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Symmetry distills the simplicity of natural laws from the complexity of physi-
cal phenomena. The symmetry principle is of vital importance in various aspects
of modern physics, including analyzing atomic spectra, determining fundamen-
tal interactions in the Standard Model, and unifying physics at different energy
scales. In this chapter, novel applications of this principle are reviewed in con-
densed matter physics and cold atom physics for exploring new states of matter.

First, the concept of space-time group generalizes crystalline space group sym-
metries to their dynamic counterparts, including nonsymmorphic space-time sym-
metries (e.g. time-screw rotation, time-glide reflection, and time-shift rotary re-
flection). It includes and goes beyond the Floquet theory framework, and applies
to a large class of dynamic systems such as laser-driven solid crystals, dynamic
photonic crystals, and optical lattices, etc. Second, the perspective of high sym-
metries (e.g. SU(N) and Sp(N)) bridges large-spin cold fermion systems with
high energy physics. For example, a generic SO(5), or, isomorphically Sp(4)
symmetry is proved in spin- 3

2
systems. Moreover, an exact SO(7) symmetry is

identified possessing an extraordinarily unifying power: Its χ-pairing operator
extends Yang’s η-pairing to a high-rank Lie algebra, integrating 21 orders in
both particle-hole and particle-particle channels into a unified framework. Such
systems also exhibit multi-fermion orderings, including quartetting superfluidity
(charge 4e) and quartet density wave, which are α-particle-like, or, baryon-like
orderings. The resonant quantum plaquette states of SU(4) antiferromagnetism
are described by a high-order gauge theory. A quantum phase transition occurs
from the Slater region to the Mott region in the SU(6) Hubbard model. A ten-
dency of convergence of itineracy and locality is revealed in 1D SU(N) systems
as N goes large. Third, a new mechanism is presented to generate spin-orbit
coupling based on “spin-from-isospin” via many-body Fermi surface instabilities
of the Pomeranchuk type. In contrast, the conventional wisdom views spin-orbit
coupling as a single-body relativistic effect. This mechanism generalizes itinerant
ferromagnetism to the unconventional symmetry versions (e.g. p-wave), which
can also be viewed as magnetic multipolar orderings in momentum space.
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1. Introduction

I feel honored to contribute to this Festschrift for the Yang Centenary. Professor

C. N. Yang is the role model for Chinese physicists of my generation. Along our

careers, we have been inspired by his milestone contributions to theoretical physics,

including parity violation in the weak interaction,
1

Yang-Mills gauge theory,
2

Yang-

Baxter equation,
3

and monopole gauge theories,
4,5

etc. Among these masterpieces,

the symmetry principle is a threading theme, which is also a distinct style of his

research.

I learned to appreciate the symmetry principle under the guidance of my Ph. D.

advisor Professor Shoucheng Zhang, who himself was deeply influenced by Professor

Yang. Symmetries and their applications in condensed matter physics and cold atom

physics are my major research directions. Hence, I shall review progresses along

this line for this Festschrift.
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1.1. General backgrounds

The appreciation of symmetry at a fundamental level has a long history. The ancient

Greeks proved the existence of only five types of convex regular polyhedral (the

Platonic solids): tetrahedron, cube, octahedron, dodecahedron, and icosahedron.

They hypothesized that these regular polyhedral correspond to the classic elements

of water, earth, fire, air, and ether, respectively.
6

Galileo’s relativity principle

implies the homogeneity of space and time (translational symmetry), the isotropy

of space (rotational symmetry), and the equivalence of all the inertial reference

frames.
7

Einstein’s relativity is a profound victory of the symmetry principle: The

Lorentz symmetry is viewed as a fundamental symmetry of space-time, which is not

only a property of Maxwell’s equations but also the primary constraint to all physical

laws.
7

In high energy physics, Yang stated, “Symmetry dictates interaction”, i.e.,

interactions among fundamental particles in the Standard Model are determined by

their fundamental gauge symmetries.
8

The first application of the symmetry principle in physics actually started in the

field of condensed matter. Soon after the establishment of group theory by Galois

and Cauchy in the 1830s-1840s, it was applied to analyze crystalline symmetries. In

1890s, Schönflies and Fedorov completed the construction of the 230 space groups.
9

Each space group corresponds to one type of crystalline structures in three dimen-

sions (3D), which is a subgroup symmetry of 3D flat space containing a discrete

translational group as its normal subgroup.

In the 1880s, the concept of group was generalized to continuous groups, i.e.,

Lie groups, by Sophus Lie, and then calculus and differential equations entered

the study of symmetry.
10

Lie group and its generators Lie algebra became the

main tools to analyze symmetries. Noether proved that each continuous symmetry

gives rise to a local conservation law: Momentum conservation arises from the

translational symmetry; angular momentum conservation arises from the rotational

symmetry,
11

etc.

The application of group theory in quantum physics was pioneered by Wigner
12

and Weyl.
13

Because of the linear nature of quantum mechanics, the eigenstates of

a time-independent Hamiltonian form irreducible representations of its symmetry

group G. Its generators commute with the Hamiltonian, and thus are conserved

quantities. This principle is extremely successful in classifying the atomic and

molecular optical spectra and explaining selection rules for optical transitions.

Two remarkable examples of symmetries of simple systems are the hydrogen

atom
14

and the harmonic oscillator.
15

The N -dimensional hydrogen atom possesses

the SO(N + 1) symmetry due to the conserved Runge-Lentz vectors. Classically,

the Runge-Lentz vector specifies the orientation of the elliptical orbit. The N -

dimensional harmonic oscillator possesses the SU(N) symmetry which transforms

among the complex space spanned by the complex combination of coordinate and

momentum ai =
1√
2
(xi + ipi).

One central theme in modern physics is the unification by the symmetry prin-
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ciple. Electricity and magnetism are unified by the Lorentz group. The interaction

between matter and the electromagnetic field is described by the U(1) gauge the-

ory. In particle physics, the electromagnetic and weak interactions are unified by

the SUL(2) ⊗ U(1) gauge theory as electroweak interaction, where L refers to left-

handed leptons and quarks.
16–18

The quantum chromodynamics is described by the

SU(3) color gauge theory, and quarks of three colors (R, G, B) form the fundamental

representation of the SU(3) group. Mesons are quark-antiquark bound states and

bayrons are three-quark bound states, both of which are color singlets. In addition,

bayrons and mesons can be classified as multiplets of the approximate SU(3) flavor

symmetry.
19

Spontaneous symmetry breaking is a crucially important concept, which was first

proposed by L. Landau for constructing a general framework of phase transition-

s.
20–22

Most second order phase transitions are related to certain kinds of symmetry

breaking of order parameters (the matter fields). For instance, the magnetic phase

transition breaks time-reversal and rotational symmetries; the charge-density-wave

breaks translational symmetry; superfluidity breaks the U(1) symmetry. If a con-

tinuous global symmetry G is spontaneously broken, the transverse fluctuations of

order parameters are gapless, which are the Goldstone mode as a reminiscence of

the original symmetry before its breaking.
23

The Goldstone manifold is represented

as the coset of G/H, where H represents the residual subgroup symmetry after

symmetry breaking.

Even more profound physics occurs when a gauge symmetry is spontaneously

broken. For example, superconductivity is a consequence of the U(1) gauge symme-

try breaking.
24,25

The electromagnetic properties of superconductors are character-

ized by the London equation j = −ρsA, where ρs is the superfluid density, giving rise

to the celebrated Meissner effect. This is is due to the Anderson-Higgs mechanism

that the gauge boson (photon) becomes massive and acquire its longitudinal com-

ponent by absorbing the Goldstone mode of phase fluctuations. Consequently, the

electromagnetic field can only enter the superconductor surface at the penetration

depth λ with the relation of ρs = c/(4πλ2).
The Anderson-Higgs mechanism is essential in high energy physics.

19
The gauge

bosons become massive, once the corresponding gauge symmetries are broken. This

cures the apparent discrepancy between the short-range weak and strong interac-

tions and the massless Yang-Mills gauge fields.
2

This was the major obstacle to

apply the Yang-Mills theory as the paradigm for formulating fundamental interac-

tions. Furthermore, the Higgs field generates masses for fermions of quarks and

leptons as shown in the Glashow-Weinberg-Salam theory, which unifies the weak

and electromagnetic interactions.
16–18

In the context of condensed matter physics, the symmetry principle is employed

to unify seemingly unrelated phenomena. For example, Yang’s pseudo-spin SU(2)

symmetry based on the η-pairing unifies the charge-density-wave ordering and su-

perconductivity.
26–28

Its extension to the SO(5) theory of high Tc superconductivity
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by Zhang views antiferromagnetism and d-wave superconductivity on the equal foot-

ing as different components of a 5-vector.
29,30

The sharp resonance modes of neutron

scattering spectroscopy could be interpreted as the pseudo-Goldstone excitations in

the superconducting ground state towards the direction of antiferromagnetism.
29,31

The new applications of the symmetry principle in condensed matter and ultra-

cold atom physics will be reviewed below focusing on exploring novel states of

matter. The motivation and outline of the main results for each topic are briefly

explained below.

1.2. Space-time group for dynamic systems

b)

a)

c)

Fig. 1. Time sequence configurations for three representative space-time nonsymmorphic sym-

metries. a) Time-glide reflection symmetry. A see-saw is invariant by a reflection followed by a

time-shift of half a period. b) Time-screw rotation symmetry. A clock is invariant by a rotation
followed by a fractional time translation. c) Time-shift rotary reflection symmetry, i.e., rotary

reflection followed by a fractional time translation. Time-glide reflection and time-screw rotation
are analogies of glide reflection and screw rotation of space group symmetries, respectively, while

time-shift rotary reflection has no counterpart in 3D space group operations.

A solid state textbook typically starts with crystalline symmetries, which are

classified according to the 230 space groups, and then proceeds with the Bloch

theorem setting up the framework of electron’s quantum behavior in solids.
32

Space

group symmetries include the discrete translational symmetry of the underlying

Bravais lattice, and point group symmetries (e.g. rotation, reflection, and rotary

reflection). Space group possesses non-symmphoric symmetries, which means that

under such operations there are no fixed points, including screw rotation and glide

reflection. Screw rotation is the symmetry of a screw: A rotation is insufficient

to maintain a screw invariant which needs to be followed by a certain translation

along the rotation axis. Glide reflection is a symmetry of a row of footprints, i.e., a

reflection followed by a translation of half a period.
9
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Symmetry literally means “balanced proportions”, and thus is commonly viewed

as a static concept. However, time dynamics is an important topic in various

subjects of physics. The recent experimental progresses, such as the pump-prob

measurements
33,34

and shaken cold-atom optical lattice experiments
35,36

, have s-

timulated the study of dynamically driven systems.

A natural question is how to analyze symmetries of dynamic systems? Systems

under periodical driving is often denoted as the Floquet ones. In such systems,

time translational symmetry is violated while a discrete version still exists, which is

the counterpart of the discrete spacial translational symmetry in crystals. However,

within the Floquet framework, temporal symmetry is decoupled from the spacial

one.
37–48

Just like that a 3D crystal is typically not the direct-product between a 2D crys-

tal in the ab-plane with a 1D crystal along the c-axis, a dynamic crystalline system

is not just the direct-product between a static crystal with a Floquet periodicity.

We construct the symmetry group of dynamic systems and dub it space-time group,

which is a dynamic extension of the crystalline space group.
49

The Bloch theorem

is also generalized accordingly. This concept applies to a large class of dynamic sys-

tems beyond the Floquet framework, including laser-driven solid crystals, dynamic

photonic crystals, and optical lattices, etc.

There exist nonsymmorphic versions of space-time symmetries as depicted in

Fig. 1.
49

(Please do not confuse them with Lorentz symmetries). For example, a

see-saw is invariant by a reflection followed by a time-shift of half a period, and

this symmetry is dubbed time-glide reflection (Fig. 1(a)). A clock does not exhibit

the rotation symmetry but a rotation combined with a suitable time-translation

leaves it invariant, and this symmetry is dubbed time-screw rotation (Fig. 1(b)).

These are actually symmetries of their world lines in analogy to screw rotation

and glide reflection of space group. Another space-time nonsymmorphic symmetry,

3D rotary-reflection followed by a time-translation, does not have a space group

counterpart (Fig. 1(c)).

A complete classification in 1+1D gives rise to 13 space-time groups in contrast

to the 17 wallpaper space groups for the 2D static crystals, and in 2+1D we have

found 275 space-time groups.
49

Space-time group symmetries also protect spectral

degeneracies.

Time-screw rotation and time-glide reflection symmetries were also proposed by

Morimote et. al. independently for studying novel topological band structures in

driven systems,
50

but the concept of “space-time group” was not proposed there.

1.3. High symmetry perspective to large-spin cold fermion systems

High symmetries (e.g. SU(N) and Sp(N)) are essential in high energy physics,

nevertheless, their applications in condensed matter physics are often to provide

the mathematical tool of the large-N expansion to handle strong correlations.
51–54

On the other hand, cold atom physics has become a new frontier of condensed matter
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Fig. 2. Superexchange processes in (a) large-spin solid state systems and (b) large hyperfinespin

cold fermion systems. In solids, quantum magnetic fluctuations are suppressed by the large-S
effect; while quantum fluctuations are enhanced by the large number of spin componentsN = 2S+1.

Hence, the appropriate viewpoint for large-spin fermions is the large-N physics of a high symmetry

group rather than the large-S physics of the SU(2) group. This feature bridges high energy physics
and ultra cold atom physics in spite of hugely different energy scales. From Ref.

physics for creating novel quantum states of matter, particularly those uneasy to

access in solids.

Many fermionic atoms possess large-hyperfine-spins. We have been working

on exploring new states of large-spin fermions from the new perspective of high

symmetries of SU(N) and Sp(N) since 2003.
55–62

It works as a guiding principle

to explore beautiful many-body physics, providing a natural connection between

cold atom physics and high energy physics. It is amazing to see that physics at

dramatically different energy scales is deeply related. Systematic studies have been

performed in exploring high symmetry effects, including the unification of competing

orders
55,57

, novel quantum magnetism,
59,61

and non-Abelian topological defects.
60

High-symmetry cold fermions have attracted considerable attentions from var-

ious research groups in the cold atom community.
63–75

This direction has also

become an active experiment focus: Takahashi’s group realized the SU(6) symmet-

ric alkaline-earth fermions of
173

Yb.
76–79

Fallani’s group studied the 1D system-

s of
173

Yb with tunable component numbers.
80

The 10-component
87

Sr systems

(F = I = 9
2
) have been studied by Killian’s group,

81,82
Sengstock’s group,

83,84
and

Ye’s group,
85–87

etc. For non-technical introductions to the experimental progress,

please refer to Refs.
88,89

A fundamental difference exists between large-spin cold fermion systems and

large-spin solid state systems as shown in Fig. 2.
88

In solids, quantum magnetic

fluctuations are suppressed in the large-S limit: Hund’s rule coupling aligns spins

of several electrons into a large spin, however, the intersite coupling is dominated

by the exchange of a single pair of electrons, hence, spin fluctuations scale as 1/S
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as S goes large. In contrast, this restriction does not occur in cold atom systems

because each large-hyperfine-spin fermion moves as an entire object. The exchange

of a single pair of atoms completely flip the spin configuration. The large number

of spin components actually enhanced quantum fluctuations. and they are actually

even stronger than the spin- 1
2

case. Hence, the large-spin physics of ultra-cold atoms

is governed by the large-N physics of a high symmetry group where N = 2S + 1.

