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Outline

• Introduction to unconventional magnetism 
(Pomeranchuk instabilities with spin):   

• Microscopic theory with quasi-1D bands of dxz and dyz. 
Orbital degree of freedom facilitates unconventional meta-
magnetism exhibiting orbital ordering. 

C. Wu, S. C. Zhang, PRL 93, 36403 (2004);  C. Wu, K. Sun, E. Fradkin, and S. C. Zhang, 

Phys. Rev. B 75, 115103 (2007).

• Experimental results: nematic meta-magnetism in the t2g

orbital system of Sr3Ru2O7.  

• STM quasi-particle interference as a test of orbital ordering.

anisotropic states: nematic electron liquids with spin;    
isotropic states: spontaneous generation of spin-orbit coupling.
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Ferromagnetism: many-body collective effect

• Driving force: exchange interaction 
among electrons. 

E. C. Stoner
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• Stoner criterion: 10 UN

U – average interaction 
strength; N0 – density of 
states at the Fermi level
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Ferromagnetism: s-wave magnetism

• Spin rotational symmetry is broken. 

• cf. conventional superconductivity.

Cooper pairing between electrons 
with opposite momenta.

s-wave: pairing amplitude does not 
change over the Fermi surface.

• Orbital rotational symmetry is NOT
broken: spin polarizes along a fixed 
direction on the Fermi surface.
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cf. Unconventional superconductivity 

• High partial wave channel Cooper pairings (e.g. p, d-wave …). 

• p-wave: Sr2RuO4, 
3He-A and B.

• d-wave: high Tc cuprates. Paring amplitude changes sign in 
the Fermi surface.
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D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995); C. C. Tsuei et al., Rev. Mod. 
Phys. 72, 969 (2000).
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New states of matter: unconventional magnetism! 

• High partial wave channel generalizations of FM (e.g. p, d-
wave…) as spin-dependent Pomeranchuk instabilities.  

• Spin polarization varies over the Fermi surface.

isotropic (b) p-wave 

magnetic state 
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Anisotropy: liquid crystalline order

• Classic liquid crystal. 

isotropic 
phase

nematic 
phase

• Quantum version of liquid crystal: nematic electron liquid.

Nematic phase: rotational anisotropic but translational invariant.

Fermi surface 
anisotropic 
distortions

S. Kivelson, et al, Nature 393, 550 (1998); V. Oganesyan, et  al., PRB 64,195109 (2001).
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Anisotropic unconventional (a) magnetism: 

electron liquid crystal phases with spin!

• Both orbital and spin rotational 
symmetries are broken.

anisotropic p-wave 
magnetic phase

• p-wave distortion of the Fermi 
surface.

spin-split state by J. E. Hirsch,  
PRB  41, 6820 (1990); PRB 41, 
6828 (1990).

V. Oganesyan, et  al., PRB 64,195109 (2001).      
C. Wu et al., PRL 93, 36403 (2004); Varma et 
al., Phys. Rev. Lett. 96, 036405 (2006)
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• No net spin-moment:

• Spin dipole moment in momentum 
space (not in coordinate space).
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• Relative spin-orbit symmetry 
breaking. Spontaneous generation of 
spin-orbit coupling without relativity!

• No net spin-moment; spin dipole 
moment in momentum space.

The isotropic (b) p-wave magnetic phase

• Spin is not conserved; helicity         
is a good quantum number.
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• 3He-B (isotropic) phase.

B
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• 3He-A (anisotropic) phase.

cf. p-wave pairing Superfluid 3He-B, A phases

A. J. Leggett, Rev. Mod. Phys 47, 331 (1975)

• p-wave triplet Cooper pairing.
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S=1, 
J=0.
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2D d-wave  and -phases

-phase 
(anisotropic)

-phase 
(isotropic): w=2

B


Sr3Ru2O7
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Outline

• Introduction to unconventional magnetism (Pomeranchuk 
instabilities with spin):   

• Microscopic theory with quasi-1D bands of dxz and dyz. 
Orbital degree of freedom facilitates unconventional meta-
magnetism exhibiting orbital ordering. 

• Experiments: nematic meta-magnetism in the t2g

orbital system of Sr3Ru2O7. -- A. P. Mackenzie’s group.  

• STM quasi-particle interference as a test of orbital ordering.



Strontium Ruthenates Srn+1RunO3n+1

• n=1: Sr2RuO4 p-wave superconductor with Tc=1.5K.
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• 4d shell; t2g active; 4 electrons per Ru site.
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• n>=3: ferromagnet. As           (SrRuO3),  Tc=165 K.n

• n=2: Sr3Ru2O7. No superconductivity. Paramagnet at B=0; 
meta-magnetism at finite B-fields.

RuO 
octahedron

RuO2 plane



Metamagnetism in Sr3Ru2O7

• Metamagnetism: a superlinear relation between magnetization 
and the B field. Analogy of FM at finite fields, but no symmetry 
breaking.  

• Dissipative peaks in         mean first order phase transitions 
(hysteresis).
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Re Im

• Very pure samples                   : two consecutive metamagnetic 
transitions at 7.8 and 8.1T from AC magnetic susceptibility (17Hz).

