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Introduction 

• Quantum spin Hall insulators:  gapped bulk and gapless edge 
modes.

• Stability of the gapless edge modes against impurity, 
disorder, magnetic impurity under strong interactions.
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QSHE edges: Helical Luttinger liquids (HLL) 

• Edge modes are characterized by helicity. 

• Right-movers with spin up, and  left-movers with spin down:     

• n-component HLL: n-branches of time-reversal pairs (T2=-1).

• HLL with an odd number of components are special.

chiral Luttinger liquids in quantum Hall edges break TR symmetry; 

spinless non-chiral Luttinger liquids: T2=1;

non-chiral spinful Luttinger liquids have an even number of 
branches of  TR pairs.
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lower edge
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EF

The no-go theorem for helical Luttinger liquids

• 1D HLL with an odd number of components can NOT be 
constructed in a purely 1D lattice system. 

H. B. Nielsen et al., Nucl Phys. B 185, 20 (1981); C. Wu et al., Phys. Rev. Lett. 96, 106401 (2006).

• Double degeneracy occurs at  
k=0 and π.

• Periodicity of the Brillouin zone.
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• HLL with an odd number of 
components can appear as the 
edge states of a 2-D system.
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Instability: the single-particle back-scattering
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• Single particle backscattering term breaks TR symmetry (T2=-1).

• Kane and Mele : The non-interacting 
helical systems with an odd number of 
components remain gapless against 
disorder and impurity scatterings.

• The non-interacting Hamiltonian.

)(0 ↓
+
↓↑

+
↑ ∂−∂= ∫ LxLRxRf iidxvH ψψψψ

not 
allowed

• However, with strong interactions, HLL can indeed open the 
gap from another mechanism.
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Two-particle correlated back-scattering
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• TR symmetry allows two-particle correlated back-scattering.

• Effective Hamiltonian:
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• Microscopically, this Umklapp process can be generated 
from anisotropic spin-spin interactions.

zzyyxx ssssss →−→−→ ,,• U(1) rotation symmetry Z2.
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Bosonization+Renormalization group

• Sine-Gordon theory if the Fermi wave vector is commensurate 
kf=π/2.
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• If K<1/2 (strong repulsive interaction), the gap Δ opens. 
Order parameters 2kf SDW orders Nx (gu<0) or Ny at (gu>0) . 
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• At                 , TR symmetry must be restored by thermal 
fluctuations and the gap remains.

K0>>>Δ T

• TR symmetry is spontaneously broken in the ground state.
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Random two-particle back-scattering 

• Scattering amplitudes                are quenched Gaussian 
variables.

))(16cos(
)(2
)(
2int x

a
xgdxH u αφπ

π
+= ∫

• If Kc<3/8,  gap Δ opens. SDW order is spatially disordered but 
static in the time domain. 

• TR symmetry is spontaneously broken.

• At small but finite temperatures, gap remains but TR is 
restored by thermal fluctuations.
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Giamarchi, Quantum physics in one dimension, oxford press (2004).
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Single impurity scattering
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• If K<1/4, gu term is relevant. 1D line is divided into two 
segments.

• During each instanton process, half an electron tunnels, 
which is due to the backscattering of two particles. 

C. Kane and M. P. A. Fisher, PRB 46, 15233 (1992).

• Boundary Sine-Gordon equation.
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Kondo problem: magnetic impurity scattering
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• Poor man RG: critical coupling Jz is shifted by interactions.

• If K<1 (repulsive interaction), the Kondo singlet can form 
with ferromagnetic couplings.
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Summary

• Helical Luttinger liquid (HLL)  as edge states of QSHE systems.

• No-go theorem: HLL with odd number of components can 
not be constructed in a purely 1D lattice system.

• Instability problem: Two-particle correlated back-scattering is 
allowed by TR symmetry, and becomes relevant at:

Kc<1/2  for Umklapp scattering at commensurate fillings.

Kc<3/8  for random disorder scattering.

Kc<1/4  for a single impurity scattering.

• Critical Kondo coupling Jz is shifted by interaction effects.
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