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We ask whether a local Hamiltonian with a featureless (fully gapped and nondegenerate) ground state could
exist in certain quantum spin systems. We address this question by mapping the vicinity of certain quantum critical
point (or gapless phase) of the d-dimensional spin system under study to the boundary of a (d + 1)-dimensional
bulk state, and the lattice symmetry of the spin system acts as an onsite symmetry in the field theory that describes
both the selected critical point of the spin system and the corresponding boundary state of the (d + 1)-dimensional
bulk. If the symmetry action of the field theory is nonanomalous, i.e., the corresponding bulk state is a trivial
state instead of a bosonic symmetry-protected topological (SPT) state, then a featureless ground state of the spin
system is allowed; if the corresponding bulk state is indeed a nontrivial SPT state, then it likely excludes the
existence of a featureless ground state of the spin system. From this perspective, we identify the spin systems
with SU(N ) and SO(N ) symmetries on one-, two-, and three-dimensional lattices that permit a featureless ground
state. We also verify our conclusions by other methods, including an explicit construction of these featureless
spin states.
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I. INTRODUCTION

The Lieb-Schultz-Mattis (LSM) theorem [1], and its higher-
dimensional generalizations [2,3], state that if a quantum spin
system defined on a lattice has odd number of spin- 1

2 per
unit cell, then any local spin Hamiltonian which preserves
the spin and translation symmetry cannot have a featureless
(gapped and nondegenerate) ground state. This implies that
any symmetry-allowed Hamiltonian on the spin Hilbert space
defined above can only have the following possible scenarios:
(i) its ground state spontaneously breaks either the spin symme-
try or the lattice symmetry, hence leads to degenerate ground
states and possible gapless Goldstone modes; (ii) it has gapped
and degenerate ground states without breaking any symmetry,
i.e., its ground state develops a topological order (the second
possibility can only happen in two- and higher-dimensional
systems); (iii) its ground state has algebraic (power-law) corre-
lation function of physical quantities, and the spectrum is again
gapless [this scenario happens most often in one-dimensional
(1D) spin systems, while still possible in higher dimensions].

On the other hand, there are lattice spin systems for which
one can very easily construct a local Hamiltonian with a fea-
tureless ground state that preserves all the symmetry. One class
of such states are called the Affleck-Kennedy-Lieb-Tasaki
(AKLT) states [4], which can be constructed for an integer spin
chain in 1D, the spin-2 antiferromagnet on the square lattice,
and the spin- 3

2 antiferromagnet on the honeycomb lattice, etc.
Of course, these systems violate the crucial “odd number of
spin- 1

2 per unit cell” assumption of the LSM theorem.
However, there are also some spin systems in the “middle

ground” where the answers are not so clear. These systems do
not meet the key assumption of the LSM theorems, while a
simple analog of the AKLT state mentioned above does not

obviously exist. For example, the honeycomb lattice has two
sites per unit cell, thus a spin- 1

2 system on the honeycomb
lattice has even number of spin- 1

2 per unit cell, and hence there
is no LSM theorem to exclude a featureless ground state. But, it
has been a long-standing problem whether a featureless spin- 1

2
state exists or not on the honeycomb lattice. Another example
is the spin-1 antiferromagnet on the square lattice. Depending
on the Hamiltonian, possible states of this system include the
Néel state which spontaneously breaks the spin symmetry, and
a nematic type of valence bond solid state which breaks the
lattice rotation symmetry, etc. But, the existence of a featureless
state is not obvious. However, recent progresses indicate
that featureless states do exist in these two “middle ground”
examples mentioned above [5–7], with a more sophisticated
construction compared with the AKLT state.

Another seemingly very different subject is the symmetry-
protected topological (SPT) state [8,9], which is a general-
ization of topological insulators. By definition, the ground
state of the (d + 1)-dimensional bulk of a SPT phase must be
gapped and nondegenerate, while its d-dimensional boundary
state must be either gapless or degenerate, as long as certain
symmetries are preserved. In the last few years, the classifica-
tion of bosonic SPT states with onsite internal symmetries has
been well understood [8–17]. The d-dimensional boundary of
a (d + 1)-dimensional SPT state, just like those d-dimensional
spin systems where the LSM theorem applies, cannot be
trivially gapped. The key difference between these two systems
is that the former is (usually) protected by an onsite symmetry,
while the latter is protected by the spin and lattice symmetries
together. However, the fact that neither system permits a fea-
tureless state suggests that we can potentially formulate both
systems in a similar way. The connection to three-dimensional
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(3D) bulk SPT states has been exploited in order to understand
the fractional excitations of two-dimensional (2D) topological
orders with both spin and lattice symmetries [18].

Since we are comparing two d-dimensional systems with
very different ultraviolet regularizations, their analog can only
be made precise when both systems are tuned close to a point
where a low-energy field theory description becomes available.
For example, the relation between the gapless spin chain and
the anomaly of a Z2 global symmetry (the onsite interpretation
of the translation symmetry) was made in Ref. [19]. Thus, for
our purpose, when we analyze a d-dimensional spin system,
we will first tune it to a critical point described by a field theory,
then interpret the lattice symmetry as an onsite symmetry, and
interpret the d-dimensional field theory as the boundary state
of a (d + 1)-dimensional bulk. If the corresponding (d + 1)-
dimensional bulk is a trivial state instead of a nontrivial SPT
state, then a featureless spin state must exist not too far from
that critical point in the phase diagram; if the corresponding
bulk is indeed a nontrivial SPT state, then it highly suggests
that a featureless spin ground state does not exist.

However, the latter statement may not be necessarily true:
If around that selected critical point of the spin system the field
theory is formally equivalent to a SPT boundary state, it only
rules out the featureless spin state at the vicinity of that critical
point. But, in principle, a featureless state could be far away
from the critical point in the phase diagram, and hence beyond
the reach of the field theory.

In Secs. II–V, we will discuss SU(N ) and SO(N ) systems
on a 1D chain, 2D square lattice, 2D honeycomb lattice, and 3D
cubic lattice, respectively, by mapping them to the boundary
of 2D, 3D, and 4D bulk states. We will identify those spin
systems that permit a featureless ground state. For all of
these spin systems, we can explicitly construct a featureless
tensor product state that is an analog of the AKLT state.
Some examples of these featureless states will be discussed
in Sec. VI. In Sec. VI we will also verify our conclusions by
making connection with a previous study on LSM theorem
based on lattice homotopy class [20].

II. 1D SPIN CHAIN

A. SU(2) spin- 1
2 chain

In this section we first discuss one-dimensional spin
chains with SU(2) symmetry. The low-energy physics of the
Heisenberg antiferromagnetic spin- 1

2 chain with a SU(2) spin
symmetry can be captured by the following nonlinear sigma
model in (1 + 1)D with a Wess-Zumino-Witten (WZW) term
at level 1 [21]:

S =
∫

dx dτ
1

g
(∂μ�n)2 + 2πi

�3

∫ 1

0
du εabcdn

a∂τn
b∂xn

c∂un
d,

(1)

where �n is a four-component vector with unit length, and �3

is the volume of S3 with unit radius. The physical meaning
of �n is that (n1,n2,n3) is the three-component Néel order
parameter, while n4 ∼ φ is the valence bond solid (VBS)
order parameter. If there is a SO(4) rotation symmetry of the
four-component vector �n, the coupling constant g will flow to
a fixed point, which corresponds to the SU(2)1 conformal field

