψ
(Γµ)
j = ψ

(Γρ)
i DΓ

ρµ(g) , (2.74)

with implied sums on j and ρ. We’ve just projected an arbitrary vector ψ onto one which transforms
according to the µth row of the IRREP Γ , i.e. ψ(Γµ).

16Prove it!
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2.4.3 The regular representation

The regular representation of any finite discrete group is defined as follows. Define the group multi-
plication table so that the entry for row ga and column gb is g−1

a gb rather than the usual ga gb. By this
convention, all diagonal entries will be the identity element, E. The matrices of the regular representa-
tion are all of rank NG, which is of course the rank of the multiplication table, and Dreg

g,g′(h) is defined to
be one everywhere h occurs in the above reorganized table, and zero otherwise. In other words,

Dreg
g,g′(h) = δg′, gh =

{
1 if g′ = gh

0 if g′ 6= gh .
(2.75)

Note that ∑

g′∈G
Dreg
g,g′(h)D

reg
g′,g′′(k) =

∑

g′∈G
δg′, gh δg′′, g′k = δg′′, ghk = Dreg(hk) , (2.76)

and so Dreg(G) is a valid representation. We may now prove the following:

THEOREM : Γreg =
⊕

Γ dΓ Γ .

In other words, each IRREP appears in Γreg as many times as its dimension. To show this, first note that

χΓreg(h) =
∑

g∈G
δg,gh = NG δh,E (2.77)

since g = gh entails h = E. Next, we invoke Eqn. 2.61 with Ψ = Γreg. From the above result, only the
identity class contributes to the sum over equivalence classes C, in which case

nΓ (Γreg) = χΓ (E) = dΓ . (2.78)

As a bonus, we can now establish the equality in Eqn. 2.38, since

NG = χΓreg(E) =
∑

Γ

nΓ (Γreg)χ
Γ (E) =

∑

Γ

d2Γ . (2.79)

Therefore the order of any finite group is the sum of the squares of the dimensions of its irreducible
representations. QED

2.4.4 Induced and subduced representations

The regular representation is a special case of something called an induced representation. SupposeH ⊂ G
is a subgroup. As we saw in chapter 1, this entails that NG/NH is an integer, and there is a unique coset
construction where we can write

G =

NG/NH∑

j=1

rj H . (2.80)



62 CHAPTER 2. THEORY OF GROUP REPRESENTATION

Uniqueness means that the set {rj} is fixed by H . Now suppose we have a representation Dab(H). We
now define

D̃ia , jb(g) =
∑

h∈H
Dab(h) δrih , grj , (2.81)

where

δrih , grj =

{
1 if rih = grj
0 otherwise .

(2.82)

Then one finds

D̃ia , jb(g) D̃jb , kc(g
′) =

∑

h,h′∈H
Dab(h)Dbc(h

′) δrih , grj δrjh′, g′rk

=
∑

h̃∈H

Dac(h̃) δrih̃ , gg′rk
= D̃ia , kc(gg

′) ,
(2.83)

and so D̃(G) is a representation of the larger groupG. Note that ifDab(h) = 1, then D̃ij(g) =
∑

h∈H δrih , grj
and that if H = {E} then D̃(G) is just the regular representation. The character of g in the induced rep-
resentation is then

χ̃(g) = Tr D̃(g) =
∑

h∈H
χ(h)

∑

i

δ
g , rihr

−1
i

. (2.84)

Let G be a group and H ⊂ G a proper subgroup of G. Then any representation DΨ (G) is also a repre-
sentation of H , called the subduced representation Ψ↓(H), with

DΨ↓
(h) = DΨ(h) . (2.85)

Even ifDΨ (G) is reducible, the subduced representationDΨ↓
(H) need not necessarily be irreducible. For

example, the subduced representation on to the identity is the unit matrix of rank dΨ , which is clearly
reducible since it is a direct sum of dΨ one-dimensional trivial representations. If DΨ (G) is reducible,

then so is DΨ↓
(H) . Thus, if DΨ↓

(H) is irreducible, then necessarily DΨ (G) be reducible. Furthermore,
if Ψ and Ψ ′ are two IRREPs of G, if there exists a subgroup H ⊂ G such that Ψ↓ and Ψ ′↓ are orthogonal,
meaning they contain no common IRREPs of H , then Ψ and Ψ ′ are orthogonal. This is easily proven
using the coset decomposition, writing G =

∑
a raH , so that

DΨ
ik(g) = DΨ

ik(rh) =
∑

m

DΨ
im(r)D

Ψ
mk(h) (2.86)

for some h ∈ H and r 6∈ H . Multiplying the complex conjugate of this expression by the corresponding
expression for DΨ ′

i′k′(g) , and then summing over g ∈ G, we have

∑

g∈G
DΨ∗

ik (g)DΨ ′

i′k′(g) =
∑

m,m′

∑

r

DΨ∗

im(r)DΨ ′

i′m′(r)
∑

h∈H
DΨ∗

mk(h)D
Ψ ′

m′k′(h) , (2.87)

which vanishes if Ψ↓ and Ψ ′↓ are orthogonal representations on H .
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2.4.5 Summary of key results

Here we summarize the key results. For unitary representations of a finite group G :

• Great Orthogonality Theorem :
∑

g∈GD
Γ ∗

ik (g)DΓ ′

i′k′(g) = (NG/dΓ ) δΓΓ ′ δii′ δkk′ .

• Great CompleteneĄ Theorem :
∑

Γ,i,k dΓ D
Γ ∗

ik (g)DΓ
ik(g

′) = NG δgg′ .

• Group characters : χΓ (C) ≡ TrDΓ (g) , where g is any element in the conjugacy class C.

• Character tables : Rows indexed by IRREPs Γ , columns indexed by classes C. Identity IRREP row
entries are all 1’s. Identity class column entries are dΓ = TrDΓ (E).

• Row orthogonality :
∑

C NC χ
Γ ∗

(C)χΓ ′
(C) = NG δΓΓ ′ .

• Column orthogonality :
∑

Γ χ
Γ ∗

(C)χΓ (C′) = (NG/NC) δCC′ .

• Decomposition : The IRREP Γ appears nΓ (Ψ) = N−1
G

∑
C NC χ

Γ ∗
(C)χΨ (C) times in Ψ .

• Projection matrices : If ∆(G) is a reducible representation, ΠΓ
µν = (dΓ /NG)

∑
g∈GD

Γ ∗

µν (g)∆(g)

projects onto the µth row of the Γ IRREP.

Here NG = |G| is the number of elements in G, dΓ = dim(Γ ) is the dimension of the representation Γ ,
and NC is the number of group elements in the conjugacy class C.

2.4.6 Example character tables

Thus far we have not encountered any complex values of χΓ (g), but such cases are quite common.
Consider, for example, the cyclic group C3 consisting of {E,R,W}. Cn is abelian for all n, hence each
element is its own class. We’ve seen how the 1×1 matrix DΓ (Rk) is given by ωk jΓ with ω = exp(2πi/n),
where jΓ ∈ {0, . . . , n− 1} labels the IRREP, and k ∈ {0, . . . , n− 1}. Tab. 2.2 shows the character table for
C3. Note that Γ3 = Γ ∗

2 is the complex conjugate of the Γ2 representation.

C3 E R W

Γ1 1 1 1

Γ2 1 ω ω2

Γ3 1 ω2 ω

Table 2.2: Character table for C3.

We saw in chapter one that the eight element quaternion group, Q = {±E,±i,±j,±k} has five con-
jugacy classes. Aside from the trivial one-dimensional identity representation Γ1, it has three other
inequivalent one-dimensional IRREPs, called sign representations. The first of these we call Γ2 , the 1 × 1
matrices for which are DΓ2(±E,±i) = +1 while DΓ2(±j,±k) = −1. One can check this is a valid group
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Q {E} {−E} {i,−i} {j,−j} {k,−k}
Γ1 1 1 1 1 1

Γ2 1 1 1 −1 −1
Γ3 1 1 −1 1 −1
Γ4 1 1 −1 −1 1

Ψ 2 −2 0 0 0

Table 2.3: Character table for the quaternion group Q.

homomorphism. Permuting ±i, ±j, and ±k gives the other two one-dimensional IRREPs. One can then
easily infer that there is one remaining IRREP of dimension 2. The character table for the quaternion
group Q is shown in Tab. 2.3.

While the character table for a group G contains a wealth of important information, it does not always
distinguish G up to isomorphism. That is, it is possible for two different groups to have the same
character table. Such is the case with Q and D4, for example. The dihedral group D4 also has five
classes, which we can call E (the identity), C2 (rotation by π), C4 (rotations by ±1

2π), C ′
2 (reflections in

y = 0 and in x = 0), and C ′′
2 (reflections in y = x and in y = −x). Tab. 3.2 shows its character table17,

which you should compare with Tab. 2.3.

D4 E C2 2C4 2C ′
2 2C ′′

2

A1 1 1 1 1 1

A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1

E 2 −2 0 0 0

Table 2.4: Character table for the dihedral group D4.

Recall that the eight matrices {±E,±Z,±X,±Λ} from §2.1.5 form a real two-dimensional representation
of eitherD4 orQ (you were supposed to figure out which). Applying the GOT with NG = 8 and dΓ = 2,
we have

2Eik Ei′k′ + 2Zik Zi′k′ + 2XikXi′k′ + 2Λik Λi′k′ = 4 δii′ δkk′ . (2.88)

Recall Λ = iY = −ΛT, hence we may write the above relation as

XikXk′i′ + Yik Yk′i′ + Zik Zk′i′ = 2 δii′ δkk′ − δik δi′k′ , (2.89)

which is recognized as the familiar Pauli matrix identity σaαβ σ
a
µν = 2 δαν δβµ − δαβ δµν .

17Note that there is a representation labeled E, which you should take care not to confuse with the identity element.
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2.4.7 Character table for Z2 ×G

Consider any group G with classes Cj and representations Γa and take its direct product with Z2,

whose elements are written {E, ε} with ε2 = 1. Then εg = gε for all g ∈ G, i.e. the operation ε
commutes with all elements of G, hence ε forms its own class. Clearly Z2 × G has 2NG elements,
{E, g2, . . . , gNG

, ε, εg2, . . . , εgNG
}. The representation matrices in any representation satisfy D(εg) =

D(ε)D(g), with D(ε) = ±1. Thus, each IRREP Γa of G spawns two IRREPs in Z2 × G, labeled Γa± ,
whose representation matrices are

DΓa±(g) = DΓa(g) , DΓa±(εg) = ±DΓa(g) . (2.90)

Note that dim(Γa±) = dim(Γa). The character table for Z2 × G is given in Tab. 2.5 in terms of the
characters of G.

Z2 ×G Cj ε Cj
Γa+ χΓa(Cj) χΓa(Cj)
Γa− χΓa(Cj) −χΓa(Cj)

Table 2.5: Character table for Z2 ×G.

In solid state physics, there are many structures which possess an inversion symmetry under r → −r.
Clearly this commutes with all rotations. Thus, the cubic group O ∼= S4 has 24 elements, but upon
adding inversion, it becomes Oh with 48 elements. The dihedral group Dn is the symmetry group of
the n-gon. Adding inversion or a horizontal reflection plane doubles its size from 2n to 4n elements,
yielding the group Dnh.

2.4.8 Direct product representations

Given two representations (not necessarily IRREPs) Ψa and Ψb of a groupG, we can form a new represen-

tation of G, written Ψa × Ψb , and called the direct product representation. Given basis vectors | ei 〉 ∈ V
and | ẽp 〉 ∈ V ′, with 1 ≤ i ≤ dΨa

and 1 ≤ p ≤ dΨb
, the action of D̂(g) on the vector space V ⊗ V ′ in the

product representation is given by

D̂(g) | ek 〉 ⊗ | ẽq 〉 = | ei 〉 ⊗ | ẽp 〉DΨa
ik (g)D

Ψb
pq (g) . (2.91)

Thus, the matrix form of D̂(g) in the product representation is

DΨa×Ψb
ip, kq (g) = DΨa

ik (g)D
Ψb
pq (g) . (2.92)

The characters are then given by taking the trace, i.e.contracting with δik δpq , yielding

χΨa×Ψb(g) = χΨa(g)χΨb(g) . (2.93)

So the character of g ∈ G in the product representation is the product of the characters of g in the initial
representations.
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We may now use Eqn. 2.61 to decompose the product representation into IRREPs, viz.

nΓ (Ψa × Ψb) =
1

NG

∑

C
NC χ

Γ ∗
(C)χΨa(C)χΨb(C) . (2.94)

We then have
Ψa × Ψb =

⊕

Γ

nΓ (Ψa × Ψb)Γ . (2.95)

Eqns. 2.94 and 2.95 are extremely useful! Note that

da db =
∑

Γ

nΓ (Ψa × Ψb) dΓ , (2.96)

where da,b = dim(Ψa,b) . This is because the original matrices on the LHS of Eqn. 2.92 are of rank da db .

If they are decomposed into blocks of rank dΓ with each such block appearing nabΓ times, the matrices
must be the same size.

For practice, consider the product representationE ×E of the groupD4 . Consulting the character table

Tab. 3.2, we see that
[
χE(C)

]2
= 4 for C = E and C = C2 , and is otherwise zero. Performing the

decomposition, we find nΓ (E × E) = 1 for Γ ∈ {A1, A2, B1, B2} but nE(E × E) = 0. Thus,

E × E = A1 ⊕A2 ⊕B1 ⊕B2 . (2.97)

One also finds A2×B1 = B2 , B1×B2 = A1 , B2×E = B2 , etc. For the group C3, we have Γ2×Γ2 = Γ3.
All these results are consistent with the following fun fact:

⋄ The product of two IRREPs Γa × Γb contains the identity representation if and only if Ψb = Ψ∗
a .

Direct products of different groups

Recall that the direct product F = G × H of groups G and H consists of elements (g, h) obeying the
multiplication rule (g, h)(g′ , h′) = (gg′, hh′). Consider now a direct product of representations ΨGa ×ΨHb .
The matrix representation of the product group element (g, h) is then

D
ΨG
a ×ΨH

b
ip,kq (g, h) = D

ΨG
a
ik (g)D

ΨH
b
pq (h) , (2.98)

with 1 ≤ i, k ≤ d
ΨG
a

and 1 ≤ p, q ≤ d
ΨH
b

. The operators D̂(G×H) act on basis vectors | ei 〉⊗| ẽp 〉 ∈ V⊗Ṽ ,

according to

D̂(g, h) | ek 〉 ⊗ | ẽq 〉 = | ei 〉 ⊗ | ẽp 〉D
ΨG
a
ik (g)D

ΨH
b
pq (h) . (2.99)

In other words, DΨG
a ×ΨH

b (g, h) = DΨG
a (g)⊗DΨH

b (h). Thus, the character of (g, h) in this representation is

χΨ
G
a ×ΨH

b (g, h) = χΨ
G
a (g) χΨ

H
b (h) , (2.100)

and once again the character of the direct product is the product of the characters. Note that our earlier
discussion fits in here if we apply the group homomorphism G 7→ G×G where φ(g) = (g, g).
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2.5 Real Representations

Here we follow the very clear discussion in §5-5 of Hammermesh. Consider an irreducible matrix repre-
sentation D(G) of a finite group G. We may, without loss of generality, assume D(G) is a unitary, hence
D∗(G) = D(G), i.e. the complex and adjoint representations coincide. If D(G) = D∗(G), i.e. if D(G) is
real, then χ(g) ∈ R for all g ∈ G. Conversely, if all the characters are real, then χ∗(g) = χ(g) ∀ g ∈ G,
which means that D(G) ∼= D∗(G)18. The only case where D(G) and D∗(G) are not equivalent is when
there are complex characters, i.e. Imχ(g) 6= 0 for some g ∈ G.

There are then three possibilities for the IRREPs of any finite group G:

(1) D(G) is real or can be brought to real form. All characters are real: χ(g) ∈ R ∀ g ∈ G.

(2) D(G) ∼= D∗(G), but cannot be brought to real form. Again, χ(g) ∈ R ∀ g ∈ G.

(3) D(G) 6∼= D∗(G). Not all characters are real: ∃ g ∈ G s.t. Imχ(g) 6= 0.

Suppose χ(G) ∈ R, i.e. all the characters are real. Then we are dealing with cases (1) and (2), in which
case there exists S ∈ GL(n,C) such that SD(g)S−1 = D(g) = D∗(g) for all g ∈ G.19 Furthermore, this
relation can be manipulated to give S = DT(g)SD(g), which entails20

S−1ST = D−1(g)S−1STD(g) (2.101)

for all g ∈ G. By Schur’s first lemma, we must have S−1ST = ε1, i.e. ST = εS. But taking the transpose
of this equation gives S = εST = ε2S, which means ε = ±1. If ε = −1, we must have that D(G) is
even-dimensional, because detS = detST = det(−S) = (−1)n detS, where n = dim(G).

ε = +1 corresponds to case (1). In this case, S is both unitary and symmetric, and by Takagi’s fac-
torization21, there exists a unitary matrix U such that S = UUT. Then S−1 = U∗U−1, in which case
UTU D(g)U †U∗ = D∗(g), which gives UD(g)U † = U∗D∗(g)UT =

[
UD(g)U †]∗ for all g ∈ G. Thus, D(G)

is unitarily equivalent to a real representation.

Note that any matrix of the form

S =
∑

g∈G
DT(g)XD(g) (2.102)

with X arbitrary satisfies DT(h)S D(h) = S for all h ∈ G, by rearrangement. This would guarantee that
D(G) ∼= D∗(G), so if case (3) pertains, we must have that the RHS in Eqn. 2.102 vanishes for any X. Thus,
we must have

∑
g∈GDik(g)Djl(g) = 0 for all i, j, k, l ∈ {1, . . . , n}. The other two possibilities are that

18If χΓ (g) = χΓ∗

(g) for all g ∈ G, then applying the decomposition formula eqn. 2.61 gives nΓ (Γ
∗) = 1 , which says that Γ

and Γ ∗ are the same IRREP.
19This also tells us χ(g−1) = χ(g), since D(g) = DT(g−1).
20Taking the transpose, one has DT(g)STD(g) = ST. Taking the inverse, D−1(g)S−1D(g) = S−1. Multiply to get Eqn. 2.101.
21Takagi [1927] proved that any complex symmetric matrix A = AT ∈ C

n×n may be written in the form A = VBV T, where
V ∈ U(n) and B is real and diagonal with all nonnegative entries. Thus A = WBW T with W ≡ V −1, in which case
B†B = W ∗A†W †WAW T = W ∗A†AW T. It follows that if A is also unitary, then B†B = 1, hence B = 1 and so A = V V T.
We pause to sadly recall how Mr. Takagi was ruthlessly murdered by Hans Gruber in the Bruce Willis action film Die Hard.
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ST = εS with ε = ±1, corresponding to cases (1) and (2), respectively22. We can combine all three cases
in the following equation: ∑

g∈G
Dik(g)Djl(g) = ε

∑

g∈G
Djk(g)Dil(g) , (2.103)

where ε = 0,±1. Contracting the indices k with j and i with l then yields

∑

g∈G
χ(g2) = ε

∑

g∈G
χ2(g) . (2.104)

For cases (1) and (2), we may invoke the GOT, taking the traces of both matrices on the LHS of Eqn. 2.30,
which says

∑
g∈G χ

2(g) = NG . We then arrive at the following result, which is valid for any IRREP Γ :

εΓ =
1

NG

∑

g∈G
χΓ (g2) , (2.105)

where εΓ = +1,−1, and 0 for cases (1), (2), and (3), respectively, is known as the Frobenius-Schur indicator.

We may immediately apply this result to C3 , whose character table is provided in Tab. 2.2 above. Note
R2 = W and W 2 = R, so for the Γ2 and Γ3 representations, we have χ(E2) + χ(R2) + χ(W 2) = 0,
which says that neither Γ2 nor Γ3 is equivalent to a real representation. As a second example, consider
the two-dimensional Ψ representation of the quaternion group Q, whose character table appears in
Tab. 2.3. We have (±E)2 = E but (±i)2 = (±j)2 = (±k)2 = −E, and since χ(±E) = ±2, we have∑

g∈Q χ(g
2) = 2 · 2 + 6 · (−2) = −8 = −NG , corresponding to εΨ = −1. Thus Ψ ∼= Ψ∗, but cannot

be brought to real form. Indeed, we know that the elements i, j, and k in this representation may
be represented by the 2 × 2 matrices −iX, −iY , and −iZ , respectively, where {X,Y,Z} are the Pauli
matrices. Thus, DΨ (±i) and DΨ (±k) contain complex matrix elements. Note that all the characters are
still real.

There is one last bonus from this analysis. Consider an element g ∈ G and let us ask how many elements
h are there for which g = h2. In other words, how many ”square roots” does g have within the group?
(Equivalently, how many times does g appear along the diagonal of the group multiplication table?)
Call this number ζ(g). Then from Eqn. 2.105, we have

∑

g∈G
ζ(g)χΓ (g) = εΓ NG . (2.106)

Note that ζ(g) does not depend on the representation Γ . Now we can use character orthogonality and
the fact that ζ(g−1) = ζ(g) to derive

ζ(g) =
∑

Γ

εΓ χ
Γ (g) , (2.107)

where the sum is now over IRREPs. For example, the number of square roots of the identity E is

ζ(E) =
∑

Γ

εΓ dΓ . (2.108)

22Since ε = 1 is proven to correspond to case (1) and case (3) requires ε = 0, it must be that ε = −1 corresponds to case (2).
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2.6 Representations of the Symmetric Group

Recall that the symmetric group Sn consists of all permutations σ on the set of n distinct elements, which
we conventionally take to be the set {1, . . . , n}. Thus i gets mapped to σ(i). Under group multiplication,
µσ is the permutation mapping i to µ

(
σ(i)

)
.

In §1.3.2, we learned how any element of the symmetric group Sn could be expressed as a product of
cycles (i1 i2 · · · ik), which means σ(i1) = i2 , σ(i2) = i3 , etc., until finally σ(ik) = i1. For example,

σ =

(
1 2 3 4 5 6 7 8
7 2 6 8 1 3 5 4

)
= (175)(2)(36)(48) . (2.109)

We require that in the cyclic decomposition of any σ ∈ Sn, each integer i ∈ {1, . . . , n} occur exactly once.
Cyclic decompositions remain invariant under cyclic permutation within the individual cycles, and un-
der changing the order of the cycles. Thus, (175)(2)(36)(48) is the same permutation as (48)(2)(36)(175)
or (63)(571)(84)(2).

2.6.1 Partitions, Young diagrams and Young tableaux

A partition of a positive integern ∈ N is a (necessarily finite) non-decreasing sequence of positive integers

λ = {λ1, . . . , λk} such that
∑k

j=1 λj = n . There is no known closed formula for the total number of

partitions p(n) , although Hardy and Ramanujan proved the asymptotic formula23

p(n) ∼
exp
(
π
√

2n/3
)

4
√
3n

. (2.110)

Any cyclic decomposition of a permutation σ ∈ Sn may be associated with a partition of n, where the
{λi} are the lengths of the individual cycles. Thus, in our earlier example, σ = (175)(2)(36)(48) and
λ = {3, 2, 2, 1}. We can express this partition using a Young diagram, which is a set of empty boxes
arranged in rows such that there are λ1 boxes in row 1, etc., and where the first boxes from each row are
aligned in a single leftmost column. Thus,

{3, 2, 2, 1} = . (2.111)

For obvious reasons, we call λ the shape of the permutation. Note that for a shape λ = {λ1, . . . , λk} ,
there are λ1 columns and k rows in the associated Young diagram. If we want to specify a particular
permutation, we need to label the boxes, yielding a Young tableau. Thus,

σ = (175)(2)(36)(48) =

1 7 5

3 6

4 8
2

. (2.112)

23Ramanujan managed to prove several other remarkable results, such as p(5k + 4) ≡ 0 mod 5 , p(7k + 5) ≡ 0 mod 7 , and
p(11k+6) ≡ 0mod 11 . Given these results, one might suspect that p(13k+7) ≡ 0mod 13 , but in fact there are no additional
congruences of the form p(ak + b) ≡ 0 mod k for any prime a other than 5, 7, or 11. Number theory is often weird.
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Due to the nature of cyclic permutations, this tableau is equivalent to any of the following:

1 7 5
3 6

4 8

2

,

5 1 7
8 4

3 6

2

,

7 5 1
6 3

8 4

2

, etc. (2.113)

One important feature of cyclic permutations is that their length is preserved under conjugation. Thus,

µ (175)(36)(48)(2)µ−1 =
(
µ(1)µ(7)µ(5)

)(
µ(3)µ(6)

) (
µ(4)µ(8)

) (
µ(2)

)
. (2.114)

Thus, each shape λ specifies an equivalence class Cλ , which we will simply abbreviate as λ. Recall from
§1.3.2 that the number of possible decompositions of any σ ∈ Sn into ν1 1-cycles, ν2 2-cycles, etc. is

N(ν1, ν2, . . . , νn) =
n!

1ν1 ν1! 2
ν2 ν2! · · · nνn νn!

. (2.115)

Thus |λ| = N(ν1, ν2, . . . , νn), where the shape λ = {λ1, . . . , λk} uniquely determines the set {ν1, . . . , νn} ,
according to

νl =

k∑

i=1

δλi, l . (2.116)

I.e. νl is the number of cycles of length l. We showed in §1.3.2 that

∞∑

ν1=0

· · ·
∞∑

νn=1

N(ν1, ν2, . . . , νn) δν1+2ν2+ ···+nνn , n = n! =
∣∣Sn
∣∣ , (2.117)

so we have indeed accounted for all the equivalence classes.

2.6.2 S3 and S4

For the case n = 3, there are three classes, corresponding to the Young diagrams , , and , of
orders 1, 3, and 2, respectively. What about the IRREPs? We immediately know two one-dimensional
IRREPs, namely the trivial IRREP Γtriv and the sign IRREP Γsgn. In the case of D3 ≃ S3, we called these
IRREPs A1 and A2, respectively (see Tab. 2.1). The remaining representation of D3 , which we called E,
is called the standard representation Γstd of the S3. Indeed, there is a standard representation for each Sn ,
and here is how to identify it. Start with the defining representation, which as you should recall from
§1.3.2 is the n-dimensional representation in whichDij(σ) = δi , σ(j). Acting on the vector spaceRn, this is

clearly reducible because the one-dimensional subspace spanned by the vectorψwhere ψi = 1 for all i is
an invariant subspace. Since D(σ)ψ = ψ for all σ ∈ Sn, we have that Γdef = Γstd⊕Γtriv , i.e. the defining
representation is a direct sum of the trivial representation and an (n − 1)-dimensional representation
Γstd which turns out to be irreducible. Furthermore, since the characters of representations in direct
sums are additive (see eqn. 2.65), we have χΓstd(λ) = χΓdef (λ) − χΓtriv(λ) = χΓdef (λ) − 1 . Now in Γdef ,
the character of any element σ is simply the number of entries in the sequence {1 2 · · · n}which remain
fixed by the action of σ. This is the number ν1 of one-cycles in the corresponding partition λ . Thus



2.6. REPRESENTATIONS OF THE SYMMETRIC GROUP 71

S3

Nλ 1 3 2

Γtriv 1 1 1

Γsgn 1 −1 1

Γstd 2 0 −1

Table 2.6: Character table for the symmetric group S3.

χΓdef

( )
= 3 , χΓdef

( )
= 1 , and χΓdef ( ) = 0 . We thus arrive at the character table in Tab. 2.6,

which is of course identical to that of Tab. 2.1 for D3. Note that

∑

λ

Nλ =
∑

Γ

d2Γ = 6 =
∣∣S3
∣∣ . (2.118)

Now let’s consider the case of S4. There are now five classes: , , , , and . Regarding

the sign representation, we know that χΓsgn(λ) is given by (−1)# of cycles of even length. Regarding the
standard representation, of dimension n − 1 = 3, we can compute the its characters from the formula
χΓstd(λ) = ν1(λ)− 1 as described above. Thus far we have found three IRREPs, but there are five classes
so two IRREPs are missing. One is formed by taking the product Γstd × Γsgn. This is also of dimension
three. Since 12 + 12 + 32 + 32 = 20, we know that the last IRREP, which we call Γ ′, is two-dimensional.
We arrive at the partial table of Tab. 2.7.

S4

Nλ 1 6 3 8 6

Γtriv 1 1 1 1 1

Γsgn 1 −1 1 1 −1
Γstd 3 1 −1 0 −1

Γstd × Γsgn 3 −1 −1 0 1

Γ ′ 2 a b c d

Table 2.7: Partial character table for the symmetric group S4.
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To determine the missing characters, we invoke row orthogonality, which yields the four equations

0 = 2 + 6a+ 3b+ 8c+ 6d

0 = 2− 6a+ 3b+ 8c− 6d

0 = 6 + 6a− 3b− 6d

0 = 6− 6a− 3b+ 6d .

(2.119)

Solving them is a simple matter and we readily find a = 0 , b = 2 , c = −1 , and d = 0 .

When we get to S5 , we will find that there are seven conjugacy classes, and therefore seven IRREPs. Is
there a general way to count the dimensions of the IRREPs of Sn? Funny you should ask.

2.6.3 IRREPs of Sn

Recall that the number of equivalence classes is the number of IRREPs. For the symmetric group, each
shape λ corresponds to an IRREP Γ λ of Sn

24. What is its dimension fλ = dim(Γ λ) ? It may be computed
from the hook length formula,

fλ = dim(Γ λ) =
n!∏

b∈λ hλ(b)
, (2.120)

where the product in the denominator is over all boxes b of the Young diagram for λ, and hλ(b) is the
hook length for the box b, which is the total number of boxes in a ’hook’ whose vertex is b, with legs
extending rightward and downward. For example,

b • • •
•
•

−→

9 7 5 4 1

8 6 4 3 1
6 4 2 1

3 1

1

(2.121)

The proof is technical and interested students may consult the book of B. Sagan for details. For our
immediate purposes here, let’s just see how all this works in practice. Consider the case n = 5, for
which |Sn| = 5! = 120. Behold the seven IRREPs of S5 :

(24)

1

(30)

4

(20)

5

(20)

6

(15)

5

(10)

4

(1)

1

These correspond, respectively, to the shapes λ = (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and
(1, 1, 1, 1, 1). Each Young diagram is labeled by a subscript which is the dimension dimension fλ = |Γ λ|
24This is perhaps not obvious, but it turns out that the Young tableaux corresponding to a given partition λ may be arranged

into a vector space Sλ on which the elements of Sn act, called a Specht module. For details, see the books by B. Sagan and W.
Fulton listed in chapter 0.
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of the corresponding IRREP as computed from the hook length formula, and a superscript
(
|λ|
)

which is
the number of elements in the corresponding equivalence class, as computed from Eqn. 2.115. Note that
the sums of the squares of the dimensions of the IRREPs is equal to the sum of the number of elements
of each equivalence class is equal to the order of the group S5:

12 + 42 + 52 + 62 + 52 + 42 + 12 = 24 + 30 + 20 + 20 + 15 + 10 + 1 = 120 = |S5| .

2.7 Application of Projection onto IRREPs : Triatomic Molecule

Fig. 2.1 shows a planar configuration of three equal masses m connected by identical springs k. Each
mass may move in the x and y directions, hence the molecule has six degrees of freedom. As a small
oscillations problem in classical mechanics, one solves the equation ω2Tψ = Vψ, where T and V are

the kinetic energy and potential energy matrices, given by the expressions Tnn′ =
[
∂2T (q, q̇)/∂q̇n∂q̇n′

]
q0

and Vnn′ =
[
∂2V (q)/∂qn∂qn′

]
q0 , evaluated at equilibrium, with q the set of generalized coordinates.

Here we will find the eigenvectorsψa using group theory, without diagonalizing any matrices.

We choose as generalized coordinates the Cartesian x and y positions of each mass relative to the center

of the triangle. The equilibrium coordinates of mass #1 are (0, 1) a√
3

, of mass #2 (−
√
3
2 ,−1

2)
a√
3

, and

of mass #3 (
√
3
2 ,−1

2)
a√
3

. The symmetry group is D3 , whose character table is provided in Tab. 2.1.

Group elements are represented by matrices D(g) acting on the column vector given by the transpose
of ψT = (δx1, δy1, δx2, δy2, δx3, δy3), the vector of displacements relative to equilibrium. This is a six
dimensional representation given by Γ = Υ × E, where the Υ and E representations are given in §2.3.1.
The reason for this is that the group element R, for example, not only rotates the Cartesian coordinates;
it also exchanges the positions of the masses, i.e. it switches their labels. This is a six-dimensional repre-
sentation, and using the decomposition formula we find Υ = A1 ⊕ E and Υ × E = A1 ⊕ A2 ⊕ E ⊕ E.
The matrices are

D(I) =



I 0 0
0 I 0
0 0 I


 D(R) =




0 0 R
R 0 0
0 R 0


 D(W ) =




0 W 0
0 0 W
W 0 0




(2.122)

D(σ) =



σ 0 0
0 0 σ
0 σ 0


 D(σ′) =




0 0 σ′

0 σ′ 0
σ′ 0 0


 D(σ′′) =




0 σ′′ 0
σ′′ 0 0
0 0 σ′′


 .

where

I =

(
1 0
0 1

)
R =

(
−1/2 −

√
3/2√

3/2 −1/2

)
W =

(
−1/2

√
3/2

−
√
3/2 −1/2

)

(2.123)

σ =

(
−1 0
0 1

)
σ′ =

(
1/2

√
3/2√

3/2 −1/2

)
σ′′ =

(
1/2 −

√
3/2

−
√
3/2 −1/2

)
.
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1

2 3

Figure 2.1: A planar molecule modeled as three masses m connected by springs, in the shape of an
equilateral triangle. The symmetry is C3v.

We simplify our notation and use g to denote the 2 × 2 matrix DE(g) in the E IRREP, and we call the
identity I instead of E to obviate any potential confusion with the IRREP E.

Starting with a general rank six vector ψT =
(
a b c d e f

)
, we find

D(I)ψ =




a
b
c
d
e
f




, D(R)ψ =
1

2




−e−
√
3 f√

3 e− f
−a−

√
3 b√

3 a− b
−c−

√
3 d√

3 c− d




, D(W )ψ =
1

2




−c+
√
3 d

−
√
3 c− d

−e+
√
3 f

−
√
3 e− f

−a+
√
3 b

−
√
3 a− b




(2.124)

and

D(σ)ψ =




−a
b
−e
f
−c
d




, D(σ′)ψ =
1

2




e+
√
3 f√

3 e− f
c+
√
3 d√

3 c− d
a+
√
3 b√

3 a− b




, D(σ′′)ψ =
1

2




c−
√
3 d

−
√
3 c− d

a−
√
3 b

−
√
3 a− b

e−
√
3 f

−
√
3 e− f




. (2.125)

Now let’s project! We first project onto A1, where, from Eqn. 2.66,

ΠA1 =
1

6

{
D(I) +D(R) +D(W ) +D(σ) +D(σ′) +D(σ′′)

}
. (2.126)

Adding up the various contributions, we find ΠA1 ψ = 1
2
√
3

(
2b −

√
3 c − d +

√
3 e − f

)
ê
A1 , where the

components of êA1 , expressed as a row vector, are

ê
A1 = 1√

3

(
0 1 −

√
3
2 −1

2

√
3
2 −1

2

)
. (2.127)
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Next, we project onto A2, with

ΠA2 =
1

6

{
D(I) +D(R) +D(W )−D(σ)−D(σ′)−D(σ′′)

}
. (2.128)

Adding up the various contributions, we find ΠA2 ψ = 1
2
√
3

(
2a − c +

√
3 d − e −

√
3 f
)
ê
A2 , where the

components of êA2 are

ê
A2 = 1√

3

(
1 0 −1

2

√
3
2 −1

2 −
√
3
2

)
. (2.129)

Note that êA1 · êA2 = 0 because the A1 and A2 IRREPs correspond to orthogonal subspaces.

Note also that êA1 is orthogonal to the following mutually orthogonal vectors:

ê
x = 1√

3

(
1 0 1 0 1 0

)

ê
y = 1√

3

(
0 1 0 1 0 1

)

ê
φ = 1√

3

(
1 0 −1

2

√
3
2 −1

2 −
√
3
2

)
.

(2.130)

These vectors, as you may have guessed, correspond to the three zero modes for our problem: trans-
lations along x̂ and ŷ, and rotations about the ẑ axis through the center of the triangle. These vectors
are obtained by the action of the Lie algebra generators for the continuous translation groups R and
rotation group SO(2). Infinitesimal translations result in xi → xi + εx and yi → yi + εy . To obtain ê

φ,

perform an infinitesimal rotation exp(εφM), where M =

(
0 1
−1 0

)
= iσy upon each of the (x0i , y

0
i ) pairs

of equilibrium coordinates:

(
0 1
−1 0

)(
0
1

)
=

(
1
0

)
,

(
0 1
−1 0

)(
−
√
3/2

−1/2

)
=

(−1/2√
3/2

)
,

(
0 1
−1 0

)(√
3/2
−1/2

)
=

( −1/2
−
√
3/2

)
.

(2.131)
As for êA2 , it too is orthogonal to ê

x,y, but we find that êA2 = ê
φ, which tells us that that the infinitesimal

rotation transforms according to the A2 IRREP of D3. According to what IRREP do you suppose the two
infinitesimal translations transform?

Finally, we come to the E representation, which is two-dimensional. We construct the projectorsΠE
µν for

(µ, ν) = (1, 1) and (µ, ν) = (2, 1) :

ΠE
1,1 =

1

3

{
D(I)− 1

2 D(R)− 1
2 D(W )−D(σ) + 1

2 D(σ′) + 1
2 D(σ′′)

}

ΠE
2,1 =

1

3

{√
3
2 D(R)−

√
3
2 D(W ) +

√
3
2 D(σ′)−

√
3
2 D(σ′′)

}
.

(2.132)

We find

ΠE
1,1ψ = 1√

3
(a+ c+ e) êx + 1√

3
(a− 1

2 c−
√
3
2 d− 1

2 e+
√
3
2 f) êE,1

ΠE
2,1ψ = 1√

3
(a+ c+ e) êy + 1√

3
(a− 1

2 c−
√
3
2 d− 1

2 e+
√
3
2 f) êE,2 ,

(2.133)
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where

ê
E,1 = 1√

3

(
1 0 −1

2 −
√
3
2 −1

2

√
3
2

)

ê
E,2 = 1√

3

(
0 −1 −

√
3
2

1
2

√
3
2

1
2

)
.

(2.134)

Note that the projection onto the rows of E does not annihilate the components parallel to ê
x,y. The

student should pause for contemplation to understand why this is so. We now have derived six mutually
orthogonal vectors:

{
ê
A1 , êA2 , êE,1 , êE,2 , êx , êy

}
, with ê

φ = ê
A2 .

Getting back to our small oscillations problem, the potential energy is given by

V (δx1, δy1, δx2, δy2, δx3, δy3) =
1
2k
(
|r1 − r2| − a

)2
+ 1

2k
(
|r2 − r2| − a

)2
+ 1

2k
(
|r3 − r2| − a

)2
. (2.135)

To quadratic order in the displacements from equilibrium, we find

|r1 − r2| − a = 1
2 δx1 − 1

2 δx2 +
√
3
2 δy1 −

√
3
2 δy2 + . . .

|r2 − r3| − a = δx3 − δx2 + . . .

|r3 − r1| − a = 1
2 δx3 − 1

2 δx1 −
√
3
2 δy3 +

√
3
2 δy1 + . . . .

(2.136)

The potential energy is then

V (δx1, δy1, δx2, δy2, δx3, δy3) =
1
2k
[
1
2

(
δx1 − δx2

)
+

√
3
2

(
δy1 − δy2

)]2
+ 1

2k
(
δx2 − δx3

)2
+

1
2k
[
1
2

(
δx3 − δx1

)
−

√
3
2

(
δy3 − δy1

)]2
+ . . .

(2.137)

and from this one can take the second derivatives by inspection and form the V-matrix. Since we have
computed the IRREP projections correctly, we can obtain the eigenvalues of V by performing only one
row× column multiply for each IRREP. One finds that the eigenvalues are 3k for theA1 IRREP and 3

2k for
the E IRREP. The T-matrix is m times the unit matrix, where m is the mass of each ”ion”, and therefore
the eigenfrequencies are ωA1

=
√

3k/m and ωE =
√

3k/2m , and of course ωA2
= ωE′ = 0, where E′ is a

second E doublet corresponding to the translations.

It is instructive to consider the effect of an additional potential,

V ′(δx1, δy1, δx2, δy2, δx3, δy3) =
1
2k

′(|r1| − 1√
3
a
)2

+ 1
2k

′(|r2| − 1√
3
a
)2

+ 1
2k

′(|r3| − 1√
3
a
)2

= 1
2k

′y21 +
1
2k

′(√3
2 x2 +

1
2y2
)2

+
(√

3
2 x3 − 1

2y3
)2

+ . . . ,
(2.138)

where a/
√
3 is the distance from the center of the triangle to any of the equilibrium points. This potential

breaks the translational symmetry but preserves the rotational symmetry, so we expect only one zero
mode to remain, corresponding to ê

A2 = ê
φ. The energy of theA1 breathing mode will be shifted due to

the new potential. It is a good exercise to work out the effect on the E modes. It turns out that V ′ leads
to a coupling between the two E doublets we have derived. The resulting spectrum will then have two
finite frequency doublets each transforming as E. Solve to unlock group theory achievement, level D3 .
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2.8 Jokes for Chapter Two

I feel that this chapter was not as funny as the previous one, so I will end with a couple of jokes:

JOKE #1 : A duck walks into a pharmacy and waddles back to the counter. The pharmacist looks
down at him and says, ”Hey there, little fella! What can I do for you?” ”I’d like a box of condoms
please,” answers the duck. The pharmacist says, ”No problem! Would you like me to put that on
your bill?” The duck replies, ”I’m not that kind of duck.”

JOKE #2 : A theorist brings his car to his experimentalist friend and complains that it has been
stalling out lately. The experimenter opens the hood and starts poking around. After a few min-
utes, the engine is idling smoothly. ”So what’s the story?” asks the theorist. ”Meh. Just crap in the
carburetor,” replies the experimenter. The theorist says, ”How often do I have to do that?”
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Chapter 3

Group Theory and Quantum Mechanics

As a refresher on various True Facts about linear algebra relevant to quantum mechanics, please review
the Appendix §3.3.

3.1 Hilbert Space and Group Symmetries

3.1.1 Classification of the basis states

The realization of symmetries in quantum mechanics is expressed through the action of unitary oper-
ator representations Û(G) of some symmetry group G which act on the Hilbert space H of states. If[
Ĥ, Û(g)

]
= 0 for all g ∈ G , i.e. the Hamiltonian commutes with all symmetry operations from G, its

eigenspectrum arranges into multiplets, each of which transforms according to some IRREP Γ of G, with
corresponding degeneracy dΓ . Thus, at the outset, one thing group theory can do for us is to provide us
with a useful set of basis states |Γµ, l 〉 in H which are identified by three labels (Γ, µ, l):

(i) The representation index Γ labels am IRREP of the symmetry group G.

(ii) The basis index µ ∈ {1, . . . , dΓ } labels the basis states within the Γ representation.

(iii) The additional index l labels different invariant subspaces transforming according to the same
representation. This allows for other quantum numbers not associated with the group symmetry.

Where do these basis states come from? We can generate them via the projection method, which we will
discuss in §3.1.5 below.

Such a basis can greatly simplify the diagonalization of our quantum Hamiltonian Ĥ , because, as we
shall see, 〈

Γµ, l
∣∣ Ĥ
∣∣Γ ′µ′, l′

〉
= δΓΓ ′ δµµ′ H

Γ
ll′ . (3.1)

79
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However, in general the projection method does not guarantee that the basis states |Γµ, l 〉 are orthogo-
nal. Rather, we have

〈Γµ, l |Γ ′µ′, l′ 〉 = δΓΓ ′ δµµ′ O
Γ
ll′ , (3.2)

where OΓll′ is the overlap matrix. Group theory tells us that basis states which transform according to dif-
ferent IRREPs are necessarily orthogonal, but it says nothing about the overlap of basis states transform-
ing according to two copies of the same IRREP. Thus, we are left with the task of simultaneously diag-
onalizing the two Hermitian matrices HΓ and OΓ , i.e. solving the linear system HΓ

ll′ φ
Γs
l′ = EΓsO

Γ
ll′ φ

Γs
l′ ,

where s labels the eigenvalue and corresponding eigenfunctions of the sth occurrence of the IRREP Γ .
The eigenstates of Ĥ then satisfy Ĥ

∣∣Γµ, s
〉
= EΓs

∣∣Γµ, s
〉

with 〈Γµ, s |Γ ′µ′, s′ 〉 = δΓΓ ′ δµµ′ δss′ . The
index s is necessary because any given IRREP generally occurs several times in the eigenspectrum. This
means we can write

Ĥ =
∑

Γ,s

EΓ, s Π̂
Γ, s , Π̂Γ, s ≡

∑

µ

∣∣Γµ, s
〉 〈
Γµ, s

∣∣ , (3.3)

where Π̂Γ, s is the projector onto the sth occurrence of IRREP Γ .

Example : The Hamiltonian Ĥ = p2

2m + V (x) commutes with the operators {1, P}, where P = P−1 = P† is

the parity operator, with Px P = −x and P p P = −p . Thus, [Ĥ, P] = 0 and we can classify all eigenstates
of Ĥ by representations of Z2 , of which there are only two : Γ1 (trivial) and Γ2 (sign). Both IRREPs are
one-dimensional, so the µ index is unnecessary. Starting with any set

{
ψl(x)

}
of L2-integrable functions

on R, we can project onto the trivial (symmetric) and sign (antisymmetric) representations of Z2, forming
ϕl,± ≡ ψl(x) ± ψl(−x). While the Z2 symmetry guarantees that 〈ϕl,σ |ϕl′,σ′ 〉 vanishes if σ 6= σ′, there is

no symmetry consideration guaranteeing that basis states within the same IRREP are orthonormal1.

Diagonalizing Ĥ within each of these subspaces yields the orthonormal eigenfuntionsψ
(Γ1)
s (x) = 〈x |Γ1s 〉

and ψ
(Γ2)
s (x) = 〈x |Γ2s 〉 may be taken to be the sth lowest energy eigenfunctions in the even and odd

parity sectors, respectively. These energy eigenstates interleave, with the nth energy level having n − 1
nodes and parity eigenvalue P = (−1)n−1.

Example’ : In later chapters we shall discuss representations of Lie groups, but you already know that
for G = SU(2), the representations are classified by total spin S ∈ 1

2Z , and that the dimension of each
spin-S representation is dS = 2S + 1. In a system of N spin-12 objects, with N even, one can form
representations with integer S ∈

{
0, 1, . . . , 12N

}
. The number of spin-S multiplets is given by2

MS =

(
N

1
2N + S

)
−
(

N
1
2N + S + 1

)
. (3.4)

Each of theseMS multiplets is (2S+1)-fold degenerate. The Hilbert space basis vectors may be expressed
as |S,m, l 〉 , where S labels the representation, m ∈ {−S, . . . ,+S} is the polarization, and l labels the
MS different spin-S multiplets.

1For example, we could take ϕl,+(x) = Alx
2l e−x and ϕl,−(x) = Blx

2l+1 e−x.
2This expression counts the difference in the number of states with Sz = S and with Sz = S + 1. The difference is the number
of multiplets in which Sz = S appears but not Sz = S + 1, and is therefore the number of spin-S multiplets.
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3.1.2 Accidental degeneracies

In general,

⋄ For a Hamiltonian Ĥ where
[
Ĥ, Û (G)

]
= 0 , each group of eigenstates transforming according to a

representation Γ is dΓ -fold degenerate. Any degeneracies not associated with the group symmetry
are said to be accidental.

Accidental degeneracies can be removed by varying parameters in the Hamiltonian without breaking
the underlying symmetry. As an example, consider the case of a Hilbert space with six states, labeled{
|u1 〉, | v1 〉, |u2 〉, | v2 〉, |u3 〉, | v3 〉

}
and the Hamiltonian

Ĥ = −
3∑

n=1

[
t0

(
|un 〉〈un+1 |+|un+1 〉〈un |+| vn 〉〈 vn+1 |+| vn+1 〉〈 vn |

)
+t1

(
|un 〉〈 vn |+| vn 〉〈un |

)]
(3.5)

where |u4 〉 ≡ |u1 〉 and | v4 〉 ≡ | v1 〉 . The geometry is sketched in Fig. 3.1.

Figure 3.1: Six site cluster withD3h symmetry. Solid bonds between orbitals signify matrix element−t0,
while dashed bonds signify matrix element −t1.

The Hamiltonian is symmetric under the symmetry group C3v , which has six elements, corresponding
to the symmetries of the equilateral triangle. In fact, this model has an enlarged symmetry, since it is also
symmetric under a reflection σh in the horizontal plane, which interchanges the orbitals |un 〉 ↔ | vn 〉 ,
corresponding to the group D3h . The group Dnh has 4n elements and is generated by three elements: a
2π
n rotation r, a vertical reflection σv , and a horizontal reflection σh. Its presentation is

Dnh :
〈
r , σv , σh

∣∣ rn, σ2v , σ2h ,
(
σv r

)2
,
(
σv σh

)2
, σh r σh r

n−1
〉

. (3.6)

The character table for D3h is given in Tab. 3.1.

The Hamiltonian Ĥ in Eqn. 3.5 is known as a ”tight binding model” and its diagonalization is suffi-
ciently simple that those with a rudimentary background in solid state physics can do so by inspection.
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Explicitly, define the states

| ûj 〉 =
1√
3

3∑

n=1

e−2πijn/3 |un 〉 , | v̂j 〉 =
1√
3

3∑

n=1

e−2πijn/3 | vn 〉 . (3.7)

with j ∈ {−1, 0,+1}. This is a simple discrete Fourier transform whose inverse is

|un 〉 =
1√
3

1∑

j=−1

e2πijn/3 | ûj 〉 , | vn 〉 =
1√
3

1∑

j=−1

e2πijn/3 | v̂j 〉 . (3.8)

One then has

Ĥ = −
1∑

j=−1

[
2t0 cos(2πj/3)

(
| ûj 〉〈 ûj |+ | v̂j 〉〈 v̂j |

)
+ t1

(
| ûj 〉〈 v̂j |+ | v̂j 〉〈 ûj |

)]
. (3.9)

Next, define

| ψ̂j,± 〉 =
1√
2

(
| ûj 〉 ± | v̂j 〉

)
, (3.10)

in which case

Ĥ =

1∑

j=−1

(
εj,+ | ψ̂j,+ 〉〈 ψ̂j,+ |+ εj,− | ψ̂j,− 〉〈 ψ̂j,− |

)
, (3.11)

where the six eigenvalues of H are given by

εj,± = −2t0 cos(2πj/3) ∓ t1 . (3.12)

For generic t0 and t1 , we have that the eigenstates | ψ̂0,± 〉 are each singly degenerate with energies
ε0,± = −2t0 ∓ t1 , respectively. They transform according to the A1 and A′

2 representations of D3h ,

respectively. The eigenstates | ψ̂±1,+ 〉 are doubly degenerate, with energy ε±1,+ = t0− t1, and transform

according to the E representation. Finally, the states | ψ̂±1,− 〉 are also doubly degenerate, with energy
ε±1,− = t0 + t1 , and transform according to E′ (see Tab. 3.1).

To elicit an accidental degeneracy, we set ε0,− = −2t0 + t1 equal to ε±1,+ = t0 − t1 , i.e. t1 = 3
2 t0. For

this special ratio of t1/t0, there is a threefold degeneracy, due to a crossing of A′
2 and E levels. The

multiplicity of this degeneracy is therefore dA′
s
+ dE = 3, which corresponds to none of the dimensions

of the IRREPs of D3h. The degeneracy is accidental and is removed whenever t1 6= 3
2 t0.

Finally, we can break the D3h symmetry back down to C3v by choosing different matrix elements t0,u
and t0,v for the two triangles3. Mutatis mutandis4, one finds that the degeneracy structure is the same,
and the eigenspectrum is given by

εj,± = −(t0,u + t0,v) cos(2πj/3) ∓
√

(t0,u − t0,v)2 cos2(2πj/3) + t21 . (3.13)

3Here we should recall the careful discussion at the end of §1.2.4 regarding the difference between Dn and Cnv .
4Vah! Denuone Latine loquebar?
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D3h E 2C3 3C ′
2 σh 2S3 3σv

A1 1 1 1 1 1 1

A2 1 1 −1 1 1 −1
E 2 −1 0 2 −1 0

A′
1 1 1 1 −1 −1 −1

A′
2 1 1 −1 −1 −1 1

E′ 2 −1 0 −2 1 0

Table 3.1: Character table for the groupD3h. The upper left 3×3 block is the character table forD3 . Take
care not to confuse the identity element E and its class with the two-dimensional IRREP also labeled E.

The eigenstates are now classified in terms of representations of C3v
∼= D3. The two nondegenerate

levels each transform according to A1, and the two sets of doubly degenerate levels each transform
according to E.

In general, identical IRREPs cannot be coaxed into degeneracy by terms in the Hamiltonian which pre-
serve the full symmetry group G. This is due to level repulsion. Accidental degeneracy, when it occurs,
is in general between distinct IRREPs, and therefore the size of the resulting supermultiplet is given by
dΓa

+dΓb
, where Γa 6∼= Γb . We note that this sort of degeneracy requires the fine tuning of one parameter

in the Hamiltonian, such as t1 (or the dimensionless ratio t1/t0) in our above example.

Can we tune further for even greater degeneracy? Yes we can! Mathematically, if Ĥ = Ĥ(λ), where λ =
{λ1, . . . , λK} is a set of parameters living in some parameter space manifoldM, and

[
Ĥ(λ) , Û(g)

]
= 0

for all λ ∈ M and all g ∈ G, then requiring that the multiplets for p > 1 distinct IRREPs are simultane-
ously degenerate imposes p− 1 equations of the form

EΓa , la
(λ1, . . . , λK) = EΓb , lb

(λ1, . . . , λK) , (3.14)

and therefore such a degeneracy, whose multiplicity is d =
∑p

j=1 dim(Γaj ) , has codimension p− 1, mean-
ing that the solution set inM is of dimension K − p + 1. It may be that this value of d corresponds to
dΓ for some other IRREP Γ , but this is not necessarily the case. And of course, it may be that there are

no solutions at all. In the above example with symmetry group D3h , we had Ĥ = Ĥ(t0, t1), so K = 2,
and degeneracy of the p (= 2) multiplets A′

2 and E imposed p − 1 (= 1) conditions on {t1, t2}, with a
one-dimensional solution set of the form t1 =

3
2t0.

Accidental degeneracy in the C60 molecule

Mathematical appetizer : There is a marvelous result in graph theory, due to Euler, which says that for
any connected graph on a surface of genus g, the number of faces f , edges e, and vertices v are related
according to

f − e+ v = 2− 2g . (3.15)

The genus g is the number of holes, hence a sphere has genus g = 0, a torus g = 1 , etc. It turns out
that for the plane we should take g = 1

2 , which we can understand identifying the points at infinity and
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thereby compactifying the plane to a sphere. Then the area outside the original graph counts as an extra
face. Try sketching some connected graphs on a sheet of paper and see if Euler’s theorem holds.

Consider now a threefold coordinated graph on the sphere S2. Every site is linked to three neighboring
sites. Furthermore, let’s assume that every face is either a pentagon or a hexagon. The number of faces
is then f = p + h, where p is the number of pentagons and h the number of hexagons. If we add 5p to
6h, we count every edge twice, so 5p + 6h = 2e. Similarly, 5p + 6h = 3v because the same calculation
counts each vertex three times. Thus e = 5

2p+3h and v = 5
3p+2h. Now apply Euler’s theorem and find

that h drops out completely and we are left with p = 12. Any three-fold coordinated graph on the sphere with
pentagonal and hexagonal faces will always have twelve pentagons. Amazing! Take a close look at a soccer
ball sometime and you will notice it has 12 pentagonal faces and 20 hexagonal ones, for a total of f = 32
faces to go along with e = 90 edges and v = 60 vertices.

Physics entree : There is a marvelous molecule with chemical formula C60, also known as Buckmin-
sterfullerene5 (colloquially a buckyball ) which consists of 60 carbon atoms arranged in a soccer ball
pattern6. See the left panel of Fig. 3.2. Each atom is threefold coordinated, meaning it has three nearest
neighbors. As you know, carbon has the electronic structure 1s22s22p2. In the planar form graphene,
which has the structure of a honeycomb lattice, the 2s and 2px,y orbitals engage in sp2 hybridization.
For each carbon atom, three electrons in each atom’s sp2 orbitals are distributed along bonds connecting
to its neighbors7. Thus each bond gets two electrons (of opposite spin), one from each carbon atom at
its ends, which form what chemists call a σ-bond. The 1s orbitals are of course filled, so this leaves one
remaining electron from each pz orbital (the π orbital to our chemist friends) to roam about. The situa-
tion is much the same with the buckyball, although unlike graphene it is curved. The single (π) orbital
tight binding model is

Ĥ = −
∑

〈ij〉

(
tij
∣∣ πi
〉 〈
πj
∣∣+ t∗ij

∣∣ πj
〉 〈
πi
∣∣
)

, (3.16)

where 〈ij〉 denotes a nearest neighbor bond on the lattice between sites i and j and tij is the hopping

integral, which may be complex so long as Ĥ itself is Hermitian8.

The eigenspectrum of Ĥ will be arranged in multiplets whose sizes are given by the dimensions of the
IRREPs of the symmetry group of the buckyball. The discrete rotational symmetries of C60 belong to
the icosahedral group, I . You can look up the character table for I and see that it is a nonabelian group
with 60 elements, five classes, and five IRREPs A, T1, T2, G, and H , with dimensions 1, 3, 3, 4, and 5,
respectively. Note that 60 = 12 + 32 + 32 + 42 + 52. The icosahedron also has an inversion symmetry,
so its full symmetry group, including the improper rotations, has 120 elements and is called Ih.9 The
group Ih has ten classes and ten IRREPs, such that each of the five IRREPs in I is doubled within Ih into

5After Buckminster Fuller, the American architect who invented the geodesic dome.
6”The icosahedral group . . . has no physical interest, since for crystals 5-fold axes cannot occur, and no examples of molecules
with this symmetry are known.” - M. Hamermesh, Group Theory and its Application to Physical Problems (1962), p. 51.

7In diamond, the carbon atoms are fourfold coordinated, and the orbitals are sp3 hybridized.
8A local gauge transformation of the orbitals |πi 〉 → eiθi |πi 〉 is equivalent to replacing tij by tij e

i(θi−θj ). The product∏
〈ij〉∈κ tij of the tij around a plaquette κ is therefore gauge invariant, and the phase of the product is equal to the total

magnetic flux through κ in units of ~c/e.
9Recall that Dn has 2n elements, but adding a horizontal reflection plane yieldsDnh with 4n elements. The icosahedron has 15
reflection planes, appearing as class σ in its character tables. Each such reflection can be written as the product of an inversion
and a proper rotation. Fun facts : I ∼= A5 and Ih ∼= Z2 × A5, where A5 is the alternating group with five symbols.
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Figure 3.2: Electronic structure of the C60 molecule. Left: C60 molecule, showing inequivalent bonds.
All red bonds lie along pentagons, while all blue bonds do not. Middle: Irreducible representations of
the icosahedral group Ih and their dimensions. Right: Tight binding energy spectrum when all bonds
have hopping amplitude t0. Note the accidental degeneracy between Gg and Hg levels, at E = −t0,
resulting in a nine-fold degenerate supermultiplet. When the hopping amplitudes along the blue and
red bonds differ, icosahedral symmetry is maintained, but the accidental degeneracy is resolved.

an even and an odd version with respect to the inversion10, sort of like the good and evil versions of
Mr. Spock in the original Star Trek series episode entitled ”Mirror, Mirror”. The IRREPs of Ih are labeled
with subscripts g and u, for gerade and ungerade, respectively (from the German for ”even” and ”odd”).

The eigenvalues for the C60 tight binding Hamiltonian are shown in Fig. 3.2 for the case tij = t0 for all
nearest neighbor bonds 〈ij〉. Each of the energy levels accommodates two electrons (spin ↑ and ↓), so
in the ground state the sixty π electrons fill the lowest 30 levels. HOMO and LUMO respectively refer to
”highest occupied molecular orbital” and ”lowest unoccupied molecular orbital”. The multiplicities of
the different energy states correspond to the dimension of the IRREPs, except for a ninefold degenerate
level at E = −t0. This is an accidental degeneracy between Gg and Hg IRREPs, whose dimensions are
four and five, respectively.

In order for the degeneracy to be accidental, we should be able to remove it by modifying the Hamilto-
nian while still preserving the Ih symmetry. One physical way to do this is to note that there are actually
two inequivalent sets of bonds (edges) on the buckyball: bonds that lie along pentagons (marked red in
Fig. 3.2, called 6:5 bonds, 60 in total), and bonds that do not lie along pentagons (marked blue, 6:6 bonds,
30 total). Clearly no symmetry operation can transform a red bond into a blue one, so why should their
hopping amplitudes be the same? The answer is that they are not the same. Indeed, the 6:6 bonds
are slightly shorter than the 6:5 bonds, and they have a slightly larger value of tij . By distinguishing

10See the discussion in §2.4.7.
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t0 ≡ t(6:6) and t1 ≡ t(6:5), one retains the Ih symmetry, but the aforementioned degeneracy occurs only

for t1 = t0 , precisely in analogy to what we found in our D3h example.

Note that in the tight binding eigenspectrum some IRREPs occur several times. There are threeHg levels,
for example, and Au isn’t present anywhere in the spectrum. The eigenfunctions form a reducible 60-
dimensional representation of the group Ih whose decomposition is

Γ elec = Ag ⊕ T1g ⊕ T2g ⊕ 2Gg ⊕ 3Hg ⊕ 2T1u ⊕ 2T2u ⊕ 2Gu ⊕ 2Hu . (3.17)

The number of times the IRREP Γ appears, nΓ , is also listed in the table in Fig. 3.2. For singly degenerate
atomic orbitals such as the π orbitals of C60 , the representation matrices Delec(g) are permutation matrices
of the site labels i, with

Delec
ij (g) =

〈
i
∣∣ g
∣∣ j
〉
≡
{
1 if g takes j to i

0 otherwise .
(3.18)

The character χelec(g) is then simply the number of sites i left invariant by the operation g. We can then
find nΓ using the representation decomposition formula. This will be discussed more fully in §6.4.

3.1.3 Operators and wavefunctions

Here we consider the transformation properties of the Hilbert space vectors |Γµ, l 〉 for fixed l. Accord-
ingly we suppress these indices throughout this discussion. Recall that

Û(g)
∣∣Γν

〉
= |Γµ 〉

〈
Γµ
∣∣ Û(g)

∣∣Γν
〉
=
∣∣Γµ

〉
DΓ
µν(g) . (3.19)

Taking the Hermitian conjugate, one has 〈Γν |U †(g) = DΓ ∗

µν (g) 〈Γµ | . Thus,

DΓ
µν(g) =

〈
Γµ
∣∣ Û(g)

∣∣Γν
〉

, DΓ ∗

µν (g) =
〈
Γµ
∣∣ Û(g)

∣∣Γν
〉∗

=
〈
Γν
∣∣ Û †(g)

∣∣Γµ
〉

. (3.20)

Note that the matrix representation is a group homomorphism:

Û(ga) Û(gb)
∣∣Γν

〉
= Û(ga)

∣∣Γρ
〉
DΓ
ρν(gb) =

∣∣Γµ
〉
DΓ
µρ(ga)D

Γ
ρν(gb) =

∣∣Γµ
〉
DΓ
µν(ga gb) . (3.21)

Acting on the state | r 〉, one has Û(g) | r 〉 = | g r 〉 , and therefore 〈 r |U(g) = 〈 g−1r | . Therefore, with
ψ(r) = 〈 r |ψ 〉, we then have

Û(g)ψ(r) ≡
〈
r
∣∣ Û(g)

∣∣ψ
〉
= ψ(g−1r) . (3.22)

We also have

Û(gh)ψ(r) = Û(g) Û (h)ψ(r) = Û(g)ψ(h−1r) = ψ(h−1g−1r) = ψ
(
(gh)−1r

)
. (3.23)

Acting on a basis function ψΓν (r) = 〈 r |Γν 〉, we have

ψΓν (g
−1r) = Û(g)ψΓν (r) =

〈
r
∣∣ Û(g)

∣∣Γν
〉
= 〈 r |Γµ 〉DΓ

µν(g) = ψΓµ (r)D
Γ
µν(g) . (3.24)

Multiplying by DΓ ∗

να (g) and contracting on the index ν, this result entails ψΓα (r) = DΓ ∗

αν (g)ψ
Γ
ν (g

−1r) .

Fun fact about bras and kets:
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⋄ While the ket |Γµ, l〉 transforms according to Γ , the bra 〈Γµ, l| transforms according to Γ ∗.

Recall also that the product of IRREPs Γ × Γ ′ contains the identity representation if and only if Γ ′ = Γ ∗ ,
with DΓ ∗

µν (g) =
[
DΓ
µν(g)

]∗
.

3.1.4 Projection operators

This section recapitulates the results of §2.4.2, now expressed in the form of abstract operators rather
than matrices. Consider a unitary representation DΓ (G) and define the operators

Π̂Γ
µν ≡

dΓ
NG

∑

g∈G
DΓ ∗

µν (g) Û (g) . (3.25)

which project onto the µ basis vector of the Γ representation. They satisfy the following three conditions.

First: Π̂Γ
µν Π̂

Γ ′

µ′ν′ = δΓΓ ′ δνµ′ Π̂
Γ
µν′ . Second:

(
Π̂Γ
µν

)†
= Π̂Γ

νµ . Third:
∑

Γ

∑dΓ
µ=1 Π̂

Γ
µµ = 1. The proof of these

relations is left as an exercise to the student.

Starting with an arbitrary collection of initial states
{
|ψl 〉

}
, one can form the states

∣∣Γµ, l
〉
= Π̂Γ

µν

∣∣ψl
〉

, (3.26)

where the index ν is held fixed for each l. One then has Π̂Γ
µν

∣∣Γ ′ρ, l
〉
= δΓΓ ′ δνρ

∣∣Γµ, l
〉

. Note that

Û(g) Π̂Γ
µν =

dΓ
NG

∑

h∈G
DΓ ∗

µν (h) Û (g) Û (h) =
dΓ
NG

∑

h∈G
DΓ ∗

µν (g
−1gh) Û (gh)

= DΓ ∗

µρ (g
−1)

Π̂Γ
ρν (rearrangement)

︷ ︸︸ ︷
dΓ
NG

∑

h∈G
DΓ ∗

ρν (gh) Û (gh) = DΓ ∗

µρ (g
−1) Π̂Γ

ρν = Π̂Γ
ρν D

Γ
ρµ(g) .

(3.27)

Applying this to |ψl〉, we have

Û(g) |Γµ, l 〉 = |Γρ, l 〉DΓ
ρµ(g) , (3.28)

which says that the states
{
|Γµ, l〉} transform as the Γ IRREP of G. Note further that

〈
Γµ, l

∣∣Γ ′µ′, l′
〉
=
〈
ψl
∣∣ (Π̂Γ

µν

)†
Π̂Γ ′

µ′ν′
∣∣ψl′

〉
=
〈
ψl
∣∣ Π̂Γ

νµΠ̂
Γ ′

µ′ν′
∣∣ψl′

〉

= δΓΓ ′ δµµ′
〈
ψl
∣∣ Π̂Γ

νν′
∣∣ψl′

〉
≡ δΓΓ ′ δµµ′ O

Γ
ll′ ,

(3.29)

whereOΓll′ =
〈
ψl
∣∣ Π̂Γ

νν′

∣∣ψl′
〉

. Recall that the column indices are held fixed for each choice of (Γ, l), inde-
pendent of the row indices. If the choice of ν for each (Γ, l) is considered implicit, we may suppress the
indices ν and ν ′ in the overlap matrix OΓll′ . At any rate, we see that the states constructed by projection
in eqn. 3.26 are orthogonal only in their representation labels (Γ and Γ ′) and row labels (µ and µ′), but
not in the multiplicity labels l and l′.
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Figure 3.3: A projector from the early days of group theory. This projector belonged to Eugene Wigner.

Taking the trace of Π̂Γ
µν , we obtain, for unitary representations, the projection operator

Π̂Γ ≡
dΓ∑

µ=1

Π̂Γ
µµ =

dΓ
NG

∑

g∈G
χΓ

∗
(g) Û (g) . (3.30)

If |ψ 〉 =∑Γ

∑
l

∑dΓ
µ=1 C

l
Γµ |Γµ, l 〉 is a general sum over Hilbert space basis vectors, then

Π̂Γa |ψ 〉 =
∑

l

dΓ∑

µ=1

C lΓa µ

∣∣Γa µ , l
〉

(3.31)

projects |ψ 〉 onto the IRREP Γa.

3.1.5 Projecting arbitrary functions onto IRREPs

Here we describe a straightforward generalization of the method in §2.3.4 of projecting vectors, now
applied to functions. For any function ψ(r), define

ψ(Γν)
µ (r) ≡ Π̂Γ

µν ψ(r) =
dΓ
NG

∑

g∈G
DΓ ∗

µν (g)ψ(g
−1r) . (3.32)

Here the representation label Γ as well as the column index ν serve as labels for a set of functions with
µ ∈ {1, . . . , dΓ }. Invoking Eqn. 3.27, we find

Û(g) Π̂Γ
µν = Π̂Γ

ρν D
Γ
ρµ(g) (3.33)
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and therefore

Û(g)ψ(Γν)
µ (r) = ψ(Γν)

ρ (r)DΓ
ρµ(g) . (3.34)

In other words, suppressing the (Γν) label, we have that the functions ψµ(r) transform according to the
Γ representation of the group. Thus, we have succeeded in projecting an arbitrary function ψ(r) onto
any IRREP Γ of G we please. This deserves a celebration with some unusual LATEX symbols: , ®oK .

Example: Z2

Let’s see how this marvelous projection machinery works with two examples. The first is rather trivial,
from the group G = Z2 , with elements {E,P}, where P 2 = E. We take P to correspond to parity, with
Px = −x. Thus for any function ψ(x) ,

Û(E)ψ(x) = ψ(x) , Û(P )ψ(x) = ψ(P−1x) = ψ(Px) = ψ(−x) . (3.35)

Z2 has two IRREPs, both of which are one-dimensional. In the identity representation Γ1 , the 1 × 1
matrices are ÛΓ1(E) = ÛΓ1(P ) = 1. In the sign representation Γ2 , and ÛΓ2(E) = 1 while ÛΓ2(P ) = −1.
The projectors are then

Π̂Γ1 =
1

2

[
Û(E) + Û(P )

]
, Π̂Γ2 =

1

2

[
Û(E)− Û(P )

]
. (3.36)

Now for the projection:

Π̂Γ1 ψ(x) = 1
2

[
ψ(x) + ψ(−x)

]
, Π̂Γ2 ψ(x) = 1

2

[
ψ(x)− ψ(−x)

]
. (3.37)

Example: C3v

Let’s now see how the projection onto basis functions works for a higher-dimensional representation of
a nonabelian group. We turn to our old and trusted friend, C3v , which has a two-dimensional represen-
tation, E.

Before we project onto E, let’s warm up by projecting onto the two one-dimensional representations A1

and A2. We have

Π̂A1 =
1

6

{
Û(E) + Û(R) + Û(W ) + Û(σ) + Û(σ′) + Û(σ′′)

}

Π̂A2 =
1

6

{
Û(E) + Û(R) + Û(W )− Û(σ)− Û(σ′)− Û(σ′′)

}
.

(3.38)

Thus the projection of an arbitrary initial function ψ(x, y) onto A1 will, according to Eqn. 3.32, be

ψ(A1)(x, y) =
1

6

{
ψ
(
x, y
)
+ ψ

(
− 1

2x+
√
3
2 y , −

√
3
2 x− 1

2y
)
+ ψ

(
− 1

2x−
√
3
2 y ,

√
3
2 x− 1

2y
)

(3.39)

+ ψ
(
− x , y

)
+ ψ

(
1
2x+

√
3
2 y ,

√
3
2 x− 1

2y
)
+ ψ

(
1
2x−

√
3
2 y , −

√
3
2 x− 1

2y
)}

.
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Similarly, projecting onto A2 yields

ψ(A2)(x, y) =
1

6

{
ψ
(
x, y
)
+ ψ

(
− 1

2x+
√
3
2 y , −

√
3
2 x− 1

2y
)
+ ψ

(
− 1

2x−
√
3
2 y ,

√
3
2 x− 1

2y
)

(3.40)

− ψ
(
− x , y

)
+ ψ

(
1
2x−

√
3
2 y ,

√
3
2 x− 1

2y
)
− ψ

(
1
2x−

√
3
2 y , −

√
3
2 x− 1

2y
)}

.

Note that Π̂A1 preserves all constant functions (e.g. ψ = 1) but annihilates all linear functions of the form
ψ(x, y) = ax + by.11 What happens if we take ψ(x, y) = x2 ? Then we find ψ(A1)(x, y) = 1

2(x
2 + y2) ,

which does indeed transform like the identity, but ψ(A2)(x, y) = 0. What do we need to do to get a
nontrivial representation of A2 ? Let’s try starting with ψ(x, y) = x3 . Now we find ψ(A1)(x, y) = 0 but

ψ(A2)(x, y) = 1
4x

3− 3
4xy

2. Eureka! Note that we may write ψ(A2)(x, y) = x
(
1
2x+

√
3
2 y
)(

1
2x−

√
3
2 y
)
, which

renders its transformation properties more apparent.

Now let’s roll up our sleeves and do the projection onto E. Recall the matrices for E :

DE(E) =

(
1 0
0 1

)
DE(R) =

1

2

(
−1 −

√
3√

3 −1

)
DE(W ) =

1

2

(
−1

√
3

−
√
3 −1

)

(3.41)

DE(σ) =

(
−1 0
0 1

)
DE(σ′) =

1

2

(
1
√
3√

3 −1

)
DE(σ′′) =

1

2

(
1 −

√
3

−
√
3 −1

)
.