An exact and generic hidden Sp(4), isomorphically SO(5), symmetry is proved

for hyperfine-spin- 3
2

alkali and alkaline fermions without fine-tuning.
55,57,58,60

The

candidate atoms for realizations include
132

Cs,
9
Be,

135
Ba,

137
Ba, and

201
Hg. Yang’s

η-pairing pseudospin SU(2) symmetry can be generated to the spin-3/2 Hubbard

model defined on a bipartite lattice.
55,58

Such a system could exhibit an SO(7) sym-

metry which unifies the singlet superconductivity and the spin-quadruple density-

wave order with the 7-vector representation. The adjoint representation of SO(7)

can unify the quintet superconductivity, spin and spin-octupole density-wave order,

and charge-density-wave, which are in total 21-dimensional.

The large-spin fermions also exhibit similar physics to that in quantum chro-

modynamics – the multi-particle clustering orderings. With attractive interactions,

Pauli’s exclusion principle allows N -fermions to form an SU(N) singlet state, a

“baryon-like” multiple-fermion instability.
57,68,90,91

For the super-exchange physics

in the Mott-insulating states, if each site is in the fundamental representation, it

also needs N sites to form an SU(N) singlet.
56,59

How interaction effects scale with the component number N is also interest-

ing question. For the SU(N) Hubbard models, systematic quantum Monte Carlo

(QMC) simulations free of the sign problem have been performed for the 2D square

lattice,
92,93

square lattice with flux,
94

and the honeycomb lattice,
95

and also in

1D.
96

Spin-orbit coupling plays an important role in the research focus of topological

states of matter. Conventionally, it is viewed as a single-particle property inherited

from the relativistic Dirac equation, not directly related to many-body physics.
32

We have explored another possibility – spontaneously generation of spin-orbit cou-

pling as a many-body effect based on Fermi surface instabilities of the Pomeranchuk

type.
97

This mechanism is essentially itinerant magnetic phase transitions with un-

conventional symmetries (e.g. p-wave), which is also magnetic multipolar orderings

in momentum space.
98,99

1.4. Unconventional magnetism and spontaneous spin-orbit order-

ing

In ferromagnetic metals, the rotational symmetry is broken in the spin channel.

However, spin polarizes along the same direction around Fermi surfaces independent

of the direction of momentum, hence, the orbital rotational symmetry is unbroken as

shown in Fig. 3 (a). This is similar to conventional s-wave superconductors whose

gap function phase keeps constant over the Fermi surface. Therefore ferromagnetism
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A: ferromagnet (s−wave) 

s

δk

f1kδ

f2

β− α−B: p−wave       phase C: p−wave       phase

Fig. 3. Fermi surface configurations of the ferromagnetic phase (A) and the unconventional mag-
netic phases in the p-wave channel ( the isotropic β-phase (B) and the anisotropic α-phase (C)).

The ferromagnetic state can be viewed as an s-wave type magnetism since it does not break the

orbital rotational symmetry. The p-wave itinerant magnetism exhibits dipolar magnetic ordering
over the Fermi surface. The β-phase breaks the relative spin-orbit symmetry spontaneously, which

is a particle-hole analogy to the superfluid
3
He-B phase. The anisotropic α-phase is the analogy

of the superfluid
3
He-A phase. From Ref.

99

can be viewed as “s-wave” magnetism.

As for superconductivity (fermion pairing superfluidity), there exist unconven-

tional pairing structures, including the d-wave high Tc cuprates
100

and the p-wave

superfluid
3
He.

101
In analogy to unconventional superconductivity, we have gen-

eralize ferromagnetism to cases of unconventional symmetries, in which spin no

longer polarizes along a unique direction but varies with momentum. These uncon-

ventional magnetic states have close connections to many directions in condensed

matter physics, including unconventional superconductivity,
102

spin-orbit coupling

and spintronics, and electron liquid crystal states in strongly correlated systems.
103

The unconventional magnetism includes both isotropic and anisotropic cases, as

shown in Fig. 3 (b) and (c), respectively. They are dubbed the β and α-phases ana-

logues to the superfluid
3
He B and A-phases, respectively. The isotropic β-phases

still exhibit circular, or, spherical Fermi surfaces developing nontrivial spin-texture

configurations in momentum space, providing a mechanism for dynamic generation

of spin-orbit coupling independent from relativity. The anisotropic α-phases are

electron liquid crystal states with spin degree of freedom, exhibiting anisotropic

Fermi surface distortions. Both types of phases arise from the Pomeranchuk in-

stability of Fermi surfaces in the spin channel, which include ferromagnetism as a

special example.

The symmetry breaking pattern of the isotropic β-phase is subtle, which breaks

the relative spin-orbit symmetry.
101

In non-relativistic physics, spin is an internal

degree of freedom, i.e., the spin rotational symmetry SOS(3) is independent from

the orbital SOL(3). The β-phase is invariant only if rotations in the two channels are

performed exactly in the same way. In contrast, if there exist a difference between

two rotations, i.e., the relative spin-orbit rotation, the system indeed changes. This

symmetry breaking pattern is denoted as [SOL(3) ⊗ SOS(3)]/SOL+S(3). In other
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words, the total angular momentum J = L + S in the β-phase is conserved, but

L − S is not.

The concept of relative spin-orbit symmetry breaking was first introduced by

Leggett
101

in the context of superfluid
3
He-B phase, whose Cooper pairing has a

p-wave and spin-triplet like structure, i.e. L = S = 1. The pair wavefunction in the

B-phase is

Ψpair(r12) = ∑
i=x,y,z

fpi (r12)χi, (1)

where fpi (r12) descries the radial wavefunction with the orbital symmetry of pi(i =
x, y, z), and χx =

1√
2
(∣ ↑↑⟩ + ∣ ↓↓⟩), χy = 1√

2i
(∣ ↑↑⟩ − ∣ ↓↓⟩), and χz =

1√
2
(∣ ↑↓⟩ + ∣ ↓↑⟩).

The total angular momentum J = L+S of Cooper pairs is zero, and thus the pairing

is isotropic. Hence, the β-phase is the particle-hole channel analogy to the
3
He-B

phase.

In Sect. 4, we shall review how spin-orbit coupling can be dynamically generated

without relativity but from phase transitions, in a similar way to ferromagnetism.

We have also extended the Fermi-liquid theory to systems with spin-orbit coupling.

1.5. Outline

The rest part of this chapter is organized as follows: The concept of space-time

group for dynamic systems is reviewed in Sec. 2; the high symmetry perspective

of ultra-cold fermion physics is reviewed in Sect. 3; unconventional magnetism and

spontaneous spin-orbit symmetry is reviewed in Sect. 4. Conclusions are presented

in Sect. 5.

2. Space-time group for dynamic systems

The fundamental concept of crystal and band theory based on the Bloch theorem lay

the foundation of condensed matter physics.
32

In recent years, the study of dynamic

systems such as the “pump-prob” systems becomes a new focus direction.
33,34

The

simplest dynamic systems exhibit space-time periodicity, and a natural question

is how to classify their symmetries by extending the static crystalline symmetries.

There existed previously the framework of Floquet systems, i.e., systems under peri-

odical driving. However, in such a framework, the spacial and temporal symmetries

are decoupled, hence, it cannot be the generic case.
37–48

We constructed a new framework, dubbed space-time group, to describe the

general intertwined space-time periodicities in D + 1 dimensions, which include

both the static crystal and the Floquet crystal as special cases.
49

Compared to

previously known space- and magnetic groups, space-time group is augmented by

“time-screw” rotation, “time-glide” reflection, and “time-shift” rotary-reflection,

involving fractional translations along the time direction. We have classified that

there are 13 space-time groups in 1+1D and 275 space-time groups in 2+1D.
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2.1. Space-time unit cell and momentum-frequency Brillouin zone

𝑥

𝑡

𝑎1𝑎2

𝑉 𝑥, 𝑡 = 𝑉1𝑐𝑜𝑠(𝑘1𝑥 − 𝜔1𝑡) + 𝑉2𝑐𝑜𝑠(𝑘2𝑥 − 𝜔2𝑡)

Fig. 4. A simplest space-time crystal in 1+1 D. In the general case, the space-time unit cell is a

parallelogram which cannot be decomposed into a direct product between space and time domains.
It exhibits neither translational nor time-translational symmetries, but does possess the combined

space-time translation symmetries.

Let us begin with a simplest example of space-time crystalline symmetry. Con-

sider a 1 + 1 D system, whose time-dependent potential is the superposition of two

plane waves as plotted in Fig. 4,

V (x, t) = V1 cos(k1x − ω1t) + V2 cos(k2x − ω2t). (2)

The wavevectors k1,2 and frequencies ω1,2 are supposed to be incommensurate. If

we fix a spacial position, say x = 0, and look at the time-dependence of V (0, t), there

is no temporal periodicity. For Floquet problems, the time-evolution operator U (T )
of one period is often used to map them into time-independent problems. Clearly,

here this method generally does not apply. Similarly, if we take a snap shot at a

fixed time, say t = 0, V (x, 0) has no spatial periodicity either. Hence, the ordinary

Bloch theorem cannot straightforwardly be applied here.

The periodicity only appears when we extend to space-time. The unit cell is a

space-time parallelogram, not a direct product between space and time domains.

The unit vectors a1, a2 are space-time coupled,

a1 = (
2πω2

k1ω2−k2ω1
2πk2

k1ω2−k2ω1

) , a2 = (
2πω1

k1ω2−k2ω1
2πk1

k1ω2−k2ω1

) , (3)

which define space-time coupled translation symmetries. For the general case, a

potential V (r, t) exhibiting the intertwined discrete D + 1 dimensional space-time

translational symmetry satisfies

V (r, t) = V (r + u
i
, t + τ

i), i = 1, 2, ..., D + 1, (4)

where (ui, τ i) = ai is the primitive basis vector of the space-time lattice.

We move to the reciprocal space and define reciprocal lattice vectors, which can

be done in a similar way to solid state physics. The reciprocal lattice is spanned by
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the momentum-energy basis vectors b
i
= (Gi

,Ω
i) defined through

b
i
⋅ a
j
=

D

∑
m=1

G
i
mu

j
m − Ω

i
τ
j
= 2πδ

ij
. (5)

This minus sign is due to quantum mechanics phase convention. The D + 1 di-

mensional momentum-energy Brillouin zone may not be a direct product between

a momentum volume and frequency domain either. The reciprocal lattice vectors

contain both momentum and frequency components.

We emphasize that the above framework is already beyond that of Floquet. Flo-

quet systems only have one fundamental frequency, while, in our case each reciprocal

lattice vector has an independent frequency. The D+1 dimensional space-time crys-

tals can exhibit at most D + 1 incommensurate frequencies, hence, they are related

to certain types of quasi-crystals.

2.2. The generalized Bloch-Floquet theorem

For dynamic crystal systems with space-time periodicity, the Bloch and Floquet

theorems should be treated at equal footing. Below they are combined and gener-

alized.

Consider the time-dependent Schrödinger equation ih̵∂tψ(r, t) = H(r, t)ψ(r, t).
Its solutions are denoted by the good quantum number of the (lattice) momentum-

energy vector κ = (k, ω), which is defined modulate the reciprocal lattice vectors.

The Floquet-Bloch state labeled by κ takes the form of

ψκ,m(r, t) = ei(k⋅r−ωt)um(r, t), (6)

where m marks different states sharing the common κ. um(r, t) is periodical in the

space-time unit cell, which is expanded as Fourier series only involving momentum-

energy reciprocal lattice vector as

um(r, t) = ∑
b

cm,be
i(G⋅r−Ωt)

(7)

with b = (G,Ω) taking all the momentum-energy reciprocal lattice vectors. The

spectra ωm can be solved through the secular equation,

∑
b′

{[ε0(k +G) − Ω]δb,b′ + Vb−b′}cm,b′ = ωmcm,b, (8)

where ε0(k) is the free dispersion, and Vb is the momentum-energy Fourier compo-

nent of the space-time lattice potential V (r, t).
The above procedure is very similar to the plane-wave expansion method of the

band theory in D-dimensions, in which the static lattice potential only has Fourier

components in momentum space. The difference is that the effective dimensions

become D+1, since the reciprocal lattice vectors lie in the momentum-energy space

for space-time crystals. Nevertheless, the Hilbert space of physical states remains

the same regardless of whether the potential is time-independent or not. To reconcile
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this discrepancy, we notice the gauge-like redundancy in the formalism based on

and Eq. (6) and Eq. (8). The solutions in the sector labeled by κ and those

by κ + b are redundant since the same state in Eq. 6 can also be expressed as

ψκ,m(r, t) = ei[(k+G)⋅r−(ω+Ω)t]
um′ (r, t) with um′ (r, t) = um(r, t)e−i(G⋅r−Ωt)

.

The dispersion based on Eq. (8) is generally multiple-valued, represented by

a D-dimensional surface in the momentum-energy Brillouin zone which is a D+1

dimensional torus. In the static case, the band dispersion only winds around the

momentum direction. In space-time crystals, the winding patterns are richer.

Let us take the 1+1D case as a simple example. The dispersion relation ω(k)
forms closed loops in the 2D toroidal momentum-energy Brillouin zone, each of

which is characterized by a pair of winding numbers w = (w1, w2) with w1,2 integers.

In general, nearly all patterns w = (w1, w2) are possible except one constraint

explained as follows. Consider a weak lattice potential such that it can be treated

as a perturbation. The free dispersion curve ε(k) is folded into the momentum-

energy Brillouin zone with crossings. Two states at a crossing point is connected

by a reciprocal vector b before folding. The crossing is lifted if the momentum-

energy Fourier component of Vb is nonzero. The total number of states at each

k is independent of the potential strength, hence crossing can only be split along

the ω-direction by opening a gap of 2∣Vb∣, and dω/dk is always finite. Hence, the

contractible loops with the winding numbers (0, 0) are unallowed.

Nevertheless, the winding number pattern could be constrained by spectral de-

generacies protected by symmetries. For example, consider a magnetic group trans-

formation applied to a 1+1 D space-time crystal, whose unit cell is a direct product

between spatial and temporal periods a and T , respectively. Define the glide time-

reversal operation gt(x, t) = (x + a
2
,−t). It operates on the Hamiltonian as

g
−1
t H(x, t)gt = H∗(x + a

2
,−t). (9)

The corresponding transformation Mgt on the Bloch-Floquet wavefunction ψκ(x, t)
of Eq. 6 is anti-unitary defined as

Mgtψκ = ψ
∗
κ(g−1

t (x, t)). (10)

Consider two special lines of the momentum-energy Brillouin zone with κx = 0 and

κx = π/a. M
2
gt = 1 for states with κx = 0, but it becomes a Kramers symmetry

M
2
gt = −1 for those of κx = π/a,

M
2
gtψκ = ψκ(x − a, t) = e

−iκxaψκ = −ψκ. (11)

Then the crossing at κx = π/a cannot be avoided. Hence, the dispersion curve must

wind along the momentum direction even times, while its windings along the energy

direction cancel. The winding number is constrained to w = (2n, 0).

2.3. Definition of space-time group

Now we are ready to formally define space-time group in analogous to space group

describing the static crystalline symmetry. It is the discrete subgroup between the
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direct product of the Euclidean group of D spatial dimensions and that along the

time-direction ED ⊗ E1. In general, space-time group cannot be factorized as a

direct product between space and temporal subgroup groups.

In terms of coordinates, a space-time group operation Γ is defined as

Γ(r, t) = (Rr + u, st + τ ), (12)

where R here is a point-group operation, including rotation, reflection, rotary reflec-

tion. u is a translation. If u is not a symmetry by itself, then it is non-symmorphic.