FIG. 1. (a) The decorated domain-wall construction of the 2D
SPT state whose boundary is analogous to a SU(2N ) spin chain with
a LSM theorem. A 1D SPT state with PSU(2N ) symmetry is decorated
to each domain wall, and the domain wall terminates at the boundary
with a dangling projective representation of the PSU(2N ) SPT state.
(b) The decorated vortex line construction of the 3D SPT state whose
boundary is analogous to a 2D spin system either on the square or
honeycomb lattice. Again, we decorate each vortex line with a 1D
SPT state. But, when the 2D boundary is mapped to the square and
honeycomb lattice spin systems, the vortex line in the bulk has a Z4

and Z3 conservation, which must be compatible with the classification
of the 1D SPT state decorated on each vortex line in order to guarantee
a nontrivial 3D SPT.

theory [22,23]. The SO(4) symmetry becomes an emergent
symmetry of the spin- 1

2 Heisenberg chain in the infrared:
the Néel and VBS order parameters both have the same
scaling dimension [�n] = 1

2 . The key symmetry of the system
is the spin SU(2) symmetry, and the translation symmetry.
(n1,n2,n3) transforms as a vector under spin SU(2), and
n4 ∼ φ is a SU(2) singlet; and under translation by one lattice
constant, Tx : �n → −�n. The physical meaning of Eq. (1) is the
intertwinement between the Néel and VBS order parameters:
the domain wall of the VBS order parameter carries a spin- 1

2 .
The field theory Eq. (1) also describes the boundary of

a 2D bosonic SPT state with SO(3)×Z2 symmetry [24,25],
where Z2 acts as �n → −�n. This SPT state can be understood
as the decorated domain-wall construction [26]: we decorate
every Z2 symmetry-breaking domain wall in the 2D bulk
with a Haldane phase with SO(3) symmetry [Fig. 1(a)], then
proliferate the Z2 domain walls to restore the Z2 symmetry.
The so-constructed phase in the bulk is the desired SO(3)×Z2

SPT phase. And at the 1D boundary of the system, there is a
spin- 1

2 degree of freedom localized at every Z2 domain wall,
which is also the boundary state of the Haldane phase decorated
at each Z2 domain wall in the bulk. This is consistent with the
physics of the spin- 1

2 chain.
This simple example demonstrates that the lattice transla-

tion symmetry, once interpreted as an onsite symmetry in a
field theory, is equivalent to an “anomalous” symmetry of the
boundary of a higher-dimensional SPT state. And by definition
the boundary of a SPT state cannot be trivially gapped without
degeneracy, which is consistent with the LSM theorem of the
spin- 1

2 chain [1]. The method of identifying the translation
symmetry of a 1D system as a Z2 onsite symmetry was also
used in Ref. [19], and a symmetry-protected critical phase and
renormalization group (RG) flow were identified.

Here, we stress that the 1D SPT phase decorated at a Z2

domain wall must have a Z2 classification as long as the
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symmetry G of the 1D SPT phase commutes with the Z2,
i.e., two of the 1D SPT phases must fuse into a trivial state.
One way to see this is that, after gauging the Z2 symmetry, the
vison (π flux introduced by the Z2 gauge symmetry) preserves
the symmetry G as long as G commutes with Z2, and the
vison is the boundary of the 1D decorated SPT state [26].
Since two visons fuse into a local excitation, the 1D SPT
state must have a Z2 classification. But, at a ZT

2 (time-reversal)
domain wall one can decorate a lower-dimensional SPT phase
with (for example) Z classification because the antidomain
wall of ZT

2 is the time-reversal conjugate of a ZT
2 domain

wall, which is automatically decorated with the “inverse” state
of the SPT state decorated at the ZT

2 domain wall.1 This
observation is consistent with many known facts about SPT
phases. For instance, in three-dimensional space, there is a ZT

2
SPT which can be viewed as ZT

2 domain walls decorated with
the E8 invertible topological order [10], but there is no such
decorated domain-wall construction for 3D SPT phases with a
Z2 symmetry.

B. Spin chain with reduced symmetry

Now, one can exploit the connection between 1D spin chains
and the boundary of 2D SPT states even further, and consider
a spin chain with a reduced spin symmetry. For example,
we can start with a spin- 1

2 chain, and break the SO(3) spin
symmetry down to its subgroup G � Z2, where Z2 is the spin
π rotation Sz → −Sz, Sy → −Sy , and G is a subgroup of
the in-plane U(1) spin symmetry. Whether the spin chain can
be featureless or not is equivalent to the problem of whether
the corresponding bulk state with (G � Z2) × Z2 symmetry
is a nontrivial SPT state or not; based on the “decorated
domain-wall” picture mentioned above, this again is equivalent
to the problem of whether the 1D Z2 domain wall is a nontrivial
1D SPT state with G � Z2 symmetry or not, and if it is indeed
a nontrivial SPT, whether it has a Z2 classification.

Now, we can look up the classification in Refs. [8,9].
For example, when G = Z2n+1 with integer n, since there
is no nontrivial 1D SPT state with Z2n+1 � Z2 symmetry,
the bulk SO(3)×Z2 SPT state discussed previously must be
trivialized by reducing the SO(3) spin symmetry down to
Z2n+1 � Z2, thus, its boundary can in principle be gapped and
nondegenerate. This observation already gives us a meaningful
conclusion:

A spin chain with translation and (Z2n+1 � Z2) spin sym-
metry can have a featureless ground state.

By contrast, for G = U(1) or Z2n, a nontrivial 1D SPT state
with G � Z2 does exist, and it does have a Z2 classification.
Hence, the Haldane phase with SO(3) spin symmetry remains a
nontrivial SPT state under the symmetry reduction to G � Z2.
Thus, the 2D bulk SPT state with (G � Z2) × Z2 remains
nontrivial, and hence the 1D boundary cannot be trivially
gapped. This observation leads to the following conclusion:

A 1D spin- 1
2 chain (likely) cannot have a featureless ground

state, even if we break the SU(2) spin symmetry down to
(Z2n � Z2) symmetry.

1The authors thank D.-H. Lee for clarifying this important point
for us.

FIG. 2. (a) The self-conjugate SU(2N ) spin representation on
each site considered in Sec. II C. (b) For the square, honeycomb,
and cubic lattices, we consider a SU(N ) spin system with a funda-
mental representation (FR) on sublattice A and an antifundamental
representation (AFR) on sublattice B.

C. SU(2N) spin chain

Now, let us consider spin chains with higher spin symme-
tries. A natural generalization of the spin- 1

2 chain with trans-
lation symmetry is a SU(2N ) spin chain with self-conjugate
representation on each site [Young tableau with N boxes in one
column, Fig. 2(a)]. The analog of the “Néel” order parameter of
this SU(2N ) spin chain is a 2N × 2N Hermitian matrix order
parameter P , and it can be represented in the form

P = V �V †, � ≡
(

1N×N 0N×N

0N×N −1N×N

)
, (2)

where V is a SU(2N ) matrix. All the configurations of P
belong to the Grassmanian manifold M = U(2N )/[U(N ) ×
U(N )] [27,28]. To see that P is a natural generalization of
the ordinary SU(2) Néel order parameter, we can take N = 1,
then this Grassmanian is precisely S2, which is the manifold of
the ordinary SU(2) Néel order parameter. We can also define
matrix order parameter P = �n · �σ for the SU(2) spin chain,
where �n is the SU(2) Néel order parameter.

