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Abstract: We develop a general operator algebraic method which focuses on projective
representations of symmetry group for proving Lieb–Schultz–Mattis type theorems, i.e.,
no-go theorems that rule out the existence of a unique gapped ground state (or, more
generally, a pure split state), for quantum spin chains with on-site symmetry. We first
prove a theoremfor translation invariant spin chains that unifies and extends two theorems
proved by two of the authors (Ogata and Tasaki, Commun. Math. Phys. 372 951–962,
(2019) https://doi.org/10.1007/s00220-019-03343-5). We then prove a Lieb–Schultz–
Mattis type theorem for spin chains that are invariant under the reflection about the origin
and not necessarily translation invariant.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Outline of the Argument . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Setting and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Indices for Half-Infinite Chains and the Proofs of Theorems . . . . . . . .
5. Proof of Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction

Quantum spin systems have been active topics of research both in theoretical and math-
ematical physics, see e.g. [BR79,BR81,Sut04,ZCZW15,Tas20]. The Lieb–Schultz–
Mattis theorem [LSM61, Appendix B] and its extensions e.g. in [AL86,AN93,OYA96,
YOA97,Osh99,Has03,Has04,NS06,Tas17,BBDRF18] are attracting renewed interest
partly because of their close relations to topological phases of matter, see e.g. [ZCZW15,
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Tas20]. More precisely, these theorems state that certain classes of quantum many-body
systems with U(1) invariance cannot have a unique ground state accompanied by a
nonzero energy gap, while the classification of unique gapped ground states is a central
issue in topological condensed matter physics.

The original theorem and early extensions were based on explicit construction of
low-lying excited states above the ground state [LSM61,AL86,OYA96,YOA97,Tas17].
In [Osh99], where the extension of the theorem to two or higher dimensions was first
discussed, Oshikawa directly examined a necessary condition for the existence of a
unique gapped ground state. This rephrasing of the Lieb–Schultz–Mattis theorem was
essential for the later development, including the present work.

Recently, in the context of topological condensed matter physics, it was argued that
Lieb–Schultz–Mattis type no-go theorems should be valid for quantum many-body sys-
tems that only possess certain discrete symmetry [CGW10,PTAV12,WPVZ15,PWJZ17,
Wat18]. In particular it was conjectured by Chen et al. [CGW10, V.B.4 and V.C], as a
part of their general classification, that a translation invariant quantum spin chain where
the representation of the symmetry on each site is genuinely projective cannot have a
unique gapped ground state. The statement for chains with time-reversal symmetry was
proved by Watanabe et al. [WPVZ15] within the framework of matrix product states
(MPS).1 In [OT18], Ogata and Tasaki confirmed the conjecture with full mathematical
rigor for general translation invariant quantum spin chains withZ2×Z2 or time-reversal
symmetry. The proof was an extension of the early work of Matsui [Mat01], where the
method based on the Cuntz algebra was developed.

In the present work we essentially complete the study of Lieb–Schultz–Mattis type
theorems for quantum bosonic spin chains with discrete on-site symmetry by proving
two general theorems. We first provide a general unified proof for the above mentioned
conjecture by Chen et al. [CGW10]. See Corollary 1 and Theorem 4 below. We then
state and prove a Lieb–Schultz–Mattis type theorem for spin chains with reflection
symmetry. See Corollary 2 and Theorem 5. More precisely, we prove that a class of
quantum spin chains with certain on-site symmetry and invariance under the reflection
about the origin cannot have a unique gapped ground state (or, more generally, a pure
split state) when the spin at the origin is half-odd-integral (or, more generally, has a
degree-2 cohomology class that is not written in the form 2c). This statement previously
appeared as a conjecture in a paper by Po et al. [PWJZ17].

The proofs of the theorems are closely related to standard ideas in topological con-
densedmatter physics, and does not make use of the Cuntz algebra. They are based, in an
essential manner, on the fact that a unique gapped ground state satisfies the split property,
as proven by Matsui [Mat11], and that there are projective representations associated
to states satisfying the split property, as was noted e.g. in [Mat01]. In [Oga18] Ogata
showed that the second cohomology class associated to the projective representation is
actually an invariant of symmetry protected topological (SPT) phases, in the sense that
it is stable under the smooth path of symmetric gapped Hamiltonians, which coincides
with the topological index investigated intensively in the context of SPT phases in MPS
[PGWS+08,PTBO09,SPGC10,CGW10,ZCZW15,Tas20]. We prove the two theorems
in a unified manner by using some basic properties of the indices. As we shall see in
Sect. 2, the proofs are straightforward and natural, once some key properties of the
indices are given. The simplicity of the argument suggests that the machinery devel-

1 See also [Pra20] and [Tas20, section 8.3.5] for general proofs for MPS.
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oped here is the correct language for discussing Lieb–Schultz–Mattis type theorems for
quantum spin chains with discrete on-site symmetry.2

Before proceeding, we pause here to mention that in [OT18] two of the authors of
the present paper argued that there is an essential difference between the early Lieb–
Schultz–Mattis-type theorems based on the U(1) symmetry and the recent theorems
that make use of the projectivity of the representation of the symmetry. However the
two types of theorems may be understood in a unified manner from the view point of
quantum anomaly presented in [CHR17]. See the end of Appendix A for more details.

Two classes of examples It may be useful to present two concrete cases of our general
theorems in the context of standard quantum spin chains with Z2 × Z2 or time-reversal
symmetry.

Weconsider a quantumspin systemon the infinite chainZ. Let S̄x ∈ { 12 , 1, 3
2 , . . . , S̄max}

be the spin quantum number associated with site x ∈ Z, where S̄max ∈ N/2 is an ar-
bitrary constant. The system is described by the formal Hamiltonian H = ∑

x∈Z hx .
The local Hamiltonian hx acts nontrivially only on sites y such that |y − x | ≤ R, and
satisfies ‖hx‖ ≤ B, where R and B are constants independent of x . We assume that
each hx is invariant under the Z2 × Z2 transformation given by (S(1)

x , S(2)
x , S(3)

x ) →
(S(1)

x ,−S(2)
x ,−S(3)

x ) and (S(1)
x , S(2)

x , S(3)
x ) → (−S(1)

x ,−S(2)
x , S(3)

x ), or the time-reversal
symmetry transformation given by (S(1)

x , S(2)
x , S(3)

x ) → (−S(1)
x ,−S(2)

x ,−S(3)
x ). See

Sect. 3 for details.We also note that any systemwhich is SO(3) invariant is automatically
invariant under this Z2 × Z2 symmetry. This plays an important role in Appendix A,
where we discuss the cases with compact Lie group symmetry.

Let us first assume that the model has translation invariance, i.e., S̄x = S̄ and hx+1 =
τ1(hx ) for all x , where τ1 is the translation operator. Then the following was conjectured
by Chen et al. [CGW10], proved forMPS byWatanabe et al. [WPVZ15], andwas proved
by Ogata and Tasaki [OT18]:

Corollary 1. If S̄ is a half-odd integer, then it is never the case that the above translation-
invariant model (with Z2×Z2 or time-reversal invariance) has a unique gapped ground
state.

In [OT18] the cases for Z2 × Z2 symmetry and time-reversal symmetry were treated
separately. Here we prove a much more general and unified result, Theorem 4 below,
which corresponds to the original conjecture by Chen et al. [CGW10].

