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Introduction

e Quantum spin Hall insulators: gapped bulk and gapless edge
modes.
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o Stability of the gapless edge modes against impurity,
disorder, magnetic impurity under strong interactions.
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QSHE edges: Helical Luttinger liguids (HLL)

e Edge modes are characterized by helicity.
e Right-movers with spin up, and left-movers with spin down:

e n1-component HLL: 7~branches of time-reversal pairs (T?=-1).
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e HLL with an odd number of components are special.

chiral Luttinger ligquids in quantum Hall edges break TR symmetry;
spinless non-chiral Luttinger liquids: T?=1;

non-chiral spinful Luttinger liquids have an even number of
branches of TR pairs.



The no-go theorem for helical Luttinger liquids

e 1D HLL with an odd number of components can NOT be
constructed in a purely 1D lattice system.
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e Double degeneracy occurs at e HLL with an odd number of

k=0 and 7. components can appear as the

o o edge states of a 2-D system.
e Periodicity of the Brillouin zone.
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Instability: the single-particle back-scattering

e The non-interacting Hamiltonian.
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allowed
e Kane and Mele : The non-interacting
helical systems with an odd number of
components remain gapless against
disorder and impurity scatterings.

» Single particle backscattering term breaks TR symmetry (T?=-1).
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e However, with strong interactions, HLL can indeed open the
gap from another mechanism. 5



Two-particle correlated back-scattering

e TR symmetry allows two-particle correlated back-scattering.

- - 1

G, (t.0)=(G| Wer, O, ® ¥, O, O[G) 20

Him =<Z>:Sx(i)3x(j)—8y(i)8y(1),
Of;Sx(i)Sy(j)JrSy(i)Sx(j)

e Microscopically, this Umklapp process can be generated
from anisotropic spin-spin interactions.

e Effective Hamiltonian: H,,=9, f dxe™ y (i (X+E)w | (X+&)w,, (X)+he.

e U(1) rotation symmetry - Z,. Sx =S¢ S, > ~S,, §, =25,



Bosonization+Renormalization group

e Sine-Gordon theory if the Fermi wave vector is commensurate
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e |f K<1/2 (strong repulsive interaction), the gap A opens.
Order parameters 2k, SDW orders N, (g,<0) or N, at (g,>0) .
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TR symmetry is spontaneously broken in the ground state.

e At A>>T>0K TR symmetry must be restored by thermal
fluctuations and the gap remains.



Random two-particle back-scattering

e Scattering amplitudes 9. (x)e“™ are quenched Gaussian
variables.
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Giamarchi, Quantum physics in one dimension, oxford press (2004).

e |If Kc<3/8, gap A opens. SDW order is spatially disordered but
static in the time domain.

e TR symmetry is spontaneously broken.

e At small but finite temperatures, gap remains but TR is
restored by thermal fluctuations.



Single iImpurity scattering
e Boundary Sine-Gordon equation.
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C. Kane and M. P. A. Fisher, PRB 46, 15233 (1992).
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 If K<1/4, g, term is relevant. 1D line is divided into two
segments.

e During each instanton process, half an electron tunnels,

which is due to the backscattering of two particles.
N

X,y

S
WA

N, oc cosv4zg, N, ocsiny4zg



Kondo problem: magnetic impurity scattering
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e Poor man RG: critical coupling J, is shifted by interactions.

e |f K<1 (repulsive interaction), the Kondo singlet can form
with ferromagnetic couplings.
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Summary

e Helical Luttinger liquid (HLL) as edge states of QSHE systems.

e No-go theorem: HLL with odd number of components can
not be constructed in a purely 1D lattice system.

e |Instability problem: Two-particle correlated back-scattering is
allowed by TR symmetry, and becomes relevant at:

K.<1/2 for Umklapp scattering at commensurate fillings.
K.<3/8 for random disorder scattering.

K.<1/4 for a single impurity scattering.

» Critical Kondo coupling J, is shifted by interaction effects.
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