We now select an arbitrary function ψ(r) which itself may have no special symmetry properties. Ac-
cording to Eqn. 3.32, the projection of ψ(r) onto the µ row of the E representation is given by

ψ(Eν)
µ (r) =

1

3

{
DE
µν(E)ψ(r) +DE

µν(R)ψ(R
−1r) +DE

µν(W )ψ(W−1r)

+DE
µν(σ)ψ(σ

−1r) +DE
µν(σ

′)ψ(σ′−1
r) +DE

µν(σ
′′)ψ(σ′′−1

r)
}

.
(3.42)

Thus,

ψ(Eν)
µ (r) =

1

3

{(
1 0
0 1

)
ψ
(
x, y
)
+

1

2

(
−1 −

√
3√

3 −1

)
ψ
(
− 1

2x+
√
3
2 y , −

√
3
2 x− 1

2y
)

(3.43)

+
1

2

(
−1

√
3

−
√
3 −1

)
ψ
(
− 1

2x−
√
3
2 y ,

√
3
2 x− 1

2y
)
+

(
−1 0
0 1

)
ψ
(
− x , y

)

+
1

2

(
1
√
3√

3 −1

)
ψ
(
1
2x+

√
3
2 y ,

√
3
2 x− 1

2y
)
+

1

2

(
1 −

√
3

−
√
3 −1

)
ψ
(
1
2x−

√
3
2 y , −

√
3
2 x− 1

2y
)
}

µν

.

Let’s take ν = 1, which means we only use the first column of each of the matrices in the above expres-

sion. Starting with ψ(x, y) = x, we obtain ψ
(E,1)
1 (x, y) = x and ψ

(E,1)
2 (x, y) = y. Had we chosen instead

ψ(x, y) = y, we would have found ψ
(E,1)
1 (x, y) = ψ

(E,1)
2 (x, y) = 0, i.e. the projection annihilates the initial

state. Generically this will not occur – our choices here have been simple and nongeneric.

Had we chosen instead ν = 2, then taking the second column above we find that ψ(x, y) = x is anni-

hilated by the projection, while for ψ(x, y) = y we obtain ψ
(E,2)
1 (x, y) = x and ψ

(E,2)
2 (x, y) = y . At any

rate, the upshot of this analysis is that ψ1(x, y) = x and ψ2(x, y) = y are appropriate basis functions for
the E representation of C3v.

11Nasty stuff, these projectors.
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3.1.6 Partial diagonalization of H

Suppose we have a set of appropriately transforming basis vectors |Γµ 〉. One way to obtain such a set
is to start with an arbitrary function f(r) and then perform the projection onto row µ of representation

Γ , forming f
(Γκ)
µ (r) = Π̂Γ

µκ f(r) , and then defining

∣∣Γµ
〉
= N Γ

µ

∫
ddr f (Γκ)µ (r)

∣∣ r
〉

, (3.44)

where N Γ
µ is a normalization constant. The column index κ is fixed for each Γ and is suppressed.

We assume that the projection of f(r) onto f
(Γκ)
µ (r) does not annihilate f(r) (else we try again with a

different f(r) function). We then have12

〈
Γµ
∣∣Γ ′µ′

〉
= N Γ ∗

µ N Γ ′

µ′

∫
ddr

[
f (Γκ)µ (r)

]∗
f
(Γ ′κ′)
µ′ (r) = N Γ ∗

µ N Γ ′

µ′

∫
ddr f∗(r)

(
Π̂Γ
µκ

)†
Π̂Γ ′

µ′κ′ f(r)

= N Γ ∗

µ N Γ ′

µ′

∫
ddr f∗(r) Π̂Γ

κµ Π̂
Γ ′

µ′κ′ f(r) = δΓΓ ′ δµµ′
∣∣N Γ

µ

∣∣2
∫
ddr f∗(r) Π̂Γ

κκ′ f(r) ,

(3.45)

which confirms that the basis vectors are orthogonal unless their representations (Γ, Γ ′) and basis indices
(µ, µ′) agree. We can therefore enforce the normalization 〈Γµ |Γ ′µ′ 〉 = δΓΓ ′ δµµ′ .

Now assuming
[
Ĥ, Û(G)

]
= 0, we may write Ĥ = Û(g)†Ĥ Û(g), and therefore

〈
Γµ
∣∣H
∣∣Γ ′µ′

〉
=

1

NG

∑

g∈G

〈
Γµ
∣∣ Û(g)†Ĥ Û(g)

∣∣Γ ′µ′
〉

=
1

NG

∑

g∈G
DΓ ∗

νµ (g)
〈
Γν
∣∣ Ĥ
∣∣Γ ′ν ′

〉
DΓ ′

ν′µ′(g)

= δΓΓ ′ δµµ′
1

dΓ

dΓ∑

ν=1

〈
Γν
∣∣ Ĥ

∣∣Γν
〉

,

(3.46)

where we have invoked the Great Orthogonality Theorem to collapse the sum over the group elements. Thus
we see that if we choose our basis functions accordingly, i.e. as transforming appropriately under the
group operations, the Hamiltonian will automatically be diagonal in the Γµ indices. Of course this isn’t
the entire Hilbert space, since in the eigenspectrum of Ĥ, a given representation Γ may occur many
times – perhaps even infinitely many. We could, for example, have started by projecting an entire family
of arbitrary initial functions,

{
fl(r)

}
, indexed by l, and create their corresponding basis states states,

which we would label |Γµ, l 〉. The overlaps and the Hamiltonian matrix elements between these two
different sectors will in general be nonzero provided the representations and the basis indices agree:

〈Γµ, l |Γ ′µ′, l′ 〉 = δΓΓ ′ δµµ′
1

dΓ

dΓ∑

ν=1

〈
Γν, l

∣∣Γν, l′
〉
≡ OΓll′ δΓΓ ′ δµµ′

〈Γµ, l | Ĥ |Γ ′µ′, l′ 〉 = δΓΓ ′ δµµ′
1

dΓ

dΓ∑

ν=1

〈
Γν, l

∣∣ Ĥ
∣∣Γν, l′

〉
≡ HΓ

ll′ δΓΓ ′ δµµ′ ,

(3.47)

12No sum on µ or µ′ in Eqn. 3.45.
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with no sum on Γ or µ. The first of these comes from the generalized version of Eqn. 3.46 upon replac-
ing Ĥ by 1. Here OΓll′ and HΓ

ll′ are the overlap matrix and Hamiltonian matrix, respectively; note that
neither depends on the basis index µ. Our task is then to simultaneously diagonalize these two Hermi-
tian matrices, i.e. to solve the linear system HΓ

ll′ φ
Γs
l′ = EΓsO

Γ
ll′ φ

Γs
l′ , where a labels the eigenvalue and

corresponding eigenfunctions of the sth occurrence of the IRREP Γ . In systems with an infinite number
of degrees of freedom, both OΓ and HΓ will in general be of infinite rank for each IRREP Γ , i.e. each
IRREP will in general appear an infinite number of times in the eigenspectrum. Still, we have achieved a
substantial simplification by organizing the basis vectors in terms of group symmetry.

3.2 Product Representations

3.2.1 Direct product of two representations

In chapter 2 we discussed the direct product of IRREPs Γa × Γb. Recall the action of the group element g
on the direct product space Va ⊗ Vb is defined in terms of its action on the basis vectors,

Û(g)
∣∣ eΓa×Γb

αβ

〉
=
∣∣ eΓa×Γb

α′β′

〉
DΓa
α′α(g)D

Γb
β′β(g) , (3.48)

where
∣∣ eΓa×Γb

αβ

〉
≡
∣∣ eΓa
α

〉
⊗
∣∣ eΓb
β

〉
, where

∣∣ eΓµ
〉
=
∣∣Γµ

〉
in our previous notation13. Thus the matrix of g

in the direct product representation Γa × Γb is given by

D
Γa×Γb
α′β′, αβ(g) = DΓa

α′α(g)D
Γb
β′β(g) , (3.49)

where αβ and α′β′ on the LHS are composite indices, each taking dΓa
×dΓb

possible values. The characters
in the product representation are given by the product of the individual characters, viz.

χΓa×Γb(g) = χΓa(g) χΓb(g) . (3.50)

3.2.2 Products of identical representations

Here we discuss three ways of taking the product of identical representations. Since we will be assuming
the same representation Γ throughout, might as well suppress the Γ label.

• Direct product : This is also called the simple product. Consider an IRREP Γ of a finite group
G and construct the tensor product basis | eµν 〉 = | eµ 〉 ⊗ | eν 〉 , where µ, ν ∈ {1, . . . , dΓ }. There
are d2Γ linearly independent basis states in the tensor product space V × V . In the direct product
representation Γ × Γ , one has

Û(g)
∣∣ eµν

〉
=
∣∣ eµ′ν′

〉
Dµ′µ(g)Dν′ν(g) ≡

∣∣ eµ′ν′
〉
DD
µ′ν′, µν(g) . (3.51)

13When there are multiple occurrences of the IRREP Γ , we will use | eΓ, l
µ 〉 to always denote an orthonormal basis, with

〈 eΓ,l
µ | eΓ ′, l′

µ′ 〉 = δΓΓ ′ δll′ δµµ′ .
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Therefore the character of g in the direct product representation Γ × Γ is

χD(g) =
[
χΓ (g)

]2
, (3.52)

which is the square of the character in the Γ representation.

• Symmetrized product : Consider now the symmetrized basis states,

| eSµν 〉 =
1√
2

(
| eµ 〉 ⊗ | eν 〉+ | eν 〉 ⊗ | eµ 〉

)
. (3.53)

Clearly | eSµν 〉 = | eSνµ 〉 , so there are 1
2dΓ (dΓ +1) linearly independent basis states in the symmetric

product space (V ⊗ V)S. You might worry about the normalization, since
〈
eSµν
∣∣ eSµ′ν′

〉
= δµµ′ δνν′ + δµν′ δνµ′ , (3.54)

and thus the diagonal basis vectors | eSµµ 〉 (no sum on µ) have norm
√
2 . It turns out that this

doesn’t matter, and we can always impose a proper normalization later on. Now let’s apply the
operator Û(g) :

Û(g)
∣∣ eSµν

〉
=

1√
2

(
| eµ′ 〉 ⊗ | eν′ 〉Dµ′µ(g)Dν′ν(g) + | eν′ 〉 ⊗ | eµ′ 〉Dν′µ(g)Dµ′ν(g)

)

=
∣∣ eSµ′ν′

〉
· 1
2

(
Dµ′µ(g)Dν′ν(g) +Dν′µ(g)Dµ′ν(g)

)
≡
∣∣ eSµ′ν′

〉
DS
µ′ν′, µν(g) .

(3.55)

The character of g in this representation is then

χS(g) = DS
µν, µν(g) =

1

2

([
χΓ (g)

]2
+ χΓ (g2)

)
. (3.56)

• Antiymmetrized product : Consider now the antisymmetrized basis states,

| eAµν 〉 =
1√
2

(
| eµ 〉 ⊗ | eν 〉 − | eν 〉 ⊗ | eµ 〉

)
. (3.57)

Now we have | eAµν 〉 = −| eAνµ 〉 , so there are 1
2dΓ (dΓ − 1) linearly independent basis states in the

antisymmetric product space (V ⊗ V)A. We then have
〈
eAµν
∣∣ eAµ′ν′

〉
= δµµ′ δνν′ − δµν′ δνµ′ . (3.58)

Note that the diagonal basis vectors | eAµµ 〉 = 0 (no sum on µ) vanish identically. Now let’s apply

the operator Û(g) :

Û(g)
∣∣ eAµν

〉
=

1√
2

(
| eµ′ 〉 ⊗ | eν′ 〉Dµ′µ(g)Dν′ν(g) − | eν′ 〉 ⊗ | eµ′ 〉Dν′µ(g)Dµ′ν(g)

)

=
∣∣ eAµ′ν′

〉
· 1
2

(
Dµ′µ(g)Dν′ν(g)−Dν′µ(g)Dµ′ν(g)

)
≡
∣∣ eAµ′ν′

〉
DA
µ′ν′, µν(g) .

(3.59)

The character of g in this representation is then

χA(g) = DA
µν, µν(g) =

1

2

([
χΓ (g)

]2 − χΓ (g2)
)

. (3.60)

Note that this vanishes whenever Γ is a one-dimensional IRREP, because one-dimensional repre-
sentations cannot be antisymmetrized!
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Note that χ
(
g2
)
= χ

(
(h−1gh)2

)
, and so the class structure is the same. In other words, if g and g′ belong

to the same class, then g2 and g′2 also belong to the same class. Let’s now use the equation

nΓ (Ψ) =
1

NG

∑

C
NC χ

Γ (C)∗ χΨ (C) (3.61)

to decompose some of these product representations. We’ll choose the group D3 , the character table
for which is the upper left 3 × 3 block of the character table for D3h provided in Tab. 3.1. We first
work out the direct product E × E, for which χD(E) = 4, χD(C3) = 1, and χD(C ′

2) = 0. Applying the
decomposition formula, we obtain E × E = A1 ⊕ A2 ⊕ E. This is consistent with a naı̈ve counting of
dimensions, since 22 = 1 + 1 + 2.

In order to decompose the symmetrized and antisymmetrized product representations (E × E)S,A, we
must compute the characters χΓ (g2) , and for this we need to invoke class relations [E]2 = E, [C3]

2 = C3 ,
and [C ′

2]
2 = E. These are easy to see, since C3 contains the rotations R and W , which satisfy R2 = W

and W 2 = R. The class C ′
2 consists of the three two-fold rotations (or mirrors, for C3v elements), each of

which squares to the identity. We then have14

χE
(
[E]2

)
= χE(E) = 2 , χE

(
[C3]

2
)
= χE(C3) = −1 , χE

(
[C ′

2]
2
)
= χE(E) = 2 . (3.62)

According to Eqns. 3.56 and 3.60, we then have

χS(E) = 3 χS(C3) = 0 χS(C ′
2) = 1 (3.63)

χA(E) = 1 χA(C3) = 1 χA(C ′
2) = −1 . (3.64)

We therefore conclude (E ×E)S = A1⊕E and (E ×E)A = A2 . Can you make sense of the dimensions?

3.2.3 Clebsch-Gordan Coefficients

Recall the decomposition formulae for the product representation Γa × Γb for any finite group G:

Γa × Γb =
⊕

Γ

nabΓ Γ (3.65)

where

nabΓ =
1

NG

∑

C
NC χ

Γ ∗
(C)χΓa(C)χΓb(C) . (3.66)

We may express the direct product of orthonormal basis states
∣∣ eΓa
α

〉
and

∣∣ eΓb
β

〉
, with 1 ≤ α ≤ dΓa

and

1 ≤ β ≤ dΓb
, in terms of the new orthonormal basis set

∣∣ eΓ, sγ
〉

, viz.

∣∣ eΓa
α

〉
⊗
∣∣ eΓb
β

〉
=
∑

Γ

nab
Γ∑

s=1

dΓ∑

γ=1

(
Γa
α

Γb
β

∣∣∣∣
Γ, s

γ

) ∣∣ eΓ, sγ
〉

. (3.67)

14Remember that E labels the identity element and its class, as well as the two-dimensional representation. Take care not to
confuse the meaning of E in its appropriate context!
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Here, the label s indexes possible multiple appearances of the representation Γ in the decomposition

of the product Γa × Γb . The quantities
(
Γa
α

Γb
β

∣∣∣ Γ, sγ
)

, known as Clebsch-Gordan coefficients (CGCs), are

unitary matrices relating the two orthonormal sets of basis vectors. Orthonormality of the bases means

〈
e
Γa
α

∣∣∣ eΓa
α′

〉
= δαα′ ,

〈
e
Γb
β

∣∣∣ eΓb
β′

〉
= δββ′ ,

〈
eΓ, sγ

∣∣∣ eΓ
′, s′

γ′

〉
= δΓΓ ′ δss′ δγγ′ . (3.68)

The inverse basis transformation is

∣∣ eΓ, sγ
〉
=

da∑

α=1

db∑

β=1

(
Γa
α

Γb
β

∣∣∣∣
Γ, s

γ

)∗ ∣∣ eΓa
α

〉
⊗
∣∣ eΓb
β

〉
, (3.69)

where we abbreviate da ≡ dΓa
and db ≡ dΓb

. Note that the component IRREPs Γa and Γb are fixed

throughout this discussion.

Relations satisfied by CGCs

Orthonormality and completeness of the CGCs require

da∑

α=1

db∑

β=1

(
Γa
α

Γb
β

∣∣∣∣
Γ, s

γ

)∗ (Γa
α

Γb
β

∣∣∣∣
Γ ′, s′

γ′

)
= δΓΓ ′ δss′ δγγ′ (3.70)

and

∑

Γ

nab
Γ∑

s=1

dΓ∑

γ=1

(
Γa
α

Γb
β

∣∣∣∣
Γ, s

γ

)∗ (Γa
α′

Γb
β′

∣∣∣∣
Γ, s

γ

)
= δαα′ δββ′ . (3.71)

Applying the unitary operators Û(g) to the basis vectors in their respective representations, one then
obtains the relations

∑

Γ

nab
Γ∑

s=1

dΓ∑

γ=1

dΓ∑

γ′=1

(
Γa
α

Γb
β

∣∣∣∣
Γ, s

γ

)∗
DΓ
γγ′(g)

(
Γa
α′

Γb
β′

∣∣∣∣
Γ, s

γ′

)
= D

Γa
αα′(g)D

Γb
ββ′ (g) (3.72)

and

da∑

α=1

da∑

α′=1

db∑

β=1

db∑

β′=1

(
Γa
α

Γb
β

∣∣∣∣
Γ, s

γ

)
D
Γa
αα′(g)D

Γb
ββ′(g)

(
Γa
α′

Γb
β′

∣∣∣∣
Γ ′, s′

γ′

)∗
= DΓ

γγ′(g) δΓΓ ′ δss′ . (3.73)

3.2.4 Simply reducible groups

A group G is simply reducible if the multiplicities nabΓ in its IRREP product decompositions are all either
nabΓ = 0 or nabΓ = 1. In this case, we may drop the multiplicity index s. For simply reducible groups, we
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can obtain an explicit expression for the CGCs, courtesy of the Great Orthogonality Theorem :

dΓ
NG

∑

g∈G
D
Γa
αα′(g)D

Γb
ββ′(g)D

Γ ∗

γγ′(g) =
∑

Γ ′

∑

σ,σ′

(
Γa
α

Γb
β

∣∣∣∣
Γ ′

σ

)∗ (Γa
α′

Γb
β′

∣∣∣∣
Γ ′

σ′

)
= δΓΓ ′ δσ γ δσ′γ′︷ ︸︸ ︷

dΓ
NG

∑

g∈G
DΓ ′

σσ′(g)D
Γ ∗

γγ′(g)

=

(
Γa
α

Γb
β

∣∣∣∣
Γ

γ

)∗ (Γa
α′

Γb
β′

∣∣∣∣
Γ

γ′

)
. (3.74)

We now set α = α′ ≡ α0 , β = β′ ≡ β0, and γ = γ′ ≡ γ0 in such a way that the LHS of the above equation
is nonvanishing15 to obtain

(
Γa
α0

Γb
β0

∣∣∣∣
Γ

γ0

)
=

√√√√ dΓ
NG

∑

g∈G
D
Γa
α0α0

(g)D
Γb
β0β0

(g)D
Γ ∗

γ0γ0
(g) , (3.75)

with no sum on the repeated indices α0 , β0, and γ0 . We can choose
(
Γa
α0

Γb
β0

∣∣∣ Γγ0
)

to be real and positive,

which amounts to a phase convention for the CGCs. The general CGC is then given by
(
Γa
α

Γb
β

∣∣∣∣
Γ

γ

)
=

1(
Γa
α0

Γb
β0

∣∣∣ Γγ0
) dΓ
NG

∑

g∈G
D
Γa
αα0

(g)D
Γb
ββ0

(g)D
Γ ∗

γγ0
(g) (3.76)

When G is not simply reducible and there are multiple appearances of the same representation in the
decomposition of the product Γa × Γb, the situation is more complicated. Tables of CGCs for physically
useful groups are listed in, e.g., Koster et al. (1963).

Example : C3v

As an example, consider the case of C3v, with representations A1, A2, and E. A1,2 are one-dimensional
and can be read off from the character table. For the two-dimensional IRREP E, we use the representation
matrices in Eqn. 3.41. Since A1 ×A1 = A2 ×A2 = A1 and A1 ×A2 = A2 , we have

(
A1

1

A1

1

∣∣∣∣
A1

1

)
=

(
A1

1

A2

1

∣∣∣∣
A2

1

)
=

(
A2

1

A2

1

∣∣∣∣
A1

1

)
= 1 . (3.77)

Recall A1 ×E = A2 × E = E. We then have
(
A1

1

E

ν

∣∣∣∣
E

ξ

)
=

(
1 0
0 1

)

νξ

,

(
A2

1

E

ν

∣∣∣∣
E

ξ

)
=

(
0 1
−1 0

)

νξ

. (3.78)

Finally, E × E = A1 ⊕A2 ⊕ E, and we have
(
E

µ

E

ν

∣∣∣∣
A1

1

)
=

1√
2

(
1 0
0 1

)

µν

,

(
E

µ

E

ν

∣∣∣∣
A2

1

)
=

1√
2

(
0 1
−1 0

)

µν

(3.79)

and (
E

µ

E

ν

∣∣∣∣
E

1

)
=

1√
2

(
0 1
1 0

)

µν

,

(
E

µ

E

ν

∣∣∣∣
E

2

)
=

1√
2

(
1 0
0 −1

)

µν

. (3.80)

15See R. Winkler, Introduction to Group Theory (2015), p. 84.
Online at http://www.niu.edu/rwinkler/teaching/group-11/g-lecture.pdf

http://www.niu.edu/rwinkler/teaching/group-11/g-lecture.pdf
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3.2.5 Wigner-Eckart theorem

The transformation properties of basis vectors were defined in Eqn. 3.19: Û(g) |Γµ 〉 = |Γν 〉 DΓ
νµ(g).

Operators, too, may be classified by their transformation properties under group actions. Since we
would like

〈
φ′
∣∣ Q̂′ ∣∣ψ′ 〉 =

〈
φ
∣∣ Q̂
∣∣ψ
〉
, where, dropping representation and basis indices, the primes

denote the transformed Hilbert space vectors and operators, the action of a group operation g ∈ G on
a general operator Q̂ is Q̂′ = Û(g) Q̂ Û †(g). We now consider the case of tensor operators, which form
families which transform among themselves under group operations.

DEFINITION : A tensor operator Q̂Γµ is a Hilbert space operator which transforms according to an
IRREP of some group G. Tensor operators carry representation and basis indices.

The tensor operator Q̂Γµ transforms as

Û(g) Q̂Γµ Û
†(g) = Q̂Γν D

Γ
νµ(g) . (3.81)

We can think of families of tensor operators as invariant subspaces in operator space, End(H).

Now consider the action of tensor operators on basis vectors, such as Q̂Γa
α

∣∣ eΓb
β

〉
. We ask how such an

object transforms under group operations. We have

Û(g) Q̂Γa
α

∣∣ eΓb

β

〉
= Û(g) Q̂Γa

α Û †(g) Û (g)
∣∣ eΓb

β

〉

= Q̂Γa
α′

∣∣ eΓb

β′

〉
DΓa
α′α(g)D

Γb
β′β(g) = Q̂Γa

α′

∣∣ eΓb

β′

〉
DΓa×Γb
α′β′, αβ(g) .

(3.82)

This tells us that Q̂Γa
α

∣∣ eΓb
β

〉
transforms according to the product representation Γa×Γb . This means that

we can expand Q̂Γa
α

∣∣ eΓb
β

〉
as a sum over its irreducible components, viz.

Q̂Γa
α

∣∣ eΓb
β

〉
=
∑

Γ,s,γ

(
Γa
α

Γb
β

∣∣∣∣
Γ, s

γ

) ∣∣ΨΓ, s
γ

〉
, (3.83)

where
∣∣ΨΓ, s

γ

〉
transforms according to the Γ IRREP of the symmetry group G, meaning

Û(g)
∣∣ΨΓ, s

γ

〉
=
∣∣ΨΓ, s

γ′

〉
DΓ
γ′ γ(g) . (3.84)

This will be explicitly demonstrated at the end of this section. Note that, upon invoking orthogonality
of the CGCs,

∣∣ΨΓ, s
γ

〉
=
∑

α,β

(
Γa
α

Γb
β

∣∣∣∣
Γ, s

γ

)∗
Q̂Γa
α

∣∣ eΓb
β

〉
. (3.85)

Since states which transform according to different IRREPs are orthogonal, we must have

〈
eΓc
γ

∣∣ΨΓ, s
σ

〉
=
〈
Γc
∥∥QΓa

∥∥Γb
〉
s
δΓΓc

δγσ , (3.86)
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Figure 3.4: Eugene P. Wigner, the Ph.D. thesis supervisor of the Ph.D. thesis supervisor of my Ph.D.
thesis supervisor.

where the reduced matrix element
〈
Γc
∥∥QΓa

∥∥Γb
〉
s

is independent of the basis indices γ and σ. We there-
fore have

〈
eΓc
γ

∣∣ Q̂Γa
α

∣∣ eΓb
β

〉
=
∑

s

(
Γa
α

Γb
β

∣∣∣∣
Γc , s

γ

) 〈
Γc
∥∥QΓa

∥∥Γb
〉
s

(3.87)

a result known as the Wigner-Eckart theorem. Note that we have assumed that the ket vector
∣∣ eΓµ

〉
is

conjugate to the bra vector
〈
eΓµ
∣∣. In fact, they can come from different copies of each representation cor-

responding to different quantum numbers16. A more general expression of the Wigner-Eckart theorem
is then

〈
eΓc, lc
γ

∣∣ Q̂Γa
α

∣∣ eΓb, lb
β

〉
=
∑

s

(
Γa
α

Γb
β

∣∣∣∣
Γc , s

γ

) 〈
Γc , lc

∥∥QΓa
∥∥Γb , lb

〉
s

. (3.88)

Appealing once again to the orthogonality of the CGCs, we obtain the following expression for the
Wigner-Eckart reduced matrix elements:

〈
Γc , lc

∥∥QΓa
∥∥Γb , lb

〉
s
δΓΓc

δσγ =
∑

α,β

(
Γa
α

Γb
β

∣∣∣∣
Γ, s

σ

)∗ 〈
eΓc , lc
γ

∣∣ Q̂Γa
α

∣∣ eΓb , lb
β

〉
. (3.89)

16Note that the multiplicity index s is not the same sort of animal as the index l in the state | eΓ, l
µ 〉. The essential difference

is that l labels states according to quantum numbers not associated with the group symmetry. The multiplicity index s, by
contrast, knows nothing of the other quantum numbers and arises purely from a group theoretic analysis of the product
representations.
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If different appearances of the same IRREP are not orthogonal, we still have

〈
Γc γ , lc

∣∣Γb β , lb
〉
=

1

NG

∑

g∈G

〈
Γc γ , lc

∣∣U †(g)U(g)
∣∣ Γb β , lb

〉

=
1

NG

∑

g∈G
DΓc
γ′γ(g)

∗ 〈Γc γ′, lc
∣∣Γb β′, lb

〉
DΓb
β′β(g)

=
1

dΓc

dΓb∑

µ=1

〈
Γc µ , lc

∣∣Γb µ , lb
〉
δΓbΓc

δαβ ≡ 〈 Γc , lc ‖ Γb , lb 〉 δΓbΓc
δαβ .

(3.90)

The quantity 〈 Γ , la ‖Γ , lb 〉 is called the reduced overlap, or the overlap matrix OΓlalb
. Note that it does

not depend on the basis indices α and β. By the same token, we also have

〈
Γc γ , lc

∣∣ΨΓ, s
σ

〉
=

1

dΓ

dΓ∑

µ=1

〈
Γc µ , lc

∣∣ΨΓ, s
µ

〉
δΓΓc

δγσ . (3.91)

Wigner-Eckart theorem for simply reducible groups

For simply reducible groups, there is no representation multiplicity index s for the direct products, and
we have the simpler expression

〈
eΓc, lc
γ

∣∣ Q̂Γa
α

∣∣ eΓb, lb
β

〉
=

(
Γa
α

Γb
β

∣∣∣∣
Γc
γ

) 〈
Γc , lc

∥∥QΓa
∥∥Γb , lb

〉
. (3.92)

In this case, the ratios of matrix elements

〈
eΓc, lc
γ′

∣∣ Q̂Γa
α′

∣∣ eΓb, lb
β′

〉
〈
eΓc, lc
γ

∣∣ Q̂Γa
α

∣∣ eΓb, lb
β

〉 =

(
Γa

α′
Γb
β′

∣∣∣ Γc

γ′

)

(
Γa

α
Γb
β

∣∣∣ Γc

γ

) (3.93)

are independent of all details of the operators Q̂Γa
α other than the representation by which it transforms.

Proof that
∣∣ΨΓ, l

γ

〉
transforms as advertised

Start with Eqn. 3.83 and apply Û(g) to both sides. The LHS transforms

Û(g) Q̂Γa
α

∣∣ eΓb
β

〉
=
∑

α′,β′

Q̂Γa
α′

∣∣ eΓb

β′

〉
DΓa
α′α(g)D

Γb
β′β(g) =

∑

Γ,l,γ

(
Γa
α

Γb
β

∣∣∣∣
Γ, l

γ

)
Û(q)

∣∣ΨΓ, l
γ

〉
. (3.94)

Now multiply by
(
Γa

α
Γb
β

∣∣∣ Γ ′, l′

γ′

)∗
and sum on α and β. Using orthogonality of the CGCs, and dropping

primes on the Γ ′, l′, and γ′ indices, we obtain

∑

α,β

∑

α′,β′

Q̂Γa
α′

∣∣ eΓb

β′

〉
DΓa
α′α(g)D

Γb
β′β(g)

(
Γa
α

Γb
β

∣∣∣∣
Γ, l

γ

)∗
= Û(g)

∣∣ΨΓ, l
γ

〉
. (3.95)
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Finally, reexpress Q̂Γa
α′

∣∣ eΓb

β′

〉
on the LHS above in terms of the

∣∣ΨΓ, l
γ

〉
, to find

Û(g)
∣∣ΨΓ, l

γ

〉
=
∑

Γ ′,l′,γ′

∑

α,β

∑

α′,β′

(
Γa
α′

Γb
β′

∣∣∣∣
Γ ′, l′

γ′

)
DΓa
α′α(g)D

Γb
β′β(g)

(
Γa
α

Γb
β

∣∣∣∣
Γ, l

γ

)∗ ∣∣ΨΓ ′, l′

γ′

〉

=
∑

Γ ′,l′,γ′

∣∣ΨΓ ′, l′

γ′

〉
DΓ ′

γ′ γ(g) ,

(3.96)

after invoking the CGC relation Eqn. 3.73.

3.2.6 Level repulsion and degeneracies

Consider a Hamiltonian Ĥ0 with
[
Ĥ0, Û (G)

]
= 0 whose eigenstates are labeled |Γµ, l 〉 ≡ | eΓ, lµ 〉. Sup-

pose two multiplets |Γa α, la 〉 and |Γb β, lb 〉 are in close proximity, with energiesEa andEb , respectively.
Can they be made degenerate by varying the Hamiltonian in a way which preserves the full symmetry
of G? Let’s write Ĥ(λ) = Ĥ0 + λV̂ , where

[
V̂ , Û (G)

]
= 0, and, neglecting all other multiplets which by

assumption lie much further away in energy than the gap |Ea−Eb| , we compute the Hamiltonian matrix

elements in the a, b multiplet basis. Since V̂ transforms as the Γ1 identity IRREP, we have Γ1 × Γb = Γb ,
and therefore

〈
Γa α, la

∣∣ V̂
∣∣Γb β, lb

〉
=

= δΓaΓb
δαβ︷ ︸︸ ︷(

Γb
β

Γ1
1

∣∣∣∣
Γa
α

) 〈
Γa, la

∥∥ V̂
∥∥Γb, lb

〉
(3.97)

vanishes unless Γa = Γb, although we may have la 6= lb. When Γa = Γb ,

〈
Γa, la

∥∥ V̂
∥∥Γa, lb

〉
=

1

dΓa

dΓa∑

µ=1

〈
Γa µ, la

∣∣ V̂
∣∣Γa µ, lb

〉
≡ Vab . (3.98)

Consider first the case Γa 6∼= Γb . Then there are no off-diagonal matrix elements in our basis, and the
energy shifts are given by

Ea(λ) = Ea + λVaa

Eb(λ) = Eb + λVbb
(3.99)

Setting Ea(λ) = Eb(λ), we obtain a degeneracy of the two multiplets when λ = λ∗ , with

λ∗ =
Eb − Ea
Vaa − Vbb

. (3.100)

The resulting supermultiplet has degeneracy d = dΓa
+ dΓb

.

When Γa = Γb , we have nonzero off-diagonal elements. The reduced basis Hamiltonian is given by

Ĥred =

(
Ea + λVaa λVab
λV ∗

ab Eb + λVbb

)
⊗ 1dΓa×dΓa

. (3.101)
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Note that we still must distinguish the a and b multiplets, because while they belong to the same repre-
sentations, they are not identical multiplets, i.e. their wavefunctions are different17. There are then two
dΓa

-fold degenerate sets of states, with energies

Eab,± = 1
2(Ea + λVaa + Eb + λVbb)± 1

2

√
(Ea + λVaa − Eb − λVbb)2 + 4λ2|Vab|2 . (3.102)

The only way for these multiplets to become degenerate is for the radical to vanish. But there is no
choice for λ which will make that happen. Therefore we have an avoided crossing. The best we can do
is to minimize the energy difference.

My personal advice: if you are ever caught being degenerate, say that it was an accident.

3.2.7 Example: C4v

Consider the problem of a particle in a two-dimensional L×L square box, with Ĥ0 =
p2

2m +V (x, y) with

V (x, y) =

{
0 if |x| < 1

2L and |y| < 1
2L

∞ otherwise .
(3.103)

This problem has a C4v symmetry. Recall C4v
∼= D4 is the symmetry group of the square, and is gener-

ated by two elements, i.e. a counterclockwise rotation through 1
2π (r) and a reflection in the x-axis (σ).

One has r4 = σ2 = (rσ)2 = 1. There are five conjugacyclasses: {E}, {r, r3}, {r2}, {rσ, σr} (diagonal
reflections), and {σ, σr2} (reflections in the x and y axes). The character table is given in Tab. 3.2.

Note that

r

(
x
y

)
=

(
−y
x

)
, σ

(
x
y

)
=

(
x
−y

)
, r2

(
x
y

)
=

(
−x
−y

)
, rσ

(
x
y

)
=

(
y
x

)
. (3.104)

And recall that Û(g)Ψ(x, y) = Ψ(g−1x, g−1y). We define the functions

φn(u) =

√
2

L
cos

(
2
(
n− 1

2

)
πu

L

)

χn(u) =

√
2

L
sin

(
2nπu

L

)
,

(3.105)

where n ∈ Z>0 is a positive integer in either case. Note that the
{
φn(u)

}
are even under u→ −uwhereas

the
{
χn(u)

}
are odd, and that φn(±1

2L) = χn(±1
2L) = 0. We will find it convenient to define the energy

unit ε0 ≡ 2π2~2/mL2.

Let’s now write down all the possible wavefunctions for this problem. We’ll find there are basically five
different forms to consider:

17Think of the tower of even and odd states for the one-dimensional particle in a symmetric potential. All even states belong
to the same Γ1 representation, but have different wavefunctions.
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C4v E {r, r3} {r2} {rσ, σr} {σ, σr2}
A1 1 1 1 1 1

A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1

E 2 0 −2 0 0

Table 3.2: Character table for the group C4v.

(i) Ψ
(i)
nn(x, y) = φn(x)φn(y) : The energy is E

(i)
nn = 2n2ε0. The wavefunction is invariant under all

group operations, i.e.

Û(r)Ψ = Û(r2)Ψ = Û(rσ)Ψ = Û(σ)Ψ = Ψ , (3.106)

and thus corresponds to the A1 IRREP.

(ii) Ψ
(ii)
nn (x, y) = χn(x)χn(y) : The energy is E

(ii)
nn = 2(n− 1

2)
2ε0. We find

Û(r)Ψ = Û(σ)Ψ = −Ψ , Û(r2)Ψ = Û(rσ)Ψ = Ψ , (3.107)

corresponding to the B1 IRREP.

(iii) Ψ
(iii)
mn,±(x, y) =

1√
2

[
φm(x)φn(y) ± φm(y)φn(x)

]
with m < n. The energy for both states is given by

E
(iii)
mn = (m2 + n2)ε0. Is this a two-dimensional representation? We have

Û(r)Ψ± = Û(rσ)Ψ± = ±Ψ± , Û(r2)Ψ± = Û(σ)Ψ± = Ψ± , (3.108)

which tells us that Ψ+ transforms according to A1 and Ψ− according to B2. So we have two one-
dimensional IRREPs and no sign of the two-dimensional E IRREP yet.

(iv) Ψ
(iv)
mn,±(x, y) =

1√
2

[
χm(x)χn(y)± χm(y)χn(x)

]
with m < n. The energy for both states is given by

E
(iv)
mn =

(
(m− 1

2)
2 + (n− 1

2)
2
)
ε0. We find

Û(r)Ψ± = ∓Ψ± , Û(r2)Ψ± = Ψ± , Û(rσ)Ψ± = ±Ψ± , Û(σ)Ψ± = −Ψ± . (3.109)

which tells us that Ψ+ transforms as B1 according and Ψ− according to A2 . So again two one-
dimensional IRREPs and still no sign of the elusive E.

(v) Ψ
(v)
mn,±(x, y) =

1√
2

[
φm(x)χn(y)± φm(y)χn(x)

]
with m ≤ n. The energy for both states is given by

E
(v)
mn =

(
m2 + (n− 1

2)
2
)
ε0. We find

Û(r)Ψ± = ±Ψ∓ , Û(r2)Ψ± = −Ψ± , Û(rσ)Ψ± = ±Ψ± , Û(σ)Ψ± = −Ψ∓ . (3.110)

At long last, the E representation has shown itself! Note how in this basis,

DE(r) =

(
0 1
−1 0

)
, DE(r2) =

(
−1 0
0 −1

)
, DE(rσ) =

(
1 0
0 −1

)
, DE(σ) =

(
0 −1
−1 0

)
.

(3.111)
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Now suppose we add a perturbation which transforms as the identity IRREP Γ1. For example, we could
take Ĥ = Ĥ0 + V̂ with V̂ (x, y) = λx2y2. According to the Wigner-Eckart theorem, this won’t split any
of the E multiplets, but rather will simply lead to an equal energy shift for both E states. One only need
compute one matrix element, per Eqn. 3.97.

3.3 Appendix : Random True Facts About Linear Algebra

Normal matrices and eigenspectra : Quantum mechanical Hamiltonians can be represented as Hermi-
tian matrices. In elementary school linear algebra class, we all learned that any Hermitian matrix H is
diagonalizable by a unitary transformation, its eigenvalues are real, and eigenvectors corresponding to
different eigenvalues are necessarily orthogonal. In the case of degenerate eigenvalues, their associated
eigenvectors may be chosen to be mutually orthogonal via the Gram-Schmidt process.

Any complex square matrix A which satisfies A†A = AA† is called normal. Hermitian matrices are
normal, but so are antihermitian and unitary matrices18. Real symmetric, antisymmetric, and orthogonal
matrices satisfy ATA = AAT. The Schur decomposition theorem guarantees that any n×n matrix A may be
decomposed as A = V TV †, where V ∈ U(n) and T is upper triangular. Now if A is normal, [A,A†] =
V [T, T †]V † = 0, hence T is normal. However, it is easy to show that any normal upper triangular matrix
must be diagonal19, so A = V DV †, which means D = V †AV is the diagonal matrix of eigenvalues of
A. Conversely, if A = V DV † is unitarily equivalent to a diagonal matrix, it is trivial to show that A is
normal. Thus any n×nmatrixA is diagonalizable by a unitary transformation if and only ifA is normal.

There is a real version of Schur decomposition whereby a real matrix B satisfying BTB = BBT may
be decomposed as B = RSRT, where R is a real orthogonal matrix, and S is block upper triangular.
The diagonal blocks of S are either 1 × 1, corresponding to real eigenvalues, or 2 × 2, corresponding
to complex eigenvalues. One eventually concludes that real symmetric matrices have real eigenvalues,
real antisymmetric matrices have pure imaginary (or zero) eigenvalues, and real orthogonal matrices
have unimodular complex eigenvalues.

Now let’s set A = VDV † and consider different classes of matrix A. If A is Hermitian, A = A† immedi-
ately yields D = D†, which says that all the eigenvalues of A must be real. If A† = −A, then D† = −D
and all the eigenvalues are purely imaginary. And if A† = A−1, then D† = D−1 and we conclude that all

the eigenvalues are unimodular, i.e. of the form eiωj . This analysis also tells us that any unitary matrix
U can be written in the form U = exp(iH) for some Hermitian matrix H .

Jordan blocks : What happens when an n×nmatrixA is not normal? In this caseA is not diagonalizable
by a unitary transformation, and while the sum of the dimensions of its eigenspaces is generically equal
to the matrix dimension dim(A) = n, this is not guaranteed; it may be less than n. For example, consider

18There are many examples of normal matrices which are neither Hermitian, antihermitian, nor unitary. For example, any
diagonal matrix with arbitrary complex diagonal entries is normal.

19T †T = TT † says that
∑

j |Tij |2 =
∑

j |Tji|2 , i.e. the sum of the square moduli of the elements in the ith row is the same as

that for the ith column. Starting with i = 1, the only possible nonzero entry in the first column is T1,1, hence all the remaining
entries in the first row must vanish. Filling in all these zeros, proceed to i = 2. Since we just showed T1,2 = 0, we conclude
that the only possible nonzero entry in the second column is T2,2 , hence all remaining entries in the second row must vanish.
Continuing in this manner, we conclude that T is diagonal if it is both normal and upper triangular.
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the matrix

A =

(
r 1
0 r

)
. (3.112)

The eigenvalues are solutions to det(λI − A) = 0, hence λ = r, but there is only one eigenvector,

ψ =

(
1
0

)
. What is always true for any complex matrix A is that it can be brought to Jordan canonical form

by a similarity transformation J = P−1AP , where P is invertible, and

J =



J1

. . .

Jb


 , (3.113)

where b is the number of Jordan blocks and where each block Js is of the form

Js =




λs 1

λs
. . .

. . . 1
λs




. (3.114)

Thus each Js is tridiagonal, with diagonal elements all given by λs and each element directly above
the diagonal equal to one. Clearly Js has only one eigenvalue, λs , and writing the corresponding right

eigenvector as ~ψ, the condition Js
~ψ = λs

~ψ yields the equations

λs ψ1 + ψ2 = λs ψ1 , λs ψ2 + ψ3 = λs ψ2 . . . λs ψn−1 + ψns
= λs ψns−1 , (3.115)

where ns = dim(Js) . These equations entail ψ2 = ψ3 = · · · = ψns
= 0 , which says that there is only one

such eigenvector, whose components are ψj = δj,1 . Note that the corresponding left eigenvector ~χ T is

then χj = δj,ns
. If ns > 1 we then have ~χ · ~ψ = 0, which means that the left and right eigenvectors of A

which correspond to the Jordan blocks with ns > 1 are orthogonal. Nota bene : It may be the case that
there are degeneracies among the eigenvalues {λs}.

To summarize20, for every general complex n× n matrix A,

• A may be brought to Jordan canonical form by a similarity transformation J = P−1AP , where
J = bdiag(J1, . . . , Jb) is block diagonal, with each (Js)ij = λs δij + δi,j−1 for s ∈ {1, . . . , b}.

• There are b ≤ n eigenvalues {λ1, . . . , λb} (again, not necessarily all distinct) and b corresponding

eigenvectors {~ψ1, . . . ,
~ψb}. If b = n then the matrix is diagonalizable.

• The dimension n of the matrix A satisfies n = n1 + . . . + nb , i.e. it is the sum of the dimensions of
all its Jordan blocks.

• If λ ∈ {λ1, . . . , λb} is an eigenvalue, then the number of Jordan blocks of size m corresponding to
λ is given by the expression

2 dim ker (λI −A)m − dim ker (λI −A)m+1 − dim ker (λI −A)m−1 . (3.116)
20See https://en.wikipedia.org/wiki/Jordan_normal_form .

https://en.wikipedia.org/wiki/Jordan_normal_form
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Singular value decomposition : Note the difference between the decomposition into Jordan canonical

form and singular value decomposition (SVD), in which we write an m × n matrix A as A = US V †,
where U is m × k, V is n × k (hence V † is k × n), U †U = V †V = Ik×k , and S = diag(s1, . . . , sk) is k × k
with k ≤ min(m,n) and each sj > 0. The elements sj are the singular values and the rows of U and V

are the singular vectors. Note that A†A = V S2 V † is n× n and AA† = US2 U † is m×m. If we define

R(λ) =

k∏

j=1

(
λ− s2j

)
, (3.117)

Then

P (λ) ≡ det(λ−A†A) = λn−kR(λ) , Q(λ) ≡ det(λ−AA†) = λm−kR(λ) . (3.118)

For any square n× n complex matrix A we therefore have two decompositions, via JCF and SVD, viz.

A = PJ P−1 = US V † , (3.119)

where J is the Jordan canonical form of A. When A is normal, k = n and U = V = P , i.e. the two
decompositions are equivalent.

Selection rules : Suppose [H,A] = 0 where H = H† and A is general. Then in the basis of H eigenstates,
〈n|A|n〉 = 0 if Em 6= En . The proof is elementary. In the eigenbasis of H ,

0 = 〈m | [H,A] |n 〉 = (Em − En) 〈m |A |n 〉 . (3.120)

This result helps us establish that H and A can be simultaneously diagonalized, for expressed in the
eigenbasis ofH , the operatorAmust be block diagonal, where the sizes of each of the blocks correspond
to the degrees of degeneracy in the eigenspectrum of H . But then a separate unitary transformation can
be applied to each of these blocks in order to bring each to diagonal form, without any effect on H .

Degeneracies and nonabelian symmetries : Suppose [H,A] = [H,B] = 0 but [A,B] 6= 0, where H is
a Hamiltonian, and A,B are general operators. A and B might represent different generators of a
nonabelian symmetry, for example, such as the components of the total spin operator S, which sat-
isfy [Sα, Sβ ] = iǫαβγ S

γ . We conclude that the spectrum of H must be degenerate. The reason is that in
the eigenbasis of H , both A and B are block diagonal, with the dimensions of the blocks corresponding
to the degree of degeneracy in the spectum of H . If H had a nondegenerate spectrum, then A and B
would also be diagonal in the H eigenbasis, which would contradict the fact that [A,B] 6= 0. When
degeneracies are present, the A blocks and B blocks occur in the same locations, and cannot in general
be simultaneously diagonalized. So nonabelian symmetries entail degenerate energy eigenvalues. We
will study this in great detail in subsequent chapters.

Polar decomposition : Any matrix A may be decomposed in the form A = HU , where H is Hermitian

and U is unitary. This is reminiscent of writing any complex number z as z = r eiθ. The proof is
surprisingly simple. First, note that the matrix AA† is nonnegative definite. Therefore one can write
AA† = V D2V † whereD is a real diagonal matrix and V is unitary. Now defineH ≡ V DV †, in which case
AA† = H2. This must mean U = H−1A. We just need to check that U is unitary: UU † = H−1AA†H−1 =
H−1H2H−1 = E, so we are done.
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Matrix direct product : Given the n × n matrix A and the r × r matrix Θ, the direct product matrix
M ≡ A⊗Θ is defined by its matrix elements Mia,jb = Aij Θab . Multiplication is a snap:

(A⊗Θ)(A′ ⊗Θ′) = AA′ ⊗ΘΘ′ . (3.121)

Expressed as a single matrix, we can write the composite indices ia and jb as µ ≡ (i − 1)r + a and
ν ≡ (j − 1)r+ b. Note µ, ν ∈ {1, . . . , nr} as i, j, a, b range over their allowed values. Thus i, j refer to the
larger block structure and a, b to the structure within the blocks. The general structure is then

A⊗Θ =




A11 Θ · · · A1nΘ

...
. . .

...

An1Θ · · · AnnΘ




, (3.122)

where each Θ is an r × r matrix.

As an example, consider the matrices

Γ1 = σx ⊗ E , Γ2 = σy ⊗ E , Γ3 = σz ⊗ σx , Γ4 = σz ⊗ σy , Γ5 = σz ⊗ σz . (3.123)

We can express these in 4× 4 form as

Γ1 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , Γ2 =




0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0


 , Γ3 =




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 (3.124)

and

Γ4 =




0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


 , Γ5 =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 . (3.125)

These matrices form a Clifford algebra, defined by the anticommutator {Γa,Γb} = 2δab. Note that for any
Hamiltonian H =

∑
a da Γ

a that H2 =
∑

a d
2
a 1. If H is of rank 2k, then its eigenspectrum consists of two

k-fold degenerate levels with λ = ±|d|.

3.4 Jokes for Chapter Three

I feel I am running out of math/physics-related jokes, and soon I may have to draw upon my inex-
haustible supply of rabbi jokes.

PHILOSOPHER JOKE : Jean-Paul Sartre is sitting in a coffeeshop. A waitress comes by and asks,
”What can I get for you today, Professor Sartre?” ”Coffee. Black. No cream,” comes the reply. A
few minutes later the waitress returns. ”I’m very sorry, Professor, but we are all out of cream,” she
says, ”Can I bring your coffee with no milk instead?”



3.4. JOKES FOR CHAPTER THREE 107

RABBI JOKE : (Actually this is something of a math riddle appropriate for children and, sadly,
certain undergraduates, but it happens to involve a rabbi.) An old Jew named Shmuel died in the
shtetl and his will gave his estate to his three sons. It specified that the eldest son should get one
half, the middle son one third, and the youngest one ninth. The problem was that Shmuel’s entire
estate consisted of seventeen chickens, and, well, seventeen is a prime number.

So the sons met to discuss what they should do and the eldest says, ”let’s ask the rabbi - he is very
wise and he will tell us how best to proceed.” So they go to the rabbi, who starts to think and think
and finally he says, ”this is a very difficult problem. But I’ll tell you what. Your father was a very
good man who always helped out at the shul21, and it just so happens that I have an extra chicken
which I am willing to donate to his estate. Now you have eighteen chickens and can execute his
will properly. Zei gezunt!22”

The sons were overjoyed and agreed that the rabbi was indeed wise, and generous as well. So they
divided the eighteen chickens. The eldest got half, or nine chickens. The middle got a third, which
is six. And the youngest got a ninth, which is two. But nine plus six plus two is seventeen, so they
had a chicken left over.

So they gave it back to the rabbi.

21I.e. the local synagogue.
22A Yiddish benediction meaning ”be healthy”.
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Chapter 4

Continuous Translations and Rotations

4.1 Translations and their Representations

4.1.1 Discrete translations and their continuum limit

Consider an infinite one-dimensional lattice of points xn = na, where n ∈ Z and a is the lattice spacing.
If all sites are equivalent, the relevant symmetry group is Z, i.e. the group of the integers under addition.
The unitary representations are labeled by a wavevector k, with dimensions of inverse length, such that
Dk(n) = exp(−ikna). Then Dk(n)Dk(n′) = Dk(n + n′) yadda yadda yadda. Clearly the representation
matrices are periodic under k → k + 2π

a , hence k may be restricted to the interval k ∈
[
− π

a , +
π
a

]
,

with the endpoints identified. Alternatively, we could define z ≡ exp(−ika) and say that the unitary
representations are labeled by a unimodular complex number z ∈ S1. This interval over which k may
be restricted (without loss of generality) is called the first Brillouin zone in condensed matter physics.

In d space dimensions, the unitary IRREPs of the group Z
d are labeled by a d-component wavevector1

k = {k1, . . . , kd}, with Dk(n) = exp(−ik · na), where n = {n1, . . . , nd} ∈ Z
d. The Brillouin zone

becomes a d-dimensional product of intervals of the d = 1 type, or, equivalently, a d-dimensional torus

T d, with z = {z1, . . . , zd} ∈ T d. The set of points R = a
∑d

j=1 nj êj in d-dimensional space describes a
d-dimensional cubic lattice.

In general, we can choose a set of linearly independent vectors {aj} with j ∈ {1, . . . , d} and define the
lattice position R =

∑
j njaj . This is the construction for a d-dimensional Bravais lattice. The represen-

tations are given by Dk(R) = e−ik·R. The unit cell volume is given by

Ω = ǫ
µ1···µd

a
µ1
1 · · · a

µd
d , (4.1)

and is by definition positive2. The {aj} are called the elementary direct lattice vectors and by convention
one chooses them to have the shortest possible lengths. One can then define the elementary reciprocal

1For d = 1, the wavevector is in fact a scalar. Ain’t that a kick in the head?
2If the expression in Eqn. 4.1 is negative, swap the labels of two of the elementary direct lattice vectors aj .
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lattice vectors,

bνk ≡
2π

Ω
ǫµ1···µk−1 ν µk+1···µda

µ1
1 · · · a

µk−1

k−1 a
µk+1

k+1 · · · a
µd
d , (4.2)

which satisfy

ai · bj = 2πδij . (4.3)

For example, with d = 3 we have Ω = a1 · a2 × a3 and

b1 =
2π

Ω
a2 × a3 , b2 =

2π

Ω
a3 × a1 , b3 =

2π

Ω
a1 × a2 . (4.4)

The Brillouin zone volume is Ω̂ = (2π)d/Ω. The first Brillouin zone is the set of wavevectors k such that

k =

d∑

j=1

θj
2π
bj , (4.5)

with θj ∈ [−π, π] for all j ∈ {1, . . . , d}.

For example, the triangular lattice is described by

a1 = a
(
1
2 x̂−

√
3
2 ŷ

)
, a2 = a

(
1
2 x̂+

√
3
2 ŷ

)
(4.6)

with Ω =
√
3
2 a2. The elementary reciprocal lattice vectors are then

b1 =
4π

a
√
3

(√
3
2 x̂− 1

2 ŷ
)

, b2 =
4π

a
√
3

(√
3
2 x̂+ 1

2 ŷ
)

. (4.7)

In the continuum limit, R→ r becomes continuous and Dk(r) = e−ik·r.

4.1.2 The cyclic group and its continuum limit

Recall how the cyclic groupCN , describing a single n-fold axis, is isomorphic to ZN , the group of integer
clock arithmetic modulo N . The group elements are {1, ω, . . . , ωN−1} , with ω ≡ exp(−2πi/N) , and the
representations Γj are labeled by integers j ∈ {0, . . . , N − 1}, with the 1 × 1 representation matrices

Dj(ωl) = ωjl. In the continuum limit N →∞, we define θ ≡ 2πl/N , and Dj(θ) = e−ijθ with j ∈ Z. Note
the periodicity under θ → θ + 2π. These are the IRREPs of the group C∞ ∼= SO(2). Note that there are
an infinite number of IRREPs, as there must be upon consideration of the N → ∞ limit of the formula
NG =

∑
Γ d

2
Γ .

Note that SO(2) is also the group of continuous translations in one dimension when periodic boundary
conditions (PBCs) are imposed. PBCs mean that x is equivalent to x + L, where L is the length of the
system. This is equivalent to placing our one-dimensional system on a circle. One must then have
Dk(x) = e−ikx = e−ik(x+L) , i.e. e−ikL = 1 for all k, which requires k = 2πj/L with j ∈ Z. Equivalently,
define θ ≡ 2πx/L, and label the IRREPs by j, in which case we recover Dj(θ) = e−ijθ.
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For discrete translations, we may still implement PBCs, equivalencing sites n and n+N , where L = Na
is the size of the system. We then have exp(ikNa) = 1, in which case k is among a discrete set,

k ∈ 2π

Na

{
− 1

2N , . . . , 1
2N
}

(4.8)

where we have assumedN even for simplicity. In theN →∞ limit, with a remaining finite, this discrete
set becomes the interval ka ∈ [−π, π].

4.1.3 Consequences of parity symmetry on the eigenspectrum

One might ask, as I did during a moment of intellectual weakness at 2 am, how it is then that the dis-
persion relation ε(k) for a free particle in one dimension satisfies ε(k) = ε(−k) = ~

2k2/2m, i.e. the states
other than k = 0 are all doubly degenerate. Where are the two-dimensional IRREPs? Now if you are
going to ask this question, you should make sure that you ask a very smart person, like my colleague
John McGreevy, who will tell you that the symmetries of the free particle are not just continuous trans-
lations along the real line, i.e. the group R under addition (or Z for a discrete infinite chain), but rather
R ⋊ Z2 , where Z2 is due to parity, and where, as we discussed in chapter 1, the symbol ⋊ denotes the
semidirect product . If we denote the parity operation σ and translation through u by t(u) (rather than u
itself, which is slightly awkward notation in this context), then the elements of R× Z2 are t(u) and s(u),
where s(u) ≡ σ t(u) = t(−u)σ. The multiplication table for R⋊ Z2 is as follows:

t(u1) t(u2) = t(u1 + u2)

t(u1) s(u2) = s(u2 − u1)
s(u1) t(u2) = s(u1 + u2)

s(u1) s(u2) = t(u2 − u1) .

(4.9)

Now for the IRREPs, which are still labeled by a real scalar k. The one-dimensional IRREPs are given by

D(k)
(
t(u)

)
= e−iku , D(k)

(
s(u)

)
= 1 . (4.10)

However, now there are also two-dimensional IRREPs, given by

D(k)
(
t(u)

)
=

(
e−iku 0
0 eiku

)
, D(k)

(
s(u)

)
=

(
0 eiku

e−iku 0

)
. (4.11)

The student should verify that the group multiplication law is satisfied by each of these IRREPs. The
above results directly generalize to the case where R is replaced in d dimensions by R

d (continuous
and infinite), Td (continuous and periodic) or Z

d (discrete and infinite) or Z
d
n (discrete and periodic).

Note that in §1.5.3 we discussed how Dn = Zn ⋊ Z2 . For all n ≥ 2, the dihedral groups Dn have two-
dimensional IRREPs. And as John notes, R is essentially indistinguishable from a very large circle S

1,
which is the continuum limit of a periodic chain.
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4.1.4 Invariant measure for SO(2)

Recall the orthogonality and completeness theorems for finite groups:

1

NG

∑

g∈G
DΓ
ik(g)

∗DΓ ′

i′k′(g) =
1

dΓ
δΓΓ ′ δii′ δkk′

∑

Γ,i,k

dΓ D
Γ
ik(g)

∗DΓ
ik(g

′) = NG δgg′ .
(4.12)

How do these generalize for continuous (Lie) groups? A natural guess might be

∫

G

dµ(g)DΓ
ik(g)

∗DΓ ′

i′k′(g) ∼
1

dΓ
δΓΓ ′ δii′ δkk′

∑

Γ,i,k

dΓ D
Γ
ik(g)

∗DΓ
ik(g

′) ∼ δ(g − g′) .
(4.13)

Here we assume that while the number of IRREPs is infinite, the dimension dΓ of each IRREPs is finite.
The expression dµ(g) is an integration measure on the group manifoldG, and δ(g−g′) is a generalization
of the Dirac delta function3. An important feature of the measure is that it should be invariant under
replacement of g by gh, where h is any element in G. I.e. dµ(g) = dµ(gh) for all g, h ∈ G. This is because
the group integration is the continuum limit of a sum over all the elements of a finite group, and by
rearrangement we know that

∑
g∈G F (g) is the same as

∑
g∈G F (gh

−1) for all h. For G = SO(2), the
group elements g = g(φ) are parameterized by the angle variable φ ∈ [0, 2π]. We then have

dµ(g) = ρ(φ) dφ , (4.14)

where ρ(φ) is a weighting function. The condition that dµ(g) be an invariant measure means that it
is unchanged under group multiplication g → gh for all fixed h. This means ρ(φ) = ρ(φ + α) for
all α ∈ [0, 2π), hence ρ(φ) = C , a constant. Normalizing

∫
G dµ(g) ≡ 1, we have ρ(φ) = 1

2π . The
completeness and orthonormality relations then become

2π∫

0

dφ

2π

[
Dj(φ)

]∗
Dj′(φ) = δjj′

∞∑

j=−∞

[
Dj(φ)

]∗
Dj(φ′) = 2π δ(φ− φ′) .

(4.15)

with Dj(φ) = e−ijφ.

3The formal statement of completeness is known as the Peter-Weyl theorem, which we shall discuss in §4.3.5. Since we do not
add elements of the group itself, the notation δ(g − g′) is problematic, and we shall see further below how to make proper
sense of all this.
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4.2 Remarks about SO(N ) and SU(N )

4.2.1 How SO(N) acts on vectors, matrices, and tensors

SO(2) is abelian and while important in physics, it is rather trivial from the point of view of group theory.
We’ve just classified all its unitary representations. On to SO(N), which is nonabelian for N > 2.

SO(N) ⊂ GL(N,R) is the group of proper rotations in N Euclidean dimensions, i.e. the group of N ×N
real matrices R satisfyingRRT = RTR = 1. Acting on the vector space R

N , rotation matrices act on basis
vectors in the following manner:

êa → ê′a = êbRba . (4.16)

Thus with x = xa ê
a, we have

x′ = xa ê
bRba ⇒ x′a = Rab xb . (4.17)

The group also acts on N ×N matrices, with M ′ = RMRT, i.e.

M ′
ij = RiaRjbMab = (RMRT)ij . (4.18)

A matrix Mij may be generalized to an object with more indices, called a tensor. A p-tensor carries p
indices {i1, . . . , ip}, with each ip ∈ {1, . . . , N} ,, and is denoted Mi1i2···ip . Under elements of SO(N), an

n-tensor transforms thusly:
M ′
i1···ip = Ri1a1 · · ·Ripap Ma1···ap . (4.19)

The transformation coefficients C
i1···ip
a1···ap

(R) ≡ Ri1a1· · ·Ripap form a representation of SO(N) because

C
i1···ip
a1···ap

(S) C
a1···ap
j1···jp

(R) = C
i1···ip
j1···jp

(SR) . (4.20)

What is the dimension of this representation? It is given by the dimension of the space on which the
transformation coefficients act, i.e. the space of p-tensors M , where each index runs over N possible
values. Thus, we have obtained a representation of dimension Np.

But is this representation reducible? To address this question, let’s first think about the case n = 2 , i.e.
good old matrices. Our representation is then of dimension N2. But any matrix M ik can be written as

M ik =

c δik︷ ︸︸ ︷
1

N
TrM δik +

Aik︷ ︸︸ ︷
1

2

(
M ik −Mki

)
+

Sik︷ ︸︸ ︷
1

2

(
M ik +Mki

)
− 1

N
TrM δik (4.21)

where c = 1
NTrM , A = −AT is an antisymmetric matrix, and S = ST is a traceless symmetric matrix.

Orthogonal transformations preserve all these forms: RRT is the identity, RART is itself antisymmetric,
and RSRT is itself traceless and symmetric. Note that A has 1

2N(N − 1) independent components, and
S has 1

2N(N + 1) − 1 independent components. Thus, our representation, which is N2-dimensional,
reduces as

N2 = 1⊕ 1
2N(N − 1)⊕

[
1
2N(N + 1)− 1

]
. (4.22)

For N = 3, this says 9 = 1 ⊕ 3 ⊕ 5. Note that the dimension of the antisymmetric tensor representation
is the same as that of the vector representation. This is because an three component vector is dual to a
3× 3 antisymmetric 2-tensor (i.e. matrix).
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4.2.2 Invariant symbols, dual tensors, and up/down index notation

Any matrix R ∈ SO(3) preserves the Kronecker delta symbol δab as well as the totally antisymmetric
symbol ǫabc. Recall that

ǫi1··· iN = sgn

(
1 2 · · · N
i1 i2 · · · iN

)
. (4.23)

and that ǫi1··· iN
= 0 if any of the indices ip are repeated. Note that for any matrix R, one has

RiaR
j
b δ

ab = (RRT)ij

R
i1
a1
· · ·R iN

aN
ǫa1···aN = det(R) ǫi1··· iN .

(4.24)

Hence if R ∈ SO(N), the Kronecker and epsilon symbols remain invariant under an orthogonal trans-
formation. The raised and lowered indices don’t do anything but aid us in identifying which pairs are

to be contracted, i.e. Rij = R j
i = Rij . We always contract an upper index with a lower index4.

True facts about the epsilon symbol:

ǫi1··· iN ǫi1···iN = N !

ǫi1··· iN ǫj1i2···iN = (N − 1)! δ
i1
j1

ǫi1··· iN ǫj1j2i3···iN = (N − 2)!
(
δ
i1
j1
δ
i2
j2
− δi1j2 δ

i2
j1

)
.

(4.25)

The general case:

ǫi1··· iN ǫj1···jKiK+1··· iN = (N −K)!
∑

σ∈SK

sgn(σ) δ
i1
j
σ(1)
· · · δ iKj

σ(K)
. (4.26)

Given a totally antisymmetric K-tensorAa1···aK , we may use the ǫ-symbol to construct its dual, which is

a totally antisymmetric (N −K)-tensor Ã i1··· iN−K , viz.

Ã i1··· iN−K
≡ 1

K!
ǫi1··· iN−Ka1···aK A

a1··· aK . (4.27)

What is the dual of the dual? We have

˜̃
A b1··· bK =

1

(N −K)!
ǫb1··· bK i1··· iN−K Ã i1··· iN−K

=
1

K! (N −K)!
ǫb1··· bK i1··· iN−K ǫi1··· iN−Ka1···aK A

a1··· aK

=
(−1)K(N−K)

K!

∑

σ∈SK

sgn(σ) δ
b1
a1
· · · δbKaK A

a1···aK = (−1)K(N−K)Ab1··· bK .

(4.28)

4Since R is not necessarily a symmetric matrix, we offset the upper and lower indices to indicate which is the row and which
is the column index, i.e. Ri

j = Rij but R i
j = Rji. For diagonal matrices like the δ-symbol, we don’t need to do this, and we

write δab = δab = δba. We can use the δ-symbol to raise and lower indices, viz. δijMjk =M i
k. In relativistic theories, the metric

tensor gµν = diag(+,−,−,−) is used to raise and lower indices, which introduces sign changes.
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Thus, up to a sign, the dual of the dual tensor is the original tensor. We see that for N = 3, the dual of a
vector V a is the antisymmetric tensor

Ṽab = ǫabc V
c =




0 +V 3 −V 2

−V 3 0 +V 1

+V 2 −V 1 0


 . (4.29)

This establishes the equivalence between vector and antisymmetric matrix representations of SO(3). For
N = 4, we have

Fµν =




0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0


 ⇒ F̃µν = 1

2 ǫµνρσ F
ρσ =




0 −Bx −By −Bz
Bx 0 −Ez Ey
By Ez 0 −Ex
Bz −Ey Ex 0


 . (4.30)

One can also readily establish that if

Bb1··· bK = R
b1
a1
· · ·R bK

aK
Aa1··· aK , (4.31)

then
B̃j1··· jN−K

= R
i1

j1
· · ·R iN−K

jN−K
Ãi1··· iN−K

, (4.32)

i.e. the dual of the orthogonal transform is the orthogonal transform of the dual.

4.2.3 Tensor representations of SU(N)

Let U ∈ SU(N). Thus, Uia U
†
aj = UiaU

∗
ja = δij . Let Q be a rank (p + q) tensor, with components

Qa1··· ap , b1··· bq . We define

Q′
a1···ap , b1···bq = C

a1···ap , b1··· bq
a′1··· a′p , b′1··· b′q

(U)Qa′1··· a′p , b′1··· b′q (4.33)

where
C
a1··· ap , b1··· bq
a′1···a′p , b′1···b′q

(U) = Ua1a′1
· · ·Uapa′pU

∗
b1b

′
1
· · ·U∗

bqb
′
q

. (4.34)

This forms a representation of SU(N) because

C
a1··· ap , b1··· bq
a′1···a′p , b′1··· b′q

(U) C
a′1··· a′p , b′1··· b′q
a′′1 ···a′′p , b′′1 ··· b′′q

(V ) = C
a1···ap , b1··· bq
a′′1 ··· a′′p , b′′1 ···b′′q

(UV ) . (4.35)

As with the special orthogonal group, the Levi-Civita ǫ symbol is an invariant tensor:

Ua1b1Ua2b2 · · ·UaN bN ǫ
b1···bN =

= 1︷ ︸︸ ︷
det(U) ǫa1···aN . (4.36)

Consider the tensor representation of SU(N) with C
a1a2
a′1a

′
2
(U) = Ua1a′1

Ua2a′2
. For SO(N), there is always a

one-dimensional IRREP where the tensorMa1a2
= Aδa1a2

, because Ra1a′1
Ra2a′2

δa′1a′2
= (RRT)a1a2

= δa1a2
.
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Not so for SU(N), because UUT 6= 1 in general. Still, symmetric and antisymmetric tensors transform
among their respective kinds, hence rather than eqn. 4.22, we have

N2 = 1
2N(N − 1)⊕ 1

2N(N + 1) . (4.37)

Thus, the trivial IRREP in SO(N) adjoins in SU(N) to the symmetric matrix IRREP to form a larger sym-
metric matrix IRREP of dimension 1

2N(N + 1). The general classification scheme for IRREPs of SO(N )
and SU(N) is facilitated by the use of Young tableaux similar to those encountered in our study of the
symmetric group. The rules for counting IRREPs and their dimensions are different, however. In the
language of Young diagrams,

N
×

N
=

1
2
N(N−1)

⊕
1
2
N(N+1)

. (4.38)

Next, consider the tensor representation of SU(N) with C
a1a2
a′1a

′
2
(U) = Ua1a′1

U∗
a2a

′
2
. Now we find that the

Kronecker matrix δa1a2
does indeed remain invariant, hence there is a trivial one-dimensional repre-

sentation in the decomposition of this representation. However, one can also see that symmetric and
antisymmetric matrices will in general mix under this transformation, hence the symmetric and anti-
symmetric IRREPs of SO(N) adjoin in SU(N) to yield an IRREP of dimension N2− 1, which is the adjoint
representation:

N ×N = id⊕ adj . (4.39)

Here we denote by N the fundamental IRREP of SU(N), and by N the antifundamental (i.e. complex
conjugate) IRREP.

4.3 SO(3) and SU(2)

Recall that SO(3) is the matrix Lie group of rotations in Euclidean 3-space. Its elements can be rep-
resented as R(ξ, n̂), meaning a (right-handed) rotation by ξ about n̂, with ξ ∈ [0, π]. As discussed in
chapter 1, topologically this means that each element of SO(3) can be associated with a point ξn̂ in a
filled sphere of radius π. Since R(π, n̂) = R(π,−n̂), points on the surface of this sphere are identified
with their antipodes, resulting in π1

(
SO(3)

) ∼= Z2 .

The Lie algebra so(3) consists of real antisymmetric 3×3 matrices. We can define a basis for this algebra,

Σx =



0 0 0
0 0 −1
0 +1 0


 , Σy =




0 0 +1
0 0 0
−1 0 0


 , Σz =




0 −1 0
+1 0 0
0 0 0


 . (4.40)

Note that Σa
ij = −ǫaij , from which one easily establishes the commutation relations

[
Σa, Σb

]
= ǫabcΣ

c.
Then with ξ = ξn̂, we have R(ξ, n̂) = exp(ξ ·Σ) = exp(ξ n̂ ·Σ). Note that

(
n̂ ·Σ

)
ab

=




0 −nz +ny

+nz 0 −nx
−ny +nx 0



ab

= −ǫabc nc . (4.41)
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Squaring this, we obtain

[
(n̂ ·Σ)2

]
ac

= ǫabd n
d ǫbce n

e = nanc − δac ≡ −Qacn̂ , (4.42)

where Qabn̂ = δab − nanc is the orthogonal projector with respect to n̂. The projector onto n̂ is of course
P abn̂ = nanb. Defining Σn̂ ≡ n̂ ·Σ, it is now easy to show that

Pn̂Qn̂ = Qn̂Pn̂ = 0 , Pn̂Σn̂ = Σn̂Pn̂ = 0 , Qn̂Σn̂ = Σn̂Qn̂ = Σn̂ , (4.43)

as well as the projector relations P 2
n̂ = Pn̂ and Q2

n̂ = Qn̂ and our previous result Σ2
n̂ = −Qn̂.

From these relations, we may sum the exponential series for R(ξ, n̂) to obtain

Rab(ξ, n̂) = exp(ξ n̂ ·Σ) = nanb +
(
δab − nanb

)
cos ξ − ǫabc nc sin ξ . (4.44)

It is also a simple matter to show that if S ∈ SO(3), then

S R(ξ, n̂)S−1 = R(ξ, n̂′) (4.45)

where n̂′ = Sn̂. This means that rotations through a fixed angle ξ form an equivalence class. Recall from
chapter 1 how SO(3) is topologically equivalent to a three-dimensional sphere of radius π, with radial
coordinate ξ and angular coordinates given by the unit vector n̂. The condition R(π, n̂) = R(π,−n̂)
means that SO(3) is multiply connected, with π1

(
SO(3)

)
≃ Z2. Thus the equivalence classes of SO(3)

correspond to concentric two-dimensional spheres, with antipodes identified on the surface ξ = π.

