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The Lieb-Schultz-Mattis (LSM) theorem provides a general constraint on quantum many-body systems
and plays a significant role in the Haldane gap phenomena and topological phases of matter. Here, we
extend the LSM theorem to open quantum systems and establish a general theorem that restricts the steady
state and spectral gap of Liouvillians based solely on symmetry. Specifically, we demonstrate that the
unique gapped steady state is prohibited when translation invariance and U(1) symmetry are simulta-
neously present for noninteger filling numbers. As an illustrative example, we find that no dissipative gap is
open in the spin-1=2 dissipative Heisenberg model, while a dissipative gap can be open in the spin-1
counterpart—an analog of the Haldane gap phenomena in open quantum systems. Furthermore, we show
that the LSM constraint manifests itself in a quantum anomaly of the dissipative form factor of Liouvillians.
We also find the LSM constraints due to symmetry intrinsic to open quantum systems, such as Kubo-
Martin-Schwinger symmetry. Our work leads to a unified understanding of phases and phenomena in open
quantum systems.
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Spectral gaps are pivotal for characterization of quantum
phases of matter [1,2]. While it is generally nontrivial to
find out the ground state and spectral gap in quantum
many-body systems, universal ingredients such as sym-
metry can provide their general understanding. The Lieb-
Schultz-Mattis (LSM) theorem [3] is a prime example,
which generally shows that the symmetry-preserving
unique gapped ground state is prohibited for noninteger
filling numbers in the simultaneous presence of translation
invariance and U(1) symmetry [4,5]. This theorem resolves
a part of the Haldane conjecture [6–9], prohibiting the
gapped ground state in quantum spin chains with half-
integer spins S ¼ 1=2; 3=2;…. For integer spins S ¼ 0; 1;
2;…, on the other hand, no such general constraints are
imposed, and a gap can be open—the Haldane gap. The
LSM theorem has been further generalized to higher
dimensions [10–13], other symmetries [14–19], and fer-
mionic systems [20–22]. The LSM constraint is also a
manifestation of a quantum anomaly in condensed-matter
systems [23–29].
Spectral gaps are also crucial for open quantum systems.

As a result of coupling to the external environment, open
quantum systems are no longer described by Hamiltonians,
but instead by Liouvillians that act on density operators
[30–32]. In general, Liouvillians are non-Hermitian super-
operators and possess the complex-valued spectra. The
dissipative gap between the steady state and the first
decaying state provides a timescale of the relaxation
process and is fundamental for the open quantum dynamics
[33–38]. The role of symmetry and topology in open quan-
tum systems has also attracted growing interest [39–51].

Despite the significance and recent interest, the dissipative gap
was investigated mainly for specific models. Accordingly,
general theories on the steady state and dissipative gap in open
quantumsystems, akin to theLSM theorem in closed quantum
systems, have yet to be established. Such a general theoretical
understanding should be relevant to the control of quantum
materials and further exploration of quantum technology.
In this Letter, we present a general theorem that restricts the

spectral gaps of open quantum systems solely based on
symmetry, generalizing the LSM theorem. In particular, we
demonstrate that the unique gapped steady state is prohibited
in the simultaneous presence of translation invariance and
U(1) symmetry for noninteger filling numbers. As an illus-
trative example, we find that no dissipative gap is open in the
S ¼ 1=2 dissipative Heisenberg model, while a dissipative
gap can be open in the S ¼ 1 counterpart—an open quantum
analog of the Haldane gap phenomena. As a unique feature
with no analogs in closed quantum systems, our analysis
elucidates a fundamental difference between strong andweak
symmetries in open quantum systems. We also find the LSM
constraint arising from symmetry inherent to open quantum
systems, Kubo-Martin-Schwinger (KMS) symmetry.
Gap and symmetry.—We consider generic open quan-

tum systems described by the Lindblad master equation
dρ=dt ¼ Lρ with the Lindbladian [30–32,52,53]

Lρ ¼ −i½H; ρ� þ
X
n

�
LnρL

†
n −

1

2
fL†

nLn; ρg
�
; ð1Þ

where H is a Hermitian Hamiltonian that describes the
unitary dynamics, and Ln’s are dissipators that describe the
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nonunitary coupling to the environment. To investigate the
Lindbladian spectrum, it is useful to double the Hilbert
space and map L and ρ to an operator and a state,
respectively. In particular, we map the density operator ρ ¼P

ij ρijjiihjj to a pure state jρi ¼
P

ij ρijjiijji in the double
Hilbert space. Through this operator-state mapping, the
Lindblad equation reduces to djρi=dt ¼ Ljρi with