The effective field theory for the SU(2N ) spin chain de-
scribed above can be written as [27]

S =
∫

dx dτ
1

g
tr[∂μP∂μP] + 	

16π
εμν tr[P∂μP∂νP]. (3)

This is the analog of the nonlinear sigma model for the SU(2)
spin chain [29,30], with a 	 term which comes from the fact
that for all N , the GrassmanianM satisfies π2[M] = Z. Under
translation by one lattice constant, P transforms as Tx : P →
−P (P and −P both belong to the same Grassmanian target
manifold), and the coefficient 	 transforms as Tx : 	 → −	,
which guarantees that 	 is quantized to be multiple of π . The
same field theory as Eq. (3) with a topological 	 term has been
used to describe the phase diagram of the integer quantum Hall
systems [31–33], while there the theory is written in the 2D real
space instead of space-time. A proposed renormalization group
flow for Eq. (3) is that 	 = 2πk are stable fixed points, while
	 = π (2k + 1) are instable fixed points which correspond to
transitions between stable fixed points 	 = 2kπ [27].

When 	 = π , Eq. (3) describes the SU(2N ) spin chain
with self-conjugate representation on each site; when 	 = 2π ,
Eq. (3) describes the Haldane phase of a SU(2N ) spin chain
or, more precisely, it is the Haldane phase of a PSU(2N )
spin chain, as P is invariant under the center of SU(2N ). The
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PSU(2N ) Haldane phase should have Z2N classification [34],
as its boundary could be 2N different projective representation
of PSU(2N ), which is also the 2N different representation of
theZ2N center of SU(2N ). But, the particular state described by
Eqs. (2) and (3) is the “N th” PSU(2N ) Haldane phase, whose
0D boundary is a self-conjugate projective representation of
PSU(2N ). This state has a Z2 nature, namely, two copies of
this state will be a trivial state, i.e., its boundary is no longer
a projective representation of PSU(2N ). This 1D PSU(2N )
Haldane phase has been discussed in lattice models previously
[35–37].

As we discussed before, the spin- 1
2 SU(2) chain can also

be described by Eq. (1), where a VBS order parameter is
introduced. For the SU(2N ) spin chain with self-conjugate
representation, the analog of Eq. (1) is

S =
∫

dx dτ
1

g
tr[∂μU †∂μU ] +

∫ 1

0
du

i2π

24π2
tr[U †dU ]3, (4)

where U = I2N×2N cos(θ ) + i sin(θ )P is a SU(2N ) unitary
matrix. Once again, when N = 1, U is a SU(2) matrix, whose
manifold is S3, the same as the target manifold of Eq. (1).
For arbitrary N , under translation, Tx : θ → π − θ, Tx : U →
−U . Thus, cos(θ ) ∼ φ is the VBS order parameter.

The same field theory Eq. (4) describes the boundary of a
2D SPT state with PSU(2N ) × Z2 symmetry, where Z2 plays
the role of Tx . And the physical picture of this 2D SPT is that
we decorate every Z2 domain wall with a Haldane phase with
PSU(2N ) symmetry. Thus, as one would naively expect, the
SU(2N ) spin chain with self-conjugate representation likely
cannot have a featureless ground state because it can be mapped
to the boundary of a nontrivial 2D SPT state.

D. SO(N) spin chain

A SO(N ) spin chain with a translation symmetry may still
obey a generalization of the LSM theorem. But, first let us
review the current understanding of the Haldane phase of 1D
SO(N ) spin chain. When N is an odd integer, the double
covering group of SO(N ), i.e., spin(N ), has a representation
which is a spinor of SO(N ). Thus, when N is odd, there is a
Haldane phase with SO(N ) symmetry with a Z2 classification,
as two spinors of SO(N ) will merge into a linear representation
of SO(N ) [38]. Thus, in 2D space, there is a SPT state with
SO(N ) × Z2 symmetry, which is constructed by decorating the
1D SO(N ) Haldane phase in each Z2 domain wall. Then, the
1D boundary of this 2D SPT state with SO(N ) × Z2 symmetry,
has the feature that, at every Z2 domain wall there must be a
SO(N ) spinor, and this 1D boundary cannot be trivially gapped
without breaking the Z2 symmetry.

Now, let us consider a spin(N ) spin chain with a spinor on
every site. Two spin(N ) spinors with odd N can always form a
singlet, thus, this spin chain naturally hosts twofold-degenerate
VBS states, which transform into each other through transla-
tion by one lattice constant. The domain wall of these two
VBS states is a spin(N ) spinor, which is equivalently to the
domain wall of the Z2 order parameter at the 1D boundary
of the 2D SO(N ) × Z2 SPT state mentioned above. Based on
these observations, we can conclude that with odd N , a 1D
spin(N ) spin chain with spinor representation on every site
likely does not permit a featureless gapped state.

For even N , let us take N = 2n, then the Haldane phase has
a richer structure. SO(2n) has a Z2 center which commutes
with all the other elements, thus we can actually consider the
Haldane phase with symmetry PSO(2n) = SO(2n)/Z2. Then,
according to Ref. [34], the center of spin(2n) can be either
Z4 or Z2 × Z2, for odd and even integer n, respectively. But,
in either case, a Haldane phase with PSO(2n) symmetry could
have either spinor or vector representation at the boundary, both
cases are nontrivial Haldane phase. And, we can construct a
2D SPT with PSO(2n) × Z2 symmetry, by decorating the Z2

domain wall with a PSO(2n) Haldane phase. But, this PSO(2n)
Haldane phase must have a Z2 nature, in the sense that two
copies of the Haldane phase must be a trivial state because two
Z2 domain walls will fuse into a trivial defect. Thus, for both
odd and even n, we can always decorate the Z2 domain wall
with the PSO(2n) Haldane phase with a SO(2n) vector at the
boundary, which leads to the following conclusion:

A 1D SO(2n) spin chain with vector representation on every
site likely does not permit a featureless gapped state.

This conclusion is consistent with the result of Ref. [39].

III. SPIN SYSTEMS ON THE SQUARE LATTICE

A. SU(2) spin systems

The generalized LSM theorem in higher dimensions does
apply to the 2D spin- 1

2 system on the square lattice [2,3], i.e.,
there cannot be a featureless spin state on the square lattice for
a spin- 1

2 system with SU(2) spin symmetry. This conclusion is
consistent with many observations, including a generalization
of Eq. (1) to (2 + 1)D [40]:

S =
∫

d2x dτ
1

g
(∂μ�n)2

+ 2πi

�4

∫ 1

0
du εabcden

a∂τn
b∂xn

c∂yn
d∂un

e, (5)

where �n is a five-component unit vector, which forms the
target manifold S4 with volume �4. (n1,n2,n3) is still the
three-component Néel order parameter on the square lattice,
while n4 and n5 are the columnar VBS states along the x and
y directions, respectively. The site-centered 90◦ rotation of the
square lattice acts on (n4,n5) as a Z4 rotation, and close to
the deconfined quantum critical point [41,42], one can usually
embed the Z4 into an enlarged U(1) group.

The physical meaning of the WZW term in Eq. (5) is
that the vortex of (n4,n5) carries a spin- 1

2 excitation [43],
and the skyrmion of (n1,n2,n3) carries lattice momentum.
If we view b ∼ n4 + in5 as a boson annihilation operator,
then the skyrmion of (n1,n2,n3) would carry nonzero boson
number of b. Thus, if we destroy the ordinary Néel order by
condensing the skyrmions of the Néel order parameter, the
system automatically develops a columnar VBS order; and if
we destroy the VBS order by condensing the (Z4) vortex of
the columnar VBS order parameter, the system automatically
breaks the spin symmetry and develops the Néel order.

