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Chapter 1

Some intuitive notions of groups.

In this chapter we will discuss the definition and the properties of a group. As an
example we will study the symmetric groups Sn of permutations of n objects.

1.1 What is a group?

For our purpose it is sufficient to consider a group G as a set of operations, i.e.:

G = {g1, g2, · · · , gp}. (1.1)

Each element gi (i = 1, · · · , p) of the group G ( 1.1) represents an operation. Groups
can be finite as well as infinite. The number of elements of a finite group is called
the order p of the group.
As an example let us study the group S3 of permutations of three objects. Let us

define as objects the letters A, B and C. With those objects one can form ”three-
letter” words, like ABC and CAB (six possibilities). We define the operation of an
element of S3 on a ”three-letter” word, by a reshuffling of the order of the letters in
a word, i.e.:

gi(word) = another (or the same) word. (1.2)

Let us denote the elements of S3 in such a way that from the notation it is
immediatly clear how it operates on a ”three-letter” word, i.e. by:

g1 = [123] = I, g2 = [231], g3 = [312],
g4 = [132], g5 = [213], and g6 = [321].

Table 1.1: The elements of the permutation group S3.

Then, we might define the action of the elements of the group S3 by:

[123](ABC) =







the 1st letter remains in the 1st position

the 2nd letter remains in the 2nd position

the 3rd letter remains in the 3rd position







= ABC
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[231](ABC) =







the 2nd letter moves to the 1st position

the 3rd letter moves to the 2nd position

the 1st letter moves to the 3rd position







= BCA

[312](ABC) =







the 3rd letter moves to the 1st position

the 1st letter moves to the 2nd position

the 2nd letter moves to the 3rd position







= CAB

[132](ABC) =







the 1st letter remains in the 1st position

the 3rd letter moves to the 2nd position

the 2nd letter moves to the 3rd position







= ACB

[213](ABC) =







the 2nd letter moves to the 1st position

the 1st letter moves to the 2nd position

the 3rd letter remains in the 3rd position







= BAC

[321](ABC) =







the 3rd letter moves to the 1st position

the 2nd letter remains in the 2nd position

the 1st letter moves to the 3rd position







= CBA

(1.3)

In equations ( 1.3) a definition is given for the operation of the group elements of
table ( 1.1) at page 1 of the permutation group S3. But a group is not only a set of
operations. A group must also be endowed with a suitable definition of a product.
In the case of the example of S3 such a product might be chosen as follows:
First one observes that the repeated operation of two group elements on a ”three-

letter” word results again in a ”three-letter” word, for example:

[213] ([312](ABC)) = [213](CAB) = ACB. (1.4)

Then one notices that such repeated operation is equal to one of the other oper-
ations of the group; in the case of the above example ( 1.4) one finds:

[213] ([312](ABC)) = ACB = [132](ABC). (1.5)

In agreement with the definition of the product function in Analysis for repeated
actions of operations on the ”variable” ABC, we define here for the product of group
operations the following:

([213] ◦ [312]) (ABC) = [213] ([312](ABC)) . (1.6)

From this definition and the relation ( 1.5) one might deduce for the product of
[213] and [312] the result:

[213] [312] = [132]. (1.7)

Notice that, in the final notation of formula ( 1.7) for the product of two group
elements, we dropped the symbol ◦, which is used in formula ( 1.6). The product of
group elements must, in general, be defined such, that the product of two elements
of the group is itself also an element of the group.
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The products between all elements of S3 are collected in table (1.2) below. Such
table is called the multiplication table of the group. It contains all information on
the structure of the group; in the case of table ( 1.2), of the group S3.

S3 b I [231] [312] [132] [213] [321]

a ab
I I [231] [312] [132] [213] [321]

[231] [231] [312] I [321] [132] [213]
[312] [312] I [231] [213] [321] [132]
[132] [132] [213] [321] I [231] [312]
[213] [213] [321] [132] [312] I [231]
[321] [321] [132] [213] [231] [312] I

Table 1.2: The multiplication table of the group S3.

The product which is defined for a group must have the following properties:

1. The product must be associative, i.e.:

(

gigj

)

gk = gi

(

gjgk

)

. (1.8)

2. There must exist an identity operation, I. For example the identity operation
for S3 is defined by:

I = [123] i.e. : I(ABC) = ABC. (1.9)

3. Each element g of the group G must have its inverse operation g−1, such that:

gg−1 = g−1g = I. (1.10)

From the multiplication table we find for S3 the following results for the inverses of
its elements:

I−1 = I , [231]−1 = [312] , [312]−1 = [231] ,

[132]−1 = [132] , [213]−1 = [213] , [321]−1 = [321] .

Notice that some group elements are their own inverse. Notice also that the group
product is in general not commutative. For example:

[312][132] = [213] 6= [321] = [132][312].

A group for which the group product is commutative is called an Abelian group.
Notice moreover from table ( 1.2) that in each row and in each column appear

once all elements of the group. This is a quite reasonable result, since:

if ab = ac , then consequently b = a−1ac = c .
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1.2 The cyclic notation for permutation groups.

A different way of denoting the elements of a permutation group Sn is by means of
cycles (e.g. (ijk · · · l)(m)). In a cycle each object is followed by its image, and the
image of the last object of a cycle is given by the first object, i.e.:

(ijk · · · l)(m) =







i → j
j → k
k → .

...
. → l
l → i
m → m







for the numbers i, j, k, . . . l
all different.

(1.11)

For example, the cyclic notation of the elements of S3 is given by:

[123] =







1 → 1
2 → 2
3 → 3







= (1)(2)(3)

[231] =







2 → 1
3 → 2
1 → 3







= (132) = (321) = (213)

[312] =







3 → 1
1 → 2
2 → 3







= (123) = (231) = (312)

[132] =







1 → 1
3 → 2
2 → 3







= (1)(23) = (23) = (32)

[213] =







2 → 1
1 → 2
3 → 3







= (12)(3) = (12) = (21)

[321] =







3 → 1
2 → 2
1 → 3







= (13)(2) = (13) = (31)

(1.12)

As the length of a cycle one might define the amount of numbers which appear
in between its brackets. Cycles of length 2, like (12), (13) and (23), are called
transpositions. A cycle of length l is called an l-cycle.
Notice that cycles of length 1 may be omitted, since it is understood that positions

in the ”n-letter” words, which are not mentioned in the cyclic notation of an element
of Sn, are not touched by the operation of that element on those words. This leads,
however, to some ambiguity in responding to the questions as to which group a
certain group element belongs. For example, in S6 the meaning of the group element
(23) is explicitly given by:

(23) = (1)(23)(4)(5)(6).
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In terms of the cyclic notation, the multiplication table of S3 is given in table
( 1.3) below.

S3 b I (132) (123) (23) (12) (13)

a ab
I I (132) (123) (23) (12) (13)

(132) (132) (123) I (13) (23) (12)
(123) (123) I (132) (12) (13) (23)
(23) (23) (12) (13) I (132) (123)
(12) (12) (13) (23) (123) I (132)
(13) (13) (23) (12) (132) (123) I

Table 1.3: The multiplication table of S3 in the cyclic notation.

As the order q of an element of a finite group one defines the number of times it
has to be multiplied with itself in order to obtain the identity operator. In table
( 1.4) is collected the order of each element of S3. One might notice from that
table that the order of an element of the permutation group S3 (and of any other
permutation group) equals the length of its cyclic representation.

element (g) order (q) gq

I 1 I
(132) 3 (132)(132)(132) = (132)(123) = I
(123) 3 (123)(123)(123) = (123)(132) = I
(23) 2 (23)(23) = I
(12) 2 (12)(12) = I
(13) 2 (13)(13) = I

Table 1.4: The order of the elements of S3.

Let us study the product of elements of permutation groups in the cyclic notation,
in a bit more detail. First we notice for elements of S3 the following:

(12)(23) =







1 → 1 → 2
2 → 3 → 3
3 → 2 → 1







= (123)

(123)(31) =







1 → 3 → 1
2 → 2 → 3
3 → 1 → 2







= (23) (1.13)

i.e. In multiplying a cycle by a transposition, one can add or take out a number
from the cycle, depending on whether it is multiplied from the left or from the right.
In the first line of ( 1.13) the number 1 is added to the cycle (23) by multiplying
it by (12) from the left. In the second line the number 1 is taken out of the cycle
(123) by multiplying it from the right by (13).
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These results for S3 can be generalized to any permutation group Sn, as follows:

For the numbers i1, i2, . . ., ik all different:

(i1 i2)(i2 · · · ik) =







i1 → i1 → i2
i2 → i3 → i3
i3 → i4 → i4

...
ik → i2 → i1







= (i1 i2 · · · ik)

(i1 i2 i3)(i3 · · · ik) =







i1 → i1 → i2
i2 → i2 → i3
i3 → i4 → i4

...
ik → i3 → i1







= (i1 i2 · · · ik)

etc (1.14)

and : (i1 · · · ik)(ik i1) =







i1 → ik → i1
i2 → i2 → i3
i3 → i3 → i4

...
ik → i1 → i2







= (i2 · · · ik)

(i1 · · · ik)(ik i2 i1) =







i1 → ik → i1
i2 → i1 → i2
i3 → i3 → i4

...
ik → i2 → i3







= (i3 · · · ik)

etc (1.15)

From the above procedures ( 1.14) and ( 1.15) one might conclude that starting
with only its transpositions, i.e. (12), (13), . . ., (1n), (23), . . ., (2n), . . ., (n− 1, n),
it is possible, using group multiplication, to construct all other group elements of
the group Sn, by adding numbers to the cycles, removing and interchanging them.
However, the same can be achieved with a more restricted set of transpositions, i.e.:

{(12), (23), (34), . . . , (n− 1, n)}. (1.16)

For example, one can construct the other elements of S3 starting with the transpo-
sitions (12) and (23), as follows:

I = (12)(12), (132) = (23)(12), (123) = (12)(23) and (13) = (12)(23)(12) .

This way one obtains all elements of S3 starting out with two transpositions and
using the product operation which is defined on the group.
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For S4 we may restrict ourselves to demonstrating the construction of the re-
maining transpositions, starting from the set {(12), (23), (34)}, because all other
group elements can readily be obtained using repeatingly the procedures ( 1.14) and
( 1.15). The result is shown below:

(13) = (12)(23)(12) ,

(14) = (12)(23)(12)(34)(12)(23)(12) and

(24) = (23)(12)(34)(12)(23) .

For other permutation groups the procedure is similar as here outlined for S3 and
S4.
There exist, however, more interesting properties of cycles: The product of all

elements of the set of transpositions shown in ( 1.16), yields the following group
element of Sn:

(12)(23)(34) · · · (n− 1, n) = (123 · · ·n) .

It can be shown that the complete permutation group Sn can be generated by the
following two elements:

(12) and (123 · · ·n). (1.17)

We will show this below for S4. Now, since we know already that it is possible to
construct this permutation group starting with the set {(12), (23), (34)}, we only
must demonstrate the construction of the group elements (23) and (34) using the
generator set {(12), (1234)}, i.e.:

(23) = (12)(1234)(12)(1234)(1234)(12)(1234)(1234)(12) and

(34) = (12)(1234)(1234)(12)(1234)(1234)(12) .

Similarly, one can achieve comparable results for any symmetric group Sn.
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1.3 Partitions and Young diagrams

The cyclic structure of a group element of Sn can be represented by a partition of
n. A partition of n is a set of positive integer numbers:

[n1, n2, · · · , nk] (1.18)

with the following properties:

n1 ≥ n2 ≥ · · · ≥ nk , and n1 + n2 + · · ·+ nk = n.

Such partitions are very often visualized by means of Young diagrams as shown
below.

A way of representing a partition [n1, n2, · · · , nk ], is by
means of a Young diagram, which is a figure of n boxes
arranged in horizontal rows: n1 boxes in the upper row, n2

boxes in the second row, · · ·, nk boxes in the k-th and last
row, as shown in the figure.

n1

n2
...

nk

Let us assume that a group element of Sn consists of a n1-cycle, followed by a
n2-cycle, followed by . . ., followed by a nk-cycle. And let us moreover assume that
those cycles are ordered according to their lengths, such that the largest cycle (n1)
comes first and the smallest cycle (nk) last. In that case is the cyclic structure of
this particular group element represented by the partition ( 1.18) or, alternatively,
by the above Young diagram. In table ( 1.5) are represented the partitions and
Young diagrams for the several cyclic structures of S3.

Cyclic notation partition Young diagram

(1)(2)(3) [13]=[111]

(132) (123) [3]

(1)(23) (13)(2) (12)(3) [21]

Table 1.5: The representation by partitions and Young diagrams of the cyclic struc-
tures of the permutation group S3.
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1.4 Subgroups and cosets

It might be noticed from the multiplication table ( 1.3) at page 5 of S3, that if one
restricts oneself to the first three rows and columns of the table, then one finds the
group A3 of symmetric permutations of three objects. In table ( 1.6) those lines and
columns are collected.

A3 b I (132) (123)

a ab
I I (132) (123)

(132) (132) (123) I
(123) (123) I (132)

Table 1.6: The multiplication table of the group A3 of symmetric permutations of
three objects.

Notice that A3 = {I, (231) (321)} satisfies all conditions for a group: existence of
a product, existence of an identity operator, associativity and the existence of the
inverse of each group element. A3 is called a subgroup of S3.

Other subgroups of S3 are the following sets of operations:

{I, (12)} , {I, (23)} , and {I, (13)} . (1.19)

A coset of a group G with respect to a subgroup S is a set of elements of G which
is obtained by multiplying one element g of G with all elements of the subgroup S.
There are left- and right cosets, given by:

gS represents a left coset and Sg a right coset. (1.20)

In order to find the right cosets of S3 with respect to the subgroup A3, we only
have to study the first three lines of the multiplication table ( 1.3) at page 5 of S3.
Those lines are for our convenience collected in table ( 1.7) below.

A3 b I (132) (123) (23) (12) (13)

a ab
I I (132) (123) (23) (12) (13)

(132) (132) (123) I (13) (23) (12)
(123) (123) I (132) (12) (13) (23)

Table 1.7: The right cosets of S3 with respect to its subgroup A3.

Each column of the table forms a right coset A3g of S3. We find from table ( 1.7)
two different types of cosets, i.e.: {I, (132), (123)} and {(23), (12), (13)}. Notice
that no group element is contained in both types of cosets and also that each group
element of S3 appears at least in one of the cosets of table ( 1.7).

This is valid for any group:

9



1. Either Sgi = Sgj , or no group element in Sgi coincides with a group element
of Sgj .

This may be understood as follows: Let the subgroup S of the group G be given
by the set of elements {g1, g2, . . ., gk}. Then we know that for a group element
gα of the subgroup S the operator products g1gα, g2gα, . . ., gkgα are elements of
S too. Moreover we know that in the set {g1gα, g2gα, . . ., gkgα} each element of
S appears once and only once. So, the subgroup S might alternatively be given
by this latter set of elements. Now, if for two group elements gα and gβ of the

subgroup S and two elements gi and gj of the group G one has gαgi = gβgj , then

also g1gαgi = g1gβgj , g2gαgi = g2gβgj , . . . gkgαgi = gkgβgj . Consequently, the

two cosets are equal, i.e.

{g1gαgi, g2gαgi, . . . , gkgαgi} = {g1gβgi, g2gβgi, . . . , gkgβgi} ,

or equivalently Sgi = Sgj .

2. Each group element g appears at least in one coset. This is not surprising,
since I belongs always to the subgroup S and thus comes g = Ig at least in the
coset Sg.

3. The number of elements in each coset is equal to the order of the subgroup S.

As a consequence of the above properties for cosets, one might deduce that the
number of elements of a subgroup S is always an integer fraction of the number of
elements of the group G, i.e.:

order of G

order of S
= positive integer. (1.21)

A subgroup S is called normal or invariant, if for all elements g in the group G
the following holds:

g−1Sg = S. (1.22)

One might check that A3 is an invariant subgroup of S3.
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1.5 Equivalence classes

Two elements a and b of a group G are said to be equivalent, when there exists a
third element g of G such that:

b = g−1 a g . (1.23)

This definition of equivalence has the following properties:

1. Each group element g of G is equivalent to itself, according to:

g = Ig = g−1 g g . (1.24)

2. If a is equivalent to b and a is also equivalent to c, then b and c are equivalent,
because according to the definition of equivalence ( 1.23) there must exist group
elements g and h of G such that:

c = h−1ah = h−1g−1bgh = (gh)−1b(gh) , (1.25)

and because the product gh must represent an element of the group G.
Because of the above properties ( 1.24) and ( 1.25), a group G can be subdivided

into sets of equivalent group elements, the so-called equivalence classes.

S3 b I (132) (123) (23) (12) (13)

a b−1ab
I I I I I I I

(132) (132) (132) (132) (123) (123) (123)
(123) (123) (123) (123) (132) (132) (132)
(23) (23) (13) (12) (23) (13) (12)
(12) (12) (23) (13) (13) (12) (23)
(13) (13) (12) (23) (12) (23) (13)

Table 1.8: The equivalence operation for all elements of the group S3.

In table ( 1.8) we have constructed all possible group elements g−1ag which are
equivalent to group element a of the group S3. Every horizontal line in that table
contains the group elements of one equivalence class of S3.
Notice from table ( 1.8) that group elements which have the same cyclic structure

are in the same equivalence class of S3. Whereas, group elements with different
cyclic structures are in different equivalence classes of S3.
In table ( 1.5) at page 8 are separated the group elements of S3 which belong to

different equivalence classes, as well as the representation of their cyclic structure
by partitions and Young diagrams. From that table it might be clear that for
S3 and similarly for the other permutation groups, the equivalence classes can be
represented by partitions and Young diagrams.

11



As an example of an other permutation group, we collect in table ( 1.9) the
equivalence classes and their representations by partitions and Young diagrams of
the group S4.

Equivalence class partition Young diagram

(1)(2)(3)(4) [1111]

(1)(2)(34) (1)(23)(4) (1)(24)(3)
(12)(3)(4) (13)(2)(4) (14)(2)(3)

[211]

(12)(34) (13)(24) (14)(23) [22]

(1)(234) (1)(243) (123)(4) (132)(4)
(124)(3) (142)(3) (134)(2) (143)(2)

[31]

(1234) (1243) (1324)
(1342) (1423) (1432)

[4]

Table 1.9: The equivalence classes and their representation by partitions and Young
diagrams of the permutation group S4.
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Chapter 2

Representations of finite groups.

In this chapter we will discuss the definition and the properties of matrix represen-
tations of finite groups.

2.1 What is a matrix representation of a group?

An n-dimensional matrix representation of a group element g of the group G, is
given by a transformation D(g) of an n-dimensional (complex) vector space Vn into
itself, i.e.:

D(g) : Vn → Vn. (2.1)

The matrix for D(g) is known, once the transformation of the basis vectors êi
(i = 1, · · · , n) of Vn is specified.

2.2 The word-representation D(w) of S3.

Instead of the ”three-letter” words introduced in section (1.1), we represent those
words here by vectors of a three-dimensional vector space, i.e.:

ABC ⇒






A
B
C




 = A






1
0
0




+B






0
1
0




+ C






0
0
1




 . (2.2)

Moreover, the operations ( 1.12) are ”translated” into vector transformations. For
example, the operation of (12) on a ”three-letter” word, given in ( 1.3), is here
translated into the transformation:

D(w)((12))






A
B
C




 =






B
A
C




 . (2.3)

Then, assuming arbitrary (complex) values for A, B and C, the transformations

D(w)(g) can be represented by matrices. In the above example one finds:
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D(w)((12)) =






0 1 0
1 0 0
0 0 1




 . (2.4)

Similarly, one can represent the other operations of S3 by matrices D(w)(g). In
table ( 2.1) below, the result is summarized.

g D(w)(g) g D(w)(g) g D(w)(g)

I






1 0 0
0 1 0
0 0 1




 (132)






0 1 0
0 0 1
1 0 0




 (123)






0 0 1
1 0 0
0 1 0






(23)






1 0 0
0 0 1
0 1 0




 (12)






0 1 0
1 0 0
0 0 1




 (13)






0 0 1
0 1 0
1 0 0






Table 2.1: The word-representation D(w) of S3.

The structure of a matrix representation D of a group G reflects the structure
of the group, i.e. the group product is preserved by the matrix representation.
Consequently, we have for any two group elements a and b ofG the following property
of their matrix representations D(a) and D(b):

D(a)D(b) = D(ab). (2.5)

For example, for D(w) of S3, using table ( 2.1) for the word-representation and
multiplication table ( 1.3) at page 5, we find for the group elements (12) and (23):

D(w)((12))D(w)((23)) =






0 1 0
1 0 0
0 0 1











1 0 0
0 0 1
0 1 0






=






0 0 1
1 0 0
0 1 0






= D(w)((123)) = D(w)((12)(23)). (2.6)

Notice from table ( 2.1) that all group elements of S3 are represented by a different
matrix. A representation with that property is called a faithful representation.
Notice also from table ( 2.1) that I is represented by the unit matrix. This is

always the case, for any representation.
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2.3 The regular representation.

In the regular representation D(r) of a finite group G, the matrix which represents
a group element g is defined in close analogy with the product operation of g on
all elements of the group. The dimension of the vector space is in the case of the
regular representation equal to the order p of the group G. The elements êi of the
orthonormal basis {ê1, · · · , êp} of the vector space are somehow related to the group
elements gi of G.

The operation of the matrix which represents the transformation D(r)(gk) on a
basis vector êj is defined as follows:

D(r)(gk) êj =
p
∑

i = 1
δ(gkgj, gi)êi, (2.7)

where the ”Kronecker delta function” is here defined by:

δ(gkgj, gi) =







1 if gkgj = gi

0 if gkgj 6= gi

.

Let us study the regular representation for the group S3. Its dimension is equal
to the order of S3, i.e. equal to 6. So, each element g of S3 is represented by a 6× 6

matrix D(r)(g).

For the numbering of the group elements we take the one given in table ( 1.1) at
page 1.

As an explicit example, let us construct the matrix D(r)(g3 = (123)). From the
multiplication table ( 1.2) at page 3 we have the following results:

g3g1 = g3 , g3g2 = g1 , g3g3 = g2 ,
g3g4 = g5 , g3g5 = g6 , g3g6 = g4 .

Using these results and formula ( 2.7), we find for the orthonormal basis vectors
êi of the six-dimensional vector space, the set of transformations:

D(r)(g3)ê1 = ê3

D(r)(g3)ê2 = ê1

D(r)(g3)ê3 = ê2

D(r)(g3)ê4 = ê5

D(r)(g3)ê5 = ê6

D(r)(g3)ê6 = ê4. (2.8)

Consequently, the matrix which belongs to this set of transformations, is given
by:
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D(r)(g3) =













0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0













. (2.9)

The other matrices can be determined in a similar way. The resulting regular

representation D(r) of S3 is shown in table ( 2.2) below.

g D(r)(g) g D(r)(g)

I













1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1













(23)













0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0













(132)













0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0













(12)













0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0













(123)













0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0













(13)













0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0













Table 2.2: The regular representation D(r) of S3.

Notice from table ( 2.2) that, as in the previous case, each group element of S3

is represented by a different matrix. The regular representation is thus a faithful
representation.
From formula ( 2.7) one might deduce the following general equation for the matrix

elements of the regular representation of a group:

[

D(r)(gk)
]

ij
= δ(gkgj, gi). (2.10)
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2.4 The symmetry group of the triangle.

In this section we study those transformations of the 2-dimensional plane into itself,
which leave invariant the equilateral triangle shown in figure ( 2.1).
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·
·
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and x
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T
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T
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(

−1
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√
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(
1/2

−
√
3/2

)

(b)

Figure 2.1: The equilateral triangle in the plane. The centre of the triangle (a) coin-
cides with the origin of the coordinate system. In (b) are indicated the coordinates
of the corners of the triangle and the unit vectors in the plane.

A rotation, R, of 120◦ of the plane maps the triangle into itself, but maps the
unit vectors ê1 and ê2 into ê′1 and ê′2 as is shown in figure ( 2.2).
From the coordinates of the transformed unit vectors, one can deduce the matrix

for this rotation, which is given by:

R =






−1/2 −
√
3/2

√
3/2 −1/2




 . (2.11)

Twice this rotation (i.e. R2) also maps the triangle into itself. The matrix for
that operation is given by:

R2 =






−1/2
√
3/2

−
√
3/2 −1/2




 . (2.12)

Three times (i.e. R3) leads to the identity operation, I.
Reflection, P , around the x-axis also maps the triangle into itself. In that case

the unit vector ê1 maps into ê1 and ê2 maps into −ê2. So, the matrix for reflection
around the x-axis is given by:

P =






1 0

0 −1




 . (2.13)
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Figure 2.2: The effect of a rotation of 120◦ of the plane: In (a) the transformed
triangle is shown. In (b) are indicated the transformed unit vectors.

The other possible invariance operations for the triangle of figure ( 2.1) at page
17 are given by:

PR =






−1/2 −
√
3/2

−
√
3/2 1/2




 and PR2 =






−1/2
√
3/2

√
3/2 1/2




 . (2.14)

This way we obtain the six invariance operations for the triangle, i.e.:

{

I, R,R2, P, PR, PR2
}

. (2.15)

Now, let us indicate the corners of the triangle of figure ( 2.1) at page 17 by the
letters A, B and C, as indicated in figure ( 2.3) below.

"
"
""

b
b
bb

C

B

A

Figure 2.3: The position of the corners A, B and C of the triangle.

Then, the invariance operations ( 2.15) might be considered as rearrangements of
the three letters A, B and C.
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For example, with respect to the positions of the corners, the rotation R defined
in formula ( 2.11) is represented by the rearrangement of the three letters A, B and
C which is shown in figure ( 2.4).

"
"
""

b
b
bb

C

B

A

-
R

"
"
""

b
b
bb

A

C

B

ABC BCA

Figure 2.4: The position of the corners A, B and C of the triangle after a rotation
of 120◦.

We notice, that with respect to the order of the letters A, B and C, a rotation of
120◦ has the same effect as the operation (132) of the permutation group S3 (compare
formula 1.3). Consequently, one may view the matrix R of equation ( 2.11) as a
two-dimensional representation of the group element (132) of S3.

Similarly, one can compare the other group elements of S3 with the above trans-
formations ( 2.15). The resulting two-dimensional representation D(2) of the per-
mutation group S3 is shown in table ( 2.3) below.

g D(2)(g) g D(2)(g)

I






1 0

0 1




 (23)






−1/2
√
3/2

√
3/2 1/2






(132)






−1/2 −
√
3/2

√
3/2 −1/2




 (12)






1 0

0 −1






(123)






−1/2
√
3/2

−
√
3/2 −1/2




 (13)






−1/2 −
√
3/2

−
√
3/2 1/2






Table 2.3: The two-dimensional representation D(2) of S3.

Notice that D(2) is a faithful representation of S3.
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2.5 One-dimensional and trivial representations.

Every group G has an one-dimensional trivial representation D(1) for which each
group element g is represented by 1, i.e.:

D(1)(g)ê1 = ê1. (2.16)

This representation satisfies all requirements for a (one-dimensional) matrix rep-
resentation.
For example: if gigj = gk, then

D(1)(gi)D
(1)(gj) = 1 · 1 = 1 = D(1)(gk) = D(1)(gigj),

in agreement with the requirement formulated in equation ( 2.5).
For the permutation groups Sn exists yet another one-dimensional representation

D(1′), given by:

D(1′)(g) =

{

1 for even permutations
−1 for odd permutations

. (2.17)

Other groups might have other (complex) one-dimensional representations. For
example the subgroup A3 of even permutations of S3 can be represented by the
following complex numbers:

D(I) = 1 , D((132)) = e2πi/3 and D((123)) = e−2πi/3 , (2.18)

or also by the non-equivalent representation, given by:

D(I) = 1 , D((132)) = e−2πi/3 and D((123)) = e2πi/3 . (2.19)
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2.6 Reducible representations.

It might be clear from the preceding sections that the number of representations
of a group is unlimited, even for a finite group like S3. So, the question comes
up whether there exists any order in this jungle of representations. Evidently, the
answer to this question is positive.

Let us first discuss equivalent matrix representations of a group. Consider two

different n-dimensional representations, D(α) and D(β), of the group G. If there
exists a non-singular n× n matrix S, such that for all group elements g yields:

D(α)(g) = S−1 D(β)(g) S , (2.20)

then the two representations D(α) and D(β) are said to be equivalent.

For all practical purposes, equivalent representations of a group G are considered
to be the same representation of G. In fact, the non-singular n × n matrix S
represents a simple basis transformation in the n-dimensional vector space Vn:

Let ~v and ~w represent two vectors of Vn, such that for the transformation induced
by the representation of the group element g of G, follows:

D(β)(g) ~v = ~w. (2.21)

A different choice of basis in Vn can be represented by a matrix S, for which:

S : êi (i = 1, · · · , n) → ê′j (j = 1, · · · , n). (2.22)

At the new basis ê′j the components of the vectors ~v and ~w are different. The
relation between the initial and new components may symbolically be written by:

~v → S−1~v and ~w → S−1 ~w. (2.23)

Inserting the above relations ( 2.23) into the equation ( 2.21), one finds:

D(β)(g) ~v = ~w → S−1D(β)(g)SS−1 ~v = S−1 ~w. (2.24)

In comparing the result ( 2.24) to the formula ( 2.20), we find that D(α)(g) is
just the representation of the group element g of G at the new basis in Vn.

As an example, let us study the three-dimensional word-representation D(w) of
the permutation group S3, given in table ( 2.1) at page 14. For the basis transfor-
mation S of ( 2.20) we take the following anti-orthogonal matrix:

S =












1/
√
3 1/

√
6 1/

√
2

1/
√
3 1/

√
6 −1/

√
2

1/
√
3 −

√

2/3 0












. (2.25)

The inverse of this basis transformation is given by:
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S−1 =












1/
√
3 1/

√
3 1/

√
3

1/
√
6 1/

√
6 −

√

2/3

1/
√
2 −1/

√
2 0












. (2.26)

For each group element g of S3 we determine the representation given by:

D(wS)(g) = S−1 D(w)(g) S , (2.27)

which is equivalent to the word-representation of S3. The result is collected in table
( 2.4) below.

g S−1D(w)(g)S g S−1D(w)(g)S

I











1 0 0

0 1 0

0 0 1











(23)











1 0 0

0 −1/2
√
3/2

0
√
3/2 1/2











(132)











1 0 0

0 −1/2 −
√
3/2

0
√
3/2 −1/2











(12)











1 0 0

0 1 0

0 0 −1











(123)











1 0 0

0 −1/2
√
3/2

0 −
√
3/2 −1/2











(13)











1 0 0

0 −1/2 −
√
3/2

0 −
√
3/2 1/2











Table 2.4: The three-dimensional representation D(wS) = S−1D(w)S of S3.

From the table ( 2.4) for the three-dimensional representation which is equivalent
to the word-representation of S3 shown in table ( 2.1) at page 14, we observe the
following:

1. For all group elements g of S3 their representation D(wS)(g) = S−1D(w)(g)S
has the form:
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D(wS)(g) = S−1D(w)(g)S =






1 0 0
0 2× 2
0 matrix




 . (2.28)

2. The 2 × 2 submatrices of the matrices D(wS)(g) = S−1D(w)(g)S shown in
table ( 2.4) are equal to the two-dimensional representations D(2)(g) of the group
elements g of S3 as given in table ( 2.3) at page 19.

As a consequence of the above properties, the 3-dimensional word-representation

D(w) of S3 can be subdivided into two sub-representations of S3.
In order to show this we take the following orthonormal basis for the three-

dimensional vector space V3 of the word representation:

â =











1/
√
3

1/
√
3

1/
√
3











, ê1 =












1/
√
6

1/
√
6

−
√

2/3












, ê2 =











1/
√
2

−1/
√
2

0











. (2.29)

For this basis, using table ( 2.1) at page 14, we find for all group elements g of
S3, that:

D(w)(g) â = â = D(1)(g)â . (2.30)

Consequently, at the one-dimensional subspace of V3 which is spanned by the basis
vector â, the word-representation is equal to the trivial representation ( 2.16).
At the two-dimensional subspace spanned by the basis vectors ê1 and ê2 of ( 2.29),

one finds for vectors ~v defined by:

~v = v1ê1 + v2ê2 =






v1

v2




 , (2.31)

that for all group elements g of S3 yields:

D(w)(g)~v = D(2)(g)






v1

v2




 . (2.32)

For example:

D(w)((123))~v =






0 0 1
1 0 0
0 1 0












v1












1/
√
6

1/
√
6

−
√

2/3












+ v2











1/
√
2

−1/
√
2

0
















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= v1












−
√

2/3

1/
√
6

1/
√
6












+ v2











0

1/
√
2

−1/
√
2











= (−1

2
v1 +

√
3

2
v2)ê1 + (−

√
3

2
v1 −

1

2
v2)ê2

=






−1/2
√
3/2

−
√
3/2 −1/2











v1

v2




 = D(2)((123))~v . (2.33)

For the other group elements g of S3 one may verify that D(w)(g) also satisfies
( 2.32).

In general, an n-dimensional representation D(α) of the group G on a complex
vector space Vn is said to be reducible if there exists a basis transformation S in Vn
such that for all group elements g of G yields:

S−1D(α)(g)S =


















D(a)(g) 0 0 · · · 0

0 D(b)(g) 0 · · · 0

...
...

...
...

0 0 0 · · · D(z)(g)


















, (2.34)

where D(a), D(b), · · ·, D(z) are representations of dimension smaller than n, such
that:

dim(a) + dim(b) + · · ·+ dim(z) = n. (2.35)

The vector space Vn can in that case be subdivided into smaller subspaces Vα
(α=a, b, . . ., z) in each of which D(α)(g) is represented by a matrix which has a
dimension smaller than n, for all group elements g of G. If one selects a vector ~vα
in one of the subspaces Vα, then the transformed vector ~vα, g = D(α)(g)~vα is also
a vector of the same subspace Vα for any group element g of G.
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2.7 Irreducible representations (Irreps).

An n-dimensional representation D(β) of a group G which cannot be reduced by
the procedure described in the previous section ( 2.6), is said to be irreducible.
Irreducible representations or irreps are the building blocks of representations.

Other representations can be constructed out of irreps, following the procedure
outlined in the previous section and summarized in formula ( 2.34).
The two-dimensional representation D(2) of S3 given in table ( 2.3) at page 19

is an example of an irreducible representation of the permutation group S3. Other
examples of irreps of S3 are the trivial representation D(1) given in equation ( 2.16)
and the one-dimensional representation D(1′) given in equation ( 2.17).
The one-dimensional representations D(1) and the ones shown in equations ( 2.18)

and ( 2.19) are irreps of the group A3 defined in table ( 1.6) at page 9.
If D is an irrep of the group G = {g1, . . . , gp} in the vector space V , then for any

arbitrary vector ~v in V the set of vectors {~v1 = D(g1)~v, . . . , ~vn = D(gn)~v} may not
form a subspace of V but must span the whole vector space V .

2.8 Unitary representations.

One may always restrict oneself to unitary representations, since according to the
theorem of Maschke:

Each representation is equivalent to an unitary representation. (2.36)

A representation D is an unitary representation of a group G when all group
elements g of G are represented by unitary matrices D(g). A matrix A is said to be
unitary when its inverse equals its complex conjugated transposed, i.e.:

A†A = AA† = 1. (2.37)

Instead of proving the theorem of Maschke ( 2.36) we just construct an unitary
equivalent representation for an arbitrary representation D of a group G of order p.
First recall the following properties of matrix multiplication:

(AB)† = B†A† and (AB)−1 = B−1A−1 . (2.38)

Next, let us study the matrix T , given by:

T =
p
∑

k = 1

D†(gk)D(gk) . (2.39)

One can easily verify, using ( 2.38), that this matrix is Hermitean, i.e.:

T † =
p
∑

k = 1

{D†(gk)D(gk)}
† =

p
∑

k = 1

D†(gk)D(gk) = T .

It moreover satisfies the following property (using once more 2.38):
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D†(gi)TD(gi) =
p
∑

k = 1

D†(gi)D
†(gk)D(gk)D(gi) =

p
∑

k = 1

D†(gkgi)D(gkgi)

=
p
∑

j = 1
D†(gj)D(gj) = T , (2.40)

where we also used the fact that in multiplying one particular group element gi with
all group elements gk (k = 1, . . . p), one obtains all group elements gj only once.
Next, we define a basis transformation S such that:

1. S† = S, and 2. S2 = T−1.

S represents a transformation from a basis orthonormal with respect to the scalar
product given by:

( ~x , ~y ) =

p

Σ
j = 1

〈

D(gj)~x ||D(gj)~y
〉

,

to a basis orthonormal with respect to the scalar product given by:

〈~x || ~y〉 .

With the definition of S the property ( 2.40) can be rewritten by:

D†(gi)S
−2D(gi) = S−2 .

Multiplying this line from the right by D−1(gi)S and from the left by S, one obtains:

SD†(gi)S
−1 = S−1D−1(gi)S ,

which, using the fact that S is Hermitean and using ( 2.38), finally gives:

(S−1D(gi)S)
† = (S−1D(gi)S)

−1 .