Combining R and u, they span space-groups. Further including s = −1, they span

a magnetic symmetry group, which are used to describe symmetry properties of

magnetic systems. The last term of τ is time translation. Combining all the point

group operations, time-reversal, spacial and temporal translations, the algebra is

closed. This new symmetry group is dubbed space-time group.

If the time translation τ itself is not a symmetry, it should be combined with

spatial transformations to form space-time non-symmorphic symmetries as shown

in Fig. 1. In 1+1 D, the only available operation to combine is spatial reflection.

This is the dynamic symmetry of a see-saw [Fig. 1 (a)]. A see-saw does not possess

a static reflection symmetry, but it is invariant by performing reflection and time

translation at half a period. This symmetry is the analogy of the glide-reflection

symmetry of space group, dubbed time-glide reflection symmetry. In 2+1D, a new

possibility is to combine τ with spatial rotation to form time-screw rotation, which

can be intuitively understood as the dynamic symmetry of a clock [Fig. 1 (b)].

Consider a simplified clock with only one pointer rotating. It does not exhibit

the rotational symmetry due to the pointer, but a rotation combined with time

translation can leave the clock invariant. This is the analogy of screw rotation of

space group, dubbed “time-screw” rotation.

There also exist new possibilities that nonsymmorphic space-time symmetries

have no analogies in static space groups. In 3+1D, a fractional time translation τ

can be combined with the rotary reflection operation R, dubbed time-shift rotary

reflection with an example depicted in Fig. 1 (c). (Rotary reflection R is a rotation

followed by a reflection whose detR = −1 with eigenvalues {−1, e
±iθ} and θ ≠ 0.

Another possibility is a space-time translation (u, τ ) followed by a point group

operation R. In other words, it is non-symmorphic space group operation followed

by a fractional time translation τ .

Naturally, quantum mechanical wavefunctions can be employed to span repre-

sentations of space-time group. A spacial care needs to be taken is that the repre-

sentation is anti-unitary when s = −1, i.e., time-reversal is involved. The operation

of Γ on the Hamiltonian is defined as

Γ
−1
H(r, t)Γ = { H(Γ(r, t)) for s = 1,

H
∗(Γ(r, t)) for s = −1.

(13)

Correspondingly, the transformation MΓ on the Bloch-Floquet wavefunctions

ψκ(r, t) is

MΓψκ = { ψκ(Γ−1(r, t)) for s = 1,

ψ
∗
κ(Γ−1(r, t)) for s = −1.

(14)
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2.4. Classifications of space-time group

Fig. 5. Crystal configurations of 13 space-time groups in 1+1D. The solid oval marks the 2-fold
space-time axis, and the parallelogram means the 2-fold axis without reflection symmetries. The

thick solid and dashed lines represent reflection and glide-reflection axes, respectively. Configura-

tions of triangles and the diamond denote the local symmetries under reflections. (a) The oblique
Bravais lattice. 2 space-time crystals with (P1) and without (P2) 2-fold axes in this crystal system.

They generally do not possess Floquet period, but exhibit space-time mixed translation symme-

tries. (b) The primitive orthorhombic Bravais lattice with 8 space-time crystals. They are denoted
as Pmx, Pmt, P2mxmt Pgx, Pgt, P2gxgt, P2mxgt, and P2gxmt according to their reflection
and glide reflection symmetries. (c) The centered orthorhombic Bravais lattice with 2 space-time
crystals denoted as Cmx, Cmt, C2mxmt. Two unit cells are plotted to show crystalline symme-
tries in this class. Among 13 space-time crystals in 1+1D, 5 of them (Pgx, Pgt, P2gxgt, P2mxgt,

and P2gxmt) are non-symmorphic, and the other 8 are symmorphic. From Ref.
49

The 2D space groups are particularly intuitive with a popular name of wallpaper

groups. There exist 17 wallpaper groups corresponding to different types of planar

patterns. Actually, all these patterns have been already used for ornaments since

ancient times.
6

We classify space-time crystals based on their space-time group symmetry struc-
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tures. A natural starting point is to classify 1+1D space-time groups, which is an

analogous problem to the 2D wallpaper groups. Due to the non-equivalence between

spatial and temporal directions of the non-relativistic Schödinger equations, we can-

not really rotate space and time into each other. Hence, only the 2-fold space-time

rotation is allowed, i.e. (x → −x, t → −t) and 3,4,6-fold rotations are not, which

eliminates quite a few possibilities. On the other hand, the non-equivalence between

space and time also brings richness. Spatial reflection mx and time-reversal mt are

of a different nature. The former is a unitary operation, and the latter is anti-

unitary. Similarly, as for two glide operations, a time-glide with a spacial reflection

gx is different from a space-glide with a time-reversal gt.

Taking above considerations into account, in total there are 13 types of space-

time crystals as shown in Fig. 5. It is obvious that only two space-time crystal

systems are allowed in 1+1D – oblique and orthorhombic. No square and hexag-

onal space-time crystals exist. Considering the Bravais lattices, the oblique case

is monoclinic, and the orthorhombic case has two possibilities: the primitive one

and the centered one. The oblique Bravais lattice generates 2 types of space-time

crystals, the orthorhombic one generate 8, and the centered orthorhombic one gen-

erates 3, as shown in Fig. 5(a, b, c), respectively. For the centered orthorhombic

lattices, actually their primitive cells are space-time rhombohedral. To explicitly

demonstrate the full symmetries, two unit cells are plotted Fig. 5(c). There are 5

space-time groups are non-symmorphic, and all of them belong to the orthorhombic

Bravais lattice. And the rest 8 are symmorphic.

As a concrete example, look at a crystal configuration depicted in Fig. 5(b), the

Pgx one. This is the symmetry group of an array of see-saws, which is actually

non-symporphic. Such a system does have a Floquet period, but it is insufficient to

show its complete space-time symmetries. In contrast, space-time group goes inside

the Floquet period and extract all the space-time symmetries. In the case of Pgx,

it shows the symmetry between the first and second halves of the Floquet period.

The classifications of the space-time groups in higher dimensions are generally

complicated. The simple method of enumeration is cumbersome. We have classified

2+1D space-time groups based on the method of group cohomology, and the details

will be presented elsewhere. This is an analogous problem to the 3D space groups.

There exist 275 space-time groups with 72 of them symmorphic and the rest 203

non-symmorphic.

There are still 7 crystalline systems and 14 Bravais lattices for 2+1D space-time

groups, whose numbers are the same as in the 3D case, but the situation is different.

The cubic space-time crystal does not exist in 2+1D since we cannot compare

the length along the time direction with that in the ab-plane, i.e., there does not

exist a universal velocity like the light velocity in non-relativistic physics. Instead,

there exist two different types of monoclinic space-time crystals. “Monoclinic”

here means that the c-axis is perpendicular to the ab-plane, but the a and b axes

are non-perpendicular to each other. The c-direction could be chosen as time,
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or, one of the spatial direction corresponding to the T - and R- monoclinic space-

time crystals. Other crystal systems such as tetragonal, orthorhombic, trigonal,

hexagonal, triclinic ones can be similarly constructed.

2.5. Spectra degeneracy protected by non-symmorphic space-time

symmetry

For static crystals, it has been extensively studied that non-symmorphic space-group

symmetries can protect spectral degeneracies and enrich topological phases.
104–108

In this subsection, we show that the intertwined space-time nonsymmorhic symme-

tries also protect non-trivial spectral degeneracies of the driven system.

We express a general space-time group element,

g = Tr(u)Tt(τ )Rms
t , (15)

where Tr(u) and Tt(τ ) are spatial and temporal translations, respectively. R is a

point group operator; mt is the time-reversal operation; s = 1 or 0 determines

whether g is anti-unitary or not, respectively. If two operations g1 and g2 are in

the little group of a high symmetric point κ = (k, ω), whose point group operations

commute, then

g1g2 = Tg2g1 (16)

with T a translation of integer unit vectors. T is decomposed into spatial and

temporal parts as T = Tr(ũ)Tt(t̃), where

ũ = (I −R2)u1 − (I −R1)u2, t̃ = 2s2t1 − 2s1t2. (17)

Below we review the spectra degeneracies protected by this symmetry.

The representation matrices Mg1,2 acting on Floquet-Bloch wavefunctions with

κ satisfy

Mg1Mg2 = e
ik⋅ũ−iωt̃

Mg2Mg1 . (18)

The following three cases need to be examined depending on whether g1,2 are unitary

or not.

First, if neither g1 nor g2 reverses the direction of time. In this case, t̃ = 0, and

then the phase factor in Eq. (18) does not involve time. If k ⋅ u = 2πp/q with p

and q coprime, then the Bloch-Floquet wavefunctions exhibit a q-fold degeneracy

at κ = (k, ω) proved as follows. Since g1 belongs to the little group, ψκ(r, t) can be

chosen to satisfy Mg1ψκ,1 = µψκ,1, then

ψκ, Mg2ψκ, M
2
g2ψκ, ...., M

q−1
g2 ψκ (19)

are the common Bloch-Floquet eigenstates sharing the same κ but exhibiting a set

of different eigenvalues of g1 as η, µη, µη
2
, ..., µη

q−1
with η = e

iπp/q
. Then they are

orthogonal to each other forming a q-fold degeneracy.

Second, we consider the case that only one of g1,2 involves time-reversal. With-

out loss of generality, Mg1 is assumed to be unitary while Mg2 is anti-unitary. Then
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the prefactor in Eq. (18) exhibits frequency dependence. Again since g1 is in the

little group, the Floquet-Bloch eigen state ψκ can be chosen as an Mg1 eigenstate,

expressed as

Mg1ψκ = e
ik⋅u1−iωt1e

iθ
ψκ, (20)

in which θ is extracted to be only dependent on the point group operation R1.

Based on Eq. (18), Mg2ψκ is also an eigenstate of g1 as

Mg1 (Mg2ψκ) = e
ik⋅(−u1+ũ)+iω(−t̃+t1)e

−iθ (Mg2ψκ) . (21)

Plugging in t̃ = 2t1, we arrive at if e
ik⋅(2u1−ũ)+2iθ

≠ 1, then two phases in Eqs. (20)

and (21) do not equal. Hence, the degeneracy is protected. Nevertheless, further

applying high powers of Mg2 does does not bring new phases.

The last case is when both g1 and g2 flip the time-direction, i.e., both Mg1 and

Mg2 are anti-unitary. By defining g = g1g2 which is unitary again and combining g

and g2, we have

gg2 = Tr(u)Tt(τ )g2g, (22)

which is reduced to case 2.

We emphasize that in none of the above three cases, the degeneracy condition

depends on the frequency component of κ. This is expected since one can always

shift the frequency of the spectrum by adding a constant to the time-dependent

Hamiltonian.

2.6. Discussions

So far the concept of space-time group has received considerable attentions.
109–118

We expect it would serve as a guiding principle for quantum dynamic studies, in

analogy to the role of space group to static crystalline symmetries.
9

The classifi-

cation of space-time group in 3+1D would be of a fundamental importance if it is

completed successfully, which is currently under investigation.

Actually the lattices in solids are dynamic, and the quantized lattice vibrations

are known as phonons. However, phonons are typically thermally driven and in-

coherent. If a certain type phonon mode is coherently excited, say, optically, or,

by other pumping methods, it cannot be treated perturbatively.
34,119

Instead, the

time-dependent motions of lattice ions should be treated at the zeroth order, i.e.,

we should include them as the time-dependent lattice potential in the Schrödinger

equation. In artificial lattices, such as the phononic, photonic crystals, and optical

lattice for ultra-cold atoms, the lattice potential could be manipulated on pur-

pose,
36,109,116

In these cases, space-time group should replace space group as the

symmetry guidance of quantum dynamics in such systems.

Certainly, the semi-classic transport in dynamic crystals is of importance. When

the periodicity of lattice potential is weakly broken by slowly varying external field-

s both spatially and temporally, semi-classic equations of motion for a quantum
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particle could be developed.
32

We should distinguish two different types of dy-

namics: the fast changing periodical lattice potential which should be taken by the

band structure calculation, and the slowly changing external field which should be

treated in an adiabatic way. A challenging problem is how to generalize the Berry

curvature formalism to the dynamic version and incorporate it into equations of

motion.
120

The work along this direction would provide a general framework for

further studying topological properties in dynamic systems.
121

Another direction to explore is the connection to time crystal.
43,122–131

The

current study of time crystal is concentrated on the spontaneous breaking of the

discrete time-translational symmetries, which is an profound interaction effect. N-

evertheless, the symmetry breaking pattern typically is just the Floquet type. It

would be interesting to combine these two research directions together, for example,

to consider how to spontaneously generate dynamic crystals with non-symmorphic

space-time symmetries. More philosophically, we could ask the problem of discrete

subgroups of different types of space-time symmetries, including Galilean, Poincaré,

anti-de Sitter symmetries, etc.

3. High symmetry perspective to large-spin cold fermion systems

The study of ultra-cold atom systems has become a new frontier for condensed

matter physics as a way of creating novel quantum states of matter.
132,133

We

have proposed a new perspective of high symmetries (e.g. SU(2N) and Sp(2N))

since 2003 to study the alkali and alkaline-earth fermion systems,
55–62

where 2N is

the fermion component number and hence typically even. It is exciting to explore,

in atomic systems, complex and beautiful many-body physics difficult to realize

in usual solids.
88,89

It also significantly enriches the physics of large-N quantum

magnetism by providing a realistic system.

3.1. The generic SO(5) symmetry of spin-
3

2
cold fermions

In this subsection, we review the proof of an exact and generic hidden symmetry

of Sp(4), or, isomorphically SO(5) symmetry in spin- 3
2

fermion systems (e.g.,
132

Cs,
9
Be,

135
Ba,

137
Ba,

201
Hg).

55,58 a
It plays the role of SU(2) in electron systems since

its exactness is independent of dimensionality, lattice geometry, and particle filling.

Such a high symmetry without fine-tuning is rare, which can be used as a guiding

principle to exploring novel quantum phases.

Let us begin with the standard s-wave scattering interactions of spin- 3
2

b
fermion-

a
Sp(4) and SO(5) share the same Lie algebra. Rigorously speaking, Sp(4) has spinor representa-

tions while SO(5) has not. Sp(4) is the double covering group of SO(5), and the relation between
them is the same as that between SU(2) and SO(3). For simplicity, we will use Sp(4) and SO(5)

interchangeably neglecting their minor difference.
b
The total spin of atom is often called “hyperfine spin” including contributions from the nuclear

spin, electron spins and electron orbital angular momentum. Below we follow the convention of

atomic physics to use F to denote atom’s hyperfine spin, and for simplicity, spin and hyperfine
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ic atoms.
132,133

Since the orbital partial wave channel is symmetric, the total spin

wavefunction of two atoms is constrained by Pauli’s exclusion principle to be anti-

symmetric, which must be either singlet or quintet. The corresponding interaction

parameters are denoted g0 and g2, respectively. The Hamiltonian reads as

H = ∫ d
d
r⃗ { ∑

α=±3/2,±1/2
ψ

†
α(r⃗)(

−h̵2

2m
∇

2
− µ)ψα(r⃗)

+ g0P
†
0,0(r⃗)P0,0(r⃗) + g2 ∑

m=±2,±1,0

P
†
2,m(r⃗)P2,m(r⃗)}, (23)

with d the space dimension, µ the chemical potential, and P
†
0,0
, P

†
2,m

the singlet

and quintet pairing operators defined through the Clebsh-Gordan coefficient for

two indistinguishable particles as

P
†
F,m

(r⃗) = ∑
αβ

⟨3

2

3

2
;F,m∣3

2

3

2
αβ⟩ψ†

α(r⃗)ψ†
β
(r⃗), (24)

where F = 0, 2 and m = −F,−F + 1, ..., F . Its lattice version is the spin- 3
2

Hubbard

model,

H = −t ∑
⟨ij⟩,σ

(ψ†
iσψjσ + h.c.) − µ∑

iσ

ψ
†
iσψiσ

+ U0 ∑
i

P
†
0 (i)P0(i) + U2 ∑

i,−2≤m≤2

P
†
2m(i)P2m(i), (25)

where t is the hopping integral, U0,2 are the onsite Hubbard interaction parameters

in the singlet and quintet channels, respectively.