Equation (5) can be derived explicitly by starting with the
π -flux spin-liquid state on the square lattice [44], and it was
proposed as an effective field theory [40] that describes the
deconfined quantum critical point between Néel and VBS order
on the square lattice [41,42], and this is the critical point
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whose vicinity we will study and map to the boundary of
a 3D system, as we discussed in the Introduction. The key
physics of the intertwinement between the Néel and VBS
order parameters is encoded in the WZW term. Equation (5) is
capable of encapsulating a large SO(5)×ZT

2 symmetry, and
it also describes the boundary state of a 3D bosonic SPT
state whose symmetry can be as large as SO(5)×ZT

2 . Equation
(5) can also describe the boundary of 3D SPT states with a
symmetry that is a subgroup of SO(5)×ZT

2 [10,11]. According
to the definition of SPT states, if the 3D bulk is a nontrivial SPT
state, then the boundary cannot be a featureless state; while if
the 3D bulk is a trivial direct product state after breaking the
SO(5)×ZT

2 to its subgroup, then the boundary in principle can
be trivially gapped without degeneracy.

It is clear that if the symmetry SO(5)×ZT
2 is reduced to

SO(3)×U(1), where (n1,n2,n3) rotates as a vector of SO(3)
and singlet under U(1), while (n4,n5) transforms as a vector of
U(1) and singlet of SO(3), the bulk is still a nontrivial SPT state.
And, this state can be understood as the “decorated vortex line”
construction introduced in Ref. [10]: one first breaks the U(1)
symmetry by condensing the two-component vector (n4,n5),
and decorate a Haldane phase with the SO(3) spin symmetry on
each vortex loop of (n4,n5) with odd vorticity, then proliferate
the vortex loops to restore the U(1) symmetry. The SPT state
so constructed has a Z2 classification, which is consistent with
the Z2 classification of the Haldane phase decorated in each
vortex loop, and also consistent with the Z2 nature of the fourth
Steifel-Whitney class of the SO(5) gauge bundle [44]. This
implies that two copies of the 3D SPT states with SO(3)×U(1)
symmetry weakly coupled together will become a trivial 3D
bulk state.

The site-centered rotation symmetry of the square lattice
acts on (n4,n5) as the Z4 subgroup of U(1). The 3D nontrivial
SPT state with SO(3)×U(1) symmetry survives under the
further symmetry breaking of U(1) to Z4, as a Z4 vortex loop
is still a well-defined object in the bulk and can be decorated
with a 1D Haldane phase. The same conclusion still holds if
we consider a spin- 1

2 system on the rectangular lattice (or a
more general distorted square lattice with translation symmetry
and one site per unit cell). Now, this system corresponds to
the boundary of a 3D bulk SPT with SO(3)×Zx

2 × Z
y

2 . n4,
n5 each changes its sign under one of these two Z2’s, while
(n1,n2,n3) is odd under both Z2’s. The two Z2’s correspond to
translation along x and y directions, respectively. The 3D bulk
SPT state can be viewed as decorating the Zx

2 domain wall
with the 2D SPT with SO(3)×Z

y

2 symmetry or equivalently
decorating the Z

y

2 domain wall with the 2D SO(3)×Zx
2 SPT

state. This observation is consistent with the generalized LSM
theorem which states that a spin- 1

2 system on the rectangular
lattice cannot have a featureless state.

Just like the previous section, if we break the spin symmetry
down to G � Z2, when G = Z2n+1 the spin system on the
square lattice allows a featureless state because the Haldane
phase that we decorated in the vortex loop becomes a trivial
state with only Z2n+1 � Z2 spin symmetry.

Now, suppose we consider a spin-1 system on the square
lattice, then a similar deconfined quantum critical point corre-
sponds to Eq. (5) with a level-2 WZW term: the coefficient of
the WZW term doubles. This equation with a level-2 WZW
term can be derived using the π -flux spin-liquid state of a

FIG. 3. A Z3 vortex of the VBS order parameter on the honey-
comb lattice has a vacant site on the sublattice A, and hence carries a
fundamental representation of the SU(N ) spin.

spin-1 system on the square lattice: there are twice as many
Dirac fermions in the Brillouin zone compared with the case
derived in Ref. [44], thus, the level of the WZW term also
doubles [the difference from the spin- 1

2 π -flux state is that the
spin-1 π -flux state has a Sp(4) gauge fluctuation [45], while
the spin- 1

2 π -flux state has a SU(2) gauge fluctuation]. The
physical meaning of this term is that the vortex of (n4,n5) now
carries a spin-1 instead of spin- 1

2 , which is equivalent to the
physics of the boundary of two weakly coupled 3D SPT states
with SO(3)×U(1) symmetry, and as we discussed above, this
state is generically a trivial state in the bulk. Thus, its boundary
could be a featureless gapped state. This observation implies
that a spin-1 system on the square lattice permits a featureless
state, which is consistent with the conclusion of Ref. [6].

B. SU(N) and SO(N) spin systems

Now, let us consider a SU(N ) spin system on the square
lattice, with fundamental representation (FR) on sublattice A

and antifundamental representation (AFR) on sublattice B.
Since the spins on two nearest-neighbor sites can still form
a SU(N ) spin singlet, the columnar VBS order parameter and
its Z4 structure still naturally hold: the site-centered lattice
rotation acts as a Z4 rotation of the columnar VBS order
parameter in this system. The Z4 vortex (antivortex) of the
VBS order parameter always has a vacant sublattice A (B)
in the core, hence, it always carries SU(N ) FR (AFR). This is
consistent with the fact that a vortex-antivortex pair can always
annihilate, hence, the quantum spin they carry must together
form a spin singlet. An analogous effect on the honeycomb
lattice is depicted in Figs. 3 and 4.

With large enough N , a Heisenberg model with the repre-
sentation described above should have the fourfold-degenerate
VBS state [46,47]. Now, we ask whether a featureless ground
state of this spin system is in principle allowed or not. Once
again, we first view the Z4 lattice rotation as an onsite internal
symmetry, and enlarge it to U(1). Then, the 2D spin system on
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FIG. 4. An antivortex of the VBS order parameter on the honey-
comb lattice has a vacant site on the sublattice B, and hence carries
an antifundamental representation of the SU(N ) spin.

the square lattice can be potentially viewed as the boundary of
a 3D bosonic SPT state with PSU(N ) × U (1) symmetry.

The bosonic SPT states with PSU(N ) × U(1) symmetry
do exist in 3D, and they can be interpreted as the decorated
vortex loop construction, i.e., we decorate every U(1) unit
vortex loop with a 1D PSU(N ) Haldane phase, whose boundary
is a projective representation of the PSU(N ), or a faithful
representation of SU(N ). As we have discussed, 1D PSU(N )
Haldane phase has a ZN classification, which corresponds to
N different projective representations of the PSU(N ) group,
or N different representations of the ZN center of SU(N ).

In general, the N − 1 different nontrivial Haldane phases
of PSU(N ) can be described by Eq. (3) with 	 = 2π , and P
replaced by [27]

P = V �V †, � ≡
(

1m×m 0m×N−m

0N−m×m −1N−m×N−m

)
(6)

with m = 1, . . . N − 1, and V is a SU(N ) matrix. All the
configurations of P belong to the Grassmanian manifold
U(N )/[U(m) × U(N − m)]. In our case, when the vortex line
terminates at the boundary, the vortex at the boundary will
carry a FR of SU(N ), hence, for our case we need to choose
m = 1, and P becomes the CPN−1 manifold.

However, let us not forget that eventually we need to break
the U(1) symmetry down to Z4. Then, for the 3D SPT state to
survive under this symmetry breaking, the ZN classification of
the PSU(N ) Haldane phase must be compatible with the Z4

vortex. If N and 4 are coprime, then this bulk state definitely
becomes trivial after breaking the U(1) to Z4. For example,
when N = 3, there is no consistent way we can decorate the Z4

vortex with a PSU(3) Haldane phase. Because four Z4 vortex
loops merge together will no longer be a well-defined defect,
while four PSU(3) Haldane phases merge together is still a
nontrivial Haldane phase. Thus, for odd integer N , the 3D
SPT phase with PSU(N ) × U(1) symmetry becomes a trivial
phase once U(1) is broken down to Z4.