Leading to the conclusion that the matrix representation S−1DS, equivalent to D,
is unitary.
As a consequence of ( 2.36) and because of the fact that equivalent representations

are considered the ”same” representations as discussed in section ( 2.6), we may in
the following restrict ourselves to unitary representations of groups.

One can easily verify that D(1), D(1′), D(2), D(w), D(wS) and D(r) are unitary
representations of S3.
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Chapter 3

The standard irreps of Sn.

In this chapter we will discuss the standard construction of irreps for the symmetric
groups Sn.

3.1 Standard Young tableaux and their associ-

ated Yamanouchi symbols.

A Young tableau is a Young diagram (see section ( 1.3) at page 8 for the definition
of a Young diagram), of n boxes filled with n numbers in some well specified way.
A standard Young tableau is a Young diagram of n boxes which contains the

numbers 1 to n in such a way that the numbers in each row increase from the left
to the right, and in each column increase from the top to the bottom.
For S3, using the result of table ( 1.5) at page 8, one finds four different possible

standard Young tableaux, i.e.:

3
2
1

, 1 2 3 , 1
3

2
and

1
2
3 .

(3.1)

Notice that one Young diagram in general allows for several different standard Young
tableaux.
Each standard tableau can be denoted in a compact and simple way by a Ya-

manouchi symbol, M = M1,M2, · · · ,Mn. This is a row of n numbers Mi (i =
1, · · · , n), where Mi is the number of the row in the standard Young tableau, count-
ing from above, in which the number i appears. Below we show the Yamanouchi
symbols corresponding to the standard Young tableaux for S3 given in ( 3.1):

3
2
1 





1 in the 1st row

2 in the 2nd row

3 in the 3rd row







M = 123 ,

1 2 3







1 in the 1st row

2 in the 1st row

3 in the 1st row







M = 111 ,
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1
3

2






1 in the 1st row

2 in the 1st row

3 in the 2nd row







M = 112 , and

1
2

3






1 in the 1st row

2 in the 2nd row

3 in the 1st row







M = 121 . (3.2)

There exists moreover a certain order in the Yamanouchi symbols for the same
Young diagram: First one orders these symbols with respect to increasing values of
M1, then with respect to increasing values of M2, etc.
Let us, as an example, order the Yamanouchi symbols for the standard Young

tableaux of the partition [µ] = [32] of the permutation group S5. The possible
Yamanouchi symbols, properly ordered, are given by:

11122 , 11212 , 11221 , 12112 and 12121 .

3.2 Hooklength, hookproduct and axial distance.

Other quantities related to Young diagrams, are the hooklength of a box, the
hookproduct and the axial distance between boxes.
As the hook of a certain box j in a Young diagram, one defines a set of boxes

given by the following receipt:

1. The box j itself.
2. All boxes to the right of j in the same row.
3. All boxes below j in the same column.

(3.3)

As an example, we show below the hook of the first box in the second row of the
Young diagram belonging to the partition [433] of S10:

⋆
⋆ ⋆ ⋆

As the hooklength of a certain box j in a Young diagram, one defines the number
of boxes in the hook of box j. In the above example one has a hooklength of 4.
The hooktableau of a Young diagram is obtained by placing in each box of the

diagram, the hooklength of this box. For example, the hooktableau of the above
diagram [433] of S10, is given by:

3 2 1
4 3 2
6 5 4 1

The hookproduct h[µ] of the Young diagram belonging to the partition [µ], is the
product of all numbers in its hooktableau. In the above example, [µ] = [433] of S10,
one finds h[433] = 17280.
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For the group S3, one has the following hooktableaux:

1
2
3

, 3 2 1 and
3
1

1 .

(3.4)

The related hookproducts are h[111] = h[3] = 6 and h[21] = 3.

The axial distance ρ(M ; x, y) between two boxes x and y of a standard Young
tableau M (M represents the Yamanouchi symbol of the tableau), is the number of
steps (horizontal and/or vertical) to get from x to y, where steps contribute:

{

+1 when going down or to the left,
−1 when going up or to the right.

(3.5)

Notice that the axial distance does not depend on the path. Below we show as an
example the axial distances for the Young tableaux which belong to the partition
[µ] = [21] of the permutation group S3.

1
3

2
M = 112







ρ(112; 1, 2) = −ρ(112; 2, 1) = −1
ρ(112; 1, 3) = −ρ(112; 3, 1) = +1
ρ(112; 2, 3) = −ρ(112; 3, 2) = +2

1
2

3
M = 121







ρ(121; 1, 2) = −ρ(121; 2, 1) = +1
ρ(121; 1, 3) = −ρ(121; 3, 1) = −1
ρ(121; 2, 3) = −ρ(121; 3, 2) = −2

(3.6)

3.3 The dimension of irreps for Sn.

In one of the following chapters we will see that the number of inequivalent irre-
ducible representations for any finite group is equal to the number of equivalence
classes of the group. Since, moreover, the different equivalence classes of Sn can
be represented by Young diagrams, it will not be surprising that also the different
irreps of Sn can be represented by Young diagrams. The dimension f [µ] of an irrep
of Sn corresponding to a Young diagram [µ] (where [µ] represents the corresponding
partition of n) can be found from:

f [µ] = number of possible standard Young tableaux, (3.7)

or alternatively, from:

f [µ] =
n!

h[µ]
, (3.8)

where h[µ] represents the hookproduct of the Young diagram [µ].

For S3, using formula ( 3.7) in order to count the various possible standard Young
tableaux of a partition (see ( 3.1)), or alternatively, using ( 3.8) for the hookproducts
of the different Young diagrams of S3 (see ( 3.4)), one finds:
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f [111] = 1, or alternatively f [111] =
3!

6
= 1,

f [3] = 1, or alternatively f [3] =
3!

6
= 1, and

f [21] = 2, or alternatively f [21] =
3!

3
= 2. (3.9)

3.4 Young’s orthogonal form for the irreps of Sn.

In section ( 1.2) we have seen at page 6 that the permutation group Sn can be
generated by the group elements (12) and (12 · · ·n) (see formula 1.17), or, alterna-
tively, by the transpositions (12), (23), . . ., (n−1, n). Consequently, it is more than
sufficient to determine the matrix representations for the transpositions (12), (23),
. . ., (n − 1, n) of Sn. The matrix representation of the other elements of Sn can
then be obtained by (repeated) multiplication.
As standard form we will use Young’s orthogonal form. These matrices are real

and unitary and therefore orthogonal.

The irrep [µ] of Sn is defined in an f [µ]-dimensional vector space V [µ]. In this

space we choose an orthonormal basis ê
[µ]
i (i = 1, · · · , f [µ]), with:

(

ê
[µ]
i , ê

[µ]
j

)

= δij for (i, j = 1, · · · , f [µ]). (3.10)

To the index i of the basisvector ê
[µ]
i we relate the Yamanouchi symbol M in the

order which has been discussed in section ( 3.1) at page 27. So, alternatively we
may write:

ê
[µ]
i = ê

[µ]
M , (3.11)

whereM corresponds to the i-th Yamanouchi symbol which belongs to the partition
[µ].
For example, for the two-dimensional representation [21] of S3, we have as a basis:

ê
[21]
1 = ê

[21]
112 and ê

[21]
2 = ê

[21]
121 . (3.12)

In terms of the basis vectors ê
[µ]
M one obtains the Young’s standard form for

the matrix representation D[µ]((k, k + 1)) of the transposition (k, k + 1) of the
permutation group Sn by the following transformation rule:

D[µ]((k, k + 1)) ê
[µ]
M1 · · ·Mn = (ρ(M1 · · ·Mn; k + 1, k))−1 ê

[µ]
M1 · · ·Mn+

+
√

1− (ρ(M1 · · ·Mn; k + 1, k))−2 ê
[µ]
M1 · · ·Mk + 1Mk · · ·Mn

,

(3.13)
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where ρ(M ; k + 1, k) represents the axial distance between box k + 1 and k in the
standard Young diagram corresponding to the Yamanouchi symbolM =M1 · · ·Mn.

3.5 The standard irreps of S3.

For the two-dimensional representation [21] of S3, one finds, using relation ( 3.13),
the following:

D[21]((12))ê
[21]
112 = ê

[21]
112 , and D[21]((12))ê

[21]
121 = −ê[21]121 . (3.14)

So, when we represent the basis vector ê
[21]
112 by the column vector

(

1
0

)

and the

basis vector ê
[21]
121 by the column vector

(

0
1

)

, then the corresponding matrix is given

by:

D[21]((12)) =

(

1 0
0 −1

)

. (3.15)

For the transposition (23) one finds:

D[21]((23))ê
[21]
112 = −1

2
ê
[21]
112 +

√
3

2
ê
[21]
121 , and D[21]((23))ê

[21]
121 =

1

2
ê
[21]
121 +

√
3

2
ê
[21]
112 . (3.16)

Consequently, the corresponding matrix is given by:

D[21]((23)) =

(

−1/2
√
3/2√

3/2 1/2

)

. (3.17)

These results might be compared to the matrix representation for the invariance
group of the triangle given in table ( 2.3) at page 19.
As far as the one-dimensional representations are concerned, one finds:

D[111]((12))ê
[111]
123 = −ê[111]123 , and D[111]((23))ê

[111]
123 = −ê[111]123 . (3.18)

Consequently, [111] corresponds to the irrep D(1′), discussed in formula ( 2.17).
Also:

D[3]((12))ê
[3]
111 = ê

[3]
111, and D[3]((23))ê

[3]
111 = ê

[3]
111. (3.19)

So, [3] corresponds to the trivial irrep D(1) (see equation 2.16).

3.6 The standard irreps of S4.

For the symmetric group S4 we have five different partitions, i.e. [1111], [211], [22],
[31] and [4] (see the table of equivalence classes of S4, table ( 1.9) at page 12), and
consequently five inequivalent irreducible representations. Let us first collect the
necessary ingredients for the construction of those irreps, i.e. the resulting Young
tableaux, Yamanouchi symbols and relevant axial distances, in the table below.
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partition Young tableaux Yamanouchi symbols axial distances

[1111]
1
2
3
4

1234
ρ(1234; 2, 1) = −1
ρ(1234; 3, 2) = −1
ρ(1234; 4, 3) = −1

[211]
1 2
3
4

1123
ρ(1123; 2, 1) = +1
ρ(1123; 3, 2) = −2
ρ(1123; 4, 3) = −1

1 3
2
4

1213
ρ(1213; 2, 1) = −1
ρ(1213; 3, 2) = +2
ρ(1213; 4, 3) = −3

1 4
2
3

1231
ρ(1231; 2, 1) = −1
ρ(1231; 3, 2) = −1
ρ(1231; 4, 3) = +3

[22] 1 2
3 4

1122
ρ(1122; 2, 1) = +1
ρ(1122; 3, 2) = −2
ρ(1122; 4, 3) = +1

1 3
2 4

1212
ρ(1212; 2, 1) = −1
ρ(1212; 3, 2) = +2
ρ(1212; 4, 3) = −1

[31] 1 2 3
4

1112
ρ(1112; 2, 1) = +1
ρ(1112; 3, 2) = +1
ρ(1112; 4, 3) = −3

1 2 4
3

1121
ρ(1121; 2, 1) = +1
ρ(1121; 3, 2) = −2
ρ(1121; 4, 3) = +3

1 3 4
2

1211
ρ(1211; 2, 1) = −1
ρ(1211; 3, 2) = +2
ρ(1211; 4, 3) = +1

[4] 1 2 3 4 1111
ρ(1111; 2, 1) = +1
ρ(1111; 3, 2) = +1
ρ(1111; 4, 3) = +1

Table 3.1: The Young tableaux, Yamanouchi symbols and axial distances for the
various irreps of S4.
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Using the results of table ( 3.1) and formula ( 3.13) one obtains the matrices which
are collected in table ( 3.2) below, for the three generator transpositions of S4.

irrep [1111] [211] [22] [31] [4]

basis ê
[1111]
1234 ê

[211]
1123 =






1
0
0




 ê

[22]
1122 =

(

1
0

)

ê
[31]
1112 =






1
0
0




 ê

[4]
1111

ê
[211]
1213 =






0
1
0




 ê

[22]
1212 =

(

0
1

)

ê
[31]
1121 =






0
1
0






ê
[211]
1231 =






0
0
1




 ê

[31]
1211 =






0
0
1






D((12)) -1






1 0 0
0 −1 0
0 0 −1






(

1 0
0 −1

)





1 0 0
0 1 0
0 0 −1




 +1

D((23)) -1









−1
2

√
3
2

0
√
3
2

1
2

0

0 0 −1












−1

2

√
3
2√

3
2

1
2












1 0 0

0 −1
2

√
3
2

0
√
3
2

1
2








+1

D((34)) -1








−1 0 0

0 −1
3

√
8
3

0
√
8
3

1
3








(

1 0
0 −1

)









−1
3

√
8
3

0
√
8
3

1
3

0

0 0 1









+1

Table 3.2: Young’s orthogonal form for the irreps of the symmetric group S4 for the
three generator transpositions (12), (23) and (34).

For later use we will also determine the matrices for a representant of each of
the equivalence classes of S4 which are shown in table ( 1.9) at page 12. The only
member of [1111] is the identity operator I, which is always represented by the unit
matrix. For the equivalence class [211] one might select the transposition (12) as
a representant. Its matrix representations for the five standard irreps are already
shown in table ( 3.2). As a representant of the equivalence class [22] we select the
operation (12)(34). Its matrix representations for the various standard irreps can
be determined, using the property formulated in equation ( 2.5) for representations,
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i.e. D((12)(34)) = D((12))D((34)). The resulting matrices are collected in table
( 3.3). For [31] we select the operation (123) = (12)(23) as a representant. Its
matrix representations follow from D((123)) = D((12))D((23)) using the results of
table ( 3.2). Finally, for the equivalence class [4] we select the operation (1234) =
(12)(23)(34). The resulting matrices are collected in table ( 3.3) below.

irrep D((12)(34)) D((123)) D((1234))

[1111] +1 +1 −1

[211]








−1 0 0

0 1
3

−
√
8
3

0 −
√
8
3

−1
3
















−1
2

√
3
2

0

−
√
3
2

−1
2

0

0 0 1

















1
2

−
√
3
6

√
6
3√

3
2

1
6

−
√
2
3

0
√
8
3

1
3









[22]

(

1 0
0 1

) 


−1

2

√
3
2

−
√
3
2

−1
2








−1

2
−

√
3
2

−
√
3
2

1
2





[31]









−1
3

√
8
3

0
√
8
3

1
3

0

0 0 −1
















1 0 0

0 −1
2

√
3
2

0 −
√
3
2

−1
2
















−1
3

√
8
3

0

−
√
2
3

−1
6

√
3
2

−
√
6
3

−
√
3
6

−1
2









[4] +1 +1 +1

Table 3.3: Young’s orthogonal form for the irreps of the symmetric group S4 for
representants of the three equivalence classes [22], [31] and [4].
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Chapter 4

The classification of irreps.

In this chapter we discuss some properties of irreducible representations and study
the resulting classification of irreps for finite groups.

4.1 The character table of a representation.

In this section we introduce a powerful tool for the classification of irreps, i.e. the
character table of a representation. The character χ(g) of the n-dimensional matrix
representation D(g) of an element g of group G is defined as the trace of the matrix
D(g), i.e.:

χ(g) = Tr {D(g)} =
n∑

a = 1
Daa(g) . (4.1)

g χ(1)(g) χ(1′)(g) χ(2)(g) χ(w)(g) χ(r)(g) χ(wS)(g)

I 1 1 2 3 6 3

(132) 1 1 -1 0 0 0
(123) 1 1 -1 0 0 0

(23) 1 -1 0 1 0 1
(12) 1 -1 0 1 0 1
(13) 1 -1 0 1 0 1

Table 4.1: The character table of the permutation group S3 for the representations
discussed in chapter 2.

In table ( 4.1) are summarized the characters for the various representations of
S3, i.e. D

(1) (see equation ( 2.16)), D(1′) (see equation ( 2.17)), D(2) (see table ( 2.3)

at page 19), D(w) (see table ( 2.1) at page 14), D(r) (see table ( 2.2) at page 16)

and D(wS) (see table ( 2.4) at page 22).
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In the following we will frequently use a property of the trace of a matrix, related
to the trace of the product AB of two n× n matrices A and B, i.e.:

Tr {AB} =
n∑

i = 1
[AB]ii =

n∑

i = 1

n∑

j = 1
AijBji

=
n∑

j = 1

n∑

i = 1
BjiAij =

n∑

j = 1
[BA]jj = Tr {BA} . (4.2)

Several properties of characters may be noticed from the character table ( 4.1) at
page 35 of the permutation group S3.

1. The characters of the word-representation D(w) and its equivalent represen-

tation D(wS) are identical.
This is not surprising, since for any two equivalent matrix representations D(β)

and D(α) = S−1D(β)S (see equation ( 2.20) for the definition of equivalent matrix
representations), one has for each group element g of the group G, using the property
( 4.2) for the trace of a matrix, the identity:

χ(β)(g) = Tr
{

D(β)(g)
}

= Tr
{

S−1D(α)(g)S
}

= Tr
{

D(α)(g)
}

= χ(α)(g) .

(4.3)
Consequently, any two equivalent representations have the same character table.

2. The character χ(I) of the identity operation I, indicates the dimension of the
representation.
In the following we will indicate the dimension n of an n-dimensional representa-

tion D(α) of the group G, by the symbol f(α) = n. From the character table ( 4.1)
at page 35 for S3 we observe:

f(α) = χ(α)(I) . (4.4)

3. Group elements which belong to the same equivalence class (see section ( 1.5)
for the definition of equivalence classes), have the same characters.
This can easily be shown to be a general property of characters: Using formula

( 1.23) for the definition of two equivalent group elements a and b = g−1ag, equation
( 2.5) for the representation of the product D(a)D(b) = D(ab) of group elements
and property ( 4.2) of the trace of a matrix, one finds:

χ(b) = Tr {D(b)} = Tr
{

D(g−1ag)
}

= Tr
{

D(g−1)D(a)D(g)
}

= Tr
{

D(a)D(g)D(g−1)
}

= Tr {D(a)D(I)} = Tr {D(a)}

= χ(a) . (4.5)
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As a consequence, characters are functions of equivalence classes.

Given this property of representations, it is sufficient to know the character of one
representant for each equivalence class of a group, in order to determine the character
table of a group. Using the tables ( 3.2) and ( 3.3) we determine the character table
of S4, which is shown below. The number of elements for each equivalence class can
be found in table ( 1.9) at page 12.

irreps
equivalence number of

classes elements [1111] [211] [22] [31] [4]
χ χ χ χ χ

[1111] 1 +1 +3 +2 +3 +1
[211] 6 −1 −1 0 +1 +1
[22] 3 +1 −1 +2 −1 +1
[31] 8 +1 0 −1 0 +1
[4] 6 −1 +1 0 −1 +1

Table 4.2: The character table of the symmetry group S4 for the standard irreducible
representations discussed in the previous chapter.

4. The characters of the word-representation D(w) are the sums of the characters
of the trivial representation D(1) and the two-dimensional representation D(2), i.e.
for each group element g of S3 we find:

χ(w)(g) = χ(1)(g) + χ(2)(g) . (4.6)

The reason for the above property is, that the word-representation D(w) can be
reduced to the direct sum of the trivial representation D(1) and the two-dimensional
representation D(2) (see table ( 2.4) at page 22). So, the traces of the matrices

D(w)(g) are the sums of the traces of the sub-matrices D(1)(g) and D(2)(g).

The property ( 4.6) can be used to discover how a representation can be reduced.

For example, one might observe that for the regular representation D(r) one has for
each group element g of S3, the following:

χ(r)(g) = χ(1)(g) + χ(1′)(g) + 2× χ(2)(g) . (4.7)

This suggests that the 6× 6 regular representation can be reduced into one time
the trivial representation [3], one time the representation [111] and two times the
two-dimensional representation [21], and that there exists a basis transformation S
in the six-dimensional vector space V6 defined in section ( 2.3), such that for each
group element g of S3 yields:
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S−1D(r)(g)S =

























D(1)(g) 0

0 D(1′)(g)

0 0

0 0

0 0

0 0

0 0

0 0
D(2)(g)

0 0

0 0

0 0

0 0

0 0

0 0
D(2)(g)

























. (4.8)

Indeed, such matrix S can be found for the regular representation of S3, which
shows that the regular representation is reducible.
For the 24×24 regular representation of S4, using table ( 4.2), one finds similarly:

χ(r)(g) = χ[1111](g) + 3χ[211](g) + 2χ[22](g) + 3χ[31](g) + χ[4](g) , (4.9)

where we also used the fact that the characters of the regular representation for any
group vanish for all group elements except for the character of the identity operator.
One might observe from the expressions ( 4.7) and ( 4.9) that each representation

appears as many times in the sum as the size of its dimension. This is generally
true for the regular representation of any group, i.e.:

χ(r)(g) =
∑

all irreps
f(irrep)χ(irrep)(g) .

For the identity operator I of a group of order p this has the following interesting
consequence:

p = χ(r)(I) =
∑

all irreps

f(irrep)χ(irrep)(I) =
∑

all irreps

{f(irrep)}2 . (4.10)

For example, the permutation group S3 has 6 elements. Its irreps are D(1) (see
equation ( 2.16)), D(1′) (see equation ( 2.17)) and D(2) (see table ( 2.3) at page 19),
with respective dimensions 1, 1 and 2. So, we find for those irreps:

12 + 12 + 22 = 6,

which, using the above completeness relation ( 4.10), proofs that S3 has no more
inequivalent irreps.

4.2 The first lemma of Schur.

When, for an irrep D of a group G = {g1, . . . , gp} in a vector space V , a matrix A
commutes with D(g) (i.e. AD(g) = D(g)A) for all elements g of G, then the matrix
A must be proportional to the unit matrix, i.e.:
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A = λ1 for a complex (or real) constant λ. (4.11)

This is Schur’s first lemma.
As an example, let us study the 2× 2 irrep D[21] of S3 (see section ( 3.5) at page

31). We define the matrix A by:

A =






a11 a12

a21 a22




 .

First, we determine the matrix products AD[21]((12)) and D[21]((12))A, to find the
following result:

AD[21]((12)) =






a11 −a12

a21 −a22




 and D[21]((12))A =






a11 a12

−a21 −a22




 .

Those two matrices are equal under the condition that a12 = a21 = 0. So, we are
left with the matrix:

A =






a11 0

0 a22




 .

Next, we determine the matrix products AD[21]((23)) and D[21]((23))A, to obtain:

AD[21]((23)) =








−a112
a11

√
3

2

a22
√
3

2
a22
2








and D[21]((23))A =








−a112
a22

√
3

2

a11
√
3

2
a22
2








.

Those two matrices are equal under the condition that a11 = a22. So, we finally end
up with the matrix:

A = a111

in agreement with the above lemma of Schur.

The condition that the representation is irreducible can be shown to be a necessary
condition by means of the following example: Let us consider the reducible word
representation of S3. From the matrices shown in table ( 2.1) at page 14 it is easy
to understand that the matrix A given by:

A =






a a a
a a a
a a a






commutes with all six matrices but is not proportional to the unit matrix.
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Proof of Schur’s first lemma:

Let ~r be an eigenvector in V of A with eigenvalue λ. Since D is an irrep of G, the
set of vectors {~r1 = D(g1)~r, . . . , ~rp = D(gp)~r} must span the whole vector space
V , which means that each vector of V can be written as a linear combination of
the vectors ~r1, . . ., ~rp. But, using the condition that A commutes with D(g) for all
elements g of G, one has also the relation:

A~ra = AD(ga)~r = D(ga)A~r = D(ga)λ~r = λ~ra , (a = 1, . . . , p) .

Consequently, all vectors in V are eigenvectors of A with the same eigenvalue λ,
which leads automatically to the conclusion ( 4.11).

4.3 The second lemma of Schur.

Let D(1) represent an n1 × n1 irrep of a group G = {g1, . . . , gp} in a n1-dimensional
vector space V1 and D(2) an n2 × n2 irrep of G in a n2-dimensional vector space V2.
Let moreover A represent an n2 × n1 matrix describing transformations from V1 on
to V2. When for all group elements g of G yields AD(1)(g) = D(2)(g)A, then:







either A = 0

or n1 = n2 and det(A) 6= 0 .
(4.12)

In the second case are moreover D(1) and D(2) equivalent.

For an example let us study the irreps D[211] and D[22] of the symmetric group S4

(see table ( 3.2) at page 33) and the matrix A given by:

A =






a11 a12
a21 a22
a31 a32




 .

First, we determine the matrix products D[211]((12))A and AD[22]((12)), to find the
following result:

D[211]((12))A =











a11 a12

−a21 −a22

−a31 −a32











and AD[22]((12)) =











a11 −a12

a21 −a22

a31 −a32











.

Those two matrices are equal under the condition that a12 = a21 = a31 = 0. So, we
are left with the matrix:

A =






a11 0
0 a22
0 a32




 .

Next, we determine the matrix products D[211]((23))A and AD[22]((23), to obtain:
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D[211]((23))A =













−a112
a22

√
3

2

a11
√
3

2
a22
2

0 −a32













and AD[22]((23)) =














−a112
a11

√
3

2

a22
√
3

2
a22
2

a32
√
3

2
a32
2














.

Those two matrices are equal under the conditions that a11 = a22 and a32 = 0. So,
we are left with the matrix:

A =






a11 0
0 a11
0 0




 .

Finally, we determine the matrix products D[211]((34))A and AD[22]((34), to get:

D[211]((34))A =











−a11 0

0 −a113

0 0











and AD[22]((34)) =











a11 0

0 −a11

0 0











.

Those two matrices are equal when a11 = 0. So, we end up A = 0 in accordance
with the second lemma of Schur.

Proof of Schur’s second lemma.

We consider separately the two cases n1 ≤ n2 and n1 > n2:

(i) n1 ≤ n2

For ~r an arbitrary vector in the vector space V1, A~r is a vector in V2. The subspace
VA of V2 spanned by all vectors A~r for all possible vectors in V1, has a dimension
nA which is smaller or equal to n1, i.e.:

nA ≤ n1 ≤ n2 .

Let us choose one vector ~v = A~r (for ~r in V1) out of the subspace VA of V2. The
transformed vector ~va under the transformation D(2)(ga) satisfies:

~va = D(2)(ga)~v = D(2)(ga)A~r = AD(1)(ga)~r = A~ra ,

where ~ra is a vector of V1. Consequently, the vector ~va must be a vector of VA.
So, the set of vectors {~v1 = D(2)(g1)~v, . . . , ~vp = D(2)(gp)~v} spans the vector

subspace VA of V2. However, since D(2) is an irrep, we must have VA = V2, unless
A = 0. Consequently, we find:

nA = n1 = n2 or A = 0 .
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In the case that n1 = n2 we may consider V1 = V2 for all practical purposes. When
moreover, A 6= 0, the matrix A has an inverse, because then VA = V2 = V1, which
gives D(1)(g) = A−1D(2)(g)A for all group elements g of G and so D(1) and D(2) are
equivalent.

(ii) n1 > n2

In that case there must exist vectors ~r in V1 which are mapped on to zero in V2
by A, i.e. A~r = 0. The subspace V ′

A of vectors ~r in V1 which are mapped on to zero
in V2 has a dimension n′

A smaller than or equal to n1. Now, if ~r belongs to V
′
A, then

~ra = D(1)(ga)~r also belongs to V ′
A, according to:

A~ra = AD(1)(ga)~r = D(2)(ga)A~r = 0 .

This contradicts the irreducibility of D(1), unless n′
A = n1, in which case A = 0.

4.4 The orthogonality theorem.

Let D(i) represent an ni×ni irrep of a group G = {g1, . . . , gp} of order p, and D(j)

an nj × nj irrep of G. Let moreover D(i) either not be equivalent to D(j) or be

equal to D(j). Then:

∑

all g

[

D(i)(g)
]∗
ab

[

D(j)(g)
]

cd
=

p

ni
δijδacδbd (4.13)

Proof

Let X be a nj × ni matrix, then we define the matrix A as follows:

A =
p
∑

k = 1
D(j)(gk)XD

(i)(g−1

k ) . (4.14)

This matrix has the property D(j)(ga)A = AD(i)(ga) as can easily be verified, using
the relation ( 2.5) and the fact that D(g−1)D(g) = D(I) = 1. Consequently,

according to the second lemma of Schur ( 4.12) either A = 0 or D(i) and D(j) are
equivalent. Remember that in case the two irreps are equivalent we assume that
they are equal. When the two irreps are equal one has that according to the first
lemma of Schur ( 4.11) A = λ1. One might combine the two possibilities for A into:

A = λδij1 =







0 for D(i) 6= D(j)

λ1 for D(i) = D(j)
(4.15)

The value of λ depends on the choice of the matrix X . Let us select matrices X
which have zero matrix elements all but one. The nonzero matrix element equals
1 and is located at the intersection of the d-th row and the b-th column. For such
matrices X one finds, using ( 4.14) and ( 4.15):
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λδijδca = [A]ca

=
p
∑

k = 1

nj
∑

α = 1

ni∑

β = 1

[D(j)(gk)]cαXαβ [D
(i)(g−1

k )]βa

=
p
∑

k = 1

nj
∑

α = 1

ni∑

β = 1

[D(j)(gk)]cαδαdδbβ [D
(i)(g−1

k )]βa

=
p
∑

k = 1

[D(j)(gk)]cd[D
(i)(g−1

k )]ba (4.16)

The value of λ is only relevant when i = j and a = c. In that case we take the sum
over both sides of ( 4.16) in a, leading to:

λni =
ni∑

a = 1
λδiiδaa

=
ni∑

a = 1

p
∑

k = 1

[D(i)(gk)]ad[D
(i)(g−1

k )]ba

=
p
∑

k = 1
[D(i)(I)]bd

= pδbd

Inserting this result for λ in ( 4.16) and using the fact that for a unitary represen-
tation D(g−1) = D−1(g) = D†(g), one obtains the relation ( 4.13).

4.5 The orthogonality of characters for irreps.

Let us define for the representation D(α) of a group G of order p and with elements

{g1, · · · , gp}, the following (complex) column vector ~χ (α) of length p:

~χ (α) =








χ(α)(g1)
...

χ(α)(gp)







. (4.17)

In the following we will refer to such vectors as the character of the representation

D(α) of G.

We define moreover, the (complex) innerproduct of characters by:
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(

~χ (α) , ~χ (β)
)

=
p
∑

i = 1

{

~χ (α)(gi)
}∗

~χ (β)(gi) . (4.18)

Let us concentrate on the characters of the irreps D(1), D(1′) and D(2) of S3 (see
table ( 4.1) at page 35, given by the three following six-component vectors:

~χ (1) =













1
1
1
1
1
1













, ~χ (1′) =













1
1
1

−1
−1
−1













and ~χ (2) =













2
−1
−1
0
0
0













. (4.19)

First, we notice for those three characters, using the definition ( 4.18) of the
innerproduct for characters, the property:

(

~χ (1) , ~χ (1)
)

=
(

~χ (1′) , ~χ (1′)
)

=
(

~χ (2) , ~χ (2)
)

= 6 ,

which result is equal to the order of the permutation group S3. Furthermore, we
notice that:

(

~χ (1) , ~χ (1′)
)

=
(

~χ (1′) , ~χ (2)
)

=
(

~χ (2) , ~χ (1)
)

= 0 .

Or, more compact, one might formulate the above properties for S3 as follows:

(

~χ (α) , ~χ (β)
)

= 6δαβ for α, β = 1, 1′ and 2. (4.20)

Consequently, the six-component vectors ( 4.19) form an orthogonal basis for a
three-dimensional sub-space of all possible vectors in six dimensions.
This can be shown to be true for any finite group. Using the property formulated

in equation ( 4.13), we obtain for two non-equivalent irreps (α) of dimension f(α)
and (β) of dimension f(β) of a group G of order p , the following:

(

~χ (α) , ~χ (β)
)

=
∑

g ∈ G

{

χ(α)(g)
}∗

χ(β)(g)

=
∑

g ∈ G
Tr

{

D(α)(g)
}∗

Tr
{

D(β)(g)
}

=
∑

g ∈ G

f(α)
∑

a = 1

{

D
(α)
aa (g)

}∗ f(β)
∑

b = 1
D
(β)
bb (g)

=

f(α)
∑

a = 1

f(β)
∑

b = 1

∑

g ∈ G

{

D
(α)
aa (g)

}∗
D
(β)
bb (g)

=

f(α)
∑

a = 1

f(β)
∑

b = 1

p

f(α)
δαβ δab δab = pδαβ . (4.21)

44



Consequently, the characters for different (non-equivalent) irreps of a finite group
are orthogonal.

Next, we remember that the characters for group elements which belong to the
same equivalence class of S3, are equal (see formula ( 4.5)). So, all possible characters
of different representations (α) of S3 have the following form:

~χ (α) =













a
b
b
c
c
c













,

where a = f(α) represents the dimension of the representation (α) of S3, where b
represents the trace of the matrix representation for either of the two equivalent
symmetric permutations of S3 and where c represents the trace of any of the three
equivalent antisymmetric permutations of S3.

However, such six-component vectors can be decomposed as linear combinations
of the three basis vectors ( 4.19), according to:

~χ (α) =













a
b
b
c
c
c













=
1

6
(a+2b+3c)~χ (1) +

1

6
(a+2b− 3c)~χ (1′) +

1

3
(a− b)~χ (2) , (4.22)

which shows that the characters ~χ (1), ~χ (1′) and ~χ (2) form a basis for the space of
all possible characters of S3.

4.6 Irreps and equivalence classes.

In the previous section, we found that the characters for the irreps of S3 as de-
fined in equation ( 4.19) form the basis for the space of all possible characters for
representations of this group.

This is true for any group: The characters of all non-equivalent irreps of a group
form a complete and orthogonal basis for the vector space of characters of all possible
representations of that group.

Moreover, the number of independent characters which can be formed for the
representations of a group, equals the number of equivalence classes of the group.
Consequently, for a finite group G we have the following property:

number of irreps G = number of equivalence classes G. (4.23)
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4.7 Abelian groups.

For Abelian groups, the above relation ( 4.23) has a particularly interesting conse-
quence, because the number of equivalence classes of an Abelian group G is equal
to its order p. This latter property, using the definition ( 1.23) for equivalent group
elements, can be understood as follows: Suppose that the elements a and b of the
Abelian group G are equivalent. Then there exists a third element g of G, such that:

b = g−1ag.

But since the group is Abelian, we obtain:

b = g−1ag = g−1ga = Ia = a.

So, each group element is only equivalent to itself for an Abelian group, which proofs
that the number of equivalence classes is equal to the order p of G. As a consequence
of ( 4.23) also the number of irreps of an Abelian group G equals the order p of G.
We then find, using also relation ( 4.10), for the dimensions f(i) (i = 1, · · · , p) of

the p irreps of G that:

{f(1)}2 + {f(2)}2 + · · ·+ {f(p)}2 = p,

which has only one possible solution:

{f(1)} = {f(2)} = · · · = {f(p)} = 1. (4.24)

We find as a conclusion for a finite Abelian group, that all its irreps are one-
dimensional.
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Chapter 5

Series of matrices and direct
products.

Since it will be frequently used in the following, we discuss here some properties of
the matrix series expansion given by:

M = 1+ A +
A2

2!
+
A3

3!
+ · · · = exp(A), (5.1)

where M and A represent n× n matrices.

Example 1

For an example, let us take for A the following matrix:

A =

(

0 −α
α 0

)

= α

(

0 −1
1 0

)

.

This matrix has the following properties:

A2 = −α21 , A3 = −α3

(

0 −1
1 0

)

, A4 = α41 , . . .

Using those properties, we determine the series ( 5.1) for the matrix A, i.e.

M = exp(A)

= 1 + α

(

0 −1
1 0

)

− α2

2!
1 +

α3

3!

(

0 −1
1 0

)

+
α4

4!
1+ · · ·

= 1
{

1− α2

2!
+
α4

4!
+ · · ·

}

+

(

0 −1
1 0

){

α− α3

3!
+ · · ·

}

= 1 cos(α) +

(

0 −1
1 0

)

sin(α)

=

(

cos(α) − sin(α)
sin(α) cos(α)

)

, (5.2)

which matrix represents a rotation in two dimensions with a rotation angle α.
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5.1 Det(Exp)=Exp(Trace).

Let us assume that there exists a similarity transformation S, for which A in formula
( 5.1) obtains the triangular form, i.e.:

S−1AS =









λ1
λ2 ”non zero”

zero
. . .

λn









. (5.3)

The diagonal elements in the triangular form of S−1AS are indicated by λ1, λ2, . . .,
λn. In the triangle of ”non-zero” matrix elements incidentally may appear zeroes
of course. When all matrix elements in that part vanish, the matrix S−1AS has the
diagonal form.
An n× n matrix B which has the triangular form ( 5.3) can in general be given

by the following expression for its matrix elements:

Bij =







any (complex) value for j ≥ i ,

0 for j < i .
(5.4)

For the matrix elements of the product of two such n× n matrices, B and C, we
have:

[BC]ij =
n∑

k = 1

Bik Ckj for (i, j = 1, . . . , n).