Let us next assume that the model is invariant under the reflection about the origin.
We assume the symmetry S̄x = S̄−x and h−x = R(hx ) for all x ∈ Z, where R denotes
the reflection map. Then our main result is the following Lieb–Schultz–Mattis type
statement.

Corollary 2. If S̄0 is a half-odd integer, then it is never the case that the above reflection-
invariant model (with Z2×Z2 or time-reversal invariance) has a unique gapped ground
state.

Note that, rather remarkably, the condition for the corollary contains only the spin quan-
tum number S̄0 at the origin; S̄x = S̄−x on other sites are arbitrary. The above statement
is a simple corollary of our general result, Theorem 5. The corollary is reminiscent of the
well-known fact, often called the Kramers degeneracy, that all the energy eigenvalues

2 Similar machinery can also be used to classify unique gapped ground states of a general quantum spin
chain with on-site symmetry [OT20].
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are inevitably even-fold degenerate in a system of a single half-odd-integral spin with a
Z2 × Z2 or time-reversal invariant Hamiltonian. See, e.g., [Tas20, Chapter 2].

The statement of Corollary 2 was discussed first by Fuji [Fuj14, section 3.D], and
then in a more general context by Po et al. [PWJZ17]. In fact the corollary shows that
the model depicted in [PWJZ17, Figure 1(i)] cannot have a unique gapped ground state,
confirming their conjecture (restricted to quantum spin chains). We also note that an
earlier result in [HKH08] also suggests Corollary 2.

2. Outline of the Argument

Before discussing the settings and results in detail, we recall the notions of projective
representations of a symmetry group and the corresponding second group cohomology,
and also give an informal account of the proofs of the main results.

Projective representations and degree-2 cohomology classes Let G be a finite group
that describes on-site symmetry of the spin system. We fix a homomorphism p : G →
{1,−1}, which gives a decomposition3 G = G+�G− withG±:={g ∈ G | p(g) = ±1}.
In the following we always consider the pair (G, p) as the basic data and denote it simply
by G, leaving p implicit. In the main part of the paper, we assume G is finite, but we can
generalize our theorems to compact Lie groups. We will give a brief discussion on this
generalized case in Appendix A.

LetH be a Hilbert space. The collection of operators V (g) onH with g ∈ G is said
to be a projective representation of G if

• V (e) = I,
• V (g) is unitary if p(g) = 1 and antiunitary4 if p(g) = −1,5

• and
V (g) V (h) = ϕ(g, h) V (gh) (2.1)

with ϕ(g, h) ∈ U(1) = {z ∈ C
∣
∣ |z| = 1} for any g, h ∈ G.

From associativity V ( f ){V (g) V (h)} = {V ( f ) V (g)}V (h) and (2.1), one finds that ϕ

must satisfy

ϕ(g, h)
p( f )

ϕ( f, gh)

ϕ( f, g) ϕ( f g, h)
= 1 for any f, g, h ∈ G, (2.2)

where we define z̄ p := z if p = 1 and z̄ p := z̄ if p = −1. We also see from (2.1) and
V (e) = I that

ϕ(g, e) = ϕ(e, g) = 1 for any g ∈ G. (2.3)

In general a map ϕ : G × G → U(1) that satisfies (2.2) and (2.3) is called a 2-cocycle
of G. We define the product of two 2-cocycles as their point-wise product. Then the set
of all 2-cocycles of G becomes an abelian group, which we denote as Z2(G,U(1)p).

3 This decomposition is known as a UA-decomposition. See, e.g., [Par69,SL74]. The same structure is also
known as a Real structure on a group following Atiyah; see, e.g., [BG10, Chapter 2].

4 A map A : H → H is said to be an antilinear operator if A(αu + βv) = ᾱAu + β̄Av for any α, β ∈ C

and u, v ∈ H. The adjoint A∗ of a bounded antilinear operator A is the unique antilinear operator that satisfies
〈u, Av〉 = 〈A∗u, v〉 for any u, v ∈ H. An antilinear operator V that satisfies VV ∗ = V ∗V = I is said to be
an antiunitary operator.

5 Such an assignment of operators was called a co-representation by Wigner. In our paper we call co-
representations simply as representations, as this would not cause any confusions.



General Lieb–Schultz–Mattis Type Theorems for Quantum Spin Chains

x − 1 x

σR
xσL

x−1

x

σR
x+1

x + 1

cx

(a)

(b)

1

Fig. 1. One can associate a unique index σ ∈ H2(G,U(1)p) with the pure split state ρ restricted onto a half-
infinite chain. a The indices σL

x−1 and σR
x describe the transformation properties of “edges states” that emerge

when the infinite chain is decomposed into two half-infinite chains {. . . , x − 2, x − 1} and {x, x + 1, . . .}. b
The half infinite chain {x, x + 1, . . .} may be regarded as consisting of the site x and {x + 1, x + 2, . . .}. We
have the corresponding identity (2.6), which is a key ingredient of the present work

Suppose that there is another projective representation Ṽ (·) of G with 2-cocycle ϕ̃,
and it is related to V (·) by V (g) = ψ(g) Ṽ (g) with ψ(g) ∈ U(1) for any g ∈ G. From
(2.1) we see that the two 2-cocycles are related by

ϕ(g, h) = ψ(g) ψ(h)
p(g)

ψ(gh)
ϕ̃(g, h) for any g, h ∈ G. (2.4)

This motivates us to define, in general, two 2-cocycles ϕ and ϕ̃ related by (2.4) with
someψ to be equivalent with each other.We denote the set of corresponding equivalence
classes of Z2(G,U(1)p) as H2(G,U(1)p). The quotient set H2(G,U(1)p) also becomes
an abelian group, and is called the second group cohomology of G.6 One can thus
associate a unique element σ of H2(G,U(1)p) with any projective representation V (·)
of G. We say that σ is the degree-2 cohomology class of the projective representation
V (·).

Our theorems are meaningful when H2(G,U(1)p) is nontrivial. We have7

H2(G,U(1)p) = {0, 1} for the two important cases discussed in Sect. 1, namely,Z2×Z2
or time-reversal symmetry. See Sect. 3.

“Edge states” and the Lieb–Schultz–Mattis type theorems We consider a quantum
spin system on the infinite chain Z with a certain symmetry group G, accompanied by
a homomorphism p giving the decomposition G = G+ � G−. We assume that there is
a projective representation of G at each site x , and denote by cx ∈ H2(G,U(1)p) the
corresponding degree-2 cohomology class.

We then take a pure state ρ that is invariant under the global action of G and also
satisfies the property called the split property. See Definition 3 below. A unique ground
state accompanied by a nonzero energy gap of the quantum spin chains described in
Sect. 1 is an example. See the end of Sect. 4 for details.

Suppose that one decomposes the infinite chain Z into two half-infinite chains as
Z = {. . . , x−2, x−1}∪{x, x+1, . . .}. It was pointed out byOgata [Oga19] that, by using
notions from operator algebraic approaches to quantum spin systems, one can associate a
unique degree-2 cohomology class in H2(G,U(1)p)with the state ρ restricted onto each
of the half-infinite chains. We denote the degree-2 cohomology classes corresponding to

6 When p(g) = 1 for all g ∈ G, H2(G,U(1)p) is written as H2(G,U(1)).
7 We shall express H2(G,U(1)p) as an additive group throughout the present paper.
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the half-infinite chains {. . . , x−2, x−1} and {x, x+1, . . .} as σL
x−1 and σR

x , respectively.
See Fig. 1a. Physically speaking, σL

x−1 and σR
x characterize the symmetry properties

of “edge states” that emerge when the infinite chain is decomposed into two. They
correspond to the “topological” indices discussed intensively in the context of symmetry
protected topological phases [PGWS+08,PTBO09,CGW10,ZCZW15,Tas20].