In the physics literature, the so(3) generators are Hermitian, and we write Ja = iΣa = D(Ĵa) is a 3 × 3
matrix representation of the operator Ĵa, where the familiar commutation relations

[
Ĵa, Ĵb

]
= iǫabcĴ

c

hold for both the angular momentum operator Ĵa as well as its representation matrices Ja. Thus,

R(ξ, n̂) = exp(−iξ n̂ · J
)
= D

[
exp(−iξ n̂ · Ĵ

)]
, (4.46)

is the matrix representation of the rotation operator R̂(ξ, n̂) = exp(−iξn̂ · Ĵ). Rather than the (ξ, n̂)
parameterization, we could also choose to parameterize a generalR ∈ SO(3) by the Euler angles (α, β, γ)
familiar from the classical mechanics of rotating bodies5, where α, γ ∈ [ 0, 2π) and β ∈ [ 0, π ]. The general
rotation operation in terms of the Euler angles is depicted in Fig. 4.1 and is given by

R(α, β, γ) = exp(−iγJz′′) exp(−iβJy′) exp(−iαJz) . (4.47)

Here exp(−iαJz) rotates by α about the original ẑ = ê03 axis, exp(−iβJy′) by β about the new ŷ′ = ê′2
axis, and exp(−iγJz′′) by γ about the new ẑ′′ = ê′′3 axis. Then

exp(−iγJz′′) = exp(−iβJy′) exp(−iγJz) exp(iβJy′)
exp(−iβJy′) = exp(−iαJz) exp(−iβJy) exp(iαJz)

(4.48)

and so we find
R(α, β, γ) = exp(−iαJz) exp(−iβJy) exp(−iγJz) . (4.49)

5Since we reflexively parameterize the unit vector n̂ in terms of its polar angle θ and azimuthal angle ψ, we’ll call the Euler
angles (α, β, γ) rather than the also common (φ, θ, ψ) to obviate any confusion.
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)ê
′

1

ê
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Figure 4.1: Definition of Euler angles and their order of operations in Eqn. 4.47.

Thus, we obtain an expression which looks very much like that in Eqn. 4.47, except (i) the rotations are
now about lab-fixed axes and (ii) the order of operations is reversed. Identifying R(α, β, γ) ≡ R(ξ, n̂),
one obtains a relation6

φ = 1
2 (π + α− γ) , tan θ =

tan
(
1
2β
)

sin
(
1
2α+ 1

2γ
) , cos2

(
1
2ξ
)
= cos2

(
1
2β
)
cos2

(
1
2α+ 1

2γ
)

. (4.50)

Note that [
R(α, β, γ)

]−1
= exp(iγJz) exp(iβJy) exp(iαJz) . (4.51)

Explicitly, we may write

R(α, β, γ) =



cosα − sinα 0
sinα cosα 0
0 0 1






cos β 0 sin β
0 1 0

− sin β 0 cos β





cos γ − sin γ 0
sin γ cos γ 0
0 0 1


 (4.52)

=



cosα cos β cos γ − sinα sin γ − cosα cos β sin γ − sinα cos γ cosα sin β
sinα cosβ cos γ + cosα sin γ − sinα cosβ sin γ + cosα cos γ sinα sin β

− sinβ cos γ sin β sin γ cosβ


 .

For future reference, we note that

TrR(α, β, γ) = cos(α+ γ) cos β + cos(α+ γ) + cos β . (4.53)
6See Wu-Ki Tung, Group Theory in Physics, p. 99.
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4.3.1 Irreducible representations of SO(3)

We now promote the generators and group elements to operators acting on Hilbert space, writing
R̂(α, β, γ), Ĵa, etc., and we seek representations of SO(3) which can be used to classify the eigenstates of
a rotationally invariant Hamiltonian, i.e. one for which

[
Ĥ, R̂(ξ, n̂)

]
= 0 for all rotations R̂(ξ, n̂). Clearly

it is enough that
[
Ĥ, Ja

]
= 0 for all the generators Ja, so we will seek a representation of the Lie al-

gebra so(3). This will yield a representation of the group SO(3) itself, provided global conditions such
as R̂(π, n̂) = R̂(π,−n̂) are met. As we shall soon see, we will be led naturally to a set of projective
representations, which you already know correspond to half-odd integer total angular momentum, as
well as proper representations, corresponding to integer angular momentum.

We will seek finite-dimensional representations in which the generators Ĵa are all represented by Her-
mitian matrices. In general we can pull this off for compact Lie groups like SO(3). We’ll follow a general
point of attack outlined by Élie Cartan, whose work in the first half of the 20th century laid the foun-
dations for the theory of Lie groups. Cartan’s approach was to start with a standard vector |ψ0 〉 ∈ H
and to generate the remaining vectors in an irreducible basis by iteratively applying various generators.
One important entity which helps us label the IRREPs is the existence of a Casimir operators. A Casimir
is an operator Ĉ which commutes with all elements of the group, and hence with all operators in the

Lie algebra. For so(3), this is Ĉ = Ĵ
2
. By Schur’s first lemma, this means Ĉ is a multiple of the identity,

hence the individual IRREPs may be labeled by the eigenvalues {C1, . . . , CK} of all the Casimirs, where
K is the total number of Casimirs7.

For so(3), following Cartan’s method, it is useful to define the ladder operators Ĵ± = Ĵx ± iĴy . Then

[
Ĵz, Ĵ±] = ±Ĵ± ,

[
Ĵ+, Ĵ−] = 2Ĵz (4.54)

as well as Ĵ
2
= (Ĵz)2 + Ĵz + Ĵ−Ĵ+ and (Ĵ±)† = Ĵ∓. In the vector space V of our representation,

we label the basis vectors by the eigenvalues of the Hermitian operator Ĵz as write them as |m 〉, with
Ĵz|m 〉 = m |m 〉. We then apply Ĵ+, and from the commutation relations we have

ĴzĴ+
∣∣m
〉
= (m+ 1) Ĵ+

∣∣m
〉

. (4.55)

We can keep applying Ĵ+, but eventually, if the representation is finite, we must reach a state | j 〉 for

which Ĵz | j 〉 = j | j 〉 but Ĵ+ | j 〉 = 0. We then have Ĵ
2| j 〉 = j(j + 1)| j 〉. The eigenvalue of our Casimir

is thus j(j + 1), and | j 〉, our ”standard vector”, is called the highest weight state.

We now work downward from | j 〉, successively applying Ĵ−. Note that for any normalized state |m 〉
with m ≤ j ,

〈
m
∣∣ (Ĵ−)†Ĵ− ∣∣m

〉
=
〈
m
∣∣ Ĵ+Ĵ− ∣∣m

〉
=
〈
m
∣∣ (Ĵ2 − (Ĵz)2 + Ĵz

) ∣∣m
〉

= j(j + 1)−m(m− 1) .
(4.56)

We also have ĴzĴ−| j,m 〉 = (m− 1)Ĵ−| j,m 〉, hence we may take

Ĵ−∣∣m
〉
=
√
j(j + 1)−m(m− 1)

∣∣m− 1
〉

. (4.57)

7A Lie group can have several Casimirs. For example, SU(3) has two and in general SU(N) has N − 1 Casimirs.
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If the representation is finite, eventually one must reach a state where Ĵ−|m 〉 = 0, which requires
m = −j. As this state is achieved by an integer number of applications of the lowering operator Ĵ−, we
must have j − (−j) = 2j ∈ N, where N denotes the natural numbers {0, 1, 2, . . .}. Thus, j ∈ 1

2N, which is
to say j may be a positive integer or a half odd positive integer. We now include the label j on all states,
in order to label the representation, and we have

Ĵ
2 ∣∣ j,m

〉
= j(j + 1)

∣∣ j,m
〉

Ĵz
∣∣ j,m

〉
= m

∣∣ j,m
〉

Ĵ± ∣∣ j,m
〉
=
√
j(j + 1)−m(m± 1)

∣∣ j,m± 1
〉

,

(4.58)

where m ∈ {−j, . . . , j} . When we refer to the matrix elements of Ĵa, we will respectfully remove the
hats from the operators, i.e. Ja is the matrix whose elements are Jamm′ = 〈 j,m | Ĵa | j,m′ 〉.

4.3.2 Rotation matrices

Rotation matrices are the matrices corresponding to a particular group element, and are specific to each
representation. By definition,

R̂(α, β, γ) | j,m′ 〉 = | j,m 〉D(j)
mm′(α, β, γ) . (4.59)

Since R̂(α, β, γ) = exp(−iαĴz) exp(−iβĴy) exp(−iγĴz), we have

D
(j)
mm′(α, β, γ) = e−iαm e−iγm

′
d
(j)
mm′(β) , (4.60)

with

d
(j)
mm′(β) =

〈
j,m

∣∣ exp(−iβĴy)
∣∣ j,m′ 〉 . (4.61)

As the matrices of Ĵ± are real8, iJy is real, and we conclude d
(j)
mm′(β) is a real-valued matrix of rank

2j + 1. For all j we have
[
d(j)(β)

]
T
= d(j)(−β) =

[
d(j)(β)

]−1
, as well as

d
(j)
−m,−m′(β) = (−1)2j−m−m′

d
(j)
m,m′(β) = (−1)m−m′

d
(j)
m,m′(β) . (4.62)

Note that we could have stuck with the (ξ, n̂) parameterization, and written

R̂(ξ, n̂) | j,m′ 〉 = | j,m 〉D(j)
mm′(ξ, n̂) , (4.63)

but clearly the Euler angle parameterization is advantageous due to the particularly simple way in
which the α and γ angles appear in the rotation matrices.

8This was actually a convention that we chose, by taking the prefactor on the RHS of the last of Eqn. 4.58 to be real, and is
originally due to Condon and Shortley.
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Characters

Recall that rotations through a fixed angle ξ form a class within SO(3). What is the character of this
class? Since the axis doesn’t matter, we choose n̂ = ẑ, in which case

χ(j)(ξ) = Tr exp(−iξJz) =
j∑

m=−j
e−imξ =

sin
[
(j + 1

2)ξ
]

sin(12ξ)
. (4.64)

Using the Euler angle parameterization,

χ(j)(α, β, γ) =

j∑

m=−j
e−im(α+γ) d(j)mm(β) . (4.65)

Examples

The simplest example of course is j = 1
2 , where J = 1

2σ are the Pauli matrices. Then

d(1/2)(β) = exp(−iβσy/2) =
(
cos(β/2) − sin(β/2)
sin(β/2) cos(β/2)

)
. (4.66)

For j = 1, we need to exponentiate the 3×3 matrix iβJy . Let’s first find the normalized eigenvalues and
eigenvectors of Jy :

ψ+ =
1

2




1

i
√
2
−1


 . ψ0 =

1√
2




1
0
−1


 , ψ− =

1

2




1

−i
√
2

−1


 , (4.67)

with corresponding eigenvalues +1, 0, and −1, respectively. From these we construct the projectors

P±
ij = ψ±

i ψ
±∗
j =

1

4




1 ∓i
√
2 −1

±i
√
2 2 ∓i

√
2

−1 ±i
√
2 1


 , P 0

ij = ψ0
i ψ

0∗
j =

1

2




1 0 −1
0 0 0
−1 0 1


 . (4.68)

The projectors are mutually orthogonal and complete: P aP b = δabP a (no sum) and
∑

a P
a = 1. We can

decompose Jy into its projectors, writing Jy = P+ − P−, in which case

exp(−iβJy) = 1− iβ (P+ − P−)− 1
2β

2 (P+ − P−)2 + . . .

= P 0 + cos β (P+ + P−)− i sin β (P+ − P−) .
(4.69)

since (P+ − P−)2n = P+ + P− and (P+ − P−)2n+1 = P+ − P−, allowing us to sum the Taylor series.
Thus, we have

d(1)(β) = exp(−iβJy) = 1

2



1 + cos β −

√
2 sin β 1− cosβ√

2 sin β 2 cos β −
√
2 sin β

1− cos β
√
2 sin β 1 + cosβ


 . (4.70)
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For a general Hermitian matrix M , we can always decomposeM into its orthogonal projectors, viz.

M =
∑

l

λk P
(k) , (4.71)

where P (k) projects onto the kth eigenspace and λk is the associated eigenvalue. We can always orthog-
onalize projectors associated with degenerate eigenspaces, and so

exp(−iθM) =
∑

k

exp(−iθλk)P (k) , (4.72)

where λk is the kth eigenvalue of M . Therefore

d(j)(2π) =

j∑

m=−j
e−2πim P (m) = (−1)2j 1 . (4.73)

This immediately tells us that the IRREPs we have found with j ∈ Z+ 1
2 are not proper IRREPs, but rather

are projective IRREPs.

The general expression for the d(j)(β) matrices is

d
(j)
mm′(β) =

2j∑

k=0

(−1)k
[
(j +m)! (j −m)! (j +m′)! (j −m′)!

]1/2

k! (j +m− k)! (j −m′ + k)! (k −m+m′)!

[
cos(12β)

]2j+m−m′−2k[
sin(12β)

]2k−m+m′

,

(4.74)
where it is to be understood that values of k which make the arguments of any of the factorials negative
are excluded from the sum.

Parameterizations of SU(2)

SU(2) ∈ GL(2,C) is the group of unitary 2 × 2 complex matrices with determinant 1. We have met up
with SU(2) along the way several times already. Let’s recall some of its parameterizations. Any matrix
U ∈ SU(2) may be written as

U(w, x) =

(
w x
−x∗ w∗

)
(4.75)

where w, x ∈ C and detU = |w|2 + |x|2 = 1. Thus, SU(2) ∼= S3, the three dimensional sphere. We may
also write

U(ξ, n̂) = exp
(
− i

2 ξ n̂ · σ
)
= cos

(
1
2ξ
)
1− i sin

(
1
2ξ
)
n̂ · σ , (4.76)

where σ are the Pauli matrices and n̂ = (sin θ cosφ, sin θ sinφ, cos θ) is a unit vector. The ranges of
the parameters (ξ, θ, φ) are ξ ∈ [0, 2π), θ ∈ [0, π], and φ ∈ [0, 2π). This parameterization carries the
interpretation of a rotation by an angle ξ about the axis n̂. We’ve seen how SU(2) is a double cover of
SO(3), for if U = exp

(
− i

2 ξ n̂ · σ
)
, then

Rab =
1
2Tr
(
Uσa U †σb

)
= nanb +

(
δab − nanb

)
cos ξ − ǫabc nc sin ξ (4.77)
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where R ∈ SO(3). Note that R(2π − ξ, n̂) = R(ξ,−n̂), so the coordinates (ξ, θ, φ) cover SO(3) twice, and
for a unique expression of SO(3) matrices we restrict ξ ∈ [0, π] and identify R(π, n̂) ≡ R(π,−n̂), as we
have discussed before. Finally, we have the Euler angle parameterization,

U(α, β, γ) = exp
(
− i

2 ασ
z
)
exp

(
− i

2 β σ
y
)
exp

(
− i

2 γ σ
z
)

(4.78)

where α ∈ [0, 2π), β ∈ [0, π], and γ ∈ [0, 4π).

4.3.3 Guide for the perplexed

The action of rotation operators on wavefunctions can be confusing when it comes to active versus
passive rotations. To set the record straight, consider the action of a rotation operator Û(R) where
R(ξ, n̂) ∈ SO(3). When there is no intrinsic spin, we have

Û(R)ψ(r) ≡
〈
r
∣∣ Û(R)

∣∣ψ
〉
=
〈
rR
∣∣ψ
〉
= ψ(rR) = ψ(RTr) , (4.79)

where R ≡ Ddef(R) is the 3 × 3 matrix representation of the rotation R in the defining representation
of SO(3)9. Now suppose there is intrinsic spin j. We assume the structure of Hilbert space is such that
spatial and spin degrees of freedom enter as a direct product, i.e. that the wavefunction can be written

∣∣Ψ
〉
=
∣∣ψm′

〉
⊗
∣∣m′ 〉 . (4.80)

with an implied sum on m′ from over the range
{
−j , . . . , j

}
. We then have

Û(R)
∣∣Ψ
〉
=
[
Ûrot(R)

∣∣ψm′

〉]
⊗
∣∣m
〉
D

(j)
mm′(R) (4.81)

so that

〈
r
∣∣ Û(R)

∣∣Ψ
〉
=
〈
r
∣∣ Ûrot(R)

∣∣ψm′

〉 ∣∣m
〉
D

(j)
mm′(R)

= ψm′(rR)
∣∣m
〉
D

(j)
mm′(R) =

[
Û(R)Ψ(r)

]
m

∣∣m
〉

,

(4.82)

where Ûrot(R) = exp(−iξL · n̂/~) is the spatial rotation part of Û(R). We can also write this as

Û(R)



ψ+j(r)

...
ψ−j(r)


 = D(j)(R)



ψ+j(rR)

...
ψ−j(rR)


 . (4.83)

Attend to the order of operations here or you may lead an unhappy life: R = Ddef(R) multiplies the row
vector r on the right, while D(j)(R) multiplies the column vector Ψ on the left.

9Recall that in the defining representation of any matrix Lie groupG ⊂ GL(n, F), each element g is represented by itself.
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4.3.4 Invariant measure for Lie groups

How does one sum over all the elements of a continuous group? Since the group space G is a man-
ifold, we may integrate over G if we have an appropriate measure dµ(g). Integrating with respect to
this measure should be the equivalent of summing over all elements of a discrete group. But then, by
rearrangement, we must have ∫

G

dµ(g)φ(gh−1) =

∫

G

dµ(g)φ(g) (4.84)

for any function φ(g) and any fixed h ∈ G. Thus, we require dµ(gh) = dµ(g) in order that the integral
remain invariant under rearrangement. A measure which satisfies this desideratum is called an invariant
(or Haar) measure.

Let each group element g ∈ G be parameterized by a set of coordinates x = {x1, . . . , xdim(G)}. We define

xg to be the coordinates corresponding to the group element g. The coordinates xgh for the product gh
must depend on those of the components g and h, and accordingly we write

xgh = f(xg , xh) , (4.85)

where f(x,y) is the group composition function. Any group composition function must satisfy the follow-
ing consistency relations:

f
(
f(x,y) ,z

)
= f

(
x ,f(y,z)

)

f(xE ,y) = f(y,xE) = y

f(x,x−1) = f(x−1,x) = xE ,

(4.86)

where xE are the coordinates of the identityE, i.e. g(xE) = E, and x−1 are the coordinates of the inverse

of g(x), i.e. g(x−1) =
[
g(x)

]−1
. We can use the composition functions to construct an invariant measure,

by writing

dµ
(
g(x)

)
= ρ(x)

dim(G)∏

j=1

dxj (4.87)

with

ρ0 = ρ(x)

∣∣∣∣∣ det
(
∂fj(ǫ,x)

∂ǫk

)

ǫ=ǫE

∣∣∣∣∣ , (4.88)

where ρ0 = ρ(xE). An equivalent and somewhat more convenient definition is the following. For any

g(x), express g−1 ∂g
∂xi

in terms of the Lie algebra generators T a, i.e.

g−1(x)
∂g(x)

∂xi
=

dim(G)∑

a=1

Mia(x)T
a , (4.89)

where {T a} are the generators of the Lie algebra g . Then10

ρ(x) = ρ0
∣∣detM(x)

∣∣ . (4.90)

10Since we are taking the absolute value of the determinant, it doesn’t matter whether we use the math or physics convention
for the generators, since the difference is only a power of i, which is unimodular.
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Note that
[
h g(x)

]−1 ∂
[
h g(x)

]

∂xi
= g−1(x)h−1 h

∂g(x)

∂xi
=Mia(x)T

a (4.91)

and therefore the measure is invariant under left multiplication of g. The student should check that it is
also right-invariant. For compact, semisimple Lie groups, we will always be able to choose a normalization
of the generators Tr (T aT b) = c δab, in which case we may write

Mia(x) = c−1 Tr

(
T a g−1(x)

∂g(x)

∂xi

)
. (4.92)

It is conventional to normalize the invariant measure according to

∫

G

dµ(g) ≡ 1 . (4.93)

Let’s implement these formulae for the cases of SO(2) and SU(2) (and SO(3)). For SO(2),

U(φ) =

(
cosφ − sinφ
sinφ cosφ

)
, U−1(φ) = g(−φ) ,

∂U

∂φ
=

(
− sinφ − cosφ
cosφ − sinφ

)
, (4.94)

and thus

U−1(φ)
∂U

∂φ
=

(
0 −1
1 0

)
. (4.95)

The RHS is −iσy , and σy is the generator of SO(2) (physics convention). Thus, ρ(φ) is a constant, and
normalizing over the group manifold, we have ρ(φ) = 1

2π .

The analysis for SU(2) is not quite so trivial, but still straightforward. Let’s choose the parameterization
U(ξ, n̂) = exp

(
− i

2 ξ n̂ · σ
)
. Then U−1(ξ, n̂) = U(ξ, n̂) and

dU(ξ, n̂) = −1
2 sin

(
1
2ξ
)
dξ − 1

2 cos
(
1
2ξ
)
n̂ · σ dξ − i sin

(
1
2ξ
)
dn̂ · σ (4.96)

and one readily obtains

U−1(ξ, n̂) dU(ξ, n̂) = − i
2 n̂ · σ dξ − i

2 sin ξ dn̂ · σ + i
2 (1− cos ξ) n̂ × dn̂ · σ . (4.97)

It is convenient to define vectors ê1,2 such that {ê1, ê2, n̂} forms an orthonormal triad for all (θ, φ).
Explicitly,

ê1 = (cos θ cosφ , cos θ sinφ , − sin θ)

ê2 = (− sinφ , cosφ , 0)

n̂ = (sin θ cosφ , sin θ sinφ , cos θ) .

(4.98)

One then finds

dn̂ = ê1 dθ + ê2 sin θ dφ

n̂× dn̂ = −ê1 sin θ dφ+ ê2 dθ ,
(4.99)
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and we have

U−1(ξ, n̂) dU(ξ, n̂) = − i
2

(
dξ dθ dφ

)



n̂

sin ξ ê1 + (1− cos ξ) ê2
(1− cos ξ) sin θ ê1 − sin ξ sin θ ê2


 · σ . (4.100)

Thus, we have

ρ(ξ, θ, φ) ∝ n̂ ·
[
sin ξ ê1 + (1− cos ξ) ê2

]
×
[
(1− cos ξ) ê1 − sin ξ ê2

]
sin θ = −4 sin2(12ξ) , (4.101)

where ξ ∈ [0, 2π]. Normalizing, we have the invariant measure

dµ(ξ, θ, φ) =

ρ(ξ, θ, φ)︷ ︸︸ ︷
1

8π2
(1− cos ξ) sin θ dξ dθ dφ =

(1− cos ξ) dξ

2π

dn̂

4π
. (4.102)

We can also compute the invariant measure using the Euler angle parameterization,

U(α, β, γ) = exp
(
− i

2 ασ
z
)
exp

(
− i

2 β σ
y
)
exp

(
− i

2 γ σ
z
)

. (4.103)

One finds

U−1 ∂U

∂α
= − i

2

[
− sin β cos γ σx + sin β sin γ σy + cos β σz

]

U−1 ∂U

∂β
= − i

2

[
sin γ σx + cos γ σy

]

U−1 ∂U

∂γ
= − i

2
σz ,

(4.104)

and so

M = − i
2



− sin β cos γ sin β sin γ cos β
− sin γ − cos γ 0

0 0 −1


 . (4.105)

Thus, det(M) = i
8 sin β and the normalized invariant measure in the Euler angle representation is

dµ(α, β, γ) =
sin β dα dβ dγ

vol(G)
, (4.106)

where vol(G) is the group volume, i.e. the integral of the numerator over the allowed range of the angles
(α, β, γ) . Remember that α ∈ [0, 2π), β ∈ [0, π], and γ ∈ [0, 4π) for SU(2), hence vol

(
SU(2)

)
= 16π2, but

for SO(3),

R(α, β, γ) = exp
(
− iαJz

)
exp

(
− iβJy

)
exp

(
− iγJz

)
, (4.107)

we have γ ∈ [0, 2π), and accordingly vol
(
SO(3)

)
= 8π2.
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4.3.5 Peter-Weyl theorem

Armed with the invariant measure, we can now express the Great Orthogonality Theorem for Lie groups. It
goes by the name of the Peter-Weyl theorem, and says that the functions

VΓ ik(g) =
√
dΓ D

Γ
ik(g) (4.108)

form a complete and orthonormal basis in the space of square-integrable functions on the group mani-
fold. This means

∫

G

dµ(g) V ∗
Γ ik(g)VΓ ′i′k′(g) =

√
dΓ dΓ ′

∫

G

dµ(g)DΓ ∗

ik (g)DΓ ′

i′k′(g) = δΓΓ ′ δii′ δkk′

∑

Γ,i,k

VΓ ik(g)V
∗
Γ ik(g

′) =
∑

Γ ik

dΓ D
Γ
ik(g)D

Γ ∗

ik (g′) = δ(g, g′)

(4.109)

where the symbol δ(g, g′) satisfies

∫

G

dµ(g′) δ(g, g′)F (g′) =
∑

Γ,i,k

〈
VΓ ik

∣∣F
〉
VΓ ik(g) = F (g) , (4.110)

where 〈VΓ ik |F 〉 =
∫
G

dµ(g)V ∗
Γ ik(g)F (g), and where the last inequality must be understood in terms

of ”convergence in the L2 norm”. In other words, the convergence is in the norm, and not necessarily
pointwise, just like in the analogous case of the Fourier transform. For any function F (g) which can be
expanded in terms of the basis functions VΓ ik(g), one has

∫

G

dµ(g′) δ(g, g′)

F (g′)︷ ︸︸ ︷
∑

Γ,i,k

CΓ ik VΓ ik(g
′) =

F (g)︷ ︸︸ ︷
∑

Γ ik

CΓ ik VΓ ik(g) . (4.111)

4.3.6 Projection operators

In analogy with the case for discrete groups, we can construct projectors onto the µ row of the Γ IRREP

for any compact Lie group G, viz.

Π̂Γ
µν = dΓ

∫

G

dµ(g)DΓ ∗

µν (g) Û (g) . (4.112)

Again, these satisfy

Π̂Γ
µνΠ̂

Γ ′

µ′ν′ = δΓΓ ′ δνµ′ Π̂
Γ
µν′ , (4.113)

and
Û(g) Π̂Γ

µν = Π̂Γ
ρν D

Γ
ρµ(g) . (4.114)
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Projection matrices are defined in analogous fashion, with

ΠΓ
µν = dΓ

∫

G

dµ(g)DΓ ∗

µν (g)∆(g) (4.115)

satisfying ΠΓ
µν Π

Γ ′

µ′ν′ = δΓΓ ′ δνµ′ Π
Γ
µν′ and ∆(g)ΠΓ

µν = ΠΓ
ρν D

Γ
ρµ(g) . Here ∆(G) is a matrix representation

of the Lie group.

As an example, consider the group SO(2). To project an arbitrary periodic function f(φ) onto the j IRREP,
we useD(j)(α) = exp(−ijα) and Û(α) = exp(−iαLz) = exp(−α∂φ). The IRREPs are all one-dimensional.
We then have

Π̂(j)f(φ) =

2π∫

0

dα

2π
eijα e−α

∂
∂φ f(φ) =

2π∫

0

dα

2π
eijα f(φ− α) = f̂j e

ijφ , (4.116)

where

f̂j =

2π∫

0

dα

2π
e−ijα f(α) . (4.117)

is the discrete Fourier transform of the function f(α). Note that Û(α) has eigenvalue e−ijα = D(j)(α)
when acting on the projected function f̂j e

ijφ.

4.3.7 Product representations for SU(2)

In the product basis, we have

Û(g)
[ ∣∣ j1,m1

〉
⊗
∣∣ j2 ,m2

〉 ]
=
∑

m′
1,m

′
2

∣∣ j1,m′
1

〉
⊗
∣∣ j2 ,m′

2

〉
D
j1×j2
m′

1m
′
2 ,m1m2

(g)
︷ ︸︸ ︷
D
j1
m′

1,m1
(g)D

j2
m′

2 ,m2
(g) . (4.118)

Taking traces, we have

χj1×j2(g) = χ(j1)(g)χ(j2)(g) . (4.119)

Generalizing the decomposition formula to the case of continuous groups,

nΓ (Ψ) =

∫

G

dµ(g) χΓ
∗
(g)χΨ (g) . (4.120)

For SU(2), the invariant measure is dµ(ξ, n̂) = 1
π sin

2(12ξ) dξ · dn̂4π .
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Recall that χ(j)(ξ) = sin
[
(j + 1

2) ξ
]/

sin(12ξ). Thus, according to the decomposition rule,

n
j1×j2
j =

2

π

π∫

0

dξ sin2
(
1
2ξ
)
χ(j)(ξ)χj1(ξ)χj2(ξ)

=
2

π

π∫

0

dξ

j∑

m=−j
e−imξ sin

(
(j1 +

1
2) ξ
)
sin
(
(j2 +

1
2 ) ξ
)

(4.121)

=
1

π

π∫

0

dξ

j∑

m=−j
e−imξ

{
cos
[
(j1 − j2) ξ

]
− cos

[
(j1 + j2 + 1) ξ

]}
=

{
1 if |j1 − j2| ≤ j ≤ (j1 + j2)

0 otherwise .

Thus, for each j with |j1−j2| ≤ j ≤ (j1+j2), there is one representation within the direct product j1×j2.
Note that

j1+j2∑

|j1−j2|
(2j + 1) = 1

2 (j1 + j2)(j1 + j2 + 1)− 1
2

(
|j1 − j2| − 1

)
|j1 − j2|+ (j1 + j2)− |j1 − j2|

= (2j1 + 1)(2j2 + 1) ,

(4.122)

which says that the dimension of the product representation is the product of the dimensions of its
factors.

The direct product of two representations j1 and j2 is expanded as

∣∣ j1,m1

〉
⊗
∣∣ j2 ,m2

〉
=
∑

j,m

(
j1
m1

j2
m2

∣∣∣∣
j

m

) ∣∣ j,m
〉

. (4.123)

The CGCs are nonzero only if |j1 − j2| ≤ j ≤ (j1 + j2) and m = m1 + m2. They are tabulated in
various publications (e.g., see Wikipedia). To derive the CGCs, one starts with the state with m1 = j1
and m2 = j2, which corresponds to j = j1 + j2 and m = m1 +m2. Since

∣∣ j1 + 2, j1 + j2
〉
=
∣∣ j1, j1

〉
⊗
∣∣ j2 , j2

〉
, (4.124)

we have, trivially, that (
j1
m1

j2
m2

∣∣∣∣
j1 + j2
j1 + j2

)
= δm1 , j1

δm2 , j2
. (4.125)

Now apply the lowering operator Ĵ− to get

Ĵ− ∣∣ j1 + j2 , j1 + j2
〉
=
[
2(j1 + j2)

]1/2 ∣∣ j1 + j2 , j1 + j2 − 1
〉

=
[
Ĵ− ∣∣ j1, j1

〉 ]
⊗
∣∣ j2, j2

〉
+
∣∣ j1, j1

〉
⊗
[
Ĵ− ∣∣ j2, j2

〉 ]

=
√

2j1
∣∣ j1 , j1 − 1

〉
⊗
∣∣ j2 , j2

〉
+
√

2j2
∣∣ j1 , j1

〉
⊗
∣∣ j2 , j2 − 1

〉
.

(4.126)

Thus,

∣∣ j1 + j2 , j1 + j2 − 1
〉
=

√
j1

j1 + j2

∣∣ j1, j1 − 1
〉
⊗
∣∣ j2, j2

〉
+

√
j2

j1 + j2

∣∣ j1, j1
〉
⊗
∣∣ j2, j2 − 1

〉
. (4.127)
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Taking the inner product with eqn. 4.123 then gives

(
j1
m1

j2
m2

∣∣∣∣
j1 + j2

j1 + j2 − 1

)
=

√
j1

j1 + j2
δm1,j1−1 δm2,j2

+

√
j2

j1 + j2
δm1 , j1

δm2 , j2−1 . (4.128)

Continue to apply Ĵ− to generate all the states | j1 + j2 , m 〉 for m ∈
{
− j1 − j2 , . . . , j1 + j2

}
.

Next, consider the state

∣∣ j,m
〉
=

√
j2

j1 + j2

∣∣ j1, j1 − 1
〉
⊗
∣∣ j2, j2

〉
−
√

j1
j1 + j2

∣∣ j1, j1
〉
⊗
∣∣ j2, j2 − 1

〉
, (4.129)

which clearly has m = j1 + j2 − 1 but which is orthogonal to the state in Eqn. 4.127. We conclude that
the above state is none other than

∣∣ j1 + j2 − 1 , j1 + j2 − 1
〉

, and consequently

(
j1
m1

j2
m2

∣∣∣∣
j1 + j2 − 1

j1 + j2 − 1

)
=

√
j2

j1 + j2
δm1 , j1−1 δm2 , j2

−
√

j1
j1 + j2

δm1 , j1
δm2 , j2−1 . (4.130)

Applying the lowering operator to this state, one creates a state with j = j1 + j2− 1 and m = j1 + j2− 2,
and one may continue to apply Ĵ− to generate the entire family of basis states for the j = j1 + j2 − 1
representation. One then constructs a new state ψ withm = j1+j2−2 which is normalized and orthogo-
nal to both

∣∣ j1 + j2 , j1 + j2 − 2
〉

and
∣∣ j1 + j2 − 1 , j1 + j2 − 2

〉
. This must be

∣∣ j1 + j2 − 2 , j1 + j2 − 2
〉
.

Continuing in this manner, one eventually constructs all the basis states
∣∣ j,m

〉
in terms of the product

states, from which one can read off the CGCs.

4.3.8 Spherical harmonics

The angular momentum operators,

L̂x = i

(
z
∂

∂y
− y ∂

∂z

)
, L̂y = i

(
x
∂

∂z
− z ∂

∂x

)
, L̂z = i

(
y
∂

∂x
− x ∂

∂y

)
, (4.131)

satisfy the SO(3) algebra
[
L̂a, L̂b

]
= iǫabc L̂

c. Clearly Laf(r) = 0 when acting on a spherically symmetric

function. Therefore we may express the L̂a in terms of derivatives with respect to θ and φ, viz.

L± = e±iφ
(
i ctn θ

∂

∂φ
± ∂

∂θ

)
, Lz = −i ∂

∂φ
, L̂

2
= − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2
. (4.132)

We then have

L̂
2
Ylm(n̂) = l(l + 1)Ylm(n̂) , L̂z Ylm(n̂) = mYlm(n̂) , (4.133)

with l ∈ N, where Ylm(n̂) is the spherical harmonic. The spherical harmonics are related to the rotation
matrices. If we define ∣∣ n̂

〉
≡ R̂(φ, θ, 0)

∣∣ ẑ
〉

, (4.134)
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where | ẑ 〉 is the ket vector corresponding to an orientation along ẑ11, then

〈
l,m

∣∣ n̂
〉
=

l∑

m′=−l

〈
l,m

∣∣ R̂(φ, θ, 0)
∣∣ l,m′ 〉 〈 l,m′ ∣∣ ẑ

〉
. (4.135)

We then have Ylm(n̂) = 〈 n̂ | l,m 〉. Now

〈
l,m

∣∣ ẑ
〉
= Ylm(ẑ) =

√
2l + 1

4π
δm,0 (4.136)

and therefore

Ylm(n̂) =

√
2l + 1

4π

[
D

(l)
m0(φ, θ, 0)

]∗
=

√
2l + 1

4π
d
(l)
m0(θ) e

imφ . (4.137)

Note that Yl,−m(n̂) = (−1)m Y ∗
lm(n̂) and that D

(l)
m0(φ, θ, ψ) = D

(l)
m0(φ, θ, 0) because e−im

′γ = 1 for m′ = 0.
The spherical harmonics are normalized according to

∫
dn̂ Y ∗

lm(n̂)Yl′m′(n̂) = δll′ δmm′ . (4.138)

Note that there is no factor of 4π in the denominator of the measure, which is dn̂ = sin θ dθ dφ. The
associated Legendre polynomials12 Plm(cos θ) are related to the d(l) matrices by

Plm(cos θ) = (−1)m
√

(l +m)!

(l −m)!
d
(l)
m0(θ) , (4.139)

and therefore we have

Ylm(n̂) =

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(cos θ) e

imφ . (4.140)

See https://en.wikipedia.org/wiki/Table_of_spherical_harmonics for explicit expressions of Ylm(n̂)
for low orders of the angular momentum l. Finally, note that

〈
n̂
∣∣ R̂(ξ, ξ̂)

∣∣ l,m
〉
=

l∑

m′=−l
Ylm(n̂)D

(l)
m′m(φξ, θξ, ψξ) , (4.141)

where (φξ, θξ, ψξ) are the Euler angles corresponding to the rotation R̂(ξ, ξ̂). Writing | n̂′ 〉 = R̂(−ξ, ξ̂) | n̂ 〉
as the ket vector | n̂ 〉 rotated by −ξ about the direction ξ̂, and taking m = 0, we obtain the spherical har-
monic addition formula,

Yl0(n̂
′) =

√
4π

2l + 1

l∑

m=−l
Ylm(n̂)Y

∗
lm(n̂ξ) , (4.142)

11That is, we suppress the radial coordinate in | r 〉 ≡ | r, n̂ 〉.
12Wisconsin Senator Joseph McCarthy was famous for his aggressive questioning of witnesses before the U.S. Senate Sub-

committee on Investigations in 1954, theatrically haranguing them by demanding, ”Are you now or have you ever been
associated with the Legendre polynomials?” Those who answered in the affirmative or refused to answer were blacklisted
and forbidden from working on special functions. A similar fate befell those who associated with Laguerre, Jacobi, or Gegen-
bauer polynomials.

https://en.wikipedia.org/wiki/Table_of_spherical_harmonics
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where n̂ξ is the unit vector whose polar and azimuthal angles are (θξ, φξ). Note that n̂ξ 6= ξ̂ in general!
Since Pl0(cos θ) = Pl(cos θ), we have

Pl(cos ϑ) =
4π

2l + 1

l∑

m=−l
Ylm(n̂)Y

∗
lm(n̂ξ) , (4.143)

where, as the student should confirm, ϑ is the angle between n̂ and n̂ξ .

4.3.9 Tensor operators and the Wigner-Eckart theorem for SU(2)

An irreducible tensor operator Q̂JM is one which transforms according to the J IRREP of SU(2), meaning

R̂ Q̂JM R̂† =
J∑

M ′=−J
Q̂JM ′ D

(J)
M ′M (R) , (4.144)

where R̂ is the unitary operator corresponding to the group element R. Writing R̂ = exp(iǫ · Ĵ) where
Ĵ are the operator generators of su(2), and expanding for infinitesimal ǫ, one finds

[
Ĵa , Q̂JM

]
=

J∑

M ′=−J
Q̂JM ′

〈
J,M ′ ∣∣Ja

∣∣ J,M
〉

. (4.145)

Mercifully, as we have seen, SU(2) is simply reducible, meaning that the product representation j1 × j2
contains representations with j ∈

{
|j1 − j2| , . . . , j1 + j2

}
where each j IRREP occurs only once. This

means that we can decompose the state Q̂Jm | j′,m′;λ′ 〉 as

Q̂JM
∣∣ j′,m′;λ′

〉
=
∑

j,m

(
J

M

j′

m′

∣∣∣∣
j

m

) ∣∣Ψj,λ′

m

〉
. (4.146)

Here and below, λ and λ′ are extra indices corresponding to quantum numbers not associated with the

group symmetry. The state |Ψj;λ′
m 〉 transforms as

R̂
∣∣Ψj,λ′

m

〉
=

j∑

m′=−j

∣∣Ψj,λ′

m′

〉
D

(j)
m′m(R) . (4.147)

It follows that
〈
j,m;λ

∣∣ Q̂JM
∣∣ j′,m′ ;λ′

〉
=
∑

j′′,m′′

(
J

M

j′

m′

∣∣∣∣
j′′

m′′

)〈
j,m ;λ

∣∣Ψj′′,λ′

m′′

〉
(4.148)

where

〈
j,m ;λ

∣∣Ψj′′,λ′

m′′

〉
= δjj′′ δmm′′ × 1

2j + 1

j∑

m̃=−j

〈
j, m̃;λ

∣∣Ψj,λ′

m̃

〉
(4.149)
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We now define13

〈
j ;λ

∥∥ Q̂J
∥∥ j′ ;λ′

〉
≡ 1√

2j + 1

j∑

m̃=−j

〈
j, m̃;λ

∣∣Ψj,λ′

m̃

〉
, (4.150)

in which case we have the Wigner-Eckart theorem for SU(2):14

〈
j,m;λ

∣∣ Q̂JM
∣∣ j′,m′ ;λ′

〉
=

(
J

M

j′

m′

∣∣∣∣
j

m

) 〈
j ;λ

∥∥ Q̂J
∥∥ j′ ;λ′

〉
√
2j + 1

. (4.151)

All the M , m, and m′ dependence is in the CGC.

4.4 Joke for Chapter Four

A rabbit one day managed to break free from the laboratory where he had been born and raised.
As he scurried away from the fencing of the compound, he felt grass under his little feet and saw
the dawn breaking for the first time in his life. ’Wow, this is great,’ he thought. It wasn’t long
before he came to a hedge and, after squeezing under it he saw a wonderful sight: lots of other
bunny rabbits, all free and nibbling on the lush green grass.

’Hey,’ he called. ’I’m a rabbit from the laboratory and I’ve just escaped. Are you wild rabbits?’

’Yes. Come and join us!’ they cried.

He hopped over to them and started eating the grass. It was delicious. ’What else do you wild
rabbits do?’ he asked.

’Well,’ one of them said. ’You see that field there? It’s got carrots growing in it. We dig them up
and eat them.’

This, he couldn’t resist and he spent the next hour eating the most succulent carrots. They were
scrumptious – out of this world.

Later, he asked them again, ’What else do you do?’

’You see that field there? It’s got lettuce growing in it. We eat that as well.’

The lettuce was as yummy as the grass and the carrots, and he returned a while later completely
full. ’Is there anything else you guys do?’ he asked.

One of the other rabbits came a bit closer to him and spoke softly. ’There’s one other thing you
must try. You see those rabbits there?’ he said, pointing to the far corner of the field. ’They’re lady
rabbits. We shag them. Check it out.’

The rabbit spent the rest of the morning screwing his little heart out until, completely exhausted,
he staggered back to the group.

’That was awesome,’ he panted.

13Where does j′ come from in the reduced matrix element on the LHS when it doesn’t appear on the RHS? Well, you see, the

RHS does know about j′, as a check of Eqn. 4.146 should make clear. I’ve suppressed this label in the state |Ψj,λ′

m̃ 〉 just to
keep you on your toes.

14Look, I’m very sorry about the awkward
√
2j + 1 factors. In my defense, it’s a convention which was established long before

I was even born.
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’So are you going to live with us then?’ one of them asked.

’I’m sorry, I had a great time – but I just can’t.’

The wild rabbits all stared at him, a bit surprised. ’Why? We thought you liked it here.’

’I do,’ he said. ’But I’ve got to get back to the lab. I’m dying for a cigarette.’



Chapter 5

Crystal Math

5.1 Classification of Crystalline Structures

Crystallography is the classification of spatially periodic structures according to their translational and
rotational symmetries. It is a mature field1, and the possible crystalline symmetries of two and three
dimensional structures have been exhaustively classified. We shall not endeavor to prove, e.g., that
there are precisely 230 three-dimensional space groups. Rather, our proximate goal is to economically
describe the most relevant aspects of the classification scheme, so that we may apply methods of group
theory to analyze experimentally relevant physical processes in crystals.

5.1.1 Bravais Lattices

The notion of a Bravais lattice was discussed in §4.1.1. To review, a Bravais lattice L in d space dimensions
is defined by a set of linearly independent vectors {aj} with j ∈ {1, . . . , d} which define a unit cell. A
general point R in the Bravais lattice is written as R =

∑
j njaj , where each nj ∈ Z. The unit cell

volume is given by

Ω = ǫ
µ1···µd

a
µ1
1 · · · a

µd
d , (5.1)

and is by definition positive2. The choice of the vectors {aj} is not unique, for one can always replace
ai with ai + aj for any j 6= i, and, due to the antisymmetry of the determinant, Ω is unchanged. It is
then conventional to choose the {aj} so that they have the shortest possible length, though even this
prescription is not necessarily unique. The lattice of points {R} is called the direct lattice, and the {aj}
are the elementary (or primitive) direct lattice vectors.

1Crystallography has enjoyed something of a resurgence in its relevance to recent theories of topological classification of
electronic band structures. The interplay between symmetry and topology leads to a new classification for materials known
as crystalline topological insulators, for example.

2One can always reorder the aj so that Ω > 0.
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Figure 5.1: First panel shows construction of the first Wigner-Seitz cell or first Brillouin zone for the
triangular lattice. Second, third, and fourth panels show first Brillouin zones for the simple cubic, body-
centered cubic, and face-centered cubic direct lattices, respectively, with high symmetry points identi-
fied. Image credit: Wikipedia and Setyawan and Curtarolo, DOI: 10.1016/j.commatsci.2010.05.010.

One can then define the elementary (primitive) reciprical lattice vectors,

bνk ≡
2π

Ω
ǫµ1···µk−1 ν µk+1···µda

µ1
1 · · · a

µk−1

k−1 a
µk+1

k+1 · · · a
µd
d , (5.2)

which satisfy ai · bj = 2π δij . Indeed, we must have

d∑

µ=1

aµi b
µ
j = 2π δij ,

d∑

j=1

aµj b
ν
j = 2π δµν , (5.3)

because if the square matrices Aj,µ ≡ aµj and BT

µ,j ≡ bµj are inverses, they are each other’s right as well
as left inverse. For example, with d = 3 we have Ω = a1 · a2 × a3 and

b1 =
2π

Ω
a2 × a3 , b2 =

2π

Ω
a3 × a1 , b3 =

2π

Ω
a1 × a2 . (5.4)

The set of vectors K =
∑d

j=1mj bj , with each mi ∈ Z , is called the reciprocal lattice, L̂. The reciprocal
lattice is therefore also a Bravais lattice, though not necessarily the same Bravais lattice as the direct lat-
tice. For example, while the reciprocal lattice of a simple cubic lattice is also simple cubic, the reciprocal
lattice of a body-centered cubic lattice is face-centered cubic. Constructing the reciprocal lattice of the
reciprocal lattice, one arrives back at the original direct lattice. The unit cell volume of the reciprocal
lattice is

Ω̂ = ǫ
µ1···µd

b
µ1
1 · · · b

µd
d =

(2π)d

Ω
. (5.5)

The repeating unit cells in the direct and reciprocal lattices may be written as the collection of points r
and k, respectively, where

r =

d∑

j=1

xj aj , k =

d∑

j=1

yj bj , (5.6)

where each xj, yj ∈ [0, 1]. The symmetries of the direct and reciprocal lattices are more fully elicited by
shifting each r and k point by a direct or reciprocal lattice vector so that it is as close as possible to the
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Figure 5.2: Simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices.

origin. Equivalently, sketch all the nonzero shortest direct/reciprocal lattice vectors emanating from the
origin3, and bisect each such vector with a perpendicular plane. The collection of points lying within
all the planes will form the first Wigner-Seitz cell of the direct lattice, and the first Brillouin zone of the
reciprocal lattice.

Finally, we cannot resist mentioning the beautiful and extremely important application of the Poisson
summation formula to Bravais lattice systems:

∑

K

eiK·r = Ω
∑

R

δ(r −R) ,
∑

R

eik·R = Ω̂
∑

K

δ(k −K) . (5.7)

Example: fcc and bcc lattices

The primitive direct lattice vectors for the fcc structure may be taken as

a1 =
a√
2
(0, 1, 1) , a2 =

a√
2
(1, 0, 1) , a3 =

a√
2
(1, 1, 0) . (5.8)

The unit cell volume is Ω = a1 · a2 × a3 = 2a3. Note that |aj| = a. Each FCC lattice point has

twelve nearest neighbors, located at ±a1 , ±a2 , ±a3 , ±(a1 − a2) , ±(a2 − a3) , and ±(a3 − a1) . The
corresponding primitive reciprocal lattice vectors are

b1 =
b√
3
(−1, 1, 1) , b2 =

b√
3
(1,−1, 1) , b3 =

b√
3
(1, 1,−1) , (5.9)

with b =
√
6π/a. These primitive vectors form a bcc structure, in which each site has eight nearest

neighbors, located at±b1 , ±b2 , ±b3 , and±(b1+b2+b3) . The simple, body-centered, and face-centered
cubic structures are depicted in Fig. 5.2.

3There may be more than d shortest direct/reciprocal lattice vectors. For example, the triangular lattice is two-dimensional,
but it has six nonzero shortest direct/reciprocal lattice vectors.
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Figure 5.3: Examples of Miller planes. Image credit: Wikipedia.

Be forewarned that in some texts, distances are given in terms of the side length of the cube. In the
fcc lattice, if the cube has side length a0 , then the fcc lattice constant, i.e. the distance between nearest
neighbor sites, is a = a0/

√
2. Similarly, for the bcc case, if the cube has side length b0, the corresponding

bcc lattice constant is b =
√
3 b0/2.

In Fig. 5.1, the two rightmost panels show the first Brillouin zones corresponding to the bcc and fcc
direct lattices, respectively. It follows that the same shapes describe the first Wigner-Seitz cells for the
fcc and bcc lattices, respectively.

5.1.2 Miller indices

This eponymous notation system, first introduced by the British minerologist William H. Miller in 1839,
provides a convenient way of indexing both directions and planes of points in a Bravais lattice. Briefly,

• [hk l ] represents a direction in the direct lattice given by the vector ha1 + ka2 + la3. For negative
numbers, one writes, e.g., 2̄ instead of −2. Thus, [ 1 2̄ 0 ] is the direction parallel to a1 − 2a2. Only
integers are used, so the direction parallel to 1

4a1 +
1
2a2 − 1

3a3 is written as [ 3 6 4̄ ].

• 〈hk l 〉 denotes the set of all directions which are related to [hk l ] by a rotational symmetry.

• (hk l ) represents a set of lattice planes which lie perpendicular to the vector hb1+kb2+ lb3. Again,
only integers are used, and any negative numbers are written with bars rather than minus signs.

• {hk l } denotes all families of lattice planes related to (hk l ) by a rotational symmetry.

We can think of the Miller planes in terms of plane waves, i.e. as sets of points of constant phase φ(r) =
Khkl · r, whereKhkl = hb1 + kb2 + lb3 is a reciprocal lattice vector. If we writeR = ra1 + sa2 + ta3 , we
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have φ(r, s, t) = 2π(hr + ks + lt) ≡ 2πN , and thus the intersection of this plane with the a1, a2, and a3
axes, which in general are not mutually orthogonal, lie at Na1/h , Na2/k, and Na3/l, respectively. In
this way, one can identify the Miller indices of any lattice plane by taking the inverses of the respective
coefficients and inverting them, then multiplying by the least common denominator if the results turn
out to be fractional. From the formula exp(iK ·r) = 1, we also see that the distance between consecutive
Miller planes is 2π/|K|.

Cubic and hexagonal systems

For cubic systems, it is conventional to index the lattice planes based on the underlying simple cubic
Bravais lattice. The bcc lattice is then viewed as a simple cubic lattice with a two element basis (see §5.1.5
below), and the fcc lattice as simple cubic with a four element basis. In hexagonal systems, typically one
chooses the primary direct lattice vectors a1 and a2 to subtend an angle of 120◦, in which case b1 and b2
subtend an angle of 60◦. Then defining b0 ≡ b2 − b1, we have that b0 is rotationally equivalent to b1 and
b2. Thus, if we define i ≡ −(h+ k), then we have the following rotations:

h b1 + k b2 = R120◦
(
k b1 + i b2

)
= R240◦

(
i b1 + h b2

)

= R60◦
(̄
i b1 + h̄ b2

)
= R180◦

(
h̄ b1 + k̄ b2

)
= R300◦

(
k̄ b1 + ī b2

)
.

(5.10)

To reveal this rotational symmetry, the redundant fourth index i is used, and the Miller indices are
reported as (hk i l ). The fourth index is always along the c-axis. The virtue of this four index notation is
that it makes clear the relations between, e.g., ( 1 1 2̄ 0 ) ≡ ( 1 1 0 ) and ( 1 2̄ 1 0 ) ≡ ( 1 2̄ 0 ), and in general

(hk i l ) → ( ī h̄ k̄ l )→ ( k i h l ) → ( h̄ k̄ ī l ) → ( i h k l ) → ( k̄ ī h̄ l ) → (hk i l ) (5.11)

gives the full sixfold cycle.

5.1.3 Crystallographic restriction theorem

Consider a Bravais lattice and select one point as the origin. Now consider a general rotation R ∈ SO(3)
and ask how the primary direct lattice vectors transform. If the Bravais lattice is symmetric under the
operation R, then each aj must transform into another Bravais lattice vector, i.e.

Rµν a
ν
i = Kij a

µ
j , (5.12)

where Kij is a matrix composed of integers. Now multiply both sides of the above equation by bρi and
sum on the index i. From Eqn. 5.3, we have aνi b

ρ
i = 2πδνρ , hence 2πRµρ = Kij a

µ
j b

ρ
i . Now take the trace

over the indices µ and ρ, again invoking Eqn. 5.3, to get TrR = TrK . Now the trace of any matrix is
invariant under similarity transformation, and in d = 3 dimensions, and if R = R(ξ, n̂) we can always
rotate n̂ so that it lies along ẑ, in which case

S R(ξ, n̂)S−1 =



cos ξ − sin ξ 0
sin ξ cos ξ 0
0 0 1


 , (5.13)
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Figure 5.4: Left: Molecular structure of corannulene, C20H10. Center: Tenfold-symmetric diffraction
pattern from a quasicrystalline alloy of aluminum, copper, and iron. Right: A Ho-Mg-Zn icosahedral
quasicrystal forms a beautiful pentagonal dodecahedron (20 sites, 12 pentagonal faces, 30 edges, 3-
fold coordinated), a structure dual to the icosahedron (12 sites, 20 triangular faces, 30 edges, 5-fold
coordinated). Image credits: Wikipedia.

in which case TrR = 2cos ξ + 1. In d = 2 we have TrR = 2cos ξ for proper rotations. Thus, TrR ∈ Z is
possible only for ξ = 2π/n where n = 1, 2, 3, 4, or 6. Fivefold, sevenfold, etc. symmetries are forbidden!
Note that it is perfectly possible to have a fivefold symmetric molecule, such as C20H10 , also known
as corannulene. But when we insist on having both rotational as well as translational symmetries, the
former are strongly restricted. Remarkably, there exists a family of three-dimensional structures, called
quasicrystals, which exhibit forbidden fivefold or tenfold rotational symmetries. They elude the restric-
tion theorem by virtue of not being true crystals, i.e. they are quasiperiodic structures. See Fig. 5.4.

The result TrR = TrK ∈ Z is valid in all dimensions and does impose restrictions on the possible
rotational symmetries. However, rotations in higher dimensions are in general not planar. Consider
that it takes d − 1 angles to specify an axis in d dimensions, but the dimension of SO(d) is 1

2d(d − 1), so
an additional 1

2(d− 1)(d− 2) parameters in addition to specifying an axis are required to fix an element
of SO(d). For example, the four-dimensional F4 lattice is a generalization of the three-dimensional bcc
structure, consisting of two interpenetrating four-dimensional hypercubic lattices, and exhibits 12-fold
rotational symmetries.

5.1.4 Enumeration of two and three-dimensional Bravais lattices

The complete classification of two and three Bravais lattices is as follows4. In two dimensions, there are
four lattice systems: square, oblique, hexagonal, and rectangular. Of these, the rectangular system sup-
ports a subvariety called center rectangular, resulting in a total of five distinct two-dimensional Bravais
lattices, shown in Fig. 5.5.

In three dimensions, there are seven lattice systems: triclinic, monoclinic, orthorhombic, tetragonal, trig-
onal, hexagonal, and cubic5. Of these, monoclinic supports two subvarieties or types (simple and base-

4To reinforce one’s memory, there is even a song: https://ww3.haverford.edu/physics/songs/bravais.htm.
5The systematic enumeration of three-dimensional lattices based on symmetry was first done by M. L. Frankenheim in 1842.
Frankenheim correctly found there were 32 distinct crystal classes, corresponding to the 32 distinct three-dimensional point

https://ww3.haverford.edu/physics/songs/bravais.htm.
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Figure 5.5: The five two-dimensional Bravais lattices.

centered), orthorhombic four subvarieties (simple, base-centered, body-centered, and face-centered),
and cubic three subvarieties (simple, face-centered, and body-centered), amounting to a grand total of
14 three-dimensional Bravais lattices:

(i) Cubic : this system is the most symmetric, with symmetry group Oh
∼= S4 × Z2, which has 48

elements6. The Z2 factor arises from the inversion symmetry exhibited by all Bravais lattices. Recall
inversion takes (x, y, z) to (−x,−y,−z). The three cubic subvarieties (simple, body-centered, and
face-centered) are depicted in the first three panels of 5.6.

(ii) Tetragonal : Lowering the cubic symmetry by stretching or compressing along one of the axes, one
arrives at the tetragonal system, whose unit cell is a cubic rectangle with side lengths a = b 6= c.
There are two sub-varieties: simple and body-centered, depicted in the left two panels of Fig. 5.8.
Why is there not a face-centered subvariety as well? Because it is equivalent to the body-centered
case7. The symmetry group is D4h

∼= Z4 × Z2 × Z2 .

(iii) Orthorhombic : Further lowering the symmetry by stretching or compressing in along a second
axis, we obtain the orthorhombic system. The only rotational symmetries are the three perpendic-
ular mirror planes bisecting each of the unit cell sides, resulting in a D2h = Z2×Z2×Z2 symmetry.
There are four subvarieties, depicted in Fig. 5.7: simple, base-centered, body-centered, and face-
centered.

(iv) Monoclinic : Take an orthorhombic lattice and shear it so that the c-axis is no longer along ẑ, but
lies in the (y, z) plane at an angle β 6= 90◦ with respect to the horizontal. There are two distinct

groups, but he erred in counting 15 rather than 14 distinct lattices. A. L. Bravais, in 1845, was the first to get to 14, and for this
he was immortalized. The identity of Frankenheim’s spurious 15th lattice remains unclear.

6Why is the symmetry group of the cube called O (or Oh with inversion)? Because the cube and the octahedron have the same
symmetries. Hence O is sometimes called the octahedral group.

7See Ashcroft and Mermin, Solid State Physics, pp. 116-118.
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(a) sc (b) bcc (c) fcc (d) trigonal (e) hex

Figure 5.6: Simple cubic, body-centered cubic, face-centered cubic, trigonal, and hexagonal Bravais
lattices. Image credits: Wikipedia.

subvarieties, simple and base-centered, which are shown in the third and fourth panels of Fig.
5.8. The only remaining symmetries are reflection in the (y, z) plane and inversion, hence the
symmetry group is Z2 × Z2 .

(v) Triclinic : Shearing in a second direction, one obtains the triclinic system, depicted in the right
panel of Fig. 5.8. At least two of the angles ϑij = cos−1

(
âi · âj

)
are not 90◦, and all the axes are of

unequal lengths. The only remaining symmetry is inversion, so the symmetry group is Z2 .

(vi) Trigonal : Starting with the cubic system, rather than squashing it along one of its three orthogonal
axes, imagine stretching it along the cube’s diagonal. The resulting Bravais lattice is generated by
three nonorthogonal primitive vectors which make the same angle with respect to one another, as
depicted in the fourth panel of Fig. 5.6. The stretched cube diagonal becomes a threefold axis, and
the symmetry group is D3d , which is of order 12.

(vii) Hexagonal : Finally, we come to the hexagonal system, which is unrelated to the cube. The simple
hexagonal lattice, depicted in the last panel of Fig. 5.6, is its only representative. Two of the
primitive direct lattice vectors are of equal length a and subtend a relative angle of 60◦ or 120◦.
The third lies perpendicular to the plane defined by the first two, with an independent length c .
The symmetry group is D6h , which has 24 elements.

5.1.5 Crystals

A Bravais lattice is a tiling of space with empty unit cells. We are in the position of a painter staring
at a beautifully symmetric but otherwise empty canvas. The art with which we fill our canvas is the
crystalline unit cell, and it consists of a number r of atoms or ions, where ions of species j are located at
positions δj relative to any given direct lattice point R, with j ∈ {1, . . . , r}. If the direct lattice pointsR
themselves represent the positions of a class of ion, we write δ1 ≡ 0. The set of vectors {δj} is called a
basis, and without loss of generality, we restrict the basis vectors so they do not lie outside the unit cell.

⋆ In a crystal, ions of species j are located at positions R+ δj , where R is a Bravais lattice vector and δj is a
basis vector. All basis vectors are taken to lie within a single unit cell of the Bravais lattice.
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(a) so (b) baco (c) bco (d) fco

Figure 5.7: (Simple orthorhombic, base-centered orthorhombic, body-centered orthorhombic, and face-
centered orthorhombic Bravais lattices. Image credits: Wikipedia.

(a) st (b) bct (c) sm (d) bacm (e) tri

Figure 5.8: Simple tetragonal, body-centered tetragonal, monoclinic, base-centered monoclinic, and
triclinic Bravais lattices. Image credits: Wikipedia.

Obviously the existence of a basis, unless it is one of spherical symmetry with respect to each Bravais
lattice point, will have consequences for the allowed rotational symmetries of the crystal, in general
reducing them to a subgroup of the symmetry group of the Bravais lattice itself. A vivid illustration of
this is provided in Fig. 5.9 for the cubic lattice. When our canvas is completely blank, the cube is entirely
white, and the symmetry group is Oh, with 48 elements, as shown in the middle bottom panel of the
figure. If one of the reflection generators is broken, but all other generators are preserved, the symmetry
is reduced from Oh to O, which has 24 elements. By breaking different symmetry operations, Oh can be
reduced to the tetrahedral groups Td and Th, which also have 24 elements. Finally, each of O, Td , and
Th may be broken down to the 12 element tetrahedral group T , depicted in the upper left panel. It all
depends on how we paint the canvas.

As an example of a filled canvas, consider Fig. 5.10, which shows the unit cells of four high temperature
cuprate superconductors. It is a good exercise to verify the stoichiometry in at least one example. Con-
sider the unit cell for LSCO. The blue Cu ions at the top and bottom of the cell are each shared by eight
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T T
d

T
h

O O
h I

Figure 5.9: Tetrahedral, cubic, and icosahedral group symmetry operations. Twofold, threefold, four-
fold, and sixfold axes are shown. The blue fins extend into discs, slicing the cube in two along reflection
planes. Image credits: http://azufre.quimica.uniovi.es/d-MolSym/.

of these cubic rectangular cells, so the eight Cu ions at the corners amount to one per cell. The Cu ion in
the center belongs completely to this cell, so we have a total of two Cu per cell. Each of the eight green
La/Sr ions lying along the vertical columns at the cell edges is shared by four cells, so they amount to a
total of two per cell. The two La/Sr ions within the cell toward the top and bottom each count as one,
for a total of four La/Sr per cell. Lastly, we come to the oxygen ions, shown in red. Each of the O ions
along any of the 12 edges of the cell is shared by four cells. There are 16 such O sites, thus accounting
for four O per cell. If you think about the periodic repetition of the cell, you should realize that each
Cu ion is surrounded by six O ions arranged in an octahedron. There is also such an octahedron in the
center of the cell, on which we now focus. Two of its O ions are displaced vertically with respect to
the central Cu ion, and are therefore wholly part of our cell. The other four each lie in the center of a
face, and are each shared by two cells. Thus, this central octahedron accounts for an additional four O
ions, for a grand total of 8 per cell. Our final tally: two Cu, four La/Sr, and eight O per cell, which is to
say La2−xSrxCuO4. In the three other compounds, the oxygen stoichiometry is given as 4 + δ (Hg1201)
or 6 + δ (YBCO and Ti2201). The deviation of δ from an integer value (either 0 or 1) accounts for the
presence of oxygen vacancies8.

In an electron diffraction experiment, an incident beam of electrons with wavevector q is scattered from
a crystal, and the scattering intensity I(k) as a function of the wavevector transfer k = q′− q is measured.

8It is a good exercise to determine the stoichiometry of these compounds based on the figures.

http://azufre.quimica.uniovi.es/d-MolSym/
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Figure 5.10: Unit cells of four high temperature cuprate superconductors. Lower left shows a sketch of
the active electronic orbitals in the Cu-O planes. Image credit: N. Baris̆ić et al., Proc. Nat. Acad. Sci. 110,
12235 (2013).

If the scattering is elastic, |q′| = |q|, which means k is related to the scattering angle ϑ = cos−1(q̂ · q̂′) by
k = 2q sin(12ϑ). Let us model the T = 0 density9 of the crystal ρ(r) as

ρ(r) =
∑

R

∑

j

cj δ(r −R− δj) , (5.14)

where cj is the weight for ionic species j. The total scattering intensity I(k) is proportional to |ρ̂(k)|2/N ,
where ρ̂(k) is the Fourier transform of ρ(r) andN is the total number of unit cells in the crystal. Choosing
units where the prefactor is unity, we have

I(k) =
1

N

∣∣ρ̂(k)
∣∣2 = 1

N

∑

R,R′

e−ik·(R−R′)
∑

j,j′

cj cj′ e
−ik·(δj−δ

j′
)

= F (k)
∑

R

e−ik·R = Ω̂
∑

K

F (K) δ(k −K) ,
(5.15)

where we have invoked the Poisson summation formula of Eqn. 5.7, and where we have defined the

9What matters for electron diffraction is the electron density.
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form factor

F (K) =

∣∣∣∣
r∑

j=1

cj e
−iK·δj

∣∣∣∣
2

. (5.16)

Thus we expect δ-function Bragg peaks in the scattering intensity at values of the wavevector transfer
equal to any reciprocal lattice vectorK. The form factor F (K) modifies the intensity and can even lead
to systematic extinctions of certain reciprocal lattice vectors. Consider, for example, a one-dimensional
lattice with lattice spacing a and basis elements δ1 = 0 and δ2 =

1
2a. If c1 = c2 ≡ c, the form factor is

F (K) = |c|2
∣∣1 + eiKa/2

∣∣2 . (5.17)

This vanishes for K = 2πj/a whenever j is odd. So the lesson here is that the T = 0 scattering intensity
from a crystal is given by a sum of δ-functions and is singular whenever the wavevector transfer is equal
to a reciprocal lattice vector. The presence of a basis modifies each Bragg peak by the form factor F (K),
which in some cases can even extinguish the peak completely10.

5.1.6 Trigonal crystal system

While the trigonal point groupD3d is a normal subgroup of the hexagonal point groupD6h, the trigonal
Bravais lattice does not result from an infinitesimal distortion of the simple hexagonal lattice. Contrast
this situation with that for, e.g., tetragonal vis-a-vis cubic, where a tetragonal lattice is obtained by an
infinitesimal stretching along one of the principal axes of the cubic lattice. Any trigonal lattice, however,
can be expressed as a hexagonal lattice with a three element basis. To see this, define the vectors

s1 =
1√
3
a
(√

3
2 x̂− 1

2 ŷ
)

, s2 =
1√
3
aŷ , s3 =

1√
3
a
(
−

√
3
2 x̂− 1

2 ŷ
)

. (5.18)

Then a1 ≡ s1 − s3 = ax̂ and a2 ≡ s2 − s3 = a
(
1
2 x̂ +

√
3
2 ŷ
)

are primitive DLVs for a two-dimensional
hexagonal lattice. The vectors dj ≡ sj + 1

3 cẑ for j = 1, 2, 3 then constitute three primitive DLVs for the

trigonal lattice, each of length d = 1
3

√
3a2 + c2. They also correspond to a three element basis within the

first Wigner-Seitz cell of the simple hexagonal lattice. Conventionally, and equivalently, the three ele-
ment basis may be taken to be δ1 = 0, 1

3a1+
1
3a2+

1
3cẑ, and 2

3a1+
2
3a3+

2
3cẑ, all of which are associated

with the hexagonal unit cell spanned by vectors a1, a2, and cẑ. Note that this is not a Wigner-Seitz cell,
and its projection onto the (x, y) plane is a rhombus rather than a hexagon. Although describing the trig-
onal Bravais lattice as a hexagonal Bravais lattice with a three element basis might seem an unnecessary
complication, in fact it proves to be quite convenient because two pairs of axes in the hexagonal system
are orthogonal. Similarly, it is convenient to describe the bcc and fcc cubic lattices as simple cubic with a
two and four element basis, respectively, to take advantage of the mutually orthogonal primitive direct
lattice vectors of the simple cubic structure.

10It is a good exercise to compute I(k) for the bcc and fcc structures when they are described in terms of a simple cubic lattice
with a two or four element basis. The resulting extinctions limit the Bragg peaks to those wavevectors which are in the bcc

or fcc reciprocal lattice.
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CRYSTALLOGRAPHY d = 2 d = 3

systems 4 7

lattices 5 14

point groups 10 32

space groups 17 230

symmorphic 13 73

non-symmorphic 4 157

Table 5.1: True Facts about two and three-dimensional crystallography.

5.1.7 Point groups, space groups and site groups

A group P ⊂ O(3) of symmetry operations of a structure which leaves one point fixed is known as a
point group11. The point group PL of a Bravais lattice is the group of rotational symmetries which fix
any of the the Bravais lattice sites. This group is shared by all lattices in the same lattice system, and is
known as the holohedry of the lattice.

In crystals, not every lattice site is equivalent. This may be due to the fact that different ions occupy
different sites, but it is also the case for certain monatomic crystals, such as diamond, which consists of
two interpenetrating fcc lattices that are not related by Bravais lattice translation. That is, the diamond
structure is an fcc Bravais lattice with a two element basis. The full symmetry group of a crystal consists
of both rotations and translations and is called the space group S. A space group is a subgroup of the
Euclidean group: S ⊂ E(3), and a general space group operation

{
g
∣∣ t
}

acts as

{
g
∣∣ t
}
r = g r + t , (5.19)

where g ∈ O(3). The identity element in S is
{
E
∣∣ 0
}

, where E is the identity in O(3), and the inverse is
given by {

g
∣∣ t
}−1

=
{
g−1

∣∣ − g−1t
}

. (5.20)

In order that S be a group, we must have that

{
g2
∣∣ t2
}{

g1
∣∣ t1
}
r =

{
g2
∣∣ t2
}(
g1 r + t1

)

= g2 g1 r + g2 t1 + t2 =
{
g2 g1

∣∣ g2 t1 + t2
}
r ,

(5.21)

is also in S. This requires that the matrices g themselves form a group, called the crystallographic point
group P. For a Bravais lattice, P = PL, but in general a crystal is of lower symmetry than its underlying
Bravais lattice, and the crystallographic point group is a subgroup of the holohedry: P ⊂ P

L
. Note

that S 6≡ P× T, i.e. the space group is not simply a direct product of the point group and the translation
group, because multiplication of (g, t) ∈ P×T satisfies (g2, t2) (g1, t1) = (g2 g1, t2+t1). The abelian group
T ∼= Z

d of Bravais lattice translations
{
E
∣∣R
}

forms an invariant subgroup of S. If all the symmetry
operations of a particular crystal can be written as

{
g
∣∣R
}

, the crystal’s space group is then said to be

11Mathy McMathstein says that a point group is a group of linear isometries which have a common fixed point. An isometry is
a distance-preserving transformation on a metric space.
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symmorphic and we write S = P ⋊ T, where the symbol ⋊ indicates a semi-direct product of two groups.
In a symmorphic crystal, one may choose an origin about which all point group symmetries are realized.

However, it turns out that many crystals have space group elements
{
g
∣∣ t
}

where g ∈ P but t 6∈ T.
Rather, for these symmetry operations, t is a fraction of a Bravais lattice translation. In some cases,
with a different choice of origin, these operations can be expressed as a rotation followed by Bravais
lattice translation12. For crystals with nonsymmorphic space groups, however, there is no possible choice
of origin about which all elements of S can be decomposed into a point group operation followed by a
Bravais lattice translation. Two examples are shown in Fig. 5.11: the three-dimensional hexagonal close
packed (hcp) structure, and the two-dimensional Shastry-Sutherland lattice. An hcp crystal is a simple
hexagonal lattice with a two element basis. It occurs commonly in nature and describes, for example,
the low temperature high pressure phase of 4He just above its melting curve (about 25 atmospheres at
T = 0K). The primitive direct lattice vectors of the hcp structure are

a1 =
(
1
2 x̂−

√
3
2 ŷ
)
a , a2 =

(
1
2 x̂+

√
3
2 ŷ
)
a , a3 = cẑ , (5.22)

with c =
√

8
3 a. The basis vectors are δ1 = 0 and δ2 =

1
3a1+

2
3a2+

1
2a3. In the figure, A sublattice sites are

depicted in red and B sublattice sites in blue. Note that the B sites lie in the centers of the up-triangles
in each A sublattice plane, and displaced by half a unit cell in the ẑ diraction. The nonsymmorphic
operation in the hcp point group is known as a screw axis and it involves a rotation by 60◦ about the ẑ
axis through the centers of the A sublattice down triangles, followed by a translation by 1

2a3.

The second example is that of the Shastry-Sutherland lattice, which describes the CuBO3 layers in the

magnetic compound SrCu2(BO3)2. Here we have four sublattices, and the nonsymmorphic operation is
known as a glide mirror, which involves translation along a plane (or a line in two dimensions) by a half
unit cell, followed by a reflection in the plane. See if you can spot the nonsymmorphic symmetry.

A third example is that of diamond, which consists of two interpenetrating fcc lattices, and has a
zincblende structure shown in Fig. 5.16. Diamond possesses both a fourfold (41) screw axis as well
as a glide mirror. While the point group is Oh, there is no point in the diamond lattice about which all
operations in Oh are realized. The maximum symmetry at any site is Td.

In a symmorphic crystal, it is always possible to find some origin within the structural unit cell about
which all point group symmetries are realized. In a Bravais lattice, this is true with respect to every
lattice point, but obviously it is possible to choose an origin about which the group of rotational symme-
tries is reduced. For example, the point group of the square lattice is C4v, but by choosing an origin in
the center of one of the links the symmetry is reduced to C2v. It is sometimes convenient to speak of the
group of rotational symmetries with respect to a specific point r in the crystal structure. We call this the
site group P(r). When r = R+ δj is a site in the crystal, i.e. a location of one of the ions, we may denote
the site group as P(R, j).

In a nonsymmorphic crystal, in general no sites will realize the symmetry of the point group P. Consider,
for example, the Shastry-Sutherland lattice in Fig. 5.11. Choosing the origin as the center of the magenta
square unit cell, the site group is P(0) = C2v. But the crystallographic point group for this structure is

12In such cases, the putative nonsymmorphic operation is called removable. Otherwise, the nonsymmorphic operation is essen-
tial.
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Figure 5.11: Two nonsymmorphic crystal lattices. Left: The hexagonal close packed lattice (space group
P63/mmc) has a two site unit cell (red and blue) and a screw axis symmetry, given by a rotation by 60◦

followed by a translation of 1
2a3 along the c-axis. The underlying Bravais lattice is simple hexagonal.