Using expression ( 5.4) for the matrix elements of matrices which are in the triangular
form ( 5.3), we find:

[BC]ij =
∑

k ≥ i
j ≥ k

Bik Ckj =







any (complex) value for j ≥ i ,

0 for j < i .
(5.5)

and also:

[BC]ii = Bii Cii for (i = 1, . . . , n). (5.6)

Consequently, the product BC of two triangular matrices B and C is again tri-
angular (see formula ( 5.5)), and its diagonal matrix elements are just the products
of the corresponding diagonal matrix elements of B and C (see formula ( 5.6)).
So, when S−1AS has the triangular form as given in ( 5.3), then the matrices

defined by:

{

S−1AS
}2

= S−1A2S ,
{

S−1AS
}3

= S−1A3S etc. (5.7)

also have the triangular form, and, using ( 5.6) we find for the related diagonal
matrix elements:
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[{

S−1AS
}2
]

ii
=

[{

S−1AS
}

ii

]2
=
(

λi

)2

[{

S−1AS
}3
]

ii
=

[{

S−1AS
}

ii

]3
=
(

λi

)3

etc. (5.8)

When we apply the similarity transformation S to the series ( 5.1) using also ( 5.7),
then we obtain:

S−1MS = S−11S + S−1AS + S−1A
2

2!
S + S−1A

3

3!
S + · · ·

= 1+ S−1AS +
{S−1AS}2

2!
+

{S−1AS}3

3!
+ · · ·

= exp
(

S−1AS
)

.

Each term in the sum is triangular, so S−1MS is triangular, and also:

[

S−1MS
]

ii
= 1 +

{

S−1AS
}

ii
+

[

{S−1AS}2
]

ii
2!

+

[

{S−1AS}3
]

ii
3!

+ · · ·

= 1 +
(

λi

)

+

(

λi

)2

2!
+

(

λi

)3

3!
+ · · ·

= exp
(

λi

)

for (i = 1, . . . , n). (5.9)

Now, the determinant of a triangular matrix is just the product of its diagonal
matrix elements. So, using the above formula ( 5.9), we find:

det
{

S−1MS
}

= exp (λ1) exp (λ2) · · · exp (λn)

= exp (λ1 + λ2 + λn) = exp
(

Tr
{

S−1AS
})

. (5.10)

Furthermore, using the property that the determinant of the product of matrices
equals the product of the determinants of each of those matrices separately, and the
property formulated in equation ( 4.2) for the trace of a product of matrices, one
has:

det(M) = det
{

S−1MS
}

and Tr(A) = Tr
{

S−1AS
}

.

Consequently, inserting those properties in formula ( 5.10), we end up with the final
result:
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det(M) = exp {Tr(A)} , (5.11)

i.e. The exponent of the trace of matrix A equals the determinant of the exponent
of A.
One might verify this property for the example given in formula ( 5.2), i.e.

Tr(A) = 0 and det(M) = 1 = exp(0) = exp(Tr(A)) .

5.2 The Baker-Campbell-Hausdorff formula.

For the exponents of the n× n matrices A and B it is in general not true that the
product of their exponents equals the exponent of their sum, as it is true for complex
numbers. However, there exists an n× n matrix C, such that:

eA eB = eC . (5.12)

In the following we will derive a relation for the matrix C in terms of the matrices
A and B. For that purpose we define a complex parameter λ and a set of n × n
matrices P1, P2, . . ., and introduce the expression:

exp(λA) exp(λB) = exp





∞∑

k = 1

λk Pk



 . (5.13)

For λ = 1 in ( 5.13) one obtains for the matrix C of ( 5.12) the result:

C = P1 + P2 + · · · . (5.14)

Using the expansion ( 5.1) for exp(λA) and for exp(λB), we find for their product
the following expansion in increasing powers of λ:

eλA eλB = 1+ λ(A+B) + λ2
(

A2

2!
+ AB +

B2

2!

)

+

+ λ3
(

A3

3!
+
A2B

2!
+
AB2

2!
+
B3

3!

)

+ · · · (5.15)

Similarly, for the matrices Pk we find:

exp





∞∑

k = 1

λk Pk



 = 1+





∞∑

k = 1

λk Pk



+
1

2!





∞∑

k = 1

λk Pk





2

+ · · ·

= 1+ λP1 + λ2
(

P2 +
P 2
1

2!

)

+

+ λ3
(

P3 +
P1P2

2!
+
P2P1

2!
+
P 3
1

3!

)

+ · · · (5.16)
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The parameter λ in relation ( 5.13) can take any (complex) value, so, the ”coeffi-
cients” for equal powers in λ in the expansions given by the formulas ( 5.15) and
( 5.16) must be equal. This gives as a result:

P1 = A+B

P2 =
1

2
(AB −BA)

P3 =
1

12
(A2B − 2ABA+BA2 + AB2 − 2BAB +B2A)

etc.

With the help of the relation ( 5.14) between the matrix C and the matrices Pk ,
one finds then:

C = A+B +
1

2
[A,B] +

1

12
{[A, [A,B]] + [[A,B], B]}+ · · · . (5.17)

This is the expression which should be inserted in formula ( 5.12) in order to give
the matrix C in the exponent equivalent to the product of the two exponentiated
matrices A and B. The result ( 5.17) is known as the Baker-Campbell-Hausdorff

formula.
Notice that C = A+B only and only if [A,B] = 0.

Example 2

For the case [A,B] = 0, we take as an example the matrices A and B given by:

A =

(

0 0
α 0

)

and B =

(

0 0
β 0

)

.

Those matrices evidently commute and have moreover the property A2 = B2 = 0.
Consequently, for the series ( 5.1) for A and B we obtain:

exp(A) = 1+ A =

(

1 0
α 1

)

and exp(B) = 1 +B =

(

1 0
β 1

)

.

The product of those two matrices gives:

exp(A) exp(B) =

(

1 0
α + β 1

)

.

It is now rather simple to find the exponent which yields this latter matrix as a
result, i.e.

(

1 0
α+ β 1

)

= exp{
(

0 0
α + β 0

)

} ,

which result agrees with ( 5.17) for commuting matrices A and B.
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Example 3

For the case [A,B] 6= 0, we take as an example the matrices A and B given by:

A =

(

0 0
α 0

)

and B =

(

0 β
0 0

)

.

Using the results of the previous example 2, we find for the product of the exponents
of those two matrices the following result:

exp(A) exp(B) =

(

1 0
α 1

)(

1 β
0 1

)

=

(

1 β
α 1 + αβ

)

.

In order to find the matrix C which exponentiated yields as a result the latter matrix,
we follow the receipt of formula ( 5.17). Let us first collect the various ingredients
of this formula, i.e.

[A,B] = αβ

(

−1 0
0 1

)

,

[A, [A,B]] = −2α2β

(

0 0
1 0

)

,

[[A,B], B] = −2αβ2

(

0 1
0 0

)

, . . .

In the following expansion we will only take into account terms up to the third order
in α and β. Using formula ( 5.17), one obtains for the matrix C the result:

C =






−1
2
αβ + · · · β − 1

6
αβ2 + · · ·

α− 1
6
α2β + · · · 1

2
αβ + · · ·




 .

Next, we determine the higher order powers of C as far as terms up to the third
order in α and β are involved, i.e.

C2 =






αβ + · · · 0 + · · ·

0 + · · · αβ + · · ·




 , C3 =






0 + · · · αβ2 + · · ·

α2β + · · · 0 + · · ·




 , . . .

When we put the pieces together, then we obtain the result:

exp(C) = 1+ C +
1

2
C2 +

1

6
C3 + · · ·

=

(

1 0
0 1

)

+






−1
2
αβ + · · · β − 1

6
αβ2 + · · ·

α− 1
6
α2β + · · · 1

2
αβ + · · ·




+

+
1

2






αβ + · · · 0 + · · ·

0 + · · · αβ + · · ·




+

1

6






0 + · · · αβ2 + · · ·

α2β + · · · 0 + · · ·




+ · · ·

=

(

1 β
α 1 + αβ

)

+ higher order terms.
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So, we have shown that the terms in α2β and αβ2 vanish in the sum of all terms
in the series of exp(C). When one continues the expansion, the higher order terms
also cancel. Consequently, the complete result yields:

exp(C) =

(

1 β
α 1 + αβ

)

.

However, the matrix C is a rather complicated expression, even for this simple
example.

5.3 Orthogonal transformations.

Let us consider an orthogonal coordinate system S in n dimensions characterized by
coordinates xi (i = 1, . . . , n) and by the orthonormal basis vectors êi (i = 1, . . . , n).
And let us furthermore consider in the same n-dimensional space a different orthog-
onal coordinate system S ′ characterized by coordinates x′i (i = 1, . . . , n) and by the
orthonormal basis vectors ê′i (i = 1, . . . , n). The orthonormality of the basis vectors
is expressed by:

êi · êj = δij and ê′i · ê
′
j = δij (5.18)

The basis vectors of S and S ′ are related via linear transformation rules, given
by:

ê′j = Rij êi and êj = (R−1)ij ê
′
i. (5.19)

Using the orthonormality relations ( 5.18), we find for the matrix elements Rij
of the transformation matrix R, the following property:

δij = ê′i · ê
′
j =

(

Rkiêk

)

·
(

Rljêl

)

= RkiRlj êk · êl

= RkiRljδkl = RkiRkj =
(

RT
)

ik
Rkj

=
(

RTR
)

ij
,

or equivalently:

RTR = 1 or RT = R−1. (5.20)

Linear transformations for which the transposed of the matrix equals the inverse
of the matrix, are said to be orthogonal. The determinant of such matrices equals
±1, as can be seen from:

{det(R)}2 = det(R)det(R) = det(R)det(RT ) = det(RRT ) = det(1) = 1. (5.21)

Rotations are unimodular which means that they have determinant +1, anti-
orthogonal transformations have determinant −1.
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Rotations.

When the matrix M = exp(A) in ( 5.1) represents a rotation, then the matrix A
is traceless and anti-symmetric.

1. Traceless.

This is a direct consequence of the relations ( 5.11) and ( 5.21), i.e.

exp(Tr(A)) = det(M) = 1 = exp(0) consequently Tr(A) = 0 . (5.22)

2. Anti-symmetric.

The inverse of ( 5.1) is equal to M = exp(−A). This follows from the fact that A
commutes with −A and thus, according to formulas ( 5.12) and ( 5.17), one finds

exp(A) exp(−A) = exp(A− A) = 1 .

For the transposed MT of M , using

[A2]T = (AT )2 , [A3]T = (AT )3 , . . .

we obtain:

MT = exp(AT ) .

At this stage it is convenient to introduce a real parameter λ and define Mλ =
exp(λA). Then also:

[Mλ]
−1 = exp(−λA) and [Mλ]

T = exp(λAT ) . (5.23)

So, if Mλ is orthogonal, we find, expanding both expressions in the above formula
( 5.23), the following equation:

1− λA+ · · · = [Mλ]
−1 = [Mλ]

T = 1 + λAT + · · ·
which is valid for arbitrary values of the real parameter λ and consequently yields

the solution AT = −A. In particular for λ = 1, we end up with:

[exp(A)]−1 = [exp(A)]T if and only if AT = −A . (5.24)

In example 1 (see formula 5.2) A is anti-symmetric and therefor M orthogonal.

5.4 Unitary transformations.

Complex n× n matrices M = exp(A) which satisfy the property:

M † =M−1 , (5.25)

are said to be unitary. Similar arguments as used above to show that for orthogonal
matrices M , A is anti-symmetric (i.e. formula 5.24), can be used here to show that
for unitary matrices M , A is anti-Hermitean, i.e.

[exp(A)]−1 = [exp(A)]† if and only if A† = −A . (5.26)
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5.5 The direct product of two matrices.

We will use the following definition for the direct product of two matrices: Let A
represent an n1×n1 matrix and B an n2 ×n2 matrix, then for the direct product of
A and B we define:

A⊗ B =










A11B . . . A1n1B
...

...

An11B . . . An1n1B










(5.27)

=






















A11B11 . . . A11B1n2 A12B11 . . . . . . A1n1B1n2

...
...

...
...

A11Bn21 . . . A11Bn2n2 A12Bn21 . . . . . . A1n1Bn2n2

A21B11 . . . A21B1n2 A22B11 . . . . . . A2n1B1n2

...
...

...
...

An11Bn21 . . . An11Bn2n2 An12Bn21 . . . . . . An1n1Bn2n2






















.

In terms of the matrix elements for the direct product of A and B, one might
alternatively define:

[A⊗ B](k − 1)n2 + i , (ℓ− 1)n2 + j = Akℓ Bij







k, ℓ = 1, . . . , n1

i, j = 1, . . . , n2

(5.28)

For the product of two such matrices one has the following expression:

(A⊗ B) (C ⊗ D) = (AC)⊗ (BD)







A, C n1 × n1 matrices

B,D n2 × n2 matrices
(5.29)

proof:

We demonstrate below that identity ( 5.29) holds for an arbitrary matrix element,
using definition ( 5.27) for the direct product of two matrices, or, alternatively,
definition ( 5.28) for the matrix elements of a direct product:

[(A⊗ B) (C ⊗ D)](a− 1)n2 + b , (c− 1)n2 + d =

=
n1n2∑

n = 1
[A⊗ B](a− 1)n2 + b , n [C ⊗ D]n , (c− 1)n2 + d
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=
n1∑

k = 1

n2∑

i = 1
[A⊗ B](a− 1)n2 + b , (k − 1)n2 + i

[C ⊗ D](k − 1)n2 + i , (c− 1)n2 + d

=
n1∑

k = 1

n2∑

i = 1
AakBbiCkcDid

=





n1∑

k = 1
AakCkc









n2∑

i = 1
BbiDid





= [AC]ac [BD]bd = [(AC)⊗ (BD)](a− 1)n2 + b , (c− 1)n2 + d .

Similarly, one may for the inverse of a direct product matrix show that:

[(A⊗ B)]−1 =
(

A−1
)

⊗
(

B−1
)

, (5.30)

assuming that 1⊗1 represents the identity matrix.
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Chapter 6

The special orthogonal group in
two dimensions.

In this chapter we study the representations of the group of rotations in two dimen-
sions. This group is the most easy example of a group which has an infinite number
of elements.

6.1 The group SO(2).

The special orthogonal group in two dimensions, SO(2), is defined by the set of
unimodular (i.e. with unit determinant), real and orthogonal 2× 2 matrices.
In order to find the most general form of such matrices, let us assume that a, b,

c and d represent four real numbers which satisfy the property that ad − bc = 1.
With those numbers we construct a 2× 2 matrix A, according to:

A =

(

a c
b d

)

with det(A) = ad− bc = 1. (6.1)

When we assume that A is orthogonal, then A−1 = AT . This leads to the following
relations for its components:

d = a and c = −b. (6.2)

Using also the condition ( 6.1) for the components of A, we find the following relation
for a and b:

a2 + b2 = 1 . (6.3)

Now, recalling that a and b are real numbers, we obtain as a consequence of this
relation that:

−1 ≤ a ≤ +1 and − 1 ≤ b ≤ +1 . (6.4)

At this stage it is opportune to introduce a real parameter α such that:

a = cos(α) and b = sin(α) , (6.5)

in which case a and b satisfy simultaneously the conditions ( 6.3) and ( 6.4).
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So, we obtain for a unimodular, real and orthogonal 2 × 2 matrix R(α), the
following general form:

R(α) =

(

cos(α) − sin(α)
sin(α) cos(α)

)

for α ∈ (−π,+π] . (6.6)

When α takes values running from −π to +π, then one obtains all possible (infinitely
many!) unimodular, real and orthogonal 2× 2 matrices.

Next we must establish that the matrices ( 6.6) form a group:

1. Product.

Normal matrix multiplication defines a suitable group product for the set of ma-
trices ( 6.6), i.e.

R(α2)R(α1) = R(α1 + α2). (6.7)

Strictly speaking might α1 + α2 be outside the parameter space (−π,+π] when
α1 and α2 are elements of this parameter space. But, we assume always an angle
modulus 2π if necessary.

2. Associativity.

Since matrix multiplication is associative, the above defined group product is
automatically endowed with the property of associativity.

3. Identity operator.

The identity operator, I, of the group product ( 6.7), which has the property
IR(α) = R(α)I = R(α), is defined by the unit matrix:

I = R(α = 0) = 1 . (6.8)

4. Inverse.

For each group element R(α) exists an inverse group element R(−α) in SO(2),
such that:

R(−α)R(α) = R(α)R(−α) = 1 . (6.9)

As a consequence of the above properties 1, 2, 3 and 4 we find that the special
orthogonal transformations in two dimensions, i.e. SO(2), form a group. This group
is moreover Abelian, because of the property ( 6.7), i.e.:

R(α2)R(α1) = R(α1 + α2) = R(α2 + α1) = R(α1)R(α2) . (6.10)
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6.2 Irreps of SO(2).

Since SO(2) is an Abelian group, its irreps are one-dimensional. This property
of Abelian groups has been shown for finite groups in ( 4.24). Consequently, the
representation ( 6.6) of the group elements R(α) of SO(2) is reducible.
Following the definition of a representation, the 2×2 matrices ( 6.6) might repre-

sent transformations D(R(α)) in a complex two-dimensional vector space. It is easy
to verify that the unit vectors û1 and û−1, given by:

û1 =
1√
2

(

1
i

)

and û−1 =
1√
2

(

i
1

)

,

are eigenvectors of the matrices ( 6.6) for all values of α. The eigenvalues are
respectively given by:

c1(α) = e−iα and c−1(α) = e+iα .

So, at the one-dimensional subspace spanned by the unit vector û1, R(α) is rep-
resented by the complex number exp(−iα), and at the one-dimensional subspace
spanned by û−1, by exp(+iα). The similarity transformation which transforms the
matrices D(R(α)) into a diagonal equivalent representation, is thus found to be:

1√
2

(

1 −i
−i 1

)

D(R(α))
1√
2

(

1 i
i 1

)

=

(

exp(−iα) 0
0 exp(+iα)

)

.

The two resulting non-equivalent one-dimensional irreps of SO(2) are given by:

D(1)(R(α)) = exp(−iα) and D(−1)(R(α)) = exp(+iα) .

In the following we will simplify the notation for D and write D(α) instead of
D(R(α)). As we will see below, there are infinitely many non-equivalent irreps for
SO(2).

An one-dimensional irrep is a set of linear transformations {D(α); α ∈ (−π,+π]}
of a one-dimensional complex vector space V into itself, i.e.:

D(α) : V −→ V .

When û represents the only basis vector of V , then the transformation D(α) is fully
characterized by:

D(α)û = c(α)û , for a complex number c(α) . (6.11)

Moreover, representations reflect the properties of the group. When, for example,
for rotations yields the property:

[R(α)]n = R(nα) , n = 1, 2, . . .

then for the representation D(α) must yield the same property, i.e.:

[c(α)]n û = [D(α)]n û = D(nα)û = c(nα)û . (6.12)
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The identity operator R(α = 0) is represented by the complex number 1, i.e.:

D(α = 0) = 1 . (6.13)

Next, let us study the possible representations for other values of α 6= 0. Let us for
example take α = 45◦. Using the relations ( 6.12) and ( 6.13), we obtain:

[c(π/4)]8 = c(2π) = c(0) = 1 .

Consequently, for R(π/4) one finds the following possible representations:

D(R(π/4)) = exp{−ikπ/4} , k = 0,±1,±2, . . .

We may repeat this procedure for values of α of the form α = nπ/m (where |n| <
m = 1, 2, . . . ), in order to find that for the representations of such transformations
one has the possibilities given by:

D(R(nπ/m)) = exp{−iknπ/m} , k = 0,±1,±2, . . .

Now, an arbitrary value for α can to any degree of accuracy be approximated by
α = nπ/m for some integer numbers n and m > 0. Consequently, we are lead to
the conclusion that the possible representations for R(α) of SO(2) are given by:

D(R(α)) = exp{−ikα} , k = 0,±1,±2, . . . (6.14)

Each value of k gives an irrep which is not equivalent to any of the irreps for other
values of k. This can easily be shown, since for any complex number s one has:

s−1 exp{−ik1α}s = exp{−ik2α} if and only if k1 = k2 .

Consequently, we may indicate the various one-dimensional vector spaces by an
index k in order to distinguish them, as well as the corresponding irrep, according
to:

D(k)(α) : V (k) −→ V (k) .

We might moreover indicate the only basis vector of V (k) by ûk, in order to obtain:

D(k)(α)ûk = e−ikαûk , k = 0,±1,±2, . . . (6.15)

The representations D(k) are called the standard irreps of SO(2).
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6.3 Active rotations in two dimensions.

An active rotation R(α) of a two-dimensional plane, over an angle α around the
origin of the coordinate system in the plane, is defined as the linear transformation
of the plane into itself which rotates each vector of the plane over an angle α. The
coordinate system though, remains in its place. The linear transformation R(α) is
fully characterized once the images, ~u ′

1 and ~u ′
2, are given of the vectors, ~u1 = ê1

and ~u2 = ê2, which originally are at the same positions as the two basis vectors of
the coordinate system, i.e.:

~u ′
1 = ê1 cos(α) + ê2 sin(α)

and

~u ′
2 = −ê1 sin(α) + ê2 cos(α) . (6.16)
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P ′

(a)

⇒
R(α)

(b)

Figure 6.1: An active rotation of the plane: Physical objects are rotated around
the origin; the coordinate system remains in its place. Indicated are the situations
before (a) and after (b) the rotation R(α).

The image, ~w = w1ê1 + w2ê2, under the rotation R(α) of an arbitrary vector, ~v =
v1ê1 + v2ê2, is then given by:

~w = v1~u
′
1 + v2~u

′
2

= {v1 cos(α)− v2 sin(α)} ê1 + {v1 sin(α) + v2 cos(α)} ê2 ,

from which expression we deduce that the relation between the components (w1, w2)
of the rotated vector and the components (v1, v2) of the original vector, is as follows:

(

w1

w2

)

=

(

cos(α) − sin(α)
sin(α) cos(α)

)(

v1
v2

)

= R(α)

(

v1
v2

)

. (6.17)
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Consequently, the active rotation R(α) is in the space of the components of two-
dimensional vectors represented by the matrix ( 6.6). So, an active rotation in two

dimensions is a rotation of the position vectors of the plane with respect to a fixed

coordinate system. Equation ( 6.17) relates the components of the original vector to
the components of the rotated vector in the fixed basis.
A possible way to concretize this transformation, is to imagine the x-axis and

the y-axis of the coordinate system to be drawn at your desk and a sheet of paper,
representing the plane, on top of it. A certain point at the sheet of paper, indicated
by P in figure ( 6.1), is characterized by the position vector ~r before the rotation
of the sheet. After rotating the sheet over an angle α around the origin, the same
point at the sheet moves to a different position, indicated by P ′ in figure ( 6.1). The
point P ′ is characterized by the position vector ~r ′ = R(α)~r.
Now, imagine the sheet of paper to be replaced by a sheet of metal which is heated

in one corner such that the temperature at the metal sheet is a function of position,
say represented by the function T (~r). After rotating the sheet, its temperature
distribution remains the same. However, in the new situation the function which
describes this distribution, is a different function of position, say T ′(~r). But, we
assume that the rotation of the sheet does not change the temperature of a given
point P at the metal sheet. Consequently, one has the following relation between
the functions T and T ′:

T ′(R(α)~r) = T (~r) or equivalently T ′(~r) = T ([R(α)]−1~r) .

So, in function space (i.e. the space of functions f(~r) defined on the plane), the
active rotation R(α) induces the transformation:

R(α) : f −→ D(R(α))f , (6.18)

where D(R(α))f(~r) = f ′(~r) = f([R(α)]−1~r) .

6.4 Passive rotations in two dimensions.

A passive rotation R(α) of the plane is a rotation of the coordinate system of the
plane. The vectors of the plane remain in their place, but the coordinate system
rotates over an angle indicated by α. The basis vectors, ê′1 and ê′2, of the new
coordinate system are related to the original basis vectors, ê1 and ê2, as follows:

ê′1 = ê1 cos(α) + ê2 sin(α)

and

ê′2 = −ê1 sin(α) + ê2 cos(α) . (6.19)

which is the same expression as given in formula ( 6.16), but with a completely
different meaning: In ( 6.16), the vectors ~u ′

1 and ~u ′
2 represent the images of the

vectors which originally have the same positions as the basic vectors ê1 and ê2 of
the fixed coordinate system. Here, ê′1 and ê′2 represent the basis vectors of the new
coordinate system.
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A vector ~v can be characterized by its components (v1, v2) with respect to the
original basis vectors, as well as by its components (v′1, v

′
2) in the new coordinate

system, i.e.:

~v = v1ê1 + v2ê2 = v′1ê
′
1 + v′2ê

′
2 . (6.20)

The relation between (v1, v2) and (v′1, v
′
2), which can be found by substituting the

expressions ( 6.19) into formula ( 6.20), is given by:

v′1 = v1 cos(α) + v2 sin(α)

and

v′2 = −v1 sin(α) + v2 cos(α) ,

or, using formula ( 6.6), in a more compact notation:

(

v′1
v′2

)

=

(

cos(α) sin(α)
− sin(α) cos(α)

)(

v1
v2

)

= [R(α)]−1

(

v1
v2

)

. (6.21)

We find that in the case of a passive or coordinate transformation, the components
v1 and v2, which describe the vector ~v in the original coordinate system, transform
according to the inverse of the matrix R(α) into the components v′1 and v′2, which
describe the same vector ~v in the new coordinate system ê′1 and ê′2. Because of this
property, vectors are called contra-variant.

6.5 The standard irreps of SO(2).

From Fourier-analysis we know that the space of ”well-behaved” functions at the
interval (−π,+π] has as a basis the functions:

ψm(ϕ) = eimϕ , m = 0,±1,±2, . . . (6.22)

Any ”well-behaved” function f(ϕ) (ϕ ∈ (−π,+π]) can be expanded in a linear
combination of the basis (6.22), i.e.:

f(ϕ) =
∞∑

m = −∞
amψm(ϕ) , (6.23)

where the coefficients am are given by the innerproduct of the basis vector ψm with
the ”vector” f .
The innerproduct of the orthonormal set of basis vectors ψm of this complex

vector space of ”well-behaved” functions at the interval (−π,+π], is defined by:

(ψm , ψn) =
∫ +π

−π
dϕ

2π
ψ⋆m(ϕ)ψn(ϕ) =

∫ +π

−π
dϕ

2π
ei(n−m)ϕ = δmn . (6.24)

Consequently, the coefficients am of the expansion ( 6.23) are given by:
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am = (ψm , f) =
∫ +π

−π
dϕ

2π
ψ⋆m(ϕ)f(ϕ) =

∫ +π

−π
dϕ

2π
f(ϕ)e−imϕ . (6.25)

At the Fourier basis ψm one might view the function f as an infinitely long column
vector with components am, i.e.

f =

















...
a−2

a−1

a0
a1
a2
...

















. (6.26)

In the following we study the effect of a passive rotation R(α) in the (x, y)-plane
on the space of ”well-behaved” functions. The situation is shown in the figure ( 6.2)
below.

x
-
ê1
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Figure 6.2: A passive rotation of the plane: The coordinate system is rotated around
the origin; physical objects remain in their place.

Let us associate to each point at the unit circle in the plane a complex number
such that the resulting function is ”well-behaved”. In the coordinate system (ê1, ê2)
this is described by a function a function f(ϕ) of the parameter ϕ. Whereas in the
coordinate system (ê′1, ê

′
2) the same complex numbers are described by a function

f ′(ϕ′) of the angle ϕ′. Now, in a certain point P of the unit circle is the function
value independent of the choice of coordinates. Consequently, there exists a relation
between f and f ′, given by:

f(ϕ) = f ′(ϕ′) = f ′(ϕ− α) . (6.27)

The Fourier basis at a given coordinate system is defined in formula ( 6.22). The
relevant variable is the azimuthal angle with respect to the basis vectors of the
coordinate system. Consequently, in the unprimed coordinate system are the values
of the Fourier basis in the point P (see figure 6.2) determined by:
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ψm(ϕ) = eimϕ , m = 0,±1,±2, . . .

and in the primed coordinate system by:

ψ′
m(ϕ′) = eimϕ

′
= eim(ϕ− α) , m = 0,±1,±2, . . .

So, we obtain the following relation between the two different Fourier bases:

ψ′
m(ϕ′) = ψm(ϕ− α) .

This relation defines a representationD(F )(α) ofR(α) in the space of ”well-behaved”
functions:

D(F )(α)ψm(ϕ) = ψ′
m(ϕ′) = e−imαeimϕ = D(m)(α)ψm(ϕ) . (6.28)

In the vector space defined by vectors of the form ( 6.26), the representation

D(F )(α) of R(α) becomes a matrix representation. The matrix D(F )(α) might be
viewed here as a diagonal matrix at the Fourier basis ψm, with diagonal elements
exp{−imα}, i.e.:

D(F )(α) =



















. . .

e2iα 0

eiα

1

e−iα
0 e−2iα

. . .



















. (6.29)

In terms of the one-dimensional standard irreps defined in ( 6.15) the above matrix
can be written as:

D(F )(α) =

















. . .

D(−2)(α) 0
D(−1)(α)

D(0)(α)
D(1)(α)

0 D(2)(α)
. . .

















.

(6.30)

As a consequence we find that the representation D(F ) is completely reducible into

a direct sum the standard irreps D(m). For example, consider the one-dimensional
subspace of ”well-behaved” functions, which have the form:

f(ϕ) = a1ψ1(ϕ),
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where a1 may take any complex value. At this subspace is DF (α) given by:

DF (α)f(ϕ) = DF (α)

















...
0
0
0
a1
0
...

















(ϕ) =

















...
0
0
0

D(1)(α)a1
0
...

















(ϕ) = D(1)(α))f(ϕ) . (6.31)

The Fourier components of the function f(ϕ) are given by am in the unprimed
coordinate system and by a′m in the primed system, i.e.:

f(ϕ) =
∞∑

m = −∞
amψm(ϕ) and f ′(ϕ′) =

∞∑

m = −∞
a′mψ

′
m(ϕ′) . (6.32)

So, using ( 6.27), ( 6.22) and ( 6.28), we obtain:

∞∑

m = −∞
a′mψ

′
m(ϕ′) = f ′(ϕ′) = f(ϕ) =

∞∑

m = −∞
amψm(ϕ)

=
∞∑

m = −∞
ame

imϕ =
∞∑

m = −∞
ame

imαeim(ϕ− α)

=
∞∑

m = −∞

(

ame
imα

)

ψ′
m(ϕ′) (6.33)

From which equality, using ( 6.29) and ( 6.30), we may conclude that:

a′m = ame
imα =

{[

D(F )(α)
]−1

}

mm
am . (6.34)

As a result, we find that in the case of a passive rotation R(α), the Fourier

basis transforms with D(F )(α) given in ( 6.29) and the Fourier components of a
”well-behaved” function with the inverse of that matrix. It is in a way similar to
the transformation of the basis vectors of the coordinate system as given in formula
( 6.19) in relation to the transformation of the components of a contra-variant vector
as shown in formula ( 6.21).
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6.6 The generator of SO(2).

The group elements of SO(2) can be characterized by one parameter, the rotation
angle; that is that all possible rotations in two dimensions are given by:

R(α) , −π < α ≤ +π. (6.35)

In the neighbourhood of the unit operation (α = 0), the above defined matrices
form a one dimensional continuous matrix field. So, we might define the matrix A
which is given by the derivative of the matrix field at α = 0, as follows:

A =
d

dα
R(α)

∣
∣
∣
∣
∣
α = 0

=

(

0 −1
1 0

)

. (6.36)

The matrix A is called the generator of rotations in two dimensions. In the
following it will become clear why: For angles different from zero one has similarly:

d

dα
R(α) =

(

− sin(α) − cos(α)
cos(α) − sin(α)

)

=

(

0 −1
1 0

)(

cos(α) − sin(α)
sin(α) cos(α)

)

= A R(α),

which differential equation can be solved by:

R(α) = exp{αA}. (6.37)

The expansion of the exponent for the matrix A of formula ( 6.36) is shown in detail
in ( 5.2) and it confirms the above equality.
Because of the above representation of a rotation in terms of a parameter, α,

and the matrix A, it is that this matrix is called the generator of rotations in two
dimensions.

A representation D(α) for the group elements R(α) of SO(2), can be translated
into a representation d(A) of the generator A of the group, according to:

D(α) = exp{αd(A)} . (6.38)

In the cae of the standard irreps ( 6.15) of SO(2), we find for the representations

d(k)(A) of the generator A of SO(2) the result:

d(k)(A) = −ik , k = 0,±1,±2, . . . (6.39)

6.7 A differential operator for the generator.

In the space of ”well-behaved” functions f(~r) = f(x, y) of the two real parameters x
and y, we found in formula ( 6.18) the following representation for an active rotation
R(α) of the parameter space (i.e. the (x, y)-plane):

D(α)f

(

~r =

(

x
y

))

= f

(

[R(α)]−1

(

x
y

))

. (6.40)
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The lefthand side of this relation can be rewritten in terms of the corresponding
representation d(A) of the generator of SO(2), using the definition given in ( 6.38),
i.e.:

D(α)f(~r) = exp{αd(A)}f(~r) . (6.41)

Moreover, might the righthand side of equation ( 6.40) be expanded in a Taylor
series of the form:

f

(

~r +

(

∆x
∆y

))

= f(~r) +

(

∆x
∂

∂x
+∆y

∂

∂y

)

f(~r) +

(6.42)

+
1

2

(

(∆x)2
∂2

∂x2
+ 2∆x∆y

∂2

∂x∂y
+ (∆y)2

∂2

∂y2

)

f(~r) + · · ·

Let us expand the series ( 6.41) and ( 6.42) in α. For ( 6.41) we obtain:

D(α)f(~r) = [1 + αd(A) +
α2

2
{d(A)}2 + · · ·]f(~r) . (6.43)

For ( 6.42) we need the expansions for ∆x and ∆y in α, i.e.:

(

∆x
∆y

)

= R(−α)~r − ~r =








αy − α2

2 x+ · · ·

−αx− α2

2 y + · · ·








. (6.44)

Consequently, for ( 6.42) we obtain to first order in α, the following:

f([R(α)]−1~r) = f(~r) + α

(

y
∂

∂x
− x

∂

∂y

)

f(~r) . (6.45)

So, when we compare formula ( 6.43) with formula ( 6.45), then we find for the
representation d(A) of the generator A of SO(2) in the space of ”well-behaved”
functions f(x, y), to first order in α, the following differential operator:

d(A) = y
∂

∂x
− x

∂

∂y
. (6.46)

Now, one might like to inspect the higher order terms in the expansions of the
formulas ( 6.41) and ( 6.42). For ( 6.42), the second order in α term equals:

α2

2

(

−x ∂
∂x

− y
∂

∂y
+ y2

∂2

∂x2
− 2xy

∂2

∂x∂y
+ x2

∂2

∂y2

)

f(~r) =
α2

2

(

y
∂

∂x
− x

∂

∂y

)2

f(~r) .

(6.47)
So, in comparing formula ( 6.43) with formula ( 6.47), we find that also to second
order in α, the solution is given by the differential operator ( 6.46). In fact, this
result is consistent with expansions up to any order in α.
Moreover, when we introduce the azimuthal angle ϕ in the (x, y)-plane, according

to:
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x = |~r| cos(ϕ) and y = |~r| sin(ϕ) ,

then we get for d(A), using formula ( 6.46), the differential operator given by:

d(A) = − ∂

∂ϕ
. (6.48)

Because of this result, ∂/∂ϕ is sometimes refered to as the generator of rotations in
the (x, y)-plane.
It is easy to demonstrate that relation ( 6.48) is the correct representation d(A)

in function space. The modulus of ~r remains invariant under a rotation, so the only
relevant variable of f(~r) is the azimuthal angle ϕ. Consequently, instead of formula
( 6.40), one might take the more simple expression:

D(α)f(~r) = f(ϕ− α) = f(~r)− α
∂

∂ϕ
f(~r) +

α2

2

(

∂

∂ϕ

)2

f(~r) + · · ·

Comparing this expansion with ( 6.43), we are unambiguously lead to the identifi-
cation ( 6.48).
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6.8 The generator for physicists.

Physicists prefer operators like x and −i∂/∂x. So, instead of the operator d(A) of
formula ( 6.46), they prefer:

−ix ∂
∂y

+ iy
∂

∂x
.

In order to suit that need, we take for the generator of SO(2) the operator L, defined
by:

L = iA =

(

0 −i
i 0

)

. (6.49)

The group elements R(α) of SO(2) can then be written in the form:

R(α) = exp{−iαL} . (6.50)

And, using the expressions ( 6.46) and ( 6.48), the representation d(L) of the gen-
erator L turns out to be:

d(L) = −ix ∂
∂y

+ iy
∂

∂x
= −i ∂

∂ϕ
. (6.51)

Clearly, there exists no essential difference between the generator L and the genera-
tor A. It is just a matter of taste. However, notice that whereas A of formula ( 6.36)
is anti-symmetric, L of formula ( 6.49) is Hermitean. Both, A and L are traceless,
since the group elements R(α) of SO(2) are unimodular (see formula 5.22).