It was proved by Ogata [Oga19, Lemma 2.5] that these indices satisfy

σL
x−1 + σR

x = 0. (2.5)

The identity is natural if we recall that the two “edge states” emerge from a single pure
state. The main ingredient of the present work is the identity

σR
x = cx + σR

x+1, (2.6)

which is proved in Lemma 8 below. This relation is also natural since the half-infinite
chain {x, x + 1, . . .} may be regarded as consisting of a single site x and the half-infinite
chain {x + 1, x + 2, . . .}. Compare (a) and (b) of Fig. 1.

With the two identities (2.5) and (2.6), we can easily prove Lieb–Schultz–Mattis
type theorems that lead to Corollaries 1 and 2. First assume that the state ρ is translation
invariant. Since we then have σR

x = σR
x+1, we find cx = 0 from (2.6), i.e., the degree-2

cohomology class of the projective representation at each sitemust be trivial. ForZ2×Z2
or time-reversal symmetry, this means that the spin quantum number S̄ is an integer (see
Sect. 3). This implies the desired no-go statement, Corollary 1. Next assume that ρ is
invariant under the reflection about the origin.We then have σR

0 = σL
0 , which, with (2.5),

implies σR
0 = −σR

1 . Substituting this into (2.6) with x = 0, we find c0 = 2σR
0 . When

H2(G,U(1)p) = {0, 1} this is possible only when c0 = 0. We then get Corollary 2.

3. Setting and Main Results

C∗-algebras and split states We start by defining a general quantum spin system on
the infinite chain Z. For each site8 x ∈ Z we associate a Hilbert space hx ∼= C

dx

with dimension dx ∈ N. For a finite subset 	 ∈ Z, we define the algebra A	 of local
observables as the set of all bounded operators on the Hilbert space

⊗
x∈	 hx . For finite

subsets 	 ⊂ 	′ ⊂ Z, the algebra A	 is naturally embedded in A	′ by tensoring its
elements by identity. For any infinite subset 
 ⊂ Z, we denote byA
 the inductive limit
of the collection of algebras A	 with 	 being an arbitrary finite subset of 
. The C∗-
algebra of the whole chain is then denoted asA = AZ.We also introduce the C∗-algebras
for half-infinite chains by AL

x = A{...,x−1,x} and AR
x = A{x,x+1,...}, where x ∈ Z. Note

that AL
x and AR

x can naturally be regarded as subalgebras of A.
We define states on the C∗-algebras as usual. The notion of split states is essential.

Definition 3. Let ρ be a pure state on A, and denote by ρL
0 and ρR

1 be the restrictions of
ρ onto the subalgebrasAL

0 andAR
1 , respectively. We say that ρ satisfies the split property

if ρ and ρL
0 ⊗ ρR

1 are quasi-equivalent.

It is easily seen that one may replace ρL
0 and ρR

1 in the above definition by ρL
x and ρR

x+1
with an arbitrary x ∈ Z, which are the restrictions of ρ onto AL

x and AR
x+1, respectively.

8 A site may be a collection of sites in the standard sense.
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In the main theorems, Theorems 4 and 5, we state necessary conditions for the
existence of a pure split state. They can be rephrased as no-go theorems for unique
gapped ground states since a unique gapped ground state (of a model with short range
interactions) is known to satisfy the split property [Mat11].9 See the end of Sect. 4.

On-site symmetry We always consider a model with certain on-site symmetry. Let G
be a finite group and fix a homomorphism p : G → {1,−1}. For each x ∈ Z, we assume
that there is an operator vx (g) on hx which is unitary if p(g) = 1 and antiunitary if
p(g) = −1, and that vx (·) gives a projective representation of the group G. We denote
by cx ∈ H2(G,U(1)p) the degree-2 cohomology class of the projective representation,
as explained in Sect. 2.

We define the adjoint representation of G by �(g)(A) = vx (g)A(vx (g))∗ for A ∈
A{x}. One can uniquely extend �(g) to ∗-automorphisms on A, AL

x , and AR
x . The ∗-

automorphism �(g) is linear if p(g) = 1 and antilinear if p(g) = −1. Note that �(·)
gives a genuine representation of G, i.e., �(g) ◦ �(h) = �(gh) for any g, h ∈ G.
We say that a state ρ on A is G-invariant if ρ(�(g)(A)) = ρ(A) when p(g) = 1 and
ρ(�(g)(A∗)) = ρ(A) when p(g) = −1 for any A ∈ A.

Examples in Sect. 1 in this language To see two examples discussed in Sect. 1, we
consider standard quantum spin systems on Z. The dimension of the local Hilbert space
hx is given by dx = 2S̄x + 1, where S̄x ∈ N/2 is the spin quantum number at site x ∈ Z.
For a finite subset 	 ⊂ Z, the algebraA	 consists of polynomials of spin operators S(ν)

x

with ν = 1, 2, 3 and x ∈ 	; this is because the operators S(1,2,3)
x generate the algebra

A{x}.
To formulate Z2 × Z2 transformation, we set10 G = Z2 × Z2 = {e, a1, a2, a3}, and

p(g) = 1 for all g ∈ G. Then the second cohomology group is H2(Z2 × Z2,U(1)) =
{0, 1}. We define the projective representation on the local Hilbert space hx by vx (e) = I

and vx (aν) = exp[−iπ S(ν)
x ] for ν = 1, 2, 3. The degree-2 cohomology class of the

projective representation is cx = 0 if S̄x is an integer, and cx = 1 if S̄x is a half-odd-
integer. It is found that the corresponding adjoint representation satisfies

�(aν)(S
(μ)
x ) =

{
S(μ)
x ν = μ,

−S(μ)
x ν �= μ,

(3.1)

for any x ∈ Z and ν, μ = 1, 2, 3.
To formulate time-reversal transformation, we set G = Z2 = {e, a} and p(e) = 1,

p(a) = −1. Then one has H2(Z2,U(1)p) = {0, 1}. We define the projective repre-

sentation on hx by vx (e) = I and vx (a) = K exp[−iπ S(2)
x ], where K is the complex

conjugation map.11 The degree-2 cohomology class of the projective representation is
again cx = 0 if S̄x is an integer, and cx = 1 if S̄x is a half-odd-integer. The corresponding
adjoint representation gives �(a)(S(ν)

x ) = −S(ν)
x for any x ∈ Z and ν = 1, 2, 3.

Translation symmetry We shall describe a class of models with translation symmetry.
Take dx = d for all x ∈ Z. We can then regard each hx as a copy of a single Hilbert space

9 It is also known that a state with area law entanglement satisfies the split property. Thus our theorems
may be interpreted as no-go theorems for area law states.
10 The multiplication rule is a1a2 = a3, a2a3 = a1, a3a1 = a2, and (aν)2 = e for ν = 1, 2, 3.
11 We here use the standard matrix representation of spin operators in which all the matrix entries of S(2)

x
are pure imaginary. See, e.g., [Tas20, section 2.3] for details.
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h0 ∼= C
d . For any x, y ∈ Z and A ∈ A{x}, we denote by τy(A) ∈ A{x+y} the identical

copy of A inAx+y .We also assume that the on-site symmetry transformation is chosen so
that vx+y(g) is an identical copy of vx (g) on hx+y .We then have cx = c ∈ H2(G,U(1)p)
for all x ∈ Z.