L ¼ −iHþ þ iH−

þ
X
n

�
Ln;þL�

n;− −
1

2
ðL†

n;þLn;þ þ LT
n;−L�

n;−Þ
�
; ð2Þ

where O� denotes an operator acting on the ket and bra
spaces, respectively, defined from an operator O acting on
the original Hilbert space. While Eq. (2) assumes bosonic
systems, the operator-state mapping can be similarly
carried out for fermionic systems [51,54,55].
Through the operator-state mapping, we calculate the

Lindbladian spectrum by diagonalizing the non-Hermitian
many-body operator L. The real part of its eigenvalues is
constrained to be nonpositive because of the contractive
nature of the Lindblad dynamics. The steady state corre-
sponds to the zero eigenvalue of L. We define the
dissipative gap Δ as the negative real part of the second
largest eigenvalue (i.e., eigenvalue of the first decaying
state). This can be considered as a many-body generaliza-
tion of a line gap [56–58]. The dissipative gap Δ gives
the relaxation timescale toward the steady state. The
Lindbladian is gapped (gapless) if Δ is nonvanishing
(vanishing) in the infinite-size limit V → ∞, and the
gapped (gapless) Lindbladian is subject to the exponential
(algebraic) relaxation process [33]. The power-law behav-
ior of the dissipative gap also yields the dynamical critical
exponent.
We derive a general theorem that constrains the dis-

sipative gap solely by symmetry. First, we assume lattice
translation invariance of the Lindbladian, T LT −1 ¼ L,
with the lattice translation operator T . Additionally, we
assume U(1) symmetry in the individual ket and bra spaces,
U�LU−1

� ¼ L, which yields a conserved charge N�. We
focus on the steady-state subspace with Nþ ¼ N− and
define the filling number ν ≔ N�=V. The U(1) charge
typically corresponds to the total magnetization in spin
systems and the total particle number in electron systems.
We can also introduce U(1) symmetry in the total Hilbert
space, which is referred to as weak symmetry, in contrast to
strong symmetry defined above [40,41,50,51]. We later
show the different roles of strong and weak symmetries in
the LSM constraints.
Lieb-Schultz-Mattis theorem.—Now, we demonstrate the

theorem:
Theorem. In open quantum systems with lattice trans-

lation invariance and strong U(1) symmetry, if the
Lindbladian is gapped and exhibits a unique steady state

in the subspace with the fixed U(1) charge, the filling
number ν is required to be an integer. In other words, if ν is
not an integer, the Lindbladian is gapless or exhibits
degenerate steady states.
We prove this theorem, following Oshikawa’s argument

[10]. We consider a generic Lindbladian in d dimensions
with symmetry, where the system length in each direction is
denoted by Li (i ¼ 1; 2;…; d). From U(1) symmetry, we
introduce the U(1) flux ϕ� in the individual ket or bra
space. Such a U(1) flux can be added by the twist operator
or twisted boundary conditions and physically corresponds
to a magnetic flux in electronic systems. Similar to
Ref. [10], we assume that the dissipative gap remains
nonvanishing in the presence of the U(1) flux if it is
originally open. While this assumption is needed, but has
yet to be rigorously justified even for the original LSM
theorem [59], it is expected to hold since the thermody-
namic quantities including the spectral gaps should not
crucially change just by twisting the boundary conditions.
The U(1) flux ϕ� breaks invariance under modular con-
jugation, which is required for physical Lindbladians [51].
Still, the adiabatic insertion of ϕ� can detect the ingapp-
ability of open quantum systems.
Then, let us consider a steady state jρ0i in the subspace

with the fixed U(1) charge N� and the filling number
ν ¼ N�=V, and insert the U(1) flux ϕþ in the ket space
perpendicular to the i ¼ 1 direction [60]. In the course of
the adiabatic insertion of the unit flux ϕþ ¼ 2π, the
Lindbladian spectrum flows and goes back to the original
spectrum. The original steady state jρ0i changes to another

eigenstate UðtwistÞ
þ jρ0i of the Lindbladian L with the twist

operator UðtwistÞ
þ ≔ e2πi

PL1
j¼1

jnj;þ=L1, where nj;þ is the local

density of the U(1) charge Nþ ¼ PL1

j¼1 nj;þ. Importantly,
the twist operator evolves by translation as

T UðtwistÞ
þ T −1 ¼ UðtwistÞ

þ e−2πiNþ=L1 : ð3Þ

Hence, when e−iP0 is the eigenvalue of translation T for the
steady state jρ0i (i.e., T jρ0i ¼ e−iP0 jρ0i), we have