To further demonstrate that for odd integer N , the 3D SPT
phase with PSU(N )× U(1) symmetry is trivialized with U(1)

broken down to Z4, we need to show that its 2D boundary
can be trivially gapped out when U(1) is broken down to Z4.
One of the 2D boundary states of the 3D PSU(N ) × U(1) SPT
phase is a ZN topological order, which can be constructed
by starting with a superfluid order with spontaneous U(1)
symmetry breaking at the 2D boundary, and then condense the
N -fold vortex (a vortex with 2πN vorticity) of the superfluid
order. The single vortex of the superfuid phase carries a FR of
SU(N ), hence, an N -fold vortex can carry a SU(N ) singlet, and
its condensate is a ZN topological order which preserves all the
symmetries. A 2D ZN topological order has bosonic e and m

excitations, while e and m have mutual statistics with statistical
angle θe,m = 2π/N . In our construction, the e excitation carries
1/N charge of the U(1) symmetry, and the m excitation carries
a FR of SU(N ).

Once U(1) is broken down to Z4, in order to gap out the
ZN topological order, we can condense the bound state of a e

particle and 3N Z4 charges. This bound state carries 3N2+1
N

Z4

charges. Under the Z4 transformation, it acquires a phase
exp ( 2π(3N2+1)

4N
i), which can always be canceled/compensated

by a gauge transformation with odd integer N (the numerator
of the phase angle is always a multiple of 8π with odd integer
N ). Thus, the condensate of this bound state will drive the
ZN topological order into a completely featureless gapped
state without any anyons, and all the global symmetries are
preserved. This is only possible when N is odd.

As a contrast, for even integer N , we can always construct
a nontrivial 3D SPT by decorating the Z4 vortex loop with
the 1D SPT state with SU(N )/Z2 symmetry, which has a Z2

classification.
Now, we can make the following conclusion:
A SU(N ) spin system on the square lattice with fundamental

and antifundamental representation on the two sublattices
permits a featureless gapped ground state for odd integer N .

We can also consider SO(N ) spin systems on the square
lattice. The analysis is very similar to the previous case. We
can make the following conclusion:

A SO(2n) spin system with vector representation on every
site likely does not permit a featureless gapped state on the
square lattice.

A SO(2n + 1) spin system with spinor representation on
every site likely does not permit a featureless gapped state on
the square lattice.

On the other hand, a SO(2n + 1) spin system with vector
representation on every site does permit a featureless gapped
state.

IV. SPIN SYSTEMS ON THE HONEYCOMB LATTICE

A. SU(2) spin systems

A spin- 1
2 system on the honeycomb lattice, when tuned close

to certain point, can also be described by Eq. (5). Equation (5)
can be derived with the SU(2) spin liquid on the honeycomb
lattice, like the one discussed in Ref. [48]. Now, the lattice
symmetry, both the translation Tx and a site-centered 120◦
rotation, acts as a Z3 subgroup of the U(1) transformation on
(n4,n5).

Once again, the question of whether a featureless spin- 1
2

state exists on the honeycomb lattice is equivalent to whether
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the 3D SPT state with SO(3)×U(1) symmetry is stable against
breaking the U(1) down to Z3. It turns out that this time the 3D
bulk becomes a trivial state. The vortex loop decoration picture
fails with a Z3 symmetry. Suppose we decorate a Haldane
phase on each Z3 vortex loop, then three of the Z3 vortex
loops would be decorated with three Haldane phases, and due
to the Z2 classification of the 1D Haldane phase, three Haldane
phases are still a nontrivial 1D SPT state. However, a threefold
Z3 vortex loop is no longer a well-defined defect any more.
Thus, the decorated vortex loop picture is incompatible with
the Z3 symmetry. Thus, the bulk becomes a trivial state once we
break the U(1) down to Z3. This implies that the 2D boundary,
which corresponds to the spin- 1

2 system on the honeycomb
lattice, permits a featureless spin state. This is consistent with
the previous result on the honeycomb lattice [6,7].

We can also add other symmetries of the honeycomb
lattice, such as reflection Px : y → −y. Under this reflection,
Px : (n1,n2,n3) → −(n1,n2,n3), while (n4,n5) is unchanged.
In the Euclidean space-time, a reflection symmetry can be
treated equivalently as the time-reversal symmetry. Thus,
with both translation Tx and reflection Px , we need to study
whether the 3D SPT state with SO(3)×ZT

2 × U(1) symmetry is
stable against symmetry breaking down to SO(3)×ZT

2 × Z3.
The analysis is the same as before: the 3D SPT state with
SO(3)×ZT

2 × U(1) symmetry is constructed with prolifer-
ated vortex loops decorated with a 1D Haldane phase with
SO(3)×ZT

2 symmetry. However, this construction is still in-
compatible with the Z3 vortex loops because the classification
of the Haldane phase with SO(3)×ZT

2 symmetry is Z2 × Z2.

B. SU(N) and SO(N) spin systems

Now, let us consider a SU(N ) spin system on the honeycomb
lattice, again with FR on sublattice A and AFR on sublattice
B. This system can still form the threefold-degenerate VBS
states, and the vortex (antivortex) of the VBS order parameter
has a vacant site in sublattice A (B), which carries a FR (AFR)
of SU(N ) (Figs. 3 and 4).

Now, we want to ask whether the 3D SPT state with
PSU(N ) × U (1) symmetry is stable against breaking the U(1)
down to Z3. This depends on whether the PSU(N ) SPT state
decorated on the vortex line is compatible with the Z3 nature of
the vortex line, i.e., N at least cannot be coprime with 3. Thus,
when N is coprime with 3, the 3D SPT state PSU(N ) × U (1)
symmetry is trivialized by breaking U(1) down to Z3.

Just like the case in the previous section, the boundary of
a 3D SPT with PSU(N ) × U (1) symmetry could be a 2D ZN

topological order, whose e particle carries 1/N charge of U(1)
and m particle carries a FR of SU(N ). Once U(1) is broken
down to Z3, if N is coprime with 3, by condensing a bound
state of e and certain number of Z3 charges, this 2D boundary
ZN topological order is driven into a featureless gapped state.

We can now make the following conclusion:
SU(N ) spin systems on the honeycomb lattice with fun-

damental and antifundamental representation on the two
sublattices permit a featureless gapped ground state when N

is not a multiple of 3.
Also, similar conclusions can be made for SO(N ) spin

systems:

A SO(2n) spin system with vector representation on every
site permits a featureless state on the honeycomb lattice.

A SO(2n + 1) spin system with spinor or vector represen-
tation on every site also permits a featureless state on the
honeycomb lattice.

V. 3D SPIN SYSTEMS ON THE CUBIC LATTICE

A spin- 1
2 system on the cubic lattice is subject to the

generalized LSM theorem, thus, it cannot have a featureless
state. Aside from the common Néel ordered state, another
natural spin- 1

2 state on the cubic lattice is the columnar VBS
state. The “hedgehog monopole” of the VBS order parameter
carries a spin- 1

2 , and the monopole of the Néel order parameter
carries lattice momentum [49], whose condensate is precisely
the VBS order. This system enjoys a nice self-duality structure.
We can introduce the vector Néel order parameter �ne and vector
VBS order parameter �nm, as well as their CP1 fields [49,50]:

�ne ∼ 1
2ze† �σze, �nm ∼ 1

2zm† �σzm. (7)

When the spin system is driven into a photon phase, which is
stable in (3 + 1)D, ze and zm are the gauge charge and the Dirac
monopole of the dynamical U(1) gauge field aμ, respectively.