Grigera et. al., Science 306, 1154 (2004)
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• resistivity    

• ac susceptibility    

• magnetostriction

• thermal expansion

• dc magnetization   

Resistance anomaly

• Many measurements mark the 
phase boundary.  

Grigera et. al., Science 306, 1154 (2004) 15

1st order 
boundaries

2nd order 
boundary

• Between two metamagnetic 
transitions (T<1K), the resistivity 
measurement shows enhanced 
electron scattering.
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T




Grigera et. al., Science 306, 1154 (2004)

A new phase: Pomeranchuk instability! 

• Spin-dependent Fermi surface anisotropic distortion -- partly 
d-wave anisotropic unconventional magnetism.

• Resistivity anomaly arises 
from the domain formation 
due to two different patterns 
of the nematic states. 

• Resistivity anomaly 
disappears as B titles from 
the c-axis, i.e., it is sensitive 
to the orientation of B-field. 

16



Further evidence: anisotropic electron liquid 

• As the B-field is tilted away from c-axis, large resistivity 
anisotropy  is observed in the anomalous region for the in-
plane transport.

Borzi et. al., Science 315, 214 (2007)
17
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Outline

• Introduction to unconventional magnetism (Pomeranchuk 
instabilities with spin):   

• Microscopic theory with quasi-1D bands of dxz and dyz. 
Orbital degree of freedom facilitates unconventional meta-
magnetism exhibiting orbital ordering. 

• Experiments: nematic meta-magnetism in the t2g orbital 
system of Sr3Ru2O7. -- A. P. Mackenzie’s group.  

• STM quasi-particle interference as a test of orbital 
ordering.

W. C. Lee and C. Wu, PRB 80, 104438 (2009). C. Wu, K. Sun, E. Fradkin, and S. C. 

Zhang, PRB 75, 115103 (2007). 
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Landau Fermi liquid (FL) theory

L. Landau

• Landau parameter in the l-th partial 
wave channel:

DOS:0
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• The existence of Fermi surface. Electrons 
close to Fermi surfaces are important 

renormalized into quasi-particles.

• Interaction functions (no SO coupling):
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Pomeranchuk instability criterion

• Surface tension vanishes at:
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I. Pomeranchuk

• Fermi surface: elastic membrane. 

• Stability:

2,
,

int

2,

)(
12

)(

as

l

as

l

as

lK

n
l

F
E

nE










• Ferromagnetism: the        channel.
aF0

• Nematic electron liquid: the      channel.
sF2

ln

• Unconventional magnetism:    )1( lF a
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• : spin quadrupole moments in
momentum space.

The order parameters: the 2D d-wave channel
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• Arbitrary partial wave channels: spin-multipole moments.
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C. Wu,  K. Sun, E. Fradkin, and 

S. C. Zhang, Phys. Rev. B 75, 

115103 (2007).
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Mean field theory and Ginzburg-Landau free energy
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• Symmetry constraints: rotation (spin, orbital), parity, time-reversal.
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Ref: C. Wu, K. Sun, E. Fradkin, and S. C. Zhang, PRB 75, 115103 (2007). 



• Orbitals play important roles in magnetism, superconductivity, 
and transport properties in transitional metal oxides. 
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New ingredients of Sr3Ru2O7: t2g-orbitals
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d-orbitals: xzyzxyzryx
ddddd ,,,, 2222 3

orbital charge

spin lattice

• Itinerant metallic bilayer 4d-system with active t2g-bands (dxy, 
dxz, dyz).

• Orbital degeneracy and spatial anisotropy.
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Anisotropic bondings: 2D v.s. quasi 1D bands

• Longitudinal bonding: hopping assisted by oxygen; strong.

• Transverse bonding: direct overlap; weak.

Ru RuO Ru RuO

• In-plane bonding. dxy-band: 2D band; dxz and dyz: quasi-1D 
bands.  

xz
d

xz
d



26

Questions and Observations 

• Unconventional (nematic) meta-magnetic transitions in Sr3Ru2O7

are NOT observed in the monolayer compound Sr2RuO4.

• Q1: Generalize the unconventional magnetic states to orbital 
systems. Which orbital bands are responsible in Sr327? 

• Q2: Landau parameters in high partial wave channels are usually 
not large. How to enhance the d-wave channel interactions?

xy
d• The bilayer splitting of the dxy-band is 

very small. No oxygen p-orbitals are 
involved. 

• The dxy-band structures in Sr3Ru2O7

and Sr2RuO4 are similar. 
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Previous theory based on the dxy-band by Kee et al.

H.-Y. Kee and Y.B. Kim, Phys. Rev. 
B 71, 184402 (2005); Yamase and 
Katanin, J. Phys. Soc. Jpn 76, 
073706 (2007); C. Puetter et. al., 
Phys. Rev. B 76, 235112 (2007).

• The 1st meta-magnetic transition:
the FS of the majority spin is
distorted to cover one of vHs
along the x and y directions.