So far, the perspective in Eqs. (23) and (25) is the usual spin SU(2). The 4-

component spinor, singlet and quintet interaction channels are of the spin quantum

number 3
2
, 0, and 2, respectively. Below we will show that this degeneracy pattern

equally well fits in a high symmetry group of Sp(4), or, isomorphically, SO(5), which

provides a whole new perspective on spin- 3
2

fermion systems.

For this purpose, we construct the Sp(4) algebra by extending the typical charge

and spin sectors. For spin- 1
2

systems, charge and spin form a complete set for the

particle-hole (p-h) channel physical observable. However, they are incomplete for

spin- 3
2

systems since there are 4
2
= 16 bilinears,

M
I
= ψ

†
i,αM

I
αβψi,β (I = 1 ∼ 16). (26)

To systematically decompose the 16 matrix kernels of M
I
αβ , high rank spin tensors

are employed in terms of the product of spin- 3
2

matrices:

particle number: I;

spin: F
i
, i = 1, 2, 3;

spin quadrupole: ξ
a
ijFiFj , a = 1, .., 5;

spin octupole: ξ
L
ijkFiFjFk, L = 1, .., 7, (27)

spin are used interchangeably.
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where ξ’s are the typical fully symmetric, traceless tensors converting 3-vector into

spherical tensors.

The five spin quadrupole matrices are denoted Γ
a
= ξ

a
ijFiFj , which remarkably

anticommute with each other forming a basis of the Dirac Γ matrices satisfying

{Γa,Γb} = 2δab. (28)

Explicitly, they are

Γ
1
= ( 0 −iI

iI 0
) , Γ

2,3,4
= ( σ⃗ 0

0 −σ⃗
) , Γ

5
= ( 0 I

I 0
) , (29)

where I and σ⃗ are the 2× 2 unit and Pauli matrices. They are explicitly expressed

by the spin matrices as

Γ1 =
1
√

3
(FxFy + FyFx), Γ2 =

1
√

3
(FzFx + FxFz), Γ3 =

1
√

3
(FzFy + FyFz),

Γ4 =
1
√

3
(F 2
z −

5

4
), Γ5 =

1
√

3
(F 2
x − F

2
y ). (30)

Moreover, the 3 spin and 7 spin octupole matrices together can be organized into

the 10 commutators of Γ-matrices defined as

Γ
ab
= −

i

2
[Γa,Γb] (1 ≤ a, b ≤ 5). (31)

Consequently, the 16 particle-hole channel bilinear operators are classified ac-

cording to their properties under the Sp(4) transformations as scalar, vector, and

anti-symmetric tensors (generators) as

n(r⃗) = ψ†
α(r⃗)ψα(r⃗), na(r⃗) =

1

2
ψ

†
α(r⃗)Γaαβψβ(r⃗),

Lab(r⃗) = −
1

2
ψ

†
α(r⃗)Γabαβψβ(r⃗). (32)

The SO(5) generators Lab and its vectors na together span the SU(4) algebra. They

satisfy the commutation relations as

[Lab, Lcd] = −i(δacLbd + δbdLac − δadLbc − δbcLad),
[Lab, nc] = −i(δacnb − δbcna),
[na, nb] = −iLab. (33)

It is well known that the SU(4) algebra is isomorphically to SO(6), and SU(4) is

the double covering group of SO(6).

In order to further study the pairing operators in the particle-particle (p-p) chan-

nel and time-reversal transformation, we introduce the charge conjuration matrix

R, which renders the creation operators transform in the same way as the annu-

lation operators. Concretely, Rαβψ
†
β

transforms the same as ψα under the Sp(4)

transformation. The existence of R is based on the pseudoreality of Sp(4) spinor

representation. It satisfies

R
2
= −1, R

†
= R

−1
=

t
R = −R, RΓ

a
R = −

t
Γ
a
, RΓ

ab
R =

t
Γ
ab
, (34)
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where
t
Γ
a,ab

are the transposed matrices of Γ
a,ab

. In the representation of Eq. 29,

it is expressed as R = Γ1Γ3.

Under the assistance of R, the fermion pairing operators be expressed as
60

η
†(r⃗) = Reη + i Imη =

1

2
ψ

†
α(r⃗)Rαβψ†

β
(r⃗),

χ
†
a(r⃗) = Reχa + i Imχa = −

i

2
ψ

†
α(r⃗)(ΓaR)αβψ†

β
(r⃗). (35)

Clearly, η
†(r⃗) is Sp(4) scaler, and χ

†
a(r⃗)’s are Sp(4) vector. They are related to the

spin SU(2) representation via P
†
0,0

= − 1√
2
η

†
, P

†
2,±2

=
1
2
(∓χ†

1
+ iχ†

5
), P †

2,±1
=

1
2
(−χ†

3
±

iχ
†
2
), P †

2,0
= −i 1√

2
χ

†
4
.

The anti-unitary time-reversal transformation T
2
= −1 is expressed as

T = R C, (36)

where C denotes complex conjugation. Lab’s consist of spin and spin-octupole

operators.
55,134

Since they are odd rank spin tensors, they are time-reversal odd.

na’s and N are time-reversal even. It is also straightforward to check that they

transform differently under the T transformation

TnT
−1
= n, TnaT

−1
= na, TLabT

−1
= −Lab. (37)

Now we are ready to prove the generic SO(5) symmetry of Eq. 23 and Eq. 25.

The kinetic energy part has an explicit SU(4) symmetry which is the unitary trans-

formation among four spin components. The singlet and quintet interactions are

proportional to η
†(r⃗)η(r⃗) and χ

†
a(r⃗)χa(r⃗) respectively, thus reducing the symmetry

group from SU(4) to SO(5). When g0 = g2, the SU(4) symmetry is restored because

χ
†
a, η

†
together form its 6 dimensional antisymmetrical tensor representation.

For the continuum model, the odd partial wave scatterings include the spin

triplet and septet channels, whose interactions are denoted as g1 and g3, respectively.

The SO(5) symmetry is broken if g1 ≠ g3, and restored at g1 = g3 since the triplet

and septet together could form the 10-d adjoint representation of SO(5). However,

to the leading order, p-wave scattering is weak for neutral atoms, and can thus be

safely neglected. For the lattice model, the onsite interaction does not allow the

triplet and septet interactions.

For later convenience, the lattice Hubbard model of Eq. 25 is rewritten in

another manifestly Sp(4) invariant form as

H0 = −t ∑
⟨i,j⟩

(ψ†(i)ψ(j) + h.c.) ,

HI = ∑
i,1≤a≤5

[3U0 + 5U2

16
(n(i) − 2)2 − U2 − U0

4
n

2
a(i)] − (µ − µ0)∑

i

n(i), (38)

where the SU (4) symmetry appears at U0 = U2 as before. At half-filling
c
µ0 =

(U0 + 5U2)/2 to ensure the particle-hole symmetry.
c
Here half-filling means the average particle number per site equals 2, half of the component

number.
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3.2. The SO(7) unification and the χ-pairing

The spin- 1
2

Hubbard model defined in a bipartite lattice in any dimensions actually

possesses a pseudospin SU(2) symmetry spanned by the η-pairing operators and

particle number as discovered by Yang.
26–28

This symmetry plays an important

role to unify competing orders (e.g. superconductivity and charge-density-wave).

In this subsection, we review the extension of the pseudo-spin symmetry to the

SO(7) symmetry in the spin- 3
2

Hubbard model, and define the quintet χ-pairing

operators. It exhibits much richer unifying power in treating a variety of competing

orders at equal footing.

The η-pairing operator in spin- 1
2

systems sums over the onsite singlet pairing

operators with opposite signs on two sublattices. The pseudospin SU(2) algebra

is particularly useful for unifying competing orders in the negative-U Hubbard

model.
26–28

The order parameters of superconductivity, whose number of com-

ponents is 2 since it is complex, and charge-density-wave are unified forming a 3D

representation. The η-pairing generator transforms superconductivity into charge-

density-wave and vice versa. At half-filling, the pseudospin SU(2) symmetry is

exact, and these two orders are degenerate. Away from half-filling, this symmetry

is explicitly broken, and the superconducting ground state is selected. However,

when applying the η-pairing operator on the ground state, it creates well-defined

excitations, which are the pseudo Goldstone modes rotating superconductivity into

charge-density-wave.

Before considering unifications, let us fully explore the symmetry structure of

spin- 3
2

systems. The largest algebra formed by 4-component fermions is actually

SO(8),
135

including 16 p-h channel fermion bilinears and the other 12 ones in the

p-p channel. On each site, the local SO(8) generators Mab(i) (0 ≤ a < b ≤ 7) are

organized as follows,
55,58

Mab(i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 Reχ1(i) ∼ Reχ5(i) N (i) Reη(i)
Imχ1(i) n1(i)

Lab(i) ∼ ∼

Imχ5(i) n5(i)
0 −Imη(i)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (39)

with N (i) = (n(i) − 2)/2. For 1 ≤ a < b ≤ 5, they are just Lab(i) forming its SO(5)

subalgebra. The global SO(8) generators are defined as

Mab = ∑
i

Mab(i), or, Mab = ∑
i

(−)iMab(i), (0 ≤ a < b ≤ 7), (40)

depending on Mab lying in the p-h or p-p channels, respectively. More explicitly,

we write

Lab =Mab, na =Ma7, χ
†
a =M0a + iMa6, N =M06, η

†
=M06 − iM67, (41)

with 1 ≤ a < b ≤ 5. Lab, na and N lie in the p-h channel, and χ
†
a and η lie in

the p-p channel. The η
†

operator is the spin- 3
2

generalization of Yang’s, both of
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which are spin singlet. In contrast, the χ
†
a pairing operator is a non-trivial quintet

generalization.

It is easy to check that the H0 part of the Hamiltonian Eq. 38 satisfies

[H0,Mab] = 0. However, Hint typically breaks the SO(8) symmetry unless it van-

ishes within the framework of 4-fermion interactions.

The next highest algebra is SO(7) spanned by Mab with 0 ≤ a < b ≤ 6, which

is the high-rank Lie algebra generalization of Yang’s η-pairing. Explicitly, they

include the SO(5) generators Lab, the χ-pairing operators Reχa, Imχa, and the

particle number N . This SO(7) symmetry becomes exact at U0 = −3U2, where the

interacting part of the Hamiltonian Eq. 38 is reduced to

HI = ∑
i,0≤a<b≤6

{2

3
U2 [Mab(i)]2 − (µ − µ0)n(i)}. (42)

At half-filling, µ = µ0, then the global SO(7) symmetry becomes exact.

U0

U2 E: SU(4) line

U0=U2

F: SO(7) line

U0= -3U2

A:

B:

D:

0)( >≠< iη 0)()( >≠−< iL
ab

i

0)()( >≠−< in
a

i

0)()( >≠−< iN
i

C:

MC boundary 

U0=U2

MC boundary

3 U0= -5U2

G: SO(5)*SU(2) line

U0= 5 U2
H: SO(7) line

U0= -3 U2

Fig. 6. Competing phases of spin- 3
2

Hubbard model unified by high symmetries. (A) and (B):
Antiferromagnetism in the Sp(4) adjoint and vector representations; (C): the singlet supercon-
ductivity; (D): CDW; (E), (F), (G), and (H): exact phase boundaries with higher symmetries of

SU(6), SO(7), SO(5) SU(2) and SO(7), respectively. From Ref.
55

The SO(7) symmetric spin- 3
2

Hubbard model can be further divided into two

cases. In the case of U0 = −3U2 with U2 > 0, the system in the weak coupling regime

exhibits the competition between the singlet supercondutivity and the density-wave
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of spin quadrupole orders, whose order parameters are organized as

Va = ∑
i

(−)iMa6, or, Va = ∑
i

Ma6, (0 ≤ a ≤ 7) (43)

depending on Va lying in the p-h channel or the p-p channel, respectively. More

explicitly,

∆s = V0 − iV6, SDWa = Va (1 ≤ a ≤ 5). (44)

They are unified by a 7-vector Va with 0 ≤ a ≤ 6 with V0 = Re∆s, Va = SDWa for

1 ≤ a ≤ 5, and V6 = −Im∆s, and transform according to the vector representation

of SO(7),

[Mab, Vc] = i (δbcVa − δacVb) . (45)

Hence, the Goldstone manifold is S
6
. Away from half-filling, the SO(7) is broken

and the singlet superconductivity is selected as the ground state ordering. The

χ-pairing operators remain the eigen-operators as

[H,χ†
a] = −(µ − µ0)χ†

a, and, [H,χa] = (µ − µ0)χa. (46)

At µ < µ0, applying χ
†
a on the superconducting ground state ∣Ω⟩ creates a quintet

excitation,

H (χ†
a∣Ω⟩) = (µ0 − µ) (χ†

a∣Ω⟩) , (47)

which carries the lattice momentum Q = (π, π). In other words, the χa-pairing

operator behaves like a quasi-Goldstone mode, which rotates the singlet supercon-

ductivity to the density-wave state of the a-th component spin quadrupole.

Yang’s η-pairing operators were generalized to the SO(5) theory of high Tc su-

perconductivity, which unifies the 2-component superconductivity and 3-component

antiferromagnetism into a 5-vector. Nevertheless, the SO(5) algebra is not exac-

t. The celebrated neutron resonance modes in the superconducting states were

interpreted as the pseudo-Goldstone modes rotating from superconductivity to an-

tiferromagnetism, denoted as π-modes. The χ-modes here are just analogs of the π

modes SO(5) theory.
29

However, the SO(5) algebra is not exact in high Tc cuprate

systems. In contrast, here the SO(7) symmetry can be constructed to be exact.

The power of the SO(7) unification exhibits even more explictly at U0 = −3U2

with U0 > 0, in which the 21D adjoint representation of SO(7) plays the role.

The order parameter manifold includes the quintet superconductivity, the 10-fold

density-wave of spin and spin octupole orders, and charge-density-wave order, which

are organized as

Tab = ∑
i

(−)iMab, or, Tab = ∑
i

Mab, (0 ≤ a < b ≤ 6), (48)

depending on Tab lying in the p-h channel or the p-p channel, respectively. Explic-

itly, they are

∆q,a = T0a + iTa6, SDWab = Tab, CDW = T06, (49)
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where 1 ≤ a < b ≤ 6. They transform according to the SO(7) algebra as

[Mab, Tcd] = i (δacTbd + δbdTac − δadTbc − δbcTad) . (50)

It is amazing to realize such a “grand unification” in a non-relativistic model. The

Goldstone manifold is SO(7)/[SO(5)× SO(2)], which is 10-dimensional. When away

from half-filling, the SO(7) symmetry is broken into SO(5), and the ground state

exhibit the quintet superconductivity. Eq. 47 still applies. Assuming ⟨Ω∣∆q,b∣Ω⟩ ≠
0, χ

†
a∣Ω⟩ remains a quasi-Goldenstone mode which rotates to the density-wave state

of spin/spin ocupole SDWab if a ≠ b, or the charge-density-wave state if a = b.