The translation τy automatically extends to a liner ∗-automorphism on A. We say
that a state ρ onA is translation invariant if ρ(τy(A)) = ρ(A) for any y ∈ Z and A ∈ A.
Here we prove the following theorem, which contains two theorems proved in [OT18]
and summarized as Corollary 1 as special cases.

Theorem 4. Consider a system with translation symmetry, and let ρ be a pure split state
that is G-invariant and translation invariant. Then one inevitably has c = 0.

Reflection symmetry We consider another class of models that are invariant under
reflection about the origin of the chain (but not necessarily invariant under translation).
Assume that the local dimensions satisfy dx = d−x for all x ∈ Z. We can then take the
local Hilbert spaces hx and h−x to be identical. We assume that, for each x ∈ Z, there is
a linear ∗-automorphismRx : A{x} → A{−x} such thatR−x ◦Rx = I. We also assume
that v−x (g) is an identical copy on h−x of vx (g).

From Rx with all x ∈ Z, one can define a linear ∗-automorphism R on A such
that R(A) = Rx (A) for A ∈ A{x}. We say that a state ρ on A is reflection invariant
if ρ(R(A)) = ρ(A) for any A ∈ A. Then the following is a general form of our new
Lieb–Schultz–Mattis type theorem.

Theorem 5. Consider a system with reflection symmetry, and let ρ be a pure split state
that is G-invariant and reflection invariant. Then one inevitably has c0 = 2c with some
c ∈ H2(G,U(1)p).

As we have already noted, the conclusion of the theorem implies c0 = 0 when
H2(G,U(1)p) = {0, 1} as in the two models with Z2 × Z2 or time-reversal symmetry
discussed in Sect. 1. We also note that, by using the original idea of Lieb, Schultz, and
Mattis, one can prove a similar (but different) theorem for a class of quantum spin chains
with U(1) � Z2 symmetry. See Appendix B.

There is a generalization of Theorem 5 to Zm invariant quantum spin system on the
lattice 	m :={o} ∪ {(i, x) | i = 1, . . . ,m, x = 1, 2, . . .}, which consists of the central
site o and m semi-infinite chains attached to it. See Fig. 2 for the case m = 5. We
associate with the central site o a Hilbert space ho and a projective representation vo(·)
of G. We impose Zm symmetry by requiring that, for each x = 1, 2, . . ., the Hilbert
space h(i,x) associated with site (i, x) for i = 1, . . . ,m is an identical copy of a single
Hilbert space hx , and also that the corresponding projective representation v(i,x)(·) is
identical to vx (·).We consider the transformation that shifts the chain-index as i → i +1,
where we identify m + 1 with 1. This defines Zm symmetry.

To define the split property for this system, we note that the quantum spin system
on 	m can be regarded as a quantum spin chain by identifying the central site o ∈ 	m
with the origin 0 ∈ Z, the site (1, x) ∈ 	m with x ∈ Z, and the collection of m − 1 sites
(2, x), . . . , (m, x) with −x ∈ Z. We then say that a Zm-invariant state ρ on 	m satisfies
the split property if the state on Z obtained by the above identification satisfies the split
property.

Theorem 6. Consider the quantumspin systemon	m, and letρ beaZm andG-invariant
pure state that satisfies the split property. Then one inevitably has co = mc with some
c ∈ H2(G,U(1)p).

Clearly Theorem 5 is a special case of Theorem 6 for m = 2.
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Fig. 2. The lattice 	m consists of the central site (black dot) and m semi-infinite chains attached to it. The
figure is for m = 5

4. Indices for Half-Infinite Chains and the Proofs of Theorems

Let us discuss key ingredients of the present work, and prove the theorems and the
corollaries. Throughout the present section, we assume that ρ is a G-invariant pure split
state.

Definition of indices We first follow Ogata [Oga18], and define indices σL
x , σR

x ∈
H2(G,U(1)p) associated with the state ρ restricted on the half-infinite chains. See
Fig. 1a.

Let us fix x ∈ Z and D ∈ {L,R}. Let ρD
x be the restriction of ρ onto the subalgebra

AD
x . Let (HD

x ,πD
x ,�D

x ) be the GNS triple corresponding to AD
x and ρD

x . Since ρD
x is

G-invariant, one can use a standard argument (see, e.g. [BR79, Section 2.3.3]) to define
a ∗-automorphism �̃D

x (g) on πD
x (AD

x )′′ that satisfies
(
�̃D

x (g) ◦ πD
x

)
(A) = (

πD
x ◦ �(g)

)
(A), (4.1)

for any A ∈ AD
x and g ∈ G. Again �̃D

x (g) is linear if p(g) = 1 and antilinear if
p(g) = −1.

From the split property of ρ, it follows that πD
x (AD

x )′′ is a type-I factor, and hence is
isomorphic to B(KD

x ), the set of all bounded operators on a certain Hilbert spaceKD
x . Let

us denote by ιDx : πD
x (AD

x )′′ → B(KD
x ) the corresponding ∗-isomorphism. The spaceKD

x
may be regarded as an effective Hilbert space that describes the states on the half-infinite
chain that are close to ρD

x .
Combining the above, we get, for each g ∈ G, a ∗-automorphism ιDx ◦�̃D

x (g)◦(ιDx )−1

on B(KD
x ). It is linear if p(g) = 1 and antilinear if p(g) = −1. Then it follows from

Wigner’s theorem that there is an operator VD
x (g) on KD

x such that
(
ιDx ◦ �̃D

x (g) ◦ (ιDx )−1)(X) = VD
x (g) X

(
VD
x (g)

)∗
, (4.2)
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for any X ∈ B(KD
x ). The operator VD

x (g) is unitary if p(g) = 1 and is antiunitary if
p(g) = −1. Clearly VD

x (·) gives a projective representation ofG. Wigner’s theorem also
guarantees that the degree-2 cohomology class of the projective representation, which
we denote as σD

x ∈ H2(G,U(1)p), is independent of the choice of KD
x , ι

D
x or VD

x (·).
Properties of the indices The following basic property of the indices was proved by
Ogata and plays an important role in the present work. See Fig. 1a.

Lemma 7 (= [Oga19, Lemma 2.5]). Let ρ be a pure split state that is G-invariant. Then
the indices defined above satisfy σL

x−1 + σR
x = 0 for any x ∈ Z.

The most important ingredient of the present work is the following lemma, which
relates the indices σD

x to the degree-2 cohomology class cx of the on-site projective
representation of G at site x . See Fig. 1b.

Lemma 8. Let ρ be a pure split state that is G-invariant. Then the indices defined above
satisfy

σR
x = cx + σR

x+1, σL
x = cx + σL

x−1. (4.3)

The following two lemmas state invariance properties that follow from the assumed
symmetry.

Lemma 9. Consider a system with translation symmetry, and let ρ be a pure split state
that is G-invariant and translation invariant. Then σL

x and σR
x are independent of x.