In the case of the standard irreps ( 6.39), we find for the representations of d(k)(L)
of the generator L the form:

d(k)(L) = k , k = 0,±1,±2, . . . (6.52)

6.9 The Lie-algebra.

The special orthogonal group in two dimensions, SO(2), is generated by the operator
L. This means that each element R(α) of the group can be written in the form
R(α) = exp(−iαL). The reason that we only need one generator for the group SO(2)
is the fact that all group elements R(α) can be parametrized by one parameter α,
representing the rotation angle.
Since α is a continuous parameter we may define the derivative of of the matrix

field R(α) with respect to α. When this derivative and all higher derivatives exist,
then a group is called a Lie-group. SO(2) is a Lie-group.
The operator L spans an algebra, which is a vector space endowed with a product.

A vector space is clear, because linear combinations, like α1L+α2L, generate group
elements, like R(α1 + α2). However the discussion on the precise details of the
product will be postponed to the next chapter.
Since this algebra generates a Lie-group it is called a Lie-algbra.
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Chapter 7

The orthogonal group in two
dimensions.

In this chapter we study the representations of the group of orthogonal transforma-
tions in two dimensions. But, before doing so, let us first recapitulate what we have
learned so far.

7.1 Representations and the reduction procedure

Since, as we concluded from property ( 6.10) for its group elements, SO(2) is an
Abelian group, its irreps are one-dimensional. This property of Abelian groups has
been shown for finite groups in ( 4.24). The arguments are, loosely speaking, as
follows:
The equivalence classes of an Abelian group consist all of only one group element.

Hence, there are as many equivalence classes as group elements. Moreover, the
number of non-equivalent irreducible representations of any group equals the number
of equivalence classes of the group. Consequently, in the case of an Abelian group one
has as many non-equivalent irreducible representations as there are group elements
in the group.
Furthermore, one has that the sum of the square of the dimensions of the non-

equivalent irreducible representations also equals the number of group elements, as
is shown in formula (4.10). This has for an Abelian group then as a consequence
that those dimensions can only be equal to one.

So, for any irreducible representation D(irrep), a group element R(α) of SO(2) is
represented by a transformation of the complex numbers into the complex numbers,
i.e.

D(irrep) (R(α)) : C −→ C . (7.1)

An arbitrary representation of SO(2) in a vector space of a higher dimension can
be reduced to one-dimensional irreducible representations at the basis of invariant
one-dimensional subspaces. We have discussed the procedure for the defining rep-
resentation of SO(2) in section ( 6.2) and for the space of complex functions of one
variable at the interval (−π,+π) at the Fourier basis in section ( 6.5), culminating
in formula ( 6.30).
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7.2 The group O(2)

The orthogonal group in two dimensions, O(2), is defined by the set of real and
orthogonal (i.e. A−1 = AT ) 2 × 2 matrices. For the determinant of such matrices
one has the following relation

[det(A)]2 = det(A)det(A) = det(A)det
(

AT
)

= det(A)det
(

A−1
)

=

= det
(

AA−1
)

= det (1) = 1 ,

which leads to

det(A) = ±1 . (7.2)

For the unimodular, real and orthogonal 2 × 2 matrices, R(α), we found in section
( 6.1) the general form

R(α) =

(

cos(α) − sin(α)
sin(α) cos(α)

)

for α ∈ (−π,+π] . (7.3)

Those transformations of the two-dimensional plane onto itself are called proper

rotations.
Following a similar reasoning as given in section ( 6.1), we find for the real and

orthogonal 2× 2 matrices with determinant −1, R̄(β), the general form

R̄(β) =

(

sin(β) cos(β)
cos(β) − sin(β)

)

for β ∈ (−π,+π] . (7.4)

The latter type of matrices, which are referred to as the improper rotations, might
also be written in the following form

R̄(β) = PR(β) with P =

(

0 1
1 0

)

. (7.5)

From expression ( 7.3) one learns moreover that the proper rotations form a sub-
group of O(2), which is isomorphous to SO(2). Hence representations of O(2) are
also representations of SO(2). But this does not imply that irreducible represen-
tations of O(2) are irreducible representations of SO(2). The latter statement can
easily be verified for the defining representation of O(2), given in formulas ( 7.3)
and ( 7.4), since the unit vectors û1 and û−1, given by:

û1 =
1√
2

(

1
i

)

and û−1 =
1√
2

(

i
1

)

,

which are eigenvectors of the matrices ( 7.3) for all values of α, as discussed in section
( 6.2), are not eigenvectors of the matrices ( 7.4). Consequently, the two-dimensional
vector space has no invariant subspaces under the defining representation of O(2),
which representation is hence irreducible. However, its restriction to the subgroup
SO(2) is reducible as we have seen in section ( 6.2).
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The group product is conveniently studied once the square of the operation P ,
defined in formula ( 7.5), is known and the product of R(α) and P is expressed in
terms of proper and improper rotations. Hence, we determine

P 2 = 1 and R(α)P =

(

− sin(α) cos(α)
cos(α) sin(α)

)

= R̄(−α) . (7.6)

Using the definition ( 7.5) and the result ( 7.6), one may easily deduce that all
possible products of group elements of O(2) yield group elements of O(2), i.e.

(a) R(α)R(β) = R(α + β) ,

(b) R(α)R̄(β) = R̄(−α + β) ,

(c) R̄(α)R(β) = R̄(α + β) , and

(d) R̄(α)R̄(β) = R(−α + β) . (7.7)

The group structure follows from formula ( 7.7). In particular we find for the inverses
of the two types of group elements

(a) [R(α)]−1 = R(−α) , and

(b)
[

R̄(α)
]−1

= R̄(α) . (7.8)

Furthermore, we obtain the following equivalence relations for proper and improper
rotations.

(a) R(β)R(α)R(−β) = R(α) ,

(b) R̄(β)R(α)R̄(β) = R(−α) ,

(c) R(β)R̄(α)R(−β) = R̄(α− 2β) , and

(d) R̄(β)R̄(α)R̄(β) = R̄(−α + 2β) . (7.9)

From relations ( 7.9c and d) we conclude that all improper rotations are equivalent
and from relation ( 7.9b) that all proper rotations are pairwise equivalent, except
for the unit element. Hence we obtain the following equivalence classes:

(type a) {R(0) = 1} ,

(type b) {R(α) , R(−α)} , for each α ∈ (0,+π] , and

(type c)
{

R̄(β) , β ∈ (−π,+π]
}

. (7.10)

There is an infinity of type (b) equivalence classes, but half as many as group
elements in SO(2), which subgroup itself contains half as much group elements as
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O(2), as can be seen from the construction given in formulas ( 7.3) and ( 7.4).
The other two equivalence classes are related to the trivial and the almost trivial
irreducible representations. Ignoring those two equivalence classes, we come to the
conclusion that there are four times more group elements in O(2) than equivalence
classes and hence than non-equivalent irreducible representations. As a consequence
all irreps of O(2) must be two-dimensional, with the exception of the two already
mentioned. The defining representation of O(2), given in formulas ( 7.3) and ( 7.4),
is an example of such representation.

7.3 Irreps of O(2).

An arbitrary representation, D, of O(2) has been defined in the foregoing as a set
of unitary transformations of a vector space, V , into itself, i.e.

D(g) : V −→ V .

For the vector space V one might select the space of functions of one variable at
the interval (−π,+π), as in chapter ( 6). Now, in section ( 7.2) we have come to
the conclusion that D also forms a representation when restricted to the subgroup
of proper rotations, which is isomorphous to SO(2), albeit possibly not irreducible.
Moreover, in chapter ( 6) we have studied the irreducible representations of SO(2),
hence we know that we may select a basis, {. . . ψ−2, ψ−1, ψ0, ψ1, ψ2, . . .}, in the vector
space V at which the representation of a proper rotation, D (R(α)) acts as follows:

D (R(α))ψm = e−imαψm . (7.11)

Consequently, once the action of the representation of the improper rotation P ,
defined in formula ( 7.5), is known, the whole representation is characterized. For
that purpose we define

|ϕ〉 = D (P )ψm . (7.12)

We want to determine the relation of |ϕ〉 with the elements of the basis of the vector
space V . Hence, also using formula ( 7.11), we do

D (R(α)) |ϕ〉 = D (R(α))D (P )ψm = D (R(α)P )ψm =

= D (PR(−α))ψm = D (P )D (R(−α))ψm =

= D (P ) eimαψm = eimαD (P )ψm = eimα|ϕ〉 ,

from which we conclude that |ϕ〉 is proportional to ψ−m, i.e.

D (P )ψm = |ϕ〉 = amψ−m . (7.13)

Notice that because of this result one has two-dimensional invariant subspaces of
the vector space V which are spanned by the basis elements ψ−m and ψm, except
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for the cases where m = 0. Consequently, when one organizes the basis of V in the
following order:

{ψ0, ψ−1, ψ+1, ψ−2, ψ+2, ψ−3, ψ+3, . . .} , (7.14)

then D(g) takes the form

D(g) =












D(0)(g)
D(1)(g) 0

D(2)(g)
0 D(3)(g)

. . .












, (7.15)

where D(0) is a number and where D(1), D(2), D(3), . . . are 2 × 2 matrices, for all
elements g of SO(2).
What is left now, is to figure out the value of the constant of proportionality am

of formula ( 7.13). First we settle that its absolute value must equal one, since we
want an unitary representation, i.e.

am = eiαm .

Next, also using formulas ( 7.6) and ( 7.13), we determine

ψm = 1ψm = D (1)ψm = D
(

P 2
)

ψm = D (P )D (P )ψm =

= D (P ) eiαmψ−m = eiαmD (P )ψ−m = eiαmeiα−mψm ,

from which we conclude that

α−m + αm = 0 , ±2π , ±4π , . . . . (7.16)

For m 6= 0 one might even get rid of the whole phase factor αm, by choosing an
equivalent representation for which the new bases of the two-dimensional subspaces
are given by

|m〉 = ψm and |−m〉 = eiαmψ−m , (7.17)

because then one has

D (P ) |m〉 = D (P )ψme
iαmψ−m = |−m〉

and D (P ) |−m〉 = D (P ) eiαmψ−m = eiαmeiα−mψm = |m〉 .

We thus find that, besides the two trivial representations, the irreducible rep-
resentations of SO(2) are two-dimensional and characterized by positive integers
m = 1, 2, 3, .... The representations of the proper and the improper rotations are
given by
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D(m) (R(α)) |m〉 = e−imα|m〉 ,

D(m) (R(α)) |−m〉 = eimα|−m〉 ,

D(m)
(

R̄(β)
)

|m〉 = e−imβ |−m〉 ,

D(m)
(

R̄(β)
)

|−m〉 = eimβ |m〉 . (7.18)

The two trivial irreducible representations are given by

D(1)(R) = D(1)(R̄) = 1 and D(1′)(R) = −D(1′)(R̄) = 1 . (7.19)
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Chapter 8

The special orthogonal group in
three dimensions.

In this chapter we will study the group of special orthogonal 3× 3 matrices, SO(3).
Those matrices represent rotations in three dimensions as we have seen in section
( 5.3) at page 53.

8.1 The rotation group SO(3).

Similar to the group of rotations around the origin in two dimensions, we have
the group of rotations around the origin in three dimensions. An important dif-
ference with rotations in two dimensions is that in three dimensions rotations do
not commute. Consequently, the rotation group in three dimensions is not Abelian.
The three rotations around the principal axes of the orthogonal coordinate system
(x, y, z) are given by:

R(x̂, α) =






1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)




 , R(ŷ, ϑ) =






cos(ϑ) 0 sin(ϑ)
0 1 0

− sin(ϑ) 0 cos(ϑ)




 ,

and R(ẑ, ϕ) =






cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1




 . (8.1)

Those matrices are unimodular (i.e. have unit determinant) and orthogonal.
As an example that rotations in general do not commute, let us take a rotation

of 90◦ around the x-axis and a rotation of 90◦ around the y-axis. It is, using the
above definitions ( 8.1), easy to show that:

R(x̂, 90◦)R(ŷ, 90◦) 6= R(ŷ, 90◦)R(x̂, 90◦) . (8.2)

An arbitrary rotation can be characterized in various different ways. One way is as
follows: Let ê1, ê2 and ê3 represent the orthonormal basis vectors of the coordinate
system and let ~u1 = ê1, ~u2 = ê2 and ~u3 = ê3 be three vectors in three dimensions
which before the rotation R are at the positions of the three basis vectors. The
images of the three vectors are after an active rotation R given by:
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~u′i = R ~ui for i = 1, 2, 3.

The rotation matrix for R at the above defined basis êi (i = 1, 2, 3), consists then
of the components of those image vectors, i.e.

R =











(~u′1)1 (~u′2)1 (~u′3)1

(~u′1)2 (~u′2)2 (~u′3)2

(~u′1)3 (~u′2)3 (~u′3)3











. (8.3)

A second way to characterize a rotation is by means of its rotation axis, which is
the one-dimensional subspace of the three dimensional space which remains invariant
under the rotation, and by its rotation angle.
In both cases are three free parameters involved: The direction of the rotation axis

in the second case, needs two parameters and the rotation angle gives the third. In
the case of the rotation R of formula ( 8.3) we have nine different matrix elements.
Now, if ê1, ê2 and ê3 form a righthanded set of unit vectors, i.e. ê1 × ê2 = ê3, then
consequently form the rotated vectors ~u′1, ~u

′
2 and ~u

′
3 also a righthanded orthonormal

system, i.e. ~u′3 = ~u′1 × ~u′2. This leaves us with the six components of ~u′1 and ~u′2 as
parameters. But there are three more conditions, |~u′1| = |~u′2| = 1 and ~u′1 · ~u′2 = 0.
So, only three of the nine components of R are free.
The matrix R of formula ( 8.3) is unimodular and orthogonal. In order to proof

those properties of R, we first introduce, for now and for later use, the Levi-Civita
tensor ǫijk , given by:

ǫijk =







+1 for ijk = 123, 312 and 231.
−1 for ijk = 132, 213 and 321.
0 for all other combinations.

(8.4)

This tensor has the following properties:

(i) For symmetric permutations of the indices:

ǫjki = ǫkij = ǫijk. (8.5)

(ii) For antisymmetric permutations of indices:

ǫikj = ǫjik = ǫkji = −ǫijk. (8.6)

Now, using the definition of the Levi-Civita tensor and the fact that the rotated
vectors ~u′1, ~u

′
2 and ~u′3 form a righthanded orthonormal system, we find for the de-

terminant of the rotation matrix R of formula ( 8.3) the following:

det(R) = ǫijkRi1Rj2Rk3 = ǫjik(~u
′
1)i(~u

′
2)j(~u

′
3)k

= (~u′1 × ~u′2)k(~u
′
3)k = ~u′3 · ~u′3 = 1 .
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And for the transposed of the rotation matrix R we obtain moreover:
(

RTR
)

ij
=
(

RT
)

ik
Rkj = RkiRkj = (~u′i)k(~u

′
j)k = δij .

Consequently, the rotation matrix R is unimodular and orthogonal.

8.2 The Euler angles.

So, rotations in three dimensions are characterized by three parameters. Here we
consider the rotation which rotates a point ~a, defined by:

~a = (sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ)) , (8.7)

to the position ~b, defined by

~b = (sin(ϑ′) cos(ϕ′), sin(ϑ′) sin(ϕ′), cos(ϑ′)) . (8.8)

Notice that there exists various different rotations which perform this operation.
Here, we just select one. Using the definitions ( 8.1), ( 8.7) and ( 8.8), it is not very
difficult to show that:

R(ŷ,−ϑ)R(ẑ,−ϕ)~a = ẑ, R(ẑ, ϕ′)R(ŷ, ϑ′)ẑ = ~b and R(ŷ, ϑ′)R(ŷ,−ϑ) = R(ŷ, ϑ′−ϑ).

As a consequence of this results, we may conclude that a possible rotation which
transforms ~a ( 8.7) into ~b ( 8.8), is given by:

R(ϕ′, ϑ′ − ϑ, ϕ) = R(ẑ, ϕ′)R(ŷ, ϑ′ − ϑ)R(ẑ,−ϕ). (8.9)

This parametrization of an arbitrary rotation in three dimensions is due to Euler.
The three independent angles ϕ′, ϑ′ − ϑ and ϕ are called the Euler angles.

8.3 The generators.

A second parametrization involves the generators of rotations in three dimensions,
as, similar to the matrix A ( 6.36) for two dimensions, are called the following three
matrices which result from the three basic rotations defined in ( 8.1):

A1 =
d

dα
R(x̂, α)

∣
∣
∣
∣
∣
α = 0

=






0 0 0
0 0 −1
0 1 0




 , A2 =

d

dϑ
R(ŷ, ϑ)

∣
∣
∣
∣
∣
ϑ = 0

=






0 0 1
0 0 0

−1 0 0






and A3 =
d

dϕ
R(ẑ, ϕ)

∣
∣
∣
∣
∣
ϕ = 0

=






0 −1 0
1 0 0
0 0 0




 . (8.10)

In terms of the Levi-Civita tensor, defined in formula ( 8.4), we can express the
matrix representation ( 8.10) for the generators of SO(3), by:

(Ai)jk = −ǫijk. (8.11)
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The introduction of the Levi-Civita tensor is very useful for the various derivations
in the following, since it allows a compact way of formulating matrix multiplications,
as we will see. However, one more property of this tensor should be given here, i.e.
the contraction of one index in the product of two Levi-Civita tensors:

ǫijkǫilm = ǫ
1jkǫ1lm + ǫ

2jkǫ2lm + ǫ
3jkǫ3lm

= δjlδkm − δjmδkl. (8.12)

Equiped with this knowledge, let us determine the commutator of two generators
( 8.10), using the above properties ( 8.5), ( 8.6) and ( 8.12). First we concentrate
on one matrix element ( 8.11) of the commutator:

{[Ai, Aj ]}kl = (AiAj)kl − (AjAi)kl = (Ai)km(Aj)ml − (Aj)km(Ai)ml

= ǫikmǫjml − ǫjkmǫiml = ǫmikǫmlj − ǫmjkǫmli

= δilδkj − δijδkl − (δjlδki − δjiδkl) = δilδkj − δjlδki

= ǫmijǫmlk = −ǫijmǫmkl = ǫijm(Am)kl

= (ǫijmAm)kl.

So, for the commutator of the generators ( 8.10) we find:

[Ai, Aj ] = ǫijmAm. (8.13)

Why commutation relations are important for the construction of representations of
Lie-groups, will become clear in the following.

8.4 The rotation axis.

In order to determine a second parametrization of a rotation in three dimensions,
we define an arbitrary vector ~n by:

~n = (n1, n2, n3), (8.14)

as well as its ”innerproduct” with the three generators ( 8.10), given by the expres-
sion:

~n · ~A = niAi = n1A1 + n2A2 + n3A3. (8.15)

In the following we need the higher order powers of this ”innerproduct”. Actually,
it is sufficient to determine the third power of ( 8.15), i.e.:
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(~n · ~A)3 = (niAi)(njAj)(nkAk) = ninjnkAiAjAk.

We proceed by determining one matrix element of the resulting matrix. Using the
above property ( 8.12) of the Levi-Civita tensor, we find:

{(~n · ~A)3}ab = ninjnk{AiAjAk}ab = ninjnk(Ai)ac(Aj)cd(Ak)db

= −ninjnkǫiacǫjcdǫkdb = −ninjnk{δidδaj − δijδad}ǫkdb

= −ndnankǫkdb + n2nkǫkab = 0− n2nk(Ak)ab

= {−n2~n · ~A}ab.

The zero in the forelast step of the above derivation, comes from the deliberation
that using the antisymmetry property ( 8.6) of the Levi-Civita tensor, we have the
following result for the contraction of two indices with a symmetric expression:

ǫijknjnk = −ǫikjnjnk = −ǫikjnknj = −ǫijknjnk, (8.16)

where in the last step we used the fact that contracted indices are dummy and can
consequently be represented by any symbol.
So, we have obtained for the third power of the ”innerproduct” ( 8.15) the follow-

ing:

(~n · ~A)3 = −n2~n · ~A. (8.17)

Using this relation repeatedly for the higher order powers of ~n · ~A, we may also
determine its exponential, i.e.

exp{~n · ~A} = 1+ ~n · ~A +
1

2!
(~n · ~A)2 + 1

3!
(~n · ~A)3 + 1

4!
(~n · ~A)4 + · · ·

= 1+ ~n · ~A +
1

2!
(~n · ~A)2 + 1

3!
(−n2~n · ~A) + 1

4!
(−n2(~n · ~A)2) + · · ·

= 1+ {1− n2

3!
+
n4

5!
− n6

7!
+ · · ·}(~n · ~A) +

+ { 1
2!

− n2

4!
+
n4

6!
− n6

8!
+ · · ·}(~n · ~A)2

= 1+ {n− n3

3!
+
n5

5!
− n7

7!
+ · · ·}(n̂ · ~A) +

+ {n
2

2!
− n4

4!
+
n6

6!
− n8

8!
+ · · ·}(n̂ · ~A)2.
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We recognize here the Taylor expansions for the cosine and sine functions. So,
substituting these goniometric functions for their expansions, we obtain the following
result:

exp{~n · ~A} = 1+ sin(n)(n̂ · ~A) + (1− cos(n))(n̂ · ~A)2. (8.18)

Next, we will show that this exponential operator leaves the vector ~n invariant.
For that purpose we proof, using formula ( 8.16), the following:

{(~n · ~A)~n}i = (~n · ~A)ijnj = (nkAk)ijnj = nk(Ak)ijnj = −nkǫkijnj = 0,

or equivalently:

(~n · ~A)~n = 0. (8.19)

Consequently, the exponential operator ( 8.18) acting at the vector ~n, gives the
following result:

exp{~n · ~A}~n =
[

1+ ~n · ~A+ · · ·
]

~n = 1~n = ~n (8.20)

So, the exponential operator ( 8.18) leaves the vector ~n invariant and of course also
the vectors a~n, where a represents an arbitrary real constant. Consequently, the axis
through the vector ~n is invariant, which implies that it is the rotation axis when
the exponential operator represents a rotation, i.e. when this operator represents
an unimodular, orthogonal transformation. Now, the matrix ~n · ~A of formula ( 8.15)
is explicitly given by:

~n · ~A =






0 −n3 n2

n3 0 −n1

−n2 n1 0




 , (8.21)

which clearly is a traceless and anti-symmetric matrix. So, using the formulas
( 5.22) and ( 5.24), we are lead to the conclusion that exp{~n · ~A} is orthogonal and
unimodular and thus represents a rotation.
In order to study the angle of rotation of the transformation ( 8.18), we introduce

a pair of vectors ~v and ~w in the plane perpendicular to the rotation axis ~n:

~v =






n2 − n3

n3 − n1

n1 − n2




 and ~w = n̂× ~v = (n1 + n2 + n3)n̂− n






1
1
1




 , (8.22)

where n is defined by n =
√

n2
1 + n2

2 + n2
3.

The vectors ~v, ~w and ~n form an orthogonal set in three dimensions. Moreover,
are the moduli of ~v and ~w equal.
Using formula ( 8.21), one finds that under the matrix n̂ · ~A the vectors ~v and ~w

transform according to:

(n̂ · ~A)~v = ~w and (n̂ · ~A)~w = −~v .
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So, for the rotation exp(~n · ~A) of formula ( 8.18) one obtains for the vectors ~v and
~w the following transformations:

~v ′ = exp(~n · ~A)~v = ~v + sin(n)~w + (1− cos(n))(−~v) = ~v cos(n) + ~w sin(n), and

~w ′ = exp(~n · ~A)~w = ~w + sin(n)(−~v) + (1− cos(n))(−~w) = −~v sin(n) + ~w cos(n).

The vectors ~v and ~w are rotated over an angle n in to the resulting vectors ~v ′ and
~w ′. This rotation is moreover in the positive sense with respect to the direction ~n
of the rotation axis, because of the choice ( 8.22) for ~w.
Notice that the case n1 = n2 = n3, which is not covered by the choice ( 8.22), has

to be studied separately. This is left as an exercise for the reader.
Concludingly, we may state that we found a second parametrization of a rotation

around the origin in three dimensions, i.e.:

R(n1, n2, n3) = exp{~n · ~A}, (8.23)

where the rotation angle is determined by:

n =
√

n2
1 + n2

2 + n2
3,

and where the rotation axis is indicated by the direction of ~n.
The vector ~n can take any direction and its modulus can take any value. Con-

sequently, exp(~n · ~A) may represent any rotation and so all possible unimodular,
orthogonal 3× 3 matrices can be obtained by formula ( 8.18) once the appropriate
vectors ~n are selected.
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8.5 The Lie-algebra of SO(3).

Instead of the anti-symmetric generators An (n = 1, 2, 3) of formula ( 8.10), we
prefer to continue with the Hermitean generators Ln = iAn (n = 1, 2, 3), which in
explicit form, using the expressions ( 8.10), can be given by:

L1 =






0 0 0
0 0 −i
0 i 0




 , L2 =






0 0 i
0 0 0

−i 0 0




 , and L3 =






0 −i 0
i 0 0
0 0 0




 . (8.24)

An arbitrary rotation R(n̂, α) with rotation angle α around the axis spanned by
n̂, can, using formula ( 8.18), be expressed in terms of those generators, according
to:

R(n̂, α) = exp{−iαn̂ · ~L} = 1 + sin(α)(−in̂ · ~L) + (1− cos(α))(−in̂ · ~L)2. (8.25)

SO(3) is a Lie-group, because the derivatives ( 8.10) and all higher derivatives
exist. The Lie-algebra is spanned either by A1, A2 and A3 or by −iL1, −iL2 and
−iL3. The product of the Lie-algebra is given by the Lie-product, defined by the
commutator of two elements of the algebra. For the generators ( 8.24), using formula
( 8.13), the Lie-products yield:

[Li, Lj ] = iǫijmLm. (8.26)

This establishes, moreover, their relation with the so-called angular momentum
operators in Quantum Mechanics.
The generator space of SO(3) is an algebra. This implies that any real linear

combination of−iL1, −iL2 and−iL3 can serve as a generator of a rotation. However,
the algebra may be extended as to include also complex linear combinations of the
basic generators. Those operators do in general not represent rotations, but might
be very helpfull for the construction of representations of SO(3). Two such linear
combinations L+ and L− are given by:

L± = L1 ± iL2 . (8.27)

They satisfy the following commutation relations amongst themselves and with the
third generator L3:

[L3, L±] = ±L± and [L+, L−] = 2L3 . (8.28)

Notice moreover that, since L1 and L2 are Hermitean, the Hermitean conjugates of
L+ and L− satisfy:

L†
+ = L− and L†

− = L+ . (8.29)
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8.6 The Casimir operator of SO(3).

According to the first lemma of Schur ( 4.11), a matrix which commutes with all
matrices D(g) of an irreducible representation D for all elements of the group, must
be proportional to the unit matrix. One irrep of SO(3) is formed by the rotation
matrices themselves. This will be shown in one of the next sections of this chapter.
So, let us find a matrix which commutes with all rotation matrices. We represent
such matrix by its generator X , i.e. by exp(X). Then, since the matrix is supposed
to commute with a rotation, we have:

exp(X) exp(−iαn̂ · ~L) = exp(−iαn̂ · ~L) exp(X) .

Now, when X commutes with n̂ · ~L, then using the Baker-Campbell-Hausdorff for-
mula ( 5.17), we find:

exp(X) exp(−iαn̂ · ~L) = exp(X − iαn̂ · ~L) = exp(−iαn̂ · ~L) exp(X) .

Consequently, X must be an operator which commutes with all three generators L1,
L2 and L3. A possible solution for such operator is given by:

X = ~L 2 = (L1)
2 + (L2)

2 + (L3)
2 , (8.30)

for which it is not difficult to prove that the following commutation relations hold:

[~L 2, Li] = 0 for i = 1, 2, 3 . (8.31)

The operator X , which is usually refered to as L2, is called the Casimir operator of
SO(3). Notice that L2 is not an element of the Lie-algebra, because it can not be
written as a linear combination of generators. Nevertheless, Casimir operators are
important for the classification of irreps of Lie-groups, as we will see in the following.
For later use, we will give below some alternative expressions for L2 in terms of

the generator L3 and the generators L± of formula ( 8.27):

L2 = (L3)
2 + L3 + L−L+

= (L3)
2 − L3 + L+L−

= (L3)
2 +

1

2

(

L+L− + L−L+
)

. (8.32)
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8.7 The (2ℓ + 1)-dimensional irrep d(ℓ).

A representation of the Lie-algebra of SO(3) and hence of the Lie-group itself, is
fully characterized once the transformations d(ℓ)(Li) (for i = 1, 2, 3) of a certain
complex vector space Vℓ onto itself are known. Let us select an orthonormal basis
in Vℓ such that d(ℓ)(L3) is diagonal at that basis. From the considerations for SO(2)
which lead to the formulas ( 6.39) and ( 6.52), we know that the eigenvalues for the
representations of the generator L3 of rotations around the z-axis are integers. So,
we might label the basis vectors of Vℓ according to their eigenvalues for d(ℓ)(L3), i.e.

d(ℓ)(L3) |ℓ,m >= m|ℓ,m > for m = 0,±1,±2, . . . (8.33)

The Casimir operator L2 for the representation, given by

L2 =
[

d(ℓ)(L1)
]2

+
[

d(ℓ)(L2)
]2

+
[

d(ℓ)(L3)
]2

, (8.34)

commutes with d(ℓ)(L1), d
(ℓ)(L2) and d(ℓ)(L3). Consequently, for an irrep one has,

due the first lemma of Schur ( 4.11), that L2 equals a matrix proportional to the
unit matrix. Let us take for the constant of proportionality the symbol λ, i.e.

L2 |ℓ,m >= λ|ℓ,m > for all basis vectors. (8.35)

In the following we will show that λ = ℓ(ℓ + 1) and that m runs from −ℓ to +ℓ.
First, we proof that

m2 ≤ λ , (8.36)

from which we conclude that there must exist a maximum and a minimum value for
the integers m. Then we demonstrate that the representation of the operator L+ in
Vℓ transforms a basis vector |ℓ,m > in to a vector proportional to the basis vector
|ℓ,m+ 1 > and similarly, the representation of the operator L− in Vℓ transforms a
basis vector |ℓ,m > in to a vector proportional to the basis vector |ℓ,m− 1 >, i.e.

d(ℓ)(L±) |ℓ,m >= C±(ℓ,m)|ℓ,m± 1 > , (8.37)

where the coefficients C±(ℓ,m) represent the constants of proportionality. Because
of the property ( 8.37) the operator L+ is called the raising operator of SO(3)
and similarly L− the lowering operator. Property ( 8.37) leads us to conclude that
operating on the basis vector which has the maximum eigenvalue mmax for d(ℓ)(L3),
the raising operator must yield zero, and similarly on the basis vector with the
minimum eigenvalue mmin, the lowering operator must yield zero.

d(ℓ)(L+)|ℓ,mmax >= d(ℓ)(L−)|ℓ,mmin >= 0 . (8.38)

Finally, we show that mmin = −mmax and introduce the symbol ℓ for the maximum
value of m.
The basis |ℓ,m > is orthonormal, which can be expressed by:

< ℓ,m|ℓ,m′ >= δmm′ . (8.39)
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Relations which hold for the generators, also hold for the representations of the
generators. So, using ( 8.29) and ( 8.32) we find:

L2 −
[

d(ℓ)(L3)
]2

=
1

2

{

[d(ℓ)(L+)]†d(ℓ)(L+) + [d(ℓ)(L−)]†d(ℓ)(L−)
}

.

This leads, at the basis defined in formula ( 8.39), to the following property of the
matrix elements for those operators:

λ−m2 = < ℓ,m|
{

L2 −
[

d(ℓ)(L3)
]2
}

|ℓ,m >

= < ℓ,m|1
2

{

[d(ℓ)(L+)]†d(ℓ)(L+) + [d(ℓ)(L−)]†d(ℓ)(L−)
}

|ℓ,m >

=
1

2

{∣
∣
∣d(ℓ)(L+)|ℓ,m >

∣
∣
∣

2
+
∣
∣
∣d(ℓ)(L−)|ℓ,m >

∣
∣
∣

2
}

≥ 0 .

This proofs relation ( 8.36) and leads to the introduction of a maximum eigenvalue
mmax of d(ℓ)(L3) as well as a minimum eigenvalue mmin.
Using the commutation relations ( 8.28), one obtains:

d(ℓ)(L3)d
(ℓ)(L±) = d(ℓ)(L±L3 + [L3, L±]) = d(ℓ)(L±)d(ℓ)(L3)± d(ℓ)(L±) .

Acting with this operator on the basis ( 8.39), also using ( 8.33), one finds:

d(ℓ)(L3)
{

d(ℓ)(L±)|ℓ,m >
}

= d(ℓ)(L±)
{

d(ℓ)(L3)± 1
}

|ℓ,m >

= (m± 1)
{

d(ℓ)(L±)|ℓ,m >
}

. (8.40)

Consequently, one may conclude that d(ℓ)(L+)|ℓ,m > is proportional to the eigen-
vector of d(ℓ)(L3) with eigenvalue m + 1, i.e. |ℓ,m + 1 >, and similarly that the
vector d(ℓ)(L−)|ℓ,m > is proportional to |ℓ,m − 1 >. Yet another consequence of
( 8.37) is that d(ℓ)(L+)|ℓ,mmax > vanishes, since |ℓ,mmax+1 > is not a basis vector
of Vℓ. Similarly, d(ℓ)(L−)|ℓ,mmin > vanishes. So, using the relations ( 8.32), one
finds:

0 = d(ℓ)(L−)d(ℓ)(L+)|ℓ,mmax >=
(

L2 −
[

d(ℓ)(L3)
]2 − d(ℓ)(L3)

)

|ℓ,mmax >

= (λ− (mmax)
2 −mmax)|ℓ,mmax > ,

and

0 = d(ℓ)(L+)d(ℓ)(L−)|ℓ,mmin >=
(

L2 −
[

d(ℓ)(L3)
]2

+ d(ℓ)(L3)
)

|ℓ,mmin >

= (λ− (mmin)
2 +mmin)|ℓ,mmin > ,
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which leads to the identification mmin = −mmax and after defining ℓ = mmax, to the
equation:

λ = ℓ2 + ℓ = ℓ(ℓ+ 1) . (8.41)

This way we obtain for Vℓ the following (2ℓ+ 1)-dimensional basis:

|ℓ,−ℓ >, |ℓ,−ℓ+ 1 >, . . . , |ℓ, ℓ− 1 >, |ℓ,+ℓ > . (8.42)

At this basis L3 is represented by a diagonal (2ℓ + 1)× (2ℓ + 1) matrix, which has
the following form:

d(ℓ)(L3) =












−ℓ
−ℓ + 1 0

. . .

0 ℓ− 1
+ℓ












. (8.43)

Notice that d(ℓ)(L3) is traceless and Hermitean.
The non-negative integer ℓ characterizes the irrep d(ℓ) of SO(3). To each possible

value for ℓ corresponds one non-equivalent unitary irrep. Its dimension is determined
by the structure of the basis ( 8.42), i.e.

dim(d(ℓ)) = 2ℓ+ 1 . (8.44)

The operator which characterizes the irrep, is the Casimir operator L2, defined in
formula ( 8.30). Its eigenvalues for any vector of Vℓ have the same value, equal to
ℓ(ℓ + 1). The basis ( 8.42) is chosen such that the generator L3 is represented by
the diagonal matrix given in ( 8.43).
Because of the commutation relations ( 8.29), the operators L± defined in ( 8.27)

serve as raising and lowering operators, usefull to construct the whole basis of Vℓ
out of one single basis vector.
Using equation ( 8.41) and once more the relations ( 8.29) and ( 8.32), we obtain

for the constants of proportionality of formula ( 8.37), moreover:

ℓ(ℓ+ 1)−m(m± 1) = < ℓ,m|
{

L2 −
([

d(ℓ)(L3)
]2 ± d(ℓ)(L3)

)}

|ℓ,m >

= < ℓ,m|
[

d(ℓ)(L±)
]†
d(ℓ)(L±)|ℓ,m >

=
∣
∣
∣d(ℓ)(L±)|ℓ,m >

∣
∣
∣

2
=
∣
∣
∣C±(ℓ,m)

∣
∣
∣

2
.

It is convention not to consider a phase factor for the coefficients C±(ℓ,m) and to
take the following real solutions:

C±(ℓ,m) =
√

ℓ(ℓ+ 1)−m(m± 1) . (8.45)
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8.8 The three dimensional irrep for ℓ = 1.