The pseudo-spin SU(2) symmetry of the spin- 3
2

version occurs at U0 = 5 U2. In

this case, HI is rewritten as

HI = ∑
i,1≤a,b≤5

{−U2 L
2
ab(i) − (µ − µ0)n(i)} , (51)

which only involve the SO(5) generators. Then M06, M07, M67 span an SU(2)

algebra commuting with all the Sp(4) generators Lab. More explicitly, they are

just the pseudo-spin SU(2) algebra spanned by the η-pairing and particle number

operators. At U0 = 5 U2 < 0, this pseudospin SU(2) symmetry unifies the singlet

pairing and charge-density-wave order parameters in a similar way to the spin- 1
2

negative-U Hubbard model. Again way from half-filling, this symmetry is broken,

and the ground state is the singlet pairing state. In this case, the η-pairing operators

remain eigen-operators

[H, η†] = −(µ − µ0)η†
, and, [H, η] = (µ − µ0)η. (52)

We emphasize that the pseudo-spin SU(2) symmetry in the spin- 3
2

system stil-

l exhibits difference from Yang’s η-pairing for the spin- 1
2

case. In spin- 1
2

case,

the empty and doubly occupied states form a pseudospin- 1
2

representation for the

pseudo-spin SU(2). In our case, there are three onsite singlet state: empty, 2-particle

singlet, and the 4-occupied states forming a pseudo-spin-1 representation.

Based on the above analysis and assisted by mean-field calculations, the weak-

coupling phase diagram in a bipartite lattice at half-filling in two dimensions and

above is shown in Fig. 6. The higher symmetries lines are as follows: The SU(4)

symmetry appears along line E with U0 = U2; the SO(7) symmetry appears along

lines F and H with U0 = −3U2; and the SO(5)⊗ SU(2)symmetry appears long line G

with U0 = 5U2. These lines are phase boundaries separating phases A, B, C, and D.

Phase A and B are regimes where repulsive interactions dominate, hence, they are

density-wave states of spin tensors. In phase A, the onsite singlet energy is smaller

than the quintet energy, leading to the density-wave of spin quadrupoles forming

the 5-vector representation of the Sp(4) group. On the other hand, the lowest onsite

states in phase B form quintet, leading to the density-wave of spin/spin octupoles

for the 10-dimensional adjoint representation of Sp(4). The Goldstone manifold in

phase A is SO[5]/SO(4)=S
4
, while that in phase B is SO(5)/[SO(3)⊗ SO(2)]. On

line E, the SU(4) symmetry unifies all the 15 dimensional density-wave orders in
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the spin channel forming SU(4) adjoint representation, whose Goldstone manifold

is U(4)/[U(2)⊗ U(2)].

Phase C is the singlet pairing state, and phase D is the charge-density-wave

state. Orders in phases B and C are unified along the SO(7) line F, and orders in

phases A, D, and the quintet pairing are unified along the SO(7) line H. Orders in

phase C and D are unified along the psuedospin SU(2) symmetry line G.

At last, let us mention an interesting point that SO(7) possesses a subgroup of

G2, which is the smallest exceptional Lie group and also the automorphism group

of non-associative algebra of octonions. A G2 symmetric spin- 3
2

Hubbard model is

constructed which is the common subgroup of two different SO(7) algebra connected

by the structure constant of octonions.
62

This model exhibits various interesting

symmetry breaking pattern: The G2 symmetry can be spontaneously broken into

SU(3), or, SU(2)⊗ U(1), both of which are essential in high energy physics. In the

quantum disordered states, quantum fluctuations generate the effective SU(3) or

SU(2)⊗ U(1) gauge theories.

3.3. Quartet (charge-4e) superfluidity and quartet density wave

Superconductivity arises from the coherent condensation of Cooper pairs, which

is the central content of the celebrated Bardeen-Cooper-Schrieffer (BCS) theory.

Moreover, there exist multi-fermion clustering instabilities in strong correlation sys-

tems in various disciplines of modern physics. The SU(3) gauge symmetry requires

three quarks to form a color singlet bound state of baryon;
19
α-particles are 4-body

bound states of two protons and two neutrons, and biexcitons are bound states

of two electrons and two holes. These states go beyond the framework of the BCS

theory since they cannot be reduced to a 2-body problem. The competitions among

the quartetting (charge 4e) and pairing (2e) superfluidities, quartet and pair density

wave orderings are investigated in 1D 4-component fermion systems.
57,68

In recent

years, charge-4e superconductivity has been proposed as a consequence of strong

fluctuations of the pair-density-wave state in high Tc cuprates.
136,137

Competitions

of 4-fermion orderings in the context of superconducting phase fluctuations have

also recently received attentions.
138–140

Excitingly experimental evidence of Little-

Parks oscillations at the periods of hc/(4e) and hc/(6e) have been observed in the

Kagome superconductor CsV3Sb5.
141

Spin- 3
2

systems allow the quaretteting order, i.e., 4-fermions forming clustering

instability, which is also called “charge-4e” in condensed matter physics. A quartet

in the strong coupling limit is a 4-body maximally entangled EPR state with all

the spin components forming an SU(4) singlet, whose order parameter is expressed

as

Q(x) = ψ†
3
2

(x)ψ†
1
2

(x)ψ†
− 1

2

(x)ψ†
− 3

2

(x). (53)

Furthermore, spin- 3
2

systems could support 6 different types of Cooper pairing states

including an Sp(4) singlet and a set of Sp(4) quintet whose order parameters are
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presented in Eq. (35). It would be interesting to investigate their competitions.

Assisted by the strong coupling methods for 1D problems, we are able to analyze

the competition between the quartetting and pairing formations, or, charge-4e and

2e states. Quartets and pairs can undergo either superfluidity or density-wave

transitions depending on the charge channel interactions. Only the quartetting

states are SU(4) invariant, and the 6 pairing operators presented in Eq. (35) form

the rank-2 antisymmetric tensor representation of SU(4).
d

Due to the strong

quantum fluctuations, non-Abeliean Lie group symmetries cannot be spontaneously

broken in 1D. Hence, only quartet orderings, either superfluidity or density wave,

are allowed by the SU(4) symmetry. Nevertheless, if the symmetry is reduced to

Sp(4), the Sp(4) singlet pairing could survive, while the quintet pairing still cannot

since it is not an Sp(4) singlet. Naturally, their exist competitions between Sp(4)

singlet (charge-2e) pairing orders and quartteting (charge-4e) orders. The transition

between them is Ising order-disorder transition in the spin channel.

Blow we briefly outline the procedure of the bosonization and renormalization

group (RG) analysis, and the details were presented in Ref.
58

The Sp(4) currents in-

clude scalar (charge), vector (spin quadrupole), and tensor (spin plus spin octupole)

ones,

JR,L(z) = ψ†
R,α

(z)ψR,α(z), J
a
R,L(z) =

1

2
ψ

†
R,α

(z)ΓaαβψR,β(z) (1 ≤ a ≤ 5),

J
ab
R,L(z) =

1

2
ψ

†
R,α

(z)ΓabαβψR,β(z) (1 ≤ a < b ≤ 5), (54)

where R and L refer to right and left-movers. The low energy effective Hamiltonian

density H = H0 +Hint is written as,

H0 = vf{
π

4
JRJR +

π

5
(JaRJ

a
R + J

ab
R J

ab
R ) + (R → L)},

Hint =
gc
4
JRJL + gvJ

a
RJ

a
L + gtJ

ab
R J

ab
L , (55)

where the chiral couplings are neglected at one-loop level since it only renormal-

izes Fermi velocities. At the tree level, these dimensionless coupling constants

are related by the pair interaction parameters g0, g2 defined in Eq. (23) as

gc = (g0 + 5g2)/2, gv = (g0 − 3g2)/2, gt = −(g0 + g2)/2. Certainly, they are

renormalized significantly under the RG process. At gv = gt, or, g0 = g2, the SU(4)

symmetry is restored.

The phase diagram at incommensurate fillings are presented at Fig. 7. The

charge sector remains gapless and decouples with the spin sectors. In the spin

sector, three phases are identified: Phase A is the gapless Luttinger liquid phase

lying in the repulsive interaction region where 0 < g2 < g0, which is controlled

by the non-interacting fixed point. Phase B is the quartetting phase controlled

by the strong coupling fixed point along the SU(4) line with gv = gt → +∞, or,

g0 = g2 → −∞. It lies in the regime where attractive interactions dominate. Phase

C is the spin singlet pairing phase controlled by the strong coupling point along the
d
In terms of SO(6), which equals SU(4)/Z2, they form the 6-vector representation.
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1

A: Luttinger liquid

20 gg 

SU(4)

B:  Quartetting
superfluid/density-wave

C: Singlet pairing/ 
density-wave

0g

2g

20 gg 

SU(4)

Sp(4)

Fig. 7. Competition between quaretting (charge-4e) and singlet pairing (charge-2e) phases in

1D spin- 3
2

systems at incommensurate fillings. Combined with the charge channel Luttinger

parameter Kc, three phases are identified with phase boundaries marked by dashed lines. A) the
gapless Luttinger liquid phase controlled by the non-interacting fixed point (the black spot). B)

Quartetting superfluidity atKc > 2 or quartet density-wave (2kf ) atKc < 2. They are controlled by

the strong coupling fixed point along the SU(4) line (the red spot); C) singlet pairing superfluidity
at Kc > 1/2 or pair density wave (4kf ) at Kc < 1/2. They are controlled by the strong coupling

fixed point along g2 = 0 (the blue spot). Phases B and C are both gapped in spin channels, and

the transition between them is an Ising order-disorder transition. From Ref.
57

line of −gv = gt → +∞ corresponding to g0 → −∞ and g2 → 0. The pairing phase

even covers the regime with purely repulsive interaction regime.

Within quartetting phase B, there also exist two competing orders, the quar-

tetting superfluidity and quartet density wave. By checking the periodicity, the

quartet density wave corresponds to the 2kf CDW. Four fermions first form quar-

tets, and then they either undergo superfluidity, or, density wave instability. As for

the charge sector, their bosonic expressions are

Q = ψ
†
3
2

ψ
†
1
2

ψ
†
− 1

2

ψ
†
− 3

2

∝ e
2i

√
πθc , Oqdw = ψ

†
Rα
ψLα ∝ e

i
√
πφc . (56)

The scaling dimensions for quartet superfluidity and density-wave orders are 1/Kc

and Kc/4, respectively. Hence, the quartet superfluidity wins at Kc > 2, while the

quartet density wave wins at Kc < 2.

Similarly in phase C, Cooper pairs can either undergo superfluidity, or, pair

density wave instabilities. The pair density wave corresponds to the 4kf charge
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density wave. As for the charge sector, their bosonic expressions are

∆s = η
†
= ψ

†
3
2

ψ
†
− 3

2

− ψ
†
1
2

ψ
†
− 1

2

∝ e
i
√
πθc , Opdw = ψ

†
Rα
ψ

†
Rβ
ψLβψLα ∝ e

2i
√
πφc . (57)

The scaling dimensions for the singlet pairing and pair density wave orders are

1/(4Kc) and Kc, respectively. Hence, the pairing superfluidity dominates over the

pair-density-wave at Kc > 1/2. In the region of 1 > Kc > 1/2, pairing superfluidity

is the leading instability in an overall repulsive interaction environment.

The boundary between phase B quartetting (charge-4e) and phase C singlet

pairing (charge-2e) is determined by the unstable fixed point (gv = 0, gt → ∞),
which is approximately plotted in Fig. 7. The competitions between these two

phases can be mapped to a phase-locking problem of two-band superconductivity.

The first component is ∆1 = ψ
†
3
2

ψ
†
− 3

2

, and the second one ∆2 = ψ
†
1
2

ψ
†
− 1

2

, whose

bosonic representations are

∆1 ∝ e
i
√
πθ1

= e
i
√
π(θc+θr), ∆2 ∝ e

i
√
πθ2

= e
i
√
π(θc−θr), (58)

where the charge channel θc is the average phase and θr is the relative phase. In

fact, θr and its vortex, or, dual field φr, are of the spin quadrupole channel. The

bosonic expressions of the pairing and quartteting order parameters are expressed

as

∆s = ∆1 −∆2 ∝ e
i
√
πθc cos

√
πθr, Q = ∆1∆2 = e

i2
√
πθc cos 2

√
πφr. (59)

θc is power-law fluctuating, and does not play a role in the transition between quar-

tetting and pairing. It is the relative phase fluctuations that control the transition

as described by the sine-Gordon theory,

Heff =
1

2
{(∂xθr)2 + (∂xφr)2} +

1

2πa2
(λ1 cos 2

√
πθr + λ2 cos 2

√
πφr) , (60)

which contains cosine terms of both θr and φr. If λ1 > λ2, the relative phase θr is

pinned leading to the pairing order; otherwise if λ1 < λ2, the vortex (dual) field φr
is pinned giving rise to the quartetting order. The transition occurs at λ1 = λ2. Eq.

60 can be mapped to two free majorana fermions with masses m± = ∣λ1 ± λ2∣. One

channel becomes massless at the transition, which is the Ising critical point.

As a difference between the pairing and quartetting orders, there exist quartet

breaking processes of 4 → 1+ 3 → 1+ 1+ 2 and 4 → 2+ 2, which can be used to dis-

tinguish quartetting and pairing. The vortex lattice configurations is also different

for quartetting superfluidity. In the quartetting superfluid, the flux quantization

is hc/(4e), hence, the number of vortices should be doubled compared to those of

pairing superfluidity.

3.4. Color magnetism

The prominent multi-particle correlations also manifest in the SU(N) quantum an-

tiferromagnetism in the Mott insulating states at 1/N -filling, i.e., one fermion per
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site. The superexchange favors the tendency that every N sites form an SU(N) s-

inglet as dubbed “color magnetism” due to its similarity to the SU(3) gauge theory

of quantum chromodynamics in which 3 quarks form a color singlet.

In the one-dimensional Sp(4) Heisenberg chain in the fundamental spinor repre-

sentation, it has been found the ground state exhibit a period of four sites oscilla-

tion.
57,61

The plaquette tendency was investigated in the SU(4) symmetric Kugel

Khomskii model by diagonalization on a 4×4 sites.
142

The Majumdar-Ghosh model

were generalized to the SU(4) case in a ladder system whose ground state is solvable

as a direct product state of SU(4) plaquettes.
56

The 4-site SU(4) singlet plaquette

wavefunction can be written as
1

√
4!
εαβγδψ

†
α(1)ψ†

β
(2)ψ†

γ(3)ψ†
δ
(4)∣Ω⟩, (61)

which is a 4-particle maximally entangled EPR state.

Consider the SU(4) antiferromagnetism with each site in the fundamental repre-

sentation in a 3D cubic lattice. We construct the SU(4) resonating plaquette model

in 3D in analogous to the Rokhsar-Kivelson quantum dimer model in 2D square

lattice.
59,143

There exist three resonant configurations are the left-right, front-back,

up-bottom plaquette coverings in a cube as shown in Fig. 8.