Lemma 10. Consider a system with reflection symmetry, and let ρ be a pure split state
that is G-invariant and reflection invariant. Then one has σL

x = σR−x for any x ∈ Z.

We shall prove Lemmas 8, 9, and 10 in Sect. 5.

Proof of the theorems. Let us prove the theorems, assuming Lemmas 7, 8, 9, and 10.
Our strategy was already described in Sect. 2.

Assume that the state is translation invariant. Then, since Lemma 9 implies σR
x =

σR
x+1, we readily find from (4.3) that cx = 0 for any x . Theorem 4 has been proved.
Assume that the state is reflection invariant. We see from Lemma 10 that σR

0 = σL
0 .

Noting that Lemma 7 implies σL
0 + σR

1 = 0, we have σR
1 = −σR

0 . We then see from
(4.3), in particular σR

0 = c0 + σR
1 , that c0 = 2σR

0 . Theorem 5 has been proved.
Theorem 6 can be proved analogously by focusing on the corresponding state on

the chain. One only needs to note that Lemmas 8 and 7 imply σR
0 = c0 + σR

1 and
σR
0 = −σL−1, respectively, and the Zm symmetry implies σL−1 = (m − 1)σR

1 . It then
follows that c0 = −mσR

1 . ��
Proof of the corollaries. Consider a quantum spin system described in Sect. 1 and as-
sume that the model has a unique gapped ground state. (See, e.g., [OT18] or [Tas20,
Appendix A.7] for a precise definition of unique gapped ground states.) By using Hast-
ings’ result on the area law [Has07], Matsui [Mat11] proved that such a ground state
satisfies the split property. Then, by noting that a unique ground state has the same
symmetry as the Hamiltonian, we get Corollaries 1 and 2 from Theorems 4 and 5, re-
spectively. It is also clear that a unique gapped ground state of the model on 	m (treated
in Theorem 6) satisfies the split property. ��
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5. Proof of Lemmas

Proof of Lemma 8 Because of Lemma 7, it suffices to prove one of the two relations
in (4.3). We can also set x = 0 without losing generality. Our goal is thus to prove
σR
0 = c0 + σR

1 .
We claim that there is a ∗-isomorphism β : πR

0 (AR
1 )′′ → πR

1 (AR
1 )′′ such that

β ◦ πR
0 (I0 ⊗ B) = πR

1 (B), B ∈ AR
1 . (5.1)

To see this, let H̃ be the norm-closure of the subspace πR
0 (AR

1 )�R
0 of HR

0 , and p the
orthogonal projection onto H̃ . Then p ∈ πR

0 (AR
1 )′ and π̃R

0 (B):=πR
0 (I0 ⊗ B) p, B ∈ AR

1
defines a ∗-representation of AR

1 on H̃ . (See the proof of [BR79, Lemma 2.4.14].) By
definition of H̃ , �R

0 is cyclic for πR
0 (AR

1 ) in H̃ , and (H̃ , π̃R
0 ,�R

0 ) is a GNS triple of
ρR
1 = ρ|AR

1
. Namely we may regard (H̃ , π̃R

0 ,�R
0 ) = (HR

1 ,πR
1 ,�R

1 ). We define β by

β(a):=ap, a ∈ πR
0 (AR

1 )′′. (5.2)

Because of p ∈ πR
0 (AR

1 )′ and the definition of π̃R
0 = πR

1 , this is a ∗-homomorphism
satisfying (5.1).

It is clear from (5.1) that the range of β is in πR
1 (AR

1 )′′. The homomorphism β

is actually onto πR
1 (AR

1 )′′. Indeed, by the Kaplansky density Theorem, for any b ∈
πR
1 (AR

1 )′′, there is a bounded net {Bα}α in AR
1 such that σ -weak limα πR

1 (Bα) = b. We
then have a bounded net {πR

0 (I⊗Bα)}α inπR
0 (AR

1 )′′. Because of the σ -weak compactness
of the unit ball ofπR

0 (AR
1 )′′,wemay take aσ -weak convergent subnet i.e., {πR

0 (I⊗Bα′)}α′ .
We use it to define a by σ -weak limα′ πR

0 (I ⊗ Bα′)=:a ∈ πR
0 (AR

1 )′′. Then we obtain

β(a) = ap = σ -weak lim
α′ πR

0 (I ⊗ Bα′) p = σ -weak lim
α′ πR

1 (Bα′) = b. (5.3)

This proves the surjectivity.
To see that β is injective, suppose a ∈ πR

0 (AR
1 )′′ satisfies β(a) = 0. Then because

a ∈ πR
0 (A{0})′, we have

a πR
0 (A ⊗ B)�R

0 = a πR
0 (A ⊗ I)πR

0 (I ⊗ B)�R
0 = πR

0 (A ⊗ I) a πR
0 (I ⊗ B)�R

0

= πR
0 (A ⊗ I) ap πR

0 (I ⊗ B)�R
0 = 0, (5.4)

for all A ∈ A{0} and B ∈ AR
1 . As vectors of the form πR

0 (A ⊗ B)�R
0 span HR

0 , this
means a = 0. Hence β is injective.

Take an arbitrary orthonormal basis {|ψ j 〉} j=1,...,d0 of the local Hilbert space h0, and
denote by e j,k = |ψ j 〉〈ψk | the corresponding matrix unit in A{0}.

Recall that ιR0 ◦ πR
0 is an irreducible representation of AR

0 on KR
0 . We define N =

(ιR0 ◦πR
0 (e1,1))KR

0 , which is intuitively interpreted as the effective Hilbert space (for the
half-infinite chain {0, 1, . . .}) with the spin at x = 0 “frozen” into the state |ψ1〉. We
then set K̃R

0 = h0 ⊗ N , where we have “supplied” the missing spin.
We now construct ∗-isomorphisms �0 : πR

0 (AR
0 )′′ → B(K̃R

0 ) and �1 : πR
1 (AR

1 )′′ →
B(N ). We start with the construction of �0. Let us define an operator U : KR

0 → K̃R
0

by

Uξ =
d0∑

j=1

|ψ j 〉 ⊗ {
(ιR0 ◦ πR

0 (e1, j )) ξ
}
. (5.5)
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One finds by inspection that the action of U∗ is given by

U∗
d0∑

j=1

|ψ j 〉 ⊗ η j =
d0∑

j=1

(ιR0 ◦ πR
0 (e j,1)) η j , (5.6)

where we wrote an arbitrary element of K̃R
0 in the form

∑d0
j=1 |ψ j 〉⊗η j . It can be easily

checked that U is unitary. By using U , we define a ∗-isomorphism �0 : πR
0 (AR

0 )′′ →
B(K̃R

0 ) by
�0(Y ) = U ιR0 (Y )U∗, (5.7)

for Y ∈ πR
0 (AR

0 )′′.
We next construct �1. Let A ∈ A{0} and B ∈ AR

1 . For any
∑d0

j=1 |ψ j 〉 ⊗ η j ∈ K̃R
0

we observe that

(
�0 ◦ πR

0 (A ⊗ B)
) d0∑

j=1

|ψ j 〉 ⊗ η j = U
(
ιR0 ◦ πR

0 (A ⊗ B)
)
U∗

d0∑

j=1

|ψ j 〉 ⊗ η j

=
d0∑

j=1

U
(
ιR0 ◦ πR

0 (A e j,1 ⊗ B)
)
η j

=
d0∑

i, j=1

|ψi 〉 ⊗ {(
ιR0 ◦ πR

0 (e1,i A e j,1 ⊗ B)
)
η j

}

=
d0∑

i, j=1

|ψi 〉〈ψi |A|ψ j 〉 ⊗ {(
ιR0 ◦ πR

0 (e1,1 ⊗ B)
)
η j

}

=
d0∑

j=1

A|ψ j 〉 ⊗ {(
ιR0 ◦ πR

0 (e1,1 ⊗ B)
)
η j

}
, (5.8)

where I0 is the identity in A{0}. Let γ be a ∗-representation of AR
1 on N defined by