Right: The Shastry-Sutherland lattice (space group p4g) has a four site unit cell (shown in center) and
a glide mirror (blue line). Translation by half a unit cell along the mirror line followed by a mirror
reflection is a lattice symmetry. The underlying Bravais lattice is square.

C4v. Since P is the group of all rotational symmetries about all possible origins, necessarily P(r) ⊂ P for
all sites r.

Our crystallographer forbears have precisely tabulated for us all the possible lattices, point groups, and
space groups in two and three dimensions (see Tab. 5.1). Proving these results is quite tedious, so we
shall be content to take them as received wisdom. Note that a bit more than two thirds (157 out of 230)
of the three-dimensional space groups are nonsymmorphic. Of those, all but two involve either a screw
axis or a glide plane13.

5.2 More on Point Groups

5.2.1 Standard notation for point group operations

A list of point group operations is provided in Tab. 5.2. We’ll also start to use Cn to denote a group
element, i.e. a rotation by 2π/n about a primary axis. If we need to distinguish this element from the
cyclic group, which we’ve thus far also called Cn, we’ll instead refer to the group as Cn. Note that
inversion can be written as I = S2 , and that I commutes with all elements of the point group P, i.e.
I ∈ Z(P) is in the center of P.

Any improper operation g ∈ O(3) has det(g) = −1. This entails that g must have an eigenvalue λ = −1,

13Space groups no. 24 (also known as I212121) and no. 199 (I213) have removable screw axes, but nevertheless there is no
single origin about which every symmetry operation can be expressed as

{
g
∣∣ t

}
with g ∈ P and t ∈ T.
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SYMBOL OPERATION

E identity

Cn rotation through 2π/n about primary axis n̂ ;

operator equivalent: e−2πin̂·J/n~ where J = L+ S

I inversion (r → −r) ; leaves spinor coordinates invariant

and commutes with all other point group operations

σ C2 rotation followed by reflection in plane perpendicular

to the axis of rotation ; equivalent to IC2 or C2 I

σh reflection in a ‘horizontal’ plane perpendicular to a primary axis

σv reflection in a ‘vertical’ plane which contains a primary axis

σd reflection in a ‘diagonal’ plane containing the primary

axis of symmetry and which bisects the angle between

neighboring twofold axes perpendicular to the primary axis

Sn rotoreflection: Sn = σ−1
h Cn , i.e. rotation by 2π/n followed

by reflection in the plane perpendicular to that axis (note I = S2 )

Ē spinor rotation through 2π ; Ē = e−2πin̂·S (S = 1
2 ) ;

leaves spatial coordinates (x, y, z) invariant

ḡ any point group operation g followed by Ē

Table 5.2: Standard notation for point group operations.

and the corresponding eigenvector m̂, for which gm̂ = −m̂, is known as a reversal axis. It also follows
in all odd dimensions that if g is proper, i.e. if det(g) = +1, then g has an eigenvalue λ = +1, and the
corresponding eigenvector n̂ which satisfies gn̂ = n̂ is an invariant axis. Improper elements of O(n)
can be written as Ig(ξ, n̂), where I is the inversion operator. In even dimensions, the inversion I is
equivalent to C2, but one can form improper rotations via a reflection σ.

The rotoreflection operation is Sn = σ−1
h Cn = Cn σ

−1
h . The reason we write σ−1

h rather than σh has to
do with what happens when we account for electron spin, in which case σ−1

h = E σh , where E is spinor
reversal, i.e. rotation of the spinor component through 2π. Without spin, we have σ−1

h = σh , and for n
odd, one then has (Sn)

n = σh and (Sn)
n+1 = Cn , which says that if Sn ∈ P then so are both σh and Cn .

If, on the other hand, n is even, this may not be the case.

5.2.2 Proper point groups

A proper point group P is a subgroup of SO(3)14. The following are the proper point groups:

14Two-dimensional point groups are much simpler to classify as they always involve at most a single rotation axis and/or a
planar reflection. They form a subset of the three-dimensional point groups.

zjw
下划线
是SO3的一个子群
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(i) Cyclic groups : The cyclic group Cn (order n) describes n-fold rotations about a fixed axis. The
restriction theorem limits crystallographic cyclic groups to the cases n = 1, 2, 3, 4, and 6. Again,
molecules, which have no translational symmetries, are not limited by the restriction theorem.

(ii) Dihedral groups : The group Dn (order 2n) has a primary n-fold axis and n twofold axes perpen-
dicular to the primary axis. Note that if one started with only one such perpendicular twofold axis,
the Cn operations would generate all the others. For n even, the alternating twofold axes break up
into two conjugacy classes, whereas for n odd there is only one such class.

(iii) Tetrahedral, octahedral, and icosahedral groups : When there is more than one n-fold axis with
n > 2, the rotations about either axis will generate new axes. Geometrically, this process run
to its conclusion traces out a regular spherical polygon when one traces the intersections of the
successively-generated axes on the unit sphere. There are only five possible such regular poly-
hedra: tetrahedron, cube, octahedron, dodecahedron, and icosahedron. The second two have the
same symmetry operations, as do the last two, so there are only three such groups: T , O, and I .

(iiia) Tetrahedral group : T is the symmetry group of proper rotations of the tetrahedron. Em-
bedding the tetrahedron in a cube, as in Fig. 5.12, there are three two-fold axes through the
cube faces, plus four threefold axes through the cube diagonals, for a total of 12 operations
including the identity. Note T ∼= A4, the alternating group on four symbols.

(iiib) Octahedral group : O consists of all the symmetry operations from T plus 12 more, arising
from six new twofold axes running through the centers of each edge, not parallel to any face,
and six more operations arising from extending the twofold axes through the faces to fourfold
axes (see Fig. 5.9). So, 24 elements in all, shown in Fig. 5.12. Note O ∼= S4 , the symmetric
group on four symbols.

(iiic) Icosahedral group : I is the symmetry group of the dodecahedron or icosahedron. There are
six fivefold axes, ten threefold axes, and 15 twofold axes, so including the identity there are
1 + 6 · (5− 1) + 10 · (3− 1) + 15 · (2− 1) = 60 elements. We also have I ∼= A5, the alternating
group on five symbols.

5.2.3 Commuting operations

The following operations commute:15

• Rotations about the same axis.

• Reflections in mutually perpendicular planes. In general the product of reflections in two planes
which intersect at an angle α is σv σv′ = C(2α), where the rotation is about the axis defined by
their intersection line in the direction from the v′ plane to the v plane. Thus σv′ = σv C(2α).

• Rotations about perpendicular twofold axes: C2 C
′
2 = C ′

2 C2 = C ′′
2 , where the resulting rotation is

about the third perpendicular axis.

• A rotation Cn and a reflection σh in a plane perpendicular to the n-fold axis.

15See M. Lax, Symmetry Principles in Solid State and Molecular Physics, p. 54.
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Figure 5.12: Left: Proper rotational symmetries of the tetrahedron, forming the group T . Right: Proper
rotational symmetries of the octahedron (or cube), forming the group O.

• Inversion I and any point group operation g (with g a rotation relative to the inversion point)

• A twofold rotation C2 and a reflection σv in a plane containing the rotation axis.

5.2.4 Improper point groups

First, some notation. Since we will start to use Cn to denote the generator of rotations about the primary
axis, we’ll write Cn to denote the cyclic group with n elements. Similarly we’ll use S2n to denote the
rotoreflection group. In addition to the proper point group C2 = {E,C2} ∼= Z2 , we will also define two
improper Z2 clones: Ci = {E, I}, containing the identity and the inversion operation, and Cs ≡ {E, σh}
containing the identity and the horizontal reflection σh. All will play a role in our ensuing discussion.

In §2.10 of Lax, the relations between proper and improper point groups are crisply discussed. Suppose
a group G contains both proper and improper elements. We write G = H ∪M where H ⊳ G is a normal
subgroup containing all the proper elements, and M , which is not a group (no identity!) contains all the
improper elements. Letm ∈M be any of the improper operations. ThenmH =M since multiplying any
proper element by an improper one yields an improper element, and we conclude thatH andM contain
the same number of elements. Thus G ∼= H ∪mH and only one improper generator is needed. Since the
inversion operator commutes with all elements of O(3), we can always form an improper group which
contains I by constructingG = H∪IH = H⊗Ci. IfG = H∪mH does not contain the inversion operator

I , we can always form a proper group G̃ = H ∪mIH which is isomorphic to G. Consider the case of the
improper point groupG = C3v, where H = C3 =

{
E , C3 , C

−1
3

}
and m = σv is a vertical reflection plane

containing the threefold axis16. Then G̃ = D3 , which is proper, and which is isomorphic to C3v. Finally,
if G is proper, and if it contains an index two subgroup, i.e. a subgroup H ⊂ G such that NG = 2NH ,

16Acting with C3 generates the additional vertical reflections: C3 σv = σv′ and C3 σv′ = σv′′ .
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Figure 5.13: Stereographic projections of simple point groups Cn , Cnv , Cnh , and Sn. Dark lines corre-
spond to reflection planes. C6v looks like what I found the last time I sliced open a kiwi. Note S1 ∼= C1h

and S3 ∼= C3h. Adapted from Table 4.2 of M. Tinkham, Group Theory and Quantum Mechanics.

then we can construct G̃ = H ∪ I (G\H), where G\H is G with the elements from H removed. Then G̃
is an improper group with no inversion operation.

OK let’s finally meet the improper point groups:

S2n : The rotoreflection group S2n is a cyclic group of order 2n generated by S2n ≡ σ−1
h C2n. In the

absence of spin, σ−1 = σ for any reflection. Then for n odd, (S2n)
n = σhC2 = I , hence Sn ∼= Cn⊗Ci.

Cnh : The 2n element group Cnh ∼= Cn ⊗ Cs has two commuting generators, Cn and σh. For n odd, Cnh is
cyclic and is generated by the single element σhCn.

Cnv : The 2n element group Cnv has two noncommuting generators, Cn and σv, where σv is a reflection
in a plane containing the n-fold axis. Repeated application of Cn creates (n− 1) additional vertical
reflection planes. One has Cnv ∼= Dn.

Dnh : Adding a horizontal reflection plane to Dn, one obtains Dnh
∼= Dn ⊗ Cs . For n even, one also has

Dnh
∼= Dn ⊗ Ci. The group has 4n elements.
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Figure 5.14: Stereograms of simple point groupsDn , Dnd , and Dnh. Dark lines correspond to reflection
planes. Dashed lines correspond to 2-fold rotation axes. Adapted from Table 4.2 of M. Tinkham, Group
Theory and Quantum Mechanics.

Dnd : If instead of adding a horizontal reflection σh we add a ’diagonal’ reflection σd in a plane which
bisects the angle between neighboring twofold axes, we arrive at Dnd, which also has 4n elements.

Td : Adding a reflection plane passing through one of the edges of the tetrahedron, we double the size
of the tetrahedral group from 12 to 24. In Fig. 5.12, such a reflection might permute the vertices 3
and 4. Thus while T ∼= A4, we have Td

∼= S4.

Th : Adding inversion to the proper rotational symmetries of the tetrahedron, we obtain Th
∼= T ⊗ Ci ,

which has 24 elements.

Oh : Adding inversion to the proper rotational symmetries of the cube, we obtain Oh
∼= O ⊗ Ci , which

has 48 elements.

Ih : Adding inversion to the proper rotational symmetries of the icosahedron, we obtain Ih
∼= I ⊗ Ci ,

which has 60 elements.

Stereographic projections of the simple point groups are depicted in Figs. 5.13 and 5.14. The subgroup
structure of the point groups, which tells us the hierarchy of symmetries, is shown in Fig. 5.17.

Why don’t we consider the rotoreflection groups Sn for n odd? Because for n odd, Sn ∼= Cnh. For n odd,
both Sn and S2n generate cyclic groups of order 2n. It is perhaps instructive to consider the simplest
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Figure 5.15: Stereograms of tetrahedral and cubic point groups and legend for symbols.

nontrivial case, n = 3:

S3 =
{
E , σhC3 , C

−1
3 , σh , C3 , σhC

−1
3

}

S6 =
{
E , σhC6 , C3 , σhC2 , C

−1
3 , σhC

−1
6

}
.

(5.23)

We see that C3h , which is generated by the pair (C3 , σh), contains the same elements as S3. This result
holds for all odd n, because in those cases σh ∈ Sn.

5.2.5 The ten two-dimensional point groups

There are ten two-dimensional point groups, listed in Tab. 5.3. As the only allowed elements are 2, 3,
4, and 6-fold rotations about the z-axis, plus vertical (line) mirrors, the only possible groups are C1 ,
C2 , C3 , C4 , C6 and their mirrored extensions C1v , C2v , C3v , C4v , and C6v. Note that the group C1v is
equivalent to C1h , since in d = 3 both have a single reflection plane.

LATTICE SYSTEM POINT GROUPS

oblique C1 C2

rectangular C1h C2v

centered
rectangular C1h C2v

square C4 C4v

hexagonal C3 C3v C6 C6v

Table 5.3: The ten two-dimensional point groups. Note C1h
∼= C1v.
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Figure 5.16: Left: The zincblende structure. Right: Proper and improper elements of the group Td.

5.2.6 The achiral tetrahedral group, Td

Many materials such as GaAs occur in an AB zincblende structure, which consists of two interpenetrat-
ing fcc lattices A and B, separated by (a4 ,

a
4 ,

a
4 ), where a is the side length of the cube; see Fig. 5.16. As

the figure shows, the B sublattice sites within the cube form a tetrahedron. The crystallographic point
group for this structure is Td, the achiral tetrahedral group. A noteworthy feature is that the zincblende
structure has no center of inversion symmetry, hence I /∈ Td.

If all the atoms are identical, i.e. A = B, then we get the diamond structure, which is the structure of
silicon and of course carbon diamond. The diamond lattice is inversion symmetric, with the point of
inversion halfway between the A and B sublattice sites. The point group for diamond is the cubic group
Oh. This might be surprising upon staring at the structure for a time, because it doesn’t possess a cubic
symmetry. However, the space group for diamond is non-symmorphic – it has a glide plane.

The group Td has 24 elements; these are listed in Tab. 5.5. Its character table is provided in Tab. 5.4.
These are arranged in five group classes. One class is the identity, E. Another class consists of three 180◦

Td E 8C3 3C2 6σd 6S4

A1 1 1 1 1 1

A2 1 1 1 −1 −1
E 2 −1 2 0 0

T1 3 0 −1 −1 1

T2 3 0 −1 1 −1

Table 5.4: Character table for the group Td.
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class x y z g ∈ O(3) class x y z g ∈ O(3)

E x y z 1 6IC2 −y −x z IR[110](π) = σ(110)

3C2 x −y −z R[100](π) (6σd) y x z IR
[11̄0]

(π) = σ
(11̄0)

−x y −z R[010](π) −z y −x IR[101](π) = σ(101)

−x −y z R[001](π) z y x IR
[101̄]

(π) = σ
(101̄)

8C3 z x y R[111](+
2π
3 ) x −z −y IR[011](π) = σ(011)

y z x R[111](−2π
3 ) x z y IR

[011̄]
(π) = σ

(011̄)

z −x −y R
[11̄1]

(+2π
3 ) 6IC4 −x z −y IR[100](+

π
2 ) = σ(100)R[100](−π

2 )

−y −z x R
[11̄1]

(−2π
3 ) (6S4) −x −z y IR[100](−π

2 ) = σ(100)R[100](+
π
2 )

−z x −y R
[111̄]

(+2π
3 ) −z −y x IR[010](+

π
2 ) = σ(010)R[010](−π

2 )

y −z −x R[111̄](−2π
3 ) z −y −x IR[010](−π

2 ) = σ(010)R[010](+
π
2 )

−z −x y R
[11̄1̄]

(+2π
3 ) y −x −z IR[001](+

π
2 ) = σ(001)R[001](−π

2 )

−y z −x R
[11̄1̄]

(−2π
3 ) −y x −z IR[001](−π

2 ) = σ(001)R[001](+
π
2 )

Table 5.5: Table of elements and classes for Td. Here I : (x, y, z) → (−x,−y,−z) is inversion and σ(h,k,l)
is a reflection in the plane perpendicular to hx̂ + kŷ + lẑ. For example σ(110) : (x, y, z) → (−y,−x, z).
Note that each fourfold rotoinversion can be expressed as a rotoreflection, i.e. 6IC4

∼= 6S4, comprising
a ±π

2 rotation about one of the C2 axes followed by a reflection in the plane perpendicular to that axis.
Similarly, each twofold rotoinversion can be expressed as a reflection 6IC2

∼= 6σd in one of the six
diagonal mirror planes.

rotations about the x̂, ŷ, and ẑ axes, respectively. A third class, with eight elements, consists of rotations
by ±120◦ about each of the four body diagonals. This amounts to 12 group operations, all of which are
proper rotations. The remaining 12 elements involve the inversion operator, I , which takes (x, y, z) to
(−x,−y,−z), and are therefore improper rotations, with determinant−1.17 These elements fall into two
classes, one of which consists of 180◦ rotations about diagonals parallel to one of the sides of the cube
(e.g. the line y = x, z = 0), followed by inversion. The last class consists of rotations by ±π

2 about x̂, ŷ,
and ẑ, also followed by an inversion, or, respectively, rotations by ∓π

2 about x̂, ŷ, and x̂ followed by a
reflection in the plane perpendicular to the rotation axis.

Rotoreflections versus rotoinversions

In general every rotoinversion IR(n̂, α) may be written as a rotoreflection σn̂R(n̂,−α) where σn̂ is a
reflection in the plane perpendicular to n̂. Both are improper rotations, i.e. elements g ∈ O(3) with
det g = −1. Distinguishing these operations is useful when there is a single preferred rotation axis18.

17Note that I itself is not an element of Td.
18I am grateful to Filipp Rybakov for encouraging me to clarify my thinking regarding rotoreflections versus rotoinversions,

and for correcting some errors in Tab. 5.5.
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Γ dΓ basis functions ψΓµ for Td basis functions ψΓµ for O

A1 1 1 or xyz 1

A2 1 x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2) xyz

E 2
{√

3 (x2 − y2) , 2z2 − x2 − y2
} {√

3 (x2 − y2) , 2z2 − x2 − y2
}

T1 3
{
x (y2 − z2) , y (z2 − x2) , z (x2 − y2)

} {
x , y , z

}

T2 3
{
x , y , z

} {
yz , zx , xy

}

Table 5.6: Irreducible representations and basis functions for Td and O.

5.2.7 Tetrahedral vs. octahedral symmetry

In the case of the octahedral group,O, the inversion operation is not included in the last two classes, and
they are written as 6C2 and 6C4, respectively. The symmetry operations of O are depicted in fig. 5.12.
The groups O and Td are isomorphic. Both are enantiomorphic (i.e. chiral), and completing either of them
by adding in the inversion operator I results in the full cubic group, Oh, which has 48 elements.

While the groups Td and O are isomorphic, the symmetry of their basis functions in general differs.
Consider, for example, the function ψ = xyz. It is easy to see from table 5.5 that every element of
Td leaves ψ invariant. Within O, however, the classes 6σd and 6S4 are replaced by 6C2 and 6C4 when
the inversion operation is removed. Each element of these classes then takes ψ to −ψ. Thus, within
Td, the function ψ = xyz is indistinguishable from unity, and it transforms according to the trivial
A1 representation. Within O, however, ψ is distinguishable from 1 because ψ reverses sign under the
operation of all group elements in classes 6C2 and 6C4.

In O, the triplets of basis functions {x, y, z} and {yz, zx, xy} belong to different representations (T1 and
T2, respectively). In Td, however, they must belong to the same representation, since one set of functions
is obtained from the other by dividing into xyz: x = (xyz)/(yz), et. cyc. But xyz transforms as the
identity, so ‘polar’ and ‘axial’ vectors belong to the same representation of Td.

Finally, let’s think about how O differs from Oh. Consider the function

ψ = xyz ·
{
x4 (y2 − z2) + y4 (z2 − x2) + z4 (x2 − y2)

}
. (5.24)

One can check that this function is left invariant by every element ofO. It therefore transforms according
to the A1 representation of O. But it reverses sign under parity, so within the full cubic group Oh, it
transforms according to separate one-dimensional representation. Note that ψ transforms according to
the A2 representation of Td .
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5.2.8 The 32 crystallographic point groups

Tab. 5.7 lists all possible point group symmetries for three-dimensional crystals. The largest possible
symmetry group within a given lattice system is the rightmost point group, corresponding to the sym-
metry of the underlying Bravais lattice. The point groups may be classified as being centrosymmetric (i.e.
including the inversion operation I), non-centrosymmetric, or enantiomorphic. A centrosymmetric crystal
has an inversion center. Enantiomorphic structures are non-centrosymmetric; they have only rotation
axes and include no improper operations. They are intrinsically chiral and not superposable on their
mirror image. In addition, a point group may be polar, meaning every symmetry operation leaves more
than one point fixed (i.e. those points along the high symmetry polar axis). Thus, a group with more than
one axis of rotation or with a mirror plane which does not contain the primary axis cannot be polar. A
polar axis is only possible in non-centrosymmetric structures. Ferroelectricity and piezoelectricity can
only occur in polar crystals.

5.2.9 Hermann-Mauguin (international) notation

The notation with which we have thus far identified point groups and their operations (Cnv , Td , σh ,
etc.) is named for the German mathematician A. M. Schoenflies (1853-1928). A more informative sys-
tem, originally due to German crystallographer C. Hermann and subsequently improved by the French
minerologist C.-V. Mauguin, goes by the name Hermann-Mauguin (HM) or international notation. Since
most physics publications today use the international notation, we pause to review it and to explain the
method to its madness.

HM notation is defined for both point groups as well as their elements. For the individual symmetry
operations, the HM symbols are as follows:

LATTICE SYSTEM POINT GROUPS

cubic T Td Th O Oh

hexagonal C∗
6 C3h C6h D6 C∗

6v D3h D6h

trigonal C∗
3 S6 D3 C∗

3v D3d

tetragonal C∗
4 S4 C4h D4 C∗

4v D2d D4h

orthorhombic D2 C∗
2v D2h

monoclinic C∗
2 C∗

s C2h

triclinic C∗
1 Ci

Table 5.7: The 32 three-dimensional crystallographic point groups. Color scheme: centrosymmetric,
non-centrosymmetric, enantiomorphic (i.e. chiral). Polar point groups are marked with an asterisk ∗.
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Figure 5.17: The 32 crystallographic point groups, their orders, and their subgroup structure. If the
subgroup is not invariant (normal), the line is heavy. Gray boxes indicate holohedral groups, i.e. point
groups of maximal symmetry within a given lattice system, corresponding to the symmetry of the un-
derlying Bravais lattice itself. (See Tab. 6.1.6 of Lax, or Tab. 5 of Koster et al.)

(i) n : rotation by 2π/n about a primary axis (Schoenflies Cn)

2 = C2 3 = C3 4 = C4 5 = C5 6 = C6 (5.25)

32 = C−1
3 43 = C−1

4 54 = C−1
5 65 = C−1

6

(ii) m : reflection in a plane (σ)

Z2 clones
{
E,C2

} {
E, I

} {
E, σh

}

Schoenflies C2 Ci Cs
HM 2 1 m

Table 5.8: Two element point group notation.
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◦ mh : reflection in a plane perpendicular to the primary axis n̂ (σh)

◦ mv : reflection in a plane containing the primary axis (σv)

◦ md : reflection in a plane containing the primary axis and bisecting the angle between two
perpendicular 2-fold axes (σd)

(iii) n : rotoinversion ICn (note 1 is inversion, 2 = mh is horizontal reflection)

3 = S−1
6 4 = S−1

4 5 = S−1
10 6 = S−1

3 (5.26)

32 = S6 43 = S4 54 = S10 65 = S3

(iv) ñ : rotoreflection σ−1
h Cn = Sn

The number assignments associated with rotoinversion look strange at first. Pray tell, why do we have
3 = S−1

6 but 4 = S−1
4 and 6 = S−1

3 ? Well, since you asked so nicely, I will explain, but it will help if
you consult Fig. 5.13. The issue here is that the Schoenflies groups Sn are generated by the rotoreflection
operation Sn ≡ σ−1

h Cn while the HM symbol n denotes rotoinversion ICn. The relation between the two
is as follows. Let C(α) denote counterclockwise rotation through an angle α. Then S(α) = I C(α − π).
In other words, Sn = I C−1

2 Cn. According to this definition,

S2 = I , S3 = I C−1
6 , S4 = I C−1

4 , S6 = I C−1
3 . (5.27)

Note that S5 = I C−3
5 , which produces a ten-fold pattern. In general, for n odd, Sn generates a 2n-fold

pattern.

Now let’s talk about the HM symbols for the point groups themselves. The basic idea is to identify
symmetry-inequivalent axes and reflection planes. For a single n-fold axis, the Schoenflies group is Cn
and the HM symbol is n. If we add a vertical mirror σv to Cn, forming Cnv, the HM symbol is nm if n
is odd and nmm is n is even. The reason for the difference is that for n even, the alternating vertical
reflections break into two classes, whereas for n odd there is only one class (check the character tables!).
If we instead we had added a horizontal mirror σh to form Cnh, the HM symbol would be n

m . However,

when n is odd, Cnh is generated by the single rotoinversion (2n), and the convention is to use that symbol

rather than the equivalent n
m because the operation (2n) generates a pattern with more points than either

n or mh (though combined of course they generate the same group). For the dihedral groups Dn, the
HM symbol is n22 if n is even and n2 if n is odd, for reasons similar to those for Cnv. In general, for
groups with a single primary axis, HM symbols can have up to three positions, which are assigned as
follows:

• The first position indicates the rotational symmetry n of the primary axis, or n if the symmetry is
rotoinversion. It can also be n

m in the case of an n-fold axis plus a horizontal reflection plane.

• The second position indicates symmetry of a secondary axis or plane, and can be 2, m, or 2
m .

• The third position indicates symmetry of a tertiary axis or plane, and can be 2, m, or 2
m .

Thus, the HM symbol for Dnd is n 2
m if n is odd but is (2n)m if n is even, while the HM symbol for Dnh

is nm2 if n is odd and n
m

2
m

2
m if n is even. Notation for two element point groups is given in Tab. 5.8
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Schoenflies HM 2 3 4 5 6 G (HM) order

Cn n 2 3 4 5 6 n n

Sn (n odd) (2n) 6 10 (2n) 2n

Sn (n = 4k) n 4 n n

Sn (n = 4k + 2) (n/2) 1 3 n n

Cnv (n even) nmm 2mm 4mm 6mm n,mv 2n

Cnv (n odd) nm 3m 5m n,mv 2n

Cnh (n even) n
m

2
m

4
m

6
m n,mh 2n

Cnh (n odd) (2n) 6 10 n,mh 2n

Dn (n even) n22 222 422 622 n, 2 2n

Dn (n odd) n2 32 52 n, 2 2n

Dnd (n even) (2n) 2m 42m 82m 12 2m n, 2,md 4n

Dnd (n odd) n 2
m 3 2

m 5 2
m n, 2,md 4n

Dnh (n even) n
m

2
m

2
m

2
m

2
m

2
m

4
m

2
m

2
m

6
m

2
m

2
m n, 2,mh 4n

Dnh (n odd) (2n)m2 6m2 10m2 n, 2,mh 4n

Table 5.9: Schoenflies and Hermann-Mauguin (international) notation for simple crystallographic point
groups. The last columns list the generators G and the number of elements. Note Sn = Cnh for n odd,
and that (2n) 2m = (2n)m2.

Schoenflies T Th Td O Oh I Ih

HM 23 2
m 3 43m 432 4

m 3 2
m 532 2

m 3 5

generators 3, 2 3, 2,mh 3, 2,md 4, 3, 2 4, 3, 2,mh 5, 3, 2 5, 3, 2,mh

order 12 24 24 24 48 60 120

Table 5.10: Schoenflies and Hermann-Mauguin notation for multi-axis point groups. Indices for gener-
ators refer to distinct (though not necessarily orthogonal) axes.

Finally we come to the tetrahedral, octahedral, and icosahedral groups, all of which have more than
one high order (n > 2) axis. For the tetrahedral group T , the HM symbol is 23 because the 2-fold
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No. HM short HM full Schoenflies No. HM short HM full Schoenflies

1 1 1 C1 17 3 3 C3i (S6)

2 1 1 Ci (S2) 18 32 32 D3

3 2 2 C2 19 3m 3m C3v

4 m m Cs (C1h) 20 3m 3 2
m D3d

5 2/m 2
m C2h 21 6 6 C6

6 222 222 D2 (V ) 22 6 6 C3h

7 mm2 mm2 C2v 23 6/m 6
m C6h

8 mmm 2
m

2
m

2
m D2h (Vh) 24 622 622 D6

9 4 4 C4 25 6mm 6mm C6v

10 4 4 S4 26 6m2 6m2 D3h

11 4/m 4
m C4h 27 6/mmm 6

m
2
m

2
m D6h

12 422 422 D4 28 23 23 T

13 4mm 4mm C4v 29 m3 2
m3 Th

14 42m 42m D2d (Vd) 30 432 432 O

15 4/mmm 4
m

2
m

2
m D4h 31 43m 43m Td

16 3 3 C3 32 m3m 4
m3 2

m Oh

Table 5.11: HM and Schoenflies notation for the 32 crystallographic point groups.

axes are oriented parallel to the axes of the cube containing the tetrahedron, as shown in Figs. 5.9 and
5.12. The octahedral group O is written 432 in HM notation, because the fourfold axes are parallel
to the cube axes, there are secondary threefold axes along the cube diagonals, and tertiary twofold axes
running through the centers of the cube edges. The HM symbol for the icosahedral group I is 532. There
are primary fivefold axes, through the vertices, secondary threefold axes through the face centers, and
tertiary twofold axes through the edge centers (once again, see Fig. 5.9). Now add an improper element:
inversion or a mirror plane. For the pyritohedral group Th, we start with T and then add mirror planes
perpendicular to the twofold axes, turning the threefold axes into inversion axes19. Consequently the
HM symbol is 2

m 3. For the achiral tetrahedral group Td, we add mirrors perpendicular to the diagonal
threefold axes, resulting in fourfold inversion axes and the symbol 43m. When it comes to the cubic
groupO, we may add either a mirror or inversion. Since they are equivalent, consider the mirror, which
bisects the fourfold axes, turning the threefold axes into inversion axes, and generating new mirrors
perpendicular to the teriary twofold axes. The HM symbol is then 4

m 3 2
m . Finally, adding a mirror to the

icosahedron turns I into Ih, with HM symbol 5 3 2
m .

19The seams of a volleyball have pyritohedral symmetry.
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5.2.10 Double groups

The group operations act on electron wavefunctions, which are spinor functions of the spatial coordi-
nates r = (x, y, z):

~ψ(r) =

(
ψ↑(r)

ψ↓(r)

)
. (5.28)

Rotations by an angle θ about an axis n̂ are represented by the unitary operator U(θ; n̂) = e−iθn̂·J/~ ,
where J = L+S is the sum of orbital (L) and intrinsic spin (S) angular momenta. For crystallographic
point groups, θ = 2π/n where n = 1, 2, 3, 4, or 6.

When spin is neglected, we have the point groups we have studied. With spin, we must deal with the
fact that SU(2) gives us a projective representation of SO(3). Recall that D̂(G) is a projective representation
of G if

D̂(g) D̂(h) = ω(g, h) D̂(gh) (5.29)

where associativity imposes the following condition on the cocycle ω(g, h):

ω(g, h)

ω(h, k)
=
ω(g, hk)

ω(gh, k)
. (5.30)

In our case, G = SO(3) and D̂
(
R(ξ, n̂)

)
= exp(−iξn̂ · Ĵ) where Ĵ = L̂ + Ŝ and S = 1

2 . For example,

any C2 operation has ξ = π, hence (C2)
2 = C1 = exp(−2πin̂ · Ŝ) = −1, which is to say spinor inversion,

i.e.

(
u
v

)
→ −

(
u
v

)
. For any point group P, the multiplication table for the projective representation D̂(P) looks

exactly like that for P, except some entries get multiplied by −1. I.e. all the cocycles ω(g, h) are ±1. We can
lift this projective representation to an enlarged point group, called the double group, P′, by introducing

a generator E, representing spinor inversion, with E
2
= E. To each element g ∈ P, there corresponds a

counterpart ḡ ≡ gE. Thus, NP′ = 2NP . Note that E leaves r unchanged, and that the bar of g−1 is the
inverse of ḡ. A schematic illustration of proper rotations within a double group is shown in Fig. 5.18.
Do not confuse the barring operation in double groups with the HM symbol for rotoinversion!

Remarks about double group multiplication

Some noteworthy aspects regarding multiplication of double group elements:

⋄ The element E is given by E = C1 = C(±2π). Note C(4π) = E.

⋄ For any group element g, whether barred or unbarred, gg−1 = E.

⋄ For the inversion operator I , I2 = Ī2 = E and IĪ = ĪI = E.

⋄ Any reflection σ obeys σ2 = E. This is because we can always write σ = IC2 whereC2 is a twofold
rotation about an axis normal to the reflection plane, whence σ2 = I2 C2

2 = C1 = E.
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Figure 5.18: Schematic diagram of (common axis) double group rotation generators. Based on Fig. 1 of
Koster et al. (1963). Note that C1 = E, i.e. a rotation by 2π.

⋄ For n > 2, we define Cn ≡ R̂(2π/n) to be a counterclockwise rotation by 2π/n and C−1
n ≡

R̂(−2π/n) to be the inverse operation, i.e. clockwise rotation by 2π/n. Then C2
2 = C1 = E, hence

C−1
2 = C2. More fully, according to Fig. 5.18, we have

C2C
−1
3 = C6 C2 C

−1
4 = C4 C2 C

−1
6 = C3

C2 C6 = C
−1
3 C2C4 = C

−1
4 C2 C3 = C

−1
6

(5.31)

C2C
−1
3 = C6 C2 C

−1
4 = C4 C2 C

−1
6 = C3

C2C6 = C−1
3 C2 C4 = C−1

4 C2 C3 = C−1
6 ,

where all rotations are about the same axis.

⋄ To compute the product of σh with a rotation, recall the definition of the rotoreflection operation
Sn ≡ σ−1

h Cn = I C−1
2 Cn , which entails S−1

n = σhC
−1
n = I C2 C

−1
n . One then has

σhCn = Sn , σhC
−1
n = S

−1
n , σhCn = Sn , σhC

−1
n = S−1

n . (5.32)

⋄ We may then apply σh to Eqns. 5.31 and 5.32 to obtain results such as

C2 S
−1
3 = S6 , C2 S6 = S−1

3 , σh Sn = Cn , σh S
−1
n = C

−1
n . (5.33)

⋄ What about σv ? If
{
σv , σv′ , σv′′

}
denote vertical reflection planes oriented at angles 0, 2π/3, and

4π/3, respectively, then we should have either C3 σv = σv′ or C3 σv = σv′ . Which is it? If we apply
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C3 twice, for either initial case we obtain C2
3 σv = σv′′ . Applying C3 yet again yields C3 σv′′ = σv .

Thus we have
C3 σv = σv′ , C3 σv′ = σv′′ , C3 σv′′ = σv . (5.34)

Note then that σv′ σv = C3 and σv σv′ = C−1
3 , et. cyc.

To summarize, let C(α) denote counterclockwise rotation through an angle α, and let Cn = C(αn) etc.
with αn = 2π/n. Then

C(α) = C(α− 2π) , S(α) = I C(α− π) , S(α) = I C(α+ π) (5.35)

and
σ = I C(π) , σ = I C(−π) . (5.36)

Character tables for double groups

One might at first suspect that any conjugacy class C of the point group P spawns two classes within the
double group P′, i.e. C and C ≡ E C. This is always true provided the elements of C don’t square to the
identity. But for twofold axes C2 and reflections σ, a theorem due to Opechowski (1940) guarantees:

• For proper twofold operations, C2 and C̄2 adjoin to the same class if either

– there exists a second twofold axis perpendicular to the initial axis, or

– there exists a reflection plane containing the initial axis.

• For improper twofold operations, σ and σ̄ adjoin to the same class if either

– there exists a second reflection plane perpendicular to the initial one, or

– there exists a twofold axis lying within the initial plane.

In these cases, the resulting total number of classes in P′ is less than twice that for P. As an example,

consider the tetrahedral group Td. There are three twofold axis: x̂, ŷ, and ẑ. All are bilateral because a
rotation by π about x̂ reverses the direction of both ŷ and ẑ, etc. Accordingly, in the character table Tab.

5.12 for the double group of Td , the classes C2 and C̄2 are adjoined, as are σd and σ̄d .

With the exception of those twofold operations satisfying the conditions in Opechowski’s theorem, the
classes C and C are distinct in the double group. Any IRREP of P will be an IRREP of P′ with χ(C) = χ(C).
But since the number of elements is doubled in P′, there must be new IRREPs specific to the double group.
For these additional IRREPs, one has χ(C) = −χ(C), hence if C and C adjoin to C ∪ C by Opechowski, one
must have χ(C ∪ C) = 0. Checking Tab. 5.12, we see that in the extra IRREPs Γ6,7,8 , χ(C) = −χ(C) except

in the case of the adjoined classes, for which χ(C ∪ C) = 0.

We can understand that twofold rotations and reflections are special in this regard from the result we
obtained for SU(2) characters,

χ(j)(ξ) =
sin (j + 1

2)ξ

sin 1
2ξ

(5.37)
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T ′
d E E 8C3 8C3

3C2

3C2

6σd
6σd

6S4 6S4

Γ1 (A1) 1 1 1 1 1 1 1 1

Γ2 (A2) 1 1 1 1 1 −1 −1 −1
Γ3 (E) 2 2 −1 −1 2 0 0 0

Γ4 (T1) 3 3 0 0 −1 −1 1 1

Γ5 (T2) 3 3 0 0 −1 1 −1 −1
Γ6 2 −2 1 −1 0 0

√
2 −

√
2

Γ7 2 −2 1 −1 0 0 −
√
2

√
2

Γ8 4 −4 −1 1 0 0 0 0

Table 5.12: Character table for the double group of Td.

for rotation by an angle ξ about any axis. Thus χ(j)(α + 2π) = (−1)2jχ(j)(α). For j = 1
2 , or indeed for

any half odd integer j, we have χ(π) = χ(3π) = 0. Thus C2 and C2 have the same character. A similar
result holds for reflections, because σ = IC2 and σ = IC2. Therefore the classes C2 and C2 are not
distinguished by character, nor are σ and σ. This is true in any IRREP in which χ(E) = −χ(E).

5.2.11 The three amigos : D4 , C4v , D2d

Let’s try to apply some of what we’ve just learned to the groups D4, C4v, and D2d . All these eight-
element groups are isomorphic to each other. The character table for all three is given in Tab. 5.13.
Although they are all isomorphic, they include different sets of symmetry operations, and therefore
they will have different basis representations.

Let’s now discuss all the classes of these three groups. Recall that

R(ξ, n̂)ab = nanb +
(
δab − nanb

)
cos ξ − ǫabc nc sin ξ . (5.38)

• C2 : This class is present in all three groups. It consists of a single element which is rotation by π
about the ẑ axis, and represented by the 3× 3 matrix

Rπz ≡ R(π, ẑ) =



−1 0 0
0 −1 0
0 0 1


 . (5.39)

• 2C4 : Present in D4 and C4v. Contains the elements

Rπ/2z ≡ R(π2 , ẑ) =



0 −1 0
1 0 0
0 0 1


 , R−π/2

z ≡ R(−π
2 , ẑ) =




0 1 0
−1 0 0
0 0 1


 . (5.40)

These elements are inverses of each other.
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D4 E 2C4 C2 2C ′
2 2C ′′

2

C4v E 2C4 C2 2σv 2σd

D2d E 2S4 C2 2C ′
2 2σd D4 basis C4v basis D2d basis

A1 1 1 1 1 1 x2 + y2 x2 + y2 or z x2 + y2

A2 1 1 1 −1 −1 Lz or z Lz Lz

B1 1 −1 1 1 −1 x2 − y2 x2 − y2 x2 − y2

B2 1 −1 1 −1 1 xy xy xy or z

E 2 0 −2 0 0
{
x , y

} {
x , y

} {
x , y

}

Table 5.13: Character table for the point groups D4, C4v , and D2d.

• 2S4 : Present only in D2d . These are rotoreflections, i.e. 2C4 followed by z → −z :

Sπ/2z ≡ S(π2 , ẑ) =



0 −1 0
1 0 0
0 0 −1


 , S−π/2

z ≡ S(−π
2 , ẑ) =




0 1 0
−1 0 0
0 0 −1


 . (5.41)

These two are also inverses within O(3). In general we have S(α) = IC(α − π), in which case

S
π/2
z = IR

−π
z R

π/2
z and S

−π/2
z = IR

−π
z R

−π/2
z . Why do we distinguish Rπz and R−π

z when they are
represented by the same matrix? This will be important when we construct the corresponding
matrix representation for the double groups20.

• 2C ′
2 : Present in D4 and D2d , this class consists of twofold rotations about x̂ and ŷ:

Rπx ≡ R(π, x̂) =



1 0 0
0 −1 0
0 0 −1


 , Rπy ≡ R(π, ŷ) =



−1 0 0
0 1 0
0 0 −1


 . (5.42)

• 2σv : This occurs only in C4v and corresponds to reflections x→ −x and y → −y:

Σx ≡ IRπx =



−1 0 0
0 1 0
0 0 1


 , Σy ≡ IRπy =



1 0 0
0 −1 0
0 0 1


 . (5.43)

• 2C ′′
2 : Occurring only in D4 , these operations are twofold rotations about the diagonal axes y = x

and y = −x:

Rπxy ≡ R
(
π, x̂+ŷ√

2

)
=



0 1 0
1 0 0
0 0 −1


 , Rπxy ≡ R

(
π, x̂−ŷ√

2

)
=




0 −1 0
−1 0 0
0 0 −1


 . (5.44)

20See the explanation of Eqn. 5.32.
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• 2σd : Occurring in C4v and D2d , this class of reflections is equivalent to IC ′′
2 , hence

Σxy ≡ IRπxy =




0 −1 0
−1 0 0
0 0 1


 , Σxy ≡ IRπxy =



0 1 0
1 0 0
0 0 1


 . (5.45)

I apologize for the loose notation where we are using the same symbols to refer to group elements as
well as their 3× 3 matrix representations. Notice that all the matrices representing elements of C4v have
a block-diagonal structure with an upper left 2× 2 block and a lower right 1× 1 block, where the latter
is always 1. This is because we never need to speak of the z-direction when we talk about C4v as all its
operations involve x and y alone.

Now let’s talk about the basis functions. The projectors onto the various representations are given by

ΠΓ =
dΓ
NG

∑

g∈G
χΓ

∗
(g)D(g) , (5.46)

where NG = 8 for the three amigos. It should be clear how the basis functions in Tab. 5.13 are eigen-
functions of these projectors, but let’s note the following to obviate any confusion. First of all, what do
we mean by Lz as a basis function of the A2 IRREP in the case of C4v and D2d? We mean the angular
momentum operator, Lz = xpy− ypx. We know that Lα = εαβγr

βpγ transforms as a vector under proper
rotations, however it is known as an axial vector because it transforms differently under improper rota-
tions. That is, under the operation σh (which, nota bene is present in none of our three groups), z is odd
but Lz is even. Similarly, under either of the σv operations, z is even but Lz is odd. For D4 , the basis
function f(z) = z corresponds to the A2 IRREP because it is even under E, 2C4, and C2 and odd under
2C ′

2 and 2C ′′
2 . But in C4v, whose operations all leave z invariant, f(z) = z transforms as the A1 IRREP.

And for D2d , where 2S4 and 2C ′
2 reverse z but 2σd does not, f(z) = z transforms as the B2 IRREP! Note

that other valid choices of basis functions are possible. For example, rather than the pair
{
x , y

}
, we

could have chosen
{
Lx , Ly

}
as basis functions for the E IRREP.

Double group matrices and projectors

Now let’s tackle the corresponding double groups. We will need the 2 × 2 matrices representing the
various point group operations. Recall for a rotation by ξ about n̂ ,

exp(−iξn̂ · σ/2) = cos(12ξ)− i sin(12ξ) n̂ · σ . (5.47)

We’ll write the elements of D(1/2)(G) as U(g). We then have

U(Rπz ) =

(
−i 0
0 i

)
, U(Rπ/2z ) =

(
e−iπ/4 0

0 eiπ/4

)
, U(R−π/2

z ) =

(
eiπ/4 0

0 e−iπ/4

)
. (5.48)

For the rotoreflections,

U(Sπ/2z ) =

(
eiπ/4 0

0 e−iπ/4

)
, U(Sπ/2z ) =

(
−e−iπ/4 0

0 −eiπ/4
)

. (5.49)
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D′
4 E E 2C4 2C4 C2 ∪ C2 2C ′

2 ∪ 2C
′
2 2C ′′

2 ∪ 2C
′′
2

C ′
4v E E 2C4 2C4 C2 ∪ C2 2σv ∪ 2σv 2σd ∪ 2σd

D′
2d E E 2S4 2S4 C2 ∪ C2 2C ′

2 ∪ 2C
′
2 2σd ∪ 2σd basis

Γ1 1 1 1 1 1 1 1 x2 + y2

Γ2 1 1 1 1 1 −1 −1 Lz

Γ3 1 1 −1 −1 1 1 −1 x2 − y2

Γ4 1 1 −1 −1 1 −1 1 xy

Γ5 2 2 0 0 −2 0 0
{
x , y

}
or
{
Lx , Ly

}

Γ6 2 −2
√
2 −

√
2 0 0 0

{
|↑ 〉 , |↓ 〉

}

Γ7 2 −2 -
√
2
√
2 0 0 0 Γ3 × Γ6 or Γ4 × Γ6

Table 5.14: Character table for the double groups of D4 , C4v , and D2d .

Note that U(S
±π/2
z ) = I U(R

−π
z )U(R

±π/2
z ), where R−π

z = −Rπz and that I acts as the identity matrix on

spinors. Note that U(S
π/2
z ) = U(R

−π/2
z ). Next, we need

U(Σx) = U(Rπx) =

(
0 −i
−i 0

)
, U(Σy) = U(Rπy ) =

(
0 −1
1 0

)
. (5.50)

Since the only difference between the twofold rotations and the corresponding reflections in the planes
perpendicular to their axes is the inversion I , their representations in D1/2(G) are identical. The remain-
ing matrices are

U(Σxy) = U(Rπxy) =

(
0 −eiπ/4

e−iπ/4 0

)
, U(Σxy) = U(Rπxy) =

(
0 e−iπ/4

−eiπ/4 0

)
. (5.51)

Note that their product is U(Σxy)U(Σxy) = U(Rπz ). Note also that detU(g) = 1 since each U(g) ∈ SU(2).

Appealing to the character table in Tab. 5.14, we can now construct the double group projectors. We
write the projectors as

ΠΓ =
dΓ
NG

∑

g∈G
χΓ

∗
(g)D(g) ⊗ U(g) . (5.52)

where G is any of D′
4 , C ′

4v , and D′
2d , and NG = 16, since each of the double groups of the three amigos

has 16 elements. For the IRREPs
{
Γ1, Γ2, Γ3, Γ4, Γ5}we may use the basis functions ψΓµ (r) from the proper

point groups. I.e. we can simply ignore all the U -matrices and pretend there is no spin component. More
correctly, we can consider the spin component of each basis function to be a singlet,

∣∣ S
〉
=

1√
2

(∣∣ ↑
〉
⊗
∣∣ ↓
〉
−
∣∣ ↓
〉
⊗
∣∣ ↑
〉)

. (5.53)
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One can check that U(g) |S 〉 = |S 〉 for all g, which follows from detU(g) = 1. For Γ6 and Γ7 , though,
the projectors annihilate any basis function of the form f(r) |S 〉. However, a basis function of the form
| ↑ 〉 or | ↓ 〉 (i.e. with no spatial dependence) does the trick. In spinor notation, we have

2

16

[
χΓ6(E)U(E) + χΓ6(E)U(E)

](u
v

)
=

1

2

(
u
v

)

2

16

[
χΓ6(2C4) + χΓ6(2C4)E

][
U(Rπ/2z ) + U(R−π/2

z )
](u

v

)
=

1

2

(
u
v

)
.

(5.54)

Thus,

(
u
v

)
is an eigenfunction of the projector ΠΓ6 . In order to keep this spinor from being annihilated

by ΠΓ7 , we need to multiply it by a scalar function ψ(r) which reverses the sign from the characters of
the classes 2C4 and 2C4. According to Tab. 5.13, the basis function from either the B1 or the B2 IRREPs
will work. This explains the basis functions in Tab. 5.1421. Other valid choices of basis functions are of
course possible.

Do we always need the double group?

Although electrons carry spin S = 1
2 , we usually don’t need to invoke the double group formalism if

the spin-orbit coupling is sufficiently weak. That is, we may use L rather than J as the generator of
rotations, since

[
Ĥ, Lα

]
= 0. Each electronic energy level is of course doubly degenerate due to the spin,

which just ”comes along for the ride”. In the presence of significant spin-orbit coupling,
[
Ĥ, Lα

]
6= 0

but
[
Ĥ, Jα

]
= 0. Thus we must use the total angular momentum J as the generator of rotations, which

entails the double point group symmetries.

5.3 Space Groups

The full group of symmetry operations of an n-dimensional crystal is called its space group, S. Any
crystallographic space group is a subgroup of the Euclidean group: S ⊂ E(n). Space groups are infinite
discrete groups. Two-dimensional space groups are called wallpaper groups. An accounting of the total
number of lattices, point groups, and space groups for two and three dimensional crystals is provided
in Tab. 5.1.

5.3.1 Space group elements and their properties

Each element
{
g
∣∣ t
}
∈ S represents a compounded operation of rotation by a rotation g (either proper

or improper) and a translation t. When g = E, the space group operations are pure translations, and
are all of the form

{
E
∣∣R
}

, where R ∈ L is a vector in the underlying Bravais lattice. As discussed in

21The spin component of the basis functions for the Γ1 through Γ5 IRREPs should be considered to be the singlet |S 〉.
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Figure 5.19: Structure of hexagonal H2O ice, with red spheres showing location of oxygen atoms. The
space group is P63/mmc. The 63 symbol indicates a sixfold screw axis. The first twom symbols indicate
mirror planes perpendicular and parallel to the c-axis. The c symbol indicates a glide plane where the
translation is along the c-axis. (Image credit: Wikipedia).

§5.1.7, the operations
{
g
∣∣ t
}

form a group, with

{
g
∣∣ t
}{

g′
∣∣ t′
}
=
{
gg′
∣∣ gt′ + t

}
{
g
∣∣ t
}−1

=
{
g−1

∣∣ − g−1t
}

.
(5.55)

We see that the rotations g must themselves form a group, which is the point group P of the crystal. Pure
translations

{
E
∣∣R
}

by a direct lattice vector are part of the space group, and indeed form a normal

subgroup thereof:
{
g
∣∣ t
}−1{

E
∣∣R
}{

g
∣∣ t
}

=
{
E
∣∣ g−1R

}
. Thus, g−1R ∈ L for any g ∈ P, which

means, as noted above in §5.1.7, that the point group P of any crystal is a subgroup of the point group
PL of its underlying Bravais lattice (i.e. the holohedry).

Fom Eqn. 5.55, we have the group conjugation property

{
h
∣∣ s
}−1{

g
∣∣ t
}{

h
∣∣ s
}
=
{
h−1gh

∣∣ h−1gs− h−1s+ h−1t
}
≡
{
g′
∣∣ t′
}

, (5.56)

for which the rotation is g′ = h−1gh and the translation is t′ = h−1gs − h−1s + h−1t. When h = E, we
have g′ = g and

t− t′ = (E − g) s . (5.57)

Suppose we further demand t′ = 0 , i.e. that the conjugated operation is equivalent to a pure rotation,
with no translation, about a different choice of origin. We see that this is possible if we choose s such
that t = (E − g) s.

Now it was noted in §5.2.1 that when the dimension n of space is odd, g ∈ O(n) always preserves some
axis, meaning it has an eigenvalue λ = 1. The other two eigenvalues may be written as e±iα where
α = 2π/n with n = 2, 3, 4, or 6. (The case n = 1 corresponds to the identity E.) A mirror reflection,
which is an improper operation, has an inversion axis corresponding to an eigenvalue λ = −1, with all
remaining eigenvalues λ = +1. Proper rotations therefore have an invariant axis, while mirror reflections



5.3. SPACE GROUPS 173

have an invariant plane. Thus we can write

proper rotation : r = | ê1 〉〈 ê1 |+ eiα | ê2 〉〈 ê2 |+ e−iα | ê3 〉〈 ê3 |
mirror reflection : m = −| ê1 〉〈 ê1 |+ | ê2 〉〈 ê2 |+ | ê3 〉〈 ê3 | .

(5.58)

We now see that if g = r is a proper rotation, t = (E− r) s cannot be solved for s if t has any component
along the invariant axis ê1. Similarly, if g = m is a mirror, t = (E −m) s cannot be solved for s if t has
any component in the invariant plane spanned by {ê2, ê3}. Space group operations

{
r
∣∣ t
}

for which t
is parallel to the invariant axis of r are called screws, while those for which t is parallel to an invariant
plane of m are called glides. As we shall see, the possible values of t are strongly constrained in either
case. Screws and glides may be considered intrinsic translations because they cannot be removed simply
by a new choice of origin.

Next we note that if
{
g
∣∣ t
}
∈ S, we can always choose the translation component t to either be in the

direct lattice or to lie within the first Wigner-Seitz (WS) cell22. If t ≡ τ /∈ T, then it must be unique for a

given g, because if both
{
g
∣∣ τ
}

and
{
g
∣∣ τ ′ } are in S, then so is

{
g
∣∣ τ ′ }−1{

g
∣∣ τ
}
=
{
E
∣∣ g−1(τ − τ ′)

}
,

which means that g−1(τ −τ ′) ∈ T and therefore τ −τ ′ ∈ T. Since by assumption both τ and τ ′ lie within
the first WS cell, we must have τ ′ = τ . Thus, all space group elements are of the form

{
g
∣∣R + τg

}
,

where τg may either be zero or a unique nonzero vector within the first WS cell. Now the point group
P is of finite order, so each element g ∈ P satisfies gn = E where n is finite and taken to be the smallest
positive integer which satisfies this relation. Therefore

{
g
∣∣ τg

}n
=
{
gn
∣∣ τg + gτg + . . .+ gn−1τg

}
, (5.59)

and since gn = E, we must have that τg + gτg + . . .+ gn−1τg = R is a direct lattice vector. Note that for
g = r we can have n = 2, 3, 4, or 6, while for g = m we necessarily have n = 2.

According to Eqn. 5.58, we have

E + g + g2 + . . .+ gn−1 = nP‖(g) , (5.60)

where P‖(r) ≡ | ê1 〉〈 ê1 | is the projector onto the invariant axis of r, and P‖(m) ≡ | ê2 〉〈 ê2 |+ | ê3 〉〈 ê3 |
the projector onto the invariant plane of m. Thus we conclude nP‖(g) τg = R, which is to say that the

nonremovable part of the translation τg , i.e. its projection onto the rotation axis or mirror plane, is equal
to R/n . Note also that in d = 2, there is no preserved rotation axis, since it would be orthogonal to the
(x, y) plane. Therefore two dimensional point groups can at most have glides and no screws.

We may now identify all possible screws with the symbols 21, 31, 41, 42, 61, 62, and 63, as well as their
enantiomorphous counterparts 32, 43, 64, and 65. Glide planes are denoted by the symbols a, b, c, n, and
d, depending on the direction of the translation component. Let the symmetry axes of the crystal be a,
b, and c. Then

◦ For a glides, τ = 1
2a.

◦ For b glides, τ = 1
2b.

◦ For c glides, τ = 1
2c.

22A translation t which is not a direct lattice vector can always be brought into the first WS cell by a direct lattice translation.
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Nos. lattice P(Sch) P(HM) order S (sym) S (n-sym)

1 oblique C1 1 1 p1

2 oblique C2 2 2 p2

3 - 4 rectangular C1v m 2 pm pg

5 - 6 rectangular C2v 2mm 4 pmm pmg

7 centered
rectangular C1v m 2 cm

8 - 9 centered
rectangular C2v 2mm 2 cmm pgg

10 square C4 4 4 p4

11 - 12 square C4v 4mm 8 p4m p4g

13 hexagonal C3 3 3 p3

14 - 15 hexagonal C3v 3m 6 p3m1 , p31m

16 hexagonal C6 6 6 p6

17 hexagonal C6v 6mm 12 p6m

Table 5.15: The 17 wallpaper groups and their short notation.

◦ For n glides, τ = 1
2(a+ b), 1

2(b+ c),
1
2(a+ c), or 1

2(a+ b+ c).

◦ For d glides, τ = 1
4 (a+ b), 1

4(b+ c),
1
4 (a+ c), or 1

4 (a+ b+ c).

The d-glide is called the diamond glide and is present in the diamond lattice.

Be forewarned that it is possible for a symmorphic space group to include screw and glide operations
provided they are removable by choosing a different origin. Such nonsymmorphic operations are called
inessential. In other words, if S contains nonsymmorphic operations (screws or glides), but there exists
some ρ ≡

{
h
∣∣ s
}

such that all elements of ρ−1Sρ are of the form
{
g
∣∣R
}

, then S is symmorphic. A
nonsymmorphic space group contains essential (i.e. unremovable) screws or glides23.

5.3.2 Factor groups

In the dim and distant past – specifically, in §1.3.1 – we discussed the concept of a factor group. Recall
that if H ⊂ G is a subgroup, there is a unique left coset decomposition of G as G =

⋃
i riH where i ∈

{1, . . . , NG/NH}. If H ⊳G is a normal subgroup, meaning gHg−1 ∈ H for all g ∈ G, the cosets riH form
a group under multiplication, called the factor group G/H .

23As noted above, there are two nonsymmorphic space groups which contain neither screws nor glides, but for which one can
nevertheless not write S = P⋊ T.
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(a) p1 (b) p2 (c) pm (d) pg

(e) pmm (f) pmg (g) cm (h) cmm

(i) pgg (j) p4 (k) p4m (l) p4g

(m) p3 (n) p3m1 (o) p31m (p) p6

(q) p6m

Figure 5.20: Unit cells for the 17 two-dimensional space groups (wallpaper groups). (Image credit:
Wikipedia.)
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crystal system type symmorphic space groups

triclinic P P1 , P1

monoclinic P P2 , Pm , P2/m

A/C C2 , Cm , C2/m

orthorhombic P P222 , Pmm2 , Pmmm

A/C C222 , Cmm2 , Cmmm , Amm2

I I222 , Imm2 , Immm

F F222 , Fmm2 , Fmmm

tetragonal P P4 , P4 , P4/m , P422 , P4mm

P42m, P4m2 , P4/mmm

I I4 , I4 , I4/m , I422 , I4mm

I42m, I4m2 , I4/mmm

trigonal P P3 , P3 , P321 , P3m1 , P3m1

P312 , P31m, P31m

(rhombohedral) R R3 , R3 , R32 , R3m, R3m

hexagonal P P6 , P6 , P6/m , P622 , P6mm

P6m2 , P62m , P6/mmm

cubic P P23 , Pm3 , P432 , P43m, Pm3m

I I23 , Im3 , I432 , I43m, Im3m

F F23 , Fm3 , F432 , F43m, Fm3m

Table 5.16: The 73 symmorphic three-dimensional space groups and their short notation. Bravais lattice
types are primitive (P), base-centered (A/C), body-centered (I), and face-centered (F). Space groups
printed in red indicate cases where there are two inequivalent P-invariant space lattice orientations.

Since the abelian group T of Bravais lattice translations is a normal subgroup of the space group, we can
decompose S as

S =
⋃

g

{
g
∣∣ τg

}
T = T +

{
g2
∣∣ τg2

}
T + . . .+

{
gN

P

∣∣ τg
N
P

}
T . (5.61)

This says that the space group S is generated by all Bravais lattice translations
{
E
∣∣R
}

and all opera-
tions

{
g
∣∣ τ g

}
. If, as in §5.3.5 below, we impose periodic boundary conditions, so that space is compact-

ified into a three-dimensional torus of N1 × N2 × N3 unit cells, then the translation group T is of finite
order |T| = N1N2N3 , and the order of the space group is |S| = |P| · |T|.

The set of operations
{
g
∣∣ τ g

}
is thus the factor group F ≡ S/T. While there exists a bijective map{

g
∣∣ τ g

}
←→

{
g
∣∣ 0
}

between the factor group F and the point group P, multiplication within the factor
group is always modulo T. Group multiplication of the factor group elements results in a projective
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representation of the point group,

{
g
∣∣ τg

}{
h
∣∣ τh

}
=
{
E
∣∣Rg,h

}{
gh
∣∣ τgh

}
, (5.62)

and one can lift the projective representation of P to its central extension, which is to say S. Here

Rg,h = τg + gτh − τgh (5.63)

must be in the Bravais lattice. Note that the cocycles here are actually translation operators rather than
actual phases. Below we shall see how by diagonalizing the translation part of the space group, the
cocycles become phases.

The case of diamond

Diamond is a rather typical nonsymmorphic space group. Recall the primitive direct lattice vectors for
the fcc Bravais lattice,

a1 =
1
2a0 (0, 1, 1) , a2 =

1
2a0 (1, 0, 1) , a3 =

1
2a0 (1, 1, 0) , (5.64)

where a0 is the side length of the simple cubic lattice whose four element basis describes the fcc structure.
The space group of diamond is S = Fd3m, this the point group is m3m, which is Oh. Thus there are
48 cosets in the factor group F, which is the order of Oh. These cosets break up into two collections.
One consists of operations of the form

{
h
∣∣ 0
}
T where h ∈ Td . The other consists of operations of the

form
{
I
∣∣ τ
}{

h
∣∣ 0
}
T where I is the inversion operator and τ = 1

4a1 +
1
4a2 +

1
4a3 = 1

4a0 (1, 1, 1). The
elements from the first collection thus constitute a group in their own right, which is the zincblende

space group S̃ = F43m. This is a normal subgroup of S of index two, i.e. S/S̃ ∼= Z2. Explicitly, we then

have S = S̃ ∪
{
I
∣∣ τ
}
S̃.

5.3.3 How to make a symmorphic space group

The simplest recipe:

(i) Start with a lattice system.

(ii) Choose a point group consistent with the lattice system.

(iii) Choose an allowed lattice type (i.e. centering).

(iv) Congratulations, you’ve just specified a symmorphic point group.

To see this method in practice, let’s try it out in two dimensions, where there 13 of the 17 space (wallpa-
per) groups are symmorphic. There are four crystal systems (oblique, rectangular, square, hexagonal),
and the rectangular system can either have a primitive or a centered unit cell. For oblique lattices the
allowed point groups are C1 and C2, so two possibilities. For rectangular lattices, the allowed point
groups are C1v and C2v . There are two possible centerings, for a total of four possibilities. For square
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(a) Rocksalt, Fm3m (b) Wurzite, P63mc (c) Zincblende, F43m

Figure 5.21: Some common AB crystal structures and their space groups.

lattices, P can be either C4 or C4v – another two. For hexagonal, either C3, C3v, C6, or C6v , so four total.
We arrive at 12 so we are missing a space group. The reason is there can be two inequivalent orientations
of the space lattice which the point group leaves invariant, thereby leading to another space group. This
happens in the case of the hexagonal lattice with C3v (3m) point group symmetry. There are two space
groups, called p3m1 and p31m.

A table of the 17 wallpaper groups is provided in Tab. 5.15, and sketches of the unit cells of each of them
are depicted in Fig. 5.20. Study the nonsymmorphic cases pg, pmg, pgg, and p4g to see if you can identify
the glide mirrors. Note also how the naming convention works: the leading p or c character stands for
primitive or centered. Information about the point group is contained in the space group label. Finally,
the symbol g is used to indicate the presence of a glide mirror.

The naming convention for three-dimensional space groups is somewhat more complex, but the pro-
cedure is as described in the above recipe. There are seven distinct crystal systems, and Bravais lattice
types are either primitive (P), base-centered (A/C), body-centered (I), or face-centered (F). Consider an
fcc lattice with point group Oh (m3m in HM short notation). The corresponding symmorphic space
group is Fm3m, the full symbol for which is F 4

m3 2
m . Proceeding in this way, accounting for all the

crystal systems, their allowed point groups, and possible centerings, one obtains 66 symmorphic space
groups. As in the two-dimensional case, when inequivalent orientations of the space lattice are both
preserved by the point group, we get an extra space group. Such cases are indicated in red in Tab. 5.16.
For example, for the caseC2v = mm2, the A and C centering types lead to different space groups,Amm2
and Cmm2, respectively. They are distinct space groups because in the latter case the centering is along
a twofold axis, while in the former it is not.
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5.3.4 Nonsymmorphic space groups

Returning to our example space group F 4
m3 2

m , a check of the tables24 reveals that there are a total of
four space groups generated from the fcc lattice and point groupOh = 4

m3 2
m . The other three are F 4

m32
c ,

F 41
d 3

2
m , and F 41

d 3
2
c ; their short names are Fm3c, Fd3m, and Fd3c, respectively. These three space

groups are all nonsymmorphic and involve either screws (41), glides (c, d), or both. The second of these
three corresponds to carbon diamond. Schoenflies’ names for the four point groups generated from fcc
and Oh were O5

h, O6
h, O7

h, and O8
h, respectively, which convey little information other than the order in

which he derived them from the point group Oh.25

Of the 230 three-dimensional space groups, 157 are nonsymmorphic and contain operations
{
g
∣∣ τg

}

where τg /∈ T is not in the direct lattice, and no single change of origin can reduce all the τg to zero or to
a direct lattice vector.

Some of the nonsymmorphic space groups with screw axes have mirror images, and together are known
as enantiomorphic pairs. For example, space groups (P41 , P43) form such a pair, as do (P41212 , P43212),
(P3112 , P3212), (P6222 , P6422), etc.

5.3.5 Translations and their representations

The set of translations T is a subgroup of S, consisting of the elements
{
E
∣∣R
}

, whereR =
∑d

j=1mj aj
is a sum over the primitive direct lattice vectors with integer coefficients. It is convenient to work with
discrete groups of finite order, so to this end we invoke periodic boundary conditions, which places our
system on a d-dimensional torus extending for Nj unit cells in the aj direction for each j ∈ {1, . . . , d}.
This means that R is equivalent to R+

∑d
j=1 lj Lj with Lj = Nj aj and each lj ∈ Z. Our Bravais lattice

translation group T now has N =
∏d
j=1Nj elements, which is the total number of unit cells in the real

space torus.

Next we ask about irreducible representations of T. Since T is an abelian group, all its IRREPs are one-
dimensional. If ψ(r) is a basis function for a unitary one-dimensional IRREP of T, then

{
E
∣∣R
}
ψ(r) = ψ

({
E
∣∣R
}−1

r
)
= ψ(r −R) = e−iω(R) ψ(r) . (5.65)

In order that the group multiplication law be satisfied, we must have e−iω(R) e−iω(R
′) = e−iω(R+R′),

which tells us that ω(R) is linear in R, i.e.

ω(m1 a1 + . . .+md ad) = m1 ω(a1) + . . .+md ω(ad) (5.66)

to within an additive multiple of 2π. We may define ω(aj) ≡ θj , in which case the IRREP is labeled by
the set of angles θ. Furthermore, we must have ω(R) = ω(R + Lj) for all j ∈ {1, . . . , d}, which says
that Nj θj is congruent to zero modulo 2π, i.e. θj = 2πlj/Nj , where lj ∈ {1, . . . , Nj}. So the θj values are
quantized and there are N =

∏
j Nj distinct values of the vector θ = (θ1, . . . , θd).

24See http://www.wikiwand.com/en/List_of_space_groups .
25Schoenflies’ O1

h through O4
h correspond to primitive cubic lattices, and O9

h and O10
h to bcc lattices.

http://www.wikiwand.com/en/List_of_space_groups
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system P(Sch) PHM NP nonsymmorphic space groups

triclinic C1 1 1 none

Ci 1 2 none

monoclinic C2 2 2 P21
Cs m 2 Pc , Cc

C2h 2/m 4 P21m, P2/c , P21/c , C2/c

orthorhombic D2 222 4 P2221 , P21212 , P212121 , C2221 , I212121
C2v mm2 4 Pmc21 , P cc2 , Pma2 , P ca21 , Pnc2 , Pmn21 , P ba2 ,

Pna21 , Pnn2

Cmc21 , Ccc2 , Abm2 , Ama2 , Aba2 , Fdd2 , Iba2 , Ima2

D2h mmm 8 Pnnn , Pccm , Pban , Pmma , Pnna , Pmna , Pcca , Pbam ,

Pccm , Pbcm , Pnnm , Pmmn , Pbcn , Pbca , Pnma

Cmcm , Cmca , Cccm , Cmma , Ccca , Fddd , Ibam , Ibcm , Imma

tetragonal C4 4 4 P41 , P42 , P43 , I41
S4 4 4 none

C4h 4/m 8 P42/m , P4/n , P42/n , I41/a

D4 422 8 P42121 , P4122 , P41212 , P4222 , P42212 , P4322 , P43212 , I4122

C4v 4mm 8 P4bm , P42cm , P42nm , P4cc , P4nc , P42mc , P42bc

I4cm , I41md , I42d

D2d 42m 8 P42c , P421m, P421c , P4c2 , P4c2 , P4n2 , I4c2 , I42d

D4h 4/mmm 16 P4/mcc , P4/nbm , P4/nnc , P4/mbm , P4/mnc , P4/nmm ,

P4/ncc , P42/mmc , P42/mcm , P42/nbc , P42/nnm , P42/mbc ,

P42/mnm , P42/nmc , P42/ncm

I4/mcm , I41/amd , I41/acd

trigonal C3 3 3 P31 , P32
S6 3 3 none

D3 32 6 P3112 , P3121 , P3212 , P3221

C3v 3m 6 P31c , P3c1 , R3c

D3d 3m 12 P31c , P3c1 , R3c

hexagonal C6 6 6 P61 , P62 , P63 , P64 , P65
C3h 6 6 none

C6h 6/m 12 P63/m

D6 622 12 P6122 , P6222 , P6322 , P6422 , P6522

C6v 6mm 12 P6cc , P63cm , P63mc

D3h 6m2 12 P6c2 , P62c

D6h 6/mmm 24 P6/mcc , P63/mcm , P63/mmc

cubic T 23 12 P213 , I213

Th m3 24 Pn3 , Pa3 , Fd3 , Ia3

O 432 24 P4132 , P4232 , P4332 , I4132 , F4132

Td 43m 24 P43n , F43c , I43d

Oh m3m 48 Pn3n , Pm3n , Pn3n , Fm3c , Fd3m, Fd3c , Ia3d

Table 5.17: The 157 nonsymmorphic three-dimensional space groups.
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Recall the definition of the reciprocal lattice vectors bj which satisfy ai · bj = 2π δij . Then if we define

the wavevector k ≡∑d
j=1 θj bj

/
2π , we then have ω(R) = k ·R , and our basis functions may be written

as ψk(r) = u(r) eik·r where u(r −R) = u(r) for all R ∈ L is a periodic cell function. Any cell function
may be expanded as a discrete Fourier series, viz.

u(r) =
∑

K

CK eiK·r , (5.67)

where K =
∑d

j=1 nj bj is a reciprocal lattice vector, which satisfies exp(iK · R) = 1 for all direct lat-
tice vectors R, and the {CK} are a set of coefficients. What we have just shown is known as Bloch’s

theorem, which says that the eigenfunctions of any Hamiltonian Ĥ which commutes with all Bravais
lattice translations may be written in the form ψk(r) = eik·r u(r), where u(r) is a cell function and k
lies within the first Brillouin zone of the reciprocal lattice. The reason that k is confined to this region is
that k→ k +K amounts to a change of the cell function u(r)→ u(r) eiK·r. Note that quantization of θ
entails quantization of k to one of N possible values.

The character of the space group element
{
E
∣∣R
}

in the k IRREP is thus χ(k)(R) = e−ik·R, in suitably
abbreviated notation. The great orthogonality and completeness theorems then tell us

∑

R

ei(k−k′)·R = N δk,k′ ,
∑

k

eik·(R−R′) = N δR,R′ . (5.68)

In the limit N →∞, these equations become

∑

R

ei(k−k′)·R = Ω̂
∑

K

δ(k′ − k −K) , Ω

∫

Ω̂

ddk

(2π)d
eik·(R−R′) = δR,R′ . (5.69)

The first of these is the generalized Poisson summation formula from Eqn. 5.7. In the second, the integral
is over the first Brillouin zone, Ω̂. Recall vol(Ω) = Ω and vol(Ω̂) = Ω̂ = (2π)d/Ω.

5.3.6 Space group representations

We follow Lax §8.6 and §8.7. When solving for electronic or vibrational states of a crystal, the first order
of business is to classify eigenstates by wavevector, i.e. to diagonalize the operations

{
E
∣∣R
}

in the
space group S. For states of crystal momentum k, we have

{
E
∣∣R
}
|k, λ 〉 = eik·R |k, λ 〉, where λ

denotes other quantum numbers not related to crystal momentum.

Acting on Bloch states, a general space group operation has the following action:

{
g
∣∣ t
}

ψk(r)︷ ︸︸ ︷
eik·r u(r) = exp

[
ik ·

{
g
∣∣ t
}−1

r
]
u
({
g
∣∣ t
}−1

r
)

= eigkr u
(
g−1(r − t)

)
≡ eigk·r e−igk·t ũ(r) = ψ̃gk(r) ,

(5.70)

where if u(r) =
∑

K CK eiK·r is the original cell function, then

ũ(r) =
∑

K

Cg−1K e−iK·t eiK·r ≡
∑

K

C̃K eiK·r (5.71)
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is a new cell function, i.e. it satisfies ũ(r +R) = ũ(r) for all direct lattice vectorsR. Thus, application of{
g
∣∣ t
}
∈ S to a Bloch function ψk(r) generates a new Bloch function ψ̃gk(r) at wavevector gk.26

Group and star of the wavevector k

If gk = k +K , then
{
g
∣∣ t
}

does not change the wavevector of the Bloch function. We define the point
group Pk of the wavevector k to be those point group operations g ∈ P which leave k unchanged up to a
reciprocal lattice vector27. The space group of the wavevector Sk is then all

{
g
∣∣ t
}
∈ S for which g ∈ Pk.