As an example, let us study the three dimensional irrep d(1) of the Lie-algebra of
SO(3), at the basis of eigenstates of d(1)(L3) given by:

|1,−1 >=






1
0
0




 , |1, 0 >=






0
1
0




 and |1,−1 >=






0
0
1




 . (8.46)

The matrix representation d(1)(L3) of L3 is, because of the above choice of basis,
given by:

d(1)(L3) =






−1 0 0
0 0 0
0 0 +1




 . (8.47)

The matrices d(1)(L±) at the basis ( 8.46) for the raising and lowering operators
( 8.27) of SO(3) follow, using ( 8.45), from:

d(1)(L+)|1,−1 > =
√
2|1, 0 > , d(1)(L−)|1,−1 > = 0

d(1)(L+)|1, 0 > =
√
2|1,+1 > , d(1)(L−)|1, 0 > =

√
2|1,−1 >

d(1)(L+)|1,+1 > = 0 , d(1)(L−)|1,+1 > =
√
2|1, 0 >

So, the matrices for the choice of basis ( 8.46) are given by:

d(1)(L+) =
√
2






0 0 0
1 0 0
0 1 0




 and d(1)(L−) =

√
2






0 1 0
0 0 1
0 0 0




 . (8.48)

The matrices d(1)(L1) and d
(1)(L2) can be obtained using the definition ( 8.27) for

the raising and lowering operators and the above result ( 8.48). This leads to:

d(1)(L1) =
1√
2






0 1 0
1 0 1
0 1 0




 and d(1)(L2) =

1

i
√
2






0 −1 0
1 0 −1
0 1 0




 . (8.49)

Now, we might also like to study the related representation D(1) of the group ele-
ments of SO(3), in agreement with ( 8.25) given by:

D(1)(n̂, α) = exp{−iαn̂ · d(1)(~L)} . (8.50)

Let us select the group elements shown in formula ( 8.1) and determine their rep-
resentations for ℓ = 1. For a rotation around the x-axis, using formulas ( 8.25) and
( 8.49), we find:
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D(1) (R(x̂, α)) = exp{−iαd(1)(L1)}

= 1 + sin(α)(−id(1)(L1)) + (1− cos(α))(−id(1)(L1))
2

=















1
2
(cos(α) + 1) − i√

2
sin(α) 1

2
(cos(α)− 1)

− i√
2
sin(α) cos(α) − i√

2
sin(α)

1
2
(cos(α)− 1) − i√

2
sin(α) 1

2
(cos(α) + 1)















. (8.51)

Similarly, for a rotation around the y-axis, one obtains:

D(1) (R(ŷ, ϑ)) = exp{−iαd(1)(L2)}

= 1+ sin(α)(−id(1)(L2)) + (1− cos(α))(−id(1)(L2))
2

=
















1
2
(1 + cos(ϑ))

sin(ϑ)√
2

1
2
(1− cos(ϑ))

−sin(ϑ)√
2

cos(ϑ)
sin(ϑ)√

2

1
2
(1− cos(ϑ)) −sin(ϑ)√

2
1
2
(1 + cos(ϑ))
















. (8.52)

And a rotation around the z-axis is here represented by:

D(1) (R(ẑ, ϕ)) = exp{−iαd(1)(L3)}

= 1+ sin(α)(−id(1)(L3)) + (1− cos(α))(−id(1)(L3))
2

=











eiϕ 0 0

0 1 0

0 0 e−iϕ











. (8.53)

The matrices ( 8.51), ( 8.52) and ( 8.53) of the three dimensional irreducible repre-
sentation D(1) are not the same as the rotation matrices in three dimensions ( 8.1).
However, one might notice that the traces are the same, respectively 2 cos(α) + 1,
2 cos(ϑ) + 1 and 2 cos(ϕ) + 1. So, one might expect a similarity transformation S
which brings the rotation matrices ( 8.1) at the above form. This is most conve-
niently studied, using the expressions ( 8.24) for the generators and the expressions
( 8.47) and ( 8.49). But this is left as an exercise for the reader.
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8.9 The standard irreps of SO(3).

SO(3) is the symmetry group of the sphere in three dimensions. Points at the sphere
are characterized by the polar angle ϑ and the azimuthal angle ϕ. As a basis for
the ”well-behaved” functions f(ϑ, ϕ) for the variables ϑ and ϕ, serve the spherical

harmonics:

Yℓm(ϑ, ϕ), for ℓ = 0, 1, 2, . . . and m = −ℓ, . . . ,+ℓ . (8.54)

The innerproduct for two functions χ and ψ in the space of functions on the sphere
is defined as follows:

(ψ, χ) =
∫

sphere
dΩ ψ∗(ϑ, ϕ)χ(ϑ, ϕ) . (8.55)

The spherical harmonics ( 8.54) form an orthonormal basis for this innerproduct,
i.e.

∫

sphere
dΩ Y ∗

λµ(ϑ, ϕ)Yℓm(ϑ, ϕ) = δλℓδµm . (8.56)

Each function f(ϑ, ϕ) on the sphere can be expanded in terms of the spherical
harmonics, according to:

f(ϑ, ϕ) =
∞∑

ℓ = 0

+ℓ∑

m = −ℓ
BℓmYℓm(ϑ, ϕ) . (8.57)

The coefficients Bℓm of the above expansion are, using the orthonormality relation
( 8.56), given by:

Bℓm =
∫

sphere
dΩ Y ∗

ℓm(ϑ, ϕ)f(ϑ, ϕ) . (8.58)

An active rotation R(n̂, α) in three dimensions induces a transformation in func-
tion space (compare equation 6.18), given by:

D(n̂, α)f(~r) = f
(

[R(n̂, α)]−1~r
)

, (8.59)

where ~r indicates a point at the unit sphere, given by:

~r(ϑ, ϕ) =






sin(ϑ) cos(ϕ)
sin(ϑ) sin(ϕ)

cos(ϑ)




 . (8.60)

Let us study here the differential operators which follow for the three generators
L1, L2 and L3, defined in formula ( 8.24), from the above equation. For a rotation
R(ẑ, α) around the z-axis we find, using formula ( 8.1), for ∆ϑ and ∆ϕ to first order
in α, the following:

~r(ϑ+∆ϑ, ϕ +∆ϕ) =






1 α 0
−α 1 0
0 0 1




~r(ϑ, ϕ) =






sin(ϑ){cos(ϕ) + α sin(ϕ)}
sin(ϑ){−α cos(ϕ) + sin(ϕ)}

cos(ϑ)




 ,
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which is solved by:

∆ϑ = 0 and ∆ϕ = −α .

We obtain then for ( 8.59), expanding the lefthand side in terms of the representation
of L3 and the righthand side in a Taylor series, both to first order in α, the following:

(1− iαd(L3)) f(~r) =

(

1− α
∂

∂ϕ

)

f(~r) ,

from which we read the identification (compare also 6.51):

d(L3) = −i ∂
∂ϕ

. (8.61)

For a rotation R(x̂, α) around the x-axis we find, once more using formula ( 8.1),
for ∆ϑ and ∆ϕ to first order in α, the equations:

~r(ϑ+∆ϑ, ϕ +∆ϕ) =






1 0 0
0 1 α
0 −α 1




~r(ϑ, ϕ) =






sin(ϑ) cos(ϕ)
sin(ϑ) sin(ϕ) + α cos(ϑ)
−α sin(ϑ) sin(ϕ) + cos(ϑ)




 ,

which are solved by:

∆ϑ = α sin(ϕ) and ∆ϕ = αcotg(ϑ) cos(ϕ) .

Insertion of those results in the righthand side of ( 8.59), leads to the identification:

d(L1) = i

{

sin(ϕ)
∂

∂ϑ
+ cotg(ϑ) cos(ϕ)

∂

∂ϕ

}

. (8.62)

For a rotation R(ŷ, α) around the y-axis we find, again using formula ( 8.1), for
∆ϑ and ∆ϕ to first order in α, the equations:

~r(ϑ+∆ϑ, ϕ+∆ϕ) =






1 0 −α
0 1 0
α 0 1




~r(ϑ, ϕ) =






sin(ϑ) cos(ϕ)− α cos(ϑ)
sin(ϑ) sin(ϕ)

α sin(ϑ) cos(ϕ) + cos(ϑ)




 ,

which are solved by:

∆ϑ = −α cos(ϕ) and ∆ϕ = αcotg(ϑ) sin(ϕ) ,

and lead to the identification:

d(L2) = i

{

− cos(ϕ)
∂

∂ϑ
+ cotg(ϑ) sin(ϕ)

∂

∂ϕ

}

. (8.63)

The raising and lowering operators L± are, according to their definition ( 8.27),
given by:

d(L±) = e±iϕ
{

icotg(ϑ)
∂

∂ϕ
± ∂

∂ϑ

}

. (8.64)
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For the Casimir operator L2, using relation ( 8.30), we find the following differ-
ential operator:

L2 = [d(L1)]
2 + [d(L2)]

2 + [d(L3)]
2

= −
{

∂2

∂ϑ2
+ cotg(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

}

= −
{

1

sin(ϑ)

∂

∂ϑ
sin(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

}

(8.65)

The spherical harmonics Yℓm(ϑ, ϕ) for m = −ℓ, . . . ,+ℓ form the standard basis
of a (2ℓ+ 1)-dimensional irrep in function space. For L3 their eigenvalues are given
by:

−i ∂
∂ϕ

Yℓm(ϑ, ϕ) = d(L3)Yℓm(ϑ, ϕ) = mYℓm(ϑ, ϕ) . (8.66)

And for the Casimir operator L2, by:

−
{

1

sin(ϑ)

∂

∂ϑ
sin(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

}

Yℓm(ϑ, ϕ) = L2Yℓm(ϑ, ϕ)

(8.67)

= ℓ(ℓ+ 1)Yℓm(ϑ, ϕ) .
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8.10 The spherical harmonics.

Equation ( 8.66) is solved by:

Yℓm(ϑ, ϕ) = Xℓm(ϑ)eimϕ , (8.68)

where Xℓm(ϑ) is some yet unknown function of the polar angle ϑ. For m = 0
equation ( 8.67) takes the following form:

− 1

sin(ϑ)

∂

∂ϑ
sin(ϑ)

∂

∂ϑ
Xℓ0(ϑ) = ℓ(ℓ+ 1)Xℓ0(ϑ) .

By a change of variables:

ξ = cos(ϑ) and Pℓ(ξ) = Xℓ0(ϑ) , (8.69)

this differential equation transforms into:

− d

dξ
(1− ξ2)

d

dξ
Pℓ(ξ) = ℓ(ℓ+ 1)Pℓ(ξ) . (8.70)

This equation is known as Legendre’s differential equation, familiar in many problems
of mathematical physics. Its solutions are well-known. The first few solutions are
given by the following Legendre polynomials:

P0(ξ) = 1 , P1(ξ) = ξ
P2(ξ) = 1

2
(3ξ2 − 1) , and P3(ξ) = 1

2
(5ξ3 − 3ξ)

(8.71)

For the construction of the spherical harmonics for m 6= 0, we may use the raising
and lowering operators, given in formula ( 8.64). Let us as an example, construct
the complete basis of spherical harmonics for the standard irrep corresponding to
ℓ = 1. For m = 0, using the expressions ( 8.68), ( 8.69) and ( 8.71), we find:

Y1,0(ϑ, ϕ) = N cos(ϑ) ,

where the normalization constant N is determined by relation ( 8.56), i.e.

1 = |N |2
∫ 2π

0
dϕ

∫ +1

−1
d cos(ϑ) cos2(ϑ) = 4π|N |2/3 ,

leading to the conventional choice N =
√

3/4π. For m = +1, using the formulas

( 8.48) and ( 8.64), we obtain:

√
2 Y1,+1(ϑ, ϕ) = d(L+)Y1,0(ϑ, ϕ)

= e+iϕ
{

icotg(ϑ)
∂

∂ϕ
+

∂

∂ϑ

}√

3

4π
cos(ϑ)

= −
√

3

4π
e+iϕ sin(ϑ) ,
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leading to the solution:

Y1,+1(ϑ, ϕ) = −
√

3

8π
e+iϕ sin(ϑ) .

For m = −1, also using the formulas ( 8.48) and ( 8.64), we obtain:

√
2 Y1,−1(ϑ, ϕ) = d(L−)Y1,0(ϑ, ϕ)

= e−iϕ
{

icotg(ϑ)
∂

∂ϕ
− ∂

∂ϑ

}√

3

4π
cos(ϑ)

= +

√

3

4π
e−iϕ sin(ϑ) ,

leading to the solution:

Y1,−1(ϑ, ϕ) = +

√

3

8π
e−iϕ sin(ϑ) .

Applying once more the raising operator to the solution for m = +1, using formula
( 8.64), we obtain moreover:

d(L+)Y1,+1(ϑ, ϕ) = e+iϕ
{

icotg(ϑ)
∂

∂ϕ
+

∂

∂ϑ

}

−
√

3

8π
e+iϕ sin(ϑ)





= −
√

3

8π
e+2iϕ {−cotg(ϑ) sin(ϑ) + cos(ϑ)} = 0 ,

which demonstrates that the series of basis elements terminates at m = +1 for the
raising operator. Similarly for the lowering operator, one finds that the series of
basis elements terminates at m = −1. So, the complete basis of the standard irrep
of SO(3) for ℓ = 1, reads:

Y1,0(ϑ, ϕ) =

√

3

4π
cos(ϑ) and Y1,±1(ϑ, ϕ) = ∓

√

3

8π
e±iϕ sin(ϑ) .
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8.11 Weight diagrams.

A weight diagram is a pictorial way to show the structure of the basis of an irrep. It
shows in diagrammatic form the eigenvalues of those generators of the group which
are represented by diagonal matrices. For an irrep of SO(3) the weight diagram
consists of one axis, along which the eigenvalues of the basis vectors of the irrep for
the generator L3 are indicated (in the case that the representation of L3 is diagonal
at the basis of the irrep). In the figure below, the weight diagram for the irreducible
representation of SO(3) corresponding to ℓ = 3 is depicted.

• • • • • • •
-3 -2 -1 0 1 2 3

m-
-
L+�

L−

Figure 8.1: The weight diagram for d(3) of SO(3). The dots (•) at the horizontal
line represent the basis vectors of the vector space V3. The values below the dots
represent their eigenvalues m for d(3)(L3).

The raising operator d(L+) takes steps of one unit in the positive direction of the
horizontal weight axis (see for example the weight diagram of figure 8.1), when
operating on the basis vectors; the lowering operator d(L−), steps of one unit in the
negative direction.

8.12 Equivalence classes and characters.

In this section we discuss the relation which exists between the structure of rep-
resentations for finite groups and the structure of the irreps of SO(3). For finite
groups we discovered that the number of inequivalent irreps equals the number of
equivalence classes of the group (see formula 4.23), which is intimately connected to
the structure of the character space for representations of finite groups (see formula
4.17). So, let us begin by studying the equivalence classes of SO(3).

In order to do so, we first perform the following exercise: We determine, using
formula ( 8.21), the transformed matrix for (~n · ~A) under a rotation around the
z-axis, for the following definition of the transformation:

~n ′ · ~A = R(ẑ, α)(~n · ~A)R−1(ẑ, α)

=











0 −n3 n1 sin(α) + n2 cos(α)

n3 0 −n1 cos(α) + n2 sin(α)

−n1 sin(α)− n2 cos(α) n1 cos(α)− n2 sin(α) 0











.

From this result we read for the transformed vector ~n ′ the relation:
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~n ′ =











n1 cos(α)− n2 sin(α)

n1 sin(α) + n2 cos(α)

n3











= R(ẑ, α)~n ,

which leads to the conclusion:

R(ẑ, α)(~n · ~A)R−1(ẑ, α) = {R(ẑ, α)~n} · ~A . (8.72)

This result can be generalized to any rotation, not just rotations around the z-axis.
In order to proof that, we need to mention a property of unimodular, orthogonal
matrices, i.e.

ǫℓmnRimRjn = ǫijkRkℓ .

Using this relation and formulas ( 5.20) and ( 8.11), we find:

[

R(~n · ~A)R−1
]

ij
=

= nk

[

RAkR
T
]

ij
= nkRia(Ak)abRjb = nkRia(−ǫkab)Rjb

= = −nkǫijℓ)Rℓk = (R~n)ℓ(Aℓ)ij =
[

(R~n) · ~A
]

ij
,

which proofs the validity of relation ( 8.72) for an arbitrary rotation R. Using the
above results, it is also not very difficult to proof that:

R exp{~n · ~A}R−1 = exp
{

(R~n) · ~A
}

.

Consequently, the group element exp{~n · ~A} in the above equation is equivalent

to the group element exp
{

(R~n) · ~A
}

(see the definition of equivalence in formula

1.23). The rotation angles are equal for both group elements, because the modulus
of vector ~n does not change under a rotation, and therefore:

rotation angle of e(R~n) · ~A = |R~n| = |~n| = rotation angle of e~n · ~A .

Now, since R is arbitrary, we may conclude that all rotations which have the same
angle of rotation form an equivalence class. The trace of the rotation matrices out
of one class can be determined by taking the trace of the rotation matrix of one
representant of the class. For example a rotation around the z-axis, which leads to:

Tr

{

e(R~n) · ~A
}

= Tr

{

e~n · ~A
}

= Tr{R(ẑ, n)} = 1 + 2 cos(n) .

All rotation matrices for group elements of the same equivalence class, have the
same character. Consequently, might one characterize the various classes of SO(3)
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by the corresponding rotation angle. There are infinitely many angles and so, there
exist infinitely many equivalence classes in SO(3). Which settles moreover the point
that there exist infinitely many irreps of SO(3).
Also for a representation of SO(3) one might select the matrix representation of

rotations around the z-axis, in order to determine the characters for the various
equivalence classes. The representation of L3 is shown in formula ( 8.43). The
resulting representation for a rotation around the z-axis is therefore given by:

D(ℓ)(R(ẑ, α)) = e−iαd
(ℓ)(L3)

=














e+iℓα

e+i(ℓ− 1)α 0
. . .

0 e−i(ℓ− 1)α

e−iℓα














.

So, its character is readily determined to be equal to:

χ(ℓ)(R(ẑ, α)) =
+ℓ∑

m = −ℓ
e−imα =

sin
(

(2ℓ+ 1)α2

)

sin
(
α
2

) .

For the particular case of the representation of the unit matrix R(ẑ, 0), we have
moreover that its character yields the dimension of the representation, i.e.

dim
(

d(ℓ)
)

= χ(ℓ)(R(ẑ, 0)) =
+ℓ∑

m = −ℓ
1 = 2ℓ+ 1 ,

in agreement with ( 8.44).

98



Chapter 9

The special unitary group in two
dimensions.

In this chapter we study the representations of the special unitary group in two
dimensions, SU(2).

9.1 Unitary transformations in two dimensions.

Unitary 2 × 2 matrices form a group under normal matrix multiplication, because
the product of two unitary matrices A and B is also unitary, i.e.

(AB)−1 = B−1A−1 = B†A† = (AB)† . (9.1)

The most general form of a unitary matrix in two dimensions is given by:

U(a, b) =

(

a∗ −b∗
b a

)

, (9.2)

where a and b represent arbitrary complex numbers. When, moreover this matrix
has unit determinant, we have the condition:

|a|2 + |b|2 = 1 . (9.3)

A convenient paramatrization of unitary 2 × 2 matrices is by means of the Cayley-

Klein parameters ξ0, ξ1, ξ2 and ξ3, which is a set of four real parameters related to
the complex numbers a and b of formula ( 9.2) by:

a = ξ0 + iξ3 and b = ξ2 − iξ1 . (9.4)

When one substitutes a and b in formula ( 9.2) by the Cayley-Klein parameters,
then one finds for a unitary 2× 2 matrix the expression:

U(ξ0, ~ξ) = ξ01− i~ξ · ~σ , (9.5)

where σ1, σ2 and σ3 represent the Hermitean Pauli matrices, defined by:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

and σ3 =

(

1 0
0 −1

)

. (9.6)
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When, moreover the matrix ( 9.5) is unimodular, we have the condition:

(ξ0)
2 + (ξ1)

2 + (ξ2)
2 + (ξ3)

2 = 1 . (9.7)

This way we obtain three free parameters for the characterization of a 2 × 2 uni-
modular and unitary matrix.
Let us combine three parameters n1, n2 and n3 into a vector ~n given by:

~n =






n1

n2

n3




 . (9.8)

By means of those parameters, one might select for the Cayley-Klein parameters
( 9.4) which satisfy the condition ( 9.7), the following parametrization:

ξ0 = cos
(
n

2

)

and ~ξ = n̂ sin
(
n

2

)

, (9.9)

where n̂ and n are defined by:

n̂ =






n̂1

n̂2

n̂3




 =

1

n






n1

n2

n3




 and n =

√

(n1)2 + (n2)2 + (n3)2 .

This way we find for an arbitrary unimodular unitary 2 × 2 matrix the following
general expression:

U(~n) = 1 cos
(
n

2

)

− i(n̂ · σ) sin
(
n

2

)

. (9.10)

Noticing moreover that (n̂ ·~σ)2 =1, it is easy to show that U(~n) may also be written
in the form:

U(~n) = exp
{

− i

2
~n · ~σ

}

. (9.11)

The Pauli matrices ( 9.6) satisfy the following relations:
For the product of two Pauli matrices one has:

σiσj = 1δij + iǫijkσk , (9.12)

for their commutator:

[

σi, σj

]

= 2iǫijkσk , (9.13)

and for their anti-commutator:

{

σi, σj

}

= σiσj + σjσi = 2δij1 (9.14)
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9.2 The generators of SU(2).

The group of special unitary transformations in two dimensions SU(2) is a Lie-
group. This can easily be understood if one considers the representation ( 9.10) for
an arbitrary unimodular unitary transformation. Clearly, for that expression exist
the partial derivatives with respect to its parameters to any order.
According to formula ( 9.11) we may select for the generators of SU(2) the fol-

lowing set of 2× 2 matrices:

J1 =
σ1
2

, J2 =
σ2
2

and J3 =
σ3
2

. (9.15)

The arbitrary special unitary transformation U(~n = αn̂) in two dimensions may
then, according to formula ( 9.11), be expressed by:

U(n̂, α) = e−iαn̂ · ~J . (9.16)

The commutation relations for the generators ~J of SU(2) defined in formula
( 9.15), can be read from the commutation relations ( 9.13), i.e.

[

Ji , Jj

]

= iǫijkJk . (9.17)

The commutation relations ( 9.17) for the generators ~J of SU(2) are identical to the

commutation relations ( 8.26) for the generators ~L of SO(3).
Notice that, as in the case of SO(3), for SU(2) the generators ( 9.15) are traceless

and Hermitean.

9.3 The relation between SU(2) and SO(3).

In order to establish a relation between SU(2) and SO(3), we first study once more
the effect of a rotation R(n̂, α) in three dimensions on a vector ~x. A vector ~x may
be decomposed into a part parallel to the rotation axis n̂ and a part perpendicular
to this axis, as follows:

~x = (n̂ · ~x)n̂ + {~x− (n̂ · ~x)n̂} . (9.18)

The vector (n̂ · ~x)n̂ does not suffer any transformation under a rotation R(n̂, α)
(see equation 8.20). But, the second part of ( 9.18), which represents a vector in
the plane perpendicular to the rotation axis, transforms into another vector in that
plane.
For an orthonormal basis in this plane one might select the unit vectors v̂ and ŵ,

given by:

v̂ =
~x− (n̂ · ~x)n̂
√

~x 2 − (n̂ · ~x)2
and ŵ =

n̂× ~x
√

~x 2 − (n̂ · ~x)2
. (9.19)

The second part of ( 9.18) is before the transformation given by:
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~x− (n̂ · ~x)n̂ = v̂
√

~x 2 − (n̂ · ~x) 2 .

And after the rotation over an angle α in the plane perpendicular to the rotation
axis n̂ in the positive sense, by:

{v̂ cos(α) + ŵ sin(α)}
√

~x 2 − (n̂ · ~x)2 . (9.20)

So, using formulas ( 9.18), ( 9.19) and ( 9.20), we find for the transformed vector ~x ′

resulting from ~x under a rotation R(n̂, α), the following:

~x ′ = R(n̂, α)~x = ~x cos(α) + (n̂× ~x) sin(α) + (n̂ · ~x)n̂(1− cos(α)) . (9.21)

A more elegant way to obtain the same result, is by means of the expression ( 8.18)
for a rotation of an angle α around the axis indicated by n̂, i.e.

R(n̂, α) = eαn̂ · ~A = 1+ sin(α)(n̂ · ~A) + (1− cos(α))(n̂ · ~A)2. (9.22)

Using formula ( 8.11) for the matrix elements of ~A, we find for (~n · ~A)~x the result:

[

(~n · ~A)~x
]

i
= nk(Ak)ijxj = −ǫkijnkxj = [~n× ~x]i . (9.23)

Moreover, using formula ( 8.12) for the contraction of two Levi-Civita tensors, we

obtain for (~n · ~A)2~x the expression:

[

(~n · ~A)2~x
]

i
= nanb(Aa)ij(Ab)jkxk = ǫaijǫbjknanbxk = (~n ·~x)ni−n2xi . (9.24)

Insertion of the result ( 9.23) and ( 9.24) in ( 9.22), yields once more the expression
( 9.21) for R(n̂, α)~x.
Having derived formula ( 9.21) for a rotation in three dimensions by two alterna-

tive methods, we return to the unitary transformations in two dimensions. Let us
introduce, by means of the Pauli matrices given in formula ( 9.6), a Hermitean 2×2
matrix X defined by:

X = ~x · ~σ . (9.25)

The components of the vector ~x can, with the use of formula ( 9.14) for the anti-
commutator of the Pauli matrices, uniquely be recovered from any Hermitean matrix
X by taking the anti-commutator of X and ~σ, i.e.

~x = 1
2
{X,~σ} = 1

2
(X~σ + ~σX) . (9.26)

For an arbitrary unimodular unitary 2 × 2 matrix U(n̂, α), we define moreover the
following transformation for the matrix X :

X ′ = U(n̂, α)XU †(n̂, α) . (9.27)

Since U(n̂, α) is unitary and X Hermitean by definition ( 9.25), the matrix X ′ is
also Hermitean and thus by the procedure ( 9.26) uniquely related to a vector ~x ′.
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Inserting the expressions ( 9.10) for U(n̂, α) and ( 9.25) for X , we obtain for the
matrix X ′ the result:

X ′ =
{

1 cos
(
α

2

)

− i(n̂ · σ) sin
(
α

2

)}

(~x · ~σ)
{

1 cos
(
α

2

)

+ i(n̂ · σ) sin
(
α

2

)}

= (~x · ~σ) cos2
(
α

2

)

+ i [(~x · ~σ), (n̂ · ~σ)] sin
(
α

2

)

cos
(
α

2

)

+

+ (n̂ · ~σ)(~x · ~σ)(n̂ · ~σ) sin2
(
α

2

)

. (9.28)

Using the relations ( 9.13) for the commutator of two Pauli-matrices and ( 9.12) for
their product, it is easy to verify that:

i [(~x · ~σ), (n̂ · ~σ)] = 2(n̂× ~x) · ~σ and

(n̂ · ~σ)(~x · ~σ)(n̂ · ~σ) = 2(n̂ · ~x)(n̂ · ~σ)− (~x · ~σ) .

Inserting those equations in ( 9.28), we find:

X ′ = (~x · ~σ) cos(α) + (n̂× ~x) · ~σ sin(α) + (n̂ · ~x)(n̂ · ~σ)(1− cos(α)) . (9.29)

The vector ~x ′ can be extracted from this matrix using the relation ( 9.26), for which
one obtains:

~x ′ = ~x cos(α) + (n̂× ~x) sin(α) + (n̂ · ~x)n̂(1− cos(α)) .

Comparison of this result to the result of formula ( 9.21) for the expression of the
vector ~x rotated around a rotation axis n̂ by an angle α, leads us to the conclusion
that:

R(n̂, α)~x = 1
2

{

U(n̂, α)(~x · ~σ)U †(n̂, α) , ~σ
}

, (9.30)

which formula establishes the relation between a rotation in three dimensions and a
unitary transformation in two dimensions.
Notice however, that although for rotations one has:

R(n̂, α+ 2π) = R(n̂, α) ,

for unitary transformations in two dimensions, we have (see for example the expres-
sion 9.10 for U(n̂, α)):

U(n̂, α+ 2π) 6= U(n̂, α) ! (9.31)

This implies that each rotation R(n̂, α) corresponds according to expression ( 9.30),
to two different unitary transformations U(n̂, α) and U(n̂, α+ 2π).
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9.4 The subgroup U(1).

The matrices U(ẑ, α) form a subgroup U(1) of SU(2), because of the following
property:

U(ẑ, α2)U(ẑ, α1) = U(ẑ, α1 + α2) . (9.32)

The explicit form of U(ẑ, α), using relation ( 9.10), is given by:

U(ẑ, α) =








e−
i
2
α 0

0 e+
i
2
α








. (9.33)

At the subspace spanned by the vector ê1 =

(

1
0

)

, U(ẑ, α), is represented by

exp{−iα/2}, according to:

U(ẑ, α)aê1 = e−
i
2
αaê1 , so d(U(ẑ, α)) = e−

i
2
α . (9.34)

The group U(1) is Abelian, as can be read from the property ( 9.32) for the matrices
U(ẑ, α). Consequently its irreps are one-dimensional (see also formula 4.24).
Other one-dimensional irreps of U(ẑ, α) may be given by:

d(U(ẑ, α)) = e−imα . (9.35)

Now, since:

U(ẑ, 2π) = −1 and U(ẑ, 4π) = 1 , (9.36)

we have for the parameters m of formula ( 9.35), the condition that

e−im4π = 1 ,

which is solved by:

m = 0,±1
2
,±1,±3

2
,±2, . . . (9.37)

The representation ( 9.34) corresponds to the case m = 1
2
.
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9.5 The (2j + 1)-dimensional irrep {2j + 1}.
In section ( 9.2) we have seen that the generators ~J of SU(2) satisfy the same

commutation relations as the generators ~L of SO(3). Consequently, the structure
of the Lie-algebras for the two groups is the same. Therefore, we can repeat the
construction of irreps followed for SO(3). However, there is one important difference:
In the case of SO(3), because of condition ( 8.33) for m, only odd values (2ℓ + 1)
for the dimensions of its irreps are possible. For SU(2), because of the condition
( 9.37), also even values (2j + 1) are possible for the dimensions of its irreps.
The irreps of SU(2) are characterized by the parameter j, which, because of the

result ( 9.37), may take the values:

j = 0, 1
2
, 1, 3

2
, 2, . . . (9.38)

The (2j + 1)-dimensional irrep of the Lie-algebra of SU(2), d(j), is characterized by
the (2j + 1) orthonormal basis vectors, given by:

|j,+j > , |j, j − 1 > , . . . , |j,−j + 1 > , |j,−j > . (9.39)

The basis is chosen such that J3 is represented by a diagonal matrix, i.e.

d(j)(J3)|j,m >= m|j,m > . (9.40)

The raising and lowering operators J± are defined by the linear combinations of J1
and J2 corresponding to those for L± in SO(3), i.e.

J± = J1 ± iJ2 . (9.41)

At the basis ( 9.39) for the (2j + 1)-dimensional irrep d(j) they are represented by:

d(j)(J±)|j,m >=
√

j(j + 1)−m(m± 1)|j,m± 1 > . (9.42)

The Casimir operator, J2, defined by:

J2 =
(

d(j)(J1)
)2

+
(

d(j)(J2)
)2

+
(

d(j)(J3)
)2

, (9.43)

has eigenvalues:

J2 |j,m >= j(j + 1)|j,m > . (9.44)

Besides allowing for more possible irreps, for SU(2) the representations have the
same structure as the representations of SO(3). In this chapter we use the symbol
{2j + 1}, which indicates its dimension, for the irrep D(2j+1) of SU(2).
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9.6 The two-dimensional irrep {2}.
For j = 1

2
one has the two-dimensional irrep d(1/2) of the Lie-algebra of SU(2). We

denote the basis vectors by:

|1
2
,+1

2
>=

(

1
0

)

and |1
2
,−1

2
>=

(

0
1

)

(9.45)

The generator J3 is at this basis represented by a diagonal matrix. Its eigenvalues,
as indicated by the notation for the basis vectors in formula ( 9.45), are respectively
+1

2
and −1

2
. So, we find for d(1/2)(J3) the following matrix:

d(1/2)(J3) =
1
2

(

+1 0
0 −1

)

=
σ3
2

. (9.46)

For the raising and lowering operators we have, using formula ( 9.42), the transfor-
mations:

d(1/2)(J+)|1
2
,+1

2
> =

√
1
2
(1
2
+ 1)− 1

2
(1
2
+ 1)| > = 0 ,

d(1/2)(J+)|1
2
,−1

2
> =

√
1
2
(1
2
+ 1) + 1

2
(−1

2
+ 1)|1

2
,+1

2
> = |1

2
,+1

2
> ,

d(1/2)(J−)|1
2
,+1

2
> =

√
1
2
(1
2
+ 1)− 1

2
(1
2
− 1)|1

2
,−1

2
> = |1

2
,−1

2
> and

d(1/2)(J−)|1
2
,−1

2
> =

√
1
2
(1
2
+ 1) + 1

2
(−1

2
− 1)| > = 0 .

(9.47)
Consequently, the raising and lowering operators J± are here represented by the
following matrices:

d(1/2)(J+) =

(

0 1
0 0

)

= 1
2
(σ1 + iσ2) and d(1/2)(J−) =

(

0 0
1 0

)

= 1
2
(σ1 − iσ2) .

(9.48)
This leads for the matrix representations of J1 and J2 furthermore to the result:

d(1/2)(J1) =
σ1
2

and d(1/2)(J2) =
σ2
2

. (9.49)

The Casimir operator J2, which is defined in formula ( 9.43), is for j = 1
2
repre-

sented by 3
4
1, in agreement with:

J2|1
2
, m >= 1

2
(1
2
+ 1)|1

2
, m >= 3

4
|1
2
, m > . (9.50)

The matrices of the representation d(1/2) are exactly the same as the matrices of
the definition of the Lie-algebra of SU(2).
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9.7 The three-dimensional irrep {3}.
For j = 1 one has the three-dimensional irrep d(1) of SU(2). We denote the basis
vectors by:

|1,+1 >=






1
0
0




 , |1, 0 >=






0
1
0




 and |1,−1 >=






0
0
1




 (9.51)

The generator J3 is at this basis represented by a diagonal matrix. Its eigenvalues,
as indicated by the notation for the basis vectors in formula ( 9.51), are respectively
+1, 0 and −1. So, we find for d(1)(J3) the following matrix:

d(1)(J3) =






+1 0 0
0 0 0
0 0 −1




 . (9.52)

For the raising and lowering operators we have at the basis ( 9.51), using formula
( 9.42), the matrices:

d(1)(J+) =
√
2






0 1 0
0 0 1
0 0 0




 and d(1)(J−) =

√
2






0 0 0
1 0 0
0 1 0




 . (9.53)

Notice that those matrices are not exactly equal to the corresponding matrix repre-
sentations ( 8.48) of SO(3), because the choice of the basis ( 8.46) for SO(3) is not
the same as the above choice ( 9.51) for SU(2).
The representation of the group elements U(n̂, α) of SU(2) is, according to the

relation ( 9.16), given by:

D(1)(U(n̂, α)) = e−iαn̂ · d(1)( ~J) . (9.54)

For example for U(ẑ, α), also using formula ( 9.52), one has:

D(1)(U(ẑ, α)) =











e−iα 0 0

0 1 0

0 0 e+iα











. (9.55)

Now, the group elements U(ẑ, α) and U(ẑ, α + 2π) are not equal, but their matrix
representations as given in the above formula ( 9.55), are equal. The representation
D(1) is therefore not faithfull. This is true for all odd dimensions. The reason is
that there are allways two different group elements U(n̂, α) and U(n̂, α+ 2π) which
correspond to one rotation R(n̂, α) (see formula 9.30) and that the odd dimensional
irreps are equivalent for SO(3) and SU(2).
In order to determine the matrix representation of J2 we use the following relation

(see also formula 8.32):

J2 = (J3)
2 + J3 + J−J+ . (9.56)
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Using also the formulas ( 9.52) and ( 9.53), we find for the Casimir operator in this
case:

J2 = 21 = 1(1 + 1)1 . (9.57)

9.8 The four-dimensional irrep {4}.
For j = 3

2
one has the four-dimensional irrep d(3/2) of SU(2). We denote the basis

vectors by:

|3
2
,+3

2
>=








1
0
0
0







, |3

2
,+1

2
>=








0
1
0
0







, |3

2
,−1

2
>=








0
0
1
0








and |3
2
,−3

2
>=








0
0
0
1







.

(9.58)
The generator J3 is at this basis represented by a diagonal matrix. Its eigenvalues,
as indicated by the notation for the basis vectors in formula ( 9.58), are respectively
+3

2
, +1

2
, −1

2
and −3

2
. So, we find for d(3/2)(J3) the following matrix:

d(3/2)(J3) =
1
2








+3 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −3








. (9.59)

For the raising and lowering operators we have at the basis ( 9.58), using formula
( 9.42), the matrices:

d(3/2)(J+) =









0
√
3 0 0

0 0 2 0

0 0 0
√
3

0 0 0 0









and d(3/2)(J−) =









0 0 0 0√
3 0 0 0
0 2 0 0

0 0
√
3 0









.

