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Haldane “Conjecture”
Heisenberg antiferromagnetic chain

H = J
�

j

�Sj ·
�Sj+1

S=1/2, 3/2, 5/2........
“massless” = gapless, power-law decay of 

spin correlations
S=1, 2, 3, .....

“massive” = non-zero gap, exponential decay 
of spin correlations
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AKLT model/state
H = J

�

j

�
�Sj ·

�Sj+1 +
1
3
(�Sj ·

�Sj+1)2
�

e.g. S=1

Exact groundstate: (Affleck-Kennedy-Lieb-Tasaki 1987)

S=1/2

Singlet pair of two S=1/2’s -“valence bonds”

Symmetrization
(=projection to S=1)

✓non-zero gap, exponential decay of correlations

(supporting the Haldane conjecture)4
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Order in AKLT state?

Groundstate of the AKLT model: UNIQUE
(for periodic boundary condition)

Correlation function of any local operator
decays exponentially

There is no local order parameter;
no symmetry is broken spontaneously

No order, that’s it?
5
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“Haldane phase”
H = J

�

j

�
�Sj ·

�Sj+1 + D(Sz
j )2

�

D

gap

Dc

trivial phase
(“large-D phase”)

“Haldane
  phase”

|D� = | . . . 00000 . . .�
D →∞ :

Why quantum phase transition?
Because there is some kind of order

(topological order) in the “Haldane phase”
6
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Edge states

“free” S=1/2 appears at each end, interacting
 with each other. Effective coupling: Jeff ∼ e−L/ξ

Consider a chain with open boundary condition

2x2=4  groundstates below the Haldane 
gap (nearly degenerate) 

7

Kennedy (1990)
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Hidden (string) order

+ 0 0 - +
In Sz basis, + and - alternate, with 0’s in between

No long-range order w.r.t. local observables,
but a hidden (topological) order measurable

by the “string order parameter”

O
α
str ≡ lim

|j−k|→∞
�Sα

j eiπ
Pk−1

l=j Sα
l Sα

k �

Den Nijs & Rommelse (1989)
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Hidden Z2 x Z2 symmetry
Kennedy & Tasaki (1992)  

H = J
�

j

�Sj ·
�Sj+1

H̃ = UHU−1

= J
�

j

�
Sx

j eiπSx
j+1Sx

j+1 + Sy
j eiπ(Sz

j +Sx
j+1)Sy

j+1 + Sz
j eiπSz

j Sz
j+1

�

non-local unitary transformation

Global discrete symmetry
(π-rotation about x, y, z axes = Z2 x Z2)

U =
�

j<k

eiπSz
j Sx

k [simple expression by M.O. (1992)]

[well-defined only for open b.c.]
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Spontaneous breaking of hidden Z2xZ2 symmetry

4-fold groundstate degeneracy for H̃

4-fold groundstate degeneracy for H
only with the open b.c.! = edge states

Ferromagnetic order for H̃

String order forH

UHU−1 = H̃

U
�
Sz

j eiπ
Pk−1

l=j Sz
l Sz

k

�
U−1 = Sz

j Sz
k
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When does it work?
This was not discussed (as far as I know) in 1990s

The Kennedy-Tasaki transformation is nonlocal --
if the transformed Hamiltonian     is nonlocal, the 
argument does not work.
Because the transformation is self-dual, for      to 
be local, the original Hamiltonian must have global 
D2 = Z2 x Z2 symmetry (π-rotation about x, y, z axes)
This means that S=1 Haldane phase is a topological 

phase protected by global D2 symmetry
Pollmann, Berg, Turner, M.O. 2009
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Other symmetries?

12

AKLT model:     edge state with S=1/2
Does the edge state survive in more general models?

Consider perturbations to AKLT model
Generic perturbations will lift the edge 
degeneracy!

However, if the perturbation respect time reversal, 
it should keep the “Kramers degeneracy” of S=1/2 
edge state
 i.e. time reversal symmetry protects Haldane phase

cf.) edge state of topological insulator
12



Yet another symmetry

13

Gu and Wen, 2009
D2 symmetry (π-rotation about x,y,z axes): lost
string order does not work as an order parameter 
Time reversal: lost
 edge state does not characterize the Haldane phase

Nevertheless, Haldane phase is 
still distinct from other phases

by QPTs
Protected by inversion 

symmetry! Bx →
D→
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-7/2, -5/2, -3/2, -1/2, 1/2, 3/2, 5/2, 7/2

I: space inversion 
            (parity)

|(j, j + 1)� ≡ 1√
2

(| ↑�j | ↓�j+1 − | ↓�j | ↑�j+1)valence bond:

each vb pair is
P-even

this vb makes AKLT 
state P-odd!

I|(j, j + 1)� = |(−j,−j − 1)� = −|(−j − 1,−j)�

I|(−1
2
,
1
2
)� = −|(−1

2
,
1
2
)�
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S=1 AKLT state is “P-odd”.
Now consider any perturbation, 
keeping P-invariance. The adiabatically 
connected state remains P-odd.