The star of the wavevector k is defined to be the set of points including k and all its images gk , where
g ∈ P \ Pk .28

Algebra and representation of the space group

Recall the results of Eqns. 5.62 and 5.63. From

{
g
∣∣ τg

}{
h
∣∣ τh

}
=
{
E
∣∣Rg,h

} {
gh
∣∣ τgh

}
=
{
gh
∣∣ τgh

}{
E
∣∣ (gh)−1Rg,h

}
, (5.72)

we see that, acting on a Bloch state,

{
g
∣∣ τg

}{
h
∣∣ τh

}
ψk(r) = e−ighk·Rg,h

{
gh
∣∣ τgh

}
ψk(r) , (5.73)

and so if g and h are both elements of Pk , then

{
g
∣∣ τg

}{
h
∣∣ τh

}
= e−ik·Rg,h

{
gh
∣∣ τgh

}
(5.74)

when acting on Bloch states of crystal momentum k, where Rg,h = τ g + gτ h − τgh is a direct lattice
vector. The above equation establishes a projective representation for Sk. Alternatively, one may define
the operators

Λk(g) ≡
{
g
∣∣ τg

}
eik·τg =

{
g
∣∣R+ τg

}
eik·(R+τg) , (5.75)

which act on states of crystal momentum k , and which satisfy the projective algebra

Λk(g)Λk(h) = ωk(g, h)Λ(gh)

ωk(g, h) = eik·(τh−gτh) = eiKg·τh
(5.76)

because k · gτh = g−1k · τh ≡ (k −Kg) · τh , with Kg = k− g−1k = k − kg.

26The phase e−igk·t amounts to a gauge transformation.
27
Pk is also known as the little group of k .

28We use the notation A \B to denote set subtraction, with B ⊆ A. I.e. A \B = A−B, which is to say the set of elements in A
that are not in B.
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Representations of symmorphic space groups

When S is symmorphic, τg = 0 for all g ∈ P, hence ωk(g, h) = 1 for all k. We don’t have to worry about
projective representations of the little groups, and therefore

DΓ ; S
k

({
g
∣∣ 0
})

= DΓ ;P
k(g)

χΓ ; S
k

({
g
∣∣ 0
})

= χΓ ;P
k(g) ,

(5.77)

i.e. we can use the ordinary point group representation matrices.

Representations of nonsymmorphic space groups

If k /∈ ∂Ω̂ lies in the interior of the Brillouin zone and not on its boundary, then both k and g−1k lie
inside Ω̂, which means kg = 0 and the cocycle is unity: ωk(g, h) = 1. Thus we have

DΓ ; S
k

({
g
∣∣ τg

})
= e−ik·τg DΓ ;P

k(g)

χΓ ; S
k

({
g
∣∣ τg

})
= e−ik·τg χΓ ;P

k(g) ,
(5.78)

where Γ can only be the trivial representation if k 6= 0. Again, we only need the ordinary point group
representation matrices.

If k ∈ ∂Ω̂, then Pk may be nontrivial. In this case there are two possibilities:

(i) If there is a one-dimensional IRREP of Sk, dk(g), with dk(g) dk(h) = ωk(g, h) dk(gh) , define the ratio

Λ̃k(g) ≡ Λk(g)/dk(g). The operators Λ̃k(g) then satisfy Λ̃k(g) Λ̃k(h) = Λ̃k(gh) , i.e. the point group
multiplication table. Thus,

DΓ ; S
k

({
g
∣∣ τg

})
= e−ik·τg dk(g)D

Γ ;P
k(g)

χΓ ; S
k

({
g
∣∣ τg

})
= e−ik·τg dk(g)χ

Γ ;P
k(g) .

(5.79)

and again we can use the ordinary point group representations.

(ii) If there is no one-dimensional IRREP of Sk, if one wishes to avoid needless work, one can consult
tables, e.g. in appendix F of Lax, or appendix C of Dresselhaus, Dresselhaus, and Jorio.

5.4 Fourier Space Crystallography

Thus far our understanding of crystallography has been based on real space structures and their trans-
formation properties under point and space group operations. An equivalent approach, originally due
to Bienenstock and Ewald (1962), and formalized and further developed by Mermin and collaborators
in the 1990s, focuses on the Fourier modes ρ̂(K) of the density ρ(r). This is known in the literature as
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Fourier space crystallography29 . Writing ρ(r) as a Fourier sum,

ρ(r) =
∑

K

ρ̂(K) eiK·r , (5.80)

where each K ∈ L̂. Since ρ(r) ∈ R is real, we have ρ̂(−K) = ρ̂∗(K) for all K ∈ L̂. The inverse of the
above relation is

ρ̂(K) =

∫
ddr ρ(r) e−iK·r . (5.81)

Note that if ρ′(r) = ρ(r + d) then ρ̂′(K) = ρ̂(K) eiχ(K) where χ(K) =K · d is a linear function on L̂.

5.4.1 Space group symmetries

We now ask how the ρ̂(K) transform under space group operations of the crystal. The general space
group operation may be written as

{
g
∣∣R+ τg

}
. We have already accounted for the symmetries under

Bravais lattice translations, which says that ρ(r) is given as the above Fourier sum. So now restrict our
attention to operations of the form

{
g
∣∣ τg

}
. If ρ(r) is invariant under all space group operations, we

must have
ρ(r) =

{
g
∣∣ τg

}
ρ(r) = ρ

({
g
∣∣ τg

}−1
r
)
= ρ
(
g−1(r − τg)

)
. (5.82)

Taking the Fourier transform, we have

ρ̂(K) =

∫
ddr ρ

(
g−1(r − τg)

)
e−iK·r = ρ̂(Kg) e−iK ·τg , (5.83)

which is easily established by changing the integration variables30 from r to r′ = g−1(r− τg). Note that
g denotes both an abstract element of the point group P as well as its 3 × 3 matrix representation, and
that by Kg we treatK as a row vector and multiply by the matrix of g on the right. We therefore have

ρ̂(Kg) = ρ̂(K) eiφg(K) , (5.84)

where φg(K) = K · τg acts linearly on L̂, with φg(0)
∼= 0 for all g ∈ P and φE(K) ∼= 0 for all K ∈ L̂.

Here the symbol ∼= denotes equality modulo 2π. We call φg(K) a phase function on the reciprocal lattice.

We then have

ρ̂(Kgh) = ρ̂(Kg) eiφh(Kg) = ρ̂(K) eiφg(K) eiφh(Kg)

= ρ̂(K) eiφgh(K) ,
(5.85)

and therefore the group compatibility condition for the phase functions is

φgh(K) ∼= φh(Kg) + φg(K) , (5.86)

which is the same condition as that in eqn. 5.63.

29Here we follow the pedagogical treatment in A. König and N. D. Mermin, Am. J. Phys. 68, 525 (2000), with some minor
notational differences.

30Since g ∈ O(n), we have that the Jacobian of the transformation is |det g| = 1.
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Suppose ρ′(r) and ρ(r) differ by a translation. Then ρ̂′(K) = ρ̂(K) eiχ(K), hence

ρ̂′(Kg) = ρ̂′(K) eiφ
′
g(K) = ρ̂(K) eiχ(K) eiφ

′
g(K)

= ρ̂(Kg) eiχ(Kg) = ρ̂(K) eiφg(K) eiχ(Kg) ,
(5.87)

and therefore

φ′g(K) ∼= φg(K)+

χ(Kg −K)︷ ︸︸ ︷
χ(Kg)− χ(K) . (5.88)

We say that the the above equation constitutes a gauge transformation and thus that the functions φ′g(K)
and φg(K) are gauge equivalent. We then have the following:

⋄ A space group S is symmorphic iff there exists a gauge in which φg(K) ∼= 0 for all g ∈ P and allK ∈ L̂.

5.4.2 Extinctions

In §5.1.5 we noted how in certain crystals, the amplitude of Bravais lattice Bragg peaks observed in a
diffraction experiment can be reduced or even extinguished due to the crystal structure. Bragg peak
extinction is thus a physical manifestation of the crystallographic point group symmetry, and as such
must be encoded in the gauge-invariant content of the phase functions. Suppose thatKg =K. Then

ρ̂(K) = ρ̂(Kg) = ρ̂(K) eiφg(K) , (5.89)

and thus if φg(K) 6∼= 0, we necessarily have ρ̂(K) = 0, i.e. the Bragg peak at K is extinguished. Kg =
gTK = K means that K lies within the invariant subspace of g (and that of gT = g−1 as well, of
course). Now the only nontrivial (g 6= E) point group operations (in three dimensions) with invariant
subspaces are (i) proper rotations r, and (ii) mirror reflections m. Every proper rotation has an invariant
axis, and every mirror reflection has an invariant plane. We now consider the consequences of each for
extinctions.

• Mirrors : If m is a mirror, then m2 = E. Consider a reciprocal lattice vector K = Km lying in the
invariant plane of m. Then

0 ∼= φE(K) ∼= φm2(K) ∼= φm(Km) + φm(K) ∼= 2φm(K) . (5.90)

Thus, 2φm(K) ∼= 0 which means either φm(K) ∼= 0 or φm(K) ∼= π. Unless φm(K) = 0 for all
K = Km in the mirror plane, we say that m is a glide mirror. Let β1 and β2 be basis vectors for the

two-dimensional sublattice of L̂ in the invariant plane of m. Linearity of the phase functions says

φm(n1 β1 + n2 β2) = n1 φm(β1) + n2 φm(β2) . (5.91)

Suppose now that φm(β1)
∼= φm(β2)

∼= 0. In this case, the mirror is ordinary and we have not a
glide, i.e. there are no extinctions due to m. Next suppose φm(β1)

∼= π and φm(β2)
∼= 0. In this

case, we have extinctions for allK = n1 β1 + n2 β2 with n1 odd, for all n2. A corresponding result
holds for the case φm(β1)

∼= 0 and φm(β2)
∼= π. Finally, suppose φm(β1)

∼= φm(β2)
∼= π. ThenK is

extinguished whenever n1 + n2 is odd.
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• Proper rotations : In this case, rn = E with n = 2, 3, 4, or 6. Suppose K = Kr lies along the
invariant axis of r. Then

0 ∼= φE(K) ∼= φrn(K) ∼= nφr(K) , (5.92)

which says φr(K) = 2πj/n. If φr(K) = 0 for all K = Kr, the rotation is ordinary. If φr(K) 6∼= 0
for any K = Kr along the invariant axis, we say that r is a screw. Let β1 be the basis vector for K
points along the invariant axis. Then φr(β1)

∼= 2πj/n , with j ∈ {0, . . . , n − 1}. The case j = 0
corresponds to an ordinary rotation. For K = lβ1, we have φr(K) ∼= 2πjl/n , and Bragg vectors
with jl 6= 0 modulo n are extinguished.

• Special circumstances : Suppose an n-fold proper rotation r lies within the invariant plane of a
mirror m. Then rmr = m, i.e. mrm = r−1. This is the case, for example, for the groups Cnv, Dnd,
and Dnh. LetK =Kr =Km. Then

φm(K) = φrmr(K) ∼= φmr(Kr) + φr(K)
∼= φr(Krm) + φm(Kr) + φr(K) ∼= 2φr(K) + φm(K) .

(5.93)

We then have 2φr(K) ∼= 0, and so the screw symmetry is restricted to two possible cases: either
φr(K) ∼= 0 or φr(K) ∼= π. Such a screw requires n even and j = 1

2n.

Suppose next that the n-fold rotation axis is perpendicular to a mirror plane, as in the groups Cnh
and Dnh. In this case mr = rm, and we have

φmr(K) = φr(Km) + φm(K)

φrm(K) = φm(Kr) + φr(K) .
(5.94)

There are two interesting possibilities. First, if K = Kr is along the invariant axis of r, then
Km = −K, and we have φr(K) ∼= φr(−K) ∼= −φr(K), hence 2φr(K) ∼= 0, which entails the same
restrictions as in the case where rmr = m analyzed above. Second, if Km = K, then we obtain
φm(Kr) = φm(K), which says that the diffraction pattern in the invariant plane, including any
extinctions, is symmetric under the r operation.

5.4.3 Sticky bands

Consider now the Schrödinger equation Ĥψ = Eψ, where31

Ĥ = − ~
2

2m
∇2 + V (r) , (5.95)

where V (r) is invariant under space group operations. Typically V (r) is purely due to (screened)
Coulomb interactions between a given electron and the combined electron-ion charge density ρ(r), in
which case

V (r) =

∫
ddr′ v(r − r′) ρ(r′) , (5.96)

31In this section, we will use hats to denote operators as well as Fourier transformed quantities, so keep on your toes to
recognize the meaning of the hat symbol in context.
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where v(r) = v(r) is the screened potential at separation r. According to Bloch’s theorem, eigenfunc-
tions ψnk(r) of H are labeled by crystal momentum k ∈ Ω̂ as well as by a band index n, and may be
written as

ψnk(r) =
∑

K

Cnk(K) ei(K+k)·r . (5.97)

The Schrödinger equation for band n can then be written as

E Cnk(K) =
∑

K′

〈K | Ĥ(k) |K ′ 〉︷ ︸︸ ︷[
~
2(K + k)2

2m
δK,K′ + V̂ (K −K ′)

]
Cnk(K

′) , (5.98)

where V̂ (K) = v̂(K) ρ̂(K), since the Fourier transform of a convolution is the product of the Fourier
transforms. Since v(r) is isotropic, we have v̂(q g) = v̂(q) for all q, and therefore V̂ (Kg) = V̂ (K) eiφg(K).
Let us define ω̂(q) ≡ ~

2q2/2m, which is the isotropic free particle dispersion. Note that

ω̂(Kg + k) = ω̂
(
(K + k) g + (k − k g)

)
. (5.99)

We now (re-)introduce the notion of the little group of a wavevector:

DEFINITION : Given a wavevector k ∈ Ω̂, the set of all g ∈ P for whichKg ≡ k−kg is in L̂ is called
the little group of k, and notated Pk.

Since kg must also lie within Ω̂, we have that Pk = {E} if k lies in the interior of the first Brillouin zone.

For wavevectors k ∈ ∂Ω̂ lying on the boundary of Ω̂, the little group Pk can contain other elements.

Consider for example the case of a square lattice, for which Ω̂ is itself a square, and let k = 1
2b1, which

lies at the center of one of the edges. Let P = C4v , which is generated by r (90◦ rotation) and σ (x-axis
reflection). Then E and σ are in Pk because they leave k fixed and henceKg = 0, but so are r2 and σr2,

which send k → −k, in which case Kg = b1 ∈ L̂. It should be clear that Pk ⊂ P is a subgroup of the
crystallographic point group, containing those operations g ∈ P which leave k invariant or changed by
a reciprocal lattice vector. Note that if g, h ∈ Pk , then

Kgh = k − kgh = (k − kh) + (kh− kgh) =Kh +Kg h . (5.100)

For each element g of the little group Pk , define the unitary operator Û(g) such that

Û †(g)
∣∣K

〉
= eiφg(K)

∣∣Kg −Kg

〉
. (5.101)

We then have

〈
K
∣∣ Û(g) Ĥ(k) Û †(g)

∣∣K′ 〉 =
〈
Kg −Kg

∣∣ Ĥ(k)
∣∣K′g −Kg

〉
eiφg(K

′−K)

= ω̂
(
Kg −Kg +K

)
δK,K′ + V̂ (K −K′)

= ω̂
(
(K + k) g

)
δK,K′ + V̂ (K −K ′) =

〈
K
∣∣ Ĥ(k)

∣∣K ′ 〉
(5.102)
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Figure 5.22: Stickiness of tight binding energy bands εn(q) in an hcp crystal. Left: First Brillouin zone
of the hexagonal Bravais lattice, with high symmetry points identified. Right: Tight binding energy
levels for the hcp structure are shown in blue. Note the degeneracies at q = K, q = H, and all along the
A − H − L − A triangle on the top face and along the K − H edge. When an alternating site energy on
the two sublattices is present (dashed red curves), the screw symmetry is broken, and the space group
is reduced from P63/mmc to P6m2.

for all k, K, andK ′. This tells us that
[
Ĥ(k), Û (g)

]
= 0 for all k ∈ L̂ and g ∈ Pk . Next, we have

Û †(h) Û †(g)
∣∣K

〉
= eiφg(K) eiφh(Kg−Kg)

∣∣Kgh−Kg h−Kh

〉

Û †(gh)
∣∣K

〉
= eiφgh(K)

∣∣Kgh −Kgh

〉
.

(5.103)

Invoking Eqn. 5.100, we see that the ket vectors on the RHS of the above two equations are identical.
Appealing to the compatibility condition Eqn. 5.86, we conclude Û †(h) Û †(g) = Û †(gh) e−iφh(Kg), i.e.

Û(g) Û (h) = Û(gh) eiφh(Kg) , (5.104)

which is to say a projective representation of the little group.

Suppose Ĥ(k) |ψk 〉 = E(k) |ψk 〉, where we have dropped the band index n. Since
[
Ĥ(k), Û (g)

]
= 0,

the state Û(g) |ψk 〉 is also an eigenstate of Ĥ(k) with eigenvalue E(k). If |ψk 〉 is nondegenerate, then

we must have Û(g) |ψk 〉 = λg(k) |ψk 〉 for all g ∈ Pk. But then
[
Û(g), Û (h)

]
|ψk 〉 = 0, and we must have

eiφh(Kg) Û(gh)
∣∣ψk

〉
= eiφg(Kh) Û(hg)

∣∣ψk

〉
. (5.105)

Thus, if gh = hg, we must have either (i) φh(Kg) = φg(Kh) or else (ii) |ψk 〉 = 0, i.e. there is no such
nondegenerate eigenstate at wavevector k. Therefore,

⋆ If gh = hg and φh(Kg) 6= φg(Kh), all the eigenstates of Ĥ(k) appear in degenerate multiplets.

That is, two or more bands become ”stuck” together at these special k points. Note that the sticking
conditions cannot be satisfied in a symmorphic space group, because the phase functions can all be set
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d Name Examples Space group S

2 Shastry–Sutherland SrCu2(BO3)2 p4g 2

3 hcp Be, Mg, Zn P63/mmc 2

3 Diamond C, Si Fd3̄m 2

3 Pyrochlore Dy2Ti2O7 (spin ice) Fd3̄m 2

3 – α-SiO2, GeO2 P3121 3

3 – CrSi2 P6222 3

3 – Pr2Si2O7,La2Si2O7 P41 4

3 Hex. perovskite CsCuCl3 P61 6

Figure 5.23: Examples of space groups and their nonsymmorphic ranks.

to zero by a choice of gauge (i.e. by a choice of origin for the point group operations). Note also that
under a gauge transformation, the change in φh(Kg)− φg(Kh) is

∆
(
φh(Kg)− φg(Kh)

)
= χ(Kg h−Kg)− χ(Kh g −Kh) = χ(k gh − k hg) , (5.106)

which vanishes when gh = hg.

Since φg(0) = 0 for all g, the sticking conditions require that eitherKg orKh be nonzero. This is possible

only when k ∈ ∂Ω̂ lies on the boundary of the first Brillouin zone, for otherwise the vectorsKg and Kh

are too short to be reciprocal lattice vectors32. Thus, in nonsymmorphic crystals, band sticking occurs
only along the boundary. Consider, for example, the case of diamond, with nonsymmorphic space
group F 41

d 3
2
m (Fd3m in the short notation). The diamond structure consists of two interpenetrating

fcc Bravais lattices, and exhibits a 41 screw axis and a diamond (d) glide33. Let k = 1
2K, where K is

the shortest reciprocal lattice vector along the screw axis. Then Kr = k − kr = 0 because k is along
the invariant axis of the fourfold rotation r, hence r is in the little group. Diamond is centrosymmetric,
meaning that its point group contains the inversion operator I , which commutes with all other point
group elements. ClearlyKI = k−Ik = 2k =K, so I is in the little group as well. The sticking conditions
then require φr(K) 6= 0, which is the condition we found for r to be a screw in the first place. So we
have band sticking at k = 1

2K. This is a special case of the following general rule: in nonsymmorphic
centrosymmetric crystals, there is band sticking at every k = 1

2K whereK is an extinguished reciprocal
lattice (Bragg) vector.

Band sticking can also occur along continuous lines along the zone boundary. This is possible when the
point group contains perpendicular mirrors, such as in the case D3h. Let k lie along the line where the
horizontal Brillouin zone surface intersects the vertical mirror plane. The vertical component of k is
thus 1

2K, where K is the shortest vertical reciprocal lattice vector, but otherwise k can lie anywhere
along this line. Then Kmh

= K and Kmv
= 0, for all k along the line, where mh,v are the horizontal

and vertical mirror operations, respectively. The sticking condition is φmv
(K) 6= 0, which says that mv

is a glide mirror and K is extinguished. Introducing a perturbation which breaks the nonsymmorphic

32My childhood dreams of becoming a reciprocal lattice vector were dashed for the same reason.
33Diamond has a diamond (d) glide. The d is for ”duh”.
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symmetries unsticks the bands and revives the extinguished Bragg vectors. An example is the hcp
structure, shown in Fig. 5.22.

A more detailed result was derived by Michel and Zak34. In nonsymmorphic crystals, energy bands
stick together in groups of S , where S = 2, 3, 4, or 6 is the nonsymmorphic rank of the space group. In
such cases, groups of S bands are stuck at high symmetry points or along high symmetry lines in the
Brillouin zone, and one must fill an integer multiple of S bands of spinless electrons in order to construct
a band insulating state.

34L. Michel and J. Zak, Phys. Rev. B 59, 5998 (1999).



Chapter 6

Consequences of Crystallographic
Symmetry

6.1 Atomic Physics and the Periodic Table

First, some atomic physics1. The eigenspectrum of single electron hydrogenic atoms is specified by
quantum numbers n ∈ {1, 2, . . .}, l ∈ {0, 1, . . . , n− 1}, ml ∈ {−l, . . . ,+l}, and ms = ±1

2 . The bound state
energy eigenvalues Enl = −e2/2naB, where aB = ~

2/me2 = 0.529 Å is the Bohr radius, depend only on
the principal quantum number n. Accounting for electron-electron interactions using the Hartree-Fock
method2, the essential physics of screening is introduced, a result of which is that states of different l for
a given n are no longer degenerate. Smaller l means lower energy since those states are localized closer
to the nucleus, where the potential is less screened. Thus, for a given n, the smaller l states fill up first.
For a given n and l, there are (2s + 1) × (2l + 1) = 4l + 2 states, labeled by ml and ms. This group of
orbitals is called a shell.

6.1.1 Aufbau principle

Based on the HF energy levels, the order in which the electron shells are filled throughout the periodic
table is roughly given by that in Tab. 6.1. This is known as the Aufbau principle from the German Aufbau
= ”building up”. The order in which the orbitals are filled follows the diagonal rule, which says that
orbitaPoisson bra ls with lower values of n + l are filled before those with higher values, and that in
the case of equal n + l values, the orbital with the lower n is filled first. There are hiccups here and
there. For example, in filling the 3d shell of the transition metal series (row four of the PT) , 21Sc, 22Ti,
and 23V, are configured as [Ar] 4s2 3d1, [Ar] 4s2 3d2, and [Ar] 4s2 3d3, respectively, but chromium’s (dom-
inant) configuration is [Ar] 4s1 3d5. Similarly, copper is [Ar] 4s1 3d10 rather than the expected [Ar] 4s2 3d9.

1An excellent discussion is to be found in chapter 20 of G. Baym’s Lectures on Quantum Mechanics.
2Hartree-Fock theory tends to overestimate ground state atomic energies by on the order of 1 eV per pair of electrons. The
reason is that electron-electron correlations are not adequately represented in the Hartree-Fock many-body wavefunctions,
which are single Slater determinants.

191
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Figure 6.1: The Aufbau principle and the diagonal rule. Image credit: Wikipedia.

For palladium, the diagonal rule predicts an electronic configuration [Kr] 5s2 4d8 whereas experiments
say it is [Kr] 5s0 4d10. Go figure. Again, don’t take this shell configuration stuff too seriously, because
the atomic ground states are really linear combinations of different shell configurations, so we should
really think of these various configurations as being the dominant ones among a more general linear
combination of states. Row five pretty much repeats row four, with the filling of the 5s, 4d, and 5p
shells. In row six, the lanthanide (4f) series interpolates between the 6s and 5d shells, as the 5f actinide
series interpolates in row seven between 7s and 6d.

shell: 1s 2s 2p 3s 3p 4s 3d 4p 5s

termination: 2He 4Be 10Ne 12Mg 18Ar 20Ca 30Zn 36Kr 38Sr

shell: 4d 5p 6s 4f 5d 6p 7s 5f/6d

termination: 48Cd 54Xe 56Ba 71Lu 80Hg 86Rn 88Ra 102No

Table 6.1: Rough order in which shells of the periodic table are filled.

6.1.2 Splitting of configurations: Hund’s rules

The electronic configuration does not uniquely specify a ground state. Consider, for example, carbon,
whose configuration is 1s2 2s2 2p2. The filled 1s and 2s shells are inert. However, there are

(6
2

)
= 15

possible ways to put two electrons in the 2p shell. It is convenient to label these states by total L, S,
and J quantum numbers, where J = L+S is the total angular momentum. It is standard to abbreviate
each such multiplet as a term 2S+1LJ , where L = S, P, D, F, G, etc.. For carbon, the largest L value
we can get is L = 2, which requires S = 0 and hence J = L = 2. This 5-fold degenerate multiplet is

then abbreviated 1D2 . But we can also add together two l = 1 states to get total angular momentum
L = 1 as well. The corresponding spatial wavefunction is antisymmetric, hence S = 1 in order to
achieve a symmetric spin wavefunction. Since |L − S| ≤ J ≤ |L + S| we have J = 0, J = 1, or J = 2

corresponding to multiplets 3P0 , 3P1 , and 3P2 , with degeneracy 1, 3, and 5, respectively. The final state

has J = L = S = 0 : 1S0. The Hilbert space is then spanned by two J = 0 singlets, one J = 1 triplet, and
two J = 2 quintuplets: 0⊕ 0⊕ 1⊕ 2⊕ 2. That makes 15 states. Which of these terms corresponds to the
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3d transition metal series
(
[Ar] core

)

21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn

4s2 3d1 4s2 3d2 4s2 3d3 4s1 3d5 4s2 3d5 4s2 3d6 4s2 3d7 4s2 3d8 4s1 3d10 4s2 3d10

Table 6.2: Electronic configuration of 3d-series metals.

ground state?

The ordering of the multiplets is determined by the famous Hund’s rules:

1. The LS multiplet with the largest S has the lowest energy.

2. If the largest value of S is associated with several multiplets, the multiplet with the largest L has
the lowest energy.

3. If an incomplete shell is not more than half-filled, then the lowest energy state has J = |L− S|. If
the shell is more than half-filled, then J = L+ S.

Hund’s rules are largely empirical, but are supported by detailed atomic quantum many-body calcula-
tions. Basically, rule #1 prefers large S because this makes the spin part of the wavefunction maximally
symmetric, which means that the spatial part is maximally antisymmetric. Electrons, which repel each
other, prefer to exist in a spatially antisymmetric state. As for rule #2, large L expands the electron cloud
somewhat, which also keeps the electrons away from each other. For neutral carbon, the ground state
has S = 1, L = 1, and J = |L− S| = 0, hence the ground state term is 3P0.

Let’s practice Hund’s rules on a couple of ions:

• P : The electronic configuration for elemental phosphorus is [Ne] 3s2 3p3. The unfilled 3d shell has
three electrons. First maximize S by polarizing all spins parallel (up, say), yielding S = 3

2 . Next
maximize L consistent with Pauli exclusion, which says L = −1+0+1 = 0. Finally, since the shell
is exactly half-filled, and not more, J = |L− S| = 3

2 , and the ground state term is 4S3/2 .

• Mn4+ : The electronic configuration [Ar] 4s0 3d3 has an unfilled 3d shell with three electrons. First
maximize S by polarizing all spins parallel, yielding S = 3

2 . Next maximize L consistent with
Pauli exclusion, which says L = 2 + 1 + 0 = 3. Finally, since the shell is less than half-filled,
J = |L− S| = 3

2 . The ground state term is 4F3/2 .

• Fe2+ : The electronic configuration [Ar] 4s0 3d6 has an unfilled 3d shell with six electrons, or four
holes. First maximize S by making the spins of the holes parallel, yielding S = 2. Next, maximize
L consistent with Pauli exclusion, which says L = 2 + 1 + 0 + (−1) = 2 (adding Lz for the four
holes). Finally, the shell is more than half-filled, which means J = L + S = 4. The ground state
term is 5D4 .

• Nd3+ : The electronic configuration [Xe] 6s0 4f3 has an unfilled 4f shell with three electrons. First
maximize S by making the electron spins parallel, yielding S = 3

2 . Next, maximize L consistent
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np 0 1 2 3 4 5 6

L 0 1 1 0 1 1 0

S 0 1
2 1 3

2 1 1
2 0

J 0 1
2 0 3

2 2 3
2 0

nd 0 1 2 3 4 5 6 7 8 9 10

L 0 2 3 3 2 0 2 3 3 2 0

S 0 1
2 1 3

2 2 5
2 2 3

2 1 1
2 0

J 0 3
2 2 3

2 0 5
2 4 9

2 4 5
2 0

nf 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L 0 3 5 6 6 5 3 0 3 5 6 6 5 3 0

S 0 1
2 1 3

2 2 5
2 3 7

2 3 5
2 2 3

2 1 1
2 0

J 0 5
2 4 9

2 4 5
2 0 7

2 6 15
2 8 15

2 6 7
2 0

Table 6.3: Hund’s rules applied to p, d, and f shells.

with Pauli exclusion: L = 3 + 2 + 1 = 6. Finally, because the shell is less than half-filled, we have
J = |L− S| = 9

2 . The ground state term is 4I9/2 .

For high Z ions, spin-orbit effects are very strong, and one cannot treat the angular momentum and spin
degrees of freedom of the individual electrons separately. Rather, the electrons are characterized by their
total angular momentum j, and the LS (Russell-Saunders) coupling scheme which gives rise to Hund’s
rules crosses over to another scheme called jj coupling3. In practice, pure jj coupling is rare, and the
electronic structure of high Z atoms and ions reflects some intermediate situation between pure LS and
pure jj schemes.

6.2 Crystal Field Theory

The Hamiltonian of an isolated atom or ion has the full rotational symmetry of O(3). In a crystalline
environment, any electrons in an unfilled outer shell experience a crystal electric field due to the charges
of neighboring ions. This breaks O(3) down to a discrete site group P(r), resulting in a new multiplet
structure classified by the IRREPs of P(r). The program is therefore to identify the representation of
SO(3) (possibly with half-odd-integer angular momentum) and decompose it into the IRREPs of the

3See, e.g., P. H. Heckmann and E. Träbert, Introduction to the Spectroscopy of Atoms (North-Holland, 1989).
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Figure 6.2: Title from Bethe’s original article on term splitting in crystals, Ann. der Physik 395, 133-208
(1929), and a photo of Bethe.

appropriate site group using the decomposition formula

nΓ (Ψ) =
1

NG

∑

C
NC χ

Γ ∗
(C)χΨ (C) . (6.1)

If the crystal is symmorphic and the ion sits at a site of maximal symmetry, then the decomposition is
with respect to the crystallographic point group P. The foundations of this analysis were laid in 1929 by
Hans Bethe in a seminal paper entitled Termsaufspaltung in Kristallen (”term splitting in crystals”).

6.2.1 Decomposing IRREPs of O(3)

Our first order of business is to obtain the characters of the various point group class representatives
in the representations of SO(3), χJ(C), and then to invoke Eqn. 6.1 to decompose the terms 2S+1LJ
into the point group IRREPs4 The individual classes C will contain elements which are either rotations
C(α) through an angle α about an axis, inversion I , reflections in a plane σ = I C(π), or rotoreflections
S(α) = I C(α− π). We consider each of these in turn:

◦ Identity : The character of the identity is the dimension of the O(3) IRREP. Thus χJ(E) = 2J + 1.

◦ Proper rotations : Recall how the group character, being the trace of a representation matrix, is
invariant under a similarity transformation, and upon rotating to a frame where the invariant axis
is ẑ, the trace of the rotation matrix D(α, ẑ) = exp(−iαJz) is

χJ(α) =
sin (J + 1

2 )α

sin 1
2α

(6.2)

◦ Inversion : The inversion element I commutes with all other point group operations. Since I2 = 1,
the inversion eigenvalue is η = ±1. This is called the parity. For a single atomic orbital of angular
momentum l, we have η = (−1)l. But for the term 2S+1LJ , the parity is η =

∏
i(−1)li , where li is

4When the ion is located at a site which is not of maximal symmetry, P will refer to the appropriate site group.
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the angular momentum of the ith electron state in the electron configuration associated with each
term. Thus, if there are n electrons in the angular momentum l shell, the parity is η = (−1)nl which
is not necessarily the same as (−1)L. For example, the ground state term of nitrogen is 4S3/2, hence

L = 0. But the corresponding electron configuration is 1s2 2s2 2p3, hence η = −1. The character of
the inversion operator is χJ(I) = (2J + 1) η.

◦ Reflections : Every reflection can be written as σ = I C(π). Therefore since I commutes with C(π),
their eigenvalues multiply and we have χJ(σ) = η sin(J + 1

2)π.

◦ Rotoreflections : Since S(α) = I C(α− π), we have χJ(α̃) = χJ(α − π) η , where α̃ denotes rotore-
flection through angle α.

We will first consider the case where J ∈ Z, so we do not need to invoke the double groups. Another
possible setting is that we might be neglecting spin-orbit effects and considering individual atomic or-
bitals of angular momentum l, in which case the parity is η = (−1)l. For point group proper rotations,
we have from Eqn. 6.2,

χJ(π) =

{
+1 if J = 2k

−1 if J = 2k + 1
, χJ(2π/3) =





+1 if J = 3k

0 if J = 3k + 1

−1 if J = 3k + 2

(6.3)

and

χJ(π/2) =





+1 if J = 4k

+1 if J = 4k + 1

−1 if J = 4k + 2

−1 if J = 4k + 3

, χJ(π/3) =





+1 if J = 6k

+2 if J = 6k + 1

+1 if J = 6k + 2

−1 if J = 6k + 3

−2 if J = 6k + 4

−1 if J = 6k + 5

. (6.4)

p
x

p
y

p
z

p

O(3) D
4h

A
2u

E
u

Figure 6.3: Atomic p orbital in a tetragonal environment with D4h symmetry.
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D4 E 2C4 C2 2C ′
2 2C ′′

2 basis

A1 1 1 1 1 1 x2 + y2 or z2

A2 1 1 1 −1 −1 z or Lz
B1 1 −1 1 1 −1 x2 − y2
B2 1 −1 1 −1 1 xy

E 2 0 −2 0 0
{
x , y

}
or
{
xz , yz

}

1− (p) 3 1 −1 −1 −1 A2 ⊕E
2+ (d) 5 −1 1 1 1 A1 ⊕B1 ⊕B2 ⊕ E

Table 6.4: Character table ofD4 and decomposition of atomic p- and d- levels in aD4 environment. Note
that D4h = D4 × Ci.

6.2.2 Atomic levels in a tetragonal environment

Let’s first consider a simple case of an atomic p-level placed in a tetragonal environment with D4 sym-
metry, as depicted in Fig. 6.3. In free space, the p level is triply degenerate. Since D4 is a proper point
group, we only need the characters for the operations E, C2, and C4, which, according to the above
computations, are

χl=1(E) = 3 , χl=1(C2) = −1 , χl=1(C3) = 0 , χl=1(C4) = +1 , (6.5)

where we’ve included χl=1(C3) as a bonus character. Using the representation decomposition formula
of Eqn. 6.1, we then find 1− = A2 ⊕E.

Suppose our environment has the full D4h symmetry and not only D4. Now D4h = D4 × Ci , where
Ci =

{
E, I

} ∼= Z2, and we know (see §2.4.6) that for an arbitrary group G, each conjugacy class C in
G has a double IC in G × Z2, and furthermore that each IRREP Γ of G spawns two IRREPs Γ± (also

called Γg and Γu) for G × Z2 , with χΓ
±
(C) = χΓ (C) and χΓ

±
(I C) = ±χΓ (C). Since p-states have parity

η = (−1)l = −1, we immediately know that in a D4h environment, 1− = A2u ⊕ Eu.

What happens if we place an atomic d level in a tetragonal environment with D4h symmetry? In this
case we have

χl=2(E) = 5 , χl=2(C2) = +1 , χl=2(C3) = −1 , χl=2(C4) = −1 . (6.6)

Accordingly we find 2+ = A1 ⊕ B1 ⊕ B2 ⊕ E in D4 , and of course 2+ = A1g ⊕ B1g ⊕ B1g ⊕ Eg in D4h.
Note that the labels u and g apply only when the site group symmetry includes inversion. Accordingly,
in Tab. 6.6, the IRREPs for the two proper point groups Td and D3 do not include the g or u label.

6.2.3 Point charge model

We can understand the splitting of atomic levels in terms of the local crystal field potential due to the
neighboring ions, which breaks the continuous O(3) atomic symmetry. Consider an electron at position
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O E 8C3 3C2 6C ′
2 6C4 basis

Γ = A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 −1 −1 Lx Ly Lz (sixth order in r)

E 2 −1 2 0 0
{√

3 (x2 − y2) , 3z2 − r2
}

T1 3 0 −1 −1 1
{
x , y , z

}

T2 3 0 −1 1 −1
{
yz , zx , xy

}

Jη = 0± 1 1 1 1 1 A1

1± 3 0 −1 −1 1 T1
2± 5 −1 1 1 −1 E ⊕ T2
3± 7 1 −1 −1 −1 A2 ⊕ T1 ⊕ T2
4± 9 0 1 1 1 A1 ⊕E ⊕ T1 ⊕ T2
5± 11 −1 −1 −1 1 E ⊕ 2T1 ⊕ T2

Table 6.5: Character table of O and decomposition of O(3) IRREPs in terms of O IRREPs.

r in the vicinity of the origin, and the electrostatic potential arising from a fixed ion at position ∆ (not
necessarily a direct lattice vector). The Coulomb potential is proportional to

1

|∆− r| =
1

∆

(
1− 2∆̂ · u+ u2

)−1/2
, (6.7)

where u ≡ r/∆ and ∆̂ ≡∆/∆. Define ε ≡ 2∆̂ · u− u2. Then from Taylor’s theorem,

(1− ε)−1/2 = 1 + 1
2 ε+

3
8 ε

2 + 5
16 ε

3 + 35
128 ε

4 + . . . . (6.8)

We then have, keeping terms up to order u4, and restoring the dimensionful variables,

1

|∆− r| =
1

∆
+
∆ · r
∆3

+
3 (∆ · r)2 −∆2 r2

2∆5
+

5(∆ · r)3 − 3∆2 (∆ · r) r2
2∆7

+
35(∆ · r)4 − 30∆2 (∆ · r)2 r2 + 3∆4 r4

8∆9
+ . . . .

(6.9)

The local potential is given by

V (r) = −
∑

∆

Z∆ e2

∆

1

|∆̂− u|
, (6.10)

where the charge of the ion at position ∆ is Z∆ e . The general result, using the spherical harmonic
expansion, is

VCF(r) =
∑

∆

4πZ∆e
2

∆

∞∑

l=0

1

2l + 1

(
r

∆

)l l∑

m=−l
Y ∗
lm(∆̂)Ylm(r̂) . (6.11)

In a tetragonal environment, the ions are located at ∆ = ±a x̂, ±a ŷ, and ±b ẑ. The isotropy of space is
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trigonal distortion rhombic distortion

Figure 6.4: Trigonal and rhombic distortions of an octahedral environment.

already broken at O(r2) of the expansion, and one finds, neglecting the constant piece,

Vtet(r) =

A︷ ︸︸ ︷
−Ze2

(
1

a
− 1

b

) (
x2

a2
+
y2

a2
− 2z2

b2

)
. (6.12)

Here we have assumed that all the surrounding ions have charge +Ze, but theD4h symmetry allows for
the planar ions do have a different charge than the axial ions. Note that for a = b the above potential
vanishes. In this case the symmetry is cubic and we must go to fourth order. Suppose Z < 0 and that
a < b. In this case the coefficient A is positive, and we see that the px and py orbitals incur an energy
cost, since they are pointed directly toward the closest negative ions. These orbitals provide suitable
basis functions for the E IRREP of D4. The pz orbital is then lower in energy, as Fig. 6.3 indicates, and
corresponds to the A2 IRREP. For d orbitals, clearly dx2−y2 is going to be highest in energy, since its
lobes are all pointing toward the planar ions. This transforms under the B1 IRREP, as may be seen by
inspection of the characters. The dxz and dyz orbitals clearly remain degenerate, since x may still be
rotated into y. Accordingly they transform as the two-dimensional E IRREP. This leaves d3z2−r2 and
dxy . There is no symmetry relating these orbitals, and they transform as the one-dimensional IRREPs A1

and B2, respectively.

6.2.4 Cubic and octahedral environments

Now let’s implement the same calculation for the case of a cubic or octahedral environment. Centering
each about the origin, one has that the eight cubic sites are located at R (±1,±1,±1). The six octahedral

sites are at R
{
(±1, 0, 0) , (0,±1, 0) , (0, 0,±1)

}
. If the side lengths are all a, then R =

√
3
2 a for the cube

andR = 1√
2
a for the octrahedron. One finds in each case that the local potential, neglecting the constant
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O(3) O
h

D
4h

C
i

free space octahedral tetragonal trigonal monoclinic
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B
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B

B

E
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E

E

A
1g

A
1

A

A

A

4Ds+ 5Dt

3Ds− 5Dt

10Dq

10Dq − 4Ds

−5Dt

Figure 6.5: Splitting of an atomic d-level in different crystalline environments.

piece, may be written

V (r) =
A

R5

(
x4 + y4 + z4 − 3

5 r
4
)

, (6.13)

where Acube = −70
9 Ze

2 and Aoctahedron = +35
4 Ze

2. Thus, the cubic and octahedral environments have
an opposite effect, and crystal field levels pushed up in a cubic environment are pushed down in an
octahedral environment, all else being the same. A typical scenario is that our central ion is a transition
metal, and the surrounding cage is made of O−− ions (Z = −2).

Consulting Tab. 6.5, we see that atomic p levels remain threefold degenerate in a cubic or octahedral
environment, transforming as the T2 representation. The fivefold degeneracy of the atomic d level is
split, though, into 2+ = E ⊕ T2. If the site symmetry is Oh, we have 2+ = Eg ⊕ T2g . In a cubic
environment, the T2g levels are pulled lower, since the dx2−y2 and d3z2−r2 orbitals point toward the face
centers of the cube, i.e. away from the oxygen anions, and the Eg levels are pushed up. In an octahedral
environment, the situation is reversed.

What happens in a tetragonal environment? Carrying out the above calculation of V (r), one finds a
nontrivial contribution at third order in r/R, and

Vtet(r) =
A

R4
xyz , (6.14)

with A = − 20√
3
Ze2. Notice how in all cases the potential transforms according to the trivial representa-

tion Γ1. The decomposition of the 2+ IRREP of O(3) into IRREPs of Td is pretty much identical, because
Td and O are isomorphic. One again has 2+ = E ⊕ T2. With respect to the 12 element group T , one
has s+ = E ⊕ T . Tab. 6.6 indicates how electron shell levels up to l = 4 split in various crystal field
environments. Note again how there is no g or u index on the IRREPs of the proper point groups, since
they do not contain the inversion element I .
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We can compute analytically the energy shifts using the point charge model. For the case of an atomic
d level, we first resolve the d states into combinations transforming according to the E and T2 IRREPs of
O, writing the angular wavefunctions as

dxy(r̂) =
i√
2

{
Y2,−2(r̂)− Y2,2(r̂)

}

dyz(r̂) =
1√
2

{
Y2,−1(r̂) + Y2,1(r̂)

}

dxz(r̂) =
i√
2

{
Y2,−1(r̂)− Y2,1(r̂)

}
,

(6.15)

which transform as T2, and

dx2−y2(r̂) =
1√
2

{
Y2,−2(r̂) + Y2,2(r̂)

}

d3z2−r2(r̂) = Y2,0(r̂) ,
(6.16)

which transform as E. According to the Wigner-Eckart theorem, this already diagonalizes the 5 × 5
Hamiltonian within the atomic d basis, with

ε(Eg) =
〈
dx2−y2

∣∣V (r)
∣∣ dx2−y2

〉
, ε(T2g) =

〈
dxy

∣∣V (r)
∣∣ dxy

〉
. (6.17)

One finds εOCT(Eg) = −4Dq and εOCT(T2g) = +6Dq, with

Dq =
eq 〈r4〉
6a5

, (6.18)

where q = Ze is the ligand charge, a is the distance from the metal ion (where the d electrons live) to the
ligand ions, and 〈r4〉 = 〈Rn2 | r4 |Rn2 〉 is the expectation of r4 with respect to the radial wavefunction
Rnl(r) with l = 2. For the cubic environment, one finds εCUB(Eg) = −8

9×6Dq and εCUB(T2g) = +8
9×4Dq,

while in a tetrahedral environment εTHD(Eg) = −4
9 × 6Dq and εTHD(T2g) = +4

9 × 4Dq. In a tetragonal
environment, one finds

εTTR(Eg) = −4Dq −Ds+ 4Dt

εTTR(B2g) = −4Dq + 2Ds−Dt
εTTR(A1g) = 6Dq − 2Ds− 6Dt

εTTR(B1g) = 6Dq + 2Ds−Dt ,

(6.19)

where

Ds =
2eq

7

(
1

a3
− 1

b3

)
〈r2〉 , Dt =

2eq

21

(
1

a5
− 1

b5

)
〈r4〉 . (6.20)

Fig. 6.5 gives a schematic picture of how an atomic d level splits in various crystalline environments
(D > 0 case is shown).

6.2.5 Matrix elements and selection rules

Recall the Wigner-Eckart theorem,

〈
Γc γ , lc

∣∣ Q̂Γa
α

∣∣Γb β , lb
〉
=
∑

s

(
Γa
α

Γb
β

∣∣∣∣
Γc , s

γ

) 〈
Γc , lc

∥∥ Q̂Γa
∥∥Γb , lb

〉
s

, (6.21)



202 CHAPTER 6. CONSEQUENCES OF CRYSTALLOGRAPHIC SYMMETRY

Oh Td D4h D3 D2h

Lη cubic tetrahedral tetragonal trigonal orthorhombic

0+ (s) A1g A1 A1g A1 A1g

1− (p) T1u T2 A2u ⊕ Eu A2 ⊕ E B2u ⊕ Eu
2+ (d) Eg ⊕ T2g E ⊕ T2 A1g ⊕B1g A1 ⊕ 2E A1g ⊕B1g

⊕B2g ⊕ Eg ⊕B2g ⊕ Eg
3− (f) A2u ⊕ T1u ⊕ T2u A2 ⊕ T1 ⊕ T2 A2u ⊕B1u A1 ⊕ 2A2 A1u ⊕A2u

⊕B2u ⊕ 2Eu ⊕B2u ⊕ 2Eu

4+ (g) A1g ⊕ Eg A1 ⊕ E 2A1g ⊕A2g ⊕B1g 2A1 ⊕A2 ⊕ 3E 2A1g ⊕A2g ⊕B1g

⊕T1g ⊕ T2g ⊕T1 ⊕ T2 ⊕B2g ⊕ 2Eg ⊕B2g ⊕ 2Eg

Table 6.6: Splitting of one-electron levels in crystal fields of different symmetry.

where lb,c labels different subspaces transforming according to the Γb,c IRREPs of the symmetry group

G, and s is the multiplicity index necessary when G is not simply reducible. Operators Q̂ such as the
Hamiltonian transform according to the trivial representation, in which case

〈
Γc γ , lc

∣∣ Q̂
∣∣Γb β , lb

〉
= δΓb Γc

δβγ
〈
Γc , lc

∥∥ Q̂
∥∥Γb , lb

〉
, (6.22)

where 〈
Γc , lc

∥∥ Q̂
∥∥Γb , lb

〉
=

1

dΓb

∑

β

〈
Γb β , lc

∣∣ Q̂
∣∣Γb β , lb

〉
. (6.23)

In order that
(
Γa
α

Γb
β

∣∣∣ Γc ,s
γ

)
6= 0, we must have Γc ⊂ Γa × Γb , i.e.

nΓc
(Γa × Γb) =

1

NG

∑

C
NC χ

Γ ∗
c (C)χΓa(C)χΓb(C) (6.24)

must be nonzero. Equivalently, the condition may be stated as Γb ⊂ Γ ∗
a × Γc or Γa ⊂ Γ ∗

b × Γc .

Let’s apply these considerations to the problem of radiative transitions in atoms. We follow the treat-
ment in chapter 3 of Lax, following a brief review of quantum radiation theory. The single electron
Hamiltonian is

Ĥ =
1

2m

(
p+

e

c
A
)2

+ V (r) + gµBH · s/~+
1

2m2c2
s ·∇V ×

(
p+ e

cA
)

, (6.25)

where A is the vector potential of the electromagnetic field, V (r) is the scalar potential due to the ionic
nucleus, and s = 1

2~σ is the electron spin operator. µB = e~
2mc = 5.788×10−9 eV/G is the Bohr magneton,

and g = 2 + α
π +O(α2) with α = e2

~c ≈ 1
137 is the so-called g-factor5, which is g = 2 at ”tree level” within

5Like, duh.
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E C2 C3 C4 C6 I σ S6 S4 S3

1− (P ) 3 −1 0 1 2 −3 1 0 −1 −2
1+ (M ) 3 −1 0 1 2 3 −1 0 1 2

Table 6.7: Characters for the electric and magnetic dipole operators.

quantum electrodynamics6. The last term above is due to the spin-orbit interaction and we will neglect
the contribution ofA therein. The quantized electromagnetic field is described by the vector potential7

A(r) =
∑

k,λ

√
2π~c

V |k|
(
akλ e

−ik·r ê∗λ(k) + a†kλ e
ik·r êλ(k)

)
, (6.26)

where êλ(k) is the polarization vector, with
{
ê1(k) , ê2(k) , k̂

}
an orthonormal triad for each k.

The matrix element one must compute is that of p ·A(r), where p is the electron momentum and A(r)
is the quantized electromagnetic vector potential. Writing A(r) as the above Fourier sum, we need to
evaluate 〈

0
∣∣ e−ik·r p · ê∗λ(k)

∣∣n
〉

, (6.27)

where the atomic transition is from |n 〉 to the ground state | 0 〉, k is the wavevector of the emitted
photon, and êλ(k) is the photon polarization vector (with λ the polarization index). If kaB ≪ 1, we may
approximate e−ik·r ≈ 1, and we then need the matrix element of

ê∗λ(k) ·
〈
0
∣∣p
∣∣n
〉
=
m

i~
(En − E0) ê

∗
λ(k) ·

〈
0
∣∣ r
∣∣n
〉

. (6.28)

If the states | 0 〉 and |n 〉 are of the same parity, then the transition is forbidden within the electric dipole
approximation, and one must expand exp(−ik · r) = 1− ik · r − 1

2 (k · r)2 + . . . to next order, i.e. to the
magnetic dipole and electric quadrupole terms. Magnetic dipole transitions involve the matrix element
k × ê∗λ(k) · 〈 0 | l + 2s |n 〉, where l = r × p and s is the electron spin. Summing over all the electrons in
the unfilled shell, we have the electric and magnetic dipole operators,

P = e
∑

i

ri , M =
e~

2mc

∑

i

(li + 2si) . (6.29)

We see that these operators transform as an axial vector (P , or 1−) and a pseudovector (M , or 1+),
respectively. This has profound consequences for the allowed matrix elements.

Site group C3v

Lax8 considers the case of an ion in an environment with a C3v site group. The characters for the vector
and pseudovector representations of the P and M operators are given in Tab. 6.7. Consulting the

6Radiative corrections to gtree = 2 may be cast in the form of an asymptotic power series in the fine structure constant α =
e2/~c ≈ 1

137
.

7See, e.g., J. J. Sakurai, Advanced Quantum Mechanics, §2.3.
8See the subsection ”Dipole Radiation Selection Rules” on pp. 88-89 in Lax, Symmetry Principles.
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character table for C3v (Tab. 2.1), we decompose their respective O(3) IRREPs 1∓ into C3v IRREPs, and
find 1− = A1 ⊕E and 1+ = A2 ⊕E, with Pz transforming as A1 and Px,y as E. Similarly, Mz transforms
as A2 and Mx,y as E. We now need to know how the products of the C3v IRREPs decompose, which
is summarized in Tab. 6.9. Since A1 × A2 = A2 × A1 = A2, and we see that no component of P can
have a nonzero matrix elements between these corresponding IRREPs, i.e. 〈A1 |P |A2 〉 = 0. Similarly,
since A1 × A1 = A2 × A2 = A1, we have 〈A1 |M |A1 〉 = 〈A2 |M |A2 〉 = 0. Further restrictions apply
when we consider the longitudinal (Qz) and transverse (Qx,y) parts of these operators, and we find that
〈Ai |Qz |E 〉 = 〈Ai |Qx,y |Aj 〉 = 0 whereQ is either P orM , for all i and j.

Site group D3d

Now consider the problem of dipole radiation in a D3d environment. haracter table for D3d, including
the decomposition of the P and M representations, is provided in Tab. 6.8. Unlike C3v , the group D3d

contains the inversion I , hence its IRREPs are classified as either g or u, according to whether χΓ (I) =
±dΓ . From Tab. 6.8, we find 1− = A2u ⊕ Eu and 1+ = A2g ⊕ Eg . Next, we decompose the products of
the D3d IRREPs, in Tab. 6.9, and we obtain 1− = A2u ⊕ Eu and 1+ = A2g ⊕ Eg . Since I commutes with

D3d E 2C3 3C ′
2 I 2IC3 3IC ′

2

A1g 1 1 1 1 1 1

A2g 1 1 −1 1 1 −1
Eg 2 −1 0 2 −1 0

A1u 1 1 1 −1 −1 −1
A2u 1 1 −1 −1 −1 1

Eu 2 −1 0 −2 1 0

1− (P ) 3 0 −1 −3 0 1 A2u ⊕ Eu
1+ (M ) 3 0 −1 3 0 −1 A2g ⊕ Eg

Table 6.8: Character table for D3d.

all group elements, its eigenvalue is a good quantum number, and accordingly 〈Γg |M |Γ ′
u 〉 = 0 for

any IRREPs Γg and Γ ′
u , since M is even under inversion and can have no finite matrix element between

states of different parity. Similarly, P is odd under inversion, so 〈Γg |P |Γ ′
g 〉 = 〈Γu |P |Γ ′

u 〉 = 0. Again,
matrix elements of the longitudinal and transverse components are subject to additional restrictions,
and the general rule is that some IRREP Γa contained in the decomposition of a given operator Q̂ must
also be contained in the decomposition of the product representation Γ ∗

b × Γc in order that 〈Γc | Q̂ |Γb 〉
be nonzero9.

9Note how we are using an abbreviated notation |Γ 〉 for the more complete |Γ µ , l 〉.
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C3v A1 A2 E

A1 A1 A2 E

A2 A2 A1 E

E E E A1 ⊕A2 ⊕E
D3d A1g A2g Eg A1u A2u Eu

A1g A1g A2g Eg A1u A2u Eu

A2g A2g A1g Eg A2u A1u Eu

Eg Eg Eg A1g ⊕A2g ⊕ Eg Eu Eu A1u ⊕A2u ⊕ Eu
A1u A1u A2u Eu A1g A2g Eg

A2u A2u A1u Eu A2g A1g Eg

Eu Eu Eu A1u ⊕A2u ⊕ Eu Eg Eg A1g ⊕A2g ⊕ Eg

Table 6.9: Decomposition of products of IRREPs in C3v and D3d. Red entries indicate cases where
〈Γ |P |Γ ′ 〉 = 0 for all components of P , and blue entries where 〈Γ |M |Γ ′ 〉 = 0 for all components of
M , where Γ and Γ ′ are the row and column IRREP labels, respectively. Additional constraints apply to
matrix elements of the longitudinal (z) and transverse (x, y) components individually (see text).

6.2.6 Crystal field theory with spin

Thus far we have considered how the 2l + 1 states in a single-electron orbital of angular momentum l,
which form an IRREP of O(3), split in the presence of a crystal field and reorganize into IRREPs of the
local site group, according to Eqn. 6.1. This formalism may be applied to many-electron states described
by terms 2S+1LJ , provided J ∈ Z. Or it may be applied to terms on the basis of their L values alone,
if we neglect the atomic spin-orbit coupling which is the basis of Hund’s third rule. In this section, we
consider term splitting in more detail, exploring how it can be approached either from the strong spin-
orbit coupling side or the strong crystal field potential side. We shall show how a given term 2S+1LJ
may be analyzed by either of the following procedures:

(i) First decompose the spin S and angular momentum L multiplets into IRREPs Γa(S) and Γb(L) of
P(r), respectively. Then decompose the products Γa(S)× Γb(L), again into IRREPs of P(r). This is
appropriate when VCF ≫ VRS , where VCF is the scale of the crystal field potential, and VRS the scale
of the atomic Russell-Saunders L-S coupling.

(ii) First decompose 2S+1L within O(3) into IRREPs according to their total angular momentum J .
Then decompose these O(3) IRREPs into IRREPs of P(r). This is appropriate when VRS ≫ VCF .

We illustrate the salient features by means of two examples.
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Figure 6.6: Decomposition of the 5D states of Cr++ into IRREPs of O.

Cr++ in a cubic environment

The first is that of the Cr++ ion, whose electronic configuration is [Ar] 4s0 3d4. The ground state term in
free space is 5D0 , i.e. S = L = 2. According to Tab. 6.5, each of these degenerate multiplets, for both
spin and angular momentum, decomposes as D = E ⊕ T2 within O. Thus,

5D = ΓS=2 × ΓL=2 =
(
E ⊕ T2

)
×
(
E ⊕ T2

)
= E × E ⊕ E × T2 ⊕ T2 × E ⊕ T2 × T2 . (6.30)

Appealing again to the character table for O, from Eqn. 6.1 we compute

E × E = A1 ⊕A2 ⊕ E
E × T2 = T2 ⊗ E = T1 ⊕ T2

T2 × T2 = A1 ⊕ E ⊕ T1 ⊕ T2 .

(6.31)

The resulting tally of O IRREPs and their multiplicities:

5D = 2A1 ⊕A2 ⊕ 2E ⊕ 3T1 ⊕ 3T2 . (6.32)
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T ′
d E E 8C3 8C3

3C2

3C2
6S4 6S4

6σd
6σd

O′ E E 8C3 8C3
3C2

3C2
6C4 6C4

6C′
2

6C
′
2

O′ basis T ′
d basis

∆1 = A1 1 1 1 1 1 1 1 1 r2 r2 or xyz

∆2 = A2 1 1 1 1 1 −1 −1 −1 xyz Lx Ly Lz

∆12 = E 2 2 −1 −1 2 0 0 0
{√

3 (x2−y2) , 3z2−r2
} {√

3 (x2−y2) , 3z2−r2
}

∆15 = T1 3 3 0 0 −1 1 1 −1
{
Lx , Ly , Lz

} {
Lx , Ly , Lz

}

∆25 = T2 3 3 0 0 −1 −1 −1 1
{
yz , zx , xy

} {
x , y , z

}

∆6 2 −2 1 −1 0
√
2 −

√
2 0

{
| 12 , ±1

2 〉
} {

| 12 , ±1
2 〉
}

∆7 2 −2 1 −1 0 −
√
2

√
2 0

{
xyz ⊗ | 12 , ±1

2 〉
} {

Lx Ly Lz ⊗ | 12 , ±1
2 〉
}

∆8 4 −4 −1 1 0 0 0 0
{
| 32 , m 〉

} {
| 32 , m 〉

}

Γ1/2 2 −2 1 −1 0
√
2 −

√
2 0 ∆6

Γ3/2 4 −4 −1 1 0 0 0 0 ∆8

Γ5/2 6 −6 0 0 0 −
√
2

√
2 0 ∆7 ⊕∆8

Γ7/2 8 −8 1 −1 0 0 0 0 ∆6 ⊕∆7 ⊕∆8

Γ9/2 10 −10 −1 1 0
√
2 −

√
2 0 ∆6 ⊕ 2∆8

∆8 ×∆2 4 −4 −1 1 0 0 0 0 ∆8

∆8 ×∆15 12 −12 0 0 0 0 0 0 ∆6 ⊕∆7 ⊕ 2∆8

∆8 ×∆25 12 −12 0 0 0 0 0 0 ∆6 ⊕∆7 ⊕ 2∆8

Table 6.10: Character table for the double groups O′ and T ′
d .

Note that a sum of their dimensions yields 2 + 1 + 4 + 9 + 9 = 25, which of course is consistent with
S = 2 and L = 2. Now let’s approach this from the spin-orbit side. That is, we first multiply the S = 2
and L = 2 IRREPs within O(3), yielding

2× 2 = 0⊕ 1⊕ 2⊕ 3⊕ 4 . (6.33)

A check of the bottom half of Tab. 6.5 reveals that this once again results in the same final tally of O
IRREPs. This situation is illustrated in Fig. 6.6.
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Figure 6.7: Decomposition of the 4F states of Co++ into IRREPs of the double group O′.

Co++ in a cubic environment

Next, consider the case of Co++, whose ground state term is 4F9/2 , corresponding to S = 3
2 and L = 3.

We first ignore spin-orbit, and we decompose the L = 3 multiplet of O(3) as F = A2 ⊕ T1 ⊕ T2. We
adopt the alternate labels ∆2, ∆15, and ∆25 for these IRREPs of O (see Tab. 6.1010) because we will need
to invoke the double group O′ and its IRREPs presently. We next decompose the S = 3

2 spin component,
and here is where we need the double group O′ and its IRREPs. We see from the table that Γ3/2 = ∆8.

We now must decomposing the product representations of the double group O′, and we find

∆8 ×∆2 = ∆8

∆8 ×∆15 = ∆6 ⊕∆7 ⊕ 2∆8

∆8 ×∆25 = ∆6 ⊕∆7 ⊕ 2∆8 .

(6.34)

Therefore we conclude
4F = 2∆6 ⊕ 2∆7 ⊕ 5∆8 . (6.35)

Since ∆6 and ∆7 are two-dimensional, and ∆8 is four-dimensional, the total dimension of all the terms
in 4F is 2× 2 + 2× 2 + 4× 5 = 28 = (2S + 1)(2L + 1), with S = 3

2 and L = 3.

10Tab. 3.6.2 on p. 95 of Lax contains a rare error: χΓ5/2(6C4) = −
√
2 while χΓ9/2(6C4) = +

√
2 .
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Had we first decomposed into O(3) IRREPs, writing

3
2 × 3 = 3

2 ⊕ 5
2 ⊕ 7

2 ⊕ 9
2 , (6.36)

and decomposing these half-odd-integer spin IRREPs of O(3) into double group IRREPs of O′, we have

Γ3/2 = ∆8

Γ5/2 = ∆7 ⊕∆8

Γ7/2 = ∆6 ⊕∆7 ⊕∆8

Γ9/2 = ∆6 ⊕ 2∆8 .

(6.37)

Again we arrive at the same crystal field levels as in Eqn. 6.35, now labeled by IRREPs of the double
group O′. The agreement between the two procedures is shown in Fig. 6.7.

Figs. 6.6 and 6.7 are not intended to convey an accurate ordering of energy levels, although in each case
the ground state 2S+1LJ term is placed on the bottom right. Due to level repulsion (see §3.2.6), multiplets
corresponding to the same IRREP cannot cross as the ratio of VCF to VRS is varied. Note how in Fig. 6.6
there is level crossing, but between different IRREPs.

Dominant crystal field

We have seen how accounting for crystal field splittings either before or after accounting for spin-orbit
coupling yields the same set of levels classified by IRREPs of the local site group. Our starting point
in both cases was the partial term 2S+1L, where S and L are obtained from Hund’s first and second
rules, respectively. Phenomenologically, we can think of Hund’s first rule as minimizing the intraatomic
ferromagnetic exchange energy −JH S

2, where S is the total atomic spin. What happens, though, if VCF

is so large that it dominates the energy scale JH? Consider, for example, the case of Co4+, depicted in
Fig. 6.8. The electronic configuration is [Ar] 4s0 4d5, and according to Hund’s rules the atomic ground
state term is 6S5/2. In a weak crystal field, this resolves into IRREPs of O′ according to Tab. 6.10 : Γ5/2 =

∆7⊕∆8, each multiple of which consists of linear combinations of the original J = S = 5
2 atomic levels.

As shown in the figure, there are three electrons in the T2 orbital and two in the E orbital. The strong
Hund’s rules coupling JH keeps the upper two electrons from flipping and falling into the lower single
particle states. This is the high spin state. If VCF ≫ JH, though, the E electrons cannot resist the energetic
advantage of the T2 states, and the electrons reorganize into the low spin state, with S = 1

2 . Unlike the
high spin state, the low spin state cannot be written as a linear combination of states from the original
ground state term. Rather, one must start with the configuration, which contains

(10
5

)
= 252 states.

After some tedious accounting, one finds these states may be resolved into the following O(3) product
representations

[Ar] 4s0 4d5 = 2I ⊕ 2H ⊕ 4G ⊕ 2G ⊕ 2G ⊕ 4F ⊕ 2F ⊕ 2F

⊕ 4D ⊕ 2D ⊕ 2D ⊕ 2D ⊕ 4P ⊕ 2P ⊕ 6S ⊕ 2S .
(6.38)
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These may be each arranged into full terms by angular momentum addition to form J = L + S, which
yields 2I = 2I13/2 ⊕ 2I11/2 , 4F = 4F9/2 ⊕ 4F7/2 ⊕ 4F5/2 ⊕ 4F3/2 , etc.11 The high spin state came from

the term 6S5/2 . The low spin states must then be linear combinations of the 4D1/2 , 4P1/2 , 2P1/2 , and
2S1/2 terms. These latter states all transform according to the ∆6 IRREP of O′, whereas 6S5/2 = ∆7 ⊕∆8.

Therefore, there must be a level crossing as VCF is increased and we transition from high spin state to
low spin state.

The oxides of Mn, Fe, Cu, and Co are quite rich in their crystal chemistry, as these ions may exist in
several possible oxidation states (e.g. Co2+, Co3+, Co4+) as well as various coordinations such as tetra-
hedral, pyramidal, cubic/octahedral. The cobalt oxides are particularly so because Co may exist in high
spin, low spin, and even intermediate spin states. Co2+ is always in the high spin state T 5

2 E
2 (S = 3

2 ),
while Co4+, which we have just discussed, is usually in the low spin state T 5

2 E
0 (S = 1

2 ). Co3+ exists
in three possible spin states: high (T 4

2 E
2, S = 2), intermediate (T 5

2 E
1, S = 1), and low (T 6

2 E
0, S = 0).

Such a complex phenomenology derives from the sensitivity of VCF to changes in the Co-O bond length
and Co-O-Co bond angle12.

11The full decomposition of the [Ar] 4s0 4d5 configuration into terms is then

[Ar] 4s0 4d5 = 2I13/2 ⊕ 2I11/2 ⊕ 2H11/2 ⊕ 2H9/2 ⊕ 4G11/2 ⊕ 4G9/2 ⊕ 4G7/2 ⊕ 4G5/2 ⊕ 2 · 2G9/2 ⊕ 2 · 2G7/2 ⊕ 4F9/2

⊕ 4F7/2 ⊕ 4F5/2 ⊕ 4F3/2 ⊕ 2 · 2F7/2 ⊕ 2 · 2F5/2 ⊕ 4D7/2 ⊕ 4D5/2 ⊕ 4D3/2 ⊕ 4D1/2 ⊕ 3 · 2D5/2

⊕ 3 · 2D3/2 ⊕ 4P5/2 ⊕ 4P3/2 ⊕ 4P1/2 ⊕ 2P3/2 ⊕ 2P1/2 ⊕ 6S5/2 ⊕ 2S1/2 .

12See B. Raveau and M. M. Seikh, Cobalt Oxides: From Crystal Chemistry to Physics (Wiley, 2012).
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C3 E C3 C2
3 C3v E 2C3 3σv

A 1 1 1 A1 1 1 1

E 1 ω ω2 A2 1 1 −1
E∗ 1 ω2 ω E 2 1 0

P (1−) 3 0 0 A⊕ E ⊕ E∗ P (1−) 3 0 1 A1 ⊕ E
M (1+) 3 0 0 A⊕ E ⊕ E∗ M (1+) 3 0 −1 A2 ⊕ E

Table 6.11: Character tables for C3 and C3v and decomposition of P andM . Here ω = e2πi/3.

6.3 Macroscopic Symmetry

Macroscopic properties of crystals13 are described by tensors. The general formulation is

θa1···ak = T
j1··· jn
a1··· ak

hj1··· jn . (6.39)

where θa1··· ak
is an observable, hj1··· jn is an applied field, and T

j1··· jn
a1··· ak

is a generalized susceptibility tensor.

The rank of a tensor is the number of indices it carries. Examples include dielectric response, which is a
second rank tensor:

Dµ(k, ω) = εµν(k,ω)Eν(k, ω) . (6.40)

Nonlinear response such as second harmonic generation is characterized by a rank three tensor,

D(2)
µ (2ω) = χµνλ(2ω, ω, ω)Eν(ω)Eλ(ω) . (6.41)

Another example comes from the theory of elasticity, where the stress tensor σαβ(r) is linearly related to
the local strain tensor εµν(r) by a fourth rank elastic modulus tensor Cαβµν ,

σαβ(r) = Cαβµν εµν(r) . (6.42)

We shall discuss the elastic modulus tensor in greater detail further below.

These various tensors must be invariant under all point group operations, a statement known as Neu-
mann’s principle. Note that this requires that the symmetry group Y of a given tensor T must contain the
crystallographic point group, i.e. P ⊂ Y, but does not preclude the possibility that Y may contain ad-
ditional symmetries. One might ask what happens in nonsymmorphic crystals, when the space group
is generated by translations and by elements

{
g
∣∣ τg

}
with τg 6= 0. The answer is that macroscopic

properties of crystals cannot depend on these small translations within each unit cell.

6.3.1 Ferroelectrics and ferromagnets

A crystal may also exhibit a permanent electric (P ) or magnetic (M ) polarization. Any such vector must
be invariant under all point group operations, i.e. P = ĝP ∀ g ∈ P, with the same holding for M 14. In

13See C. S. Smith, Solid State Physics 6, 175 (1958) for a review.
14We write ĝP for the action of the group operation g on the quantity P .
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P (1−) C1 C2 C3 C4 C6 Cs C2v C3v C4v C6v

1 2 3 4 6 m mm2 3m 4mm 6mm

M (1+) C1 C2 C3 C4 C6 Ci C2h S6 C4h C6h

1 2 3 4 6 1 2/m 3 4/m 6/m

Table 6.12: Point groups supporting ferroelectricity and ferromagnetism.

component notation, we have
(ĝP )ν = PµDµν(g) , (6.43)

where Dαβ(g) is the matrix representation of g. Clearly any point group P which contains the inversion
element I does not allow for a finite polarization, since Dµν(I) = −δµν .

If Ψ is the (generally reducible) representation under which P orM or indeed any susceptibility tensor

X
j1··· jn
a1··· ak

transforms, then the number of real degrees of freedom associated with the tensor is the number

of times it contains the trivial IRREP of P, i.e. the number of degrees of freedom is

n(Ψ) =
1

NG

∑

C
NC χ

Ψ (C) . (6.44)

Recall that χ(C) = 1 for all classes in the trivial representation. Examining the character tables for C3

and C3v, we see that n(1±) = 1 in C3, but in C3v we have n(1−) = 1 but n(1+) = 0. We conclude that any
crystal with a nonzero magnetization density M 6= 0 cannot be one of C3v symmetry. In general, the
condition for a point group to support ferroelectricity is that it be polar, i.e. that it preserve an axis, which
is the axis along which P lies. Of the 32 crystallographic point groups, ten are polar. The cyclic groups
Cn support ferromagnetism, and since 1+ is even under inversion, adding I to these groups is also
consistent with finite M . For all point groups other than those listed in Tab. 6.12, we have n(1±) = 0.
For example, in D3d, we found 1± = A2± ⊕ E± (see Tab. 6.8). In Oh, we found 1± = T1± (see Tab. 6.5
and add ± = g/u when inversion is present). In neither case is the trivial representation present in the
decomposition. Note that Cs

∼= C1v.

If we orient the symmetry axis of these groups along ẑ, we find, upon using the character tables and the
decomposition formula in Eqn. 6.44,

P (C1) =



Px
Py
Pz


 , P (Cs) =



Px
Py
0


 , P (Cn>2 , Cn>2 v) =




0
0
Pz


 (6.45)

and

M(C1) =



Mx

My

Mz


 , M(Ci) =



Mx

My

Mz


 , M(Cn>2 , Cn>2 × Ci) =




0
0
Mz


 , (6.46)

with P =M = 0 in the case of all other groups.
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6.3.2 Spontaneous symmetry breaking

Homage to Socrates, Galileo, Coleman, and Zee:

Sagredo : This thing you have demanded, i.e. that ĝM =M for all point group operations g ∈ P,
I fear is asking too much. For I learned in Professor McX’s class about the wondrous phenomenon
of spontaneous symmetry breaking, the whole point of which is that as a parameter is varied, if our
crystal be in the thermodynamic limit, the symmetry of the ground state may indeed become lower
than that of the Hamiltonian itself. Should not we then expect ĝM 6= M when g corresponds to
the action of one of the so-called broken generators of the symmetry group?