T ðUðtwistÞ
þ jρ0iÞ ¼ e−iðP0þ2πNþ=L1ÞðUðtwistÞ

þ jρ0iÞ; ð4Þ

meaning that UðtwistÞ
þ jρ0i is an eigenstate of T with the

eigenvalue e−iðP0þ2πNþ=L1Þ and orthogonal to the original
steady state jρ0i unless Nþ=L1 ¼ ν

P
d
i¼2 Li is an integer

[61]. Thus, for noninteger ν, we can always have another

steady state UðtwistÞ
þ jρ0i with the different eigenvalue of T ,

which implies the gapless Lindblad spectrum or the
degeneracy of the steady states. In other words, the gapped
Lindbladian with the unique steady state requires the
integer filling number ν∈Z.
Dissipative Heisenberg XXZ models.—As an illustrative

example that shows the significance of the LSM theorem,
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we study the dissipative Heisenberg XXZ model in one
dimension,

H ¼
XL
n¼1

½JðSxnSxnþ1 þ SynS
y
nþ1Þ þ JzSznS

z
nþ1�; ð5Þ

Ln ¼
ffiffiffi
γ

p
Szn ðn ¼ 1; 2;…; LÞ; ð6Þ

where Sin’s (i ¼ x, y, z) are quantum spin operators of spin
number S at site n. The dissipators Ln’s describe the
dephasing process of spin coherence [31]. The Lindbladian
L respects U(1) symmetry in the individual ket and bra
spaces,

½L; Sz�� ¼ 0; Sz� ≔
XL
n¼1

Szn;�; ð7Þ

and conserves the total magnetization Sz� along the z axis.
Hence, it is subject to the LSM constraint and cannot
exhibit the unique gapped steady state except for the integer
filling number ν ¼ Sz�=Lþ S∈Z. In particular, for the half
filling Sz� ¼ 0, we have the half-integer filling number for
half-integer spins S ¼ 1=2; 3=2;… and the integer filling
number for integer spins S ¼ 0; 1; 2;…. Consequently, the
LSM theorem prohibits the unique gapped steady state for
half-integer spins, whereas no such constraints are imposed
for integer spins, akin to the Haldane gap phenomena of the
antiferromagnetic Heisenberg model [6–9].
Using the operator-state mapping in Eq. (2), we study the

Lindbladian spectra for S ¼ 1=2 and S ¼ 1 (Fig. 1) [62].
For the half-integer spin S ¼ 1=2, the dissipative gap closes
in the course of the insertion of the U(1) flux [Fig. 1(b)].
Here, the U(1) fluxes ϕ� in the ket and bra spaces are
introduced by imposing the twisted boundary conditions,

SþnþL;� ¼ eiϕ�Sþn;�; S−nþL;� ¼ e−iϕ�S−n;� ð8Þ

with the spin raising and lowering operators Sþn;� ≔ Sxn;� þ
iSyn;� and S−n;� ≔ Sxn;� − iSyn;�. The gap closing due to the
flux insertion implies the gapless spectrum, which is
compatible with the LSM theorem [65].
For the integer spin S ¼ 1, by contrast, the dissipative

gap remains open even in the course of the insertion of the
U(1) flux [Fig. 1(d)], which is prohibited for S ¼ 1=2. The
distinct spectral properties between half-integer and integer
spins are reminiscent of the Haldane gap phenomena and
show the significant predictability of the LSM theorem.
The influence of the U(1) flux is merely twisting the
boundary conditions and hence intuitively expected to be-
come less significant when we increase the system size L.
Thus, Fig. 1(d) may imply a nonzero gap even in the
infinite-size limit L → ∞. This is in a similar spirit to the
assumption made in Oshikawa’s argument [10]. However,
the gap opening in Fig. 1(d) may be due to a finite-size

effect that should be studied carefully in future work. Even
if the aforementioned intuitive argument works in closed
quantum systems, it may break down in open quantum
systems.
The gapped ground state of the S ¼ 1 antiferromagnetic

Heisenberg model further exhibits the symmetry-protected
topological phase [66–69]. By contrast, the steady state of
the dissipative S ¼ 1 Heisenberg model is given as the
identity (i.e., infinite-temperature state) and does not
exhibit nontrivial topological properties. In other dissipa-
tive spin models, the steady state can exhibit topological
phases. The LSM theorem does not necessarily enforce the
unique gapped steady state for S ¼ 1; a gapless steady state
can appear for different dissipators even for S ¼ 1 [70].
Away from the integer filling ν ≠ 1, the gap opening is
prohibited even for S ¼ 1. In the absence of U(1) sym-
metry, the LSM theorem is inapplicable, and the dissipative
gap can be open even for S ¼ 1=2. In other words, if we are
to open the dissipative gap for S ¼ 1=2 without degenerate
steady states, we need to break U(1) symmetry or trans-
lation invariance. Consistently, the dissipative Ising model
without U(1) symmetry was shown to exhibit the unique
gapped steady state [33,34]. Importantly, the LSM theorem
is not only applicable to bosonic systems but also fermionic
systems [70].
Quantum anomaly.—The original LSM theorem is rela-

ted to a quantum anomaly in closed systems [23–29].
Similarly, we find that the LSM theorem developed in this