(9.60)
Using the formulas (9.56), ( 9.52) and ( 9.53), we find for the Casimir operator in
this case:

J2 = 15
4
1 = 3

2
(3
2
+ 1)1 . (9.61)
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9.9 The product space {2} ⊗ {3}.
As an example of the representation of SU(2) in a product space, we select here the
product space D(1/2) ⊗ D(1). The basis vectors of this space are, by means of the
basis vectors of the two bases ( 9.45) and ( 9.51), defined by:

|1
2
,+1

2
> ⊗|1, m >=

(

|1, m >
0

)

and |1
2
,−1

2
> ⊗|1, m >=

(

0
|1, m >

)

.

(9.62)
Before we continue, for typographical reasons, we first simplify the notation of the
basis vectors to:

|m1 > |m2 >= |1
2
, m1 > ⊗|1, m2 > . (9.63)

In a more explicit form one obtains for the basis defined in ( 9.62), column vectors
of length six, ê1 , . . . , ê6, where ê1 represents a column vector which has only zeroes
except for a 1 in the upper position, ê2 represents a column vector which has only
zeroes except for a 1 in the second position, etc., i.e.

|+ 1
2
> |+ 1 >= ê1 , |+ 1

2
> | 0 >= ê2 , |+ 1

2
> | − 1 >= ê3 ,

| − 1
2
> |+ 1 >= ê4 , | − 1

2
> | 0 >= ê5 and | − 1

2
> | − 1 >= ê6 .

(9.64)

Using the matrix representations D(1/2)(U(~n)) and D(1)(U(~n)) of a group element
U(~n) of SU(2) in the spaces respectively defined by the bases ( 9.45) and ( 9.51), we
let U(~n) in the product space D(1/2) ⊗D(1) be represented by the following matrix:

D(U(~n)) =







[

D(1/2)(U(~n))
]

11
D(1)(U(~n))

[

D(1/2)(U(~n))
]

12
D(1)(U(~n))

[

D(1/2)(U(~n))
]

21
D(1)(U(~n))

[

D(1/2)(U(~n))
]

22
D(1)(U(~n))







.

(9.65)
The above matrix represents a 6× 6 matrix, because D(1)(U(~n)) stands for a 3× 3
matrix. The matrix ( 9.65) acts as follows at the basis vectors ( 9.62):

D(U(~n))|+ 1
2
> |m >=

= D(U(~n))

(

|1, m >
0

)

=







[

D(1/2)(U(~n))
]

11
D(1)(U(~n))|1, m >

[

D(1/2)(U(~n))
]

12
D(1)(U(~n))|1, m >







= D(1/2)(U(~n))

(

1
0

)

⊗D(1)(U(~n))|1, m >

=
{

D(1/2)(U(~n))|1
2
,+1

2
>
}

⊗
{

D(1)(U(~n))|1, m >
}

,

and similar:
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D(U(~n))| − 1
2
> |m >=

{

D(1/2)(U(~n))|1
2
,−1

2
>
}

⊗
{

D(1)(U(~n))|1, m >
}

. (9.66)

In terms of the generators (see formula 9.16), we have

e−i~n · d( ~J) = D(U(~n)) (9.67)

= D(1/2)(U(~n))⊗D(1)(U(~n)) = e−i~n · d(1/2)( ~J) ⊗ e−i~n · d(1)( ~J) ,

from which formula one deduces for the representation of the generators in the
product space, the following:

d(Ji) = i

{

∂D(U(~n))

∂ni

∣
∣
∣
∣
∣
~n = 0

}

= i

{

∂D(1/2)(U(~n))

∂ni

∣
∣
∣
∣
∣
~n = 0

}

⊗D(1)(U(~n = 0)) +

+ iD(1/2)(U(~n = 0))⊗
{

∂D(1)(U(~n))

∂ni

∣
∣
∣
∣
∣
~n = 0

}

= d(1/2)(Ji)⊗ 13×3 + 12×2 ⊗ d(1)(Ji) (9.68)

So, the representation d(O) in the product spaceD(1/2)⊗D(1) of an arbitrary element
O of the Lie-algebra of SU(2) is, using the irreps d(1/2) and d(1), given by the following
transformation rule:

d(O)|m1 > |m2 >=
{

d(1/2)(O)|m1 >
}

|m2 > +|m1 >
{

d(1)(O)|m2 >
}

. (9.69)

• • • •
−3/2 −1/2 1/2 3/2

m1 +m2
-

| − 1

2
> | − 1 > | − 1

2
> | 0 >

|+ 1

2
> | − 1 >

|+ 1

2
> | 0 >

| − 1

2
> |+ 1 >

|+ 1

2
> |+ 1 >

Figure 9.1: The weight diagram for the product representation D(1/2) ⊗ D(1). The
dots at the horizontal line represent as indicated, the basis vectors ( 9.63) of the
product vector space. The values below the dots represent their eigenvalues for
d(J3).

At the basis ( 9.64) one obtains for J3 obviously a diagonal matrix, which is given
by:

d(J3)|m1 > |m2 >= (m1 +m2)|m1 > |m2 > . (9.70)
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The weight diagram which results from formula ( 9.70) is depicted in figure ( 9.1).
It does not have the form of a possible weight diagram for an irrep of SU(2), since
there exist different eigenvectors of d(J3) with the same eigenvalue. Consequently,
the representation of SU(2) in the product space D(1/2) ⊗ D(1) must be reducible.
The principal issue of this section is therefore the reduction of the representation d
into irreps of SU(2).
To that aim we first determine the matrix representation of J2 in the product

space, which for arbitrary representations neither is proportional to the unit matrix,
nor diagonal. Diagonalization of the resulting matrix J2 leads to another basis of
the product space, at which basis the matrix representations of the elements of the
Lie-algebra obtain the form shown in formula ( 2.34).
We use the relation ( 9.56) for J2. The representation of J3 is, according to the

result ( 9.70), diagonal at the basis ( 9.62). So, d((J3)
2) = [d(J3)]

2 is also diagonal
and can be determined using formula ( 9.70). Consequently, what is left to be
calculated for the representation of J2 as given by the expression ( 9.56), is the
product of d(J−) and d(J+).
At the basis ( 9.64), using the results ( 9.48) for d(1/2)(J−) and ( 9.53) for d(1)(J−),

one finds for d(J−) the following matrix:

d(J−) = d(1/2)(J−)⊗ 13×3 + 12×2 ⊗ d(1)(J−)

=






0 0

13×3 0




+






d(1)(J−) 0

0 d(1)(J−)






=














· · · · · ·√
2 · · · · ·
·

√
2 · · · ·

1 · · · · ·
· 1 ·

√
2 · ·

· · 1 ·
√
2 ·














, (9.71)

where the dots in the latter matrix represent zeroes.
Let us verify one of the columns of the matrix obtained in formula ( 9.71). We

determine by means of the definition ( 9.69) for the representation of an arbitrary
element of the Lie-algebra of SU(2), the transformation of one of the basis vectors
( 9.64):

d(J−)ê2 = d(J−)|+ 1
2
> | 0 >

= | − 1
2
> | 0 > +

√
2|+ 1

2
> | − 1 >= ê5 +

√
2ê3 .

The result corresponds to the second column of the matrix ( 9.71).
For the representation of the raising operator J+ in the product spaceD(1/2)⊗D(1),

one finds similarly the transposed matrix:
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d(J+) =














·
√
2 · 1 · ·

· ·
√
2 · 1 ·

· · · · · 1

· · · ·
√
2 ·

· · · · ·
√
2

· · · · · ·














. (9.72)

Next, one may determine the product of the matrices ( 9.71) and ( 9.72) and add
the result to the sum of the square of the matrix for d(J3) and the matrix for d(J3)
itself, to find according to formula ( 9.56)for J2, the following matrix representation
in the product space:

J2 =














15
4

· · · · ·
· 11

4
·

√
2 · ·

· · 7
4

·
√
2 ·

·
√
2 · 7

4
· ·

· ·
√
2 · 11

4
·

· · · · · 15
4














. (9.73)

The resulting matrix is not even diagonal, let aside being proportional to the unit
matrix. In studying this matrix, one finds that out of the six basis vectors ( 9.64),
two are eigenvectors of J2, i.e.

J2| ± 1
2
> | ± 1 >= 15

4
| ± 1

2
> | ± 1 >= 3

2
(3
2
+ 1)| ± 1

2
> | ± 1 > . (9.74)

The eigenvalues for d(J3) for those two vectors can be read from equation ( 9.70)
to be equal to ±3

2
, which leads us to conclude that the two basis vectors ( 9.74)

of the product space form also basis vectors of the irrep d(3/2) of SU(2) for j = 3
2
.

Therefore we identify:

|3
2
,±3

2
>= | ± 1

2
> | ± 1 > . (9.75)

Now, we might search for the other eigenvectors of J2 in order to obtain the re-
maining basis vectors of the four dimensional irrep d(3/2) of SU(2) and the basis
vectors of the other, yet unknown, irreps. But, there exists a more elegant method:
Starting from one basis vector, one can construct the complete basis for an irrep by
repeatedly applying the raising or lowering operator.
Let us start with the basis vector |3

2
,+3

2
> and apply the representation of the

lowering operator to it. For the lefthand side of equation ( 9.75) we find:

d(3/2)(J−)|3
2
,+3

2
>=

√
3
2
(3
2
+ 1)− 3

2
(3
2
− 1)|3

2
,+1

2
>=

√
3|3

2
,+1

2
> . (9.76)

And applying d(J−) to the righthand side of equation ( 9.75), one obtains:

d(J−)|+ 1
2
> |+ 1 >= | − 1

2
> |+ 1 > +

√
2|+ 1

2
> | 0 > . (9.77)

The results ( 9.76) and ( 9.77) lead to the identification:
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|3
2
,+1

2
>=

√
1
3
| − 1

2
> |+ 1 > +

√
2
3
|+ 1

2
> | 0 > . (9.78)

The eigenvalue of d(J3) for the vector at the righthand side of this formula equals
+1

2
, since both terms in the linear combination have that eigenvalue for d(J3). Using

the matrix representation ( 9.73) for J2 in the product space and the identifications
( 9.64), then we find that the righthand side of ( 9.78) is also an eigenvector of J2

with eigenvalue 15
4
, as expected.

Applying next d(3/2)(J−) to the lefthand side of ( 9.78) and d(J−) to the righthand
side, we come to the identification:

|3
2
,−1

2
>=

√
2
3
| − 1

2
> | 0 > +

√
1
3
|+ 1

2
> | − 1 > . (9.79)

So, with the above procedure we found the four basis vectors ( 9.75), ( 9.78) and
( 9.79) of the four dimensional irrep {4} of SU(2) for j = 3

2
.

At the subspace of the product space, which is spanned by the basis vectors which
have eigenvalue +1

2
for d(J3), i.e.

|1
2
,+1

2
> ⊗|1, 0 > and |1

2
,−1

2
> ⊗|1,+1 > .

we found one linear combination, ( 9.78), which is an eigenvector of J2. A possible
vector orthogonal to that linear combination is given by:

√
1
3
|1
2
,+1

2
> ⊗|1, 0 > −

√
2
3
|1
2
,−1

2
> ⊗|1,+1 > .

This vector is also an eigenvector of J2 with eigenvalue 3
4
. Its eigenvalue for d(J3)

is evidently equal to +1
2
. Consequently, we may identify:

|1
2
,+1

2
>=

√
1
3
|+ 1

2
> | 0 > −

√
2
3
| − 1

2
> |+ 1 > . (9.80)

Applying d(1/2)(J−) to the lefthand side and d(J−) to the righthand side, gives us
the other basis vector of the two-dimensional irrep d(1/2) of SU(2), i.e.

|1
2
,−1

2
>=

√
2
3
|+ 1

2
> | − 1 > −

√
1
3
| − 1

2
> | 0 > . (9.81)

When we perform a basis transformation in the product space from the old basis
( 9.64) to a new basis given by the expressions ( 9.75), ( 9.78), ( 9.79), ( 9.80)
and ( 9.81), then one obtains for the matrix representations of all elements of the
algebra and hence of the group, matrices of the form of a direct sum of a 4×4 matrix
equivalent to the irrep d(3/2) and a 2 × 2 matrix equivalent to d(1/2). Consequently,
the product space D(1/2) ⊗ D(1) yields a representation which is equivalent to the
direct sum of the four-dimensional and the two-dimensional irreps of SU(2).
For example, when we select in the direct product space {2}⊗{3} the basis given

by:

ê′1 = |+ 1
2
> |+ 1 > ,

ê′2 =
√

1
3
| − 1

2
> |+ 1 > +

√
2
3
|+ 1

2
> | 0 > ,
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ê′3 =
√

2
3
| − 1

2
> | 0 > +

√
1
3
|+ 1

2
> | − 1 > ,

(9.82)

ê′4 = | − 1
2
> | − 1 > ,

ê′5 =
√

1
3
|+ 1

2
> | 0 > −

√
2
3
| − 1

2
> |+ 1 > and

ê′6 =
√

2
3
|+ 1

2
> | − 1 > −

√
1
3
| − 1

2
> | 0 > ,

then we find for all matrices d′(O) which represent elements O of the Lie-algebra of
SU(2) at the new basis ( 9.82), the form:

d′(O) =






d(3/2)(O) 0

0 d(1/2)(O)




 . (9.83)

For J2 we obtain at the new basis ( 9.82), the matrix representation given by:

J2 =






15
4
14×4 0

0 3
4
12×2




 =






J2(j = 3
2
) 0

0 J2(j = 1
2
)




 . (9.84)

For the matrix representations D′(U) at the basis ( 9.82) of all group elements U of
SU(2) we find, using the fact that the product of two matrices which have the form
( 9.83) also has that form and hence the exponent exp{−iO}, the general expression:

D′(U) =






D(3/2)(U) 0

0 D(1/2)(U)




 . (9.85)

This result may symbolically be represented by:

{2} ⊗ {3} = {4} ⊕ {2} . (9.86)
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9.10 Clebsch-Gordan or Wigner coefficients.

The identifications between the basis vectors ( 9.62) of the product space {2}⊗ {3}
and the basis vectors of the irreps {4} and {2}, involve the linear combinations given
in the formulas ( 9.75), ( 9.78), ( 9.79), ( 9.80) and ( 9.81). In general, let us for the

two irreps d(j1) and d(j2) consider the product space given by:

{2j1 + 1} ⊗ {2j2 + 1} . (9.87)

Let moreover, in the reduction of the representation d in this product space, appear

the irrep d(j) of SU(2). The identification of a basis vector |j,m > with a linear
combination of basis vectors of the product space ( 9.87) can then be written as:

|j,m >=
∑

m1, m2

C
j1 j2 j

m1 m2 m
|j1, m1 > ⊗|j2, m2 > . (9.88)

The coefficients C{j1, j2, j;m1, m2, m} in this linear combination are called Clebsch-

Gordan or Wigner coefficients.
In formula ( 9.75) we find the following Clebsch-Gordan coefficients:

C
1
2

1 3
2

+1
2

+1 +3
2

= 1 and C
1
2

1 3
2

−1
2

−1 −3
2

= 1 ,

in formula ( 9.78)

C
1
2

1 3
2

−1
2

+1 +1
2

=
√

1
3

and C
1
2

1 3
2

+1
2

0 +1
2

=
√

2
3

,

in formula ( 9.79)

C
1
2

1 3
2

−1
2

0 −1
2

=
√

2
3

and C
1
2

1 3
2

+1
2

−1 −1
2

=
√

1
3

,

in formula ( 9.80)

C
1
2

1 1
2

+1
2

0 +1
2

=
√

1
3

and C
1
2

1 1
2

−1
2

+1 +1
2

= −
√

2
3

,

and in formula ( 9.81)

C
1
2

1 1
2

+1
2

−1 −1
2

=
√

2
3

and C
1
2

1 1
2

−1
2

0 −1
2

= −
√

1
3

,

From the construction it might be clear that the Clebsch-Gordan coefficient given by
C(1

2
, 1, 1

2
; +1

2
, 0,+1

2
), which relates the various basis vectors given in formula ( 9.80),

could as well have been chosen negative and even complex. It is however convention
to choose one specific Clebsch-Gordan coefficient in each irrep d(j) which is contained
in the direct product {2j1 + 1} ⊗ {2j2 + 1}, according to the following condition:
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C
j1 j2 j

j1 j − j1 j
real and positive. (9.89)

Notice that also the identification ( 9.75) implies the rather arbitrary, although the
most obvious, choice C(1

2
, 1, 3

2
; +1

2
,+1,+3

2
) = +1, only at this stage explained by

the above condition.
As a consequence of condition ( 9.89) are all Clebsch-Gordan coefficients real. In

that case is the matrix which describes the transformation from the orthonormal ba-
sis of the product space to the orthonormal bases of the various irreps, orthogonal.
The matrix elements of this matrix are the Clebsch-Gordan coefficients ( 9.88). Con-
sequently, using the orthonormality conditions of rows and columns of an orthogonal
matrix, one obtains:

∑

m1, m2

C
j1 j2 j

m1 m2 m
C

j1 j2 j′

m1 m2 m′ = δjj′δmm′

and

∑

j,m
C

j1 j2 j

m1 m2 m
C

j1 j2 j

m′
1 m′

2 m
= δm1m

′
1
δm2m

′
2
. (9.90)

Notice furthermore the following property of Clebsch-Gordan coefficients:

C
j1 j2 j

m1 m2 m
= 0 for m1 +m2 6= m . (9.91)

However, it is not generally true that Clebsch-Gordan coefficients are nonzero if
m1 +m2 = m; for example:

C
1 1 1

0 0 0
= 0 .

Some of the most useful symmetry relations for the Clebsch-Gordan coefficients are
summarized by the equation:

C
j2 j1 j

m2 m1 m
= (−1)j − j1 − j2C

j1 j2 j

m1 m2 m
= C

j1 j2 j

−m1 −m2 −m . (9.92)
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9.11 The Lie-algebra of SU(2).

The generator subspace of the Lie-algebra of SU(2) consists of purely imaginary

linear combinations of the basic generators ~J = ~σ/2. Linear combinations which
are not purely imaginary, like the raising and the lowering operators J±, do not
represent generators of the group, but can be very useful for the construction and
classification of irreps. For SU(2), we define the following set of traceless standard
matrices Aij (i, j = 1, 2), by:

[

Aij

]

kℓ
= δikδjℓ − 1

2
δijδkℓ for i, j, k, ℓ = 1, 2. (9.93)

Their relation with the generators ~J is given by:

A11 = 1
2

(

+1 0
0 −1

)

= J3 , A12 =

(

0 1
0 0

)

= J+ ,

A21 =

(

0 0
1 0

)

= J− and A22 = 1
2

(

−1 0
0 +1

)

= −J3 .

(9.94)
Using their definition ( 9.93) or alternatively the above explicit expressions, it is
easy to verify the following commutation relations for the standard matrices:

[

Aij, Akℓ

]

= δjkAiℓ − δiℓAkj . (9.95)

The Casimir operator J2 can, using the relations ( 8.32) and ( 9.94), be expressed
in terms of the standard matrices, i.e.

J2 = (J3)
2 + 1

2
(J+J− + J−J+) = 1

2

{

(J3)
2 + J+J− + J−J+ + (−J3)2

}

= 1
2
AijAji . (9.96)

It is easy to show that this operator commutes with all standard matrices ( 9.93)
and hence with all generators of SU(2). Using the commutation relations ( 9.95),
we find:

2
[

J2, Akℓ

]

=
[

AijAji, Akℓ

]

= Aij

[

Aji, Akℓ

]

+
[

Aij, Akℓ

]

Aji

= Aij(δikAjℓ − δjℓAki) + (δjkAiℓ − δiℓAkj)Aji = 0 . (9.97)

In general, one might, using the standard matrices ( 9.93), construct similar opera-
tors which commute with all generators of SU(2). For example, it is straightforward
to demonstrate that the operator AijAjkAki commutes with all standard matrices

and so, could perfectly serve as a Casimir operator. However, one has, using the
commutation relations ( 8.28), the identity:
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AijAjkAki = A11A11A11 + A11A12A21 + A12A21A11 + A12A22A21 +

+ A21A11A12 + A21A12A22 + A22A21A12 + A22A22A22

= (J3)
3 + J3J+J− + J+J−J3 + J+(−J3)J− +

+ J−J3J+ + J−J+(−J3) + (−J3)J−J+ + (−J3)3

= J3
[

J+, J−
]

+
[

J+, J−
]

J3 + J+
[

J−, J3
]

+
[

J−J3, J+
]

= 2
{

(J3)
2 + 1

2
(J+J− + J−J+)

}

= AijAji . (9.98)

Consequently, no new Casimir operator results from the contraction of three stan-
dard matrices.

9.12 The product space {2} ⊗ {2} ⊗ {2}.
At the basis ( 9.45) for the irrep D(1/2) of SU(2), the matrix representations of the
generators and hence of all elements of the Lie-algebra, are identical to the defining
matrices ( 9.15). So, for the standard matrices ( 9.93), we must also have:

[

d(1/2)(Aij)
]

kℓ
= δikδjℓ − 1

2
δijδkℓ . (9.99)

The transformation of the basis vectors ( 9.45), which we shall denote here by
respectively ê1 and ê2, is then given by:

ê′ℓ =
[

d(1/2)(Aij)
]

kℓ
êk . (9.100)

Let us study the reduction into irreps of the product space {2} ⊗ {2} ⊗ {2}. We
denote the basis of this space by:

Eabc = êa ⊗ êb ⊗ êc for a, b, c = 1, 2. (9.101)

The representation d(Aij) of standard matrix Aij in this product space, is defined

by (compare formula 9.68):

d(Aij)Eabc =
[

d(1/2)(Aij)
]

λa
Eλbc+

[

d(1/2)(Aij)
]

λb
Eaλc+

[

d(1/2)(Aij)
]

λc
Eabλ .

(9.102)
Using relation ( 9.99), one obtains the following explicit expression:

d(Aij)Eabc = (δiλδja − 1
2
δijδaλ)Eλbc + (δiλδjb − 1

2
δijδbλ)Eaλc +

+ (δiλδjc − 1
2
δijδcλ)Eabλ

= δjaEibc + δjbEaic + δjcEabi − 3
2
δijEabc (9.103)
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In order to determine the representation of the Casimir operator ( 9.96) in the
product space, we first, using the expression ( 9.103), determine:

2J2Eabc = d(Aji)d(Aij)Eabc

= δjad(Aji)Eibc + δjbd(Aji)Eaic + δjcd(Aji)Eabi +

− 3
2
δijd(Aji)Eabc

= δja

{

δiiEjbc + δibEijc + δicEibj −
3
2
δjiEibc

}

+

+ δjb

{

δiaEjic + δiiEajc + δicEaij − 3
2
δjiEaic

}

+

+ δjc

{

δiaEjbi + δibEaji + δiiEabj − 3
2
δjiEabi

}

+

− 3
2
δij

{

δiaEjbc + δibEajc + δicEabj −
3
2
δjiEabc

}

= 2Eabc + Ebac + Ecba − 3
2
Eabc +

+ Ebac + 2Eabc + Eacb − 3
2
Eabc +

+ Ecba + Eacb + 2Eabc − 3
2
Eabc +

− 3
2
Eabc − 3

2
Eabc − 3

2
Eabc +

9
2
Eabc

=
[

3(2− 3
2
)− 3

2
(3− 2 · 3

2
)
]

Eabc + 2
[

Eacb + Ecba + Ebac

]

= 2

{

3
4
(4− 3)Eabc +

∑

σ
Eσ(abc)

}

, (9.104)

where σ(abc) stands for the interchange of two indices and where the summation is
over all possible combinations in which two indices are interchanged.
Using formula ( 9.104), we find in the product space {2}⊗ {2}⊗ {2} at the basis

( 9.101), for the Casimir operator ( 9.96) the following representation:

J2Eabc =
1
2
d(Aji)d(Aij)Eabc

3
4
Eabc + Eacb + Ecba + Ebac . (9.105)

In order to find the reduction of the representation d of SU(2) in the product space
{2} ⊗ {2} ⊗ {2} into irreps of SU(2), we must first determine the matrices of the
representation of the Casimir operator and of the representation of J3 = A11 at the
basis ( 9.101).
For J3 = A11, we find in the product space, using formula ( 9.103), the transfor-

mation:

d(A11)Eabc = δ1aE1bc+ δ1bEa1c+ δ1cEab1− 3
2
Eabc =

{

δ1a + δ
1b + δ1c − 3

2

}

Eabc .

(9.106)
We find that the basis vectors ( 9.101) are eigenvectors of A11. Consequently, at
the basis vectors ( 9.101) the matrix representation of A11 = J3 is diagonal. The
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eigenvalues of d(A11) as given in formula ( 9.106) are collected in table ( 9.1) below.
From this table we read that the eigenvalues for the representation of J3 take values
±3

2
and ±1

2
. So, we may expect that in the reduction of the representation d will

appear doublets (i.e. {2}) and quadruplets (i.e. {4}).

vector T 111 112 121 122 211 212 221 222

eigenvalue +3
2

+1
2

+1
2

-1
2

+1
2

-1
2

-1
2

-3
2

Table 9.1: The eigenvalues of d(A11) as defined in formula ( 9.106), for the various
basis vectors ( 9.101).

Notice from the results of table ( 9.1) that, as also can be read from formula ( 9.106),
there is a direct relation between the number of times that appears a 1 or a 2 in its
indices, and the eigenvalue of a basis vector.
The action of the transformation J2 = 1

2
d(Aji)d(Aij) at the basis vectors ( 9.101)

is presented in table ( 9.2) below.

initial basis vector transformed vector

E J2E = 1
2
d(Aji)d(Aij)E

111 15
4
E111

112 7
4
E112 + E121 + E211

121 7
4
E121 + E112 + E211

122 7
4
E122 + E212 + E221

211 7
4
E211 + E121 + E112

212 7
4
E212 + E122 + E221

221 7
4
E221 + E212 + E122

222 15
4
E222

Table 9.2: The transformations of the Casimir operator as defined in formula
( 9.105), for the various basis vectors ( 9.101).

Notice from the results of table ( 9.2), that the number of times it appears a 1
or a 2 in the indices of the basis vectors involved in one linear combination which
represents a transformed basis vector, is a constant.
The matrix for the Casimir operator is not diagonal at the basis ( 9.101). But, we

notice from table ( 9.2) that the Casimir operator has two eigenvectors, namely E111

and E222, both with eigenvalue 15
4

= 3
2
(3
2
+ 1). Their eigenvalues for d(J3 = A11)

are respectively equal to +3/2 and −3/2 (see table 9.1). Consequently, we might
identify:

|3
2
,+3

2
>= E111 and|3

2
,−3

2
>= E222 . (9.107)
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Repeated action of d(J− = A21) on E111 or d(J+ = A12) on E222, using formula
( 9.103), leads us to the other two basis vectors for the four-dimensional irrep {4}
contained in the product space given by ( 9.101). The final result is collected in
table ( 9.3).

{4} {2} ⊗ {2} ⊗ {2}

|3
2
,+3

2
> E111

|3
2
,+1

2
>

√
1
3
{E211 + E121 + E112}

|3
2
,−1

2
>

√
1
3
{E221 + E212 + E122}

|3
2
,−3

2
> E222

Table 9.3: The irrep {4} contained in {2} ⊗ {2} ⊗ {2}.

In the space spanned by the basis vectors E211, E121 and E112, which have eigenvalue
+1

2
for d(J3 = A11), we construct two more orthonormal basis vectors perpendicular

to
√

1
3
{E211 + E121 + E112}, i.e.

√
1
2
{E211 − E121} and

√
1
6
{E211 + E121 − 2E112} . (9.108)

So, we find two subspaces of the product space {2} ⊗ {2} ⊗ {2} in which the repre-
sentation d is equivalent to the two-dimensional irrep {2}. Using formula ( 9.103)
for d(J− = A21), we find the other basis vector in each of the two subspaces. The
resulting bases are collected in table ( 9.4).

{2} {2} ⊗ {2} ⊗ {2} (I) {2} ⊗ {2} ⊗ {2} (II)

|1
2
,+1

2
>

√
1
2
{E211 − E121}

√
1
6
{E211 + E121 − 2E112}

|1
2
,−1

2
>

√
1
2
{E212 − E122}

√
1
6
{2E221 − E212 − E122}

Table 9.4: The two irreps {2} contained in {2} ⊗ {2} ⊗ {2}.

When we select the basis:

ê′1 = E111 ,

ê′2 =
√

1
3
{E211 + E121 + E112} ,

ê′3 =
√

1
3
{E221 + E212 + E122} ,

ê′4 = E222 ,

ê′5 =
√

1
2
{E211 −E121} ,

121



ê′6 =
√

1
2
{E212 −E122} ,

ê′7 =
√

1
6
{E211 + E121 − 2E112} and

ê′8 =
√

1
6
{2E221 −E212 −E122} ,

then we find for the representation D′(U) of all group elements U of SU(2) in the
product space {2} ⊗ {2} ⊗ {2}, the form:

D′(U) =









D(3/2)(U) 0 0

0 D(1/2)(U) 0

0 0 D(1/2)(U)









. (9.109)

Symbolically, we may write this result as:

{2} ⊗ {2} ⊗ {2} = {4} ⊕ {2} ⊕ {2} . (9.110)

9.13 Tensors for SU(2).

The basis vectors of the irrep {4}, which are collected in table ( 9.3), all have the
property that interchanging two indices does not alter the expression. Let us study
this phenomenon in a bit more detail.
An arbitrary vector T in the product space {2} ⊗ {2} ⊗ {2} can be written as a

linear combination of the basis vectors ( 9.101), as follows:

T = TijkEijk . (9.111)

When the coefficients T in ( 9.111) are symmetric in their indices, i.e. when:

T112 = T121 = T211 and T122 = T212 = T221 ,

then we find for the vector T ( 9.111) the expression:

T = T111E111 + T112 {E211 + E121 + E112}+ T122 {E221 + E212 + E122}+ T222E222 .
(9.112)

Consequently, the vector T is entirely in the subspace spanned by the basis vectors of
the irrep {4} given in table ( 9.3). Under any transformation D(U), for U in SU(2),
such a vector transforms into a vector T ’ which is also entirely in that subspace.
So, the subspace of the irrep {4} can be defined as the space of all vectors T which
have symmetric coefficients T .
The objects T of formula ( 9.111) are usually not called vectors but tensors for

SU(2).
Notice that {4} has the highest possible dimension of an irrep contained in the

product space {2} ⊗ {2} ⊗ {2}. Its eigenvalue j for the Casimir operator can be
determined from:

j = 1
2
+ 1

2
+ 1

2
= 3

2
. (9.113)

122



9.14 Irreducible tensors for SU(2).

In general, one might study tensor product spaces of length p, given by the direct
product of p times the defining space {2} of SU(2), i.e.

{2} ⊗ {2} ⊗ · · · ⊗ {2} p times. (9.114)

The basis vectors of this space can, in analogy with expression ( 9.101) be represented
by:

Ei1i2 . . . ip = êi1 ⊗ êi2 ⊗ · · · ⊗ êip for i1, i2, . . . , ip = 1, 2. (9.115)

Tensors T are linear combinations of those basis vectors and take the general form:

T = Ti1i2 . . . ipEi1i2 . . . ip . (9.116)

Such tensor is a vector in the 2p-dimensional product space given in ( 9.114) and is
said to have rank p.
For the representations d(Aij) of the standard matrices at the basis given in

formula ( 9.115), we find (compare formulas 9.102 and 9.103):

d(Aij)Ei1i2 . . . ip =

=
[

d(1/2)(Aij)
]

ki1
Eki2 . . . ip

+
[

d(1/2)(Aij)
]

ki2
Ei1ki3 . . . ip

+ · · ·

· · ·+
[

d(1/2)(Aij)
]

kip
Ei1i2 . . . ip−1k

= δji1Eii2 . . . ip + · · ·+ δjipEi1i2 . . . ip−1i −
p

2
δijEi1i2 . . . ip . (9.117)

And for the Casimir operator (compare formula 9.104), we find:

1
2
d(Aij)d(Aji)Ei1i2 . . . ip = 1

4
p(4− p)Ei1i2 . . . ip + 1

2

∑

σ
Eσ(i1i2 . . . ip)

, (9.118)

where σ(i1i2 . . . ip) stands for the interchange of two of the indices. The summation
is over all possible combinations where two indices are interchanged. Notice that
there are p(p− 1) such combinations.
Let us consider the subspace of the product space ( 9.114) which is spanned by all

tensors T ( 9.116) for which the coefficients T are symmetric under the interchange
of any pair of indices. It is easy to understand that such tensors are eigenvectors
for the Casimir operator ( 9.118). Their eigenvalues are given by:

1
2
d(Aij)d(Aji)T =

{
1
4
p(4− p) + 1

2
p(p− 1)

}

T =
p

2
(
p

2
+ 1)T . (9.119)

Consequently, symmetric tensors span the subspace of the product space in which
the vectors transform according to the irrep for j = p/2 of SU(2). Notice, that
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j = p/2 is the maximum value for j possible in the product space given by formula
( 9.114).
Using formula ( 9.117) one can also easily find the two eigenvectors of d(J3 = A11)

which have the maximum and minimum eigenvalues, i.e.

d(A11)E11···1 = +
p

2
E11···1 and d(A11)E22···2 = −p

2
E22···2 . (9.120)

Conclusion: ”The vector spaces for the irreps {2j + 1} of SU(2) are formed by the

symmetric tensors of rank p = 2j”.

124



9.15 Rotations in the generator space.

In order not to complicate expressions too much, we will write here J for d(J).
A rotation in generator space is given by

eiϕn̂ · ~J ~J e−iϕn̂ · ~J = ~J cos (ϕ) + n̂× ~J sin (ϕ) + n̂
(

n̂ · ~J
)

{1− cos (ϕ)} . (9.121)
We will proof this relation in the following.
In order to do so, we will use the following identity (11.2) for matrices a and b:

eaebe−a = eb+ [a , b] + 1
2!
[a , [a , b]] + 1

3!
[a , [a , [a , b]]] + · · · ,

which is proven in section (11.1).
Here, we select

a = i ~n · ~J and b = Ji , (9.122)

where we have defined ~n = ϕn̂.
We must determine the commutators which occur in the expansion (11.2).

For n = 0 we obtain
0 times

︷ ︸︸ ︷

[a, [a, [· · · [a, b] · · ·]]] = b = Ji .

For n = 1 we find

1 time
︷ ︸︸ ︷

[a, [a, [· · · [a, b] · · ·]]] = [a, b] = i
[

~n · ~J, Ji
]

= i2njεjikJk =
(

~n× ~J
)

i
.

For n = 2, we find

[a, [a, b]] = i3
[

~n · ~J, εjiknjJk
]

=

== i4nℓεjiknjεℓkmJm = (δjmδiℓ − δjℓδim)njnℓJm = ni

(

~n · ~J
)

− n2Ji

For n = 3, by the use of the previous results, we find

[a, [a, [a, b]]] = i
[

~n · ~J, ni

(

~n · ~J
)

− n2Ji
]

= −in2
[

~n · ~J, Ji
]

= −n2
(

~n× ~J
)

i

When we return to substitute ~n = ϕn̂, we obtain thus

0 times
︷ ︸︸ ︷

[a, [a, [· · · [a, b] · · ·]]] = Ji , (9.123)

1 time
︷ ︸︸ ︷

[a, [a, [· · · [a, b] · · ·]]] = ϕ
(

n̂× ~J
)

i
,

[a, [a, b]] = ϕ2
(

n̂i

(

n̂ · ~J
)

− Ji
)

,

[a, [a, [a, b]]] = −ϕ3
(

n̂× ~J
)

i
,

[a, [a, [a, [a, b]]]] = −ϕ4
(

n̂i

(

n̂ · ~J
)

− Ji
)

,

...
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Putting things together, we obtain from this result

eiϕn̂ · ~J ~J e−iϕn̂ · ~J = ~J +

+
(

n̂× ~J
)
{

ϕ− ϕ3

3!
+
ϕ5

5!
− ϕ7

7!
+ . . .

}

+

+
(

n̂
(

n̂ · ~J
)

− ~J
)
{

ϕ2

2!
− ϕ4

4!
+
ϕ6

6!
− ϕ8

8!
+ . . .

}

= ~J +
(

n̂× ~J
)

sin (ϕ) +
(

n̂
(

n̂ · ~J
)

− ~J
)

{1− cos (ϕ)}

= ~J cos (ϕ) +
(

n̂× ~J
)

sin (ϕ) + n̂
(

n̂ · ~J
)

{1− cos (ϕ)} , (9.124)

which demonstrates relation (9.121).
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9.16 Real representations

One should be careful enough not to transport the properties of spherical harmonics
(see section 8.9) to any representation of SU(2). Here, we will give an example of a
real representation. We denote its basis by |j,m〉 for which

J2|j,m〉 = j(j + 1)|j,m〉 and J3|j,m〉 = m|j,m〉 . (9.125)

In matrix notation we imagine for the basis

|j, j〉 =














1
0
0
...
0
0














, |j, j − 1〉 =














0
1
0
...
0
0














, . . . , |j,−j〉 =














0
0
0
...
0
1














.