On the other hand,
a trivial groundstate
is P-even.
Any adiabatic evolution of the trivial state
is also P-even as long as P-invariance is kept.

|Ψ� = ⊗j|ψ�j

There must be a phase transition
between the two groundstates
(robustness of Haldane phase)
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Symmetry Protection

(I) Spontaneous breaking of hidden Z2xZ2 symmetry,
robust in the presence of D2(=Z2 x Z2) symmetry

[π-rotation about x,y, and z axes]
(II)  Kramers degeneracy of edge spins,
robust in the presence of time-reversal

S=1 Haldane phase is “protected” by ANY one of

16

(III)  Space Inversion symmetry about
a bond center

(Gu-Wen/Pollmann-Berg-Turner-M.O.)
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 [M.O. (1992)]

The concept of hidden Z2xZ2 symmetry can be 
generalized to any integer S U =

�

j<k

eiπSz
j Sx

k

What about S>1?

The hidden Z2xZ2 symmetry is
unbroken in S=2,4,6,8,.... AKLT state
while broken in S=1,3,5,7,..... AKLT state!

“even-odd effect” 
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What does it mean?

The hidden Z2xZ2 symmetry is unbroken in 
the (uniform) S=2 AKLT state.

Q (1992): Is it indistinguishable from a 
trivial state, or are we just unaware of 
appropriate hidden order/symmetry?

18
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What does it mean?

The hidden Z2xZ2 symmetry is unbroken in 
the (uniform) S=2 AKLT state.

Q (1992): Is it indistinguishable from a 
trivial state, or are we just unaware of 
appropriate hidden order/symmetry?

A (2009): It is essentially indistinguishable from 
a trivial state!
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Edge state for S=2 
S=2 AKLT state: each end has S=1  (3-fold deg.)
The degeneracy will be lifted by perturbations,
and generically no degeneracy remains!
  (no Kramers degeneracy)

If we keep the SU(2) symmetry, the 
presence of the S=1 edge state makes the 

system distinct from trivial states?
In general, the answer is NO.

19
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Kramers vs. non-Kramers
Sb=0 vs. 1

triplet

singlet

Sb can change by
level crossing at the 

edge
(w/o bulk transition)

Sb=0 vs. 1/2

doublet

singlet

Kramers theorem requires 
all the edge levels be 
doubly degenerate!

The degeneracy can be 
only removed by bulk 

phase transition.20
cf.) Todo et al. (2001)
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Intrinsic parity for S>1 chains
I: lattice inversion

            

The intrinsic parity is even,
because you flip two valence bonds.

In general, intrinsic link parity is even (odd),
   if the number of valence bonds is even (odd)!
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S=2 Haldane state
None of the 3 symmetries protects the “Haldane 

phase” as a distinct topological phase!

The S=2 “Haldane state” could be adiabatically 
connected to a trivial state
Is this really the case?

Yes! There exists a 1-parameter family of Matrix 
Product State (and corresponding Hamiltonian) 
interpolating S=2 AKLT state and large-D state

Pollmann, Berg, Turner, M.O. 2009
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S=2 phase diagram
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conjecture by M.O. 1992
(figure taken from Tonegawa et al. 

arXiv:1011.6568) 
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S=2 phase diagram
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Schollwock et al. 
1995～1996

DMRG result conjecture
M.O. 1992

(figures from arXiv:1011.6568)
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S=2 phase diagram
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Tonegawa et al. arXiv:1011.6568
exact diagonalization + “level spectroscopy”
  (finite size scaling using CFT+perturbation)

“ID phase”
(topological)?

Haldane state
connected to

Large-D 
(triviall)
phase?
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Level spectroscopy
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Okamoto and Nomura 1992

e.g. S=1/2

crosing of excited states
⇔ phase transition

size dependence of crossing
point is weak, despite KT!

αc ～ 0.2411

crossing point is α=0.25 already for 4 spins! 

KT transition between fluid (TL liquid) phase 
and spontaneously dimerized phase
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Haldane phase (odd S)
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Topological phase protected by (any one of) 3 
symmetries
Different mechanism for each 
symmetry?

Is there a “universal feature” of the Haldane phase?

Entanglement!

A B

27



Entanglement Spectrum

NA x NB  matrix
Singular Value 
Decomposition

unitary matrices

NA x NB  diagonal matrix

Entanglement Spectrum

Entanglement
Entropy

Entanglement spectrum contains more 
information than entanglement entropy!

Schmidt 
decomposition

28
28



Entanglement Spectrum
|Ψ� =

�

µ

Λµ|φA
µ �A|φB

µ �B

The entire entanglement spectrum has exact double 
degeneracy  in the Haldane phase!

Λ1 = Λ2, Λ3 = Λ4, Λ5 = Λ6, . . .

This degeneracy is protected by any one of the 
three symmetries.

A B

Minimal entanglement entropy log(2)
              when Λ1 = Λ2 = 1/

√
2, Λα = 0(α ≥ 3)

29
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“Odd parity” state
A B

Exact two-fold degeneracy in the entire 
entanglement spectrum

|Ψ� ∼
�

α

λ(α)
�
|α, 1�A|α, 2�B − |α, 2�A|α, 1�B

�
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Time evolution

The degeneracy of the spectrum survives
in the Haldane phase!

We introduced 
adiabatic weakening

of one bond
J0(t)�S0 · �S1 J0(t)→ 0

weakened bond

Inversion symmetry of the Hamiltonian is kept
(although translation symmetry is lost)

minimum entanglement entropy
for degenerate case

31
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Degeneracy is universal

32
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Summary
Odd # of valence bonds

Kramers degeneracy of edge spins

Hidden Z2xZ2 symmetry
 breaking (dNR string order)

odd intrinsic link parity

Exact double degeneracy of
entire entanglement spectrum

[time-reversal invariance]

[inversion
symmetry]

[D2 symmetry]
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