FIG. 1. Dissipative Heisenberg XXZ model (J ¼ Jz ¼ 1.0,
γ ¼ 1.0) for (a),(b) spin half S ¼ 1=2 (L ¼ 8) and (c),(d) spin
one S ¼ 1 (L ¼ 5). The U(1) charge is Sz� ¼ 0, i.e., half filling
(a),(b) ν ¼ 1=2 for S ¼ 1=2 and (c),(d) ν ¼ 1 for S ¼ 1. The U(1)
flux ϕ in the ket space is inserted. (a),(c) Lindbladian spectrum
with ϕ ¼ 0 for (a) S ¼ 1=2 and (c) S ¼ 1. (b),(d) Real part of the
Lindbladian spectrum around the steady state λ ¼ 0 for
(b) S ¼ 1=2 and (d) S ¼ 1 as a function of the flux ϕ.
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Letter is a manifestation of a quantum anomaly in open
systems. For clarity, we study generic one-dimensional
Lindbladians. Let us first introduce the U(1) fluxes ϕ� by
twisting the boundary conditions as in Eq. (8). Because of the
twisted boundary conditions, translation invariance T is
broken. However, the twisted Lindbladian is invariant under
thegeneralized translation,T ðϕ�ÞLðϕ�ÞT −1ðϕ�Þ¼Lðϕ�Þ,
for T ðϕ�Þ ≔ eiϕþðn1;þ−νþÞeiϕ−ðn1;−−ν−ÞT with the local den-
sity nj;� of the strong U(1) charge (i.e., N� ¼ P

L
j¼1 nj;�).

This twisted translation operator satisfiesT ðϕþ þ 2π;ϕ−Þ ¼
e−2πiνþT ðϕþ;ϕ−Þ and

T Lðϕ�Þ ¼ eiϕþðNþ−LνþÞeiϕ−ðN−−Lν−Þ: ð9Þ

While the choice of a partition function is nontrivial in
open quantum systems, we study the twisted dissipative
form factor

ZðT;L;ϕ�;ψ�; lÞ≔ tr
�
eTLðϕ�ÞeiψþNþeiψ−N−T lðϕ�Þ

� ð10Þ

with T;ψ� ∈R. This is considered as the form factor of the
real-time open quantum dynamics and should capture the
dissipative gap [74,75]. To characterize the anomaly in a
fixed filling sector of strong U(1) symmetry, we Fourier
transform ZðT; L;ϕ�;ψ�; lÞ and obtain the projected dis-
sipative form factor

Z̃q�ðT; L;ϕ�; lÞ

≔
Z

2π

0

dψþdψ−

ð2πÞ2 e−iqþψþ−iq−ψ−ZðT; L;ϕ�;ψ�; lÞ: ð11Þ

Then, we have

Z̃q�ðT; L;ϕþ þ 2π;ϕ−; lÞ ¼ e−2πilνþ Z̃q�ðT; L;ϕþ;ϕ−; lÞ;
ð12Þ

and

Z̃q�ðT; L;ϕ�; lþ LÞ
¼ eiϕþðqþ−LνþÞþiϕ−ðq−−Lν−ÞZ̃q�ðT; L;ϕ�; lÞ ð13Þ

from Eq. (9). Thus, for the noninteger filling ν� ∉ Z, the
projected dissipative form factor Z̃q�ðT; L;ϕ�; lÞ acquires
the nontrivial quantum phases, signaling a mixed anomaly
between the strong U(1) symmetry and weak translation
symmetry—the LSM anomaly. For the integer filling
ν� ∈Z, on the other hand, such nontrivial phases do not
appear, consistent with no LSM constraints. Notably, our
discussion is also applicable to discrete quantum channels
E, for which the untwisted dissipative form factor can be
introduced as trEm. In contrast to strong U(1) symmetry, no
anomaly arises for weak U(1) symmetry [70].