• As the B-field increases, the Fermi surface (FS) of the 
majority spin expands and approaches the van Hove singularity.

• The 2nd transition: four-fold
rotational symmetry is restored.

• Drawback: an artificial d-wave 
channel inter-site interaction is 
involved.
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Our proposed solution: quasi-1D dxz and dyz

• Similar proposal has also been made by S. Raghu, S. Kivelson 
et al., Phys. Rev. B 79, 214402(2009).

xz
d yz

d

• The major difference between Sr3Ru2O7 and Sr2RuO4 is the 
large bilayer splitting of dxz/dyz bands.

• We will see that orbital band hybridization naturally enhances 
the d-wave channel exchange interaction. 



dxz /dyz orbital band structures and hybridizations

• Eigen-basis has internal d-wave like form factors of the orbital 
configurations.

Hybridized

Fermi Surface in 2D Brillouin Zone

• For simplicity, we only keep the bilayer bonding bands of dxz

and dyz. 
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Band hybridization enhanced Landau interaction in high 
partial-wave channels  

• A heuristic argument: a hybridized band Bloch wavefunction  
with internal orbital configuration as 


  )sin(cos)(

yzpxzp

ipr ddep

)(]2cos1[)0(),(
212

1

21 21
ppVqVppf

pp







• Even V(p1-p2) is dominated by the s-wave component, the 
angular form factor shifts a significant part of the spectra 
weight into the d-wave channel.

• The Landau interaction acquires a d-wave 
angular form factor as.
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Microscopic Model

• Band Hamiltonian: -bonding     ,  p-bonding     ,  next-

nearest-neighbour hoppings
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• Hybridized eigen-basis.
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van Hove Singularity of density of states
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Mean-Field Solution based on the multiband 
Hubbard model 
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• Competing orders: magnetization     , charge       /spin 
quadrupolar       orders near the van Hove singularity. 
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Phase diagram v.s. the B-field

metamagnetic
transitions

nematic ordering for FS 
of majority spins

//
/ th

• Nematic ordering as orbital ordering: different occupations 
between dxz and dyz orbitals.
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• Unconventional metamagnetism from the conventional
Hubbard interactions at the mean-field level. 
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Outline

• Introduction to unconventional magnetism.

• Microscopic theory with quasi-1D bands of dxz and dyz: 
unconventional metamagnetism with orbital ordering. 

• Experimental results: unconventional (nematic ) meta-
magnetism in the t2g system of Sr3Ru2O7 (bilayer).

• Pomeranchuk instability of Fermi liquids.

• STM quasi-particle interference as a test of orbital 
ordering.

W. C. Lee and C. Wu, Phys. Rev. Lett. 103, 176101 (2009);

W. C. Lee, D. Arovas, and C. Wu, Phys. Rev. B 81, 184403 (2010). 



Spectroscopic Imaging STM quasi-particle interference

• Real space spectroscopy reveals 
Fermi surface structure. Widely used 
in high Tc cuprate systems.  

36

Y. Kohsaka et al., Nature (London) 454, 1072 (2008).
Q.-H. Wang and D.-H. Lee, Phys. Rev. B 67, 020511 
(2003).



A toy model calculation: QPI of quasi-1D dxz/dyz bands  

37

• Quasi 1D orbital band structure.  W. C. Lee and C. Wu, PRL 103,  
176101(2009).

• Orbital ordering can be detected 
by QPI.

• c.f. Ca(Fe1-xCox)2As2: QPI shows 
nematic ordering.

Chuang et al, Science 327, 181 (2010).

dxz

dyz

dxz

dyz



Band structures of Sr3Ru2O7

38

• Complication from the orbital structure, the staggered rotation 
of RuO octahedra; bilayer splitting, and spin-orbit coupling.

• Fermi surfaces from the tight-binding model. 

• Reduced Brillouin zone.

• Bilayer bonding (black) and anti-bonding (red) bands.

W. C. Lee, D. Arovas, and C. Wu, Phys. Rev. B 

81, 184403 (2010). 



Band structures of Sr3Ru2O7 at surface 
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• Fermi surfaces measured by ARPES. 
Bilayer bias due to the surface effect. 

A. Tamai, et al, Phys. Rev. Lett. 101, 026407 (2008)

• Tight-binding fit with Vbias=10% band 
width of dxz and dyz. Band crossings 
avoided. 

Vbias



STM QPI at zero field (B=0) in Sr3Ru2O7

40

J. H. Lee, et al., Nature Physics 5, 800 (2009)

• Quasi-1D band structures have 
been seen experimentally.

• T-matrix calculation. Ring structure 
from quasi-1D orbital scatterings. 

W. C. Lee, D. Arovas, and C. Wu, Phys. Rev. B 81, 

184403 (2010). 



Summary

xz
d yz

d

• Quasi-1D orbital bands provide a natural explanation for the 
unconventional metamagnetic state observed in Sr3Ru2O7 as 
orbital ordering. 

• STM quasi particle interference provides a probe to orbital 
ordering. 
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• Unconventional magnetism is a class of exotic states of matter.  