Salviati : Thou hast learnt well, and McX ought be well pleased by your understanding. But thy
question contains the seeds of its own answer. For surely the symmetry group of the Hamiltonian,
that which describes all the particles in a crystal, is indeed that most sublime and continuous group
O(3), appended, if need be, by the SU(2) of spin. The very fact that a crystal hath a point group
P with symmetry lower than that of O(3) heralds the spontaneous symmetry breaking which re-
sulted in that crystalline phase in the first place. When we demand ĝM =M for all g ∈ P, we are
saying that a spontaneous momentM is consistent only with certain point groups.

Sagredo : Master, thou didst remove the scales from before my eyes, that I might see what the
gods have ordained! For if a spontaneous moment P or M were to develop felicitously in a
crystal, it would, through electroelastic or magnetoelastic couplings, by necessity induce some
small motions of the ions. Thus, any transition where a spontaneous polarization or magnetization
ensues must be concomitant with a structural deformation if the high symmetry phase doth not
permit a finite P orM .

Salviati : Indeed it is so. Your words are excellent.

Sagredo : And therefore, a material of the cubic affiliation, such as iron, whose point group ab-
horeth a spontaneous magnetization, is held accurs’d, for it could never become a ferromagnet. . .

Salviati : Well, um. . .you see. . .

Simplicio : I’m hungry. Let’s get sushi.

Simplicio has pulled Salviati’s chestnuts out of the fire with his timely suggestion, but to Sagredo’s last
point, it is generally understood that a tetragonal deformation in α-Fe must accompany its ferromagnetic
transition at TC = 1043K. However, the resulting value of (c − a)/a is believed to be on the order of
10−6, based on magnetostriction measurements15, which is to say a shift in the c-axis length by a distance
smaller than a nuclear diameter. So far as I understand, the putative tetragonal distortion is too weak to
be observed at present16.

15See E. du Tremolet et al., J. Mag. Magn. Mat. 31, 837 (1983).
16In fact, since D4h does not accommodate a nonzero M , the ferromagnetic phase of α-Fe must have C4h symmetry, which

is not a holohedral point group. I.e. α-Fe below TC is either not a Bravais lattice, or its crystallographic symmetry is further
broken down to monoclinic, i.e. C2h.
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6.3.3 Pyroelectrics, thermoelectrics, ferroelectrics, and piezoelectrics

Let’s just get all this straight right now, people:

• Pyroelectric : A pyroelectric material possesses a spontaneous polarization P below a critical tem-
perature Tc. This is due to the formation of a dipole moment pwithin each unit cell of the crystal.
The Greek root pyr- means ”fire”, and the pyroelectric coefficient is defined to be γ = dP /dT .
In the presence of an external electric field E, one has P = P ind + Ps , where P ind = χE is the
induced polarization, with χ the polarization tensor, and Ps is the spontaneous polarization. One then
has γ = dPs/dT . We regard γ as a rank one tensor, since T is a scalar. Pyroelectric crystals were
known to the ancient Greeks, and in the 18th century it was noted that tourmaline crystals develop
charges at their faces upon heating or cooling.

• Thermoelectric : The thermoelectric effect is the generation of an electric field due in a sample with
a fixed temperature gradient. One has E = ρj +Q∇T , where E = −∇(φ− e−1µ) is the gradient of
the electrochemical potential and j is the electrical current. The response tensors ρ and Q are the
electrical resistivity and the thermopower (also called the Seebeck coefficient), respectively. The units
of thermopower are kB/e, and Q has the interpretation of the entropy carried per charge.

Note that despite the similarity in their names (thermo- is the Greek root for ”heat”), thermoelec-
tricity and pyroelectricity are distinct phenomena. In a pyroelectric, the change in temperature ∆T
is uniform throughout the sample. A change in temperature will result in a change of the dipole
moment per cell, and the accumulation of surface charges and a potential difference which grad-
ually decays due to leakage. Almost every material, whether a metal or an insulator, whether or
not a polar crystal, will exhibit a thermoelectric effect17. The electric field will remain so long as
the temperature gradient ∇T is maintained across the sample.

• Ferroelectric : For our purposes, there is no distinction between a ferroelectric and a pyroelectric.
However, in the literature, the distinction lies in the behavior of each in an external electric field
E. The spontaneous polarization Ps of a ferroelectric can be reversed by the application of a
sufficiently strongE field. In a pyroelectric, this coercive field exceeds the breakdown field, so the
dipole reversal cannot be accomplished. In a ferroelectric, the dipole moment can be reversed.

• Piezoelectric : Piezoelectricity occurs in 20 of the 21 noncentrosymmetric crystallographic point
groups, the exception being the cubic groupO (432). The polarization of a piezoelectric is changed
by applying stress: ∆Pµ = dµνλ σνλ, where ∆P = P − Ps and σνλ is the stress tensor. We shall
discuss the piezoelectric tensor dµνλ more below. The hierarchy of these phenomena is then

ferroelectric ⊂ pyroelectric ⊂ piezoelectric ,

with thermoelectricity being unrelated to the other three.

The Ginzburg-Landau free energy for an isotropic pyroelectrics or ferroelectrics is modeled by

f(P,E) = f0 + aP 2 + bP 4 + cP 6 − EP , (6.47)

17The exception is the case of superconductors, which have zero Seebeck coefficient because the Cooper pairs carry zero en-
tropy.
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where E = E · n̂ is the projection of the external electric field along the invariant axis of the
pyroelectric’s point group, a ∝ T − Tc , and c > 0. If b > 0 the transition at T = Tc is second order,
while if b < 0 the second order transition is preempted by a first order one at a = 3

16 (b
2/c). But

what do we mean by P in eqn. 6.47? If the high symmetry (i.e. P = 0 when E = 0) crystalline
phase is of cubic symmetry, we should write

f(P ,E) = f0 + a(P 2
x + P 2

y + P 2
z ) + b1(P

4
x + P 4

y + P 4
z ) + b2(P

2
xP

2
y + P 2

yP
2
z + P 2

xP
2
z )

+ c1(P
6
x + P 6

y + P 6
z ) + c2(P

4
xP

2
y + P 4

xP
2
z + P 4

y P
2
x + P 4

y P
2
z + P 4

z P
2
x + P 4

z P
2
y )

+ c3P
2
xP

2
y P

2
z −E · P +O(P 8) .

(6.48)

Ferroelectricity in barium titanate

A parade example of ferroelectricity is barium titanate depicted in Fig. 6.9. BaTiO3 has four structural
phases:

(i) a high temperature cubic phase (C) for T >∼ 393K

(ii) an intermediate temperature tetragonal phase (T) for T ∈ [∼ 282K , ∼ 393K]

(iii) a second intermediate temperature orthorhombic phase (O) for T ∈ [∼ 183K , ∼ 282K]

(iv) a low temperature rhombohedral (trigonal) phase (R) for T <∼ 183K.

All but the high temperature cubic phase exhibit ferroelectricity, i.e. spontaneous polarization which
may be reversed by the application of an external electric field. These phases have traditionally been

Ti
4+

Ba
2+

O
2−

Figure 6.9: High temperature cubic perovskite crystal structure of BaTiO3. Ba2+ sites are in green, Ti4+

in blue, and O2− in red. The yellow arrow shows the direction in which the Ti4+ ion moves as the
material is cooled below Tc within the displacive model. Image credit: Wikipedia.
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understood in terms of the displacement of the Ti4+ ion within each unit cell. In the cubic phase, each
Ti4+ ion sits in the center of an oxygen octahedron, and the free energy density from eqn. 6.48 is fC = f0 .
The three ordered phases have P = P n̂, where n̂C = (0, 0, 1), n̂O = 1√

2
(0, 1, 1), and n̂R = 1√

3
(1, 1, 1).

Each of these phases is described by a sixth order Landau free energy of the form of eqn. 6.47, with

bT = b1 , bO = 1
2b1 +

1
4b2 , bR = 1

3b1 +
1
3b2 (6.49)

and

cT = c1 , cO = 1
2c1 +

1
2c2 , cR = 1

9c1 +
2
9c2 +

1
27c3 . (6.50)

Minimizing the free energy in phase j ∈ {T,O,R} yields the equation a + 2bjP
2
j + 3cjP

4
j = 0, with

solution

Pj(T ) =
−bj +

√
b2j − 3acj

3cj
, (6.51)

where a = α(T − Tc) and Tc ≈ 393K. The free energy in phase j is then obtained by substituting the
result for P = Pj into fj(T ) = f0 + ajP

2 + bjP
4 + cjP

6.

Provided bT > bO and bR, the second order transition at a = 0 (i.e. T = Tc) is from cubic to tetragonal.
As one lowers the temperature further, one encounters two first order transitions, first from tetragonal
to orthorhombic, and second from orthorhombic to rhombohedral (trigonal)18. These transitions occur
at temperatures where fT(T

′
c) = fO(T

′
c) and fO(T

′′
c ) = fR(T

′′
c ).

The standard displacive model of ferroelectricity in BaTiO3 is unable to explain several experiments,
however. In the displacive model the high temperature cubic phase has point group Oh. This would
mean that first order Raman scattering is forbidden, because, as we shall see below in §6.4.3, Raman
scattering preserves parity, and thus the low energy, odd parity long wavelength phonons are all Ra-
man inactive. Yet a healthy first order Raman signal is observed19. A second problem is that one expects
on general grounds soft modes with frequencies tending toward zero as one approaches a second order
phase transition. Yet experiments show damped but finite frequency modes at the cubic to tetragonal
transition20. Finally, aspects of the observed x-ray scattering are difficult to understand within the dis-
placive model. In particular , x-ray fine structure measurements show in all phases that the Ti4+ ions
are displaced along different 〈111〉 directions21. In 2006, Zhang, Cagin, and Goddard22 (ZCG) presented
results from a density functional calculation the results of which differed from those of the displacive
model. Rather than an undistorted cubic phase, ZCG found that the C phase is antiferroelectric, with a
2× 2× 2 unit cell (see Fig. 6.10). In the T and O phases, there is mixed ferroelectric and antiferroelectric
order, and only in the R phase is the material purely ferroelectric. The associated space and point group
symmetries are listed in tab. 6.13.

Note that while C4v is a subgroup of Oh , it is not a subgroup of Td. Thus, the C to T transition is
predicted to be first order according to ZCG. Their identification of the symmetries of the various phases
also resolves the aforementioned difficulties in reconciling the displacive model with experimental data.

18Within Landau theory, the order of the transitions will depend on details of the Landau parameters.
19A. M. Quittet and M. Lambert, Solid State Comm. 12, 1053 (1973).
20Y. Luspin, J. L. Servoin, and F. Gervais, J. Phys. C Solid State 13, 3761 (1980).
21B. Ravel et al., Ferroelectrics 206, 407 (1998).
22Q. Zhang, T. Cagin, and W. A. Goddard III, Proc. Natl. Acad. Sci. 103, 14695 (2006).
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displacive model DFT results

phase S P S P

cubic Pm3m m3m = Oh I43m 43m = Td

tetrahedral P4mm 4mm = C4v I4cm 4mm = C4v

orthorhombic Amm2 mm2 = C2v Pmn21 mm2 = C2v

rhombohedral R3m 3m = C3v R3m 3m = C3v

Table 6.13: Phases of BaTiO3 and their space and point groups.

Figure 6.10: Fig. 1 from Zhang, Cagin, and Goddard (2006) showing Ti4+ ion distortions and polariza-
tions in BaTiO3, as determined from density functional calculations.
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6.3.4 Second rank tensors : conductivity

The conductivity σµν and dielectric susceptibility εµν are examples of second rank tensors, i.e. matrices,

which relate a vector cause (E) to a vector effect (j orD)23. The action of a group element g on a second
rank tensor Tµν is given by

(ĝ T )αβ = Tµν Dµα(g)Dνβ(g) . (6.52)

Thus the tensor Tµν transforms according to the product representation Ψ(G) = D(G) × D(G). Recall
that product representations were discussed earlier in §2.4.7 and §3.2.

The product representation can be reduced to the symmetric (S) and antisymmetric (A) representations,
which themselves may be further reduced within a given symmetry group G. Recall the characters in
these representations are given by (see §3.2.2)

χS,A(g) = 1
2

[
χ(g)

]2 ± 1
2 χ(g

2) . (6.53)

Note that any equilibrium thermodynamic response function Tµν = −∂2F/∂hµ ∂hν , where h is an ap-

plied field, will necessarily transform according to the symmetric product representation ΨS. The num-
ber of independent components of a general response tensor will then be given by

n(ΨS,A) =
1

NG

∑

C
NC χ

S,A(C) . (6.54)

Let’s work this out for the group C3v, the vector representation 1− of which has characters χ(E) = 3,
χ(2C3) = 0, and χ(3σv) = 1 (see Tab. 6.11). From these values, we obtain

χS(E) = 6 , χS(2C3) = 0 , χS(3σv) = 2 (6.55)

χA(E) = 3 , χA(2C3) = 0 , χA(3σv) = −1 , (6.56)

and we then compute n(ΨS) = 2 and n(ΨA) = 0. The full decomposition into C3v IRREPs is found to be
ΨS = 2A1 ⊕ 2E and ΨA = A2 ⊕E. We conclude that the most general symmetric tensor invariant under
C3v is of the form diag(a, a, c), where ẑ is the symmetry axis. The antisymmetric component vanishes
entirely, because ΨA = 1+ does not contain the trivial A1 IRREP. However, note that nA2

(ΨA) = 1, which

means that the tensor

T =



a d 0
−d a 0
0 0 c


 (6.57)

is permissible with nonzero a, c, and d if and only if a and c transform as A1 and d transforms as A2 . For
example, the conductivity tensor may be of the form

σ =



σ⊥(Hz) f(Hz) 0
−f(Hz) σ⊥(Hz) 0

0 0 σ‖(Hz)


 , (6.58)

where f(Hz) is an odd function of the magnetic field component along the symmetry axis. The quantities
σ⊥ , ‖(Hz) are constants invariant under all C3v operations and are even functions of Hz.

23Of course the dielectric and conductivity tensors are related by εµν(k, ω) = δµν + (4πi/ω) σµν(k, ω).
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elements of Tµν = Tνµ

crystal system 11 22 33 23 31 12

triclinic a b c f e d

monoclinic a b c 0 0 d

orthorhombic a b c 0 0 0

trigonal a a c 0 0 0

tetragonal a a c 0 0 0

hexagonal a a c 0 0 0

cubic a a a 0 0 0

Table 6.14: Allowed nonzero entries of symmetric rank two tensors by crystal system. Crystallographic
axes are assumed.

C3v is a trigonal point group. For the others, the allowed nonzero elements of a symmetric tensor T
are given in Tab. 6.14. Note that cubic symmetry requires that any symmetric rank two tensor be a
multiple of the identity. This means, for example, that the inertia tensor Iαβ , with the origin at the

center of a uniform cube, is a multiple of the identity24, and thus independent of the cube’s orientation.
This entails, for example, that if a cube is used to construct a torsional pendulum, the frequency of the
oscillations will be the same whether the torsional fiber runs through a face center, a corner, an edge
center, or indeed any point on the cube’s surface, so long as it also runs through the cube’s center.

Representation ellipsoid

Given a dimensionless rank two tensor Tµν , one can form the function T (r) = Tµν x
µ xν . The locus of

points r for which T (r) = ±1 is called the representation ellipsoid of Tµν . Clearly any antisymmetric part
of T will be projected out in forming the function T (r) and will not affect the shape of the representation
ellipsoid. In fact, T (r) = ±1 defines an ellipsoid only if all the eigenvalues of T are of the same sign. Else
it defines a hyperboloid. For any real symmetric matrix, the eigenvalues are real and the eigenvectors
are mutually orthogonal, or may be chosen to be so in the case of degeneracies.

For triclinic systems, the ellipsoid axes are under no restriction. For monoclinic systems, one of the
ellipsoid’s axes must be the twofold axis of the crystal. For orthorhombic systems, all three axes of the
ellipsoid are parallel to the crystalline axes. For trigonal, tetragonal, and hexagonal crystals, two of the
eigenvalues are degenerate (see Tab. 6.14), which means that the ellipsoid is a surface of revolution
along the high symmetry axis of the crystal. I.e. the ellipsoid has an O(2) symmetry about this axis.
Finally, for cubic systems, the representation ellipsoid is a sphere S2.

24Iαβ = 1
6
Ma2 δαβ where M is the cube’s mass and a its side length.
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6.3.5 Third rank tensors : piezoelectricity

A common example of a third rank tensor comes from the theory of the piezoelectric effect. An applied
stress σνλ leads to a polarization density Pµ, where

Pµ = dµνλ σνλ , (6.59)

where dµνλ is the piezoelectric tensor. We can immediately say that if the point group P contains the

inversion element I , then dµνλ = 0, because Dµµ′(I) = −δµµ′ and therefore Î dµνλ = −dµνλ.

Since the stress tensor σ is symmetric (see below), it contains six independent elements, the piezoelectric
tensor dµνλ is itself symmetric in its last two indices25, i.e. dµνλ = dµλν . Accordingly one may define the
composite index (νλ)→ a, as defined in the following table:

(νλ) : (11) (22) (33) (23) (31) (12)

a : 1 2 3 4 5 6

Table 6.15: Composite indices for symmetric rank two tensors.

If we then define dµ4 ≡ dµ23 = dµ32 , dµ5 ≡ dµ31 = dµ13 , and dµ6 ≡ dµ12 = dµ21 , we may represent the
tensor multiplication in Eqn. 6.59 as an ordinary matrix multiplication, viz.



P1

P2

P3


 =



d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36







σ1
σ2
σ3
2σ4
2σ5
2σ6




, σ =



σ1 σ6 σ5
σ6 σ2 σ4
σ5 σ4 σ3


 . (6.60)

Note the appearance of a factor of two in the last three elements of the column vector of stresses.

Now let’s consider how the symmetry under a point group P restricts the form of dµa.

• For triclinic crystals with point group C1, there is no restriction, and dµa contains 18 independent
elements. If P = Ci, which contains inversion, then of course dµa = 0 for all (µ, a).

• For monoclinic crystals, the highest symmetry without inversion is Cs, which is generated by the
identity and reflections z → −z. All piezoelectric tensor elements dµνλ in which the index 3(z)
appears an odd number of times must vanish. For the rectangular 3×6 matrix dµa, this means that
the following eight elements vanish by symmetry:

d14 = d15 = d24 = d25 = d31 = d32 = d33 = d36 = 0 . (6.61)

We are left with ten independent piezoelectric constants for the group Cs , which is also a polar
point group, and hence can support ferroelectricity or ferromagnetism. The general form of the

25Thus dµνλ is not the most general rank three tensor possible.
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3× 6 piezoelectric tensor is

dMONO

µa [Cs] =



d11 d12 d13 0 0 d16
d21 d22 d23 0 0 d26
0 0 0 d34 d35 0


 . (6.62)

• For orthorhombic crystals, the only point groups without inversion C2v and D2. Consider first
C2v, in which x → −x and y → −y are symmetries, though not z → −z26. The only nonzero
piezoelectric tensor elements are those with an even number of indices of 1(x) and 2(y), which
means that only five elements of dµa may be nonzero, and the general form for dµa within C2v is

dORTHO

µa [C2v ] =




0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0


 . (6.63)

Note that C2v is polar. For D2, which is nonpolar, the only nonzero elements are d14 , d25 , and d36 .

• For tetragonal crystals, the highest symmetries not containing inversion areD2d ,C4v ,D4 , andC4h.
Consider the case D2d. Any point (x, y, z) has symmetry-related images at (−x,−y, z), (y, x, z),
and (x,−y,−z), which allows only for two independent nonzero piezoelectric tensor elements:
d14 = d25 and d36 . The group D2d is nonpolar. For D4, there is only one independent nonzero
element: d14 = −d25. The lowest point group symmetry in the tetragonal system is C4, which
relates (x, y, z) to (−y, x, z). This allows for the four independent nonzero piezoelectric tensor
elements:

dTET

µa [C4] =




0 0 0 d14 d15 0
0 0 0 d15 −d14 0
d31 d31 d33 0 0 0


 . (6.64)

Reducing the symmetry to C4v eliminates d14, and there are only three independent moduli. For
S4, relative toC4, we have d32 = −d31, we lose d33 but gain d36, so again there are four independent
moduli.

• For trigonal crystals, the highest symmetry noncentrosymmetric point group is D3 The imple-
mentation of the symmetry restrictions here is a little bit more involved because of the threefold
rotations and is left as an exercise to the student. There are three independent piezoelectric coeffi-
cients:

dTRIG

µa [D3] =



d11 −d11 0 d14 0 0
0 0 0 0 −d14 −2d11
0 0 0 0 0 0


 . (6.65)

The lowest within the trigonal class is C3, for which there are six independent moduli:

dTRIG

µa [C3] =



d11 −d11 0 d14 d15 −2d22
−d22 d22 0 d15 −d14 −2d11
d31 d31 d33 0 0 0


 . (6.66)

26If we would include a third orthogonal reflection, we’d then have inversion, in which case all dµνλ = 0.
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Increasing the symmetry to C3v , we lose d14 and d26, so there are four independent moduli:

dTRIG

µa [C3v] =




0 0 0 0 d15 −2d22
−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0


 . (6.67)

Both C3v and C3 are polar.

• For hexagonal crystals, we begin with the lowest symmetry group in the system, C6. There are
four independent elastic moduli, with

dHEX

µa [C6] =




0 0 0 d14 d15 0
0 0 0 d15 −d14 0
d31 d31 d33 0 0 0


 . (6.68)

Increasing the symmetry to C6v, one loses a modulus, with d14 = 0. Starting with C3h , one has
two independent moduli:

dHEX

µa [C3h] =



d11 −d11 0 0 0 −2d22
−d22 d22 0 0 0 −2d11
0 0 0 0 0 0


 . (6.69)

Increasing the symmetry to D3h, we lose d11 due to the twofold axis which sends (x, y, z) to
(−x, y,−z), and the only nonzero elements are d16 = 2d21 = −2d22. Finally, for D6, the only
nonzero elements are d14 = −d25.

• Finally we arrive at the cubic system. The centrosymmetric cubic point groupsOh and Th of course
do not support piezoelectricity. Surprisingly, while O is noncentrosymmetric, its symmetries are
sufficient to disallow piezoelectricity as well, and dµa = 0 for all elements. Thus, O is the sole ex-
ample among the 21 noncentrosymmetric crystallographic point groups which does not allow for
piezoelectric behavior. The point groups T and Td support piezoelectricity, with one independent
constant d14 = d25 = d36. Neither is polar.

6.3.6 Fourth rank tensors : elasticity

Another example comes from the theory of elasticity, where an elastic medium is described by a local
deformation field u(r), corresponding to the elastic displacement of the solid at r. The strain tensor is
defined by the dimensionless expression

εij(r) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6.70)

Note that ε = εT is a symmetric tensor by definition. Similarly, the stress tensor σij(r) is defined by

dFi(r) = −σij(r)nj dΣ , (6.71)
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where dF (r) is the differential force on a surface element dΣ whose normal is the vector n̂. Angular mo-
mentum conservation requires that the stress tensor also be symmetric27. The stress and strain tensors
are related by the rank four elastic modulus tensor, viz.

σij(r) = Cijkl εkl(r) =
δf

δεij(r)
, (6.72)

where the second equality is a statement of thermal equilibrium akin to p = −∂F/∂V . Here,

f(r) = f0 +
1
2 Cijkl εij(r) εkl(r) +O(ε3) (6.73)

is the local free energy density. Since ε is a dimensionless tensor, the elastic moduli have dimensions
of energy density, typically expressed in cgs units as dyn/cm2. For an isotropic material, the only O(3)
invariant terms in the free energy to order ε2 are proportional to either (Tr ε)2 or to Tr(ε2). Thus,

f = f0 +
1
2 λ (Tr ε)

2 + µTr (ε2) . (6.74)

The parameters λ and µ are called the Lamé coefficients28. For isotropic elastic materials, then,

σij =
∂f

∂εij
= λTr ε δij + 2µ εij . (6.75)

In the literature, one often meets up with the quantityK ≡ λ+ 2
3µ , in which case the free energy density

becomes
f = f0 +

1
2K (Tr ε)2 + µTr

(
ε− 1

3 Tr ε
)2

(6.76)

The reason is that the tensor ε̃ ≡ ε − 1
3(Tr ε) ·1 is traceless, and therefore the constant K tells us about

bulk deformations while µ tells us about shear deformations. One then requires K > 0 and µ > 0 for
thermodynamic stability. We then may write, for isotropic materials,

σ = K (Tr ε)·1 + 2µ ε̃

ε =
1

9K
(Tr σ)·1 +

1

2µ
σ̃ ,

(6.77)

with σ̃ ≡ σ − 1
3(Tr σ)·1 the traceless part of the stress tensor29.

If one solves for the homogeneous deformation30 of a rod of circular cross section, the only nonzero
element of the stress tensor is σzz = p , where p is the pressure on either of the circular faces of the rod.
One then finds that εxx = εyy =

(
1
9K − 1

6µ

)
p and εzz =

(
1
9K + 1

3µ

)
p are the only nonzero elements of the

strain tensor. Thus,

Y ≡ σzz
εzz

=
9Kµ

3K + µ
, β ≡ −εxx

εzz
=

3K − 2µ

2(3K + µ)
. (6.78)

27Integrate the differential torque dN = r × dF over the entire body. Integrating by parts, one obtains a surface term and a
volume term. The volume torque density is −ǫijk σjk, which must vanish, thereby entailing the symmetry σ = σT.

28If you were wondering why we’ve suddenly switched to roman indices Cijkl instead of Greek Cαβµν , it is to obviate any
confusion with the Lamé parameter µ.

29In d space dimensions, one has K = λ+ 2d−1µ and m̃ = m− d−1Trm is the traceless part of any matrix m.
30In a homogeneous deformation, the strain and stress tensors are constant throughout the body.
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The quantity Y is called the Young’s modulus, and must be positive. The quantity β is the Poisson ratio
β and satisfies β ∈

[
− 1, 32

]
. A material like tungsten carbide has a very large Young’s modulus of

Y = 53.4× 1011 dyn/cm2 at STP, which means that you have to pull like hell in order to get it to stretch a
little. Normally, when you stretch a material, it narrows in the transverse directions, which corresponds
to a positive Poisson ratio. Materials for which β < 0 are called auxetics. When stretched, an auxetic
becomes thicker in the directions perpendicular to the applied force. Examples include various porous
foams and artificial macrostructures.

Elasticity and symmetry

Since
Cijkl = Cjikl = Cijlk = Cklij , (6.79)

we may use the composite index notation in Tab. 6.15 to write the rank four tensor Cijkl ≡ Cab = Cba as
a symmetric 6×6 matrix, with 21 independent elements before accounting for symmetry considerations.
The linear stress-strain relation is then given by




σ1
σ2
σ3
σ4
σ5
σ6




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66







ε1
ε2
ε3
2ε4
2ε5
2ε6




. (6.80)

Since the elastic tensor is rank four, it is symmetric under inversion.

And now, let the symmetry commence!

• For triclinic crystals with point group C1 or Ci , there are no symmetries to apply to Cab , hence
there are 21 independent elastic moduli. However, one can always rotate axes, and given the
freedom to choose three Euler angles, this means we can always choose axes in such a way that
three of the 21 moduli vanish, leaving 18. Again, this requires a nongeneric choice of axes.

• For monoclinic crystals, there is symmetry under z → −z, and as in the example of the piezo-
electric tensor dµνλ, we have that Cijkl vanishes if the index 3(z) appears an odd number of times,
which means, in composite index notation,

C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0 , (6.81)

leaving 13 independent elastic moduli for point groupsC2 , Cs , and C2h. The 6×6 matrix Cab thus
takes the form

CMONO

ab =




C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66




. (6.82)
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• For orthorhombic crystals, x→ −x and y → −y are each symmetries. Adding z → −z in the case
of D2h doesn’t buy us any new restrictions since C is symmetric under inversion. We then have
Cab = 0 whenever a ∈ {1, 2, 3} and b ∈ {4, 5, 6}. The general form of Cab is then

CORTHO

ab =




C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




. (6.83)

• For the tetragonal system, we can rotate (x, y, z) to (−y, x, z). For the lower symmetry point groups
among this system, namely C4 , S4 , and C4h , the most general form is

CTET

ab [C4, S4, C4h] =




C11 C12 C13 0 0 C16

C12 C11 C13 0 0 −C16

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
C16 −C16 0 0 0 C66




, (6.84)

which has seven independent moduli. For the higher symmetry tetragonal point groups D4 , C4v ,
D2d , and D4h , we have C16 = 0 because of the twofold axes which send (x, y, z) into (x,−y,−z)
and (−x, y,−z), and there are only six independent moduli.

• For the trigonal point groups, our lives are again complicated by the C3 rotations. One convenient
way to deal with this is to define ξ ≡ x+ iy and ξ̄ ≡ x− iy , with

εξξ = ξi ξj εij = εxx − εyy + 2i εxy

εξξ̄ = ξi ξ̄j εij = εxx + εxy

εzξ = ξi εzi = εzx + i εzy

εzξ̄ = ξ̄i εzi = εzx − i εzy ,

(6.85)

where ξi = ∂iξ where x1 = x and x2 = y, and ξ̄i = ∂iξ̄. A C3 rotation then takes ξ → e2πi/3 ξ and
ξ̄ → e−2πi/3 ξ̄ . The only allowed elements of Cijkl are

Czzzz , Czzξξ̄ , Cξξξ̄ξ̄ , Cξξ̄ξξ̄ , Czξzξ̄ , Czξξξ , Czξ̄ξ̄ξ̄ , (6.86)

and their corresponding elements obtained by permuting Cijkl = Cjikl = Cijlk = Cklij . The first
five of these are real, and the last two are complex conjugates: C

zξ̄ξ̄ξ̄
= C∗

zξξξ . So there are seven

independent elastic moduli for the point groups C3 and S6. Note the general rule that we must
have either no complex indices, one ξ and one ξ̄ index, two each of ξ and ξ̄, three ξ, or three ξ̄. All
other coefficients vanish by C3 symmetry. We may now construct the elastic free energy density,

f = f0 +
1
2Czzzz ε

2
zz + Cξξξ̄ξ̄ εξξ εξ̄ξ̄ + 2Cξξ̄ξξ̄ ε

2
ξξ̄ + 2Czzξξ̄ εzz εξξ̄

+ 4Czξzξ̄ εzξ εzξ̄ + 2Czξξξ εzξ εξξ + 2Czξ̄ξ̄ξ̄ εzξ̄ εξ̄ξ̄ .
(6.87)
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Note the coefficient of four in front of the C
zξzξ̄

term, which arises from summing over the eight

equal contributions,

1
2

(
Czξzξ̄ + Czξξ̄z + Cξzzξ̄ + Cξzξ̄z + Czξ̄zξ + Czξ̄ξz +Cξ̄zzξ +Cξ̄zξz

)
εzξ εzξ̄ = 4Czξzξ̄ εzξ εzξ̄ . (6.88)

From the free energy, one can identify the coefficients of εa εb , where a and b are composite indices,
and thereby determine the general form for Cab , which is

CTRIG

ab [C3, S6] =




C11 C12 C13 C14 −C25 0
C12 C11 C13 −C14 C25 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 C25

−C25 C25 0 0 C44 C14

0 0 0 C25 C14
1
2(C11 − C12)




, (6.89)

Adding in reflections or twofold axes, as we have in the higher symmetry groups in this system,
i.e. D3 , C3v , and D3d allows for ξ ↔ ξ̄, in which case Czξξξ = C

zξ̄ξ̄ξ̄
, reducing the number of

independent moduli to six, with C25 = 0.

There’s another way to compute the number of independent moduli, using Eqn. 6.44. This applies
to all cases, but it is particularly instructive to work it out for C3 since the threefold rotations make
its analysis more tedious than other cases where the symmetry operations merely permute the
Cartesian indices. We start by decomposing the representation by which the symmetric rank two
tensor εij transforms into IRREPs of C3. From Tab. 6.11, we have that 1 = A ⊕ E ⊕ E∗, where 1
denotes the vector (l = 1) IRREP of O(3). Since the strain tensor ε is symmetric, we decompose

Γε ≡ (1× 1)sym into C3 IRREPs using χsym(g) = 1
2

[
χ(g)

]2
+ 1

2 χ(g
2) , according to which χΓε(E) = 6

and χΓε(C3) = χΓε(C2
3 ) = 0. Thus we have Γε = 2A ⊕ 2E ⊕ 2E∗, whose total dimension is six,

as is appropriate for a symmetric 3 × 3 matrix. We next must decompose ΓC ≡ (Γε × Γε)sym. into
C3 IRREPs. But this is a snap since we’ve computed the characters for Γε

31. Accordingly, we have

χΓC (E) = 1
2

[
χΓε(E)

]2
+ 1

2χ
Γε(E2) = 1

2 ·62 + 1
2 ·6 = 21 and χΓC (C3) = χΓC (C2

3 ) = 0. Therefore
ΓC = 7A ⊕ 7E ⊕ 7E∗ and we conclude from nA(Γ ) = 7 that there are seven independent elastic
constants for C3.

• For all seven hexagonal system point groups, we have Czξξξ = C
zξ̄ξ̄ξ̄

= 0, because C6 rotations

take ξ to ξ eiπ/3, hence Czξξξ to −Czξξξ . C3h and D3h don’t contain this element, but do contain the
mirror reflection z → −z, hence in all cases the elastic tensor resembles that for the trigonal case,
but with C14 = C25 = 0. Hence there are five independent moduli, with

CHEX

ab =




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2(C11 − C12)




, (6.90)

31We work directly with the reducible representation Γε and only decompose into C3 IRREPs at the end of our calculation.
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• For the cubic system (five point groups), the only independent elements are Cxxxx , Cxxyy , Cxyxy ,
and their symmetry-related counterparts such as Czzzz , Cyzyz , etc. Thus,

CCUB

ab =




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




, (6.91)

• For an isotropic material, C11 = C22 + 2C44. The Lamé parameters are λ = C12 and µ = C44.

6.3.7 Summary of tensor properties of the crystallographic point groups

At this point in the notes, we pause for a lengthy table, Tab. 6.16.

6.4 Vibrational and Electronic States of Molecules

6.4.1 Small oscillations of molecules

In §2.6 we considered the planar oscillations of a linear triatomic molecule of C3v symmetry. We now
consider the general case. First we consider the classical problem of N interacting point masses. Ex-
panding the potential energy about equilibrium, the Hamiltonian is

H =
∑

i,α

(pαi )
2

2mi

+
1

2

∑

i,j

∑

α,β

Φαβij u
α
i u

β
j +O(u3) , (6.92)

where ui is the vector displacement of ion i from its equilibrium position, pi is its momentum, and mi

its mass. The indices α and β range over {1, . . . , d}, where d is the dimension of space. The quantity Φαβij
is known as the dynamical matrix, and it is defined to be

Φαβij =
∂2V

∂uαi ∂u
β
j

∣∣∣∣
EQ

, (6.93)

where V = V (r1, . . . , rN ) is the potential, and rj = r0j + uj with r0j the equilibrium position of the jth

ion. We now make a simple canonical transformation pαi = m
1/2
i p̃αi and uαi = m

−1/2
i ũαi for all i and α.

Clearly this preserves the Poisson bracket
{
uαi , p

β
j

}
PB

= δij δ
αβ . The Hamiltonian is then

H =
∑

i,α

(p̃αi )
2

2
+

1

2

∑

i,j

∑

α,β

Φ̃αβij ũ
α
i ũ

β
j +O(u3) , (6.94)
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group symbol tensor order

crystal system Schoenflies HM 1st 2nd 3rd 4th

triclinic C1 1 3 6 18 21

S2 1 0 6 0 21

monoclinic C2 2 1 4 8 13

C1h m 2 4 10 13

C2h 2/m 0 4 0 13

orthorhombic D2 222 0 3 3 9

C2v mm2 1 3 5 9

D2h mmm 0 3 0 9

tetragonal C4 4 1 2 4 7

S4 4 0 2 4 7

C4h 4/m 0 2 0 7

D4 422 0 2 1 6

C4v 4mm 1 2 3 6

D2d 42m 0 2 2 6

D4h 4/mmm 0 2 0 6

trigonal C3 3 1 2 6 7

S6 3 0 2 0 7

D3 32 0 2 2 6

C3v 3m 1 2 4 6

D3d 3m 0 2 0 6

hexagonal C6 6 1 2 4 5

C3h 6 0 2 2 5

C6h 6/m 0 2 0 5

D6 622 0 2 1 5

C6v 6mm 1 2 3 5

D3h 6m2 0 2 1 5

D6h 6/mmm 0 2 0 5

cubic T 23 0 1 1 3

Th m3 0 1 0 3

O 432 0 1 0 3

Td 43m 0 1 1 3

Oh m3m 0 1 0 3

isotropic 0 1 0 2

Table 6.16: Tensor properties of the 32 crystallographic point groups.
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where Φ̃αβij = m
−1/2
i Φαβij m

−1/2
j remains a real symmetric matrix in the composite indices (iα) and (jβ)

and can therefore be diagonalized by an orthogonal transformation Sσ,iα, where σ ∈ {1, . . . , dN} indexes
the normal modes of the molecule. That means

∑

i,α,jβ

Sσ,iα Φ̃
αβ
ij S

T

jβ,σ′ = ω2
σ δσσ′ , (6.95)

where ωσ has the dimensions of T−2, i.e. frequency squared32. If the equilibrium is a stable one, then
ω2
σ ≥ 0 for all σ. This orthogonal transformation induces a second canonical transformation, from
{ũiα, p̃iα} to {ξσ, πσ}, with

ξσ = Sσ,iα ũ
α
i , πσ = p̃αi S

−1
iα,σ = Sσ,iα p̃

α
i , (6.96)

and the final form of the Hamiltonian is then

H =
dN∑

σ=1

(
1
2π

2
σ +

1
2ω

2
σ ξ

2
σ

)
. (6.97)

Hamilton’s equations of motion, which are of course preserved by the canonical transformations, are
then ξ̇σ = ∂H/∂πσ = πσ and π̇σ = −∂H/∂ξσ = −ω2

σ ξσ , hence ξ̈σ = −ω2
σ ξσ and ωσ is the oscillation

frequency for the normal mode label σ.

6.4.2 Group theory and the dynamical matrix

To solve the general small oscillations problem, one must diagonalize the symmetric matrix Φ̃αβij , which
is of rank dN . While today this is a simple computational task, even for large molecules, such crank-
turning is oblivious to the consequences of point group symmetries that are relevant to many physically
relevant cases. The resulting multiplet structure in the spectrum is inscrutable without group theory.

To determine the IRREPs of the molecular point group P under which energy multiplets transform, just
follow these simple steps:

(i) First, identify the point group P which describes the full symmetry of the equilibrium configura-
tion.

(ii) Second, construct for each element g ∈ P the permutation matrix Dper(g), defined to be

Dper
ij (g) = 〈 i | g | j 〉 =

{
1 if g takes ion j to ion i

0 otherwise .
(6.98)

These matrices, which are all rank N , form a representation which we call Γ per.

(iii) Find the characters χper(g). Note that

χper(g) = number of ions remaining invariant under the operation g (6.99)

can be ascertained without computing all the matrix elements of Dper
ij (g).

32The original Φαβ
ij had dimensions of EL−2 =MT−2, hence Φ̃αβ

ij has dimensions of T−2.
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x

z

Figure 6.11: Left panel: the water molecule. Right panel: a molecule with C3v symmetry. Rotations by
an odd multiple of 60◦ are not a symmetry. Image credits: NCLab.com and ClipArtPanda.com.

(iv) For each g ∈ P, construct the matrices Dvec(g) ∈ O(d), which is the d × d orthogonal matrix
corresponding to the symmetry operation g.

(v) The symmetry operations operate on both the ion labels as well as their displacements from equi-
librium. The corresponding representation of P is thus Ψ = Γ vec × Γ per. From this, we must
subtract one copy of Γ vec corresponding to translational zero modes, and one copy of Γ rot, corre-
sponding to rotational zero modes. Note that Γ rot is the 1+ representation of O(3), whose matrices
are given by Drot(g) = det

[
Dvec(g)

]
·Dvec(g)

(vi) To find the IRREPs for the d(N − 2) finite frequency vibrational modes, decompose Γ per, Γ vec, and
Γ rot into IRREPs of P. The vibrational representations of the molecule are then given by

Γ vib =

Ψ︷ ︸︸ ︷
Γ vec × Γ per −Γ vec − Γ rot . (6.100)

(vii) Starting with an arbitrary (e.g. random) vector ψ, one can project onto the IRREPs Γ contained in
Γ vib using the projectors

ΠΓ =
dΓ
NG

∑

g∈G
χΓ

∗
(g)DΨ (g) or ΠΓ

µν =
dΓ
NG

∑

g∈G
DΓ ∗

µν (g)D
Ψ (g) , (6.101)

where ΠΓ projects onto the IRREP Γ , and ΠΓ
µν projects onto the µth row of Γ .

(viii) The projected vectors ΠΓψ form a basis for all occurrences of the IRREP Γ in the decomposition of
the dN -dimensional representation Ψ . One then must project out the zero modes in Γ vec and Γ rot.

Water molecule

Let’s test this scheme on the simple water molecule in Fig. 6.11. The group is C2v , with elements E
(identity), C2 (rotation by π about z-axis), σv (reflection in x-z plane), and σ′v (reflection in y-z plane):

C2 (x, y, z) = (−x,−y, z) , σv (x, y, z) = (x,−y, z) , σ′v (x, y, z) = (−x, y, z) . (6.102)
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Choosing the ion site labels O = 1, H = 2, and H′ = 3, the permutation matrices are

Dper(E) = Dper(σv) =



1 0 0
0 1 0
0 0 1


 , Dper(C2) = Dper(σ′v) =



1 0 0
0 0 1
0 1 0


 , (6.103)

which may readily be checked by inspection.

The matrices of Γ vec are

Dvec(E) =



+1 0 0
0 +1 0
0 0 +1


 , Dvec(C2) =



−1 0 0
0 −1 0
0 0 +1




Dvec(σv) =



+1 0 0
0 −1 0
0 0 +1


 , Dvec(σ′v) =



−1 0 0
0 +1 0
0 0 +1


 .

(6.104)

We may now compute the characters of the matrices Dper(g) and Dvec(g); they are reported in Tab. 6.17.
Multiplying the characters to compute χΨ (g) = χΓ

vec
(g)χΓ

per
(g), and decomposing into IRREPs of C2v,

we find

Ψ = Γ vec × Γ per = 3A1 ⊕A2 ⊕ 3B1 ⊕ 2B2 . (6.105)

From these IRREPs we must exclude

Γ vec = A1 ⊕B1 ⊕B2

Γ rot = A2 ⊕B1 ⊕B2 ,
(6.106)

resulting in

Γ vib = 2A1 ⊕B1 . (6.107)

C2v E C2 σv σ′v basis Γ × Γ ′ A1 A2 B1 B2

A1 1 1 1 1 z A1 A1 A2 B1 B2

A2 1 1 −1 −1 xy A2 A2 A1 B2 B1

B1 1 −1 1 −1 x B1 B1 B2 A1 A2

B2 1 −1 −1 1 y B2 B2 B1 A2 A1

Γ vec 3 −1 1 1 A1 ⊕B1 ⊕B2

Γ rot 3 −1 −1 −1 A2 ⊕B1 ⊕B2

Γ per 3 1 3 1 2A1 ⊕B1

Γ vec × Γ per 9 −1 3 1 3A1 ⊕A2 ⊕ 3B1 ⊕ 2B2

Table 6.17: Character and representation product tables for C2v.
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1
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Figure 6.12: Normal modes of the H2O molecule and their C2v IRREP labels. Image credit: NCLab.com.

Recall we started with nine degrees of freedom for the water molecule, corresponding to three transla-
tions for each of its constituent atoms. Subtracting three translational and three rotational zero modes,
we are left with three finite frequency vibrational modes, two of which transform according to A1 and
one according to B1. These vibrations are depicted in Fig. 6.12.

Buckyball

Flush with success after identifying the IRREPs or the vibrational spectrum of H2O, let’s try something
with a bigger symmetry group – the buckyball C60. The buckyball is depicted in Fig. 6.13. Its symmetry
group is the icosahedral group with inversion, Ih = I ×Ci , which has 120 elements. A character tableis
provided in Tab. 6.18. It should come as no surprise that Γ vec = T1u and Γ rot = T1g .

When it comes to constructing Γ per, we are in luck. Eight of the ten classes of symmetry operations
leave no sites fixed, hence for these classes we have χper(C) = 0. The only operations which leave fixed
points are the identity, which leaves every site invariant, hence χper(E) = 60, and the reflections 15σ,
each of which leaves four sites invariant, hence χper(15σ) = 433. Taking the product with Γ vec to form
Ψ = Γ vec × Γ per, we have χΨ (E) = 180 and χΨ (15σ) = 4, hence thus, the number of times each IRREP Γ
appears in the product representation Ψ is

nΓ (Ψ) =
1

120

(
180 · χΓ (E) + 4 · 15 · χΓ (15σ)

)

= 3
2 χ

Γ (E) + 1
2 χ

Γ (15σ) .
(6.108)

The resulting nΓ (Ψ) values are given in the table within Fig. 6.13. Summing the dimensions of the
IRREPs times their multiplicities, one finds

∑

Γ

nΓ (Ψ) dΓ = 180 , (6.109)

which is the total number of vibrational degrees of freedom of the buckyball (including zero modes).
From the decomposition of Ψ into Ih IRREPs, one must subtract the translational and rotational zero

33See how a reflection plane bisecting the buckyball of Fig. 6.13 contains two links, i.e. four sites.
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Figure 6.13: The buckyball C60, its IRREPs, and the decomposition of Ψ = Γ vec × Γ per.

modes, which is to say one copy each of T1u and T1g , respectively. This leaves

Γ vib = 2Ag ⊕ 3T1g ⊕ 4T2g ⊕ 6Gg ⊕ 8Hg ⊕Au ⊕ 4T1u ⊕ 5T2u ⊕ 6Gu ⊕ 7Hu . (6.110)

Animations of each of these normal modes may be viewed at

http://www.public.asu.edu/~cosmen/C60_vibrations/mode_assignments.htm

6.4.3 Selection rules for infrared and Raman spectroscopy

Recall that electromagnetic radiation can excite modes via dipole transitions, and that a general matrix
element of the form 〈Γf β | Q̂Γµ |Γi α 〉 can be nonzero only if Γf ∈ Γi × Γ . Usually the initial state is the
ground state, in which case Γi is the trivial representation, and in our case Γ = Γ vec, corresponding to
an electric dipole transition. Then our condition for the possibility of a nonzero matrix element becomes
simply Γf ∈ Γ vec. Such modes are said to be IR-active. For example, for H2O, all three vibrational modes
are IR-active, because Γ vib = 2A1 ⊕ B1 and Γ vec = A1 ⊕ B1 ⊕ B2 . For C60, only the five T1u multiplets
are IR-active.

Raman spectroscopy involves the detection of inelastically scattered light. Thus, there is an incoming
electromagnetic wave E i and an outgoing wave E f . These are coupled through a 3 × 3 symmetric
polarization tensor, αµν . We shall therefore be interested in symmetric, rank-two tensor representations
of the molecular point group P.

http://www.public.asu.edu/~cosmen/C60_vibrations/mode_assignments.htm
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Ih E 12C5 12C2
5 20C3 15C2 I 12S3

10 12S10 20S6 15σ

Ag 1 1 1 1 1 1 1 1 1 1

T1g 3 τ 1− τ 0 −1 3 τ 1− τ 0 −1
T2g 3 1− τ τ 0 −1 3 1− τ τ 0 −1
Gg 4 −1 −1 1 0 4 −1 −1 1 0

Hg 5 0 0 −1 1 5 0 0 −1 1

Au 1 1 1 1 1 −1 −1 −1 −1 −1
T1u 3 τ 1− τ 0 −1 −3 −τ −1 + τ 0 1

T2u 3 1− τ τ 0 −1 −3 −1 + τ −τ 0 1

Gu 4 −1 −1 1 0 −4 1 1 −1 0

Hu 5 0 0 −1 1 −5 0 0 1 −1
Γ vec 3 τ 1− τ 0 −1 −3 −τ −1 + τ 0 1

Γ rot 3 τ 1− τ 0 −1 3 τ 1− τ 0 −1
Γ per 60 0 0 0 0 0 0 0 0 4

Ψ 180 0 0 0 0 0 0 0 0 4

Table 6.18: Character table for the icosahedral group Ih. Note τ = 2cos π5 = 1
2

(
1+
√
5
)

satisfies τ2 = 1+τ .
Γ per is the permutation representation for the buckyball C60 .

The derivation of the effective Raman Hamiltonian is somewhat involved, and we include here a brief
discussion for the sake of completeness. The goal is to compute the effective molecular Hamiltonian up
to second order in the external time-dependent electric field E(t), within a restricted manifold of molecular
states consisting of the ground state | g 〉, assumed to transform trivially under point group operations,
and an excited state multiplet |Γ γ 〉, where γ is the partner label, transforming as the IRREP Γ . The
effective Hamiltonian is found to be34

Ĥeff(t) = Ĥ0 − µ̂ · E(t) + 1
2 Eρ(t)

t∫

−∞

dt′ α̂ρλ(t− t′) Eλ(t′) +O(E3) , (6.111)

where

Ĥ0 = Eg

∣∣ g
〉〈

g
∣∣+
∑

Γ

′
EΓ

dΓ∑

γ=1

∣∣Γ γ
〉〈
Γ γ

∣∣ (6.112)

includes the molecular ground state and all vibrational excitation multiplets, and

µ̂ = −e
∑

a,b

∣∣ b
〉 〈
b
∣∣ d̂
∣∣ a
〉 〈
a
∣∣ , (6.113)

34See, e.g., chapter 4 of R. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley,
2002).
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where | a 〉 and | b 〉 are taken from the low-lying states | g 〉 and |Γ γ 〉, and d̂ is the dipole moment
operator of the molecule. If the molecular point group P contains the inversion element I , then d̂ can
only have matrix elements between representations of different parity. The second order term involves
the polarization tensor, which is obtained from time-dependent perturbation theory, viz.

α̂ρλ(s) =
i

~

[
P̂ eiĤ0s/~ d̂ρ e

−iĤ0s/~ Q̂ d̂λ P̂ − P̂ d̂λ Q̂ eiĤ0s/~ d̂ρ e
−iĤ0s/~ P̂

]
Θ(s) , (6.114)

where P̂ =
∑

a | a 〉〈 a | is the projector onto the ground state and low-lying vibrational multiplets, and

Q̂ ≡ 1̂− P̂ =
∑′

m |m 〉〈m | is the orthogonal projector onto all other eigenstates (hence the prime on the

sum) of the E = 0 molecular Hamiltonian. Θ(s) is the step function. The Fourier transform of Ĥeff(t) is

Ĥeff(ω) = Ĥ0 δ(ω) − E(ω) · µ̂+ 1
2

∞∫

−∞

dω′

2π
Eρ(ω − ω′) Eλ(ω′) α̂ρλ(ω

′) , (6.115)

where

α̂ρλ(ω) =
∑

a,b

∑

n

′ ∣∣ b
〉
{〈

b
∣∣ d̂ρ

∣∣n
〉〈
n
∣∣ d̂λ

∣∣ a
〉

En −Eb − ~ω − i0+ +

〈
b
∣∣ d̂λ

∣∣n
〉〈
n
∣∣ d̂ρ

∣∣ a
〉

En − Ea + ~ω + i0+

}
〈
a
∣∣ . (6.116)

To be clear about what it is we are doing here, we are endeavoring to derive a low-energy effective
Hamiltonian for the vibrational states of a molecule. In general a given molecular state has electronic,
vibrational, and rotational quantum numbers. In many relevant cases, there is a hierarchy of energy
scales, with ∆Erot ≪ ∆Evib ≪ ~ω ≪ ∆Eel , which we shall assume. We’ll ignore here the rotational
modes, i.e. we’ll treat them as zero modes of the vibrational spectrum. All states may be decomposed as

|n 〉 = | vn 〉 ⊗ | en 〉 , (6.117)

i.e. into a direct product of nuclear coordinate (vibrational) and electronic wavefunctions, where the elec-
tronic wavefunctions are eigenfunctions of the Born-Oppenheimer Hamiltonian in which the nuclear
coordinates are frozen. Thus | en 〉 = | en(Q) 〉 depends explicitly on the nuclear coordinates. Although
the Born-Oppenheimer energies EBO

n (Q) will then depend on Q, the electronic energies dominate and
we may take EBO

n (Q) ≈ EBO
n (Q0) at the equilibrium nuclear coordinates. The dipole moment opera-

tor d̂ = −e∑i,l ri,l is a sum over electron displacements with respect to the fixed origin of the point

group,where ri,l for a given electron is a sum of terms including the equilibrium position Q0
i of the ith

ion, its displacement ui = Qi −Q0
i from equilibrium, and the electronic position ξi,l of the lth electron

on that ion with respect to its nucleus. We may now write35

α̂ρλ(Q,ω) =
1

~

∑

n

′
{〈

eg(Q)
∣∣ d̂ρ

∣∣ en(Q)
〉〈

en(Q)
∣∣ d̂λ

∣∣ eg(Q)
〉

ωng − ω − i0+

+

〈
eg(Q)

∣∣ d̂λ
∣∣ en(Q)

〉〈
en(Q)

∣∣ d̂ρ
∣∣ eg(Q)

〉

ωng + ω + i0+

}
,

(6.118)

35In deriving Eqn. 6.118, we use the fact that the Q-dependent part of the energy En(Q) may be dropped in the denominator
because of the aforementioned energy scale hierarchy. We may then collapse the sum on the vibrational component of the
high energy excited states using completeness.
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which acts as an operator on the vibrational wavefunctions | va 〉. The matrix elements 〈 eg(Q) | d̂ρ | en(Q) 〉
etc. involve integration over the electronic coordinates alone, and therefore are functions of the ionic co-
ordinates Q. Similarly, we define

µ̂ρ(Q) = −e
〈
eg(Q)

∣∣ d̂ρ
∣∣ eg(Q)

〉
. (6.119)

We arrive at an effective time-dependent Hamiltonian for the low-lying vibrational levels, which when
expressed in the frequency domain is36

〈
vb
∣∣ Ĥeff(ω)

∣∣ va
〉
= Ea δab δ(ω) − Eρ(ω)

〈
vb
∣∣ µ̂ρ(Q)

∣∣ va
〉

+ 1
2

∞∫

−∞

dω′

2π
E∗ρ (ω′ − ω) Eλ(ω′)

〈
vb
∣∣ α̂ρλ(Q,ω′)

∣∣ va
〉

.

(6.120)

Finally, if the wavefunctions can be taken to be real, we see from Eqn. 6.118 that the polarizability matrix
is symmetric, i.e. αρλ(Q,ω) = αλρ(Q,ω). Note that the nuclear part | eg(Q) 〉〈 eg(Q) | is a one-dimensional
projector common to all terms in the effective vibrational Hamiltonian, and can hence be set to unity.

At this point the electric field Eρ(ω) may be quantized and written in terms of photon creation and an-
nihilation operators. The second term corresponds to Rayleigh scattering in which a photon of frequency
ω = (Eb − Ea)/~ is absorbed. We assume here that a is the ground state. If a represents an occupied
excited state, as may be the case at finite temperature, a photon can be emitted. Regarding the third term
in Ĥeff , which corresponds to Raman scattering, we can read off from the form of the Hamiltonian that
if Eλ(ω′) destroys an incoming photon of frequency ω′, then E∗ρ (ω′ − ω) creates an outgoing photon of
frequency ω′−ω, where ~ω = Eb−Ea. WhenEb > Ea this is called Stokes scattering. In Stokes scattering,
the frequency of the emitted radiation is less than that of the incident radiation. When Eb < Ea, the
emitted radiation is at a higher frequency, and the process is called anti-Stokes scattering37.

For Rayleigh scattering, the selection rules are as we discussed above. The operator µ̂ transforms as a
vector, hence 〈 b | µ̂ | a 〉 can be nonzero only if Γb ∈ Γ vec × Γa. For Raman scattering, α̂ρλ transforms
as the symmetric product of two vectors, i.e. as Ψ = (Γ vec × Γ vec)sym. This representation is symmetric
under inversion, hence Raman scattering does not result in a change of parity. Therefore, in molecules
with inversion symmetry, IR (Rayleigh) and Raman scattering are complementary tools, since a mode
can either be IR or Raman active, but not both. If there is no inversion symmetry, a mode can be both IR
and Raman active. Of course, a mode can be inactive for both IR and Raman. Modes which are inactive
for reasons other than parity are called silent.

As an example, consider our old friend C3v, for which Γ vec = A1 ⊕ E, with χvec(E) = 3, χvec(2C3) = 0,
and χvec(3σv) = 1. From

χsym(g) = 1
2

[
χvec(g)

]2
+ 1

2χ
vec(g2) , (6.121)

we have χsym(E) = 6, χsym(2C3) = 0, and χsym(3σv) = 2, whence the decomposition formula yields
Γ sym = 2A1 ⊕ 2E. Thus, if the initial vibrational state is the ground state, the final state is Raman active
if Γf is either A1 or E but not A2.

36See also the discussion in the appendix, §6.8.
37Stokes’ law says that the frequency of fluorescent light is always less than or equal to that of the incident light. Hence Stokes

lines are those which correspond to Stokes’ law, and anti-Stokes lines are those which violate it.
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Figure 6.14: Rayleigh and Raman spectral lines in crystalline sulfur. Image credit: spectrome-
try316.blogspot.com.

For H2O, with point group C2v , we found Γ vib = 2A1 ⊕ B1. We next need Γ sym, which we obtain by
computing the characters χsym(g) using Eqn. 6.121. Note that C2 , σv , and σ′v are all of order two, and
we obtain

χsym(E) = 6 , χsym(C2) = χsym(σv) = χsym(σ′v) = 2 . (6.122)

Decomposing into C2v IRREPs, we find

Γ sym = 3A1 ⊕A2 ⊕B1 ⊕B2 , (6.123)

the total dimension of which is six, corresponding to the degrees of freedom in a real 3 × 3 symmetric
matrix. Thus, all IRREPs are present in Γ sym and all modes are Raman active.

For the buckyball, Γ vec = T1u , and one finds

Ih : Γ vec × Γ vec = Ag ⊕ T1g ⊕Hg . (6.124)

The sum of the dimensions is nine, corresponding to a 3×3 real matrix. To obtain Γ sym, we must subtract
out the antisymmetric tensor representation Γ ASY. Since this is of dimension three, we immediately
know it must be T1g and that Γ sym = Ag ⊕ Hg , which is properly of total dimension six. Comparing
with Fig. 6.13, we see that in addition to the Raman inactive parity-odd multiplets, all parity even
multiplets other than Ag and Hg are Raman silent. A quick check of the character tables shows that
the representation functions for T1g are the angular momentum operators, which indeed correspond to
an antisymmetric rank three tensor. But if this casual elimination of T1g strikes one as too glib – even
though it is obviously correct! – we can grind through a direct calculation using Eqn. 6.121 and Tab.
6.18. All we need to keep in mind is that (C5)

2 = C2
5 , (C2

5 )
2 = C−1

5 (class C5), (C3)
2 = C−1

3 (class C3),
I2 = E , (S3

10)
2 = C3

5 (class C2
5 ), (S10)

2 = C5 , (S6)
2 = C3 , and σ2 = 1. It is then straightforward to derive

χsym(E) = χsym(I) = 6 , χsym(C5) = χsym(S10) = 1 , χsym(C2
5 ) = χsym(S3

10) = 1 (6.125)
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and
χsym(C3) = χsym(S3

6) = 0 , χsym(C2) = χsym(σ) = 2 . (6.126)

One then derives the decomposition

nΓ (Γ
sym) =

1

10

(
χΓ (E) + 2χΓ (C5) + 2χΓ (C2

5 ) + 5χΓ (C2)
)

, (6.127)

from which one readily recovers Γ sym = Ag ⊕Hg .

6.4.4 Electronic spectra of molecules

The decomposition of electronic eigenstates follows the same general rubric as in §6.4.2, except rather
than decomposing Γ vec× Γ per, we must decompose Γ orb × Γ per, where Γ orb is the representation for the
atomic orbitals. There are no translational or rotational zero modes to subtract.

Consider, for example, a benzene molecule, C6H6. The symmetry group is C6v. Each carbon atom has a
1s2 2s2 core plus two electrons in the 2p orbital, one of which forms a bond with its neighboring hydrogen
atom. The remaining six electrons are associated with the carbon pz (π) orbitals. A pz orbital is invariant
under all C6v operations, since it is oriented perpendicular to the symmetry plane. Thus, Γ orb = A1 for
benzene, and we are left with the task of decomposing Γ per. The only symmetry operations which leave
sites invariant are the identity, for which χper(E) = 6, and the diagonal mirrors, for which χper(σd) = 2.
Consulting the character table for C6v, one readily finds

Γ per = A1 ⊕B2 ⊕ E1 ⊕E2 . (6.128)

A simple tight-binding model for the π orbitals is given by

Ĥ = −t
6∑

n=1

∑

σ

(∣∣n, σ
〉〈
n+1, σ

∣∣+
∣∣n+1, σ

〉〈
n, σ

∣∣
)

, (6.129)

which is instantly diagonalized in the crystal momentum basis as

Ĥ = −2t
∑

k,σ

cos(nk) | k, σ 〉〈 k, σ | , (6.130)

where k = 0, ±1
3 π, ±2

3 π, and π. Note that without spin-orbit coupling, the spin just comes along for the
ride, and we needn’t bother with the trouble of the double group. The eigenfunctions are

∣∣ k, σ
〉
=

1√
6

6∑

n=1

eikn
∣∣n, σ

〉
. (6.131)

We see that the k = 0 and k = π states are singly degenerate, hence one must transform as A1 and one
as B2. Obviously k = 0 transforms as A1, so k = π must transform as B2. Just to check, note that the
mirrors σv which run perpendicular to the hexagonal faces, exchange odd and even numbered sites,
while the diagonal mirrors preserve the oddness or evenness of the site index n. Since χB2(σv) = −1
and χB2(σd) = +1, we can be sure there was no mistake, and the k = π state indeed transforms as
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B2. The remaining eigenstates are organized into two doublets: k = ±1
3π and k = ±2

3π. A check of

the C3v character table tells us that χE1,2(C2) = ±2, so we can use this as a test. Under C2, we have
n → n + 3. Since exp(3ik) = −1 for k = ±1

3π, we conclude that this doublet transforms as E1 and
k = ±2

3π transforms as E2.

Next, consider a cubic molecule. If we construct a tight-binding model consisting of s-orbitals on each
site, there will be a total of eight orbitals for each spin polarization. How are they arranged in IRREPs of
Oh? Simple. We first note that the only operations g ∈ Oh which leave sites are invariant are the iden-
tity, which preserves all eight sites, the threefold rotations 8C3 about the four axes running diagonally
through the cube, which preserve the two sites along each axis, and the diagonal mirrors 6IC ′

2 , which
preserve the four sites lying in each mirror plane. For every other class, χper(C) = 0. Since the orbitals
are all s-states, we have Γ orb = A1g , the trivial representation. After consulting the character table for
Oh, we find

Γ orb × Γ per = A1g ⊕ T1g ⊕A2u ⊕ T2u . (6.132)

Suppose instead each site contained p-orbitals rather than an s-orbital. In this case, Γ orb = Γ vec, and the
decomposition formula yields

Γ orb × Γ per = A1g ⊕ Eg ⊕ T1g ⊕ 2T2g ⊕A2u ⊕ Eu ⊕ 2T1u ⊕ T2u . (6.133)

Adding up all the dimensions yields 24, which corresponds to the total number of orbitals, as required.

Oh E 8C3 6IC ′
2 decomposition

Γ vec 3 0 1 T1u
Γ per 8 2 4 A1g ⊕ T1g ⊕A2u ⊕ T2u

Γ vec × Γ per 24 0 4 see text

Table 6.19: Partial character table for Oh. Classes shown are those for which χper(C) 6= 0 for the cube.

6.5 Phonons in Crystals

Consider next the vibrations of a crystalline solid, which are called phonons. We defineR to be a Bravais
lattice vector, i.e. a label for a unit cell, and ui(R) to be the displacement of the ith basis ion in theR unit
cell. The Hamiltonian is

H =
∑

R,i

p2i (R)

2mi

+
1

2

∑

R,R′

∑

i,j

∑

α,β

uαi (R) Φαβij (R −R′) uβj (R
′) +O(u3) , (6.134)

where

Φαβij (R−R′) =
∂2U

∂uαi (R) ∂uβj (R
′)

. (6.135)

Remember that the indices i and j run over the set {1, . . . , r}, where r is the number of basis vectors,
while α and β are Cartesian vector indices taken from {1, 2, . . . , d}, where d is the dimension of space.
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In the case of molecules, the dynamical matrix is of rank dN . For a molecule with no point group
symmetries, this is the dimension of the eigenvalue problem to be solved. In crystals, by contrast, we
may take advantage of translational invariance to reduce the dimension of the eigenvalue problem to
dr, i.e. to the number of degrees of freedom within a unit cell. This is so even in the case of a triclinic
system with no symmetries (i.e. point group C1). Each vibrational state is labeled by a wavevector k,
and at certain high symmetry points k in the Brillouin zone, crystallographic point group symmetries
may be used to group these dr states into multiplets transforming according to point group IRREPs.

Upon Fourier transform,

uαi (R) =
1√
N

∑

k

ûαi (k) e
ik·R eik·δi

pαi (R) =
1√
N

∑

k

p̂αi (k) e
ik·R eik·δi ,

(6.136)

where the sum is over all k within the first Brillouin zone. The Fourier space dynamical matrix is then

Φ̂αβij (k) =
∑

R

Φαβij (R) e−ik·R e−ik·δi eik·δj . (6.137)

The Hamiltonian, to quadratic order, takes the form

H =
∑

k,i

p̂αi (k) p̂
α
i (−k)

2mi

+
1

2

∑

k

∑

i,j

∑

α,β

ûαi (−k) Φ̂αβij (k) ûβj (k) , (6.138)

Note that ûαi (−k) =
[
ûαi (k)

]∗
because the displacements uαi (R) are real; a corresponding relation holds

for the momenta. Note also the Poisson bracket relation in crystal momentum space becomes

{
uαi (R) , pβj (R

′)
}

PB

= δRR′ δij δαβ ⇒
{
ûαi (k) , p̂

β
j (k

′)
}

PB

= δPk+k′,0 δij δαβ , (6.139)

where δP
k+k′,0

=
∑

G δk+k′,G
requires k + k′ = 0 modulo any reciprocal lattice vector. Note also that

Φαβij (R) = Φβαji (−R) ⇒ Φ̂βαji (k) = Φ̂αβij (−k) =
[
Φ̂αβij (k)

]∗
. (6.140)

The system is diagonalized by writing

ûαi (k) =
dr∑

λ=1

êαiλ(k) q̂λ(k) , p̂αi (k) = mi

dr∑

λ=1

êα∗iλ (−k) π̂λ(k) (6.141)

where
{
q̂λ(k), π̂λ′(k)

}
PB

= δ
k+k′,0

δλλ′ and Siα,λ(k) ≡ êαiλ(k) ≡ m
−1/2
i Uiα,λ(k) diagonalizes the dynami-

cal matrix, with Uiα,λ(k) unitary. Thus,

∑

β,j

Φ̂αβij (k) ê
β
jλ(k) = mi ω

2
λ(k) ê

α
iλ(k) (6.142)



6.5. PHONONS IN CRYSTALS 241

Figure 6.15: Upper panel: phonon spectrum in fcc elemental rhodium (Rh) at T = 297K measured by
high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57, 324 (1998). Note
the three acoustic branches and no optical branches, corresponding to d = 3 and r = 1. Lower panel:
phonon spectrum in gallium arsenide (GaAs) at T = 12K, comparing theoretical lattice-dynamical cal-
culations with INS results of D. Strauch and B. Dorner, J. Phys.: Condens. Matter 2, 1457 (1990). Note
the three acoustic branches and three optical branches, corresponding to d = 3 and r = 2. The Greek
letters along the x-axis indicate points of high symmetry in the Brillouin zone.

with the completeness relation,
dr∑

λ=1

êα∗iλ (k) ê
β
jλ(k) =

1

mi

δij δαβ (6.143)

and the orthogonality relation,

r∑

i=1

d∑

α=1

mi ê
α∗
iλ (k) ê

α
iλ′(k) = δλλ′ , (6.144)

which are the completeness and orthogonality relations, respectively. Since êα∗iλ (−k) and êαiλ(k) obey the
same equation, we have that ωλ(−k) = ωλ(k). If the phonon eigenmode |k, λ 〉 is nondegenerate, we
may choose êαiλ(−k) = êα∗iλ (k). Else at best we can conclude êαiλ(−k) = êα∗iλ′(k) e

iη where |k, λ′ 〉 is another
state from the degenerate manifold of phonon states at this wavevector, and eiη is a phase.
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The Hamiltonian takes the diagonalized form

H =
∑

k

dr∑

λ=1

{
1
2 π̂λ(−k) π̂λ(k) + 1

2 ω
2
λ(k) q̂λ(−k) q̂λ(k)

}
, (6.145)

with
{
q̂λ(k) , π̂λ′(k

′)
}

PB
= δλλ′ δ

P

k+k′,0
. To quantize, promote the Poisson brackets to commutators:{

A , B}PB → −i~−1
[
A , B

]
. Then define the ladder operators,

Aλ(k) =

(
ωλ(k)

2~

)1/2
q̂λ(k) + i

(
1

2~ωλ(k)

)1/2
π̂λ(k) , (6.146)

which satisfy
[
Aλ(k) , A

†
λ′(k

′)
]
= δP

kk′ δλλ′ . The quantum phonon Hamiltonian is then

Ĥ =
∑

k

dr∑

λ=1

~ωλ(k)
(
A†
λ(k)Aλ(k) +

1
2

)
. (6.147)

Of the dr phonon branches, d are acoustic, and behave as ωa(k) = c(k̂) k as k → 0, which is the Γ point
in the Brillouin zone. These gapless phonons are the Goldstone bosons of the spontaneously broken
translational symmetry which gave rise to the crystalline phase. To each broken generator of translation,
there corresponds a Goldstone mode. The remaining d(r − 1) modes are called optical phonons. Whereas
for acoustic modes, all the ions in a given unit cell are moving in phase, for optical modes they are
moving out of phase. Hence optical modes are always finite frequency modes. Fig. 6.15 shows the
phonon spectra in elemental rhodium (space group Fm3m, point group Oh ) , and in gallium arsenide
(space group F43m, point group Td ) . Since Rh forms an fcc Bravais lattice, there are no optical phonon
modes. GaAs forms a zincblende structure, i.e. two interpenetrating fcc lattices, one for the gallium, the
other for the arsenic. Thus r = 2 and we expect three acoustic and three optical branches of phonons.

Nota bene : One may choose to define the Fourier transforms above taking the additional phases for the
basis elements to all be unity, viz.

uαi (R) =
1√
N

∑

k

ûαi (k) e
ik·R , pαi (R) =

1√
N

∑

k

p̂αi (k) e
ik·R , Φ̂αβij (k) =

∑

R

Φαβij (R) e−ik·R .

(6.148)
All the equations starting with Eqn. 6.138 remain the same. Setting the basis phases to unity amounts
to a choice of gauge. It is somewhat simpler in certain contexts, but it may obscure essential space
group symmetries. On the other hand, it should also be noted that the Fourier transforms ûαi (k), p̂

α
i (k),

and Φ̂αβij (k) are not periodic in the Brillouin zone, but instead satisfy generalized periodic boundary
conditions,

ûαi (K + k) = e−iK·δi ûαi (k)

p̂αi (K + k) = e−iK·δi p̂αi (k)

Φ̂αβij (K + k) = e−iK·(δi−δj) Φ̂αβij (k) ,

(6.149)

whereK ∈ L̂ is any reciprocal lattice vector.
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6.5.1 Translation and rotation invariance

The potential energy U
(
{uαi (R)}

)
must remain invariant under the operations

uαi (R)→ uαi (R) + dα

uαi (R)→ uαi (R) + ǫαµν (R
µ + δµi − δ

µ
j ) d

ν (6.150)

for an infinitesimal vector d. The first equation represents a uniform translation of all lattice sites by d.
The second represents an infinitesimal rotation about the jth basis ion in theR = 0 unit cell. We are free
to choose any j.

Writing U(u+∆u) = U(u), we must have that the linear terms in ∆u vanish, hence
∑

R,i

Φαβij (R) =
∑

i

Φ̂αβij (0) = 0

ǫαµν
∑

R,i

(Rµ + δµi − δ
µ
j )Φ

νβ
ij (R) = i ǫαµν

∑

i

∂Φ̂νβij (k)

∂kµ

∣∣∣∣
k=0

= 0 .

(6.151)

Note that (α, β, j) are free indices in both equations. The first of these equations says that any vector
dβ is an eigenvector of the dynamical matrix at k = 0, with zero eigenvalue. Thus, at k = 0, there is
a three-dimensional space of zero energy modes. These are the Goldstone modes associated with the
three broken generators of translation in the crystal.