Kubo-Martin-Schwinger symmetry.—The LSM theorem
can be generalized to other symmetry including discrete
symmetry in a similar manner to closed quantum systems
[14–22]. For example, the unique gapped steady state is
prohibited also in dissipative quantum spin models with
Z2 × Z2 spin-flip symmetry [70].
Notably, KMS symmetry—symmetry inherent in thermal

equilibrium [76–80]—also yields the LSM constraint. For
illustration, let us consider a translation-invariantLindbladian
L in one dimension that consists of Majorana fermions λn’s
(n ¼ 1; 2;…; L), satisfying fλm; λng ¼ 2δmn. We assume
that the system length L is even. Because of the Hermiticity-
preserving nature, L is generally invariant under modular
conjugation J , defined by an antiunitary operator J satisfy-
ing [51,81,82]

J λn;�J −1 ¼ λn;∓: ð14Þ

To introduce KMS symmetry, we also consider another
antiunitary operation,

Rλn;�R−1 ¼ λn;�; ð15Þ

with an antiunitary operator R. If the Lindbladian L is
invariant under R, it is also invariant under the combina-
tion of R and J . Thus, we introduce KMS symmetry
UKMSLU−1

KMS ¼ L by the unitary operator UKMS ≔ JR
with U2

KMS ¼ 1. In contrast to ordinary symmetry, KMS
symmetry UKMS accompanies the exchanges of the ket and
bra degrees of freedom.
We find that the interplay of KMS symmetry UKMS and

translation invariance T also leads to the LSM constraint.
The key is the nontrivial algebra [70]

T UKMST −1 ¼ −UKMS: ð16Þ

Consequently, all the eigenvalues of the Lindbladian L,
including the zero eigenvalue of the steady states, are at
least twofold degenerate. To see this, let jρi be an eigenstate
of L, and let λ and k∈ fþ1;−1g be their eigenvalues (i.e.,
Ljρi ¼ λjρi, UKMSjρi ¼ kjρi). Owing to translation invari-
ance T LT −1 ¼ L and Eq. (16), we also have LðT jρiÞ ¼
λðT jρiÞ and UKMSðT jρiÞ ¼ −kðT jρiÞ, which implies that
T jρi is another eigenstate of L that belongs to the same
eigenvalue λ but has the different eigenvalue −k of UKMS,
i.e., degeneracy of the Lindbladian spectrum. This is the
LSM constraint in Majorana Lindbladians, an open quan-
tum analog of that in Majorana Hamiltonians [20–22]. This
LSM constraint makes the dissipative form factor vanish,
which also signals a quantum anomaly. Such degeneracy of
the Lindbladian spectrum should affect the steady-state
properties and dynamics of open quantum systems.
Discussions.—Spectral gaps are crucial for understand-

ing closed and open quantum systems. In this Letter, we
establish the LSM theorem in open quantum systems,
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which provides a general constraint on their steady state
and dissipative gap solely by symmetry. As a consequence
of the LSM constraint, we discover a fundamental dis-
tinction between half-integer and integer spins—an open
quantum analog of the Haldane gap phenomena. It merits
further research to investigate the dissipative Haldane gap
in various analytical and numerical approaches. Since our
discussions on quantum anomaly rely solely on symmetry
and the structure of the double Hilbert space, they should
also be relevant to non-Markovian Liouvillians, which we
leave for future work.
The LSM theorem developed in this Letter gives a

guiding principle to understand quantum phases of open
systems. Specifically, when a dissipative gap is open in the
presence of symmetry for noninteger filling, the LSM
theorem ensures the nontrivial degeneracy of the steady
states, typically originating from spontaneous symmetry
breaking or topological order. In closed quantum systems,
such LSM-type constraints also prohibit short-range-
entangled states. Similarly, our LSM theorem should
prohibit short-range-entangled states in the double
Hilbert space. It merits further study to clarify its con-
nection with entanglement properties of mixed states [83].
It should also be noted that the mere presence of a
dissipative gap does not necessarily lead to short-range
correlations of the steady state in contrast with closed
quantum systems [84].
Our formalism based on the double Hilbert space may

find applications to other physical systems, such as dis-
ordered systems [85]. A quantum-channel formulation of
average-symmetry-protected topological phases has
recently been developed [86]. It is worthwhile to further
explore a relationship between disorder and dissipation.
Moreover, a unique feature of open quantum systems is the
non-Hermitian skin effect [87–91], which makes the
spectral properties under the open boundary conditions
distinct [70]. The skin effect is captured by the complex-
spectral winding [92–95] and the concomitant quantum
anomaly [96], thereby having a potential connection with
the LSM theorem. The role of pseudospectra [97] in the
LSM theorem is also worth studying.
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