The cubic lattice symmetry acts on �nm as the octahedral
subgroup of SO(3),2 and ze, zm carry projective representation
of the SO(3) spin and (enlarged) SO(3) lattice symmetry,
respectively. The intertwinement between the Néel and VBS
orders is captured by a (3 + 1)D WZW term of a six-
component vector which contains both �ne and �nm [51].

The same physics can be realized at the boundary of a 4D
SPT state with SO(3)e × SO(3)m symmetry. This state can be
understood as the “decorated monopole line” construction. In
the 4D space, a SO(3)e hedgehog monopole is a line defect,
and we can decorate it with a 1D Haldane phase with SO(3)m

symmetry. The CP1 field zm can be viewed as the termination
of the SO(3)e hedgehog monopole line at the 3D boundary,
which is also the boundary state of the 1D SO(3)m Haldane
phase. The self-duality of the boundary QED implies that the
decoration construction is necessarily mutual, i.e.. we must
simultaneously decorate the SO(3)m hedgehog monopole with
a Haldane phase with the SO(3)e symmetry.

The “mutual decoration” construction can also be perceived
as follows. In the 4D space, we can discuss the braiding
process of two loops. Imagine we create two loops Le and
Lm from vacuum, and annihilate them at a later time, then the
world sheets of both loops are topologically two-dimensional
spheres, labeled as S2

e and S2
m. If these two loops are braided,

their world sheets are linked in the five-dimensional space-
time. This linking can be interpreted as the intersection of
S2

e with the interior of S2
m (which is a three-dimensional ball)

at one point in the space time. Now suppose S2
e and S2

m are

2The octahedral group O does not include the spatial mirror (reflec-
tion) symmetry. The mirror symmetry is equivalent to time-reversal
symmetry in the analysis of SPT states, as we explained previously.
Including the mirror symmetry does not change our conclusions
because the SO(3) Haldane phase with or without an extra time-
reversal symmetry always has a Z2 nature, i.e., two of these Haldane
phases coupled together become a trivial state.
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the world sheets of the SO(3)e and SO(3)m monopole lines
respectively, if the SO(3)m monopole line is decorated with
the SO(3)e Haldane phase, then this linking will accumulate
phase 2π , which comes from the 	 term of the SO(3)e Haldane
phase.

The linking mentioned above is also symmetric under
interchanging e and m, namely, it can be viewed as the
intersection of S2

m with the interior of S2
e at another point in

the space-time. Thus, if this linking accumulates phase 2π ,
then consistency demands that the SO(3)e monopole line be
decorated with the SO(3)m Haldane phase too.

The 4D SPT state so constructed obviously has a Z2

classification, as both the SO(3)e and SO(3)m SPT phases
have Z2 classification. To make an explicit connection with the
(3 + 1)D QED state discussed in Ref. [49], one can first start
with fractionalizing �ne in the bulk, and introduce a (4 + 1)D
U(1) gauge field aμ. The hedgehog monopole line of �ne

becomes the Dirac monopole line of aμ, which is decorated
with the SO(3)m Haldane phase. Now, we condense the Dirac
monopole line in the bulk, but do not condense the termination
of the Dirac monopole line at the 3D boundary, which becomes
the Dirac monopoles (point like defects) at the 3D boundary.
This will lead to a gapped 4D bulk state, while the 3D boundary
is the QED state discussed in Ref. [49] with ze and zm being
the gauge charge and Dirac monopole, respectively.

The picture above can again be generalized to the PSU(N )
spin system with FR and AFR on the two sublattices. Whether
this spin system permits a featureless gapped state or not is
equivalent to whether the corresponding 4D bulk state is a
trivial state or a SPT state. The CPN−1 manifold, i.e., the SU(N )
generalization of the Néel order parameter, has π2[CPN−1] =
Z, and hence also has a “hedgehog monopole” line in the 4D
space. Thus, we can again decorate the SO(3)m monopole line
with the PSU(N ) Haldane phase, and simultaneously decorate
the PSU(N ) monopole line with the SO(3)m Haldane phase.
But, now this 4D state is not always a nontrivial SPT state.
Because the SO(3)m Haldane phase has a Z2 classification,
hence, even-number copies of the 4D state must be a trivial
state, while odd-number copies of the states are equivalent to
the state itself. On the other hand, the PSU(N ) Haldane phase
has a ZN classification, namely, N copies of the states must
be trivial. Thus, the 4D bulk state so constructed has a Z(2,N)

classification: the “mutual monopole line decoration” gives us
a nontrivial 4D SPT state only with even N .

The natural 3D boundary state of the 4D bulk based on
the “mutual” monopole line decoration construction is a U(1)
photon phase whose e excitations carry SU(N ) fundamental,
and m carries a spin- 1

2 of SO(3). When N is odd, we can drive
the 3D boundary into a featureless state by condensing the dyon
which is a bound state of N e particles and two m particles. We
label this dyon as the (N,2) dyon. This (N,2) dyon is a boson,
and its condensate will gap out the photons, while confining
all the point particles because there is no point particle that
is mutual bosonic with this dyon, except for the dyon itself.
Also, the (N,2) dyon could be a singlet of SU(N ), and singlet of
SO(3), thus its condensate does not break any global symmetry.
This means that for odd integer N , the 3D boundary of the 4D
bulk state can be driven into a featureless gapped state, which
again demonstrates that the 4D bulk state constructed above is
trivial when N is odd.

By contrast, if N is even, then the (N/2,1) dyon [with
nontrivial representation of SU(N ) and SO(3)] is still decon-
fined in the condensate of (N,2) dyon, and this condensate has
topological order.

Now, we can conclude the following:
For odd N , the SU(N ) spin system on the cubic lattice with

FR and AFR spins on two sublattices permits a featureless spin
state.

Here, we propose a low-energy effective field theory for the
4D SPT state that captures the “mutual decorated monopole
line” construction. We first define a U(2N ) matrix field U as

U = cos(θ )P ⊗ I2×2 + i sin(θ )IN×N ⊗ �n · �τ , (8)

where P is the CPN−1 matrix field given by Eq. (6). The
“mutual decoration” picture is captured by a topological term
in the nonlinear sigma model of U which reads as

Ltopo
5D =

∫
d4x dτ

2π

480π3
Tr[(U †dU )5]. (9)

We will show that if we manually create a monopole line of
�n, the topological term (9) precisely reduces to the topological
term of the (1 + 1)D PSU(N ) SPT. Let us parametrize the
(4 + 1)D space-time by Cartesian coordinates (x,y,z,w,τ ) and
consider a static monopole line of �n whose core line lies on
the w axis. For any fixed w and τ , we will see a monopole
configuration of �n centered at origin in the xyz space. For a
monopole configuration in the xyz space, we have

θ (r = 0) = 0,

θ (r → ∞) = π/2, (10)∫
r=r0>0

d2�
1

8π
εijkεαβni∂αnj ∂βnk = 1,

where r =
√

x2 + y2 + z2. We also assume P is a function of
w and τ . Now, we plug in this configuration of �n into Eq. (9)
and integrate over x, y, and z directions. This topological term
reduces to the following (1 + 1)D topological term in the (w,τ )
space:

Ltopo
2D =

∫
dw dτ

2π

16π
εμνTr(P∂μP∂νP), (11)

which is precisely the topological 	 term for the PSU(N )
Haldane phase. This indicates that Eq. (9) implies there is a
PSU(N ) SPT decorated on the monopole line of �n.