γ (B):=ιR0 ◦ πR
0 (e1,1 ⊗ B), B ∈ AR

1 . (5.9)

From above, we have

�0 ◦ πR
0 (A ⊗ B) = A ⊗ γ (B), A ∈ A{0}, B ∈ AR

1 . (5.10)

Because �0 is a ∗-isomorphism, elements with these form in B(K̃R
0 ) span a σ -weak

dense subspace of �0(π
R
0 (AR

0 )′′) = B(K̃R
0 ). From this, we conclude that the commutant

γ (AR
1 )′ of γ (AR

1 ) is trivial, because otherwise �0(π
R
0 (AR

0 )′′) = B(K̃R
0 ) would have a

non-trivial commutant. Therefore, γ is irreducible. (See [BR79, Section 2.3].)
Let j : B(N ) → CI0 ⊗ B(N ) be the ∗-isomorphism given by j (x):=I0 ⊗ x , for

x ∈ B(N ). From above, j−1 ◦ �0 ◦ β−1 is well-defined on (πR
1 (AR

1 ))′′ and we get

j−1 ◦ �0 ◦ β−1 ◦ πR
1 (B) = γ (B), B ∈ AR

1 . (5.11)

Set�1:= j−1 ◦�0 ◦β−1 : πR
1 (AR

1 )′′ → B(N ). Again by the Kaplansky density theorem
and the irreducibility of γ , �1 is a ∗-isomorphism.
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Therefore, we may regard N = KR
1 . By the definition, we have

γ (B) = �1 ◦ πR
1 (B), B ∈ AR

1 . (5.12)

We can then repeat the construction in (4.2) by using N and �1 to have
(
�1 ◦ �̃R

1 (g) ◦ �−1
1

)
(X) = Ṽ1(g) X

(
Ṽ1(g)

)∗
, (5.13)

for any g ∈ G and X ∈ B(N ). Ṽ1(g) is unitary if p(g) = 1 and antiunitary if p(g) = −1.
We see that Ṽ1(·) gives a projective representation ofG onN . The degree-2 cohomology
class of Ṽ1(·) is σR

1 by uniqueness that follows from Wigner’s theorem. Note that

Ṽ1(g) γ (B)
(
Ṽ1(g)

)∗ = γ (�R
1 (g)(B)), B ∈ AR

1 . (5.14)

Let us finally define unitary or antiunitary operators on K̃R
0 = h0 ⊗ N by12

Ṽ0(g) = vo(g) ⊗ Ṽ1(g). (5.15)

It is clear that Ṽ0(·) forms a projective representation of G with degree-2 cohomology
class c0 + σR

1 ∈ H2(G,U(1)p). We shall show that the 2-cocycle associated to the
projective representation Ṽ0(·) is equivalent to that given byV R

0 (·), and has the associated
degree-2 cohomology class σR

0 . This implies the desired identity c0 + σR
1 = σR

0 .
To confirm the claim, note for any A ∈ A{0} and B ∈ AR

1 that

Ṽ0(g)
{
�0 ◦ πR

0 (A ⊗ B)
}
(Ṽ0(g))

∗ = Ṽ0(g)
(
A ⊗ γ (B))

)
(Ṽ0(g))

∗

= {
v0(g) A (v0(g))

∗} ⊗ {
Ṽ1(g)

(
γ (B)

)
(Ṽ1(g))

∗}

= �(g)(A) ⊗ {(
γ ◦ �(g)

)
(B)

}

= (
�0 ◦ πR

0 ◦ �(g)
)
(A ⊗ B)

= (�0 ◦ �̃R
0 (g) ◦ πR

0 )(A ⊗ B). (5.16)

This implies (
�0 ◦ �̃R

0 ◦ (�0)
−1)(X) = Ṽ0(g) X (Ṽ0(g))

∗, (5.17)

for any X ∈ B(K̃R
0 ). This should be compared with (4.2) with x = 0 and D = R. Again

from the uniqueness of the cohomology class, we see that the projective representation
Ṽ0(·) is characterized by σR

0 . ��
Proof of Lemmas 9 and 10 To prove the two lemmas in a unified manner, consider two
sub C∗-algebras A1 and A2 of A related by a linear ∗-automorphism γ on A such that
γ (A2) = A1. We assume that ρ(γ (A)) = ρ(A) for any A ∈ A, and that γ ◦ �(g) =
�(g)◦γ . In the context of Lemma 9, we setA1 = AR

x ,A2 = AR
y orA1 = AL

x ,A2 = AL
y ,

and let γ be the corresponding translation. In the context of Lemma 10, we setA1 = AL
x ,

A2 = AR−x , and let γ be the reflection R.
Let (H, π,�) be a GNS triple of ρ|A1 , and ι be a ∗-isomorphism from π(A1)

′′ onto
B(K), for someHilbert spaceK. Assume that there is a projective representation V (g) of
G onK such that AdV (g)◦ι◦π = ι◦π ◦�(g). By the γ -invariance of ρ, (H, π ◦γ,�) is

12 Let A1 and A2 be antilinear operators on Hilbert spacesH1 andH2, respectively. We denote by A1 ⊗ A2
the unique antilinear operator on H1 ⊗ H2 that satisfy (A1 ⊗ A2)(v1 ⊗ v2) = (A1v1) ⊗ (A2v2) for any
v1 ∈ H1 and v2 ∈ H2.
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a GNS triple of ρ◦γ |A2 = ρ|A2 . Then, ι is a ∗-isomorphism from π ◦γ (A2)
′′ = π(A1)

′′
onto B(K), and we have

AdV (g) ◦ ι ◦ π ◦ γ (A) = ι ◦ π ◦ γ ◦ �(g)(A), A ∈ A2. (5.18)

This means that V (g) plays a role of VD
x (g) in (4.2) and completes the proof. ��

6. Discussion

We have developed a general method for proving Lieb–Schultz–Mattis type no-go the-
orems for quantum spin chains with on-site symmetry. Our method makes use of the
topological indices that characterize projective representations of the symmetry that
emerge at the edges of half-infinite chains. In order to define meaningful indices in a
mathematically rigorous manner, it was essential to follow [Oga18] and introduce the
effective Hilbert space KD

x for the half-infinite chain through the von Neumann algebra
πD
x (AD

x )′′.
By using this method we proved a general theorem, Theorem 4, for translation in-

variant models with on-site symmetry, which is a fully general and rigorous version of
the conjecture stated by Chen et al. [CGW10]. We also proved another general theorem,
Theorem 5, which applies to models with on-site symmetry and the reflection invariance
about the origin. This statement previously appeared as a conjecture in a paper by Po
et al. [PWJZ17].