6.5.2 Phonons in an fcc lattice

When the crystal is a Bravais lattice, there are no basis indices, and the dynamical matrix becomes

Φ̂αβ(k) =
∑

R

′
(1− cosk ·R)

∂2v(R)

∂Rα ∂Rβ
, (6.152)

where v(r) is the inter-ionic potential, and the prime on the sum indicates that R = 0 is to be excluded.
For central potentials v(R) = v(R),

∂2v(R)

∂Rα ∂Rβ
=
(
δαβ − R̂α R̂β

) v′(R)
R

+ R̂α R̂β v′′(R) . (6.153)

For simplicity, we assume v(R) is negligible beyond the first neighbor. On the fcc lattice, there are twelve
first neighbors, lying at ∆ = 1

2a (±ŷ ± ẑ), ∆ = 1
2a (±x̂ ± ẑ), and ∆ = 1

2a (±x̂ ± ŷ). Here a is the side

length of the underlying simple cubic lattice, so the fcc lattice constant is a/
√
2. We define

A =

√
2

a
v′
(
a/
√
2
)

, B = v′′
(
a/
√
2
)

. (6.154)

Along (100), we have k = kx̂ and

Φ̂αβ(k) = 4 sin2(14ka)



2A+ 2B 0 0

0 3A+B 0
0 0 3A+B


 , (6.155)
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which is already diagonal. Thus, the eigenvectors lie along the cubic axes and

ωL = 2

√
2(A+B)

m

∣∣ sin(ka/4)
∣∣ , ωT1 = ωT2 = 2

√
3A+B
m

∣∣ sin(ka/4)
∣∣ . (6.156)

Along (111), we have k = 1√
3
k (x̂+ ŷ + ẑ). One finds

Φ̂αβ(k) = 4 sin2
(
ka/
√
12
)


4A+ 2B B −A B −A
B −A 4A+ 2B B −A
B −A B −A 4A+ 2B


 . (6.157)

ωL = 2
√

A+2B
m

∣∣ sin
(
ka/
√
12
)∣∣ , ωT1 = ωT2 = 2

√
5A+B
2m

∣∣ sin
(
ka/
√
12
)∣∣ . (6.158)

6.5.3 Elasticity theory redux : Bravais lattices

In a Bravais lattice, we have Φ̂αβ(0) = 0 from translational invariance. The potential energy may then
be written in the form

U = U0 −
1

4

∑

R,R′

∑

α,β

[
uα(R)− uα(R′)

]
Φαβ(R−R′)

[
uβ(R)− uβ(R′)

]
. (6.159)

We now assume a very long wavelength disturbance, and write

uα(R)− uα(R′) = (Rµ −R′µ)
∂uα

∂xµ

∣∣∣∣
R

+ . . . . (6.160)

Thus,

U = U0 −
1

4

∑

R,R′

∑

α,β

∑

µ,ν

∂uα

∂xµ

∣∣∣∣
R

∂uβ

∂xν

∣∣∣∣
R

(Rµ −R′µ) (Rν −R′ν)Φαβ(R−R′) . (6.161)

We may symmetrize with respect to Cartesian indices38 to obtain the elastic tensor

Cαβµν ≡ −
1

8Ω

∑

R

(
RµRν Φαβ(R) +RµRβ Φαν(R) +RαRν Φµβ(R) +RαRβ Φµν(R)

)
. (6.162)

Note that
Cαβµν = Cβαµν = Cαβνµ = Cµναβ , (6.163)

where Ω is the Wigner-Seitz cell volume.

Elasticity in solids

Recall from §6.3.6 that we may regard the rank four tensorCαβµν as a symmetric 6×6 matrix Cab , where
we replace (αβ) → a and (µν) → b according to the scheme which we repeat from Tab. 6.15: In cubic

38Symmetrization is valid because the antisymmetric combination
(
∂uα

∂xβ − ∂uβ

∂xα

)
corresponds to a rotation.
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(αβ) : (11) (22) (33) (23) (31) (12)

a : 1 2 3 4 5 6

Table 6.20: Abbreviation for symmetric compound indices (αβ).

crystals, for example, we have

C11 = Cxxxx = Cyyyy = Czzzz

C12 = Cxxyy = Cxxzz = Cyyzz

C44 = Cxyxy = Cxzxz = Cyzyz .

(6.164)

Typical values of Cab in solids are on the order of gigapascals, i.e. 109 Pa:

element C11 C12 C44

4He 0.031 0.028 0.022

Cu 16 8 12

Al 108 62 28.3

Pb 48.8 41.4 14.8

C (diamond) 1040 170 550

Table 6.21: Elastic moduli for various solids (in GPa).

The bulk modulus of a solid is defined as B = V ∂2F/∂V 2. We consider a uniform dilation, which is
described by R→ (1 + ζ)R at each lattice site. Thus the displacement field is u(r) = ζr. This leads to a
volume change of δV = 3ζV , hence ζ = δV/3V . The strain tensor is εαβ = ζ δαβ , hence

δF =
(δV )2

18V

∑

α,β

Cααββ = 1
9

3∑

a,b=1

Cab . (6.165)

Thus, for cubic materials, B = 1
3C11 +

2
3C12 .

Elastic waves

The Lagrangian of an elastic medium is be written as

L =

∫
ddr L =

∫
ddr

{
1
2 ρ

(
∂uα

∂t

)2
− 1

2 Cαβµν
∂uα

∂xβ
∂uµ

∂xν

}
, (6.166)
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where ρ is the overall mass density of the crystal, i.e. ρ = m/Ω. The Euler-Lagrange equations of motion
are then

0 =
∂

∂t

∂L
∂(∂tu

α)
+

∂

∂xβ
∂L

∂(∂βu
α)

= ρ
∂2uα

∂t2
− Cαβµν

∂2uν

∂xβ ∂xµ
.

(6.167)

The solutions are elastic waves, with u(x, t) = ê(k) ei(k·x−ωt) where

ρω2 eα(k) = Cαβµν k
β kµ eν(k) . (6.168)

Thus, the dispersion is ωa(k) = ca(k̂) k , where

det
[
ρ c2(k̂) δαν − Cαβµν k̂β k̂µ

]
= 0 (6.169)

is the equation to be solved for the speeds of sound ca(k̂) in each elastic wave branch a.

For isotropic solids, C12 ≡ λ, C44 ≡ µ, and C11 = C12 + 2C14 = λ + 2µ, where λ and µ are the Lamé
coefficients. The free energy density is discussed in §6.3.6 and is given by

f = 1
2λ (∂iui)

2 + 1
2µ (∂iuj) (∂iuj) +

1
2µ (∂iuj) (∂jui) , (6.170)

which results in the Euler-Lagrange equations of motion

ρ ü = (λ+ µ)∇(∇ · u) + µ∇2u . (6.171)

Writing u(r, t) = u0 ê(k) e
i(k·r−ωt), where ê is a polarization unit vector, we obtain a longitudinal mode

when ê(k)·k̂ = 1 with ωL(k) = cL |k| and cL =
√

(λ+ 2µ)/ρ , and two transverse modes when ê(k)·k̂ = 0
with ωT(k) = cT |k| and cT =

√
µ/ρ .

In cubic crystals, there are three independent elastic moduli, C11, C12, and C14 . We then have

ρ c2(k̂) ex =
[
C11 k̂

2
x + C44

(
k̂2y + k̂2z

)]
êx + (C12 + C44)

(
k̂x k̂y ê

y + k̂x k̂z ê
z
)

ρ c2(k̂) ey =
[
C11 k̂

2
y + C44

(
k̂2x + k̂2z

)]
êy + (C12 + C44)

(
k̂x k̂y ê

x + k̂y k̂z ê
z
)

ρ c2(k̂) ez =
[
C11 k̂

2
z + C44

(
k̂2x + k̂2y

)]
êz + (C12 + C44)

(
k̂x k̂z ê

x + k̂y k̂z ê
y
)

.

(6.172)

This still yields a cubic equation, but it can be simplified by looking along a high symmetry direction in
the Brillouin zone.

Along the (100) direction k = k x̂, we have

êL = x̂ cL =
√
C11/ρ (6.173)

êT1 = ŷ cT1 =
√
C44/ρ (6.174)

êT2 = ẑ cT2 =
√
C44/ρ . (6.175)
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Along the (110) direction, we have k = 1√
2
k
(
x̂+ ŷ). In this case

êL = 1√
2

(
x̂+ ŷ) cL =

√
(C11 + 2C12 + 4C44)/3ρ (6.176)

êT1 =
1√
2

(
x̂− ŷ) cT1 =

√
(C11 − C12)/2ρ (6.177)

êT2 = ẑ cT2 =
√
C44/ρ . (6.178)

Along the (111) direction, we have k = 1√
3
k
(
x̂+ ŷ + ẑ). In this case

êL = 1√
3

(
x̂+ ŷ + ẑ) cL =

√
(C11 + C12 + 2C44)/2ρ (6.179)

êT1 =
1√
6

(
2x̂− ŷ − ẑ) cT1 =

√
(C11 − C12)/3ρ (6.180)

êT2 =
1√
2

(
ŷ − ẑ) cT2 =

√
(C11 − C12)/3ρ . (6.181)

6.5.4 Elasticity theory in cases with bases

The derivation of the elastic tensor Cαβµν is significantly complicated by the presence of a basis. Sadly,
translational invariance if of no direct avail because

U 6= U0 −
1

4

∑

R,R′

∑

α,β

∑

i,j

[
uαi (R)− uαi (R′)

]
Φαβij (R−R′)

[
uβj (R)− uβj (R′)

]
. (6.182)

The student should understand why the above relation is not an equality.

Rather than work with the energy, we will work with the eigenvalue equation 6.142,

Φ̂αβij (k) ê
β
jλ(k) = mi ω

2
λ(k) ê

α
iλ(k) ,

and expand in powers of k. Accordingly, we write

êαiλ(k) = dαi + kσfαiσ +
1
2 k

σkτgβiστ +O(k3)

Φ̂αβij (k) = Φ̂αβij (0) + kµ
∂Φ̂αβij (k)

∂kµ

∣∣∣∣
0

+ 1
2 k

µ kν
∂2Φ̂αβij (k)

∂kµ ∂kν

∣∣∣∣
0

+O(k3) .
(6.183)

We retain the basis index i on dαi even though it is independent of i because we will use it to make clear
certain necessary sums on the basis index within the Einstein convention. We then have

mi ω
2
{
dαi + kσfαiσ + . . .

}
= (6.184)

{
Φ̂αβij (0) + kµ

∂Φ̂αβij (k)

∂kµ

∣∣∣∣
0

+ 1
2 k

µ kν
∂2Φ̂αβij (k)

∂kµ ∂kν

∣∣∣∣
0

+ . . .

} {
dβj + kτfβjτ + . . .

}
,
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where there is no implied sum on i on the LHS. We now work order by order in k . To start, note that

ω2(k) = c2(k̂) k2 is already second order. On the RHS, we have Φ̂αβij (0) d
β
j = 0 to zeroth order in k. At

first order, we must have

Φ̂αβij (0) f
β
jσ +

∂Φ̂αβij (k)

∂kσ

∣∣∣∣
0

dβj = 0 , (6.185)

and defining the matrix inverse Υ̂ γαli (k) by the relation

Υ̂ γαli (k) Φ̂αβij (k) = δγβ δlj , (6.186)

we have

fγlσ = −Υ̂ γαli (0)
∂Φ̂αβij (k)

∂kσ

∣∣∣∣
0

dβj (6.187)

Finally, we obtain the eigenvalue equation for the elastic waves,

mi ω
2 dαi =

[
1

2

∂2Φ̂αβil (k)

∂kµ ∂kν

∣∣∣∣
0

−
∂Φ̂ασij (k)

∂kµ

∣∣∣∣
0

Υ̂ σγjm(0)
∂Φ̂γβml(k)

∂kν

∣∣∣∣
0

]
kµ kν dβl . (6.188)

Remember that dαi is independent of the basis index i. We have dropped the mode index λ here for

notational convenience. Note that the quadratic coefficient gβiστ never entered our calculation because
it leads to an inhomogeneous term in the eigenvalue equation, and therefore must be dropped. We do
not report here the explicit form for the elastic tensor, which may be derived from the above eigenvalue
equation.

6.6 Appendix : O(3) Characters of Point Group Operations

In tables Tab. 6.22 and 6.23 we present the characters of all crystallographic point group operations for
several integer and half-odd-integer representations of SO(3).

6.7 Appendix : Construction of Group Invariants

6.7.1 Polar and axial vectors

We follow the discussion in §4.5 of Lax. Let rj denote a polar vector and mk an axial vector, where j

and k are labels. Let’s first recall how axial vectors transform. If we write mµ = ǫµνλ r
ν
1 r

λ
2 , where r1,2

are polar vectors, then under the action of a group element g, we have m→m′, where

m′
µ = ǫµνλDν′ν(g)Dλ′λ(g) r

ν′

1 r
λ′

2 . (6.189)

Now if R is any 3× 3 matrix, then Rµ′µRν′ν Rλ′λ ǫ
µνλ = det(R) ǫµ

′ν′λ′ , and therefore m′
µ = mµ′ D̃µ′µ(g),

where D̃αβ(g) = detD(g) ·Dαβ(g). In other words,

ǫµνλDν′ν(g)Dλ′λ(g) = detD(g) · ǫµ′ν′λ′Dµ′µ(g) . (6.190)
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J E C2 C3 C4 C6 E C3 C4 C6

1/2 2 0 1
√
2

√
3 −2 −1 −

√
2 −

√
3

1 3 −1 0 1 2 3 0 1 2

3/2 4 0 −1 0
√
3 −4 1 0 −

√
3

2 5 1 −1 −1 1 5 −1 −1 1

5/2 6 0 0 −
√
2 0 −6 0

√
2 0

3 7 −1 1 −1 −1 7 1 −1 −1
7/2 8 0 1 0 −

√
3 −8 −1 0

√
3

4 9 1 0 1 −2 9 0 1 −2
9/2 10 0 −1

√
2 −

√
3 −10 1 −

√
2

√
3

5 11 −1 −1 1 −1 11 −1 1 −1
11/2 12 0 0 0 0 −12 0 0 0

6 13 1 1 −1 1 13 1 −1 1

Table 6.22: O(3) characters of crystallographic point group operations. Note χ(C2) = χ(C2).

χ(σ) χ(σ) χ(I) χ(I) χ(S3) χ(S4) χ(S6) χ(S3) χ(S4) χ(S6)

η χ(C2) η χ(C2) η χ(E) η χ(E) η χ(C6) η χ(C4) η χ(C3) η χ(C6) η χ(C4) η χ(C3)

Table 6.23: Characters for improper O(3) operations. Here η = ± is the parity.

Thus for proper rotations,m transforms in the same way as a polar vector. But for improper operations,
it incurs an extra minus sign. From these results, we can also determine that

• For polar vectors r1 and r2 , the cross product r1×r2 transforms as an axial vector (proven above).

• For axial vectorsm1 and m2 , the cross productm1 ×m2 also transforms as an axial vector.

• The cross product r ×m of a polar vector with an axial vector transforms as a polar vector.

6.7.2 Invariant tensors

Suppose Tα1···αNµ1···µM
transforms as a polar vector (i.e. 1−) with respect to the indices {αj} and as an

axial vector (i.e. 1+) with respect to indices {µk}. Then the function

T
(
{rj}, {mk}

)
= Tα1···αNµ1···µM

N∏

j=1

r
αj

j

M∏

k=1

m
µk
k . (6.191)
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transforms as a scalar (i.e. the trivial representation) under O(3). For example, if Tαβµ transforms as a

(polar) vector under α and β, and as an (axial) pseudovector under µ, then T (x,y,m) = Tαβµ x
α yβmµ

is an invariant if x and y are vectors and m a pseudovector. Basically, so long as one is always taking
the ”dot product” on indices transforming according to the same IRREP of O(3), either 1− or 1+, then the
resulting expression is a group scalar if all available indices are contracted. This also holds true if one
internally contracts tensor indices which transform in the same way, e.g.

T̃
(
{rj}, {mk}

)
= Tα1···αNµ1···µM δα1α2 δµ1µ2 δµ3µ4

N∏

j=3

r
αj

j

M∏

k=5

m
µk
k (6.192)

is also a scalar. Now, following Lax, to every invariant polynomial of homogeneous degree K in(
{rj , mk}

)
there corresponds an invariant tensor of rank K , which one reads off from the coefficients

of the monomials. Recall that any polynomial for which

T (λr1, . . . , λrN , λm1, . . . , λmM ) = λK T (r1, . . . , rN ,m1, . . . ,mM ) (6.193)

is homogeneous of degree K . Thus, T (x,y,m) = x × y ·m = ǫαβγ x
α yβmµ is invariant and homo-

geneous of degree K = 3. Therefore Tαβµ = c ǫαβµ , where c is any constant, is an invariant rank three
tensor, inverting the logic of our previous example.

For the group SO(n) of proper rotations, a theorem which we shall not prove establishes that all poly-
nomial invariants of the n vectors {r1, . . . , rn} are of the form

P (r1, . . . , rn) = P1

(
{ri · rj}

)
+ P2

(
{ri · rj}

)
det(rµi ) , (6.194)

where P1,2 are functions of the dot products ri · rj . In fact, the determinant is also a function of the dot

products, although not a polynomial function thereof: detMiµ ≡ det(rµi ) = det1/2(ri · rj) ≡
(
detNij

)1/2
.

6.7.3 Shell theorem

Let
{
φΓµ (r)

}
and

{
ψΓν (r)

}
be two sets of orthonormal basis functions for an IRREP Γ of some finite

discrete group G. Then the function

FΓ (r, r′) =

dΓ∑

µ=1

φΓ
∗

µ (r)ψΓµ (r
′) (6.195)

is invariant under the operation of all g ∈ G. Explicitly, we have

g FΓ (r, r′) =
∑

α,β

φΓ
∗

α (r)ψΓβ (r
′)

= δαβ︷ ︸︸ ︷∑

µ

D∗
αµ(g)Dβµ(g) . (6.196)

Similarly, we have

1

NG

∑

g∈G
g
[
φΓ

∗

µ (r)ψΓµ (r
′)
]
=
∑

α,β

φΓ
∗

α (r)ψΓβ (r
′)

1

NG

∑

g∈G
D∗
αµ(g)Dβµ(g) =

1

dΓ

∑

α

φΓ
∗

α (r)ψΓα (r
′) ,

(6.197)
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where there is no implicit sum on µ. The LHS above is an average over all group operations, whereas
the RHS is a ”shell average” over all the labels in the representation Γ .

These results may be used to construct invariant tensors. Lax presents an example from C3v , taking

φE1 = yz′ − zy′ , φE2 = zx′ − xz′ , ψE1 = mx , ψE2 = my , (6.198)

and
φA2 = xy′ − yx′ , ψA2 = mz . (6.199)

The general invariant is expressed as F = aE ·E + bA2 ·A2 , i.e.

F = a (yz′ − zy′)mx + a (zx′ − xz′)my + b (xy′ − yx′)mz . (6.200)

We read off the coefficients of rµ r
′
ν mλ to obtain the invariant tensor elements χµνλ,

χ123 = −χ213 = a

χ231 = χ312 = −χ321 = −χ132 = b .
(6.201)

With spin, the invariant carries spatial and spin information, and is written

FΓ (r, r′, s, s′) =

dΓ∑

µ=1

φΓ
∗

µ (r, s)ψΓµ (r
′, s′) , (6.202)

where s and s′ are spinor indices.

6.8 Appendix : Quasi-degenerate Perturbation Theory

Oftentimes, as in our discussion of Raman spectroscopy in §6.4.3, we would like to focus on a subset
of Hilbert space and derive an effective Hamiltonian valid for a restricted group of states. This may
be accomplished by decoupling the target group of states from the rest of Hilbert space perturbatively
order by order in a canonical transformation39.

6.8.1 Type A and type B operators

Consider a Hamiltonian H = H0 + V , with H0| j 〉 = E0
j

∣∣ j
〉
. Typically the Hilbert space in which

H operates will be infinite-dimensional. Now consider some finite subset of levels {j1, jj , . . . , jK} and

define P to be be the projector onto this subspace, i.e. P =
∑K

α=1 | jα 〉〈 jα | . Let Q = 1 − P be the
orthogonal projector onto the complementary subspace. Typically we will be interested in cases where
P projects onto a small number of energy levels, such as the low-lying vibrational states of a molecule,
or, in a solid, a group of levels in the vicinity of the Fermi energy, such as the valence band(s) plus
conduction band(s) in a semiconductor.

39See, e.g. Appendix B of R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer,
2003).
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Let us write V = VA + VB , where

VA = P V P +QVQ

VB = P V Q+QV P .
(6.203)

The operator VA has no matrix elements connecting the P and Q subspaces, while VB only has matrix
elements between those subspaces. Clearly H0, which is diagonal, is a “type A” operator. Fig. 6.16
shows schematically the difference between type A and type B.

6.8.2 Unitary transformation for block diagonalization

Consider now a unitary transformation with

H̃ = e−S H eS = H + [H,S] +
1

2!

[
[H,S], S

]
+

1

3!

[[
[H,S], S

]
, S
]
+ . . .

≡
∞∑

k=0

1

k!

[
H,S

]
(k)

,
(6.204)

where S = −S† is antihermitian in order that eS be unitary, and where

[
H,S

]
(k)

=

k times︷ ︸︸ ︷[[[
H,S

]
, S] · · · , S

]
, (6.205)

with [H,S](0) ≡ H . As we shall see, we may assume S = SB is of type B., in which case H̃ = H̃A + H̃B,

with

H̃A =
∞∑

j=0

1

(2j)!

[
H0 + VA, S

]
(2j)

+
∞∑

j=0

1

(2j + 1)!

[
VB, S

]
(2j+1)

H̃B =

∞∑

j=0

1

(2j + 1)!

[
H0 + VA, S

]
(2j+1)

+

∞∑

j=0

1

(2j)!

[
VB, S

]
(2j)

.

(6.206)

We choose S such that H̃B = 0. This is done perturbatively. We start by formally replacing VA → λVA
and VB → λVB, with λ = 1 at the end of the day. We then write S as a Taylor series in powers of λ:

S = λS(1) + λ2 S(2) + . . . . (6.207)

X Y [X,Y ]

type A type A type A

type A type B type B

type B type A type B

type B type B type A

Table 6.24: Commutators and their types.
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Figure 6.16: Type-A operators preserve the subspace; type B operators change the subspace.

To third order in λ, we will need the following expressions:

[
H0 + λVA, S

]
(1)

= λ
[
H0, S(1)

]
+ λ2

([
H0, S(1)

]
+
[
VA, S

(1)
])

+ λ3
([
H0, S(3)

]
+
[
VA, S

(2)
])

+O(λ4)
[
H0 + λVA, S

]
(3)

= λ3
[[[
H0, S(1)

]
, S(1)

]
, S(1)

]
+O(λ4)

(6.208)

and
[
λVB, S

]
(0)

= λVB
[
λVB, S

]
(2)

= λ3
[[
VB, S

(1)
]
, S(1)

]
+O(λ4)

(6.209)

To order λ3, then, we make H̃B vanish by demanding

0 =
[
H0, S(1)

]
+ VB

0 =
[
H0, S(2)

]
+
[
VA, S

(1)
]

0 =
[
H0, S(3)

]
+
[
VA, S

(2)
]
+ 1

6

[[
[H0, S(1)], S(1)

]
, S(1)

]
+ 1

2

[
[VB, S

(1)], S(1)
]

.

(6.210)

We solve the first equation for S(1), then plug this into the second to obtain an equation for S(2), the
solution of which is used in the third equation to obtain S(3), etc. Setting λ = 1, the Hamiltonian is then

H̃ = H̃A = H0 + VA +
[
VB, S

(1)
]
+ 1

2

[
[H0, S(1)], S(1)

]
+ . . .

= H0 + VA + 1
2

[
VB, S

(1)
]
+ . . . .

(6.211)

Let a and b index states in P and let n and m index states in Q. The equation for S(1) then yields

0 = Van +H0
ab S

(1)
bn − S(1)

amH
0
mn = Van +

(
E0
a − E0

n

)
S(1)
an . (6.212)
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X [X,S](2j) [X,S](2j+1)

type A type A type B

type B type B type A

Table 6.25: Multiple commutators and their types.

Therefore, we have

S(1)
an =

Van
E0
n − E0

a

, S(1)
na =

Vna
E0
a − E0

n

. (6.213)

Note that Van and Vna both come from the VB part of V .

The equation for S(2) may be written in component form as

0 = H0
ab S

(2)
bn − S(2)

amH
0
mn + Vab S

(1)
bn − S(1)

am Vmn

=
(
E0
a − E0

n

)
S(2)
an +

VabVma
E0
n − E0

b

− VamVmn
E0
m − E0

a

.

(6.214)

Restoring the summation symbols for added clarity, we then have

S(2)
an =

1

E0
a − E0

n

·
(
∑

b

VabVbn
E0
n − E0

b

−
∑

m

VamVmn
E0
m − E0

a

)
, (6.215)

with a corresponding expression for S
(2)
na . At this point, the student should write down the expression

for S
(2)
an . The Hamiltonian in the P sector, to this order, is then

H̃ab = E0
a δab + Vab +

1
2

(
VanS

(1)
nb − S(1)

an Vnb
)

= E0
a δab + Vab +

1
2

∑

n

(
1

E0
a − E0

n

+
1

E0
b − E0

n

)
VanVnb .

(6.216)

6.9 Jokes for Chapter Six

MATHEMATICS JOKE : Q: What does the ”B” in Benoit B. Mandelbrot stand for? A: Benoit B.
Mandelbrot.

GRAMMAR JOKE : A businessman is in Boston for only the second time in his life. On his first visit
he had some delicious New England seafood, and he’s looking forward to going back to the same
restaurant. So he hails a cab, and asks the driver, ”I was in Boston a few years ago. Can you take
me to Angela’s, where I had scrod before?” The driver replies, ”You know, lots of people ask me
that, but never in the pluperfect subjunctive.”
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LOGICIAN JOKE : A logician’s husband tells his wife, ”please go to the grocery store on your way
home from work. We need a gallon of milk. And if they have eggs, get a dozen.” She returns home
with twelve gallons of milk. ”What the hell happened?!” asks the husband. ”They had eggs,” she
explained.

MUSICIAN JOKE : A conductor who is preparing for a performance is having trouble finding a
good clarinet player. He calls a contractor who tells him, ”The only guy I’ve got is a jazz clar-
inetist.” ”I can’t stand working with jazz musicians!” says the conductor. ”They dress like bums,
they’re always late, and every one of them has an attitude problem.” ”Hey, he’s all I’ve got,” says
the contractor. The conductor is desperate, so he agrees.

The conductor arrives early for the first rehearsal and sees the jazz clarinetist wearing a suit and
tie, a pencil resting on his stand, and practicing his part. During the rehearsal, he plays sensitively
and writes down all of the conductor’s suggestions. At the second rehearsal, the clarinetist plays
even better. At the final dress rehearsal, he is absolutely flawless.

During the dress rehearsal break, the conductor tells the orchestra, ”I’ve got an apology to make,
and I wanted to do so publicly, because there is a lesson here for us all. I was really dreading
having to work with a jazz musician, but I must say that our clarinetist has proven me wrong.
He’s always neatly dressed, comes early to rehearsal, and he really listened to me and learned his
part very well indeed.” Turning to the clarinet player the maestro says, ”I just wanted to tell you
that I truly appreciate your effort and dedication.”

The clarinetist replies, ”Hey man, it’s the least I can do since I can’t make the gig.”

SPECIAL JOKE FOR CHAPTER SIX : A Mn4+ ion walks into a bar. The bartender asks, ”would you
like a point group?” The ion replies, ”better make it a double.”40

40I made this joke up all by myself. It is term-splitting, if not side-splitting. ”They laughed when I said I wanted to be a
comedian. Well, nobody is laughing now!”
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Chapter 7

Time Reversal

7.1 The Poincaré Group

7.1.1 Space inversion and time-reversal

Recall that the Poincaré group P(1, n) in n space dimensions is the set of matrices

R(L, b) =




L00 · · · L0n b0
...

. . .
...

...

Ln0 · · · Lnn bn
0 · · · 0 1




, (7.1)

where L ∈ O(1, n) is a Lorentz transformation, meaning LTgL = g with g = diag(1,−1, . . . ,−1) is a
diagonal matrix of rank (n + 1), and b is an (n+ 1)-component column vector1. Note g is of rank n+ 2,
and its action on a vector ξ whose transpose is ξT = (x0 , x1 , . . . , xn , 1) is given by

R(L, b) ξ =




L00 · · · L0n b0
...

. . .
...

...

Ln0 · · · Lnn bn
0 · · · 0 1







x0
...

xn
1




=




x′0
...

x′n
1



≡ ξ′ , (7.2)

where x′µ = Lµνxν + bµ . The space inversion and time-reversal operators, I and T , respectively, ex-
pressed as elements of O(1, n), are then

I =


 1 01×n

0n×1 −1n×n


 , T =


 −1 01×n

0n×1 1n×n


 , (7.3)

1In chapter 1, we called this group P(n, 1), which is equivalent to P(1, n). In both cases, the metric tensor gµν is diagonal and
the temporal entry g00 is of opposite sign to the spatial entries g11 = g22 = · · · = gnn.
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and are both of rank (n + 1). Their corresponding rank matrices I and T , which are elements of P(1, n)
and therefore of rank (n+ 2), are then given by

I =


 I(n+1)×(n+1) 0(n+1)×1

01×(n+1) 1


 , T =


 T(n+1)×(n+1) 0(n+1)×1

01×(n+1) 1


 . (7.4)

Note that I−1 = I and T −1 = T , and furthermore that

I R(L, b)I−1 = R(ILI−1, Ib)

T R(L, b)T −1 = R(TLT−1, T b) .
(7.5)

The product IT = T I is

IT =


 −1(n+1)×(n+1) 0(n+1)×1

01×(n+1) 1


 , (7.6)

which commutes with all pure Lorentz transformations, but fails to commute with space-time transla-
tions, since

IT R(E, b) (IT )−1 = R(E,−b) . (7.7)

7.1.2 Representations of the Poincaré Lie algebra

We now restrict our attention to the case n = 3, where the Poincaré group consists of 5× 5 matrices. The
generators of the Poincaré Lie algebra p(1, 3) are classified as being translations, rotations, or boosts. The
lowest order variation of R(L, b) about the identity R(E, 0) is

δR =




0 δω01 δω02 δω03 δb0
δω01 0 δω12 −δω31 δb1
δω02 −δω12 0 δω23 δb2
δω03 δω31 −δω23 0 δb3
0 0 0 0 0



≡ −iPµ δbµ − iJµν δωµν . (7.8)

More precisely,

R(E, δb) = exp
(
−iPµ δbµ

)

R(E + δω, 0) = exp
(
−iJµν δωµν

)
,

(7.9)

where AµBµ = gµνA
µBν , and where δωT = −g δω g and JT = −gJg . We stress that for each µ ∈

{0, 1, 2, 3} the generator Pµ is a 5×5 matrix, as is each of the six independent elements of Jµν . The latter
is further split into its rotation and boost components by writing

Ji =
1
2ǫijk J

jk , Ki = Ji0 , (7.10)
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with i ∈ {1, 2, 3}. J are the generators of rotations, and K the generators of boosts. Thus, we have a
total of ten generators of the Lie algebra p(1, 3) : P 0 , P , J , and K, the 5 × 5 matrices of which can be
read off from Eqn. 7.8. Under space inversion and time-reversal,

I P 0 I−1 = +P0 , I P I−1 = −P , I J I−1 = +J , IK I−1 = −K (7.11)

T P 0 T −1 = −P0 , T P T −1 = +P , T J T −1 = +J , T K T −1 = −K . (7.12)

7.1.3 Whither time-reversal?

The problem is that P 0 changes sign under T , but P does not. In classical mechanics, the action of
time-reversal is

rT = r , pT = −p , LT = −L , ET = E , BT = −B . (7.13)

Thus, ifH(E,B) is the Hamiltonian for a charged particle in the presence of electric and magnetic fields,[
H(E,B)

]T
= H(E,−B). Unlike space inversion, time-reversal in classical mechanics is not a canonical

transformation, since it does not preserve the Poisson bracket
{
xµ , pν

}
PB

= δµν . This is our first clue
that there is something special about time-reversal and that attempting to implement it in quantum
mechanics via a unitary transformation is doomed to fail.

Indeed, if we use Eqn. 7.12 to define Hermitian generators of p(1, 3), we run into problems quantizing
because the generator of time translations, P 0, which is the Hamiltonian, is apparently odd under time-
reversal, while the momentum P , which is the generator of space translations, is even under time-
reversal. This poses severe problems for the classical-quantum correspondence.

Indeed, suppose we define a time-reversal operator T̂ whose action on wavefunctions ψ(x, t) is

ψ′(x, t) = T̂ ψ(x, t) = λψ(x,−t) , (7.14)

where λ ∈ C. Does ψ′(x, t) satisfy the Schrödinger equation?

i~
∂

∂t
ψ′(x, t) = i~λ

∂

∂t
ψ(x,−t) = −i~λ ∂

∂(−t) ψ(x,−t)

= −λ Ĥ ψ(x,−t) = −Ĥ ψ′(x, t) .

(7.15)

No, it does not. In hindsight, this was obvious from the start. The Schrödinger equation is first order in
time, hence it is not invariant under t→ −t. So at this point we are left with three possibilities:

(i) Quantum physics, unlike Newtonian physics, is not invariant under time-reversal. [horrible!]

(ii) T̂ ĤT̂−1 = −Ĥ and the correspondence principle fails. [horrible!]

(iii) i~ ∂
∂t does not change sign under time-reversal. [hmmm. . .]
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7.2 Antilinearity : The Solution to All Our Problems

I don’t know about you, but I’m putting my money on option (iii). How could we make that work out?
Well, suppose that the action of time-reversal is not given by Eqn. 7.14, but rather by

ψ′(x, t) = λǨψ(x,−t) = λψ∗(x,−t) , (7.16)

where Ǩ is the scalar complex conjugation operator2 which complex conjugates every scalar to its right.
Now we have

i~
∂

∂t
ψ′(x, t) = i~λ

∂

∂t
ψ∗(x,−t) = λ

[
i~

∂

∂(−t) ψ(x,−t)
]∗

= λ Ĥ∗ψ∗(x,−t) = Ĥ∗ψ′(x, t) , (7.17)

and so long as Ĥ = Ĥ∗, the Schrödinger equation remains invariant under time-reversal. Now that was
so fun, let’s do it again:

ψ′′(x, t) = λǨ λǨ ψ
(
x,−(−t)

)
= |λ|2 ψ(x, t) , (7.18)

and if time-reversal applied twice preserves the state ψ(x, t) up to a phase, we conclude that phase |λ|2
must be unity, i.e. Ť 2 = 1 and λ = eiθ is a unimodular complex number. This result is applicable to scalar
wavefunctions ψ. When there is a spinor component due to intrinsic angular momentum, then the most
general form for Ť is Ť = ÛǨ , where Û is a unitary operator. In this case the unitary Û may act on the
spinor coordinates of Ψ , but since two applications of Ť must result in the same state, i.e. must preserve
the ray in Hilbert space, we conclude Ť 2 Ψ = eiα Ψ , i.e. Ť 2 = eiα is at most a constant phase. But then

Ť 3 Ψ = Ť (Ť 2 Ψ) = Ť eiα Ψ = e−iα Ť Ψ

= (Ť 2) Ť Ψ = eiα Ť Ψ ,
(7.19)

and we conclude e2iα = 1, hence α = 0 or α = π. As we shall see below, the case α = 0 applies when the
intrinsic angular momentum is j ∈ Z, while α = π applies when j ∈ Z+ 1

2 .

An operator Ǎ for which

Ǎ
[
α
∣∣φ
〉
+ β

∣∣ψ
〉]

= α∗Ǎ
∣∣φ
〉
+ β∗Ǎ

∣∣ψ
〉

(7.20)

is called antilinear. Thus, time-reversal operator for spinless particles, Ť = eiθǨ , is antilinear. Note that
we use the inverted hat symbol (ˇ ) to denote an antilinear operator.

7.2.1 Properties of antilinear operators

The following are True Facts about antilinear operators:

• An antilinear operator does not commute with complex numbers. Rather

Ǎ c = c∗Ǎ ⇒ Ǎ c Ǎ−1 = c∗ . (7.21)

2We shall see below in §7.2.4 how to define time-reversal for particles with S = 1
2

.
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• Rather than 〈φ | Â ψ 〉 = 〈 Â† φ |ψ 〉 as for linear Â, for antilinear Ǎ we have
〈
φ
∣∣ Ǎ ψ

〉
=
〈
Ǎ†φ

∣∣ψ
〉∗

. (7.22)

Indeed, the familiar Dirac notation 〈φ | Â |ψ 〉 = 〈φ | Â ψ 〉 = 〈 Â†φ |ψ 〉 is misleading and should
be eschewed in the case of antilinear operators, for which we may write

(〈
φ
∣∣Ǎ
)
=
〈
Ǎ† φ

∣∣ ,
(
Ǎ
∣∣ψ
〉)

=
∣∣ Ǎ ψ

〉
(7.23)

and (〈
φ
∣∣Ǎ
)∣∣ψ

〉
=
[〈
φ
∣∣
(
Ǎ
∣∣ψ
〉)]∗

(7.24)

Thus, 〈 Ǎ† φ |ψ 〉 = 〈φ |Ǎ ψ 〉∗. It is very dangerous and often wrong to remove the parentheses in
the above relations!

• Though this follows from the first bullet, it is worth emphasizing:

(c Ǎ)−1 = Ǎ−1 c−1 = c∗−1 Ǎ−1 . (7.25)

• The time-reversal operator is both unitary and antilinear, i.e. it is antiunitary. Because it is unitary,
Ť †Ť = Ê. Thus entails

〈
Ťφ
∣∣ Ť ψ

〉
=
〈
Ť †Ť φ

∣∣ψ
〉∗

=
〈
φ
∣∣ψ
〉∗

=
〈
ψ
∣∣φ
〉

. (7.26)

Thus, ∣∣〈 Ť φ
∣∣ Ťψ

〉∣∣2 =
∣∣〈φ

∣∣ψ
〉∣∣2 (7.27)

for all |φ 〉 and |ψ 〉 . So time-reversal preserves probabilities.

• Let Û and V̂ be unitary, and let Ǎ and B̌ be antiunitary. Then Û V̂ and ǍB̌ are both unitary, while
Û B̌ and V̂Ǎ are both antiunitary. These follow directly from Eqn. 7.20.

• Any symmetry operation which preserves probabilities can be represented as an operator acting
on the Hilbert space of states that is either both linear and unitary, or antilinear and antiunitary.

The proof of the last bullet point is elementary3. Let Q̃ be an operator which preserves probabilities.
Then it must preserve the norm, i.e.

〈
Q̃ Ψ

∣∣ Q̃ Ψ
〉
=
〈
Ψ
∣∣Ψ
〉

. (7.28)

for all |Ψ 〉. Now let |Ψ 〉 = c |φ 〉 + |ψ 〉 . Then

〈
Q̃ (c φ+ ψ)

∣∣ Q̃ (c φ+ ψ)
〉
=
〈
c φ+ ψ

∣∣ cφ+ ψ
〉

= |c|2
〈
φ
∣∣φ
〉
+
〈
ψ
∣∣ψ
〉
+ 2Re

[
c
〈
ψ
∣∣φ
〉]

=
〈
c̃ Q̃ φ+ Q̃ ψ

∣∣ c̃ Q̃ φ+ Q̃ ψ
〉

= |c̃|2
〈
φ
∣∣φ
〉
+
〈
ψ
∣∣ψ
〉
+ 2Re

[
c̃
〈
ψ
∣∣φ
〉]

,

(7.29)

3Wigner said it, so it must be true. See, e.g., Appendix A of S. Weinberg, The Quantum Theory of Fields (vol. 1) or Theorem
10.4.2 of Lax. Here we follow Lax’s proof.
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where c̃ = c if Q̃ is linear and c̃ = c∗ if Q̃ is antilinear. Note |c̃|2 = |c|2 in either case. Then setting c = 1
and c = i gives

c = 1 ⇒ Re
〈
Q̃ ψ

∣∣ Q̃ φ
〉
= Re

〈
ψ
∣∣φ
〉

c = i ⇒ Im
〈
Q̃ ψ

∣∣ Q̃ φ
〉
= ± Im

〈
ψ
∣∣φ
〉

,
(7.30)

where the top sign holds for Q̃ linear and the bottom sign for Q̃ antilinear. For Q̃ linear, we have

〈 Q̃ ψ | Q̃ φ 〉 = 〈ψ |φ 〉, which establishes that Q̃ is unitary. For Q̃ antilinear, 〈 Q̃ ψ | Q̃ φ 〉 = 〈φ |ψ 〉, which

establishes that Q̃ is antiunitary.

As a result of the complex conjugation, we now have an updated and more suitable version of Eqn. 7.12,

Î P̂ 0 Î−1 = +P0 , Î P̂ Î−1 = −P̂ , Î Ĵ Î−1 = +Ĵ , Î K̂ Î−1 = −K̂ (7.31)

Ť P̂ 0 Ť−1 = +P0 , Ť P̂ Ť−1 = −P̂ , Ť Ĵ Ť−1 = −Ĵ , Ť K̂ Ť−1 = +K̂ . (7.32)

All is well!

7.2.2 Position and momentum eigenstates

We may now compute the action of Ť on operators, but how does it act on basis states? We first consider
the case in which the particles are spinless. With respect to time-reversal, one can define an orthonormal
basis |ψµ 〉 which is defined to be real, i.e. for which | Ť ψµ 〉 = |ψµ 〉. To see why this is so, consider

an arbitrary basis vector |φµ 〉 and form | ψ̃µ 〉 ≡ |φµ 〉 + | Ť φµ 〉. For spinless particles, Ť 2 = 1, hence

| Ť ψ̃µ 〉 = | ψ̃µ 〉 and | ψ̃µ 〉 is an eigenstate of Ť with eigenvalue +1. Now consider any vector |φν 〉
satisfying 〈 ψ̃µ |φν 〉 = 0 and form | ψ̃ν 〉 ≡ |φν 〉+ | Ť φν 〉. Then

〈
ψ̃µ
∣∣ ψ̃ν

〉
=
〈
ψ̃µ
∣∣ Ť φν

〉
=
〈
Ť ψ̃µ

∣∣ Ť 2 φν
〉∗

=
〈
ψ̃µ
∣∣φν

〉∗
= 0 (7.33)

because Ť 2 = +1 and 〈 Ť ψ̃µ | = 〈 ψ̃µ | . Followed to its conclusion (for a finite-dimensional Hilbert
space), this procedure results in a complete set of mutually orthogonal vectors, which can further be
normalized so as to be orthonormal, viz. 〈ψµ |ψν 〉 = δµν with | Ť ψµ 〉 = |ψµ 〉 for all µ . Furthermore, if

Ť ĤŤ = Ĥ , then its matrix elements in this basis are

Hµν =
〈
ψµ
∣∣ Ĥ ψν

〉
=
〈
Ť ψµ

∣∣ Ť Ĥ ψν
〉∗

=
〈
ψµ
∣∣ Ť ĤŤ 2ψν

〉∗
=
〈
ψµ
∣∣ Ť ĤŤ ψν

〉∗
= H∗

µν ,
(7.34)

and therefore all the matrix elements Hµν are real.

Typically this is taken to be the case for position eigenstates, | r 〉 , i.e.
∣∣ r
〉
=
∣∣ Ťr

〉
=
∣∣ Ť †r

〉
, (7.35)

and therefore

〈
r
∣∣ Ť
(
α
∣∣φ
〉
+ β

∣∣ψ
〉)

=
[
α
〈
Ť †r

∣∣φ
〉
+ β

〈
Ť †r

∣∣ψ
〉]∗

= α∗〈 r
∣∣φ
〉∗

+ β∗
〈
r
∣∣ψ
〉∗

= α∗φ∗(r) + β∗ψ∗(r) .
(7.36)
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Furthermore, if |ψ 〉 =
∫
ddr | r 〉〈 r |ψ 〉 , then

∣∣ Ť ψ
〉
= Ť

∫
ddr
〈
r
∣∣ψ
〉
Ť−1

∣∣ Ťr
〉
=

∫
ddr
∣∣ r
〉 〈
r
∣∣ψ
〉∗

. (7.37)

We also have Ť ĤŤ−1 = Ĥ∗, so if Ĥ = Ĥ∗, then Ĥ |ψ 〉 = E |ψ 〉 entails

Ĥ
∣∣ Ť ψ

〉
= Ť ĤŤ−1

∣∣ Ť ψ
〉
= Ť Ĥ

∣∣ψ
〉
= E

∣∣ T̂ ψ
〉

, (7.38)

and since 〈
r
∣∣ Ťψ

〉
=
〈
Ť †r

∣∣ψ
〉∗

=
〈
r
∣∣ψ
〉∗

= ψ∗(r) , (7.39)

if the eigenstate |ψ 〉 is nondegenerate, ψ(r) can be chosen to be real. This is very important, so let’s say
it again, this time with feeling:

⋆ For spinless particles, if Ť Ĥ = ĤŤ , the non-degenerate eigenstates of Ĥ are real, possibly multiplied by a
constant phase.

For momentum eigenstates, we have

eip·r/~ =
〈
r
∣∣p
〉
=
〈
Ťp
∣∣ Ťr

〉
=
〈
r
∣∣ Ťp

〉∗
, (7.40)

and we conclude | Ťp 〉 = | Ť †p 〉 = | − p 〉. This can also be deduced from the operator transformation
properties,

Ť r̂ Ť−1 = +r̂ , Ť p̂ Ť−1 = −p̂ , (7.41)

where the latter follows from the action of complex conjugation on p̂ = −i~∇.

If Q̂ is any operator with a definite signature under spinless time-reversal, i.e. if

Ǩ Q̂ Ǩ−1 = η
Q̂
Q̂ (7.42)

with η
Q̂
= ±1, then if Ĥ = Ĥ∗ is time-reversal invariant,

Ǩ Q̂(t) Ǩ−1 = Ǩ eiĤt/~ Q̂ e−iĤt/~ Ǩ−1 = e−iĤt/~ Ǩ Q̂ Ǩ−1 eiĤt/~ = η
Q̂
Q̂(−t) . (7.43)

7.2.3 Change of basis for time-reversal

Recall Ť = λǨ with |λ| = 1. We are free to choose λ = 1, in which case Ť = Ǩ is the complex
conjugation operator. Thus far we have defined Ǩ with respect to a particular Ť -invariant basis, i.e. the
position basis4 We could choose a different basis,

{
|n 〉

}
, and define the action of a new time-reversal

operator Ǩ ′ as

Ǩ ′∑

n

ψn
∣∣n
〉
=
∑

n

ψ∗
n

∣∣n
〉

. (7.44)

4The ”time-reversal basis” is one for which the basis states have time-reversal eigenvalue +1.
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Since Ť = Ǩ ′ and Ǩ are both antilinear, they must be related by a unitary operator, i.e. Ť = ÛǨ. Then

Ť 2 = ÛǨÛǨ = Û Û∗ ≡ eiα , (7.45)

since a second time-reversal operation must restore the original state up to a phase. Thus, eiα Û † = Û∗,
and taking the transpose we obtain eiα Û∗ = Û †, whence e2iα = 1 , which says that α = 0 or α = π. For
spinless particles, as we have seen, Ť 2 = +1. In the next section, we consider the case of S = 1

2 .

7.2.4 Time reversal with spin

In order that the spin-orbit term in the electron Hamiltonian5,

ĤSO =
~

4m2c2
σ ·∇V × p , (7.46)

remain invariant under time-reversal, we must have ŤσŤ−1 = −σ. With Ť = ÛǨ ,

ŤσŤ−1 = ÛǨσǨ−1Û−1

= Û
(
σx x̂− σy ŷ + σz ẑ

)
Û † = −σ .

(7.47)

Thus, ÛσxÛ † = −σx , ÛσyÛ † = +σy , ÛσzÛ † = −σz , and Û = eiβσy is a solution, where eiβ is an
arbitrary phase, which we may take to be i , so that U = iσy ∈ SU(2) has unit determinant. We now
have

Ť 2 = (iσy) Ǩ (iσy) Ǩ = (iσy)2 = −1 . (7.48)

For N spins each with S = 1
2 ,

Ť = (iσy1) · · · (iσ
y
N ) Ǩ (7.49)

and Ť 2 = (−1)N . Note that
∏N
n=1(iσ

y
n) = exp(iπSy/~) corresponds to a rotation by π of all the spins

about the y-axis in internal space.

Now consider the case of general angular momentum Ĵ , with Ĵ
2
= ~

2j(j + 1). We have Ť Ĵ Ť−1 = −Ĵ ,

which entails Ť Ĵ
2
Ť−1 = Ĵ

2
, hence Ť preserves the j quantum number. We also have

Ĵz Ť
∣∣ j,m

〉
= Ť (Ť−1Ĵz Ť )

∣∣ j,m
〉
= −~mŤ

∣∣ j,m
〉

, (7.50)

from which we conclude Ť | j,m 〉 = Cj,m | j,−m 〉, where Cj,m is a complex scalar. We furthermore have

Ĵ± Ť
∣∣ j,m

〉
= −Ť Ĵ∓ ∣∣ j,m

〉
= −A∓(j,m) Ť

∣∣ j,m∓ 1
〉
= −A∓(j,m) Cj,m∓1

∣∣ j,−m± 1
〉

= Cj,m Ĵ
± ∣∣ j,−m

〉
= Cj,mA±(j,−m)

∣∣ j,−m± 1
〉

,
(7.51)

where A±(j,m) = A∓(j,−m) = ~
√
j(j + 1)−m(m∓ 1) . Thus, we conclude Cj,m∓1 = −Cj,m , which

we may choose to solve with the assignment Cj,m = (−1)j+m . One more time, with great feeling:

Ť
∣∣ j,m

〉
= (−1)j+m

∣∣ j,−m
〉

. (7.52)

5Our notation is somewhat inconsistent as we generally do not place hats on r, p, and σ. That these entities function as
operators on Hilbert space is taken for granted.



7.2. ANTILINEARITY : THE SOLUTION TO ALL OUR PROBLEMS 265

Thus, Ť = ÛǨ with Ǩ
∣∣ j,m

〉
=
∣∣ j,m

〉
and

Û =




0 0 · · · 0 1
0 0 · · · −1 0
... . .

. ...
...

(−1)2j 0 · · · 0 0


 (7.53)

so that
Ť 2 = Û Ǩ Û Ǩ = Û2 = (−1)2j . (7.54)

Therefore, in the case of a single j-quantum, we have Ť 2 = +1 or j ∈ Z, and Ť 2 = −1 for j ∈ Z+ 1
2 . For

the general case of N j-quanta, Ť 2 = (−1)2jN .

7.2.5 Kramers degeneracy

When
[
Ť , Ĥ

]
= 0 and Ť 2 = −1, all states in the eigenspectrum of Ĥ are evenfold degenerate. We prove

this by showing that |ψ 〉 and | Ť ψ 〉 are degenerate and orthogonal. The proof of degeneracy is provided
in Eqn. 7.38. As to orthogonality,

〈
ψ
∣∣ Ťψ

〉
=
〈
Ť ψ

∣∣ Ť 2ψ
〉∗

= −
〈
Ť ψ

∣∣ψ
〉∗

= −
〈
ψ
∣∣ Ť ψ

〉
, (7.55)

and therefore 〈ψ | Ť ψ 〉 = 0. Thus, the dimension of Hilbert space must be even. For N spin-12 objects,
this requires N odd, i.e. the total spin Stot is a half odd integer.

In the absence of ĤSO , we are free to define Ť = Ǩ even though electrons have S = 1
2 . The reasoning

is the same as that which permitted us to use the ordinary point group and not the double group in
such circumstances. In the context of time-reversal,

[
Ǩ, Ĥ

]
= 0 in the absence of ĤSO , so we are free to

classify states by their properties with respect to Ǩ alone.

7.2.6 External fields

In the presence of external fields, the one electron Hamiltonian is given by

Ĥ =
1

2m

(
p+ e

cA
)2

+ V (r) +
e~

2mc
σ ·B

+
~

4m2c2
σ ·∇V ×

(
p+ e

cA
)
+

~
2

8m2c2
∇2V +O(m−3) ,

(7.56)

where V (r) = −e φ(r) , E = −∇φ , and B = ∇ × A. Beyond the kinetic and potential energy terms
in this expression, we have, respectively, the Zeeman and spin-orbit terms, both of which involve the
electron’s spin, and the Darwin term, which in the presence of a potential V (r) = −Ze2/r is proportional
to ∇2(1/r) = −4π δ(r). In general φ(r) is generated by an external charge density ρ(r) and A(r) by an
external current density j(r). Where do all these terms come from, by the way? From the Dirac equation,
of course:

i~
∂Ψ

∂t
=

(
mc2 + V cσ ·

(
p+ e

cA
)

cσ ·
(
p+ e

cA
)

−mc2 + V

)
Ψ . (7.57)
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The wavefunction Ψ is a four-component Dirac spinor; each of the entries in the above Hamiltonian
matrix is a 2 × 2 subblock. Since mc2 is the largest energy scale in town, the coupling between the up-
per two ”positive energy” components and the lower two ”negative energy” components is relatively
weak, and can be eliminated order by order in (mc2)−1 by successive canonical transformations of the
type discussed in §6.7. This procedure is known as the Foldy-Wouthuysen transformation and is described
in standard texts of yore such as Bjorken and Drell (see the Appendix §7.6 for a derivation). The Dirac
equation is of course wrong6, and the real theory of electrons interacting with photons is given by quan-
tum electrodynamics. Thus the g-factor multiplying (e/2mc)B ·S, where S = 1

2~σ, is g = 2, which is
the ”tree level” value. Radiative corrections, calculable within QED, lead to g = 2 + α

π +O(α2), where
α = e2/~c ≈ 1/137 is the fine structure constant. But I digress.

The Hamiltonian ĤT = Ť ĤŤ−1 is invariant under time-reversal provided

ρT (r, t) = ρ(r,−t) , jT (r, t) = −j(r,−t) (7.58)

φT (r, t) = φ(r,−t) , AT (r, t) = −A(r,−t) (7.59)

ET (r, t) = E(r,−t) , BT (r, t) = −B(r,−t) , (7.60)

where the conditions on φ and A are of course true up to a gauge transformation. We then have
ĤT (E,B) = Ĥ(ET ,BT ) and ψT (t ; E,B) = ÛǨψ(−t ; ET ,BT ).

7.3 Time Reversal and Point Group Symmetries

All point group operations ĝ ≡ Û(g) commute with time-reversal:
[
Ť , ĝ

]
= 0. The reason is that proper

point group operations are rotations, hence ĝ = exp
(
− iξn̂ · Ĵ/~

)
, and Ť iĴ Ť−1 = iĴ . The improper

operations include spatial inversion Î , which also commutes with Ť .

Consider the case of a particle of total spin j subjected to point group operations. We have

(i) Ť 2 = +1 , j = 0 : The time-reversal operator is then simply complex conjugation, i.e. Ť = Ǩ.
Consider any complex scalar basis function ψ(r). Then

Ť ĝ ψ(r) = ĝ Ť ψ(r) = ψ∗(rg) . (7.61)

(ii) Ť 2 = −1 , j = 1
2 : The time-reversal operator is T̂ = iσy Ǩ , and we write the wavefunction as a

two-component column vector, with ψT(r) =
(
ψ↑(r) , ψ↓(r)

)
. Then it can be shown that

Ť ĝ ψ(r) = ĝ Ť ψ(r) = iσy
[
D1/2(g)

]∗
(
ψ∗
↑(rg)
ψ∗
↓(rg)

)
. (7.62)

The essential step in establishing the above result is to show σyD1/2(g)σy =
[
D1/2(g)

]∗
, which is

left as an exercise for the student.

6With respect to QED, the Dirac equation is correct ”at tree level”.
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(iii) For general j, one has ψT(r) =
(
ψm(r) , . . . , ψ−m(r)

)
, and

Ť ĝ ψ(r) = ĝ Ť ψ(r) = ψT (rg) (7.63)

whose components are given by

ψT
m(rg) = (−1)j−m

[
Dj

−m,m′(g)
]∗
ψ∗
m′(rg) . (7.64)

This is readily derived using the definition and properties of rotation matrices, discussed in §4.3.2.

7.3.1 Complex conjugate representations

Suppose |ψΓµ 〉 for µ ∈ {1, . . . , dΓ } are basis vectors for an invariant subspace VΓ transforming according
to a representation Γ of the point group G. Then combining point group and time-reversal operations
yields

ĝ
∣∣ Ť ψΓν

〉
= Ť ĝ

∣∣ψΓν
〉
= Ť

[ ∣∣ψΓµ
〉
DΓ
µν(g)

]
=
∣∣ Ť ψΓµ

〉
DΓ ∗

µν (g) . (7.65)

This tells us that the basis vectors | Ť ψΓµ 〉 transform as the complex conjugate representation Γ ∗. In §2.5,
we discussed the significance of the Frobenius-Schur indicator,

εΓ =
1

NG

∑

g∈G
χΓ (g2) , (7.66)

which takes the values εΓ ∈ {−1, 0,+1}, in determining whether a given IRREP can be made real, i.e.
whether it is equivalent to one whose representation matrices are all real. We found

(i) εΓ = +1 : The representation matrices DΓ (G) may be brought to real form by a similarity trans-
formation S DΓ (G)S−1. All characters χΓ (g) are real. In such cases, Γ is said to be real.

(ii) εΓ = −1 : DΓ (G) andDΓ ∗
are equivalent, meaning they are related by a similarity transformation,

but they cannot be brought to real form. All characters χΓ (g) are real. In such cases, Γ is said to be
pseudoreal.

(iii) εΓ = 0 : DΓ (G) and DΓ ∗
are inequivalent, and χΓ (g) /∈ R for some group elements g. In such

cases, Γ is said to be complex.

The single crystallographic point groups have no pseudoreal IRREPs. The following crystallographic
groups have complex IRREPs: C3 , C3h , C4 , C4h , C6 , C6h , T , Th. The spin IRREPs of the double point
groups all have dimensions dΓ = 1, 2, or 4. They are real only for the case dΓ = 1. For dΓ = 2 and 4, they
are pseudoreal. For SO(3), we use the invariant measure to compute the Frobenius-Schur indicator. The
invariant measure is given by

dµ(ξ, n̂) = (1− cos ξ)
dξ

2π

dn̂

4π
, (7.67)
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hence

εj =
1

2π

2π∫

0

dξ (1− cos ξ)χ(j)(2ξ)

=
1

2π

2π∫

0

dξ (1− cos ξ)
sin (2j + 1)ξ

sin ξ
=

{
+1 if j ∈ Z

−1 if j ∈ Z+ 1
2 .

(7.68)

Does the presence of time-reversal symmetry lead to additional degeneracies in the eigenspectrum? We
state the following results without proof:7

(i) If εΓ Ť
2 = +1, then there are no additional degeneracies. This is the case for real IRREPs when

Ť = +1, and for pseudoreal IRREPs when Ť 2 = −1. In the latter case, one can redefine the states so
that |ψΓ ∗

µ 〉 = | Ť ψΓµ 〉 .

(ii) If εΓ Ť
2 = −1, then there is a doubling, and | Ť ψΓµ 〉 is orthogonal to |ψΓν 〉 for all µ and ν. This is

the case for real IRREPs when Ť 2 = −1 and for pseudoreal IRREPs when Ť 2 = +1. Doubling means
that a given representation appears twice, with degenerate energies.

(iii) If εΓ Ť
2 = 0, the IRREPs Γ and Γ ∗ are inequivalent and degenerate. Such degenerate IRREPs are

called paired.

7.3.2 Generalized time-reversal

In cases where
[
Ť , Ĥ

]
6= 0, but

[
r̂ Ť , Ĥ

]
= 0 for some point group operation r ∈ G, the following result

is useful:

ĝ
∣∣ Θ̌ ψΓν

〉
=
(
r̂
∣∣ Θ̌ ψΓµ

〉)
DΓ ∗

µν (h
−1gh) , (7.69)

where Θ̌ = r̂ Ť is an antiunitary operator which effectively stands in for time-reversal Ť . This state of
affairs persists, for example, when a magnetic field H is present, which by itself breaks time-reversal
symmetry, but there is a point group operation r̂, such as a twofold axis perpendicular toH or a mirror
plane containingH8, both of which reverseH . Thus Θ̌ preservesH and is a symmetry, assuming time-
reversal is otherwise unbroken. Above we considered the time-reverse representation Γ T = Γ ∗. We
denote the generalized time-reverse representation by ΓΘ. The details are worked out in §10.6 of Lax,
and we present the results in Tab. 7.1. We define

ε̃Γ =
1

NG

∑

g∈G
χΓ
(
(rg)2

)
(7.70)

as well as

DΓΘ
(g) =

[
DΓ (r−1gr)

]∗
, χΓ

Θ
(g) = TrDΓΘ

(g) =
[
χΓ (r−1gr)

]∗
. (7.71)

7For a proof, see Lax §10.7.
8Since H is a pseudovector, it is reversed by a mirror containing H and preserved by a mirror orthogonal to H .



7.4. CONSEQUENCES OF TIME-REVERSAL 269

equivalence of representations degeneracies

type ε̃Γ χΓ
Θ
= χΓ ? DΓΘ

= S−1DΓS ? S symmetry DΓΘ
=DΓ ? Ť 2 = +1 Ť 2 = −1

1 +1 yes yes S = DΓ (r2)ST if ST = S none doubling

2 −1 yes yes S = −DΓ (r2)ST if ST = S doubling none

3 0 no no none no pairing pairing

Table 7.1: Representations and degeneracies for generalized time reversal Θ̌ = r̂ Ť .

The issue is whether a given IRREP Γ is equivalent to its generalized time-reverse ΓΘ, as well as whether
the generalized time-reversal symmetry entails any extra degeneracies in the spectrum of Ĥ. Equiva-

lence of IRREPs means that there exists a fixed matrix S with DΓΘ
(g) = S−1DΓ (g)S for all g ∈ G. Since

we presume our representations to be unitary, S is also unitary. The analysis hinges on the value of the
generalized Frobenius-Schur indicator, ε̃Γ , defined above in eqn. 7.70. When r = E, the results in Tab.
7.1 recapitulate those already stated. For the cases ε̃Γ = ±1 (types 1 and 2), the representation matrices

may be made to be identical, i.e. DΓΘ
(g) = DΓ (g), provided S = ST, i.e. if DΓ (r2) = ε̃Γ D

Γ (E).

7.4 Consequences of Time-Reversal

7.4.1 Selection rules and time-reversal

Selection rules in quantum mechanics refer to symmetries which result in the vanishing of certain matrix

elements of the form V
ΓaΓb
αβ = 〈ΨΓa

α | V̂ |ΨΓb
β 〉 . From the point of view of the Wigner-Eckart theorem, we

may always decompose the potential V̂ into components which transform according to IRREPs of our
symmetry group, viz.

V̂ =
∑

Γc,γ

vΓc,γ
Q̂Γc
γ , (7.72)

in which the various matrix elements are subject to the considerations underlying the Wigner-Eckart
theorem of §3.2.5. Here we are interested in the consequences of time-reversal symmetry.

Consider a matrix element

〈
Ψ
∣∣ V̂
∣∣Ψ′ 〉 =

〈
V̂ †Ψ

∣∣Ψ′ 〉 =
〈
ŤΨ′ ∣∣ Ť V̂ †Ť−1 ŤΨ

〉
= ηV

〈
ŤΨ′ ∣∣ V̂ ŤΨ

〉
, (7.73)

where we assume Ť V̂ † Ť−1 = ηV V̂ . Typically V̂ will be Hermitian, i.e. V̂ = V̂ †. Suppose further that
Ψ′ = Ť Ψ is the time-reverse mate of Ψ. If Ť 2 = εT then we have

〈
Ψ
∣∣ V̂
∣∣Ψ′ 〉 = ηV εT

〈
Ψ
∣∣ V̂
∣∣Ψ′ 〉 , (7.74)

which means 〈Ψ | V̂ |Ψ′ 〉 = 0 if ηV εT = −1 . This is of course to be expected.
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Now consider the thermal average of some Hermitian operator, 〈V̂ (t)〉 = Tr
(
ˆ̺ V̂ (t)

)
=
∑

n Pn 〈n | V̂ (t) |n 〉 ,
where ˆ̺ is the equilibrium density matrixZ−1 exp(−βĤ) andPn = Z−1 exp(−βEn) . Assuming Ť Ĥ Ť−1 =
Ĥ , we can equally well take the trace over the states | T̂ n 〉, which are each energetically degenerate with
the corresponding |n 〉. Then

〈 V̂ (t) 〉 =
∑

n

Pn
〈
Ť n
∣∣ V̂ (t) Ť n

〉
=
∑

n

Pn ηV
〈
n
∣∣ V̂ †(−t)

∣∣n
〉
= 〈 V̂ (−t) 〉 , (7.75)

where we have used

〈
Ť n
∣∣ V̂ (t) Ť n

〉
=
〈
Ť n
∣∣ Ť

ηV V̂ (−t)︷ ︸︸ ︷
Ť−1 V̂ (t) Ť n

〉
= ηV

〈
V̂ (−t)n

∣∣n
〉
=
〈
n
∣∣ V̂ †(−t)

∣∣n
〉

. (7.76)

More generally, time-reversal symmetry has the following consequences,

〈 Â(t) B̂(0) 〉 = ηA ηB 〈 B̂(0) Â(−t) 〉 , (7.77)

which leads us to the following discussion.

7.4.2 Onsager reciprocity

Now consider a general quantum mechanical system with a Hamiltonian Ĥ0 subjected to a time-dependent
perturbation, Ĥ1(t), where

Ĥ1(t) = −
∑

i

Q̂i φi(t) . (7.78)

Here, the {Q̂i} are a set of Hermitian operators, and the {φi(t)} are fields or potentials. Some examples:

Ĥ1(t) =





−M̂ ·B(t) magnetic moment – magnetic field

∫
d3r ˆ̺(r)φ(r, t) density – scalar potential

−1
c

∫
d3r ĵ(r) ·A(r, t) electromagnetic current – vector potential

We now ask, what is 〈Q̂i(t)〉? We assume that the lowest order response is linear, i.e.

〈Q̂i(t)〉 =
∞∫

−∞

χij(t− t′)φj(t′) +O(φk φl) . (7.79)

Note that we assume that the O(φ0) term vanishes, which can be assured with a judicious choice of
the {Qi}9. We also assume that the responses are all causal, i.e. χij(t − t′) = 0 for t < t′. To compute

χij(t−t′), we will use first order perturbation theory to obtain 〈Q̂i(t)〉 and then functionally differentiate
with respect to φj(t

′):

χij(t− t′) =
δ
〈
Q̂i(t)

〉

δφj(t′)
. (7.80)

9If not, define δQ̂i ≡ Q̂i − 〈Q̂i〉0 and consider 〈δQ̂i(t)〉.
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The first step is to establish the result,

∣∣Ψ(t)
〉
= T exp

{
− i

~

t∫

t0

dt′
[
Ĥ0 + Ĥ1(t

′)
]} ∣∣Ψ(t0)

〉
, (7.81)

where T is the time ordering operator, which places earlier times to the right. This is easily derived starting
with the Schrödinger equation,

i~
d

dt

∣∣Ψ(t)
〉
= Ĥ(t)

∣∣Ψ(t)
〉
, (7.82)

where Ĥ(t) = Ĥ0 + Ĥ1(t). Integrating this equation from t to t+ dt gives

∣∣Ψ(t+ dt)
〉
=

(
1− i

~
Ĥ(t) dt

) ∣∣Ψ(t)
〉

∣∣Ψ(t0 +N dt)
〉
=

(
1− i

~
Ĥ
(
t0 + (N − 1) dt

))
· · ·
(
1− i

~
Ĥ(t0)

) ∣∣Ψ(t0)
〉
,

(7.83)

hence ∣∣Ψ(t2)
〉
= U(t2, t1)

∣∣Ψ(t1)
〉

(7.84)

where

Û(t2, t1) = T exp



−

i

~

t2∫

t1

dt Ĥ(t)



 (7.85)

is a unitary linear operator, known as the time evolution operator between times t1 and t2. It satisfies a
composition law, U(t3, t1) = U(t3, t2)U(t2, t1).

If t1 < t < t2, then differentiating Û(t2, t1) with respect to φi(t) yields

δÛ (t2, t1)

δφj(t)
=
i

~
Û(t2, t) Q̂j Û(t, t1) , (7.86)

since ∂Ĥ(t)/∂φj(t) = −Q̂j . We may therefore write (assuming t0 < t, t′)

δ |Ψ(t) 〉
δφj(t′)

∣∣∣∣
{φi=0}

=
i

~
e−iĤ0(t−t′)/~ Q̂j e

−iĤ0(t′−t0)/~ ∣∣Ψ(t0)
〉
Θ(t− t′)

=
i

~
e−iĤ0t/~ Q̂j(t

′) e+iĤ0 t0/~
∣∣Ψ(t0)

〉
Θ(t− t′) ,

(7.87)

where
Q̂j(t) ≡ eiĤ0t/~ Q̂j e

−iĤ0t/~ (7.88)

is the operator Q̂j in the time-dependent interaction representation. Finally, we have

χij(t− t′) =
δ

δφj(t′)

〈
Ψ(t)

∣∣ Q̂i
∣∣Ψ(t)

〉
=
δ 〈Ψ(t) |
δφj(t′)

Q̂i
∣∣Ψ(t)

〉
+
〈
Ψ(t)

∣∣ Q̂i
δ |Ψ(t) 〉
δφj(t′)

=

{
− i

~

〈
Ψ(t0)

∣∣ e−iĤ0t0/~ Q̂j(t
′) e+iĤ0t/~ Q̂i

∣∣Ψ(t)
〉

+
i

~

〈
Ψ(t)

∣∣ Q̂i e−iĤ0t/~ Q̂j(t
′) e+iĤ0t0/~

∣∣Ψ(t0)
〉}

Θ(t− t′)

=
i

~

〈[
Q̂i(t), Q̂j(t

′)
]〉

Θ(t− t′) ,

(7.89)



272 CHAPTER 7. TIME REVERSAL

were averages are with respect to the wavefunction |Ψ 〉 ≡ exp(−iĤ0 t0/~) |Ψ(t0) 〉, with t0 → −∞. This
is sometimes known as the retarded response function. This result is valid at finite temperature if we take
the bracket 〈· · · 〉 to denote thermal averaging, viz.

χij(t− t′) =
i

~

∑

m

Pm
〈
m
∣∣ [Q̂i(t), Q̂j(t′)

] ∣∣m
〉
Θ(t− t′) (7.90)

=
i

~

∑

m,n

Pm

{〈
m
∣∣ Q̂i(t)

∣∣n
〉〈
n
∣∣ Q̂j(t′)

∣∣m
〉
−
〈
m
∣∣ Q̂j(t′)

∣∣n
〉〈
n
∣∣ Q̂i(t)

∣∣m
〉}

Θ(t− t′) .

Now the sums over states |m 〉 and |n 〉 can equally well be performed over their time-reverses | Ťm 〉
and | Ť n 〉. AssumingH0 is time-reversal invariant, the energy spectrum is identical. Note then that

〈
Ťm

∣∣ Q̂i(t) Ť n
〉〈
Ť n
∣∣ Q̂j(t′) Ťm

〉
=
〈
Ť−1Q̂i(t)Ť n

∣∣m
〉〈
Ť−1Q̂j(t

′)Ť m
∣∣n
〉

= ηi ηj
〈
Q̂i(−t)n

∣∣m
〉〈
Q̂j(−t′)m

∣∣n
〉

= ηi ηj
〈
m
∣∣Q†

j(−t′)
∣∣n
〉〈
n
∣∣ Q̂†

i (−t)
∣∣m
〉

,

(7.91)

where

Ť−1 Q̂i(t) Ť = Ť−1 eiĤ0t/~ Q̂i e
−iĤ0t/~ Ť = e−iĤ0t/~ Ť−1 Q̂i Ť e

+iĤ0t/~ = ηi Q̂i(−t) . (7.92)

Here, ηi = ±1 is the signature of the operator Q̂i under time-reversal. Appealing now to hermiticity of
Q̂i, we have

χij(t− t′) =
i

~
ηi ηj

〈[
Q̂j(−t′), Q̂i(−t)

]〉
Θ(t− t′) = ηi ηj χji(t− t′) , (7.93)

where we have also appealed to time translation invariance. The above relation is a consequence of time-
reversal invariance, and is known as Onsager reciprocity. In the frequency domain, the linear response of
a system to a finite frequency perturbations φj(ω) is given by 〈Q̂i(ω)〉 = χij(ω)φj(ω).

We have assumed here that Ť Ĥ0Ť
−1 = Ĥ0 . Suppose though that Ĥ0 = Ĥ0(H) where H is a magnetic

field, which reverses under time-reversal. Then the derivation goes through as before, with the im-
portant caveat that Ĥ0(H) must be replaced by Ĥ0(−H) after time-reversal. The statement of Onsager
reciprocity is then

χij(t− t′) = ηi ηj χ
T
ji(t− t′) , (7.94)

where χij(t − t′) is the response function for a system with Hamiltonian Ĥ0(H) , and χTji(t − t′) is the

response function for a system with Hamiltonian Ĥ0(−H) .

7.5 Color groups

Cesium chloride is a cubic structure in which the Cs and Cl ions lie on interpenetrating simple cubic
lattices. Its space group is Pm3m, and consists of operations

{
g
∣∣R
}

where g ∈ Oh and R is a simple
cubic direct lattice vector. We could also describe the symmetries of CsCl by including another space
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Figure 7.1: Colored squares and their magnetic point group symmetries.

group generator
{
θ
∣∣ τ
}

, where τ = 1
2(a1 + a2 + a3) translates from a corner to a center of any cubic

cell, and θ is an alchemy operation which converts Cs to Cl and vice versa. Thus θ2 = E.

Consider the symmetries of the three colored squares in Fig. 7.1. The symmetry of an uncolored square
is C4v, which has eight elements: {E,C2, 2C4, 2σv , 2σd}. In the figure, the square on the left is symmetric
under the subgroup {E,C2, 2σv} , but any of the operations {2C4, 2σd} is a symmetry only if they are
accompanied by an operation θ which exchanges blue and white; again θ2 = E. Thus, it is symmetric
under the operations of the magnetic point group10

4′m′m =
{
E,C2, 2σv , 2θC4, 2θσd

}
. (7.95)

The square in the center is symmetric under the subgroup {E,C2, 2C4} and under {2θσv, 2θσd}, which
altogether constitute the magnetic point group 4m′m′:

4m′m′ =
{
E,C2, 2C4, 2θσv, 2θσd

}
. (7.96)

Finally, the square on the right is symmetric under the subgroup {E,C2, 2σd} and under {2θC4, 2θσv},
which altogether constitute the magnetic point group 4mm′:

4′mm′ =
{
E,C2, 2σv , 2θC4, 2θσd

}
. (7.97)

Since 4′mm′ and 4m′m differ only by swapping the mirrors, they are equivalent, as can be seen by
redefining their respective unit cells after a 45◦ rotation. We shall comment on the significance of the
primes presently (astute students should be able to infer their meaning!).