If we consider a monopole line of P along w axis, then in
the xyz directions we have

θ (r = 0) = π/2,

θ (r → ∞) = 0, (12)∫
r=r0>0

d2�
i

16π
εμνTr(P∂μP∂νP) = 1.

Now, integrating over x, y, and z directions will give us the
following topological term in the (1 + 1)D space-time of the
monopole line world sheet:

Ltopo
2D =

∫
dw dτ

2πi

8π
εabcεμνn

a∂μnb∂νn
c, (13)

which exactly corresponds to the topological term of the (1 +
1)D SO(3) Haldane phase. Therefore, the topological term in
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Eq. (9) captures the “mutual decoration” construction of the
(4 + 1)D SPT phase with PSU(N ) × SO(3) symmetry.

VI. FURTHER PROOF OF OUR CONCLUSIONS

A. Explicit construction of featureless spin states

Let us first restate our main conclusions about SU(N ) spin
systems on the square, honeycomb, and cubic lattices:

1. A SU(N ) spin system on the square lattice with fundamen-
tal (FR) and antifundamental representation (AFR) on the two
different sublattices, respectively, permits a featureless gapped
ground state when N is an odd integer.

2. A SU(N ) spin system on the honeycomb lattice with FR
and AFR on two different sublattices permits a featureless
gapped ground state when N is coprime with 3.

3. A SU(N ) spin system on the cubic lattice with FR and
AFR spins on two different sublattices permits a featureless
spin state when N is odd.

For all the spin systems listed above, we can construct
explicit featureless tensor product spin states similar to the
AKLT states. All these states will be discussed in a future
work [52]. Here, we discuss some of the examples of this
construction.

On the honeycomb lattice, in the case of N = 3k + 1, we
introduce 3k auxiliary spins on each site. We also introduce a
tensor on each site:

T α
i1i2...i3k

= εαi1i2...i3k
, (14)

where εαi1i2...i3k
is the total antisymmetric tensor with N =

3k + 1 indices. Here, the i1,i2, . . . i3k labels the 3k auxiliary
FR (or AFR) spin degrees of freedom on each site in sublattice
B (or A) before the projection. Each label in takes value in
1,2, . . . N representing the N states in each FR (or AFR).
The label α, which also takes value 1,2, . . . N , represents the
physical states in AFR (or FR) spin degrees of freedom on each
site in sublattice B (or A). Physically, on each site of sublattice
A, the tensor in Eq. (14) projects the 3k auxiliary AFR spins
into a totally antisymmetric channel which, due to the nature
of SU(3k + 1), becomes the physical FR spin. The analysis
for sites in the sublattice B is similar. Now, we can use the
auxiliary spins to construct a featureless gapped state on the
honeycomb lattice with k SU(N ) singlet bonds along each link
of the lattice, which is reminiscent of the AKLT state.

Obviously, the so-constructed tensor product state respects
the translation symmetry of the lattice. Now, we analyze the
compatibility between the point group C3v and the site tensor
in Eq. (14). Here, notice that we include not only the C3

rotation symmetry, but also the mirror reflection symmetry of
the honeycomb lattice into consideration. We notice that the
point group only induces a permutation of the singlet bonds
before the projection. Therefore, the action of the point group
permutes the 3k spins on each site. Since we project the 3k spins
into a totally antisymmetric channel using the site tensor, the
point-group induced permutation keeps the site tensor invariant
up to a global sign which is unimportant for the global tensor
network wave function. Therefore, we can conclude that the
choice of projection tensor in Eq. (14) preserves the space
symmetries.

On the square lattice, in the case of N = 4k + 1, we
introduce 4k auxiliary spins on each site and let the auxiliary

FIG. 5. (a) The schematic featureless SU(N ) spin state on the
cubic lattice when N = 8p + 1; (b) the schematic featureless SU(N )
spin state on the cubic lattice when N = 6q + 1. More general spin
systems with N = 8p + 6q + 1 have valence bonds extended along
both the link and diagonal directions of the cubic lattice.

spins form a state with k SU(N ) singlet bonds along each link
of the square lattice. We can choose the site tensors to be

T α
i1i2...i4k

= εαi1i2...i4k
, (15)

where εαi1i2...i4k
is the total antisymmetric tensor with N =

4k + 1 indices. Based on analysis completely in parallel with
the honeycomb lattice, we conclude that the physical spin
carries AFR (FR) under SU(N ) if the auxiliary spins transform
as FR (AFR). Also, we can conclude that the tensors in
Eq. (15) are invariant under the C4v point-group action up to an
unimportant sign because the actions of the C4v point group on
the site tensor are only permutation of the tensor indices. Now,
we can use the 4k auxiliary spins on each site to construct a
featureless spin state on the square lattice.

On the cubic lattice, for any odd integer N that is not 3, 5,
or 11, we can write N as N = 8p + 6q + 1 with p and q

non-negative integers. Again, we introduce N − 1 auxiliary
spins, and an onsite tensor T α

i1i2...iN−1
= εαi1i2...iN−1 . Namely, on

sublattice B, we represent the AFR with N − 1 auxiliary FRs,
and on sublattice A we represent the FR with N − 1 AFRs.
Now, these auxiliary spins can form featureless states with
valence bonds extended either along the link (for N = 6q + 1)
or the diagonal directions (for N = 8p + 1), or both directions
(when p and q are both nonzero) on the cubic lattice (Fig. 5).

The point group Oh of the cubic lattice will induce a
permutation among the N − 1 auxiliary spins on each site
which at most leads to an unimportant sign change of the
site tensor. Therefore, this site tensor is compatible with the
point-group Oh symmetry. In fact, the Oh point group is
isomorphic to S4 × Z2. The Z2 part is the spatial inversion
which takes the point (x,y,z) to (−x, − y, − z). S4 is the
permutation group of four elements, which can be generated
by a Z3 cyclic permutation and a Z4 cyclic permutation. In
the language of the point group, the S4 part is the part of Oh

that preserves the spatial orientation. It can be generated by
a C3 rotation about the (1,1,1) axis and a C4 rotation about
the z axis. This S4 part alone (without the spatial inversion) is
usually referred to the point group O.

The construction of these featureless tensor product wave
functions does provide strong evidence to our conclusions in
previous sections. Nevertheless, we need to comment that, to
eventually confirm the featurelessness of these tensor prod-
uct wave functions, numerical simulation of these states is
demanded, in order to rule out possible spontaneous symmetry
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breaking, etc. For instance, it is known that the AKLT wave
function on a three-dimensional lattice could have long-range
spin order.

B. Connection to “lattice homotopy class”

In fact, we can also simplify all the discussions by just
considering a ZN × ZN subgroup of PSU(N ) and analyzing
how the FR and AFR of SU(N ) transform under this ZN × ZN

subgroup. To specify this ZN × ZN subgroup, we first consider
two SU(N ) matrices in the FR:

g1 = eiπ(N−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0

0 0 1
. . . 0

0 0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1 0

0
. . . 0 0 1

1 0 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

g2 = eiπ(N−1)

⎛
⎜⎜⎜⎜⎜⎝

e
i2π
N

e
i4π
N

. . .

e
i2π(N−1)

N

1

⎞
⎟⎟⎟⎟⎟⎠

, (16)

where g1 only has nonzero entries on a subdiagonal and
the bottom left corner, and g2 is a diagonal matrix. It is
straightforward to check that

gN
1 = gN

2 = 1N×N, g1g2 = e−i2π/Ng2g1. (17)

We denote the elements of PSU(N ) corresponding to g1 and
g2 as g̃1 and g̃2. Obviously, g̃1,2 are elements of order N . Since
the phase factor e−i2π/N in the commutation relation between
g1 and g2 is one of the center elements in SU(N ), g̃1 and g̃2

should commute in PSU(N ). Therefore, g̃1 and g̃2 generate a
ZN × ZN subgroup of PSU(N ). We will focus on this subgroup
in the following. Notice that a physical FR spin, which
transforms according to g1,2 under this ZN × ZN subgroup
of PSU(N ), can be viewed as a projective representation of
ZN × ZN . In the classification of the projective representation
H 2(ZN × ZN,U(1)) = ZN , the FR spins actually correspond
to the generating element in H 2(ZN × ZN,U(1)). The AFR
spins then correspond to the conjugate of the FR spins in terms
of projective representations of ZN × ZN .