The reader might notice that, under the assumption that there is a pure split state,
Theorem 5 only poses a constraint c0 = 2c on the degree-2 cohomology class c0 of
the site at the origin, while Theorem 4 completely determines the degree-2 cohomology
class of all the sites as cx = 0. This does not mean that Theorem 5 is incomplete. One
can explicitly construct a reflection invariant pure split state with c0 �= 0, for example,
in a model with on-siteZ3×Z3 symmetry, where the second group cohomology is given
by H2(Z3 × Z3,U(1)) = {0, 1, 2}. See [OT20].

It is clear that Theorem 4 can be readily extended to an on-site symmetric model
that is invariant under translation followed by a global transformation (such as a spin
rotation) which preserves the symmetry. Likewise Theorem 5 can be extended to an on-
site symmetric model that is invariant under the reflection followed by a similar global
transformation.We do not, however, regard these statements as genuine extensions since
these models may be transformed into translation invariant ones or reflection invariant
ones.

Our Lieb–Schultz–Mattis type theorems for on-site symmetric quantum spin chains
are obtained by detecting a nontrivial necessary condition for the existence of a pure
split state that follows from basic properties of the degree-2 cohomology classes and the
assumed geometric invariance of the model. Recalling that translation and reflection are
essentially the only nontrivial invariance of the infinite chain Z, it is likely that Lieb–
Schultz–Mattis type theorems for quantum bosonic spin chains with discrete on-site
symmetry are essentially exhausted by our two theorems.

Similar Lieb–Schultz–Mattis type statements in two or higher dimensions have been
discussed in the literature [PTAV12,WPVZ15,PWJZ17,Wat18]. It is quite challenging
to see if these statements can be made into theorems by using similar operator algebraic
techniques.
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A Generalization to Compact Lie Groups

In the main part of the paper we assumed that the on-site symmetry group G is finite.
Herewe outline how to generalize our setup to cover the casewhere the on-site symmetry
group G is a compact Lie group. This generalization was first considered in [DQ12].

Wenote that the original theoremofLieb, Schultz,Mattis given in [LSM61,Appendix
B] was for the SU (2)-symmetric Heisenberg chain, which can be thought of as an
example of our general theorem when G = SO(3), or G = Z2 × Z2 ⊂ SO(3), as we
used in Sect. 1. Lieb–Schultz–Mattis type theorems for compact Lie groups for more
general compact groups have also been discussed in the literature, see [YHO18] and the
references therein.

The main technical issue is that the definition of the group cohomology associated to
a projective representation, given in Sect. 2, requires modifications when G is a compact
Lie group. Just as we want a representation V (g) of a Lie group G to be a continuous
map, we need to impose some appropriate conditions on the cocycleϕ(g, h) as a function
on G × G.

We split the discussions in two cases, namely i) when the compact group G is con-
nected and the corresponding Lie algebra g is semisimple, and then ii) when G is a more
general compact Lie group. We give a proof in the case i); we only give an indication
of a proof in the case ii). The essential idea in the case i) is to find a suitable choice
of finite subgroups Gi of G so that the projective representations of G can be captured
by those of Gi . This approach was already studied e.g. in [EBD13,DQ13] when G is a
classical simple group except Spin(4n). Here we give a general construction applicable
for arbitrary connected semisimple groups, based on a mathematical result [BFM99].
Themain point in the case ii) is that a cohomology theory suitable for characterizing pro-
jective representations of continuous groups was already given by Mackey and Moore
[Mac58,Moo64a,Moo64b].

When G is a compact connected semisimple group In this case, let G̃ be the universal
covering group of G such that G = G̃/H where H is an abelian normal subgroup of G̃
so that we have the extension

0 −→ H −→ G̃
p−→ G −→ 0. (A.1)

We note that H = π1(G).
Let us consider a translation-invariant quantum spin chain where the Hilbert space

hx at each site is in a representation of G̃. Ax carries an adjoint action of G̃. Suppose
that hx as a representation of H is a direct sum of a single irreducible representation c
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of H . Then H acts trivially on Ax . Therefore Ax is a representation of G, and therefore
A is a representation of G. The version of theorem 4 in this setting is the following:

Theorem 4’ Consider a system with translation symmetry. Suppose there is a pure split
state ρ that is G-invariant and translation invariant. Then c is the trivial representation
of H = π1(G).

The proof of the theorem 5 for compact connected semisimple G is entirely similar,
so we omit it. Our proof relies on the following lemma 12.

To motivate the context of the lemma, consider the case G = SO(3), for which we
have G̃ = SU (2) and H = Z2. Recall that we used G ′ = Z2 × Z2 ⊂ SO(3) as one of
the main examples in the main part of the paper. Let G̃ ′ := p−1(G ′) so thatG ′ = G̃ ′/H .
We then have the commutative diagram of extensions

0 −→ H −→ G̃ −→ G −→ 0

= ∪ ∪
0 −→ H −→ G̃ ′ −→ G ′ −→ 0

. (A.2)

An element c ∈ Ĥ then gives an extension of G ′ by U(1), therefore we have a homo-
morphism

ι : Ĥ → H2(G ′,U(1)). (A.3)

For G ′ = Z2 × Z2 this homomorphism ι is an isomorphism; equivalently, G̃ ′ is the
representation group of G ′ = Z2 × Z2 in the sense of Schur, i.e. G̃ ′ is an extension of
G ′ by H such that any projective representation of G ′ is a genuine representation of G̃ ′
and Ĥ = H2(G ′,U (1)). This allows us to reduce the LSM theorem for G = SO(3) to
the LSM theorem for G ′ = Z2 × Z2.

This construction directly generalize when G̃ = SU (n), H = Zn andG = PSU (n).
In this case we consider two elements a, b ∈ G̃ given by

a = γ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
c
c2

. . .

cn−2

cn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, b = γ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
0 1
0 1

. . .
. . .

0 1
1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (A.4)

where c is a primitive n-th roots of unity and γ n = cn(n−1)/2. They satisfy ab = cba.
Furthermore, we have

an = bn =
{
1 (n : odd),
cn/2 (n : even). (A.5)

Then G̃ ′ = 〈a, b〉 and p(G̃ ′) = G ′ = Zn × Zn fit in the commutative diagram (A.2)
above.We can now reduce the LSM theorem forG = PSU (n) to that forG ′ = Zn×Zn .

In general, two elements a, b ∈ G̃ in a connected simply-connected Lie group such
that ab = cba where c ∈ H are said to form an almost commuting pair, and all such
pairs for an arbitrary c were described in [Sch96,BFM99,KS99] for arbitrary Dynkin
type. We will make use of the following lemma concerning almost commuting pairs:
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Lemma 11 (= [BFM99, Corollary 4.2.1]). Let G̃ be simply-connected semisimple com-
pact group and H be its center. For any c ∈ H of order n, there is an almost commuting
pair a, b ∈ G such that ab = cba satisfying (A.5).

From this lemma we derive another lemma given below:

Lemma 12. For any compact connected semisimple group G, there is a finite collection
of finite subgroups G ′

i which fits in the commutative diagram

0 −→ H −→ G̃ −→ G −→ 0
∪ ∪ ∪

0 −→ Hi −→ G̃ ′
i −→ G ′

i −→ 0
(A.6)

such that we have Ĥi � H2(G ′
i ,U(1)),

∏
Hi � H, and therefore Ĥ � ∏

Ĥi �
⊕

H2(G ′
i ,U(1)).