At this basis (e.g. for the case j = 5/2)

J+ =














·
√
5 · · · ·

· ·
√
8 · · ·

· · ·
√
9 · ·

· · · ·
√
8 ·

· · · · ·
√
5

· · · · · ·














, J− =














· · · · · ·√
5 · · · · ·
·

√
8 · · · ·

· ·
√
9 · · ·

· · ·
√
8 · ·

· · · ·
√
5 ·














,

and

J3 =













+5
2

· · · · ·
· +3

2
· · · ·

· · +1
2

· · ·
· · · −1

2
· ·

· · · · −3
2

·
· · · · · −5

2













.

Furthermore, using J1 = (J+ + J−)/2 and J2 = (J+ − J−)/2i, one readily finds J1
and J2.
We have obtained a real basis, i.e.

|j,m〉∗ = |j,m〉 ,

real representations for J1 and J3 and a purely imaginary representation for J2.
This is, of course, possible for any j.
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Chapter 10

The special unitary group in three
dimensions.

In this chapter we study the representations of the special unitary group in three
dimensions, SU(3).

10.1 The generators.

The generators H of SU(3) are traceless and Hermitean 3×3 matrices (see formulas
5.26 and 6.49), and thus have the following general form:

H(a, b;α, β, γ) =








a α∗ β∗

α b γ∗

β γ −a− b








with a and b real, and
α, β and γ complex.

(10.1)

Now, since a and b are real and α, β and γ complex, such a matrix has 2 + 6 = 8
free parameters. Consequently, SU(3) is an eight parameter group and hence has
eight independent generators. A possible set is the Gell-Mann set of generators:

I1 , I2 , I3 , K1 , K2 , L1 , L2 , and M , (10.2)

given by the following matrices:

I1 =
1
2






0 1 0
1 0 0
0 0 0




 , I2 =

1
2






0 −i 0
i 0 0
0 0 0




 , I3 =

1
2






+1 0 0
0 −1 0
0 0 0




 ,

K1 =
1
2






0 0 1
0 0 0
1 0 0




 , K2 =

1
2






0 0 −i
0 0 0
i 0 0




 , L1 =

1
2






0 0 0
0 0 1
0 1 0




 ,

L2 =
1
2






0 0 0
0 0 −i
0 i 0




 , and M = 1

2
√
3






1 0 0
0 1 0
0 0 −2




 . (10.3)
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The arbitrary traceless and Hermitean 3× 3 matrix H given in formula ( 10.1), can
be written as a linear combination of the Gell-Mann set of generators, as follows:

H(a, b;α, β, γ) = 2ℜe(α)I1 + 2ℑm(α)I2 + (a− b)I3 + 2ℜe(β)K1 +

+ 2ℑm(β)K2 + 2ℜe(γ)L1 + 2ℑm(γ)L2 + (a+ b)
√
3M ,

(10.4)

where the symbols ℜe( ) and ℑm( ) stand respectively for the real and imaginary
part of a complex number. When this matrix is exponentiated, we obtain an arbi-
trary unitary 3× 3 matrix U with unit determinant, i.e.

U(a, b;α, β, γ) = eiH(a, b;α, β, γ) . (10.5)

The set of eight Gell-Mann generators forms a basis of the Lie-algebra of SU(3).
We define in this algebra, the following linear combinations of the generators:

I± = I1 ± iI2 , K± = K1 ± iK2 and L± = L1 ± iL2 . (10.6)

They satisfy the following commutation relations with I3 and M (compare to the
commutation relations given in formula 8.28):

[

I3 , I±
]

= ±I± ,
[

M , I±
]

= 0 ,
[

I3 , K±
]

= ±1
2
K± ,

[

M , K±
]

= ±
√
3
2
K± ,

[

I3 , L±
]

= ∓1
2
L± ,

[

M , L±
]

= ±
√
3
2
L± .

(10.7)

The operators defined in formula ( 10.6) will show very useful in the construction
of irreducible representations.
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10.2 The representations of SU(3).

The subset of generators { I1, I2, I3 } satisfies the same type of commutation
relations as the generators of SU(2) (see formula 9.17), i.e.

[

Ii , Ij

]

= iǫijkIk . (10.8)

They generate a subgroup of SU(3) which is equivalent to SU(2) and which is called
the subgroup for isospin. In the following we will study representations of SU(3)
for which the bases are chosen such that I3 is represented by a diagonal matrix. We
have then moreover the operator I2, given by:

I2 = (I1)
2 + (I2)

2 + (I3)
2 , (10.9)

which commutes with the generators I1, I2 and I3, i.e.

[

I2 , Ii

]

= 0 for i = 1, 2, 3. (10.10)

This operator does however not commute with all other generators and hence is not
a Casimir operator for SU(3). But, it distinguishes within the irreps of SU(3) the
so-called isomultiplets, as we will see in the following.
Using the representation ( 10.3) of the generators ( 10.2), we find that M com-

mutes with I1, I2 and I3, i.e.

[

M , Ii

]

= 0 for i = 1, 2, 3. (10.11)

This implies that M commutes with I2, i.e.

[

I2 , M
]

= 0 . (10.12)

Relation ( 10.11) implies also that it is possible to construct such a basis for a
representation of SU(3) that both d(I3) and d(M) are diagonal. So, we might
indicate the basis vectors for an irrep of SU(3) by their eigenvalues i3 and m of
respectively d(I3) and d(M) and moreover by their eigenvalues i(i+ 1) of I2, i.e.:

d(I3)|i, i3, m > = i3|i, i3, m > ,

d(M)|i, i3, m > = m|i, i3, m > and

I2|i, i3, m > = i(i+ 1)|i, i3, m > . (10.13)

The unitary matrices generated by I3, form an U(1) subgroup of SU(3). Con-
sequently, the eigenvalues, i3, can take any integer or half-integer value (see the
discussion preceding formula 9.37), i.e.

i3 = 0, ±1
2
, ±1, ±3

2
, ±2, . . . (10.14)

The unitary matrices generated by M also form an U(1) subgroup of SU(3) and
which, because of relation ( 10.11) commute with the unitary matrices generated by
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I3. Due to the normalization of ( 10.3) of M , the eigenvalues which m can take are
given by:

m = 0, ±
√
3
6
, ±

√
3
3

±
√
3
2
, ±2

√
3

3
, . . . (10.15)

Now, because of the commutation relations ( 10.11) and ( 10.12), the basis vectors
within an irrep which have the same eigenvalue m for M , can be subdivided into
isomultiplets, which are sets of basis vectors which have the same eigenvalue i(i+1)
for I2. Within each isomultiplet the values for i3 run from −i to +i with integer
steps, because of the commutation relations ( 10.7) for I3 and I±. The operators
I±, K± and L± defined in ( 10.6), function as step operators at the basis of an
irrep of SU(3), because of the commutation relations ( 10.7). At the above basis
vectors ( 10.13) one obtains:

d(I±)|i, i3, m > =
√

i(i+ 1)− i3(i3 ± 1) |i, i3 ± 1, m > ,

d(K±)|i, i3, m > = A±(i, i3, m) |i+ 1
2
, i3 ± 1

2
, m±

√
3
2
> +

B±(i, i3, m) |i− 1
2
, i3 ± 1

2
, m±

√
3
2
> and

d(L±)|i, i3, m > = C±(i, i3, m) |i+ 1
2
, i3 ∓ 1

2
, m±

√
3
2
> +

D±(i, i3, m) |i− 1
2
, i3 ∓ 1

2
, m±

√
3
2
> . (10.16)

The matrix elements A, B, C and D are rather complicated functions of i, i3 and
m and moreover of some other ”quantum” numbers characterizing the irrep under
consideration. We will discuss them in some more detail at a later stage (see section
10.11 formula 10.68). Notice that since I2 does not commute with K± and L±, the
eigenvalues for I2 change under the action of d(K±) and d(L±) at the basis vectors.
In general one even might obtain mixtures of eigenvectors for I2.
To define uniquely the matrix elements A, B, C and D of formula ( 10.16), certain

conventions about the relative phases between the basis vectors within an irrep have
to be established. For the basis vectors within the same isomultiplet, we take the
standard Condon and Shortley phase convention. This says that the nonzero matrix
elements of d(I±) are all real and positive. This convention defines uniquely the
phases between the different basis vectors within the same isomultiplet. But leaves
undetermined an overall phase between the various isomultiplets of an irrep.
The relative phases between the different isomultiplets are defined by the require-

ment that the nonzero matrix elements of d(K±) are all positive.
So, we find from formula ( 10.16) the following transformation rules:

d(I±) : ∆i = 0 , ∆i3 = ±1 , ∆m = 0 ,

d(K±) : |∆i| = 1
2

, ∆i3 = ±1
2

, ∆m = ±
√
3
2

and

d(L±) : |∆i| = 1
2

, ∆i3 = ∓1
2

, ∆m = ±
√
3
2

.

(10.17)

The above formula ( 10.17) summarizes the center piece of the irreducible represen-
tations of SU(3). It shows the sizes and the directions of the steps which lead from
one basis vector to another.
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10.3 Weight diagrams for SU(3).

A weight diagram for an irrep of SU(3) has two dimensions. Along the horizontal
axis of the plane we indicate i3, the eigenvalues of d(I3) and along the vertical axis we
indicate m, the eigenvalues of d(M). For an example, we show in figure ( 10.1) the
weight diagram for the ten-dimensional irreducible representation {10} of SU(3).

- i3
+1

2 +1 +3
2

−1
2−1−3

2

6

m

+
√
3
2

−
√
3
2

−
√
3

• • • •

• • •

• •

•

Figure 10.1: The weight diagram for the ten-dimensional irrep {10} of SU(3). The
ten dots in the figure represent the ten basis vectors of this irrep.

For the eigenvalue m = +
√
3
2

of d{10}(M) we find an isoquartet with i = 3
2
for the

eigenvalues i3 = −3
2
, i3 = −1

2
, i3 = +1

2
and i3 = +3

2
for d{10}(I3). Restricted to the

set of generators { I1, I2, I3 } the four basis vectors of this isoquartet transform like
the irrep {4} of SU(2) under d{10}(I1), d

{10}(I2) and d{10}(I3). The step operator
I+ generates in this isoquartet the following sequence of transformations:

|3
2
,−3

2
,+

√
3
2
>
I+−→ |3

2
,−1

2
,+

√
3
2
>
I+−→ |3

2
,+1

2
,+

√
3
2
>
I+−→ |3

2
,+3

2
,+

√
3
2
>
I+−→ 0.

(10.18)

For the eigenvalue m = 0 of d{10}(M) we find an isotriplet with i = 1 for the
eigenvalues i3 = −1, i3 = 0 and i3 = +1 for d{10}(I3). Restricted to the set of
generators { I1, I2, I3 } the three basis vectors of this isotriplet transform like the
irrep {3} of SU(2) under d{10}(I1), d

{10}(I2) and d{10}(I3). The step operator I+
generates in this isotriplet the following sequence of transformations:
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|1,−1, 0 >
I+−→ |1, 0, 0 >

I+−→ |1,+1, 0 >
I+−→ 0. (10.19)

For the eigenvalue m = −
√
3
2

of d{10}(M) we find an isodoublet with i = 1
2
for the

eigenvalues i3 = −1
2
and i3 = +1

2
for d{10}(I3). Restricted to the set of generators

{ I1, I2, I3 } the two basis vectors of this isodoublet transform as the irrep {2} of
SU(2) under d{10}(I1), d

{10}(I2) and d{10}(I3). The step operator I+ generates in
this isodoublet the following sequence of transformations:

|1
2
,−1

2
,−

√
3
2
>
I+−→ |1

2
,+1

2
,−

√
3
2
>
I+−→ 0. (10.20)

For the eigenvalue m = −
√
3 of d{10}(M) we find an isosinglet with i = 0 for the

eigenvalue i3 = 0 for d{10}(I3). Restricted to the set of generators { I1, I2, I3 } the
only basis vectors of this isosinglet transforms like the trivial irrep {1} of SU(2)
under d{10}(I1), d

{10}(I2) and d{10}(I3). The step operator I+ generates in this
isosinglet the following transformation:

|0, 0,−
√
3 >

I+−→ 0. (10.21)

In figure ( 10.2) we show the directions of action of the various step operators defined
in formula ( 10.6), in a weight diagram.

- i3
+1

2
+1−1

2
−1

6

m

+
√
3
2

−
√
3
2

-
d(I+)

�
d(I−)

�
�
�
�
�
�
�
��
d(K+)

�
�

�
�

�
�

�
��d(K−)

A
A

A
A

A
A

A
AK

d(L+)

A
A
A
A
A
A
A
AU d(L−)

Figure 10.2: The action of the six step operators d(I±), d(K±) and d(L±) defined
in formula ( 10.6), in the weight diagram for an irrep of SU(3).

In the irrep {10} of SU(3) as show in figure ( 10.1), the step operator K+ generates
the following sequences:

|0, 0,−
√
3 >

K+−→ |1
2
,+1

2
,−

√
3
2
>
K+−→ |1,+1, 0 >

K+−→ |3
2
,+3

2
,+

√
3
2
>
K+−→ 0 ,
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|1
2
,−1

2
,−

√
3
2
>
K+−→ |1, 0, 0 >

K+−→ |3
2
,+1

2
,+

√
3
2
>
K+−→ 0 ,

|1,−1, 0 >
K+−→ |3

2
,−1

2
,+

√
3
2
>
K+−→ 0 and

|3
2
,−3

2
,+

√
3
2
>
K+−→ 0 .(10.22)

10.4 The Lie-algebra of SU(3).

Like in the case of SU(2) (see formula 9.93), we select for the basis of the Lie-algebra
of SU(3) a set of traceless standard matrices Aij (i, j = 1, 2, 3), given by:

[

Aij

]

kl
= δikδjl −

1
3
δijδkl for i, j, k, l = 1, 2, 3. (10.23)

Their relation to the generators ( 10.2) also using the definitions ( 10.6) for the step
operators, is as follows:

A11 = I3 +
1√
3
M , A12 = I+ , A13 = K+ ,

A21 = I− , A22 = −I3 + 1√
3
M , A23 = L+ ,

A31 = K− , A32 = L− , A33 = − 2√
3
M .

(10.24)

The commutation relations for the standard matrices are given by (see also formula
9.95 for the standard matrices of SU(2)):

[

Aij , Akℓ

]

= δjkAiℓ − δiℓAkj . (10.25)

For SU(3) one has two Casimir operators, given by:

F 2 = 1
2
AijAji and G3 = 1

2

{

AijAjkAki + AijAkiAjk

}

. (10.26)

Unlike in the case of SU(2) (see formula 9.98), the contraction of three standard
matrices is in the case of SU(3) not equal to the contraction of two standard matrices
and hence give different operators.
When we use the representation ( 10.5) for an arbitrary unitary 3× 3 matrix and

formula ( 10.4), or alternatively formula ( 10.1), for its generator, then by defining:

α11 = 0 , α12 = α∗ , α13 = β∗ ,

α21 = α , α22 = b− a , α23 = γ∗ ,

α31 = β , α32 = γ and α33 = −2a− b ,

we may denote the arbitrary unitary 3× 3 matrix U of formula ( 10.5) by:

U(αij) = e
iαijAij . (10.27)
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10.5 The three-dimensional irrep {3} of SU(3).

For the basis of the three-dimensional vector space V for the defining representation
{3} of SU(3), we select the notation:

ê1 =






1
0
0




 , ê2 =






0
1
0




 and ê3 =






0
0
1




 . (10.28)

The unitary 3× 3 matrices U of SU(3) are represented by themselves, i.e.

D{3}(U) = U . (10.29)

Consequently, the transformation of a vector ~x = xiêi is given by:

D{3}(U)~x = Uijx
jêi . (10.30)

One might alternatively view this equation as the transformation of the basis vectors,
given by:

ê′j = D{3}(U)êj = Uij êi , (10.31)

or as a transformation of the components of the vector ~x, given by:

x′
i
=
[

D{3}(U)~x
]i

= Uijx
j . (10.32)

The components of a vector transform contra-variant, i.e. the summation in ( 10.32)
runs over the second index of U , whereas the summation in ( 10.31) for the basis
vectors, runs over the first index of U .
At the level of the algebra, using formulas (10.23) and ( 10.31), we have for the

standard matrices the following transformation rule at the basis vectors:

ê′ℓ = d{3}(Aij)êℓ =
[

Aij

]

kℓ
êk = δjℓêi − 1

3
δij êℓ . (10.33)

Notice that this transformation, except for the factor 1
3
, is the same as in the case

of the defining representation of SU(2) (see formula 9.100).
We are interested here in the eigenvalues for d{3}(I3) and d

{3}(M) for the various
basis vectors ( 10.28), for which we assume that the corresponding matrices are
diagonal. From the relations ( 10.24) we understand that it is sufficient to determine
the matrices for d{3}(A11) and d

{3}(A22). Hence, using formula ( 10.33), we find the
following:

d{3}(A11)êℓ = δ
1ℓê1 − 1

3
êℓ ,

d{3}(A22)êℓ = δ
2ℓê2 − 1

3
êℓ and

d{3}(A33)êℓ = δ
3ℓê3 − 1

3
êℓ . (10.34)
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The resulting eigenvalues (using the relations 10.24) for the matrices d{3}(I3) =
1
2

{

d{3}(A11)− d{3}(A22)
}

and d{3}(M) =
√
3
2

{

d{3}(A11) + d{3}(A22)
}

are collected

in table ( 10.1).

ê d{3}(A11) d{3}(A22) d{3}(I3) d{3}(M)

ê1
2
3
ê1 −1

3
ê1 +1

2
ê1

√
3
6
ê1

ê2 −1
3
ê2

2
3
ê2 −1

2
ê2

√
3
6
ê2

ê3 −1
3
ê3 −1

3
ê3 0 −

√
3
3
ê3

Table 10.1: The eigenvalues for d{3}(A11) and d
{3}(A22) as defined in formula ( 10.34),

and for d{3}(I3) and d{3}(M), using the relations ( 10.24), for the basis vectors
( 10.28).

Notice from table ( 10.1) that the basis vectors ê1 and ê2 have the same eigenvalue
with respect to d{3}(M), and respectively eigenvalues +1

2
and −1

2
with respect to

d{3}(I3). The latter eigenvalues correspond to the eigenvalues for {2} of SU(2) with
respect to d{2}(J3) (compare formula 9.46).

According to the relations ( 10.24), we may associate the step operators to the
operation of replacing indices: The Kronecker delta δij in formula ( 10.33) vanishes
for all step operators. The other Kronecker delta replaces the index ℓ by i in the
case that j equals ℓ, or else vanishes. This process is expressed in the following
equation:

d{3}(Ai 6= j)êℓ = δjℓêi =







êi if j = ℓ

0 if j 6= ℓ
. (10.35)

The resulting transformations d{3}(I±), d{3}(K±) and d{3}(L±) at the basis ( 10.28),
are collected in table ( 10.2).

ê d{3}(I+) d{3}(I−) d{3}(K+) d{3}(K−) d{3}(L+) d{3}(L−)

ê1 0 ê2 0 ê3 0 0

ê2 ê1 0 0 0 0 ê3

ê3 0 0 ê1 0 ê2 0

Table 10.2: The eigenvalues for the step operators defined in formula ( 10.6), using
the relations ( 10.24) and ( 10.35), for the basis vectors ( 10.28).

Notice from table ( 10.2) that the isospin raising and lowering operators d{3}(I+) and
d{3}(I−) connect the basis vectors ê1 and ê2 in the same way that the basis vectors
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of the irrep {2} of SU(2) are connected by the raising and lowering operators of
SU(2) (compare formula 9.47).

The information of tables ( 10.1) and ( 10.2) may be graphically represented in
the weight diagram for {3}. This is depicted in figure ( 10.3).

- i3
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2
−1

2

6

m
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√
3
6

−
√
3
3

• •

•
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�
d(I−)

�
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�
�
�
�
�
�
�
�
�
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�
�
�

�
�

�
�

�
�

�
�

�
�

�
��

d(K−)

A
A
A

A
A
A

A
A

A
A

A
A

A
A

AK

d(L+)

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

d(L−)

Figure 10.3: The action of the six step operators d{3}(I±), d{3}(K±) and d{3}(L±)
given in table ( 10.2), in the weight diagram for the irrep {3} of SU(3). The dots
in the diagram represent the basis vectors ( 10.28). Their respective eigenvalues i3
and m can be read from table ( 10.1).

From figure ( 10.3) one might guess that the irrep {3} can be subdivided into an
isodoublet (ê1 and ê2) and an isosinglet (ê3). So, we might like to verify the values of
i for the isomultiplet Casimir operator I2. To this aim, we use the relation (compare
the corresponding relations 8.32 and 9.56):

I2 = (I3)
2 + I3 + I−I+ . (10.36)

Using the information of tables ( 10.2) for d{3}(I3) and ( 10.1) for d{3}(I−) and
d{3}(I+), we find:

I2ê1 =
3
4
ê1 , I2ê2 =

3
4
ê2 and I2ê3 = 0 . (10.37)

Formula ( 10.37) indeed confirms that the set of basis vectors { ê1, ê2 } span the
two-dimensional space of an isodoublet. Any linear combination of those two basis
vectors transforms under the action of d{3}(I1), d

{3}(I2) and d{3}(I3) into another
(or the same) linear combination of those two basis vectors. With respect to the
three isospin operators d{3}(I1), d

{3}(I2) and d
{3}(I3) the space spanned by ê1 and ê2

transforms like the irrep {2} of SU(2). Similarly, spans the basis vector ê3 an one-
dimensional isosinglet space (i.e. the trivial representation) for SU(2) with respect
to the three isospin operators.
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Finally, we must determine the eigenvalues for the two Casimir operators of SU(3)
which are defined in formula ( 10.26). Also using the formulas (10.23) and ( 10.33),
we determine:

F 2êℓ = 1
2
d{3}(Aji)d

{3}(Aij)êℓ

= 1
2

[

d{3}(Aji)d
{3}(Aij)

]

mℓ
êm

= 1
2

[

Aji

]

mk

[

Aij

]

kℓ
êm

= 1
2

(

δjmδik − 1
3
δjiδmk

) (

δikδjℓ −
1
3
δijδkℓ

)

êm

= 4
3
êℓ , (10.38)

where we used moreover the identity δijδji = δii = 3.

So, we find the eigenvalue 4
3
for F 2 at the irreducible representation {3} of SU(3).

Similarly, one obtains, after some algebra, for the Casimir operator G3 the result:

G3êℓ =
20
9
êℓ . (10.39)

We find the eigenvalue 20
9
for the Casimir operator G3 at the irrep {3} of SU(3).
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10.6 The conjugate representation {3∗}.
In the case of SU(2) the two-dimensional conjugate representation D(∗)(U) = U∗ of
the 2× 2 unitary matrices U is equivalent to the defining representation D(U) = U
of SU(2). Using the representation of formula ( 9.2) of a 2× 2 unitary matrix U , it
is easy to demonstrate this, i.e.

For S =

(

0 1
−1 0

)

one has S−1US = S−1

(

a∗ −b∗
b a

)

S =

(

a −b
b∗ a∗

)

= U∗ .
(10.40)

Consequently, the representation D(∗)(U) = U∗ is equivalent to the representation
D(U) = U for the 2× 2 unitary matrices U of SU(2).
However, in the case of 3× 3 unitary matrices U this is not true, as can be seen

from one example: The matrix S which solves the equation S−1US = U∗ for the
3× 3 unitary matrix U given by:

U =






i 0 0
0 0 1
0 i 0




 ,

is equal to S = 0. Consequently, the conjugate representation for SU(3) is not
equivalent to the defining representation of SU(3).
We denote the vector space in this case by V ∗ and its basis vectors by:

ê1 , ê2 and ê3 . (10.41)

The unitary 3× 3 matrices U of SU(3) are represented by their complex conjugate
matrices, i.e.

D{3∗}(U) = U∗ = (U †)T = (U−1)T . (10.42)

Consequently, the transformation of a vector ~y = yiê
i is given by:

D{3∗}(U)~y = (U−1)ijyiê
j . (10.43)

One might alternatively view this equation as the transformation of the basis vectors,
given by:

ê, i = D{3∗}(U)êi = (U−1)ij ê
j , (10.44)

or as a transformation of the components of the vector ~y, given by:

y′j =
[

D{3∗}(U)~y
]

j
= (U−1)ijyi . (10.45)

The components of a vector transform co-variant, i.e. the summation in ( 10.45)
runs over the first index of U , which is the same index of summation as for the
transformation ( 10.31) of the basis vectors ( 10.28) of V .
In order to find the transformation rules for the standard matrices defined in

(10.23), we must recall that using formula ( 10.27)
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([

U(αij)
]−1

)T
= e

−iαij(Aij)T . (10.46)

Therefore, at the level of the algebra, using formulas (10.23), ( 10.44) and the above
relation ( 10.46), we have for the standard matrices the following transformation
rule at the basis vectors:

ê, ℓ = d{3
∗}(Aij)ê

ℓ = −
[

Aij

]

ℓk
êk = −δiℓê

j + 1
3
δij ê

ℓ . (10.47)

The weight diagram for the irrep {3∗} of SU(3) is depicted in figure ( 10.4) below.
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Figure 10.4: The action of the six step operators d{3
∗}(I±), d{3

∗}(K±) and d{3
∗}(L±)

in the weight diagram for the irrep {3∗} of SU(3). The dots in the diagram represent
the basis vectors ( 10.41).

The eigenvalues for the Casimir operators F 2 and G3 are in this case respectively
given by:

F 2êℓ =
4
3
êℓ and G3êℓ = −20

9
êℓ . (10.48)

Notice that the eigenvalue for F 2 for the irrep {3∗} is the same as for the irrep
{3} (see formula 10.38). This demonstrates that we really need one more Casimir
operator (i.e. G3) for SU(3) in order to distinguish between irreps.
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10.7 Tensors for SU(3).

For SU(3) one has two non-equivalent three-dimensional irreducible representations,
namely the irrep {3}, which is discussed in section ( 10.5), and the conjugate irrep
{3∗}, which is studied in section ( 10.6). The basis for the irrep {3} in the three-
dimensional vector space V is given in formula ( 10.28) and for the irrep {3∗} in the
conjugate vector space V ∗ in formula ( 10.41). In this section we study the direct
product space V (p+q) given by the direct product of p times V and q times V ∗, i.e.

V (p+q) =

p times
︷ ︸︸ ︷

V ⊗ V ⊗ · · · ⊗ V ⊗
q times

︷ ︸︸ ︷

V ∗ ⊗ V ∗ · · · ⊗ V ∗

In the literature one finds the alternative notation:

V (p+q) =

p times
︷ ︸︸ ︷

{3} ⊗ {3} ⊗ · · · ⊗ {3}⊗
q times

︷ ︸︸ ︷

{3∗} ⊗ {3∗} · · · ⊗ {3∗} . (10.49)

Using the bases given in ( 10.28) and ( 10.41), one can define the basis vectors of
the direct product space V (p+q) by:

E
j1, j2 . . . , jq
i1, i2 . . . , ip

= êi1 ⊗ êi2 ⊗ · · · ⊗ êip ⊗ êj1 ⊗ êj2 ⊗ · · · ⊗ êjq . (10.50)

As one can read from the construction, there are 3(p+q) linearly independent basis
vectors in the product space and therefore is its dimension equal to 3(p+q).
Tensors T for SU(3) are vectors in the direct product space V (p+q) and thus linear

combinations of the basis elements of this vector space, i.e.

T = T
i1 . . . ip
j1 . . . jq

E
j1 . . . jq
i1 . . . ip

. (10.51)

An arbitrary element U of SU(3) induces a transformation D(p+q)(U) in the vector
space V (p+q), represented by 3(p+q) × 3(p+q) unitary matrices. Using the formulas
( 10.30) and ( 10.43), we find for this transformation the expression:

T ′ = D(p+q)(U)T

= Ui1k1
· · ·Uipkp

[

U−1
]

ℓ1j1
· · ·

[

U−1
]

ℓqjq
T
k1 . . . kp
ℓ1 . . . ℓq

E
j1 . . . jq
i1 . . . ip

. (10.52)

One may view this expression as either the transformation of the components of the
tensor T , i.e.

T ′i1 . . . ip
j1 . . . jq

= Ui1k1
· · ·Uipkp

[

U−1
]

ℓ1j1
· · ·

[

U−1
]

ℓqjq
T
k1 . . . kp
ℓ1 . . . ℓq

, (10.53)

or as a transformation of the basis vectors:
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E ′ℓ1 . . . ℓp
k1 . . . kq

= Ui1k1
· · ·Uipkp

[

U−1
]

ℓ1j1
· · ·

[

U−1
]

ℓqjq
E
j1 . . . jq
i1 . . . ip

. (10.54)

At the level of the algebra of SU(3), using the formulas ( 10.33) and ( 10.47), we
find for the basis vectors ( 10.50) under the transformation induced by a standard
matrix Aij the following:

d(p+q)(Aij)E
j1 . . . jq
i1 . . . ip

=

=
{

d{3}(Aij)êi1

}

⊗ êi2 ⊗ · · · ⊗ êip ⊗ êj1 ⊗ · · · ⊗ êjq + · · ·

+ êi1 ⊗ · · · ⊗ êip−1
⊗
{

d{3}(Aij)êip

}

⊗ êj1 ⊗ · · · ⊗ êjq +

+ êi1 ⊗ · · · ⊗ êip ⊗
{

d{3
∗}(Aij)ê

j1
}

⊗ êj2 ⊗ · · · ⊗ êjq + · · ·

+ êi1 ⊗ · · · ⊗ êip ⊗ êj1 ⊗ · · · ⊗ êjq−1 ⊗
{

d{3
∗}(Aij)ê

jq
}

=
{

δji1 êi −
1
3
δij êi1

}

⊗ êi2 ⊗ · · · ⊗ êip ⊗ êj1 ⊗ · · · ⊗ êjq + · · ·

+ êi1 ⊗ · · · ⊗ êip−1
⊗
{

δjipêi −
1
3
δij êip

}

⊗ êj1 ⊗ · · · ⊗ êjq +

+ êi1 ⊗ · · · ⊗ êip ⊗
{

−δij1 ê
j + 1

3
δjiê

j1
}

⊗ êj2 ⊗ · · · ⊗ êjq + · · ·

+ êi1 ⊗ · · · ⊗ êip ⊗ êj1 ⊗ · · · ⊗ êjq−1 ⊗
{

−δijq ê
j + 1

3
δjiê

jq
}

= δji1E
j1 . . . jq
ii2 . . . ip

+ · · ·+ δjipE
j1 . . . jq
i1 . . . ip−1i

+

−
{

δij1E
jj2 . . . jq
i1 . . . ip

+ · · ·+ δijqE
j1 . . . jq−1j
i1 . . . ip

}

+

+ 1
3
(q − p)δijE

j1 . . . jq
i1 . . . ip

. (10.55)

The representationD(p+q) is reducible. In the following, we first study some special
tensors and show how the representation D(p+q) can be reduced. Then we concen-
trate on irreducible tensors and the related irreducible representations of SU(3).
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10.8 Traceless tensors.

Let us in the direct product space V (p+q) defined in formula ( 10.49), study tensors
T for which the components are given by:

T
i1 · · · ia . . . ip
j1 . . . jb . . . jq

=







A
i1 . . . ia−1ia+1 . . . ip
j1 . . . jb−1

jb+1
. . . jq

if ia = jb

0 if ia 6= jb

. (10.56)

Such tensors can be written in the form:

T = A
i1 . . . ia−1ia+1 . . . ip
j1 . . . jb−1

jb+1
. . . jq

δiajb
E
j1 . . . jq
i1 . . . ip

. (10.57)

For an arbitrary SU(3)-induced transformation D(p+q)(U), we obtain for a tensor of
the form ( 10.57), the following:

T ′ = D(p+q)(U)T

= Ui1k1
· · ·Uipkp

[

U−1
]

ℓ1j1
· · ·

[

U−1
]

ℓqjq
·

·Ak1 . . . ka−1ka+1 . . . kp
ℓ1 . . . ℓb−1

ℓb+1
. . . ℓq

δkaℓb
E
j1 . . . jq
i1 . . . ip

. (10.58)

When moreover, we use the relation:

Uiaka

[

U−1
]

ℓbjb
δkaℓb

= δiajb
,

then we find for the components of the transformed tensor T ′ the expression:

(T ′)
i1 · · · ip
j1 . . . jq

= (A′)
i1 . . . ia−1ia+1 . . . ip
j1 . . . jb−1

jb+1
. . . jq

δiajb
, (10.59)

where:

(A′)
i1 . . . ia−1ia+1 . . . ip
j1 . . . jb−1

jb+1
. . . jq

=

= Ui1k1
· · ·Uia−1ka−1

Uia+1ka+1
· · ·Uipkp ·

·
[

U−1
]

ℓ1j1
· · ·

[

U−1
]

ℓb−1
jb−1

[

U−1
]

ℓb+1
jb+1

· · ·
[

U−1
]

ℓqjq
·

·Ak1 . . . ka−1ka+1 . . . kp
ℓ1 . . . ℓb−1

ℓb+1
. . . ℓq

. (10.60)

The components ( 10.59) of the transformed tensor (10.58) have exactly the same
form as the components (10.56) of the original tensor (10.57). Consequently, those
tensors form a subspace of V (p+q) which is invariant under the transformations
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D(p+q)(U) for all elements U of SU(3). Furthermore, counting the number of U ’s and
[U−1]’s in formula (10.60), we find that at the subspace of tensors of the form (10.57)
the transformations D(p+q)(U) form the representation D((p−1)+(q−1)) of SU(3).
So, we must conclude that D(p+q) is reducible, since we found a subspace of V (p+q)

at which SU(3) is represented by a representation of a lower dimension.
In fact, we found a whole set of such subspaces, because ia and jb in formula

( 10.56) may be chosen freely amongst respectively the contra-variant and covariant
indices of the tensor T . When we remove all those subspaces from V (p+q), then we
are left with traceless tensors.
In order to define what is understood by traceless, we first study contractions: A

contraction of a pair of one contra-variant (for example ia) and one covariant index
(for example jb) of the components of a tensor, is defined by:

T
i1 . . . ia = α . . . ip
j1 . . . jb = α . . . jq

=
3∑

α=1

T
i1 . . . ia−1α ia+1 . . . ip
j1 . . . jb−1

α jb+1
. . . jq

. (10.61)

Such a contraction of one upper and one lower index of the components of a tensor,
is referred to as a trace of the tensor T . A tensor T is said to be traceless if for the
contraction of any pair of one upper and one lower index one finds vanishing result,
i.e.

T
i1 . . . ia−1α ia+1 . . . ip
j1 . . . jb−1

α jb+1
. . . jq

= 0 . (10.62)

A traceless tensor T remains moreover traceless under SU(3)-induced transforma-
tions. This can easily be demonstrated: Using expression ( 10.53) and the relation

Uαka

[

U−1
]

ℓbα
= δkaℓb

,

we find for the trace of the transformed tensor T ′ the following:

T ′i1 . . . ia−1α ia+1 . . . ip
j1 . . . jb−1

α jb+1
. . . jq

=

Ui1k1
· · ·Uia−1ka−1

Uia+1ka+1
· · ·Uipkp ·

·
[

U−1
]

ℓ1j1
· · ·

[

U−1
]

ℓb−1
jb−1

[

U−1
]

ℓb+1
jb+1

· · ·
[

U−1
]

ℓqjq
·

·Tk1 . . . ka−1α ka+1 . . . kp
ℓ1 . . . ℓb−1

α ℓb+1
. . . ℓq

.

(10.63)

So, when T is traceless, then T ′ is also traceless. This implies that the subspace
of V (p+q) which is spanned by traceless tensors, is invariant under SU(3)-induced
transformations.
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10.9 Symmetric tensors.

Using the Levi-Civita tensors which are defined in formula ( 8.4), let us consider in
this section tensors T of the direct product space V (p+q) ( 10.49) of the form:

T = B
i1 . . . ia−1ia+1 . . . ib−1

ib+1
. . . ic−1ic+1 . . . ip

j1 . . . jq
ǫiaibic

E
j1 . . . jq
i1 . . . ip

. (10.64)

Notice that the components of this tensor are antisymmetric under the interchange
of any pair of the indices ia, ib and ic.

In the expression for the transformation of this tensor under D(p+q)(U), we find
the following terms:

· · ·Uiaka · · ·Uibkb · · ·Uickc · · · ǫkakbkc · · ·

Due to a property of unitary unimodular 3 × 3 matrices, the product of those four
terms gives:

Uiaka
Uibkb

Uickc
ǫkakbkc

= ǫiaibic
.

So, we end up with the expression:

T ′ =

= = Ui1k1
· · ·Uia−1ka−1

Uia+1ka+1
· · ·Uib−1

kb−1
Uib+1

kb+1
· · ·

· · ·Uic−1kc−1
Uic+1kc+1

· · ·Uipkp
[

U−1
]

ℓ1j1
· · ·

[

U−1
]

ℓqjq
·

·B
k1 . . . ka−1ka+1 . . . kb−1

kb+1
. . . kc−1kc+1 . . . kp

l1 . . . lq
ǫiaibic

E
j1 . . . jq
i1 . . . ip

.