Let P be an ordinary point group which we wish to extend to a magnetic point group PM. It is easy to
see that there are only the following three possibilities:

(i) No group operations involve color changes and PM = P. Such magnetic point groups are uncol-
ored. Uncolored point groups describe nonmagnetic structures, or ferromagnets where all the local
moments are of the same polarization (”color”).

10See Mirman [1999], Joshua [1991], V. Kopský, Symmetry 7, 135 (2015) and R. Lifshitz, Magnetic Point Groups and Space Groups
in Encyclopedia of Condensed Matter 3, 219 (Elsevier, 2005).
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m
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′
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σ
′

σ
′

σσ

Figure 7.2: The two magnetic point groups deriving from C2v = mm2. A black dot indicates spin
polarization m = +j and a white dot indicates a spin polarization m = −j, with j ∈ Z.

(ii) To every element g ∈ P corresponds an element θ g ∈ PM. Thus PM = P× 1′ where 1′ = {E, θ} is a
Z2 clone. Such magnetic point groups are called grey. Note that θ ∈ PM for all grey groups, which
cannot be a symmetry element for any site group PM(r), because it changes the color on each
site. However, coupled with lattice translations, the θ operation does appear in space group ele-
ments. For example, consider the one-dimensional antiferromagnet consisting of identical atoms
whose local moments are arranged as

∣∣ · · · ↑↓↑↓↑↓ · · ·
〉

. Then if τ is half the wavelength of the
spin pattern, i.e. the distance between consecutive ↑ and ↓ sites,

{
θ
∣∣ τ
}
∈ SM is an element of the

magnetic space group and then by definition θ ∈ PM is in the magnetic point group. The situation
is roughly analogous to the status of the inversion operation I in diamond. The maximally sym-
metric site group for diamond is Td , which does not contain I . But diamond is nonsymmorphic
and

{
I
∣∣ τ I

}
∈ S is in diamond’s space group Fd3m. Clearly this state of affairs requires trans-

lational symmetries and thus grey groups do not occur in finite systems such as molecules. Grey
groups have twice the number of elements as their corresponding ordinary point groups.

(iii) Suppose P has a normal subgroup B of index two, which means that P = B ∪ (P − B) and fur-
thermore that P − B = uB for any u /∈ B. Thus the order NP is even, and both B and P − B

contain 1
2NP elements. Now form the group PM = B ∪ θ(P − B), whose order is also NP This

is the familiar coset construction via Lagrange’s theorem which we discussed in the dim and dis-
tant past (see §1.3.1). How do we find which point groups have normal subgroups of order two?
Check the character tables for their one-dimensional representations other than the trivial IRREP.
Such one-dimensional IRREPs will necessarily have χΓ (g) = −1 for half the group elements, and
the classes for which χΓ (C) = +1 contain the elements of an index two normal subgroup B. Such
groups PM are called black and white groups.

For example, C4v has three nontrivial one-dimensional IRREPs: A2, B1, and B2. In A2, the classes
with χA2(C) = 1 are {E,C2, 2C4}, whose elements form an index two normal subgroupB, whence
the construction of PM = 4m′m′ in Eqn. 7.96. Choosing the B1 IRREP, we find B = {E,C2, 2σv},
whence the construction of PM = 4′m′m in Eqn. 7.95. Choosing B2 just swaps the mirrors and
yields a group equivalent to 4′m′m. Another example is shown in Fig. 7.2, which depicts the two
magnetic point groups deriving from C2v = mm2.

The notation for magnetic space groups is to place a prime on elements of the Hermann-Maugin symbol
which are paired with the θ operation in order to produce a symmetry. In other words, the primed
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Figure 7.3: The five new black and white Bravais lattices in two dimensions. Clockwise from upper
left, they derive from the square (1), oblique (1), centered rectangular (1), and rectangular (2) uncolored
lattices. When the colors both fade to grey, each of these figures becomes a Bravais lattice (45◦ rotated
square, oblique, rectangular, centered rectangular, and rectangular, respectively).

elements are those not in the subgroup B.

7.5.1 Magnetic Bravais lattices and magnetic space groups

In constructing magnetic space groups, we must include translations. For ordinary space groups S, the
elements

{
E
∣∣R
}

represent translations by a Bravais lattice vector R. But for magnetic space groups
SM we can have operations such as

{
θ
∣∣R
}

, whereR is a translation vector in the direct magnetic Bravais
lattice. A magnetic Bravais lattice (or colored lattice) is one in which there are two sublattices, one black
and one white. An important restriction is that a colored lattice must turn into a regular lattice if the
colors fade, i.e. if the distinction between the black and white sites is removed. In two dimensions,
there are five uncolored lattices (oblique, hexagonal, rectangular, centered rectangular, and square), and
it turns out there are five black and white (BW) lattices, for a total of ten. In three dimensions, there
are 14 uncolored lattices and 22 BW ones for a total of 36. Why are there almost double the number of
BW as compared to uncolored lattices in d = 3? The reason is that the BW lattices have an additional
primitive lattice vector τ BW, i.e. that which connects the B and W sublattices. There can be more than one
possible such τ BW, however. The situation is roughly analogous to the different centering possibilities
for cubic, tetragonal, orthorhombic, and monoclinic Bravais lattices. In Fig. 7.3 we show the additional
five BW lattices which arise in two dimensions. Recall in d = 2 there are five lattices: oblique, hexagonal,
rectangular, centered rectangular, and square. From the all-black oblique lattice, we can imagine adding
white sites in the center of each plaquette or in the middle of one set of parallel edges. However these
options are equivalent, as one can simply redefine the original direct lattice vectors such that one of
them extends diagonally across the cell, i.e. replace a2 by a′2 = a1 + a2. The center of the original
oblique plaquette now lies at the midpoint of the side a′2. When faded, this BW lattice becomes an
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oblique uncolored lattice. So we can only conjure up one additional BW lattice from the black oblique.
The hexagonal case adds nothing new to what we have just derived, since the addition of a sublattice
breaks the hexagonal symmetry anyway. With rectangular, we may place white sites in the center of each
cell, or at the midpoint of a parallel pair of sides. When faded, the former yields a centered rectangular
lattice and the latter another rectangular lattice. Attempting to place white sites at the midpoints of all
sides of the rectangle does not produce a Bravais lattice when faded and is therefore not a permitted
extension of the rectangular case, but it is a permitted extension of the centered rectangular case, and
when faded produces a rectangular lattice. Finally, placing white sites at the centers of a pair of parallel
sides of a square is equivalent to the same extension of the rectangular cell, hence yields nothing new.
But placing a white site at the center of each square is permitted and leads to a θC4 symmetry not present
in any of the rectangular extensions. So there are a total of five additional BW lattices in two dimensoins.
In three dimensions, to the 14 all black Bravais lattices, we get unique BW extensions from triclinic (1),
monoclinic (5), orthorhombic (8), tetragonal (4), trigonal (0), hexagonal (2), and cubic (2), for a total of
22 BW extensions, and 36 colored Bravais lattices in all.

When it comes to point groups, we follow the recipe in §7.5 above. In any dimension, there is a grey (G)
point group P′ = P × {E, θ} for each uncolored (U) point group P. To create a black and white (BW)
point group PM , we must identify uncolored point groups P with normal subgroups B of index 2, and
then construct PM = B∪θ(P−B). Since a given P may have several such maximal proper subgroups, the
number of BW point groups is greater than then number of U or G point groups. In three dimensions,
for example, there are 32 U and 32 G point groups, and 58 BW point groups. The latter are listed in Tab.
7.2. A summary of the numbers of U, G, and BW point groups in d = 2 and d = 3 dimensions is given
in Tab. 7.3.

Next, we come to space groups. These may be build upon either uncolored or black and white Bravais
lattices. For example, in d = 3 we have learned that there are a total of 230 uncolored space groups. For
each space group S we can add the color changing element θ as a generator of the point group to create
a grey space group S′ with twice the number of elements of S. There is a one-to-one correspondence
between uncolored and grey groups, hence there are 230 grey space groups as well. When it comes to
building the black and white space groups, if the underlying Bravais lattice is uncolored, the recipe is
the same as for the point groups. That is, we start with a space group S generated by

{
E
∣∣R
}

and{
g
∣∣ τg

}
, where g ∈ P− B, and

{
θ h
∣∣ τh

}
, where h ∈ B. Thus results in 674 new black and white space

groups. But we are not quite done! We could have started with a black and white Bravais lattice, in
which case the black and white space group generators are

{
E
∣∣R
}

,
{
g
∣∣ τg

}
where g ∈ P − B, and{

θ h
∣∣ τh + τ BW

}
where h ∈ B . This adds another 517 lattices, for a total of 1191 BW space groups.

Adding this to the 230 uncolored and 230 grey space groups, we arrive at a total of 1,651 colored three-
dimensional space groups, the properties of which are tabulated in a riveting 11,976 page text by D. B.
Litvin, entitled Magnetic Group Tables, Part 2 (International Union of Crystallography, 2013).
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system P(Sch) PHM N
P

colored point groups PM

triclinic C1 1 1 none

Ci 1 2 1
′

monoclinic C2 2 2 2′

Cs m 2 m′

C2h 2/m 4 2/m′ , 2′/m , 2′/m′

orthorhombic D2 222 4 2′2′2

C2v mm2 4 m′m2 , m′m′2

D2h mmm 8 m′mm, m′m′m, m′m′m′

tetragonal C4 4 4 4′

S4 4 4 4
′

C4h 4/m 8 4/m′ , 4′/m , 4′/m′

D4 422 8 4′22′ , 4′2′2′

C4v 4mm 8 4′m′m, 4m′m′

D2d 42m 8 4
′
2′m, 4

′
2m′ , 4

′
2′m′

D4h 4/mmm 16 4/m′mm, 4/mm′m′ , 4/m′m′m′ ,

4′/mm′m, 4′/m′m′m

trigonal C3 3 3 none

S6 3 3 3
′

D3 32 6 32′

C3v 3m 6 3m′

D3d 3m 12 3
′
m, 3m′ , 3

′
m′

hexagonal C6 6 6 6′

C3h 6 6 6
′

C6h 6/m 12 6′/m , 6/m′ , 6′/m′

D6 622 12 6′2′2 , 62′2′

C6v 6mm 12 6′m′m, 6m′m′

D3h 6m2 12 6
′
m′2 , 6

′
m2′ , 6m′2′

D6h 6/mmm 24 6/m′mm, 6/mm′m′ , 6/m′m′m′ ,

6′/mm′m, 6′/m′m′m

cubic T 23 12 none

Th m3 24 m′3

O 432 24 4′32′

Td 43m 24 4
′
3m′

Oh m3m 48 m′3m, m3m′ , m′3m′

Table 7.2: The 58 colored three-dimensional magnetic point groups.
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Bravais lattices point groups space groups

U BW total U G BW total U G BW total

d = 2 5 5 10 10 10 11 31 17 17 46 80

d = 3 14 22 36 32 32 58 122 230 230 1191 1651

Table 7.3: True Facts about magnetic lattices, point groups, and space groups. Notation: U (uncolored),
G (grey), and BW (black and white).
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7.5.2 Corepresentations of color groups

7.6 Appendix : The Foldy-Wouthuysen Transformation

The Dirac Hamiltonian is

H = mc2 γ0 + cγ0 γ ·π + V , (7.98)

where π = p+ e
cA is the dynamical momentum and where the γµ are the Dirac matrices,

γ0 =

(
12×2 02×2

02×2 −12×2

)
, γ =

(
02×2 σ2×2

−σ2×2 02×2

)
. (7.99)

Here σ is the vector of Pauli matrices. The Dirac equation is

i~
dΨ

dt
= HΨ , (7.100)

where Ψ is a four-component Dirac spinor.

The idea behind the FW transformation is to unitarily transform to a different Hilbert space basis such
that the coupling in H between the upper and lower components of the Dirac spinor vanishes. This may
be done systematically as an expansion in inverse powers of the electron mass m. We begin by defining
K ≡ cγ0γ ·π + V so that H = mc2 γ0 +K . Note that K is of order m0. We then write

H̃ = eiS H e−iS = H + i
[
S,H

]
+

(i)2

2!

[
S, [S,H]

]
+ . . . , (7.101)

where S itself is written as a power series in (mc2)−1:

S =
S0
mc2

+
S1

(mc2)2
+ . . . . (7.102)

The job now is to write H̃ as a power series in m−1. The first few terms are easy to find:

H̃ = mc2 γ0 +K + i
[
S0, γ

0
]
+

1

mc2

(
i
[
S0,K

]
+ i
[
S1, γ

0
]
− 1

2

[
S0, [S0, γ

0]
])

+ . . . (7.103)

We choose the operators Sn so as to cancel, at each order in m−1, the off-diagonal terms in H̃ that couple
the upper two components of Ψ to the lower two components of Ψ. To order m0, we then demand

cγ0γ ·π + i
[
S0, γ

0
]
= 0 . (7.104)

Note that we do not demand that i
[
S0, γ

0
]

completely cancel K – indeed it is impossible to find such an
S0, and one way to see this is to take the trace. The trace of any commutator must vanish, but TrK = 4V ,
which is in general nonzero. But this is of no concern to us, since we only need cancel the (traceless)
off-diagonal part of K , which is to say cγ0γ ·π.
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To solve for S0, one can write it in terms of its four 2 × 2 subblocks, compute the commutator with γ0,
and then impose eqn. 7.104. One then finds S0 = − i

2cγ ·π, the derivation of which is left as an exercise.

At the next level, we have to deal with the term in the round brackets in eqn. 7.103. Since we know S0,
we can compute the first and the third terms therein. In general, this will leave us with an off-diagonal
term coupling upper and lower components of Ψ. We then choose S1 so as to cancel this term. This
calculation already is tedious, and we haven’t even gotten to the spin-orbit interaction term yet, since it
is of order m−2.

7.6.1 Derivation of the Spin-Orbit Interaction

Here’s a simpler way to proceed to order m−2. Let a, b be block indices and i, j be indices within each
block. Thus, the component Ψai is the ith component of the ath block; Ψa=1,i=2 is the lower component
of the upper block, i.e. the second component of the four-vector Ψ.

Write the Hamiltonian as
H = mc2 τ z + cσ ·π τx + V (r) , (7.105)

where τµ are Pauli matrices with indices a, b and σν are Pauli matrices with indices i, j. The σ and τ
matrices commute because they act on different indices.

A very important result regarding Pauli matrices:

eiθ n̂·τ/2 τα e−iθ n̂·τ/2 = nαnβ τβ + cos θ (δαβ − nαnβ) τβ + sin θ ǫαβγ nβ τγ . (7.106)

STUDENT EXERCISE: Verify and interpret the above result.

Using this result, we can write

Aτ z +B τx =
√
A2 +B2 ·e−i tan−1(B/A) τy/2 τ z ei tan

−1(B/A) τy/2 , (7.107)

and, for our specific purposes,

mc2 τ z + σ ·π τx =
√

(mc2)2 + (cσ ·π)2 ·U τ z U † , (7.108)

where U = exp
(
− i tan−1(σ·πmc ) τ

y/2
)
. The fact that σ ·π is an operator is no obstacle here, since it

commutes with the τµ matrices. We can give meaning to expressions like tan−1(σ ·π/mc) in terms of
their Taylor series expansions.

We therefore have the result,

U †H U =
√
(mc2)2 + (cσ ·π)2 τ z + U † V (r)U . (7.109)

The first term is diagonal in the block indices. Expanding the square root, we have

mc2
√

1 +
(σ ·π
mc

)2
= mc2 +

(σ ·π)2
2m

+O(m−3)

= mc2 +
π2

2m
+

e~

2mc
B ·σ +O(m−3) ,

(7.110)
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since

(σ ·π)2 = σµσν πµπν = (δµν + iǫµνλσλ)πµπν

= π2 + i
2ǫ
µνλ
[
pµ + e

cA
µ, pν + e

cA
ν
]

= π2 +
e~

c
B ·σ .

(7.111)

We next need to compute U † V (r)U to order m−2. To do this, first note that

U = 1− i

2

σ ·π
mc

τy − 1

8

(σ ·π
mc

)2
+ . . . , (7.112)

Thus,

U † V U = V +
i

2mc

[
σ ·π, V

]
τy − 1

8m2c2
[
σ ·π, [σ ·π, V ]

]
+ . . . . (7.113)

Upon reflection, one realizes that, to this order, it suffices to take the first term in the Taylor expansion
of tan−1(σ ·π/mc) in the expression for U , in which case one can then invoke eqn. 7.101 to obtain the
above result. The second term on the RHS of eqn. 7.113 is simply ~

2mc σ ·∇ V τy. The third term is

i~

8m2c2
[
σµπµ, σν∂νV

]
=

i~

8m2c2

{
σµ
[
πµ, σν∂νV

]
+
[
σµ, σν∂νV

]
πµ
}

=
i~

8m2c2

{
~

i
∂µ∂νV σµσν + 2iǫµνλσλ∂νV πµ

}

=
~
2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π .

(7.114)

Therefore,

U †H U =

(
mc2 +

π2

2m
+

e~

2mc
B ·σ

)
τ z + V +

~

2mc
σ ·∇ V τy

+
~
2

8m2c2
∇

2V +
~

4m2c2
σ ·∇ V × π +O(m−3) .

(7.115)

This is not block-diagonal, owing to the last term on the RHS of the top line. We can eliminate this term
by effecting yet another unitary transformation. However, this will result in a contribution to the energy
of order m−3, so we can neglect it. To substantiate this last claim, drop all the block-diagonal terms
except for the leading order one, mc2 τ z , and consider the Hamiltonian

K = mc2 τ z +
~

2mc
σ ·∇V τy . (7.116)

We now know how to bring this to block-diagonal form. The result is

K̃ = mc2

√

1 +

(
~σ ·∇ V

2m2c3

)2
τ z =

(
mc2 +

~
2(∇ V )2

8m3c4
+ . . .

)
τ z , (7.117)

and the correction is of order m−3, as promised.

We now assume all the negative energy (τ z = −1) states are filled. The Hamiltonian for the electrons,
valid to O(m−3), is then

H̃ = mc2 + V +
π2

2m
+

e~

2mc
B ·σ +

~
2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π +O(m−3) . (7.118)
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Chapter 8

Lie Groups and Lie Algebras, and their
Representations

8.1 Mathematical Preliminaries

A Lie group G is a smooth manifold endowed with a group structure, such that the product µ : G×G→
G, with µ(g, h) = gh, and and the inverse ν : G→ G, with ν(g) = g−1, are also smooth. To briefly unpack
some of the mathematical language, an n-dimensional topological manifold M is a Hausdorff topological
space1 that is everywhere locally homeomorphic to R

n, the n-dimensional Euclidean space2. An atlas A
is a collection of charts {(Uα, ϕα) |α ∈ A}3 which cover M . That is to say M =

⋃
α Uα . An atlas is smooth

if the functions ϕβ ◦ ϕ−1
α , which map R

n to itself, are all C∞ (infinitely differentiable) on the overlaps

ϕα(Uα ∩ Uβ) ∈ R
n. Finally, a smooth manifold is a topological manifold with a smooth atlas4.

The upshot of all this is that a Lie group is an n-dimensional space on which there are local coordinates
x = {x1, . . . , xn}, so we can write g = g(x) as a unique relation, at least within some coordinate patch
(i.e. chart) on G. We write the inverse of this as xg, i.e. g(xg) = g. The identity e plays a special role, and
the coordinates xe of the identity are conventionally set to xe = 0. Note that G may not be connected,
in which case its connected components are cosets. For example, O(3) = SO(3) ∪ I SO(3), where I is
inversion. In such cases each coset is described by its own coordinate system(s).

1A Hausdoff space M is a topological space such that for any p, q ∈M with p 6= q, there exist neighborhoods (i.e. open sets) U
and V with p ∈ U and q ∈ V such that U ∩ V = ∅. The collocation topological space M basically means a set of points p ∈ M ,
and, for each such p, a set of neighborhoods N (p) satisfying some pretty obvious axioms, such as: (i) ifN ∈ N (p) then p ∈ N ,
(ii) if N,N ′ ∈ N (p), then N ∩N ′ ∈ N (p), etc.

2A homeomorphism is a bicontinuous bijection between topological spaces, i.e. a continuous function with a continuous in-
verse. A homeomorphism is thus a topological notion. A homomorphism, by contrast, is an algebraic notion, and is a map which
preserves some algebraic structure, such as group multiplication. E.g. φ(A ∗ B) = φ(A) ∗ φ(B). A smooth homeomorphism
between manifolds is called a diffeomorphism. To explicitly indicate the dimension of a manifold, it is conventional to add a
superscript. Thus, Mm denotes an m-dimensional manifold.

3The set A consists of the labels α for the individual charts.
4More precisely, a smooth manifold is a topological manifold together with an equivalence class of smooth atlases. Two atlases
A1 and A2 are said to be equivalent if their union A1∪A2 is smooth. A continuous map F :Mm → Nn is smooth if ψβ◦F ◦ϕ−1

α

is C∞ wherever it is defined, where ϕα and ψβ are coordinate systems on Uα ⊂ M and Vβ ⊂ N , respectively.
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Figure 8.1: A manifold and two overlapping charts. The composition ϕβ ◦ ϕ−1
α is smooth.

8.1.1 Why Lie groups are special smooth manifolds

What is special about Lie groups, as opposed to generic smooth manifolds, is of course the existence of
group multiplication and group inverse operations, which relate the local properties of G in the vicinity
of any g ∈ G to those in the vicinity of the identity e. A Lie group homomorphism F : G → K preserves

these operations, i.e. F (g)F (h) = F (gh) and F (g−1) =
(
F (g)

)−1
. For all g, h ∈ G, the coordinates of

their product gh are given by xgh. This must be depend uniquely on the coordinates xg and xh of g and
h, respectively, i.e.

xgh = f(xg,xh) . (8.1)

f(x,y) is the group composition function5, which we met previously in §4.3.4, where we noted its consis-
tency conditions

f
(
f(x,y) ,z

)
= f

(
x ,f(y,z)

)

f(xe,y) = f(y,xe) = y

f(x,x−1) = f(x−1,x) = xe .

(8.2)

Here, x−1 ≡ x[g(x)]−1 are the coordinates of the group element
[
g(x)

]−1
. Consider now a representation

of G, which is to say a map D : G→ End(V) from G to the space of endomorphisms of a vector space V .
We will write D(g(x)) ≡ D(x). Whenever we multiply a group element g, close to some g0, by g−1

0 , the

5We have very casually assumed here the existence of global coordinates for our Lie group, i.e. that G is covered by a single
chart. In general this may not be the case, in which case the group composition function should be appended with labels
denoting the patches corresponding to g, h, and gh. The transition functions relating the coordinates of a given g ∈ G in one
patch to those in an overlapping patch are smooth. We should stress, though, that the Lie algebra g is dependent only on
the properties of G in the vicinity of the identity e, and the transition functions, derived below in eqn.8.14, can be computed
within a single patch containing e.
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result must lie close to e. In other words,

D(x+ dx)D(x−1) = D(xe + dy) , (8.3)

where the differentials dy and dx are related by

xe + dy = f(x+ dx,x−1) . (8.4)

In component notation,

dyb =
∂f b(x,u)

∂xa

∣∣∣∣∣
u=x−1

dxa =
∑

b

S b
a (x) dxa . (8.5)

S b
a (x) =

∂f b(x,u)

∂xa

∣∣∣∣∣
u=x−1

. (8.6)

Note that the functions S b
a (x) are real and representation-independent. They are, however, dependent

on the choice of local coordinates of G. We then have

∑

a

∂D(x)

∂xa
D(x−1) dxa =

∑

b

∂D(y)

∂yb

∣∣∣∣
y=xe

dyb (8.7)

We define the generators of the Lie algebra g in the representation D as6

Xa = −i Ta ≡
∂D(x)

∂xa

∣∣∣∣∣
xe

. (8.8)

Note that the number of generators is thus n = dim(G), independent of the representation D. We then
have

∂D(x)

∂xa
=
∑

b

S b
a (x)XbD(x) . (8.9)

This establishes that the representation for a connected Lie group is completely determined by the gen-
erators of its corresponding Lie algebra. Under a change of coordinates x→ x̃, there is a linear relation
between the old and new generators, viz.

X̃a =
∂D

∂x̃a
=M b

a Xb , M b
a =

∂xb

∂x̃a

∣∣∣∣
xe

. (8.10)

8.1.2 Structure constants

From the relation ∂D
∂xb

= S c
b XcD we derive

∂

∂xa

[
∂D

∂xb
D−1

]
− ∂

∂xb

[
∂D

∂xa
D−1

]
=
∂D

∂xb
∂D−1

∂xa
− ∂D

∂xa
∂D−1

∂xb

=

(
∂S c

b

∂xa
− ∂S c

a

∂xb

)
Xc

(8.11)

6In mathematics texts, the generators are taken to be {Xa}, whereas in physics texts they are taken to be {Ta}.
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On the other hand, sinceD(x)D−1(x) = 1 for all x, taking the differential we have dD−1 = −D−1 (dD)D−1,
and the above equation becomes

∂D

∂xa
D−1 ∂D

∂xb
D−1 − ∂D

∂xb
D−1 ∂D

∂xa
D−1 =

(
∂S c

b

∂xa
− ∂S c

a

∂xb

)
Xc . (8.12)

Now evaluate the above equation at x = xe to obtain the result

[
Xa , Xb

]
= f c

ab Xc (8.13)

where

f c
ab =

(
∂S c

b

∂xa

∣∣∣∣
xe

− ∂S c
a

∂xb

∣∣∣∣
xe

)
. (8.14)

We see that the structure constants are independent of the representation D, but are dependent on the
coordinatization of G. Note that all the business in the above equation is evaluated in the vicinity of xe ,
so we don’t need to worry about chart labels – the only chart on G which matters is the one containing
the identity e.

8.1.3 Exponential map

Next, consider a curve x(t) on some open interval t ∈ (−τ, τ) satisfying ẋa S b
a (x) = θb , with x(0) = xe

and where θ is t-independent. This satisfies the dynamical system ẋa = θb
[
S−1(x)

] a
b

; we assume S(x)
is invertible. Then Dθ(t) ≡ D(x(t)) satisfies

dDθ(t)

dt
=
∑

a

θaXaDθ(t) , (8.15)

the solution to which is Dθ(t) = exp(θaXa t). Without loss of generality, we may set t = 1, for which

D(θ) ≡ Dθ(1) = exp(θaXa) = exp(−iθaTa) , (8.16)

with implied sum on a. This is called the exponential map. Cartan proved that the exponential map is
surjective if G is a compact, connected Lie group, i.e. for any g ∈ G, the representative D(g) may be
written as an exponential7.

The generators {Xa}may be viewed as basis vectors in a vector space. Recall that an algebra is a vector
space over a field (in our case, R or C) which acts on itself via addition and multiplication. An abstract
Lie algebra g is defined by three conditions: (i) g is a vector space over some field F, with multiplication

7For a counterexample in the case of a noncompact Lie group, consider the case of SL(2,R), whose Lie algebra sl(2,R) is the
set of all traceless 2 × 2 real matrices. Suppose M ∈ sl(2,R). If M has two distinct eigenvalues, they must be paired (λ,−λ)
because TrM = 0. Then exp(M) has eigenvalues exp(±λ). If detM = −λ2 < 0, then λ is real, whereas if detM > 0, then
λ = iβ with β real. In both cases, the exponential does not correspond to any matrix of the form diag(−K,−K−1) ∈ sl(2,R),
which has two negative real eigenvalues. If detM = 0, then M2 = 0, which follows from the Cayley-Hamilton theorem,
which says that any 2× 2 matrix M satisfies its own characteristic equation, i.e. P (M) = 0 where P (λ) = λ2−λTrM + detM .

But then M is conjugate to

(
0 a
0 0

)
and exp(M) is conjugate to

(
1 ea

1 0

)
, which is degenerate with 1 the only eigenvalue.
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defined by the Lie bracket [•, •] : g× g → g, which is (ii) antisymmetric, i.e. [X,Y ] = −[Y,X] ∀ X,Y ∈ g,
and (iii) satisfies the Jacobi identity,

[
X, [Y,Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0 . (8.17)

Note that none of these three axioms makes any reference to an underlying Lie group! This may prompt
the question of whether every real Lie algebra is the Lie algebra of some matrix Lie group. It turns out
that if g is finite-dimensional, then the answer to this question is yes8. For example, the vector space R

3

endowed with the vector cross product as the Lie bracket is a Lie algebra. The corresponding Lie group
is SO(3). With generators (Σa)ij = −ǫaij , one has

[
Σa, Σb

]
= ǫabcΣc , and a general element of the Lie

algebra may be written X = xaΣa, so that
[
X,Y

]
= (x × y)cΣc , and the general Lie group element is

given by the exponential map g = exp(xaΣa) ∈ SO(3).

For matrix Lie algebras, the Lie bracket is the familiar commutator: [X,Y ] = XY − YX. Why not define
multiplication by the usual product XY ? For starters, unless we are talking about matrix Lie algebras,
such a composition is in general not well-defined. Even if one embeds the Lie group within GL(V) and
its Lie algebra within End(V), while the composition XY will be well-defined, it will still depend on
the embedding9. Furthermore, there is no guarantee that XY will be an element of g. Consider, for
example, the Lie group SL(n,R) consisting of n × n matrices with unit determinant. Its Lie algebra,
sl(n,R), consists of all real traceless n × n matrices. But if TrX = TrY = 0, there is no guarantee that
Tr (XY ) = 0. On the other hand, Tr (XY ) = Tr (YX), and thus Tr [X,Y ] = 0 and [X,Y ] ∈ sl(n,R).

8.1.4 Baker-Campbell-Hausdorff formula

Suppose X =
∑

a x
aXa and Y =

∑
a y

aXa are sums over generators of g , then eX and eY are elements
of D(G), and so, then, must be exp(X) exp(Y ) ≡ exp(Z). In §1.4.5, we presented Dynkin’s expression of
the Baker-Campbell-Hausdorff (BCH) formula10,

ln
(
eX eY ) =

∞∑

n=1

(−1)n−1

n

∑

r
1
,s
1

r
1
+s

1
>0

· · ·
∑

rn,sn
rn+sn>0

[
Xr1Y s1Xr2Y s2 · · ·XrnY sn

]
∑n

i=1(ri + si) ·
∏n
j=1 rj! sj !

, (8.18)

where
[
Xr1Y s1Xr2Y s2 · · ·XrnY sn

]
=
[
X,
[
X, · · ·

[
X

︸ ︷︷ ︸
r1

,
[
Y,
[
Y, · · ·

[
Y

︸ ︷︷ ︸
s1

, · · ·
[
X,
[
X, · · ·

[
X

︸ ︷︷ ︸
rn

,
[
Y,
[
Y, · · ·

[
Y

︸ ︷︷ ︸
sn

]]
· · ·
]]

.

(8.19)
Thus,

exp(X) exp(Y ) = exp

(
X + Y + 1

2

[
X,Y

]
+ 1

12

[
X,
[
X,Y

]]
+ 1

12

[
Y,
[
Y,X

]]
+ . . .

)
. (8.20)

Every term inside the round bracket on the RHS, other than X + Y , formed from nested commutators.
Thus if [X,Y ] ∈ g for all X,Y ∈ g , then the product eX eY = eZ with Z ∈ g.
8See B. C. Hall, Lie Groups, Lie Algebras, and Representations, chapter 5.
9See W. Fulton and J. Harris, Representation Theory, p. 108.
10See https://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula .

https://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula
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Let’s denote for the moment the Lie bracket operation as ⋆, i.e. X ⋆ Y = [X,Y ]. Then, restating the
conditions of antisymmetry and the Jacobi identity,

X ⋆ Y = −Y ⋆ X

(X ⋆ Y ) ⋆ Z = X ⋆ (Y ⋆ Z) + Y ⋆ (Z ⋆ X) .
(8.21)

Thus, we see that multiplication within a Lie algebra, via the Lie bracket, is neither commutative nor
associative!

8.2 Vector fields and the Lie algebra

8.2.1 Smooth vector fields

Antisymmetry and the Jacobi identity are properties of all smooth vector fields over a manifold M . A
vector field X may be expressed as a first order differential operator,

X =

n∑

i=1

Xi ∂

∂xi
, (8.22)

where, in our typical physicists’ callow approach to mathematics, we shall assume Xi(x) is a smooth
map from M to R

n (i.e., i ∈ {1, . . . , n}). Acting on a function f(x) : M → R, we obtain another func-
tion11,

X(f)(x) =

n∑

i=1

Xi(x)
∂f(x)

∂xi
. (8.24)

If f and g are functions on M and c is a constant, then

X(cf + g) = cX(f) +X(g)

X(fg) = f X(g) + g X(f) .
(8.25)

If Y =
∑n

i=1 Y
i ∂
∂xi

, then XY is in general not a vector field, but the Lie bracket [X,Y ] is:

[X,Y ] =

n∑

i=1

Ai
∂

∂xi
, Ai =

n∑

j=1

(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
. (8.26)

This is also called the Lie derivative of Y with respect to X: £X(Y ) = [X,Y ].

11We are engaging here in a very standard abuse of notation. The coordinates {x1, . . . , xn} should be thought of as the compo-
nents of ϕα : Uα → R

n, coming from the chart (ϕα, Uα). When we write ∂f(x)/∂xi, what we really mean is

∂f(x)

∂xi

∣∣∣∣
p

≡ ∂

∂xi

(
f ◦ ϕ−1)

∣∣∣∣
ϕ(p)

, (8.23)

where p ∈M and ϕ(p) ∈ U ⊆ R
n . Furthermore, the quantities Xi are really functions on M , which at the point p ∈M take

the values Xi(p).
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The space of linear differential operators vp =
∑

i v
i ∂
∂xi

∣∣∣
p

at a particular point p ∈M is called the tangent

space to M at p, and denoted TpM . Each such vp is a tangent vector to M at p. Note that dim(TpM) =
dimM = n, because n components vi must be specified to fix vp. The collection TM =

∐
p TpM of all the

tangent spaces of M is called the tangent bundle of M . Its dimension is dim(TM) = 2n, because one now
must specify a location p as well as the tangent vector at p. A vector field X is then a choice of tangent
vector at each point p ∈M , hence X : M → TM is a map from a manifold M to its tangent bundle. The
space of all smooth vector fields12 onM is denoted X(M) and is an infinite-dimensional space (provided
dimM ≥ 1), because specification of a vector field X requires specification of n independent functions
Xi : M → R.

SupposeM and N are smooth manifolds and F : M → N be a smooth map. Let f : N → R be a smooth
function on N . We can pull back f to M by defining

F ∗f = f ◦ F . (8.27)

Thus if p ∈M then (F ∗f)(p) = f(F (p)), with F (p) ∈ N . The function F ∗f : M → R is called the pullback
of f .

Let X ∈ X(M) be a vector field on M . Then we can push forward X to X(N) using the map F in the
following natural way. Again let f : N → R be a smooth function on N . Then define

(F∗X)(f) = X(f ◦ F ) . (8.28)

Thus F∗ : X(M)→ X(N). Note that f ◦ F is a smooth function on M . The expression F∗X thus denotes
a smooth vector field on M , i.e. an element of X(M), and is the pushforward of X. Thus pushforward of
a tangent vector vp is called the differential map and is denoted dFp : TpM → TF (p)N , viz.

dFp(vp)(f) = vp(f ◦ F ) . (8.29)

The tangent vector dFp(vp) ∈ TF (p)N is the pushforward of the tangent vector vp ∈ TpM . Note that vp
eats smooth functions on M in the vicinity of p and excretes real numbers. Correspondingly, dFp(vp)
eats smooth functions on N in the vicinity of F (p) and excretes real numbers. The relation between the
differential map of a tangent vector and the pushforward of a vector field is thus

dFp(Xp)(f) = Xp(f ◦ F ) = X(f ◦ F )(p) . (8.30)

To unpack this expression, note thatX =
∑

iX
i ∂
∂xi

is a vector field andXp =
∑

iX
i(p) ∂

∂xi

∣∣∣
p

is a tangent

vector at p ∈M . Acting on a function f(F (q)) with q in the vicinity of p, it yieldsXp(f ◦F ), which is the
function X(f ◦ F ) evaluated at p.

Let γ : I →M take some interval I ⊂ R to M . The velocity vector γ̇(t0) ∈ Tγ(t0)M is defined by

γ̇(t0)(f) = dγ
t0

(
d

dt

∣∣∣∣
t0

)
(f) =

d

dt
(f ◦ γ)

∣∣∣∣
t0

. (8.31)

which says that the differential dγt0
is a map dγt0

: Tt0
I → Tγ(t0)

M .

12A vector field which is not smooth, and hence not in X(M), is called a rough vector field.
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Figure 8.2: A smooth curve γ(t) on a manifold M .

As we have stressed, an essential feature of Lie groups is that the action of group multiplication furnishes
us with a natural map from the group to itself. That is, we may define Lg : G→ G as left multiplication
by g, i.e. Lgh = gh. Thus, the pushforward Lg∗X of a vector field X ∈ X(G) is another vector field
(Lg∗X) ∈ X(G). This naturally gives rise to the notion of a left-invariant vector field X which satisfies

Lg∗X = X for all g ∈ G. Thus, Xgh = (dLg)h(Xh) for all g, h ∈ G. Now let h = e, so we have

Xg = (dLg)e(Xe) . (8.32)

This means that we can construct a left-invariant vector field simply by left-translating the tangent vector
Xe by g, for all values of g ∈ G. The space of left-invariant vector fields on G, XL(G), is a subspace of
X(G). It is a linear subspace, in that if X,Y ∈ XL(G), then so is cX + Y where c ∈ R is a constant. To
construct XL(G), we may employ the following method13. Let γ : I → G be a smooth curve with I ⊂ R

an interval containing t = 0, γ(0) = e, and γ̇(0) = Xe with Xe ∈ TeG. Let f ∈ C∞(G) be a smooth
function on G. Then if Xg = (dLg)e(Xe), this means

(
X(f)

)
(g) = Xg(f) = (dLg)e(Xe)(f) = Xe(f ◦ Lg) =

d

dt

∣∣∣∣
t=0

(f ◦ Lg ◦ γ)(f)

=
d

dt

∣∣∣∣
t=0

f
(
g γ(t)

)
.

(8.33)

Thus, we have constructed a map from TeG to X(G). The finite-dimensional subspace XL(G) ⊂ X(G) is
the image of this map. Indeed, XL(G) is a vector space and as such is isomorphic to TeG. Furthermore,
if X,Y ∈ XL(G), then14

Lg∗[X,Y ] = [Lg∗X,Lg∗Y ] = [X,Y ] ∈ XL(G) . (8.34)

13See T. Kemp, Introduction to Smooth Manifolds & Lie Groups, ch. 12.
14In general, let F : M → N and f : N → R. Let X ∈ X(M) be a vector field on M . In general, YF (p) = dFp(Xp) does

not define a vector field on N because F may not be surjective. In the case where it is, Y is said to be F -related to X . If
Y1, Y2 ∈ X(N) are F -related, respectively, to X1, X2 ∈ X(M), then X1X2(f ◦ F ) = X1(Y2(f) ◦ F ) = (Y1Y2(f)) ◦ F . Thus
F∗[X1, X2] = [Y1, Y2] = [F∗X1, F∗X2].

http://www.math.ucsd.edu/~tkemp/250-251.Notes.pdf
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This leads us to the following interpretation of the Lie algebra of G : g is the space of left-invariant vector
fields on G.

8.2.2 Integral curves and the exponential map

Let γ : I →M be a smooth curve on M and X ∈ X(M) a vector field on M . If

γ̇(t) = Xγ(t) (8.35)

for all t ∈ I , then γ(t) is said to be an integral curve of X. This means that at every point p which γ(t)
passes through, its tangent vector is Xp i.e.

γ̇(t0) = dγt0

(
d

dt

∣∣∣∣
t0

)
= Xγ(t0)

. (8.36)

Identifying the components of the basis vectors ∂
∂xi

at each point p ∈M , we have that any integral curve
is the solution of a dynamical system, i.e. a set of n coupled ordinary differential equations, viz.

dγi(t)

dt
= Xi

(
γ1(t), . . . , γn(t)

)
. (8.37)

For example, on M = R
2, let X = x ∂

∂y − y ∂
∂x , in which case we obtain

d

dt

(
x
y

)
=

(
−y
+x

)
=⇒

(
x(t)
y(t)

)
=

(
x0 cos t− y0 sin t
x0 sin t+ y0 cos t

)
. (8.38)

This is the unique integral curve ofX which passes through (x0, y0), where its tangent vector is given by

ẋ(0) =

(
−y0
+x0

)
. If the flow is global, meaning t may be extended to the entire real line, the vector field is

called complete. As an example of a vector field whose flow is incomplete, consider the case M = R
1 and

X = x2 ∂
∂x . Then we have ẋ = x2 with solution x(t) = x0/(1−x0t). This blows up at finite time t = 1/x0

and can therefore not be extended to the entire real line t ∈ R. For complete flows, we define the curve
γp(t) to be the solution to γ̇(t) = Xγ(t) with γ(0) = p. Then γp(t + s) = γq(s) where q = γp(t). This

simply says that we can extend the solution of our coupled ODEs by choosing new initial conditions as
our most recent final conditions.

If M = G is a Lie group, all left-invariant vector fields X ∈ XL(G) are complete. This is because one can
always find an integral curve γe(t) for X on t ∈ (−δ,+δ) with γe(0) = e, or some finite positive δ . But
if X is left-invariant, this solution may be translated about G by left multiplication: γg(t) ≡ Lgγ

e(t) =
gγe(t) is an integral curve on (−δ,+δ) with initial conditions γg(0) = g. We can then stitch these finite
curves starting at different values of g together to yield a global flow15 Now consider the integral curve
γ(t) of X , with γ(0) = e, defined for all t ∈ R . This entails γ(s + t) = γ(s) γ(t), which yields a group
homomorphism γ : R → G, called a one-parameter subgroup. As an example, suppose G ⊆ GL(n,F) is

15For a less callow description, see Kemp, lemma 13.1.
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a Lie subgroup of GL(n,F)16, with F = R or C. This basically accounts for all the matrix Lie groups
discussed in §1.4.2. Then differentiating γ(s+ t) with respect to s and setting s = 0 yields

γ̇(t) = γ̇(0) γ(t) . (8.39)

Here we are using as (global) coordinates the matrix elements themselves. We haveA ≡ γ̇(0) ∈ TeG = g.
Then [insert mathy discussion about ODEs, convergence] we have that the unique solution to the above
equation is γ(t) = exp(At).

So much in differential geometry can be either clarified or obscured by notation. Warner17 denotes

the map γ : R → G as expX , which I like because it makes the connection to X ∈ X(G) explicit. The

exponential map exp is then defined by exp(X) = expX(1).

8.3 Representations of Lie Algebras

Let us now shrink back from all this mathy talk and return to the more practical aspects of characterizing
Lie algebras.

8.3.1 Properties of the structure constants

We noted above that if A ∈ g and B ∈ g , then so is their Lie bracket [A,B]. Thus, if {Xa} is a basis for g,
we must have [

Xa,Xb

]
= f c

ab Xc , (8.40)

where the f c
ab are the structure constants for the Lie algebra. Owing to the antisymmetry of the Lie

bracket and the Jacobi identity, the structure constants satisfy the relations

0 = f c
ab + f c

ba

0 = f d
bc f e

da + f d
ab f e

dc + f d
ca f e

db .
(8.41)

What happens if we choose a different parameterization for G, resulting in a different set of generators?

From eqn. 8.10, the new generators are X̃a =M b
a Xb with M b

a = (∂xb/∂x̃a)
∣∣
xe

. Thus

[
X̃a, X̃b

]
=M r

a M s
b

[
Xr,Xs

]
=M r

a M s
b f c

rs Xc =M r
a M s

b f t
rs (M−1) ct X̃c = f̃ c

ab X̃c , (8.42)

and we conclude

f̃ c
ab =M r

a M s
b f t

rs (M−1) ct . (8.43)

Lie algebras in which all elements commute are abelian. In an abelian Lie algebra, all the structure
constants vanish: f c

ab = 0 for all a, b, c.

16A Lie subgroupG of a Lie groupG′ is, as its name connotes, itself a Lie group, and which is also topologically an embedded
submanifold ofG′. If you are seriously interested in the precise definition of an embedded submanifold, you probably should
not be reading these notes.

17F. W. Warner, Foundations of Differential Manifolds and Lie Groups, p. 102.



8.3. REPRESENTATIONS OF LIE ALGEBRAS 293

Recall the ”physics generators” Ta are given by Ta = iXa, where theXa are the ”math generators”. Thus
the physics generators satisfy

[
Ta, Tb

]
= if c

ab Tc. The reason we physicists choose this convention is
that unitary representationsD(G) of a Lie group result Hermitian generators of the Lie algebra. We may
deduce this from the exponential map D(θ) = exp(θaXa) = exp(−iθaTa) . In the math convention, the
Xa are then antihermitian. In either case, the structure constants are then real, since

[
Ta, Tb

]†
= −i

(
f c
ab

)∗
Tc

=
[
Tb, Ta

]
= −if c

ab Tc .
(8.44)

Thus
(
f c
ab

)∗
= f c

ab . Using the Ta as basis vectors, if Y = ya Ta and Z = zb Tb , then the Lie bracket of Y
and Z is given by [

Y,Z
]
= ya zb

[
Ta, Tb

]
= if c

ab ya zb Tc . (8.45)

Another way to write this in component notation is
[
Y,Z

]c
= if c

ab ya zb .

8.3.2 Representations

A finite-dimensional real (or complex) representation of a Lie group a homomorphism Π : G → GL(V),
where V is a finite-dimensional real/complex vector space. Similarly, a finite-dimensional real/complex
representation of a real/complex Lie algebra g is a homomorphism π : g → gl(V). When V is an n-
dimensional vector space over a field F (= R or C for our purposes), GL(V) = GL(n,F), where GL(n,F)
is the set of all n × n invertible matrices. Then gl(V) = gl(n,F), where gl(n,F) is the set of all n × n
matrices, with the matrix commutator as the Lie bracket. If the homomorphism Π is injective (one-to-
one), the representation is said to be faithful. This means that the collection of matrices {Π(g)} with
g ∈ G under matrix multiplication is itself a group isomorphic to G.

A proper subspace W ⊂ V is said to be invariant if Π(g)ω ∈ W for all g ∈ G and ω ∈ W . A similar
definition holds for Lie algebras. If there is no proper invariant subspace, a representation is said to be
irreducible. Two representations Π(G) : G → GL(V) and Σ(G) : G → GL(V ′) are said to be equivalent if
V ∼= V ′ and there exists φ : V → V ′ such that φ

(
Π(g) v

)
= Σ(g)φ(v) for all g ∈ G and v ∈ V .

8.3.3 Matrix Lie groups and their Lie algebras

A matrix Lie group G ⊆ GL(n,C) has the property that if An is a sequence of matrices in G which con-
verges to A, then eitherA ∈ G or A is noninvertible18. Recall that the Lie algebra g of a matrix Lie group
G is the set of all matrices X such that exp(tX) ∈ G for all t ∈ R. What is the relation betweenΠ(G) and
π(g) ? From Π(eX) = eπ(X), we have that

π(X) =
d

dt

∣∣∣∣∣
t=0

Π(etX ) . (8.46)

Note that π(gXg−1) = Π(g)π(X)Π(g−1). So long as G is connected, Π(G) is irreducible if and only if
π(g) is irreducible. Thus, g is a vector space; indeed it is the tangent space to G at its identity E, which

18A sequence of matrices An converges to A if each element of An converges to the corresponding element of A.
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is to say the set of derivatives of all smooth curves in G passing through E. Recall SL(n,F) is the set of
matrices with unit determinant, i.e. det exp(tX) = 1. This entails TrX = 0, hence sl(n,F) is the set of all
real traceless n × n matrices. Similarly, for the orthogonal and unitary groups O(n) and U(n), we have
their algebras o(n) and u(n) are the sets of all real antisymmetric and complex antihermitian matrices,
respectively19.

What are we doing?

WHY are we studying matrix representations of matrix Lie groups? For God’s sake they’re already matrices!
The point is that representations act on vector spaces whose dimensions are not necessarily the same
as the n in GL(n,C). For example, SU(3) obviously acts on R

3, but it can act on other vector spaces
as well. Our interest shall be finite-dimensional complex IRREPs of MLGs. The task of identifying
such representations is almost completely reduced to finding finite-dimensional complex IRREPs of their
associated Lie algebras.

8.3.4 Some examples

Some common examples of representations of matrix Lie groups and their associated Lie algebras:

TRIVIAL REPRESENTATION : In the trivial representation,Π(g) = 1 for all g ∈ G. Then Π(eX) = eπ(X) =
1 and we have π(X) = 0 for all X ∈ g.

STANDARD REPRESENTATION: In the standard representation, Π(g) = g for all g ∈ G ⊆ GL(n,F). We
then have π(X) = X for all X ∈ g ⊆ gl(n,F).

ADJOINT REPRESENTATION : In the adjoint representation, define the Lie group homomorphism Ad :
G→ GL(g) by Adg(X) = gXg−1. Here GL(g) is the space of linear operations acting on the Lie algebra g.
Note that Ad is a Lie group homomorphism because

Adg Adh(X) = ghXh−1g−1 = Adgh(X) . (8.47)

The corresponding Lie algebra representation ad : g → gl(g) is then given by adX(Y ) = [X,Y ]. If this
seems abstract, recall the explicit construction of the adjoint representation of any Lie algebra is given in
terms of its structure constants20. If the basis vectors of g , i.e. the generators of the algebra, are taken to
be the set {Xa}, and

[
Xa,Xb

]
= f c

ab Xc, where the f c
ab are the structure constants, then from the Jacobi

identity one readily derives that the matrices (Xa)bc = −f c
ab satisfy the above relation, and therefore

provide a representation of g , which is the adjoint representation. We can give the adjoint representation
more of a ”physics flavor” by identifying each generator Xa with a ket vector |Xa 〉, such that

∣∣αXa + βXb

〉
= α

∣∣Xa

〉
+ β

∣∣Xb

〉
. (8.48)

The action of adX is then that of an operator, for which adX |Y 〉 = | [X,Y ] 〉. Thus,

adXa

∣∣Xb

〉
=
∣∣ [Xa,Xb]

〉
= f c

ab

∣∣Xc

〉
, (8.49)

19Math convention here.
20See §1.4.6.
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abc f c
ab abc f c

ab abc f c
ab

123 1 246 1
2 367 −1

2

147 1
2 257 1

2 458
√
3
2

156 −1
2 345 1

2 678
√
3
2

Table 8.1: Nonzero structure constants for su(3). Index permutation is totally antisymmetric.

which says f c
ab = 〈Xc | adXa

|Xb 〉 .

For the group G = SU(2), the Lie algebra su(2) has three generators, which may be taken to be the Pauli
matrices {σx, σy, σz}. These satisfy

[
σa, σb

]
= 2iǫabc σc , hence f c

ab = 2 ǫabc . The generators of the adjoint
representation of su(2) are then (Ta)bc = i(Xa)bc = −if c

ab , hence

T1 =



0 0 0
0 0 −i
0 i 0


 , T2 =




0 0 i
0 0 0
−i 0 0


 , T3 =



0 −i 0
i 0 0
0 0 0


 . (8.50)

This is the same Lie algebra as so(3), because, as we have seen, SU(2) is a double cover of SO(3), so
locally in the vicinity of the identity both Lie groups look the same. The three generators Ta are of
course the generators of rotations in three-dimensional space.

8.3.5 SU(3)

Recall that the Lie algebra su(N) consists ofN ×N Hermitian matrices (physics convention). ForN = 2,
the canonical basis is that of the Pauli matrices σa . It is convenient to define the generators Sa = 1

2σa .
This basis for the Lie algebra is normalized according to Tr(Sa Sb) =

1
2

deltaab, and the structure constants are defined by
[
Sa , Sb

]
= iǫabc Sc . We can then read off f c

ab = ǫabc .

For N = 3, the canonical basis is given by the Gell-mann matrices,

λ1 =



0 1 0
1 0 0
0 0 0


 , λ2 =



0 −i 0
i 0 0
0 0 0


 , λ3 =



1 0 0
0 −1 0
0 0 0


 , λ4 =



0 0 1
0 0 0
1 0 0


 (8.51)

λ5 =



0 0 −i
0 0 0
i 0 0


 , λ6 =



0 0 0
0 0 1
0 1 0


 , λ7 =



0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3



1 0 0
0 1 0
0 0 −2


 .

Define Ta =
1
2λa , in which case Tr(TaTb) =

1
2δab. One can check that the nonzero structure constants are

given by the following table: The structure constants in Tab. 8.1 are totally antisymmetric under index
permutation, so that f c

ab = −f b
ac = f b

ca .̇ etc.

Note that the generators {T1, T2, T3} generate an su(2) subgroup, called the isospin group. There are two
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other such su(2) subgroups contained within su(3):

[
T4 , T5

]
=
i

2



1 0 0
0 0 0
0 0 −1


 = i (T3 +

√
3T8) (8.52)

and

[
T6 , T7

]
=
i

2



0 0 0
0 1 0
0 0 −1


 = i (−T3 +

√
3T8) . (8.53)

Note also that the three su(3) subalgebras are overlapping, i.e. the generators T3 and T8 are partially
shared among all three. Finally, observe that

[
T3 , T8

]
= 0 . The pair {T3, T8} comprises the maximal

set of commuting generators, also known as the Cartan subalgebra (CSA), about which we shall have much
more to say in §8.5 below. For su(2), the Cartan subalgebra consists of a single generator (which always
commutes with itself), which is conventionally taken to be S3.

Taking a cue from su(2), we define the ladder matrices

T± ≡ T1 ± i T2 , U± ≡ T6 ± i T7 , V± ≡ T4 ± i T5 , (8.54)

which satisfy Z†
+ = Z− , where Z = T,U, V . We also give special names H1 ≡ T3 and H2 ≡ T8 to the

elements of the CSA. One then readily obtains the commutation relations

[
T+ , T−

]
= 2H1[

U+ , U−
]
=
√
3H2 −H1[

V+ , V−
]
=
√
3H2 +H1 .

(8.55)

as well as

[
H1 , T±

]
= ±T±

[
H2 , T±

]
= 0

[
H1 , U±

]
= ∓1

2U±
[
H2 , U±

]
= ±

√
3
2 U± (8.56)

[
H1 , V±

]
= ±1

2V±
[
H2 , V±

]
= ±

√
3
2 V± .

and, finally,

[
T+ , U+

]
= V+

[
T+ , U−

]
= 0[

U+ , V+
]
= 0

[
U+ , V−

]
= T− (8.57)[

V+ , T+
]
= 0

[
V+ , T−

]
= −U+ ,

plus the corresponding six relations obtained by Hermitian conjugation.

Now let’s consider a representation π of su(3) in which the representatives π(Ta) act on some Hilbert
space H. They could just as well be matrices acting on a vector space V - a Hilbert space is nothing
more than a vector space along with an inner product - but the point is that the dimension of H or V is
arbitrary and is not constrained to be the 3 of su(3). Accordingly, we define

t̂± = π(T±) , û± = π(U±) , v̂± = π(V±) , ĥ1,2 = π(H1,2) . (8.58)
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Since
[
ĥ1 , ĥ2

]
= 0, these operators may be simultaneously diagonalized. We write their normalized

common eigenvectors as |h1, h2 〉, where

ĥj
∣∣h1, h2

〉
= hj

∣∣h1, h2
〉

(8.59)

for j = 1, 2. The eigenvalues h1 and h2 are called weights, and h = {h1, h2} the weight vector. The num-
ber of components of the weight vector is the dimension of the Cartan subalgebra. The commutation
relations listed above for the generators also hold for their representatives. Thus,

ĥ1 t̂±
∣∣ h1, h2

〉
=
[
ĥ1 , t̂±

] ∣∣ h1, h2
〉
+ t̂± ĥ1

∣∣ h1, h2
〉
= (h1 ± 1) t̂±

∣∣ h1, h2
〉

ĥ1 û±
∣∣ h1, h2

〉
=
[
ĥ1 , û±

] ∣∣ h1, h2
〉
+ û± ĥ1

∣∣ h1, h2
〉
= (h1 ∓ 1

2 ) û±
∣∣ h1, h2

〉

ĥ1 v̂±
∣∣ h1, h2

〉
=
[
ĥ1 , v̂±

] ∣∣h1, h2
〉
+ v̂± ĥ1

∣∣h1, h2
〉
= (h1 ± 1

2) v̂±
∣∣h1, h2

〉
(8.60)

and

ĥ2 t̂±
∣∣ h1, h2

〉
=
[
ĥ2 , t̂±

] ∣∣ h1, h2
〉
+ t̂± ĥ2

∣∣ h1, h2
〉
= h2 t̂±

∣∣h1, h2
〉

ĥ2 û±
∣∣ h1, h2

〉
=
[
ĥ2 , û±

] ∣∣ h1, h2
〉
+ û± ĥ2

∣∣ h1, h2
〉
= (h2 ∓

√
3
2 ) û±

∣∣h1, h2
〉

ĥ2 v̂±
∣∣ h1, h2

〉
=
[
ĥ2 , v̂±

] ∣∣h1, h2
〉
+ v̂± ĥ2

∣∣ h1, h2
〉
= (h2 ±

√
3
2 ) v̂±

∣∣ h1, h2
〉

.

(8.61)

We see that the operator t̂+ shifts the weights (h1, h2) by (1, 0). Accordingly, we define the rootvector

of the generator T+ to be αT+
= (1, 0). The full set of root vectors may now be read off from the above

equations:

αT±
= ±

(
1 , 0

)
, αU±

= ±
(
− 1

2 ,
√
3
2

)
, αV±

= ±
(
1
2 ,

√
3
2

)
. (8.62)

These are sketched below in Fig. 8.3.

Figure 8.3: SU(3) root vectors.
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In the adjoint representation, these results take the form

adH1

∣∣T±
〉
= ±

∣∣T±
〉

adH2

∣∣T±
〉
= 0

adH1

∣∣U±
〉
= ∓1

2

∣∣U±
〉

adH2

∣∣U±
〉
= ±

√
3
2

∣∣U±
〉

(8.63)

adH1

∣∣V±
〉
= ±1

2

∣∣V±
〉

adH2

∣∣V±
〉
= ±

√
3
2

∣∣V±
〉

.

If the representation π is of finite dimension, then there must be a highest weight state |ψ0 〉 , analogous to
| j, j 〉 in su(2), which is annihilated by t̂+ , û+ , and v̂+ .

8.4 Classification of Semisimple Lie Algebras

We now consider the general problem of classifying Lie algebras. As it turns out, Lie algebras come in
different flavors, and we shall be most interested in real (or complex) Lie algebras which are semisimple.

8.4.1 Real, complex, simple, and semisimple

REAL AND COMPLEX LIE ALGEBRAS : The Lie algebra g formed by the vector space of generatorsXa over
R is called a real Lie algebra. Now g is a vector space, and any vector space V over R may be complexified
to a vector space VC, by writing a complex vector as φ = (v1, v2) ∈ VC, where v1,2 ∈ V . Alternatively, we

can write φ = v1 + iv2 . Thus, dim(VC) = 2 dim(V), and V ⊂ VC is a real subspace of VC. The Lie bracket
on g has a unique extension to gC :

[X1 + iX2 , Y1 + iY2] =
(
[X1 , Y1 − [X2 , Y2]

)
+ i
(
[X1 , Y2] + [X2 , Y1]

)
. (8.64)

This complexified bracket satisfies antisymmetry and the Jacobi identity and renders gC a Lie algebra in
its own right, called the complexification of g. If g is a real matrix Lie algebra contained within Mn(C),
the space of all n × n complex-valued matrices21, and if for every X ∈ g it is the case that iX 6∈ g , then
gC ⊆Mn(C) is isomorphic to the set

{
X + iY |X,Y ∈ g

}
. In such cases, complexification of the algebra

g is tantamount from extending the field F from R to C.

The orthogonal group O(n+ 1) and the Lorentz group O(n, 1) have different (real) Lie algebras, but the
same complex Lie algebra. Explicitly, consider the case of SO(3), whose Lie algebra so(3) is the set of
matrices R which satisfy (math convention) RT = −R . This algebra has three generators,

X1 =



0 0 0
0 0 −1
0 1 0


 , X2 =




0 0 1
0 0 0
−1 0 0


 , X3 =



0 −1 0
1 0 0
0 0 0


 . (8.65)

The nonzero Lie brackets are given by

[X1 ,X2] = X3 , [X2 ,X3] = X1 , [X3 ,X1] = X2 . (8.66)

21Mn(C) is identical to gl(n,C).
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Now consider SO(1, 2), where R ∈ so(1, 2) requires RT = −ΛRΛ, where Λ = diag(1,−1,−1) . Again,
there are three generators,

X1 =



0 0 0
0 0 −1
0 1 0


 , X2 =




0 0 −1
0 0 0
−1 0 0


 , X3 =



0 1 0
1 0 0
0 0 0


 . (8.67)

The nonzero Lie brackets are given by

[X1 ,X2] = X3 , [X2 ,X3] = −X1 , [X3 ,X1] = X2 . (8.68)

Evidently the structure constants of so(1, 2) are different than those of so(3), but they can be made the

same by redefining the generators as
{
X̃1, X̃2, X̃3

}
≡
{
X1, iX2, iX3

}
. Thus so(1, 2)C ∼= so(3)C . Indeed,

so(p, q,R)C ∼= so(p+ q,C) for all p, q .

Another example: u(n)C ∼= gl(n,C) . To see this22, note that u(n) contains n× n complex matrices which
are antihermitian (again, math convention): R† = −R. Since (iR)† = −iR† = +iR, if R ∈ u(n) then
necessarily iR 6∈ u(n). Now note that a general complex matrix R ∈ gl(n,C) may always be written as a
complex sum of two antihermitian matrices, R = R1+iR2 , withR1 = (R−R†)/2 andR2 = (R+R†)/2i .
Therefore u(n)C = gl(n,C). Some other common complexifications:

gl(n,R)C ∼= gl(n,C) , sl(n,R)C ∼= sl(n,C) , su(n)C ∼= sl(n,C)

o(n)C ∼= so(n,C) , sp(n,R)C ∼= sp(n,C) , sp(n)C ∼= sp(n,C) .
(8.69)

LIE SUBALGEBRA : h ⊆ g is a Lie subalgebra of g if it is closed with respect to both addition + and the Lie
bracket [•, •]. Ado’s theorem says that any finite-dimensional Lie algebra over F is isomorphic to some
subalgebra of gl(n,F) for some n.

IDEALS : h ⊆ g is an ideal of g if [A ,X] ∈ h for all A ∈ h and X ∈ g. For Lie subalgebras, there is no
distinction between left and right ideals. An ideal h is also called an invariant subalgebra. Ideals are useful
for constructing quotient algebras g/h.

SIMPLE AND SEMISIMPLE LIE GROUPS : A Lie groupG said to be simple if it contains no nontrivial invari-
ant Lie subgroups (i.e. other thanG itself). Examples include (R,+, 0), which is abelian and noncompact,
and the special orthogonal group in odd dimensions, SO(2n + 1,R), which is compact. G is said to be
semisimple if it c ontainsno invariant abelian subgroups, including G itself. Thus (R,+, 0) is simple but
not semisimple (it is abelian). Other examples of semisimple Lie groups include SO(n,R) for n > 123

and Sp(2n,R). In a sense, semisimple Lie groups are maximally nonabelian.

SIMPLE AND SEMISIMPLE LIE ALGEBRAS : A Lie algebra g is simple if it contains no nontrivial ideals. A
Lie algebra g is semisimple if it contains no abelian ideals, including g itself. Any one-dimensional Lie
algebra is then simple but not semisimple. Semisimple Lie algebras, like semisimple Lie groups, are, in
a sense, ”maximally nonabelian”.

SOLVABLE LIE ALGEBRA : Given a Lie algebra g , define g(0) = g and then iteratively define

g(n+1) =
[
g(n), g(n)

]
, (8.70)

22See B. C. Hall, Lie Groups, Lie Algebras, and Representations, p. 66.
23SO(2) is abelian, hence not semisimple.
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i.e. g(n+1) consists of all [A,B] where A,B ∈ g(n). This is called the derived series of g. We say that g is
solvable if g(n) = 0 for some n. If g(1) = 0, then g is abelian. Every abelian Lie algebra is solvable. The Lie
algebra t(n,F) of upper triangular matrices with elements in F is solvable. Semisimple Lie algebras are
never solvable. To see this, note that by the definition of semisimplicity that any semisimple Lie algebra
gmay be written as a direct sum of simple Lie algebras, viz.

g =

n⊕

i=1

gi , (8.71)

where each gi is simple, and at least one of the gi is nonabelian. Without loss of generality we may
assume that g1 is nonabelian. For simplicity24, assume n = 2, and compute

g(1) =
[
g , g

]
=
[
g1 ⊕ g2 , g1 ⊕ g2

]

=
[
g1 , g1

]
⊕
[
g2 , g2

]
= g1 ⊕ g

(1)
2 ,

(8.72)

which follows from the fact that g1 is simple and nonabelian, hence
[
g1 , g1

]
= g1 . Therefore g is not

solvable.

TRUE FACT : Simple Lie groups have simple Lie algebras, and semisimple Lie groups have semisimple
Lie algebras.

8.4.2 The Killing form and Cartan’s criterion

How can we classify Lie algebras? We might hope to do so based on their structure constants f c
ab , but

these depend on our parameterization of G. We seek a more useful and robust classification. To this
end, define the Killing form,

gab = Tr(X̂a X̂b) = f s
ar f r

bs , (8.73)

where (X̂a)bc = −f c
ab is the generator X̂a in the adjoint representation. Note that gab = gba is symmetric.

Define the contravariant tensor gab to be the matrix inverse of gab , if the inverse gab exists. In this case
gab g

bc = δ c
a , and we may use gab and gab to lower and raise indices, respectively. Thus,

fabc ≡ f r
ab grc = f r

ab f e
rd f d

ce . (8.74)

It is left as an exercise to the student25 to confirm that fabc is a totally antisymmetric tensor, which means
it reverses sign under exchange of any two of its three indices. Thus

fabc = fbca = fcab = −fbac = −facb = −fcba . (8.75)

Under a coordinate transformation, the Killing form transforms as

g̃ab =M r
a M s

b grs =M r
a grs (M

T)sb . (8.76)

Now because gab is symmetric, it can be diagonalized by an orthogonal transformation, viz.

O r
a O s

b grs = O r
a grs (O

T)sb = diag(β1, . . . , βn1
,−β̃1, . . . ,−β̃n2

, 01, . . . , 0n3
) , (8.77)

24No pun intended!
25Hint: you will need to invoke the Jacobi identity.
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where n1 + n2 + n3 = n and each βi and β̃j is real and positive. This is the most general case for gab ,
with n1 positive eigenvalues, n2 negative eigenvalues, and n3 zero eigenvalues. Now consider dilations,
which are coordinate transformations which do not preserve lengths. There is nothing illegal about
choosing a dilated set of coordinates to describe our group manifold! Dilations are equivalent to an M
matrix of the form M = diag(α1, α2, . . . , αn) where αi is for each i a nonzero real number26. Combining
dilations and orthogonal transformations, consider the matrix M b

a = DaO
b
a , with no sum on a, and

where

Da =
(
(λ1/β1)

1/2 , . . . , (λn1
/βn1

)1/2 , (λ̃1/β̃1)
1/2 , . . . , (λ̃n2

/β̃n2
)1/2 , 11 , . . . , 1n3

)
, (8.78)

where the λi and λ̃j are arbitrary positive real numbers. Then we have

g̃ab =M r
a M s

b grs = DaDbO
r
a O s

b grs = diag(λn1
,−λ̃n2

,0n3
) . (8.79)

Now comes an important result due to E. Cartan:

CARTAN CRITERION : The Killing form of a Lie algebra g is nonsingular, i.e. det g 6= 0 , if and only if g is
semisimple.

Thus, n3 = 0 for semisimple Lie algebras, and only for semisimple Lie algebras. In addition, if G is
compact, then n1 = 0 and the Killing form is negative definite. Thus, for compact semisimple Lie
groups, by rotating and rescaling coordinates, the Killing form of the associated Lie algebra may be
chosen to be gab = λa δab (no sum on a), where λa < 0 .

8.4.3 Casimirs

While some of the structure constants f c
ab may vanish, is there a way of constructing certain combina-

tions of the generators which happen to commute with all elements of the Lie algebra? Such entities
would be particularly valuable in classifying Lie algebras and their representations. For semisimple Lie
algebras, it is indeed possible. Such elements are called Casimir elements, or Casimirs for short, after the
Dutch physicist Hendrik Casimir, who in 1931 first recognized of the existence, for general semisimple
Lie algebras, of quantities analogous to L2 for the angular momentum algebra so(3). For this, he was
made a Catholic saint27. The general expression for a pth order Casimir is

Cp = κa1a2··· ap Xa1
Xa2
· · ·Xap

. (8.80)

where
κa1a2···ap = f

a1b1
b2
f
a2b2

b3
· · · fapbpb1 . (8.81)

Note that fabc = gar gbs gct f
t

rs . The claim is that [Cp ,Xc] = 0 for all generators Xc . Let’s check this for
the case p = 2 where

κab = fars f
bs
r = gab , (8.82)

26Without loss of generality, we may assume αi > 0 as well, since mirror operations are included in the set of orthogonal
transformations.

27I jest. St. Casimir (1458 – 1484), was a Polish prince and second oldest son of King Casimir IV. For some strange reason, in
his iconography, he is often depicted with three hands, suggesting he may have been a sly poker player, or an expert juggler.
See https://en.wikipedia.org/wiki/Saint_Casimir .

https://en.wikipedia.org/wiki/Saint_Casimir
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which is the Killing form. Thus, C2 = gabXaXb = XaXa , which should look familiar. Now

[XaXa ,Xc] = Xa [Xa,Xc] + [Xa,Xc]Xa

= f d
ac XaXd + fa dc XdXa = fa dc (XaXd +XdXa) = 0 ,

(8.83)

because fa dc = −fd ac , because fa dc = gcb f
abd and fabd is totally antisymmetric.

What about C3? We have
C3 = fars f

bs
t f

ct
rXaXbXc . (8.84)

Consider the case of g = so(3) , where we may take fabc = 2−1/2 ǫabc so that gab = δab. Since the
Killing form is the unit matrix, raising and lowering indices doesn’t do anything, hence Xa = Xa and
fabc = f c

ab = fa cb = · · · = 2−1/2 ǫabc . Now

ǫars ǫbst ǫctr = ǫars
(
δbr δsc − δbc δrs

)
= ǫabc (8.85)

hence the cubic Casimir is

C3 = 2−3/2 ǫabcXaXbXc = 2−3/2XaXa = 2−3/2 C2 . (8.86)

So the cubic Casimir for so(3) is the same as the quadratic Casimir, up to a multiplicative factor. Indeed,
it turns out that C2 is the only independent Casimir invariant for so(3) .

Derivation

Let π : g → gl(V) be an IRREP of g and let π̃ : g → gl(Ṽ) be a fiducial28 representation, with generators

Xa and X̃a , respectively. Now consider the construction

Ξa = Xa ⊗ 1̃+ 1⊗ X̃a . (8.87)

It is easy to show that the {Ξa} form a representation acting on the product vector space V × Ṽ , i.e.

[
Ξa , Ξb

]
= f c

ab Ξc . (8.88)

Now define
Q = Xa ⊗ X̃a = gabXa ⊗ X̃b (8.89)

where gab is the inverse Killing form. One then discovers

[
Ξa , Q

]
=
[
Xa , Xb

]
⊗ X̃b +Xb ⊗

[
X̃a , X̃

b
]

= f c
ab Xc ⊗ X̃b + f b

a cXb ⊗ X̃c = fabc
(
Xc ⊗ X̃b +Xb ⊗ X̃c

)
= 0 .

(8.90)

It then follows that
[
Ξa , Q

p
]
= 0 for all p ∈ N

29, i.e.

[
Xa1

Xa2
· · ·Xap

, Xb

]
⊗ X̃a1X̃a2 · · · X̃ap + Xa1

Xa2
· · ·Xap

⊗
[
X̃a1X̃a2 · · · X̃ap , X̃c

]
= 0 (8.91)

28Fiducial means ”accepted as a fixed basis of reference or comparison”.
29
N = Z+ = {1, 2, 3, . . .} denotes the natural numbers, i.e. the positive integers.
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Now define the partial trace

κaa···ap = T̃r
(
X̃a1 · · · X̃ap

)
. (8.92)

In taking the partial trace of eqn. 8.91 over the Ṽ subspace, the second term vanishes because the trace
of a commutator is zero. We therefore conclude that

Cp = κaa···apXa1
· · ·Xap

(8.93)

satisfies
[
Cp , Xc

]
= 0 for all generators Xc . In eqn. 8.80, we take the fidicial representation π̃ to be the

adjoint representation.

Note that the Casimirs are not themselves elements of the Lie algebra. Indeed, they must each be pro-
portional to the unit matrix by Schur’s lemma. The Lie algebra so(n,R), for example, consists of anti-
symmetric matrices of dimension n. What the Casimirs do for us is help classify IRREPs of a Lie algebra.

For semisimple Lie algebras, there can be no linear Casimirs. To see this, note that
[
C1 , Xa

]
= 0 for all

a means adC1
=0. Then the Jacobi identity then guarantees that for all a and b,

[
C1 , [Xa , Xb]

]
=
[
Xa , [C1 , Xb]

]
−
[
Xb , [C1 , Xa]

]
= 0 , (8.94)

and so adC1
adXa

= 0. Suppose Ca = ζaXa is a linear Casimir, where the {ζa} are constants. Then

adC1
= ζb adXb

and adC1
adXa

= ζb adXb
adXa

= 0 . Now take the trace, to obtain

ζb Tr adXb
adXa

= ζb gba = 0 . (8.95)

But if g is semisimple, the Killing form has no nullspaces. Hence C1 = 0.

8.5 The Cartan Subalgebra
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