We provide the proof of the theorem first, and then that of the lemma.

Proof of the theorem 4’. A G-symmetric system is also G ′
i -symmetric for each i . We

assumed that hx is a direct sum of a single irreducible representation c ∈ Ĥ . This
means that as a G ′

i -symmetric system, the degree-2 cohomology class associated to hx
is given by ci ∈ H2(G ′

i ,U(1)), where ci is the i-th direct sum component of c in the

decomposition Ĥ � ⊕
H2(G ′

i ,U(1)). We use the original Theorem 4 and conclude
that ci = 0 for each i . We therefore conclude c = 0. ��
Proof of the lemma 12. H is a finite Abelian group, and therefore a product of cyclic
groups, H = ∏

i Zki . Let ωi be the generator of Zki . From Lemma 11, there is an almost
commuting pair ai , bi ∈ G̃ for ωi . We take G̃ ′

i = 〈a, b〉 and G ′
i = p(G̃ ′

i ). We have
G ′

i = Zki × Zki and G̃ ′
i is its extension by Zki . The resulting group is well-known to be

the representation group of G ′
i . ��

When G is a general compact Lie group The discussion above is not satisfactory, if
one wants to consider the cases when G is not necessarily connected, e.g. G = O(n). In
such cases it is not clear to the authors whether we can always choose finite subgroups
G ′

i of G so that the LSM theorem for G can be deduced from the LSM theorems for G ′
i

as we did above.13

Instead, we can use a more general theory of projective representations of locally
compact Lie groups G developed in [Mac58,Moo64a,Moo64b]. There, the group co-
homology H2(G,U(1)p) is defined by placing the condition that the cochains ϕ(g, h)

on G × G is a Borel function. When G is connected and semisimple, the group coho-
mology defined in this manner is known to agree with π̂1(G) as used above [Moo64a,
Proposition 2.1].

Another important theorem [Mac58, Theorem 2.2] for our purpose states that any
continuous homomorphism G → PU (H) determines a unique class in H2(G,U (1)),
where PU (H) = U (H)/U (1) is the projective unitary group for a Hilbert space H.

13 Note added in proof: It is known that for a compact Lie groupG, themap H∗(BG, Z) → ∏
F H∗(BF, Z)

is injective, where F runs over finite subgroups ofG, see https://math.stackexchange.com/questions/3821407/
and https://mathoverflow.net/questions/372106/. This means that the LSM theorem for general compact Lie
groups can be reduced to the LSM theorems for finite groups.

https://math.stackexchange.com/questions/3821407/
https://mathoverflow.net/questions/372106/
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Using this theorem instead of Wigner’s theorem, we should be able to attach the degree-
2 classes σL

x , σR
x ∈ H2(G,U(1)p) as in the finite group case, see the discussions around

(4.2). The proof of the crucial lemma 8 then goes mostly unchanged.

Comment on the case G = U (1) Our approach does not say anything nontrivial when
G = U (1), since H2(U (1),U(1)) = {0} when defined using the Borel functions. This
is unfortunate, since early extensions of the original theorem of LSMwere mainly about
relaxing the SO(3) symmetry to itsU (1) subgroup. One important result in this direction
was obtained in [OYA96], where it was shown that there is no unique gapped ground
state if the filling factor ν of a U (1)-symmetric system is not an integer.

More recently, in [CHR17], the various LSM theoremswere given an interpretation in
terms of the mixed anomaly between the on-site symmetry G and the lattice translation
symmetry Z. This is captured by an element in

H3(B(G × Z),U(1))/H3(BG,U(1)) = H2(BG,U(1)) (A.7)

where BG is the classifying space of G. In many cases the group cohomology
H2(BG,U(1)) defined in terms of the classifying space reduces to H2(G,U(1)) defined
using cocycles on the group manifold. When G = U (1), however, this is not so, and
H2(BU (1),U(1)) = U (1) = R/Z. Moreover, it was argued in [CHR17] that the filling
factor ν mod 1 specifies the element in H2(BU (1),U(1)).

In this sense, the formulation given in [CHR17] is more general and unifies two lines
of generalizations of the LSM theorem, namely to U(1) and to finite groups and com-
pact connected semisimple groups. It would be interesting to look for a mathematically
rigorous formulation which covers both these cases simultaneously.

B A Theorem for Reflection Invariant Models with U(1) Symmetry

We here describe and prove a theorem corresponding to Corollary 2 or Theorem 5
obtained by the original method of U(1) twist devised by Lieb, Schultz, and Mattis
[LSM61, Appendix B]. Let us consider a standard quantum spin chain onZ as in Sect. 1.
We let the spin quantum number at site x be S̄x ∈ { 12 , 1, 3

2 , . . . , S̄max}, and assume the
symmetry S̄x = S̄−x . The spin chain is described by the formal Hamiltonian H =∑

x∈Z hx , where the local Hamiltonian hx acts nontrivially only on sites y such that
|y − x | ≤ R, and satisfies ‖hx‖ ≤ B. We further assume that hx is U(1) invariant, i.e.,

exp
[
iθ

∑

y:|y−x |≤R

S(3)
x

]
hx exp

[−iθ
∑

y:|y−x |≤R

S(3)
x

] = hx , (B.1)

for any x ∈ Z and θ ∈ [0, 2π). We also define a linear ∗-automorphism R̃ by R̃(S(1)
x ) =

S(1)
−x and R̃(S(ν)

x ) = −S(ν)
−x for ν = 2, 3, for all x ∈ Z. Note that R̃ describes a Z2

transformation which consists of reflection about the origin and the π -rotation about the
1-axis. We make an essential assumption that R̃(hx ) = h−x for all x ∈ Z. The model
has a U(1) � Z2 symmetry.

Note that the Z2 symmetry in this case is not an on-site symmetry, but is a global
symmetry described by R̃. This means that the present class of models is not covered
by Corollary 2 or Theorem 5.14

The main result of the present Appendix is the following.

14 As a special case, one can consider spin chainswhich have both on-site U(1)�Z2 symmetry and reflection
symmetry. Corollary 2 certainly applies to such models because Z2 × Z2 ⊂ U(1) � Z2.
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Theorem 13. Suppose that the above quantum spin chain has a unique ground state ω.
When S̄0 is a half-odd integer, there is no gap above the ground state.

Proof We follow Affleck and Lieb [AL86] and define the local twist operator

U�:= exp
[
−i

�∑

x=−�

x + �

�
π S(3)

x

]
, (B.2)

for � = 1, 2, . . .. From the standard argument based on the U(1) invariance of hx , we
find for any � that

∣
∣ω(U †

� HLU�) − ω(HL)
∣
∣ ≤ C

�
, (B.3)

with a constantC , where HL = ∑L
x=−L hx with any L ≥ �+R. See, e.g., [Tas17,Tas20].

We also note that

R̃(U�) = exp
[
i

�∑

x=−�

−x + �

�
π S(3)

x

]
= exp

[
2π i

�∑

x=−�

S(3)
x

]
U� = e2π i S

(3)
0 U�, (B.4)

which implies R̃(U�) = −U� when S̄0 is half-odd integral [AL86,MT98]. Since ω is
R̃-invariant, this means that

ω(U�) = 0. (B.5)

It is standard that (B.5) and (B.3) imply that there is no gap above the ground state. ��
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