When we restrict to the global internal symmetry ZN × ZN

[which is a subgroup of PSU(N )], we can apply the lattice
homotopy classification introduced in Ref. [20]. It was proven
for 1D and 2D, partially proven for 3D, and conjectured for
general dimensions that the generalized Lieb-Schultz-Mattis
(LSM) theorems will forbid the existence of any featureless
states on lattices of “nontrivial lattice homotopy class.” In
fact, the lattice homotopy classification proposed in Ref. [20]
also covers the cases with continuous internal symmetry group.
However, the proof of the relations between nontrivial lattice
homotopy classes and the existence of generalized LSM theo-
rems is less comprehensive for the most general continuous

symmetry group than for the general Abelian finite group.
Therefore, we will focus on the lattice homotopy classification
with Abelian finite group in this section.

For a lattice with n FR spins on each site of the sublattice
A and n AFR spins on each site of the sublattice B, we will
refer to it as the (n,n) lattice. The fundamental-antifundamental
lattices can then also be referred to as the (1,1) lattice. In
addition to the global internal symmetry, the lattice homotopy
classification depends on the choice of space-group symmetry.
Let us specify the minimal space-group symmetry for the (1,1)
honeycomb, (1,1) square, and (1,1) cubic lattices we want to
consider. For the (1,1) honeycomb lattice, we want to at least
include the C3 spatial rotation symmetry into consideration.
Therefore, the minimal choice of space group is the wallpaper
group p3 (No. 13). For the (1,1) square lattice, we want to
at least consider the C4 spatial rotation symmetry. Therefore,
the minimal choice of space group is the wallpaper group p4
(No. 10). For the (1,1) cubic lattice, we want to at least consider
the symmetry of the point group O. Therefore, the minimal
choice of the 3D space group is F432 (No. 209). The wallpaper
group and 3D space-group numbers can be found in Ref. [53].

With the global ZN × ZN internal symmetry and the mini-
mal space-group symmetry given above, the (1,1) honeycomb
lattice belongs to a nontrivial lattice homotopy class when N is
a multiple of 3. Similarly, (1,1) square and (1,1) cubic lattices
are also nontrivial when N is even. Therefore, according to
Ref. [20], there are generalized LSM theorems obstructing any
featureless state compatible with the global and space-group
symmetries on these lattices. Of course, when we enlarge the
ZN × ZN symmetry back to PSU(N ), such obstructions still
exist.

Hence, the analysis of lattice homotopy class also indicates
that there is no featureless state with PSU(N ) global symmetry
on the (1,1) honeycomb lattice with N being a multiple of 3,
or on (1,1) square or cubic lattices with even integer N . These
conclusions are completely consistent with those obtained
from the analysis in the previous sections.

One can perform a similar lattice homotopy analysis for
SO(2N ) spin systems with spins carrying the vector repre-
sentation with N � 1. We focus on a Z2 × Z2 subgroup of
PSO(2N ). When N = 4k, we construct the SO(4k) matrices

g1 = iσ y ⊗ I2k×2k, g2 = σ z ⊗ I2k×2k, (18)

and notice that

g2
1 = −1, g2

2 = 1, g1g2 = −g2g1. (19)

We denote the elements of PSO(4k) that correspond to g1 and
g2 as g̃1 and g̃2. Since −I4k×4k is a nontrivial center element
of SO(4k), the elements g̃1,2 generate a Z2 × Z2 subgroup
of PSO(4k). The vector representation, which transforms
according to g1,2 under this Z2 × Z2 subgroup, can be viewed
as a nontrivial projective representation of Z2 × Z2. If we
restrict our attention to this Z2 × Z2 subgroup of PSO(4k),
we notice that a square lattice with a SO(4k) spin in the vector
representation per site and with the space group p4 belongs to
a nontrivial lattice homotopy class.
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When N = 4k + 2, we construct the SO(4k + 2) matrices

g1 =

⎛
⎜⎝

σ z

σ z

iσ y

iσ y ⊗ I2(k−1)×2(k−1)

⎞
⎟⎠,

g2 =

⎛
⎜⎝

σx

iσ y

σ x

σ z ⊗ I2(k−1)×2(k−1)

⎞
⎟⎠ (20)

which satisfy

g4
1 = g4

2 = 1, g1g2 = −g2g1. (21)

By similar reasoning in the SO(4k) case, we find that the
vector presentation of SO(4k + 2) can be viewed as a nontrivial
projective representation of a Z4 × Z4 subgroup in PSO(4k +
2). In fact, the classification of projective representation of
Z4 × Z4 is given by H 2(Z4 × Z4,U (1)) = Z4 in which the
vector representation belongs to the “second” nontrivial class.
When we consider the space group p4 and the Z4 × Z4

subgroup of PSO(4k + 2) given above, we notice that the
square lattice with a spin in the vector representation on each
site also belongs to a nontrivial lattice homotopy class, just like
that case of SO(4k).

Hence, we can conclude that a SO(2N ) spin system with
vector representation on every site does not permit a featureless
gapped state on the square lattice. This result completely
agrees with the analysis in the previous sections.

Lastly, we consider SO(2N + 1) spin systems with spinor
representations. SO(2N + 1) is the group of rotations in
R2N+1. Let x1,2,...,2N+1 denote the 2N + 1 axes of R2N+1. We
would like to focus on a Z2 × Z2 subgroup of SO(2N + 1)
generated by the π rotation in the x1 − x2 plane and the
π rotation in the x1 − x3 plane. The spinor representation
of SO(2N + 1) can be viewed as a nontrivial projective
representation of this Z2 × Z2 subgroup. When we consider
the space group p4 and the Z2 × Z2 subgroup of SO(2N + 1)
given above, we notice that the square lattice with a spin in

the spinor representation on each site belongs to a nontrivial
lattice homotopy class. Therefore, a SO(2N + 1) spin system
with spinor representation on every site does not permit a
featureless gapped state on the square lattice. Again, this
statement is consistent with the analysis given in the previous
sections.

VII. SUMMARY

In this work, we made connection between two seemingly
different subjects: the (generalized) Lieb-Shultz-Matthis theo-
rem for d-dimensional quantum spin systems and the boundary
of (d + 1)-dimensional symmetry-protected topological states
with onsite symmetries. This connection has led to fruitful
results: we identified a series of quantum spin systems that
permit a featureless spin state, as well as spin systems with a
generalized LSM theorem, i.e., spin systems that likely do not
permit a featureless spin state. The former cases correspond to
trivial bulk states, while the latter correspond to nontrivial SPT
states in one higher spatial dimension. We have also tested and
verified our conclusions by other methods. For example, we
explicitly constructed featureless tensor product spin states of
those systems whose corresponding (d + 1)-dimensional bulk
are trivial states (most of this construction will be presented
in an upcoming paper [52]). We expect the main logic and
method used in this paper can be generalized to other related
problems. For example, one can study SU(N ) spin systems
with more general representations.

Note added. Recently, we became aware of a few upcoming
independent works which may overlap with part of our results
[54,55].
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