The Rokhsar-Kivelson (RK) type Hamiltonian is constructed as:
144

H = −t ∑
each cube

{∣A⟩⟨B∣ + ∣B⟩⟨C∣ + ∣B⟩⟨C∣ + h.c.}

+ V ∑
each cube

{∣A⟩⟨A∣ + ∣B⟩⟨B∣ + ∣C⟩⟨C∣}, (62)

where t is assumed to be positive and V is the plaquette flipping amplitude. Sim-

ilarly to the RK point of the quantum dimer model, here at V /t = 2, the ground

state is the equal weight superposition of all plaquette configurations connected by

local flips.
143

The low energy physics of the quantum plaquette model can be mapped to a

gauge theory model, actually, it is a high order gauge theory. We assign each face

with an integer number n only taking values of 1 and 0: 1 corresponds to that

the plaquette is an SU(4) singlet, and 0, otherwise. The “electric field” at site i is

defined as a rank-2 symmetric traceless tensor

Ei,µν = η(i)(ni+ 1
2
µ̂+ 1

2
ν̂ −

1

2
), (63)

where η(i) = ±1 depending on the sublattice, and i + 1
2
µ̂ + 1

2
ν̂ refers to the location

of a face center. Since each site can only join one singlet, the sum of n over all the

twelve faces sharing the same site is constrained to be 1, which can be represented

as

∇x∇yExy + ∇y∇zEyz + ∇z∇xEzx = 5η(i), (64)

where ∇ is the lattice derivative. According to the standard electrodynamics, E is

conjugate to the vector potential Ai,µν , which is also a rank-2 tensor, as

[Ei,µν , Aj,ρσ] = iδij(δµρδνσ + δµσδνρ). (65)
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C

A B

Fig. 8. In the SU(4) Mott-insulator at quarter-filling, i.e., one particle per site in the fundamental
representation of SU(4). The superexchange interaction favors four sites of a plaquette form an

SU(4) singlet in analogous to the dimer formation in SU(2) antiferromagnetism. For a 3D cube,

there exist three flappable plaquette configurations, based on which a quantum plaquette model
can be constructed. It can be described by an effective high-rank gauge theory with conserved

electric dipoles instead of charges. From Ref.
59

Since E is like angular momentum taking integer numbers, A should behave as an

angular variable Ai,µν = η(i) θi+ 1
2
µ̂+ 1

2
ν̂ , which is compact with the period of 2π.

Then

[Ei,µν , eiAj,νσ ] = (δµρδνσ + δµσδνρ)eiAj,νσ . (66)

Then the plaquette flipping term in Eq. 62 is represented as

Ht = − t{ cos(∇zAxy − ∇xAyz) + cos(∇xAyz − ∇yAzx) + cos(∇yAzx − ∇zAxy)}.
(67)

The associated gauge invariant transformation is,

Aµν → Aµν + ∇µ∇νf, (68)

where f an arbitrary scalar function. The corresponding Gauss’s law becomes

∂i∂jEij = ρ. (69)

Its physical meaning has recently been revealed in the context of the “fracton”

physics, which is a recent focus in the condensed matter community for exotic states

of matter and has the potential of applications for topological quantum memory.
145

3.5. Half-filled SU(N) Hubbard models: Slater v.s. Mott physics

How interactions drive a partially filled band into an insulating state is an out-

standing problem. There exist two basic physical pictures - the Slater physics

(Fermi surface nesting) at weak coupling, and the Mott physics at strong coupling.

For the SU(2) case, the antiferromagnetic (AFM) order increases monotonically and

smoothly, no phase transition between the Slater and Mott regions.
146–148
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Fig. 9. QMC simulations on SU(N) Hubbard models to reveal how interaction effects scale with

with fermion component number N . a) The AFM orders of the SU(N)Hubbard models in the

square lattice as varying U and N . The AFM order shows a monotonically increase at N = 2 but
behaves different atN = 4 and 6. For the latter case, it starts to grow and then drop as increasing U .

In particular, the AFM orders is completely suppressed for the SU(6) case at U > Uc ≈ 15 at N = 6,

after which the VBS order appears. This shows a quantum phase transition as evolving from the
Slater physics to the Mott physics region. From Ref.

92
(b) QMC simulations of the relative band

width WR for the 1D SU(N) Hubbard model at half-filling. The results shown the convergence
from the itineracy and the local moment site asN →∞. The dashed lines shown as a guide from top

to bottom correspond to U/t = 0.5; 1.0; 2.0; 3.0; 5.0; 7.0; 9.0; 11.0; 13.0; 15.0; 17.0; 19.0, respectively.

The cross-over lines with U/t = 2 (marked red) separating the weak and strong interaction regions

are nearly N -independent. from Ref.
96

There exist qualitative differences between the Slater and Mott regimes for the

two-dimensional SU(N) Hubbard models arising from the enhanced spin and charge

fluctuations at N > 2. Previous large-N studies in the literature mostly focus on

the antiferromagnetic Heisenberg models.
54,149

In contrast, the interplay between

charge and spin physics is even more challenging, which could be investigated via

the sign-problem free quantum Monte-Carlo (QMC) simulations. The following

fermonic SU(N) Hubbard model at half-filling is employed,

H = −t∑
⟨ij⟩

{c†iαcjα + h.c.} + U∑
i

(n(i) − N

2
)
2

, (70)

where N is an even number. The U -term is written in the particle-hole symmetric

form, which pins the average particle number per site at N/2, i.e., half-filling.

QMC simulations indicate the fundamental difference between the SU(N) case

and SU(2) case as shown in Fig. 9 (a) for a square lattice. The AFM orders in

both SU(4) and SU(6) cases start to appear at small U in agreement with the

Slater physics, where the single-particle gaps are exponentially small. As U further

increases, the AFM orders reach the maxima and then decrease. Meanwhile, the

single-particle gaps scale linearly with U , marking the onsent of Mott physics. For

the SU(6) case, the AFM order is completely suppressed as at a large value of

Uc ≈ 15. Fitting the simulation data shows that the critical exponents of the AFM
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order with ν = 0.60 and η = 0.44.
93

At U > Uc, the transition to the valence-bond-

solid (VBS) state is found, which can be interpreted as the transition from the Slater

regime to the Mott regime where the local-moment super-exchange dominates.

How do interaction effects scale with N with fixing the filling level and the

interaction U? Sign-problem free QMC simulations have been performed for the

half-filled SU(N) Hubbard models in 1D to address this problem.
96

Based on simu-

lation results, we conjecture the existence of a universal interacting state as N →∞
explained as follows: The relative bandwidth is defined to reflect the correlation

strength,

WR(U,N ) = Ek,N (U )/EK (0), (71)

where EK,N (U ) is the kinetic energy per component with the interaction parameter

U and component number N , and EK (0) is that at U = 0. Hence WR(U = 0, N ) = 1

for the free system, and it becomes 0 in the strong coupling limit at U =∞. At small

values of U/t, say U/t ∼ 1, fermions are nearly itinerant, and correlations manifest

through inter-component collisions. Hence, WR(U,N ) decreases monotonically as

N increases which enhances the collision possibility resulting in the amplification

of correlations. In contrast, at large values of U/t, say, when U/t > 10, increasing

N softens the Mott insulating background. The kinetic energy gain from virtual

hoppings scales as N
2
t
2/U , hence, WR(U,N ) increases linearly as increasing N . In

the crossover region which lies around U/t ≈ 2, WR(U,N ) ≈ 0.9 nearly independent

on N . Although the simulation data are still inconclusive, we conjecture that

lim
N→∞

(1 −WR(U,N )) ≈ 0.9, (72)

which means an interacting large-N limit. It means that weak and strong interacting

systems are driven to a crossover region as N → ∞, but from opposite directions

exhibiting a convergence of itinerancy and Mottness. This shows the difference

from the fact that limN→∞ limU→0(1−WR(U,N )) = 0, i.e., there exists a singularity

at U → 0 and N → ∞. Other physical quantities, including Fermi distribution,

and the spin structure factor, also exhibit nearly N -independent behavior. More

analytic and numeric works are needed to further check if there exists a universal

strongly interacting limit with vanishing charge gaps as N → ∞, and its possible

connection to non-Fermi liquid states.

3.6. Discussions

The perspective of high symmetries (SU(N), Sp(N)) brings much richness and nov-

elty in studying large-spin ultra-cold fermions. The large numbers of spin compo-

nents render the system in the quantum large-N regime instead of the semi-classical

large-S regime. We have reviewed systematically the hidden Sp(4) symmetries in

spin- 3
2

systems, the unification based on the χ-pairing which is an SO(7) gener-

alization of Yang’s η-pairing. Quartet superfluidity, quartet density wave state,

and plaquette singlet formation in the Mott insulating state exhibit similar features
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of multi-particle clustering correlations analogous to the color singlet in quantum

chromodynamics. Interaction effects are varying the value of N are investigated,

which show a tendency of convergence of itinerancy and locality as N →∞.

On the experimental side, there have been significant progresses in the past

decades. The SU(6) symmetric
173

Yb
76,79

and SU(10) symmetric
87

Sr fermionic
81

atom systems have been experimentally realized. The electron-orbital degrees of

freedom as well as the nuclear spin leads to rich physics.
63,64

Various SU(N) sym-

metric quantum degenerate gases and Mott insulators in optical lattices have been

realized.
63,76,77,79–81

As for spin- 3
2

systems, there are a few candidate
132

Cs,
9
Be,

135
Ba and

137
Ba,

201
Hg. Considering the rapid development in this field, we also

expect that the exotic Sp(4) physics could also be experimentally investigated.

4. Unconventional magnetism and spontaneous spin-orbit ordering

In the non-relativistic Fermi liquid theory, spin is an internal symmetry indepen-

dent of orbital rotations, which rigorsly speaking should be denoted as “isospin”

instead of spin from the relativistic perspective. In the mechanism of unconven-

tional magnetic transitions, “isospin” develops entanglement with momentum ori-

entation and genuinely becomes the physical spin, hence, it shares the same spirit

of “spin-from-isospin” in gauge theories.
150

The consequential states can be viewed

as “non-s-wave” generalizations of ferromagnetic metals in which spin no longer

polarizes along a unique direction but varies with momentum forming a non-trivial

representation of the rotation group.
99,151

In other words, effective spin-orbit coupling is generated as an order parameter

through the Pomeranchuk type of Fermi surface instabilities, which is tunable by

external parameters such as temperature and pressure. Furthermore, similar to

magnetic fluctuations in ferromagnets, this effective spin-orbit coupling possesses

its dynamics as collective modes. This gives rise to a conceptually new mechanism

to generate spin-orbit coupling dynamically without involving relativity.
98,99

Due to

the richness of many-body physics, unconventional magnetism potentially provides

a new way to engineer spin-orbit couplings and to control electron spins.

4.1. Fermi liquid theory and Pomeranchuk instabilities

The unconventional magnetism aries from the Fermi liquid instabilities of the

Pomeranchuk type in the spin channel. In this subsection, we briefly review the

concept of the non-relativistic Fermi liquid theory and Pomeranchuk instability.
97

A large part of our current understanding on interacting electronic systems are

based on the Landau Fermi liquid theory, which was designed originally for the

normal state
3
He and also applies for most metals.

101,152
The central assumption is

the existence of the well-defined Fermi surface and fermionic quasi-particles, which

exist as long-lived states at very low energies. Interactions among quasi-particles are

describe by the Landau interaction function, which are forward scattering processes
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of quasi-particles near the Fermi surface. The Landau interaction function can

be classified into the density (particle-hole singlet ) and spin (particle-hole triplet)

channels, which are also traditionally denoted as symmetric (s) and asymmetric (a)

channels, respectively,

fαβ,γδ(k̂1, k̂2) = fs(k̂1, k̂2) + fa(k̂1, k̂2)σ⃗αβ ⋅ σ⃗γδ, (73)

where k̂ is the direction of quasi-particle momentum close to the Fermi surface. Each

of them can be further decomposed into different orbital partial wave channels as

f
s,a(k̂, k̂′) = ∑

l

f
s,a

l
Pl(k̂ ⋅ k̂′) (74)

where Pl is the l-th Legendre polynomial and l denotes the orbital angular momen-

tum of the partial wave channel.

In the Landau Fermi liquid theory, the interactions among quasi-particles are

captured by a few dimensionless Landau parameters

F
s,a

l
= N0f

s,a

l
, (75)

where N0 is the density of states on the Fermi surface. Physical susceptibility in

each channel acquires significant renormalizations by the Landau interactions,

χ
s(a)
FL,l

= χ
s(a)
0,l

1 + F s1 /3

1 + F s(a)
l

/(2l + 1)
. (76)

For example, spin susceptibility χ
a
0 lies in the F

a
0 channel, and compressibility χ

s
0

lies in the F
s
0 channel.

Pomeranchuk instabilities refer to a large class of Fermi surface instabilities of

Fermi surface distortions in both the density and spin channels.
97

In order for

the Fermi surface to be stable, Landau parameters F
s(a)
l

cannot be too negative.

Otherwise, Fermi surface distortions will occur. The Fermi surface could be viewed

as an elastic membrane in momentum space. Consider to perturb the Fermi surface

and expand the energy cost in different partial-wave channels. We arrive at

∆E

V
=

2π

N0
∑
lm

{(1 +
F
s,a

l

2l + 1
)∣δns,a

lm
∣2}, (77)

where δn
s(a)
lm

are amplitudes of Fermi surface distortions in partial-wave channels,

and V the system volume. The first term is the kinetic energy cost which is always

positive, while the second term is the interaction contribution, which can be either

positive or negative. When F
s,a

l
< −(2l + 1), the surface tension of the Fermi

surface goes negative, and develops instability in the corresponding channels, which

is consistent with the divergence of susceptibility in Eq. (76) at F
s,a

l
= −(2l + 1).

The most familiar Pomeranchuk instabilities are found in the s-wave channel,

i.e., ferromagnetism at F
a
0 < −1 and phase separation at F

s
0 < −1. Pomeranchuk

instabilities in non-s-wave wave channels (l ≥ 1) have been attracting a great deal

of attention in recent years.
98,99,153–165

The density channel instabilities result in
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uniform but anisotropic liquid (nematic) phases,
166

which have been investigated

in the context of doped Mott insulators,
167

high Tc materials.
160,167

Experimental

evidence has also been found in ultra-high mobility two-dimensional electron gases

(2DEG) in AlxGa1−xAs-GaAs heterostructures and quantum wells in large magnetic

fields, in nearly half-filled high Landau levels at very low temperatures,
168,169

and

near the metamagnetic transition of the ultra-clean samples of the bilayer ruthenate

Sr3Ru2O7.
170–172

Unconventional magnetism corresponds to Pomeranchuk instabilities in the spin

channel with l ≥ 1.
98,99,153,154,162–164

In Ref.,
98

these states are classified by the

author and Zhang as isotropic and anisotropic phases dubbed β and α-phases, re-

spectively. The α-phases was studied by many groups before: The p-wave phase was

first studied by Hirsch
153,154

under the name of the “spin-split” state, and was also

proposed by Varma et al.
162,163

as a candidate for the hidden order phenomena in

the heavy fermion compound URu2Si2; the d-wave phase was studied by Oganesyan

et al.
166

under the name of “nematic-spin-nematic” phase. Systematic studies of

ground state properties and collective excitations in both the anisotropic α and

isotropic β-phases have been performed.
99,151

Chubukov and Maslov found that

when approaching the ferromagnetic quantum critical point, the p-wave channel

spin Pomeranchuk instability develops before the ferromagnetic instability.
173

4.2. Unconventional magnetism as multipolar orderings

The unconventional magnetic order parameters are defined as multipolar parameters

in momentum space but not in coordinate space.
98,99

For simplicity, we first take

the 2D p-wave case as an example. Its order parameters are the x and y-spatial

components of spin-dipole moments defined as

n1 =
∣fa1 ∣
V

∑
k

s(k) k̂x, n2 =
∣fa1 ∣
V

∑
k

s(k) k̂y, (78)

where f
a
1 is the Landau interaction parameter defined in Eq. (74); k̂x,y = kx,y/∣k∣

are the p-wave angular form factors; s(k) = ⟨c†
kα
σ⃗αβckβ⟩ is the spin-moment of

momentum k, and ⟨⟩ means ground state expectation valule. Each of n1,2 is a 3-

vector in spin space. This is a natural generalization of the ferromagnetic moment

S = ∑k s(k) whose s-wave angular form factor is just a constant.

In the anisotropic p-wave α-phase depicted in Fig. 3 (C), the order parameter

configuration is equivalent to only one of n1 and n2 is nonzero, or more generally,

n1 ∥ n2. Their orientation in spin space is arbitrary. The order parameter configu-

ration in the p-wave β phase depicted in Fig. 3 (B) shows that ⟨nx1⟩ = ⟨ny
2
⟩ ≠ 0. More

generally, this is equivalent to both n1,2 ≠ 0 and their orientations are perpendicu-

lar to each other as n1 ⊥ n2. Using an optics analogy, the spin configuration over

the Fermi surface in the α-phase is linearly poloarized, while that in the β-phase is

circularly polarized.
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This order parameter definition can be easily generalized into other partial wave

channels in 2D and 3D systems by using the corresponding multipolar angular form

factors. For example, the 2D d-wave channel order parameters can be defined as

components of spin-quadrupole moments

n
d
1 =

∣fa2 ∣
V

∑
k

s(k) cos 2φk, n
d
2 =

∣fa2 ∣
V

∑
k

s(k) sin 2φk, (79)

where φk is the azimuthal angle of k. We could also combine them as a matrix

form n
µ,b

with each column representing a 3-vector nb. Below we will use both

the matrix and vector forms of order parameters according to which one is more

convenience in the context.

The 3D counterpart of these expressions can be written in terms of spherical

harmonic functions. Hence, in 3D the Latin label b of the order parameter n
µb

take

2l + 1 values, while the Greek index µ still takes x, y, z.

We consider a 2D Fermi-liquid system focusing on a general partial-wave

channel-l. Since there is no spin-orbit coupling, the symmetry is the direct product

SOL(2)⊗ SOS(3), where L and S refer to the orbit and spin channels, respectively.

The Landau interaction function f
l
a could depend on the total momentum q of the

particle-hole excitations with the assumption that

f (q) =
f
a
l

1 + κ∣fa
l
∣q2

, (80)

which gives rise to an interaction range ξ ≈

√
κ∣fa

l
∣. Mean-field theory is valid

when ξ ≫ d ≈ 1/kF , where d is the inter-particle distance. After the mean-field

decomposition, the mean-field Hamiltonian becomes

HMF = ∑
k

ψ
†
α(k) [ε(k) − µ − (n1 cos(lθk) + n2 sin(lθk)) ⋅ σ⃗]ψβ(k)

+
∣n1∣2 + ∣n2∣2

2∣fa
l
∣ . (81)

The validity of mean-field theory at quantum criticality requires an analysis of the

effects of quantum fluctuations which are not included in mean field theory.
174,175

To determine the ground state configuration of n⃗1,2, the Ginzburg-Landau (GL)

free energy is constructed as,

F (n1,n2) = γ1∂anb ⋅ ∂anb + r(n2
1 + n

2
2) + v1[n2

1 + n
2
2]2 + v2∣n1 × n2∣2. (82)

The coefficients r, v1,2 are calculated from mean-field free energy in Ref.,
99

whose

expressions are omitted here.

When l = 1, a new gradient term can appear which contains the linear order

spatial derivative and the cubic order of order parameters as

∆F (n1,n2) = γ2εµνλn
µa
n
νb
∂an

λb
= γ2{(∂xn2 − ∂yn1) ⋅ (n1 × n2)}, (83)

where γ2 can be calculated approximately as γ2 ≈
N0

vfk
2
f

with vf the Fermi velocity

and kf the Fermi momentum. Such a term is allowed because n1,2 are odd under
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parity transformation and even under time-reversal transformation, i.e., Pn1,2P
−1
=

−n1,2, and Tn1,2T
−1

= n1,2. It does not bring much effect in the normal phase

because it is at the cubic order of the order parameter. However, we will see in

Sect. 4.4.2, this term becomes important in the ordered p-wave β-phase, which

drives a Lifshitz transition spontaneously developing a chiral pitch.

Both α and β-phases are driven by the negative value of r, i.e., Fl < −2 in 2D.

Whether the ground state takes the β or α-phase depends on the sign of v2. If

v2 < 0, Eq. (82) favors n1 ⊥ n2, thus gives rise to the β-phase. On the other hand,

α-phase appears at v2 > 0, which favors n1 ∥ n2.

4.3. “Spin from isospin” in non-relativistic systems

B

1n
2n



W=1

Rashba

W=-1

C

1n
2n


Dresselhaus

A

xk
1n
2n

 yk

W=1

Gyro

Fig. 10. Spontaneous spin-orbit orderings in the β-phases. Order parameter configurations

and the momentum space vortices with the winding numbers w = ±1. (A)Gyrotropic (w = 1),

(B)Rashba (w = 1), (C) Dresselhaus (w = −1). From Ref.
99

Spin in the relativistic theory, by definition, is part of the generators of the

rotation transformation, hence, is always coupled to momentum as required by the

Lorentz invariance. While in the non-relativistic theory, it decouples from momen-

tum, and becomes an “isospin” type internal degree of freedom. The α and β-phases

entangle spin with momentum together via order parameters. In this sense, spin

genuinely changes from the status of “isospin” into spin. As we explained before,

this effective spin-orbit coupling arises from many-body interaction instead of from

the single-particle relativistic physics.

In the isotropic β-phase with l ≥ 1, spin winds around the Fermi surface ex-

hibiting a vortex-like structure in momentum space. For the 2D p-wave β-phase
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depicted in Fig. 10 A, its mean-field single particle Hamiltonian reads

HMF,β = ∑
k

ψ
†(k) [ε0(k) − µ − n̄(k̂xσx + k̂yσy)]ψ(k), (84)

where ∣n1∣ = ∣n2∣ = n̄. It exhibits a σ⃗ ⋅k type spin-orbit coupling, which is called the

gyrotropic spin-orbit coupling. The fermion spectrum is isotropic as ε(k) = ε0(k)± n̄
in the β-phase. Similarly to the ferromagnet, Fermi surfaces in the β-phase split

into large and small circles. However, they are characterized by helicity, the spin

projection along its momentum, not by spin polarization.

The symmetry breaking in the β-phases is particularly interesting. The normal

Fermi liquid state has both spin and orbital rotational symmetries. The state

depicted in Fig. 10 A is still isotropic where the total angular momentum J = L+S

remains conserved although L and S are no longer separately conserved. If we

fix momentum and only rotate spin, the configuration in Fig. 10 A changes. In

other words, the relative spin-orbit symmetry is broken, a concept first proposed

by Leggett in superfluid
3
He systems.

101

In solid state physics, Rashba and Dresselhaus are two familiar spin-orbit cou-

plings whose spin configurations in momentum space are depicted in Fig. 10 B and

C, which corresponds to order parameter configurations of (n1 ∥ ŷ, n2 ∥ −x̂), and

(n1 ∥ x̂, n2 ∥ −ŷ), respectively. These two spin-orbit couplings are equivalent to

the gyrotropic in Eq. (84) up to a global spin rotation. Starting from the config-

uration depicted Fig. 10 A, we can arrive at the Rashba configuration by fixing k

unchanged and rotating electron spin around z-axis at 90
◦

of each k. Similarly the

Dresselhaus configuration can be obtained by the rotation around x-axis at 180
◦

degree. These ground state spin configurations exhibit, in momentum space, the

vortex structures with the winding numbers w = ±1. In principle, we can perform

an abitary spin rotation to obtain all the equivalent states, thus the ground state

Goldstone manifold is [SOL(2) ⊗ SOS(3)/SO(2)J = SO(3).
This vortex picture in momentum space can be generalized into a general F

a
l

channel with the winding numbers ±l. In fact, the consequential generated spin-

orbit coupling pattern is beyond the relativity framework. In particular, for even

values of l, the dynamic spin-orbit orders break time-reversal symmetry, while the

relativistic spin-orbit coupling is time-reversal invariant. The mean field Hamilto-

nian Hβ,l for the β-phase in angular momentum channel l can be expressed through

a d-vector, defined by d(k) = (cos(lθk), sin(lθk), 0), as follows

Hβ,l = ∑
k

ψ
†(k) [ε(k) − µ − n̄d⃗(θk) ⋅ σ⃗)]ψ(k), (85)

where d(θk) is the spin quantization axis for single particle state at k. Each Fermi

surface is characterized by the eigenvalues ±1 of the helicity operators σ⃗ ⋅ d(k̂).
The mean field Hamiltonian in the anisotropic α-phase (Fig. 3 C) can be written

as

HMF,α = ∑
k

ψ
†(k){ε0(k) − µ − n̄k̂xσz}ψ(k). (86)
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The fermion spectra read ε(k) = ε0(k) ± n̄k̂x, and the spin up and down Fermi sur-

faces shift to left and right, respectively. This configuration is equivalent to the

combination of Rashba and Dresselhaus spin-orbit couplings with a equal strength.

It is anisotropic phase in both spin and orbit channels. Generally the Fermi surface

shift can along any in-plane direction, and the spin axis can pick any 3D direction.

In other words, we can perform either orbital rotation operation or spin rotation op-

eration to reach all other equivalent configurations, thus the ground state Goldstone

manifold is [SOL(2) ⊗ SOS(3)]/[SOS(2)] = SOL(2) ⊗ S2.

These β and α-phases are particle-hole channel analogies to the triplet p-wave

pairing superfluid
3
He-B and A phases, respectively. The order parameters in

3
He

are defined as x, y and z-spatial components of the dipole-moment of the Cooper

pairing amplitude over the Fermi surfaces.
101,176

They are defined as

∆i = ∑
k

∆(k) k̂i (i = x, y, z), (87)

where ∆(k) = ⟨c†α(k)(iσ2σ⃗)αβc†β(−k)⟩. Each one of ∆x,∆y and ∆z is a 3-vector

in spin space. In the B-phase, ∆x,y,z are perpendicular to each other forming a

triad. In the A-phase only two of them are nonzero with a phase difference of
π
2

, and they are parallel to each other in spin space. As a result, the B-phase is

essentially isotropic with a constant gap over the Fermi surface, while the A-phase

is anisotropic with nodes.

From the symmetry point of view, the unconventional magnetic β and α phases

exhibit the similar properties to the
3
He-B and A phases under spatial rotations.

The angular form factor of the pairing gap functions in the
3
He-B and A phases are

very similar to the Fermi surface splittings in the p-wave magnetic β and α-phases,

respectively.

4.4. Collective excitations in unconventional magnetic states

As a result of spontaneous symmetry breaking, unconventional magnetic states

exhibit low energy excitations, i.e., the Goldstone modes. In this subsection, we

review the collective Goldstone modes in both α and β-phases. Such modes are

absent in the conventional spin-orbit coupling systems.

4.4.1. Goldstone modes in the α-phase

we first comment on the stability of the p-wave α-phase. The Ginzburg-Landau

energy of Eq. (83) contains a cubic term linear in spatial derivatives. It might induce

a linear derivative coupling between the massless Goldstone modes at the quadratic

level via the non-vanishing order parameter, leading to a Lifshitz instability in the

ground state. However, as will be shown below the Goldstone modes in the α-phase

either share the same orbital or spin indices as the condensed mode, hence, they

cannot be coupled together by Eq. (83). Instead, the Goldstone modes couple to
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other gapped modes at the quadratic level through linear derivative terms, which

renormalizes the stiffness of the Goldstone modes.

The α-phases break rotational symmetries in both orbital and spin channels,

hence, the Goldstone modes can be classified into density and spin channel modes,

respectively. Without loss of generality, we assume the ordered configuration as

shown in Fig. 3 C,

⟨nµb⟩ = n̄δµzδb1, i.e. ,n1 = n̄êz,n2 = 0. (88)

In other words, spin configuration is along ±ẑ, and Fermi surface distortion is along

the x-axis. Among the 6-dimensional order paramerter space, three are Goldstone

modes as described by the manifold S
2⊗SOL(2), including one branch in the density

channel, and two branches in the spin channel.

The density channel Goldstone mode is the oscillation of the distorted Fermi

surface. The density channel Goldstone mode is associated with the field nz,2,

n
z
2(q) = −f

a
1 (q)
V

∑
k

ψ
†
k+qσ⃗ψkky, (89)

which describes the Fermi surface oscillation in the y-direction while keeping the

spin configuration unchanged. Calculations at the random-phase approximation

(RPA) level show the following effective Lagrangian,

L
α
FS(q, ω) = N0 [ qξ

2

∣F a
l
∣ − i

ω

2vfq
(1 + 2 cos 2φq).] (90)

This Goldstone mode is overdamped because of the Landau damping, and the damp-

ing depends on propagation directions.

The spin channel Goldstone modes nsp,x±iy describe spin oscillations while keep-

ing the Fermi surface unchanged, which are spin-dipole precession modes. In con-

trast, they exhibit nearly isotropic underdamped dispersion relation at small prop-

agating wavevectors with the dispersion relation

ω
2
x±iy =

n̄
2

∣F a
1
∣ (qξ)

2
. (91)

Different from spin-waves in the ferromagnets, the dispersion relation here is linear

with momentum, which is a consequence of time-reversal symmetry.

4.4.2. Goldstone modes in the β-phase

We further study the Goldstone modes in the β-phase. For simplicity, we consider

the 3D β-phase with the isotropic ground state exhibiting

n
µa

= n̄δµa. (92)

In other words, n1,2,3 form an orthogonal triad. The total angular momentum J

remains conserved, such that fluctuations of δn
µa

are classified into eigenstates of J

as Ojjz (q, ω). j = 0, 1, 2 mean the singlet, triplet and quintet channels respectively,
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and jz is the SO(2) quantum number rotating around the the propagation direction

q.

The Goldstone modes belong to the triplet channel (j = 1), which are the small

relative spin-orbit rotations as

O1,0(q, ω) =
1
√

2
εzµaδn

µa(q, ω), O1,±1(q, ω) =
1

2
(εxµa ± iεyµa)δnµa(q, ω). (93)

The RPA approximation gives their dispersion relations in the low energy and small

momentum regime ω, vfq ≪ n̄≪ vfkf as

ω
2
= 4n̄

2∣F a1 ∣(κq
2

Nf
+
jz∣q∣x
18kf

) (x = n̄

vfkf
, jz = 0,±1). (94)

The linear dependence on q in the dispersion Eq. (94) is due to the broken

parity in the ordered β phase. Consequently, ω
2

becomes negative for the branch

with helicity jz = −1 at small q, This means that the uniform ground state in the

β-phase is unstable, instead it exhibits a Lifshitz-like instability. This behavior is

a general feature in systems with broken parity such as the spiral order in helical

magnets, and the cholesteric liquid crystals.
177

The true ground state configuration

in the β phase is complicated with preliminary analysis presented in Ref.
99

4.4.3. Resonances in inelastic neutron scattering spectroscopy

The unconventional magnetic orders are spin-multipole moment in momentum s-

pace and cannot couple to neutron magnetic moments statically. Even in ordered

unconventional magnetic states, there should be no elastic Bragg peaks. The spin-

channel Goldstone modes in the α-phase do not couple to neutron moments directly,

nevertheless, they carry spin quantum numbers and thus couple to spin-wave modes

dynamically. Consider the following commutation relations,

[Sx, ny1] = in
z
1, [Sy, nx1] = −inz1. (95)

In the p-wave α-phase with the configuration given in Eq. (88), n
z
1 can be replaced

by the constants of ±in̄. As a result, the Goldstone modes n
x
1 and n

y

1
become

conjugate to spin polarization and couple to neutron spin moment dynamically.

More formally, we can write down the following coupling Lagrangian,

L = (n⃗1 × ∂tn⃗1 + n⃗2 × ∂tn⃗2) ⋅ S⃗. (96)

In the ordered state of Eq. (88), it is reduced to

L = n̄ (Sy∂tn1x − Sx∂tn1y) . (97)

The RPA approximation shows that the dynamic spin-spin correlation function

behaves as

χs(q, ω) = ⟨S+(q, ω)S−(−q,−ω)⟩ =
N0

ω
2

n̄2

κq2

N0
− 2

∣Fa
1
∣
ω2

n̄2 − iδ
. (98)
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Hence, it induces a resonance part in the transverse spin wave-excitations. The

spectral functions exhibit the δ-peak at the excitation energy of the Goldstone

mode,

Imχs(q, ω) = κπv2
f n̄

2
q

2∣F a1 ∣2δ(ω2
− ω

2
q ), (99)

which can be detected in the inelastic neutron scattering experiments. This is very

similar to the interpretation from the SO(5) theory to the neutron resonance mode:

the π-mode lies in the particle-particle channel which decouples from spin in the

normal state, but becomes conjugate to spin in the superconducting state giving

rise to the spin resonances.
29–31

Such a resonance peak only exhibits in the ordered phase, and vanishes in the

disordered phase. As shown in Eq. (97), in the anisotropic α-phases this reso-

nances only occur in spin-flip channels. Similar analysis can also be performed in

the isotropic β-phases, in which the resonates occur in both spin-flip and non-flip

channels.
99

4.5. Spin-orbit coupled Fermi liquid theory

So far we have considered the dynamic generation of spin-orbit coupling, or, “spin

from isospin”, in non-relativistic Fermi liquid theory. Nevertheless in many mate-

rials with heavy elements, there does exist the relativistic spin-orbit coupling.

If a system does not exhibit inversion symmetry, the relativistic spin-orbit cou-

pling leads to Fermi surface splitting, say, the Rashba type. In this case, the rel-

ativistic spin-orbit coupling behaves like an external field which would round off

the unconventional phase transition and pin down a particular spin-orbit order-

ing configuration. This situation is similar to cool a magnet below the transition

temperature in an external magnetic field.

On the other hand, if a system Hamiltonian still preserves both parity and time-

reversal symmetries, the Fermi surface should remain doubly degenerate. Spin-

orbit coupling does not manifest itself in the Fermi surface splitting but should

exhibit in the Landau Fermi liquid theory. Such a situation also occurs in the

presence of prominent magnetic dipolar interactions, which is only invariant under

simultaneous spin-orbit rotations. Landau-Fermi liquid theory has been extended

to this simulation,
178,179

and Pomeranchuk instabilities have also been studied in

this context.

In the inversion invariant spin-orbit coupling systems, the fermion distribution

function is reorganized in the spin-orbit coupled bases as

δnαα′ (k̂) = ∑
JJz ;LS

δnJJz ;LS YJJz ;LS(k̂, αα′), (100)

where YJJz;LS(k̂, αα′) is the spin-orbit coupled spherical harmonic functions

YJJz;LS(k̂, αα′) = ∑
msz

⟨LmSsz∣JJz⟩YLm(k̂)χSsz,αα′ , (101)
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and χSsz,αα′ is the bases for the particle-hole singlet (density) channel and triplet

(spin) channel, respectively. The Landau interaction function is generalized to the

interaction matrix,

N0

4π
fαα′;ββ′ (k̂, k̂′) = ∑

JJzLL
′

YJJz;L1(k̂, αα′)FJJzL1;JJzL
′1Y

†
JJz;L′1

(k̂, ββ′), (102)

where we only keep the particle-hole triplet component. The Landau matrix is

diagonal with respect to the total angular momentum J and its z-component Jz, but

may have off-diagonal elements with L ≠ L
′
. Constrained by the parity invariance,

L − L′ = 0, 2.

Similarly to the non-relativistic case, when there exists an eigenvalue of the Lan-

dau interaction matrix is negatively large, i.e, λ < −1, it triggers the Pomeranchuk

instability in the corresponding channel. For example, the instability in the channel

with J = 1
−
, L = S = 1, where “ − ” means odd parity, generates the 3D analogy of

the Rashba spin-orbit coupling,

Hso,1− = ∣n∣∑
k

ψ
†(k)(k × σ⃗) ⋅ l̂ψ(k), (103)

where l̂ is a 3D unit direction, ∣n∣ is the magnitude of the spin-orbit order parameter.

The Pomeranchuk instability promotes it to the single particle level by breaking the

rotational symmetry and parity.

Let us still use the order parameter n
µb

defined in Sect. 4.2 to represent the

order parameters in the sector L = S = 1 for a 3D inversion invariant spin-orbit

coupled Fermi liquid theory. The 3 × 3 matrix of n include three sectors of J =

0, 1, 2, which corresponds to pseudo-scalar (gryotropic), vector (Rashba), and tensor

(Dresselhaus) type spin-orbit coupling, respectively.

The Ginzburg-Landau free energy can be constructed as F = F0 +∆F ,

F0 = r0tr(nTn) + β1 (tr(nTn))2 + β2tr (nTn)2 ,

∆F =
r1

3
(trn)2 + r2

4
tr(nT − n)2. (104)

Under SOL(3) and SOS(3) rotations, n is transformed as n → TSnT
†
L

, where TL,S is

the rotation matrix in the orbit and spin channels, respectively. F0 is invariant under

independent TL and TS , and ∆F is only invariant under simultaneous spin-orbit

rotations. The r1,2 terms are analogy to magnetic anisotropy for magnetic phase

transitions, which lead to different types of universal classes. Then at the quadratic

level, the eigenvalues of the pseudo-scalar, vector, tensor channels are determined

by r0 + r1, r0 + r2, and r0, respectively. The actual ordering depends on which

eigenvalue is negatively most dominant. If the pseudo-scalar channel instability

dominates, the phase transition only breaks parity, which is an Ising type transition

without the Goldstone mode. If the vector channel instability dominates, there is

also rotational symmetry breaking with the Goldstone manifold S
2
. The symmetry

breaking pattern for the tensor ordering channel is more involved, the Goldstone

manifold is formally denoted as SO(3)/G, where G is the residual symmetry group
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in the ordered state. The nature of G depends on at which tensor component the

symmetry breaking takes place. Nevertheless, when β2 is included, the situation is

complicated, and the analysis of the phase diagram is deferred to another work.
?

4.6. Discussions

We are not aware of conclusive evidence for the existence of the unconventional

magnets. Taking into account the great discoveries of the unconventional supercon-

ductivity and pairing superfluidity in high Tc cuprates and
3
He, respectively, we are

optimistic that unconventional magnetic phases also exist in Nature. We propose

to systematically search for these new phases in
3
He, ultra-cold atomic systems,

semiconductors, heavy fermion materials and ruthenates, both in experiments and

in numerical simulations.

Unconventional magnetic orders are natural generalizations of itinerant ferro-

magnetism, whose driving force is still the exchange interaction. But it needs to

be in the non-local version, i.e., a non-s-wave channel. Nevertheless, interactions in

the high angular momentum channels are typically weak. In Ref.,
180

a heuristic ar-

gument is provided to employ the orbital hybridized band structure to promote the

Landau interaction to high partial-wave channels. Consider a dxz/dyz hybridized

orbital band. Around the Fermi surface, the Bloch wavefunction takes the orbital

configuration as

∣Ψα(k)⟩ = eikr (cosφk∣dxz⟩ + sinφk∣dyz⟩) ⊗ χα, (105)

where χα is the spin eigenstate. The Landau interaction at the Hartree-Fock level

is

f↑↑(k1k2) = V (q = 0) − 1

2
(1 + cos 2θk1k2

)V (k1 − k2),
f↑↓(k1k2) = V (q = 0). (106)

The appearance of the d-wave form factor cos 2θk1k2
is due to the orbital hybridiza-

tion, i.e., even though two electrons possess the same spin, they can still be distin-

guished by their orbital components. Hence, although V (k1 − k2) could be domi-

nated by the s-wave component, the angular form factor shifts a significant part of

the spectral weight into the d-wave channel. Based on this formalism, a possible

explanation of the nematic transition observed in Sr3Ru2O7 was provided.

Below we summarize several possible direction for searching unconventional mag-

netism. Ferromagnetic fluctuations in the normal state of
3
He are strong. The val-

ues of F1a of
3
He are measured as negative via normal-state spin diffusion constant,

spin-wave spectrum, and the temperature dependence of the specific heat.
181–184

It varies from around −0.5 to −1.2 with increasing pressures to the melting point,

reasonably close to the instability point F
a
1 = −3. We conjecture that

3
He could

support unconventional magnetism under certain conditions or exhibit strong fluc-

tuations of these orders.
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An important direction to search for unconventional magnetism is the so-called

“hidden-order” systems. Hidden orders typically mean that thermodynamic quanti-

ty measurements exhibit a transition to a low temperature ordered state. However,

the nature of the orders remains unknown since they do not exhibit themselves in

typical detections. Unconventional magnetic orders neither break translation sym-

metry nor exhibit magnetic orderings in real space. They are multipolar orderings

in momentum space, hence, they are difficult to detect via typical experimental

methods. Hence, they are natural candidates for hidden orders. In fact, multipolar

orderings in real space are also popular candidates for hidden orders in literature.

For example, the well-known system of heavy fermion compound URu2Si2, which

exhibits a mysterious phase transition at 17K by showing a large anomaly in spe-

cific heat. It also exhibits a jump in the non-linear magnetic susceptibility at the

transition. However, even with efforts after a few decades, the nature of this tran-

sition remains elusive.
185,186

Varma proposed an order, which is essentially the

p-wave α-phase in our language.
162,163

Calculations for thermodynamic quantities

fit in experiment measurements reasonably well. Another hidden order compound

Cd2Re2O7 exhibits heat capacity anomaly and a kink of DC resistivity around 200K.

Recently, it has been discovered that the hidden order phase exhibits inversion sym-

metry breaking via the optical 2nd harmonic generation measurements.
187,188

Since

this is a heavy element compound, Pomeranchuk instabilities of spin-orbit coupled

Fermi liquid theory may be a promising candidate.
179,189

An obstacle to identify unconventional magnetism is the lack of definitive ex-

perimental signatures and detection methods. We know that antiferromagnetism

is very common among transition metal oxides, more common than itinerant fer-

romagnetism. However, the experimental identification of the antiferromagnetic

ordering is only possible after the detection method of neutron scattering spec-

troscopy became available.

Maybe unconventional magnetism already exists somewhere, but we need to

think how to detect them. In addition to the inelastic neutron scattering resonances

(Sect. 4.4.3), we outline the following possible methods.

The β phases exhibit effective spin-orbit coupling, hence, standard methods to

detect spin-orbit coupling still apply. The distinctive feature is that the spin-orbit

coupling effects should turn on and off at a phase transition.

Transport measurements can be used to detect the dynamic generation of spin-

orbit coupling. For example, the existence of the anomalous Hall effect (AHE)

relies on spin-orbit coupling. Therefore, detecting the AHE signal turning on at a

phase transition would be an evidence of the onset of the entanglement of spin and

momentum. As for the d-wave α-phase, i.e., spin-↑ and spin-↓ Fermi surfaces exhibit

opposite quadrupolar distortions. Taking the principle axes of the quadrupolar

distortion as x and y-axis, it is straightforward to show that the spin and charge
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currents satisfy

( j
sp
x

j
sp
y

) ∝ (1 0

0 −1
) ( j

c
x

j
c
y
) . (107)

An verification of this transport relation would be a signature of the d-wave α-

phase.
99

Methods can detect Fermi surface splitting are useful. The angular resolved

photon emission spectroscopy (ARPES) can be used to detect the band splitting.

In fact, such experiment has been performed in the system with relativistic spin-

orbit coupling. In the unconventional magnetic phases, ARPES in principle can

measure temperature dependent Fermi surface splittings. Fermi surface splitting

also shows up in quantum oscillation experiments (e.g. Shubunikov-de Haas (SdH)

oscillations) as beat patterns. Hence, a temperature dependent beat pattern in this

kind of experiments would signature the developing of unconventional magnetism.

5. Conclusions

We presented several novel applications of the symmetry principle in condensed

matter and cold atomic systems.

First, we reviewed the construction of the concept of “space-time” group, which

provides a symmetry framework for studying transport and topological properties

in a variety of dynamic systems beyond the Floquet framework, such as laser-driven

solid state lattices, dynamic photonic crystals, and optical lattices. Various funda-

mental concepts are generalized, including space-time unit cell, momentum-energy

Brillouin zone, Bloch-Floquet theory. Novel non-symmorphic space-time transfor-

mations are identified including “time screw” rotation, “time glide” reflection, and

“time shift” rotary reflection. 13 space-time groups are classified in 1+1D with 5 of

them non-symmorphic, and 275 space-time group are classified in 2+1D. We expect

that space-time group will play an important role for studying dynamic systems, in

a similar way to space group for studying static crystals.

Second, we reviewed the progress of studying large-spin ultra-cold fermions from

the perspective of high symmetries. We show that due to enhanced quantum spin

fluctuations from the large fermion components, large spin cold fermions naturally

lie in the large-N region instead of the large-S region which is typically studied

in solids. A generic Sp(4), or, isomorphically, SO(5) symmetry is proved in spin- 3
2

systems, which plays the similar role of SU(2) in spin- 1
2

systems. This symmetry can

be upgraded to SO(7) under certain conditions which extends Yang’s η-pairing to

χ-pairing as its high rank Lie algebra counterpart. The 7D vector and 21D adjoint

representations of SO(7) unify a variety of competing orders in both particle-particle

and particle-hole channels. Large-spin systems can exhibit multi-particle clustering

orderings or correlations both in the superfluid state with attractions and in the

super-exchange physics with repulsions, which is similar to 3-quark baryon (color

singlet) formation in high energy physics. The competitions among quarteting
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superfluidity/density-wave and pairing superfluidity/density-wave are investigated.

The SU(4) singlet plaquette states in a 3D cubic lattice can be described by a

quantum plaquette model, whose effective description is mapped to a high order

gauge theory. We anticipate that research along this direction can bridge cold atom

physics, condensed matter matter, and high energy physics together. Along with

the experiment progress, even more exotic strong coupling physics that is not easily

accessible in usual solid state systems could be investigated.

At last, we reviewed the unconventional magnetism as a mechanism of “spin from

isospin” to generate spin-orbit coupling in non-relativistic Fermi liquids. They are

also novel states of itinerant electrons generalzing ferromagnetism to unconventional

symmetries based on the Fermi surface instabilities of the Pomeranchuk type. These

states include the isotropic β-phase and the anisotropic α-phase, which are is the

particle-hole channel analogy to the superfluid
3
He-B and A phases, respectively.

Different from the relativistic spin-orbit coupling, these dynamically generated spin-

orbit couplings possess collective excitations of Goldstone modes, whose dynamics

couples to spin moment and induces resonances in the inelastic neutron scattering

spectroscopy. Possible realizations of “unconventional magnetism” in hidden order

systems and experimental detections are discussed.
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