(10.65)

This is again a tensor of the form ( 10.64). Consequently, the subspace of V (p+q)

which is spanned by tensors of the form ( 10.64) is invariant under SU(3)-induced
transformations. Moreover, is the representation D(p+q) at this subspace reduced to
the representation D((p−3)+q) of SU(3).
There are as many of those subspaces in V (p+q) as one can take sets of three upper

indices. Similarly, one can find comparable subspaces for the lower indices.
When all such subspaces are removed from V (p+q), then the remaining tensors are

all symmetric under the interchange of any pair of upper indices and of any pair
of lower indices. Such tensors are called symmetric. A symmetric tensor remains
symmetric under SU(3)-induced transformations. This can easily be understood
from equation ( 10.53).
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10.10 Irreducible tensors D(p,q).

Tensors which are symmetric (as defined in section 10.9) and traceless (as defined
in section 10.8) form a subspace V (p,q) of V (p+q) which is invariant under SU(3)-
induced transformations. The group SU(3) is in V (p,q) represented by the irreducible
representation D(p,q).
The dimension of the irrep D(p,q) is given by:

f(p, q) = 1
2
(p+ 1)(q + 1)(p+ q + 2) . (10.66)

Formula ( 10.66) can be derived by considering the number of possible different
components of a tensor with p upper indices, q lower indices and which is symmetric
and traceless: The number of ways in which one can arrange ones, twos and threes
on p places such that one gets first all ones, then all twos and then all threes, is
given by:





p+ 2

2



 = 1
2
(p+ 1)(p+ 2) .

So, a tensor with p upper and q lower indices, totally symmetric in the upper indices
and totally symmetric in the lower indices, has

N1 =
1
4
(p+ 1)(p+ 2)(q + 1)(q + 2)

linearly independent components. Moreover, because of the symmetry, there exists
only one trace tensor. This tensor has (p− 1) symmetric upper indices and (q − 1)
symmetric lower indices, and therefore

N2 =
1
4
p(p+ 1)q(q + 1)

linearly independent components. The elements of the trace tensor must be zero,
since the original tensor is traceless. This gives N2 linear relations between the N1

components. So, the total number of linearly independent traceless and symmetric
tensors in V (p+q) equals:

N1 −N2 =
1
2
(p+ 1)(q + 1)(p+ q + 2) .

The trivial one-dimensional representation is denoted by D(0,0). The two three-
dimensional irreducible representations are given by {3} = D(1,0) and {3∗} = D(0,1).
The eigenvalues of the Casimir operators F 2 and G3 defined in ( 10.26), are at

the irrep D(p,q) respectively given by:

f 2 = 1
3
(p2 + pq + q2) + p+ q and g3 = 1

9
(p− q)(2p+ q + 3)(p+ 2q + 3) . (10.67)

Those results can be obtained by applying the Casimir operators F 2 and G3 to the
basis tensor for which all indices are equal to 1, using repeatedly formula ( 10.53).
One may compare the results ( 10.39) and ( 10.48) for the eigenvalues of G3 with the
above formula ( 10.67) in order to find how G3 distinguishes between different irreps
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for which the number p of upper indices and q of lower indices are interchanged;
cases for which F 2 gives the same eigenvalue.
For each value of p and q there exists an irrep of SU(3) and there are also not

more irreps for SU(3). The irrep D(p,q) can moreover be represented by a Young
diagram (see 1.3 for the definition), as follows:

· · ·
· · ·
· · ·

· · ·
· · ·

-�
p times

-�
q times

Figure 10.5: The Young diagram which represents the irrep D(p,q) of SU(3).

There is one exception, which is the Young diagram for the trivial representation
D(0,0). This representation is represented by a Young diagram of three rows of length
one.
In table ( 10.3) we have collected some information on the irreps for p+q = 0, 1, 2

and 3.

irrep p q Young diagram f(p, q) f 2 g3

{1} 0 0 1 0 0

{3} 1 0 3 4
3

+20
9

{3∗} 0 1 3 4
3

−20
9

{6} 2 0 6 10
3

+70
9

{6∗} 0 2 6 10
3

−70
9

{8} 1 1 8 3 0

{10} 3 0 10 6 +18

{10∗} 0 3 10 6 −18

{15} 2 1 15 16
3

+56
9

{15∗} 1 2 15 16
3

−56
9

Table 10.3: The Young diagrams, dimensions and eigenvalues for the Casimir oper-
ators of some irreps of SU(3).

Notice that there may be more than just two non-equivalent irreps of SU(3) which
have the same dimension. For example f(0, 4) = f(1, 2) = f(2, 1) = f(4, 0) = 15 and
hence four non-equivalent irreps of SU(3) with dimension 15 exist. With dimension
9240 one finds ten non-equivalent irreps of SU(3), according to: f(2, 76) = f(3, 65)
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= f(6, 47) = f(13, 29) = f(19, 21) = f(21, 19) = f(29, 13) = f(47, 6) = f(65, 3) =
f(76, 2) = 9240.

In the following we study the sextet and octet irreps of SU(3).

10.11 The matrix elements of the step operators.

We postponed to give the relations for the matrix elements A, B, C and D for the
step operators which are defined in formula ( 10.16), untill all quantum numbers of
SU(3) irreps had been discussed. Since, with the definitions of p and q we completed
the set of quantum numbers which fully characterize the states of the various SU(3)
irreps, we are now prepared to discuss those matrix elements for the step operators.
The matrix elements A+(i, i3, m) and B+(i, i3, m) are at the irrep D(p,q) given

by:

A+(p, q; i, i3, y = 2m/
√
3) =

√
√
√
√
(i+ i3 + 1)

[
1
3
(p− q) + i+

y
2
+ 1

] [
1
3
(p+ 2q) + i+

y
2
+ 2

] [
1
3
(2p+ q)− i− y

2

]

2(i+ 1)(2i+ 1)

and

B+(p, q; i, i3, y = 2m/
√
3) =

√
√
√
√
(i− i3)

[
1
3
(q − p) + i− y

2

] [
1
3
(p+ 2q)− i+ y

2
+ 1

] [
1
3
(2p+ q) + i− y

2
+ 1

]

2i(2i+ 1)

(10.68)

The expressions for A−(p, q; i, i3, m) and B−(p, q; i, i3, m) can be obtained by using
the relation:

K− = (K+)† .

And the matrix elements C±(p, q; i, i3, m) and D±(p, q; i, i3, m) follow when one
explores the relations:

L+ =
[

I− , K+
]

and L− = (L+)† .
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10.12 The six-dimensional irrep D(2,0).

In the subspace V (2,0) of the direct product space V (2+0) = {3}⊗ {3} we define as a
basis for the symmetric tensors (there are no traces in this case) the following linear
combinations of the basisvectors ( 10.50) for {3} ⊗ {3}:

û1 = E11 , û2 = 1√
2
(E12 + E21) , û3 = E22 ,

û4 = 1√
2
(E13 + E31) , û5 = 1√

2
(E23 + E32) and û6 = E33 .

(10.69)

Notice that the basis vectors ( 10.50) are orthonormal. Consequently, for the defini-
tion of the above basis vectors ( 10.69) for the subspace V (2,0), we have to introduce
some normalization constants 1√

2
. Forgetting about those normalization constants,

one might compactify the definitions of the above formula ( 10.69) into:

φkℓ = Ekℓ + Eℓk for k ≤ ℓ = 1, 2, 3. (10.70)

This way one obtains an elegant way to study the transformations of the irreducible
representation D(2,0) at the six-dimensional subspace V (2,0). Exploring expression
( 10.54), one obtains for the SU(3)-induced transformations of the basis vectors
( 10.70) the relations:

d(2,0)(Aij)φkℓ = δjkφiℓ + δjℓφik − 2
3
δijφkℓ . (10.71)

For the step operators one may forget about the last term containing the Kronecker
delta δij in formula ( 10.71), since according to the relations ( 10.24) for those
operators one has standard matrices for which i 6= j. The resulting transformations
for those operators at the basis vectors ( 10.69) are collected in table ( 10.4).

û I+ I− K+ K− L+ L−

û1 0
√
2û2 0

√
2û4 0 0

û2
√
2û1

√
2û3 0 û5 0 û4

û3
√
2û2 0 0 0 0

√
2û5

û4 0 û5
√
2û1

√
2û6 û2 0

û5 û4 0 û2 0
√
2û3

√
2û6

û6 0 0
√
2û4 0

√
2û5 0

Table 10.4: The action of the step operators on the basis defined in formula ( 10.69)
for the sextet representation of SU(3).

Notice from table ( 10.4) that all matrix elements for I± and K± are positive, as
required by the phase conventions mentioned in section ( 10.2) in the discussion
following formula ( 10.16).
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Next, let us determine the Casimir operators in this case. As may be verified
by explicit calculations using repeatedly formula ( 10.71), we find for the Casimir
operators F 2 and G3, defined in formula ( 10.26), at the tensors defined in ( 10.70),
the following eigenvalues:

F 2φkℓ =
10
3
φkℓ and G3φkℓ =

70
9
φkℓ . (10.72)

Those values are in perfect agreement with formula ( 10.67) for p = 2 and q = 0, as
also shown in table ( 10.3).
In order to obtain the full structure of the irrepD(2,0), let us furthermore determine

the eigenvalues i3 and m for respectively the operators I3 = 1
2
(A11 − A22) and

M =
√
3
2
(A11 + A22), and also the eigenvalues i(i + 1) for I2 = (I3)

2 + I3 + I−I+.
The results, with the use of the formulas ( 10.69), ( 10.70) and ( 10.71) and the
information of table ( 10.4), are collected in table ( 10.5).

û i3 y = 2m√
3

I−I+ i(i+1) i

û1 +1 +2
3

0 2 1

û2 0 +2
3

2 2 1

û3 −1 +2
3

2 2 1

û4 +1
2

−1
3

0 3
4

1
2

û5 −1
2

−1
3

1 3
4

1
2

û6 0 −4
3

0 0 0

Table 10.5: The isospin parameters i3 and i for the sextet representation of SU(3)
as well as the eigenvalues m for M .

As we notice from table ( 10.5), the SU(3) sextet contains one isotriplet (i.e. the
subspace spanned by û1, û2 and û3), one isodoublet (i.e. the subspace spanned by
û4 and û5), one isosinglet (i.e. the subspace spanned by û6). Using the expressions
( 10.69) for the various basis vectors of the iso-subspaces, one might also notice
that the isotriplet contains the indices 1 and 2, the isodoublet one index 3 and the
isosinglet two indices 3. From the table of the step operators ( 10.4) one might
notice moreover that I+ substitutes an index 2 for an index 1, whereas I− does the
reverse.
In the original three quark model, the index 1 is associated with an ”up” quark,

the index 2 with a ”down” quark and the index 3 with a ”strange” quark. The
isospin step operator I+ substitutes ”up” for ”down” and I− does the reverse. In
that picture, the sextet represents the symmetric configuration (not observed in
Nature) of two quark states (uu, 1√

2
(ud + du), dd, 1√

2
(us + su), 1√

2
(ds + sd) and

ss). The first three states form a triplet with isospin 1, the next two a doublet with
isospin 1

2
and the last an isosinglet.

The quantum number y = 2m√
3
is called the hypercharge of a (multi-)quark state.

As one might read from table ( 10.3) or alternatively from figure ( 10.1), the ”up”
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and ”down” quarks have hypercharge +1
3
and the ”strange” quark hypercharge −2

3
.

Hypercharge is an additive quantum number, and so the hypercharges of the two
quark states of table ( 10.5) are just the sum of the hypercharges of their constituents.
With the use of the information of the two tables ( 10.4) and ( 10.5), the weight

diagram for the sextet can be composed. The result is depicted in figure ( 10.6).

- i3
+1

2 +1−1
2−1

6

y

+2
3

−1
3

−4
3

• • •

• •

•

û1û2û3

û4û5

û6

Figure 10.6: The weight diagram for the sextet representation of SU(3).
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10.13 The eight-dimensional irrep D(1,1).

In the subspace V (1,1) of the direct product space V (1+1) = {3} ⊗ {3∗} we define
as a basis for the traceless tensors (no symmetry in this case) the following linear
combinations of the basisvectors ( 10.50) for {3} ⊗ {3∗}:

v̂1 = −E3
1 , v̂2 = −E3

2 ,

v̂3 = −E2
1 , v̂4 = 1√

2
(E1

1 − E2
2) , v̂5 = E1

2 ,

v̂6 = −E2
3 , v̂7 = E1

3 and v̂8 = 1√
6
(E1

1 + E2
2 − 2E3

3) .

(10.73)
Besides the normalization constants, we also introduce some minus signs in the
definition ( 10.73) of the basis vectors for the octet representation of SU(3). Those
are necessary to get the relative phases right. Exploring expression ( 10.54), one
obtains for the SU(3)-induced transformations the relations:

d(1,1)(Aij)E
ℓ
k = δjkE

ℓ
i − δiℓE

j
k . (10.74)

The transformations under the step operators at the basis vectors ( 10.73) are col-
lected in table ( 10.6).

v̂ I+ I− K+ K− L+ L−

v̂1 0 v̂2 0 v̂4 +
√
3v̂8√

2
0 −v̂3

v̂2 v̂1 0 0 v̂5 0 −v̂4 +
√
3v̂8√

2

v̂3 0
√
2v̂4 0 v̂6 −v̂1 0

v̂4
√
2v̂3

√
2v̂5

v̂1√
2

v̂7√
2

v̂5√
2

v̂6√
2

v̂5
√
2v̂4 0 v̂2 0 0 v̂7

v̂6 0 v̂7 v̂3 0 v̂4 −
√
3v̂8√

2
0

v̂7 v̂6 0 v̂4 +
√
3v̂8√

2
0 v̂5 0

v̂8 0 0 3
2
v̂1

3
2
v̂7

3
2
v̂2 −3

2
v̂6

Table 10.6: The action of the step operators on the basis defined in formula ( 10.73)
for the octet representation of SU(3).

Notice from table ( 10.6) that, because of our choice of the basis ( 10.73), all ma-
trix elements for I± and K± are positive, as required by the phase conventions
mentioned in section ( 10.2) in the discussion following formula ( 10.16).
In order to obtain the full structure of the irrep D(1,1), let us also determine

the eigenvalues i3 and m for respectively the operators I3 = 1
2
(A11 − A22) and
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M =
√
3
2
(A11 +A22). The results, with the use of the formulas ( 10.73) and ( 10.74)

and the information of table ( 10.6), are joined in figure ( 10.7).

- i3
+1

2 +1−1
2−1

6

y

+1

−1

• •

• • •

• •

v̂1v̂2

v̂3v̂4v̂5

v̂6v̂7

v̂8

Figure 10.7: The weight diagram for the octet representation of SU(3).

As we notice from figure ( 10.7), there are two states with the quantum numbers
i3 = y = 0. They can only be distinguished by the isospin Casimir operator I2. Its
respective eigenvalues for those two states are given by:

I2 1√
2
(E1

1 −E2
2) = 2 1√

2
(E1

1 − E2
2) and (10.75)

I2 1√
6
(E1

1 + E2
2 − 2E3

3) = 0 . (10.76)

Consequently, the SU(3) octet contains one isotriplet (i.e. the subspace spanned by
v̂3, v̂4 and v̂5), two isodoublets (i.e. the subspaces spanned by v̂1 and v̂2 and by v̂6
and v̂7), and moreover one isosinglet (i.e. the subspace spanned by v̂8).
The covariant index of a tensor is in the original quark model associated with

antiquarks. Several quark-antiquark octets have been recognized in Nature: For
example the octet of pseudoscalar mesons: A triplet of pions with isospin 1, two
different doublets of Kaons, one with a strange antiquark and one with a strange
quark, both with isospin 1

2
and one isosinglet η-particle.
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Chapter 11

The classification of semi-simple
Lie groups.

In this chapter we present the full classification of all possible semi-simple Lie groups.
In the first section we will define the concept semi-simple.

11.1 Invariant subgoups and subalgebras.

In formula ( 1.22) we find the definition for an invariant subgroup, i.e ”A subgroup
S is called invariant if for all elements g in the group G holds:

gSg−1 = S ( 1.22)”.

Let the group G be a Lie group (as defined in section ( 6.9) at page 70) and generated
by the Lie algebra A. When S is a subgroup of G, then it is generated by a
subalgebra B of A. If S is moreover an invariant subgroup of G, then B is an
invariant subalgebra of A, i.e. for all elements a of A holds:

[a , B] = B . (11.1)

In order to gain some insight in the above afirmation, we will use the following
identity for matrices a and b:

eaebe−a = eb+ [a , b] + 1
2!
[a , [a , b]] + 1

3!
[a , [a , [a , b]]] + · · · . (11.2)

We will proof this identity at the end of this section.

Let b in formula ( 11.2) represent a generator of the subgroup S (i.e. eb is an
element of S) and hence an element of the subalgebra B, and a a generator of the
group G (i.e. ea is an element of G) and therefore an element of the algebra A.

1. When B is an invariant subalgebra of A, then according to the definition ( 11.1)
for an invariant subalgebra, we may conclude that the commutators, given by:

[a , b] , [a , [a , b]] , [a , [a , [a , b]]] , . . .
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are elements of the subalgebra B and therefore that the following sum

b+ [a , b] + 1
2!
[a , [a , b]] + 1

3!
[a , [a , [a , b]]] + · · · (11.3)

is an element of B. Consequently, since B represents the generator space of the
subgroup S, the exponentiation of ( 11.3) gives an element of S. Now, because this
is true for any element g = ea of the group, we may conclude that S is an invariant
subgroup of G.

2. When S is an invariant subgroup of G, then the righthand side of the equation
( 11.2) is an element of S, according to the definition ( 1.22) for an invariant sub-
group. Consequently, the expression ( 11.3) has to be an element of the generator
space B for S. Here we might introduce a parameter λ and define a matrix field,
given by:

eλaebe−λa = eb+ λ [a , b] + λ2
2!

[a , [a , b]] + · · · . (11.4)

The term eλa represents a field of matrices in the group G and eb an element of the
invariant subgroup S. So, the sum, given by:

b+ λ [a , b] + λ2
2!

[a , [a , b]] + · · ·

must be an element of the subalgebra B for any value of λ. Consequently, we must
conclude that

[a , b] , [a , [a , b]] , [a , [a , [a , b]]] , . . .

are elements of B and hence that B forms an invariant subalgebra of A.

A group is called simple when it has no invariant subgroup and semi-simple when
it has no Abelian invariant subgroup. The Lie algebra for a semi-simple Lie group
has no Abelian invariant subalgebra and is also said to be semi-simple. It can
moreover be shown that each semi-simple Lie algebra is the direct sum of simple
Lie algebras. Consequently, we may concentrate on the classification of simple Lie
algebras.

Proof of the identity ( 11.2):

Let us for the arbitrary parameter λ, define the following:

eλc = eaeλbe−a . (11.5)

For λ = 0 one obtains the identity I of the group G. Now, since G is a Lie group,
we may expand the expression ( 11.5) around the identity, and therefore identify:

c =
d

dλ
eλc

∣
∣
∣
∣
∣
λ = 0

=
d

dλ
(eaeλbe−a)

∣
∣
∣
∣
∣
λ = 0

= eabe−a . (11.6)
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When we expand the exponents in the righthand side of formula ( 11.6), we obtain
the expression ( 11.3) for c which proofs identity ( 11.2). For that we define

eµa b e−µa =
∞∑

k=0

µk

k!
ck . (11.7)

One has then for the lefthand side of equation (11.7)

[

dneµa b e−µa
dµn

]

µ = 0
= (11.8)

=






eµa

n times
︷ ︸︸ ︷

[a, [a, [· · · [a, b] · · ·]]] e−µa






µ = 0

=

n times
︷ ︸︸ ︷

[a, [a, [· · · [a, b] · · ·]]] ,

whereas, for the righthand side we obtain

cn =






dn
∑

k
µk

k! ck

dµn






µ = 0

=

[ ∞∑

k=0

µk

k!
ck+n

]

µ = 0
. (11.9)

From the relations (11.8) and (11.9) we find for the coefficients cn of the expansion
(11.7)

cn =

n times
︷ ︸︸ ︷

[a, [a, [· · · [a, b] · · ·]]] .

When we choose µ = 1 in equation (11.7) we obtain for c of relations (11.5) and
(11.6), the result

c = b+ [a , b] + 1
2!
[a , [a , b]] + 1

3!
[a , [a , [a , b]]] + · · · .

When, next, we choose λ = 1 in equation (11.5), we obtain the expression (11.2).
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11.2 The general structure of the Lie algebra.

Let us consider a p-parameter simple Lie group, generated by a p-dimensional sim-
ple Lie-algebra. We select in the Lie algebra a basis which consists of a set of p
generators, indicated by:

{

X1, . . . , Xp
}

. (11.10)

Any other generator of the group can be written as a linear combination of the above
set of basis generators. The generators {Xi} span a Lie algebra and hence satisfy
certain commutation relations, the so-called Lie product, given by:

[

Xi , Xj

]

= CijkXk . (11.11)

The constants {Cijk} are called the structure constants of the group. Clearly, they

depend on the choice and normalization of the basis {Xi}.
Out of the set of basis generators {Xi} one selects a set of generators {H1, . . . , Hq}

which commute amongst each other, i.e.

[

Hi , Hj

]

= 0 . (11.12)

When this set contains the largest possible number of commuting generators, it is
called the Cartan subalgebra of the Lie algebra. For example for SO(3) and for
SU(2) we only have one such generator, respectively L3 and J3; for SU(3) we have a
set of two of such generators, I3 andM . We assume that the set {H1, . . . , Hq} is the
Cartan algebra of our Lie group. We assume furthermore that from the remaining
generators it is not possible to construct a linear combination which commutes with
all elements of the Cartan subalgebra.
The dimension of the generator space is p and the dimension of the Cartan sub-

algebra equals q. Consequently, the dimension of the subalgebra which is spanned
by the remaining generators equals (p− q). We will refer to this vector space as the
subalgebra of the step operators. It can be shown that:

p− q ≥ 2q. (11.13)

It is allways possible to arrange such a basis {Eα} in the subalgebra of the step
operators, that for each basis element Eα holds:

[

Hi , Eα
]

= αiEα for real constants αi (i = 1, . . . , q). (11.14)

The constants {αi} depend on the choice of bases {Hi} in the Cartan subalgebra
and {Eα} in the subalgebra of step operators.
For a matrix representation D of the Lie group in a vector space V , it is possible to

choose diagonal matrices for the generators of the Cartan subalgebra. We indicate
the basis vectors of V by their eigenvalues for {d(Hi)}, i.e.

d(Hi) |h1, . . . , hq > = hi |h1, . . . , hq > , i = 1, . . . , q. (11.15)

Due to the commutation relations ( 11.14), we find for the basis vectors of the vector
space V moreover the following:
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d(Eα) |h1, . . . , hq > = f(α; h1, . . . , hq) |h1 + α1, . . . , hq + αq > , (11.16)

which is the reason that the operators {Eα} are called step operators.
The weight diagrams for the matrix representations of the Lie group are q-dimen-

sional in this case, where q is also referred to as the rank of the Lie group. SO(3)
and SU(2) have rank 1, SU(3) rank 2.

11.3 The step operators.

For each step operator Eα we construct a q-dimensional real root vector α. The
real components αi of the root vector α are, using expression ( 11.14), defined as
follows:

[α]i = αi when
[

Hi , Eα
]

= αiEα i = 1, . . . , q. (11.17)

Clearly, the components of the root vectors depend on the choice of the bases {Hi}
in the Cartan subalgebra and {Eα} in the subalgebra of step operators.
Let us in the following study the commutator or Lie product of two step operators

Eα and Eβ , i.e.

[

Eα , Eβ

]

. (11.18)

For this Lie product we have, using the Jacobi identity and equation ( 11.14), the
following property:

[

Hi ,
[

Eα , Eβ

]]

=
[[

Hi , Eα
]

, Eβ

]

+
[

Eα ,
[

Hi , Eβ

]]

= (αi + βi)
[

Eα , Eβ

]

for i = 1, . . . , q. (11.19)

From this property we may conclude that in the case α+β 6= 0, the Lie product
( 11.18) is a step operator itself, i.e.

[

Eα , Eβ

]

= N(α, β) Eα + β . (11.20)

The constants N(α, β) depend on the choice and normalization of the basis in the
subalgebra of the step operators.
A special case happens when β= −α, i.e.

[

Hi ,
[

Eα , E−α
]]

= 0 for i = 1, . . . , q. (11.21)

In that case the Lie product of the two step operators Eα and E−α commutes
with all basis generators of the Cartan subalgebra. Which, because the Cartan
subalgebra is the largest possible subalgebra of commutating generators of the Lie
algebra, leads to the conclusion that the Lie product of Eα and E−α must be a
linear combination of {Hi}, i.e.
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[

Eα , E−α
]

= αiHi . (11.22)

The constants {αi} depend on the choice of basis {Hi} in the Cartan subalgebra
and {Eα} in the subalgebra of step operators. However, it is allways possible to
arrange such bases for both subalgebras that:

αi = αi . (11.23)

11.4 The root vectors.

The dimension of the root vector space in which the root vectors are defined, equals
q (see formula 11.17). So, because of the relation ( 11.13), the root vectors are not
linearly independent.
The root vectors may be divided into positive and negative root vectors, as follows:

A root vector α is said to be positive (negative) when the first nonzero component
of α in the row α1, α2, . . ., αq, is positive (negative).

There are 1
2
(p − q) positive root vectors, which because of relation ( 11.13), are

not linearly independent. Out of this set we select those positive root vectors which
cannot be written as the sum of two other positive root vectors. Those positive
root vectors are said to be simple. There are exactly q simple positive root vectors
and linearly independent for any simple Lie group. They form therefore a basis for
the vector space in which the root vectors are defined. Below we list some of their
properties:

1. When α and β are two simple positive roots, then β−α cannot be a root of any
kind. For suppose:

β −α = γ. (11.24)

-When γ represents a positive root vector, then we find:

β = α+ γ.

This implies that β can be written as the sum of two positive root vectors, which
contradicts the definition of β as a simple positive root.

-When γ in formula ( 11.24) represents a negative root vector, then, since for each
step operator Eα there exists a step operator E−α, we have that −γ is a positive
root vector and we find:

α = β + (−γ).

This implies that α can be written as the sum of two positive root vectors, which
contradicts the definition of α as a simple positive root.
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2. However, there may be root vectors of the form β+α, and indeed, there will
generall be strings of roots of the form:

β, β +α, β + 2α, . . . ,β + nα, (11.25)

which terminate at some integer n (i.e. β+(n+ 1)α is not a root vector of the Lie
group).

3. The value of the non-negative integer n in formula ( 11.25) is related to the
simple positive root vectors α and β, according to

n = −2
α · β
α ·α . (11.26)

Proof:

We first define the scalar product for the root vectors α and β by the expression:

α · β = αiβi . (11.27)

According to formula ( 11.25) there exists a step operator Eβ +mα for a non-

negative integer m ≤ n. Let us for this step operator determine the following:

(α · β +mα ·α)Eβ +mα =
∑

i
αi(βi +mαi)Eβ +mα . (11.28)

Using the formulas ( 11.14) and ( 11.17), we obtain for this expression:

(α · β +mα ·α)Eβ +mα =




∑

i
αiHi , Eβ +mα



 .

Using furthermore the formulas ( 11.22) and ( 11.23), we may write this expression
as:

(α · β +mα ·α)Eβ +mα =
[[

Eα , E−α
]

, Eβ +mα

]

.

Using finally, once more the Jacobi identity for commutators and moreover the
definition of N(α, β) as given in formula ( 11.20), we end up with:

−(α · β +mα ·α)Eβ +mα =

=
[

Eβ +mα ,
[

Eα , E−α
]]

=
[[

Eβ +mα , Eα
]

, E−α
]

+
[

Eα ,
[

Eβ +mα , E−α
]]

= N(β +mα, α)
[

Eβ +mα + α , E−α
]

+N(β +mα,−α)
[

Eα , Eβ +mα− α

]

= {N(β +mα, α)N(β + (m+ 1)α,−α)

−N(β +mα,−α)N(β + (m− 1)α, α)}Eβ +mα .
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From which relation we conclude that the following identity holds:

−(α · β +mα ·α) =

= N(β +mα, α)N(β + (m+ 1)α,−α)−N(β +mα,−α)N(β + (m− 1)α, α) .

When moreover we define:

Am = N(β +mα, α)N(β + (m+ 1)α,−α) , (11.29)

then we end up with the relation:

α · β +mα ·α = Am−1 −Am . (11.30)

This gives a recurrence relation for Am. Now, since we know that β−α is not a root
vector (see formula 11.24 and the discussion following that formula), we have from
formula ( 11.20) that N(β,−α) = 0, which leads, by the use of formula ( 11.29), to
A−1 = 0. So, we deduce:

A0 = A−1 −α · β = −α · β ,

A1 = A0 −α · β −α ·α = −2α · β −α ·α ,

A2 = A1 −α · β − 2α ·α = −3α · β − 3α ·α , . . .

One ends up with the following relation for Am:

Am = −(m+ 1)α · β − 1
2
m(m+ 1)α ·α . (11.31)

The string of root vectors ( 11.25) is supposed to end at the root vector β+(n+1)α,
so Eβ+(n+1)α does not exist. This implies that N(β + nα, α) = 0 and hence,

according to the definition ( 11.29), An = 0. Consequently, we have

0 = An = −(n+ 1)α · β − 1
2
n(n+ 1)α ·α ,

which is solved by equation ( 11.26).

4. Similarly, there exists a corresponding string of root vectors of the form:

α, α+ β, α+ 2β, . . . ,α+ n′β, (11.32)

which terminates at some integer n′ (i.e. α+(n′+1)β is not a root vector of the Lie
group). The value of the non-negative integer n′ in formula ( 11.32) is, in a similar
way as given in formula ( 11.26), related to the simple positive root vectors α and
β, i.e.

n′ = −2
β ·α
β · β . (11.33)

5. This leads, using the formulas ( 11.26) and ( 11.33) and Schwarz’s inequality for
scalar products, to the relation:
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nn′ = 4
(β ·α)2

(α ·α)(β · β) ≤ 4 . (11.34)

So, we find for the the product nn′ the possibilities: nn′ = 0, 1, 2, 3 or 4. However,
for nn′ = 4 one has for the relation ( 11.34) the solutions β= ±α, which solutions
are both excluded, since:







β = +α implies: β not simple

β = −α implies: β not positive ,

which both contradict the definition of β as a simple positive root vector. Conse-
quently, one has for the product nn′ the following possibilities:

nn′ = 0 , 1 , 2 and 3 . (11.35)

6. We define moreover the relative weight of two root vectors α and β, using
equations ( 11.26) and ( 11.33), as follows:

ω(α, β) =
β · β
α ·α =

n

n′ . (11.36)

One might also define an absolute weight factor for each root vector, such that the
root vector γ which has the lowest relative weight with respect to all other root
vectors takes absolute weight factor 1, and the absolute weight factors of all other
root vectors equal to their relative weights with respect to γ.
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11.5 Dynkin diagrams.

The simple positive root vectors of a simple Lie group and their related products nn′

defined in formula ( 11.34), can be represented diagramatically in a so-called Dynkin

diagram. Each simple positive root vector of the group is indicated by a point in
a Dynkin diagram. Those points are connected by lines, as many as indicated by
the product nn′ for the two simple positive root vectors represented by the points
they connect. So, points which represent simple positive root vectors for which the
product nn′ of formula ( 11.34) vanishes are not connected by a line. Points which
represent simple positive root vectors for which the product nn′ of formula ( 11.34)
equals to 1 are connected by one line. And so on.
Such a diagram has a series of properties related to the structure of a simple Lie

group:

1. Only connected diagrams occur. This means that there do not exist simple Lie
groups for which the corresponding Dynkin diagram contains parts which are by no
line connected to the other parts of the diagram.

2. There are no loops.

3. There can at most three lines radiate from one point.

4. There is at most one double-line-connection or one bifurcation in a Dynkin
diagram.

The various possible Dynkin diagrams (and hence the various possible simple Lie
groups) are grouped into different types. There are A, B, C and D types of Dynkin
diagrams and furthermore five exceptional cases: E6, E7, E8, F4 and G2. The A-type
Dynkin diagrams have only one-line-junctions, the B- and C-type Dynkin diagrams
contain one double-line-junction and the D-type has one bifurcation. Below we show
the resulting Dynkin diagrams for the various types. The numbers written above
each point in the diagram indicate the absolute weight factor of the simple positive
root vector represented by that point.

Aq (q = 1, 2, 3, . . .) • • • •· · ·
α1 α2 αq−1 αq

1 1 1 1

Bq (q = 2, 3, 4, . . .) • • • •· · ·
α1 α2 αq−1 αq

2 2 2 1

Cq (q = 3, 4, 5, . . .) • • • •· · ·
α1 α2 αq−1 αq

1 1 1 2
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Dq (q = 4, 5, 6, . . .) �
�
��

@
@
@@

• • •

•

•

· · ·
α1 α2 αq−2

αq−1

αq

1 1 1

1

1

E6 • • • • •

•

α1 α2 α3 α4 α5

α6

1 1 1 1 1

1

E7 • • • • • •

•

α1 α2 α3 α4 α5 α6

α7

1 1 1 1 1 1

1

E8 • • • • • • •

•

α1 α2 α3 α4 α5 α6 α7

α8

1 1 1 1 1 1 1

1

F4 • • • •
α1 α2 α3 α4

2 2 1 1

G2 • •
α1 α2

3 1

The diagrams for A1, B1 and C1 are identical, from which it follows that the corre-
sponding Lie algebras are isomorphic. The diagram for B2 differs from that for C2

only in the labelling of the simple positive root vectors, so the Lie algebras are also
isomorphic. The same is also true for A3 and D3. So, all Dynkin diagrams exhibited
above correspond to non-isomorphic simple Lie algebras.
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11.6 The Dynkin diagram for SU(3).

In this section we study the Dynkin diagram A2, given by:

• •
α β

1 1
(11.37)

The diagram has two points and hence there are two simple positive root vectors,
which are indicated by α and β. Moreover, because the number of simple positive
root vectors equals the dimension of the Cartan subalgebra, the rank of the group
equals 2 (see section 11.2 for the definition of the rank of a Lie group). The two
points are connected by one line, so the product nn′ defined in ( 11.34) equals 1,
and therefore n = n′ = 1. This leads, by the use of formula ( 11.26), to:

α · β
α ·α = −1

2
and |α| = |β| = 1 . (11.38)

The latter relation can also be concluded from the absolute weight factors which
are indicated in the Dynkin diagram of formula ( 11.37). As a consequence of the
equations ( 11.38), we find that the angle between the simple positive root vectors
α and β equals 120◦. In the figure below we show the two root vectors for this case
in the corresponding two-dimensional root diagram.

-
2nd

+1−1

6

1st

+
√
3
2

−
√
3
2

-
α

A
A

A
A

A
A

A
AK

β

Figure 11.1: The simple positive root vectors α and β defined in formula ( 11.37)
in the corresponding two-dimensional root diagram.

There is however a problem with the choice of the first and the second axis in the
root diagram. When we take the usual x-axis as the first and the y-axis as the
second axis, then the first component of β becomes negative, −1

2
, which contradicts

the definition of β as a simple positive root. This problem can be solved by selecting
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the y-axis as the first axis and the x-axis as the second, as indicated in the root
diagram of figure ( 11.1). In that case we find for α and β the following vectors:

α = (0, 1) and β = (+
√
3
2
,−1

2
) . (11.39)

The string ( 11.26) has here length n = 1, i.e.

β , β +α .

So, α+β is the third and also the only non-simple positive root vector. The corre-
sponding negative root vectors are:

−α , −β and −α− β .

In figure ( 11.2) we show all root vectors in the root diagram for the group corre-
sponding to the Dynkin diagram of formula ( 11.37).

- 2
+1

2
+1−1

2
−1

6

1

+
√
3
2

−
√
3
2

-
α

�
−α

�
�
�
�
�
�
�
��
α+ β

�
�

�
�

�
�

�
��−α− β

A
A

A
A

A
A

A
AK

β

A
A
A
A
A
A
A
AU −β

Figure 11.2: All root vectors which follow from the Dynkin diagram given in formula
( 11.37).

When we compare the above root diagram for the step operators of the Lie group
given by formula ( 11.37) with figure ( 10.2) at page 134 for the step operators
of SU(3), we come to the conclusion that both root diagrams are identical and
therefore both Lie algebras isomorphic, as we will see in the following.
As mentioned before, the Cartan subalgebra has two basis elements, say H1 and

H2. Following formula ( 11.17) and using the results of formula ( 11.39), we obtain
the commutation relations for H1 and H2 with the step operators Eα and Eβ , i.e.

[H1 , Eα] = α1 Eα = 0 ,
[

H1 , Eβ

]

= β1 Eβ = +
√
3
2
Eβ ,

[H2 , Eα] = α2 Eα = Eα and
[

H2 , Eβ

]

= β2 Eβ = −1
2
Eβ .

(11.40)
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When we compare those relations with the commutation relations for SU(3) given
in formula ( 10.7), then we find the following identifications:

H1 =M , H2 = I3 , Eα = I+ and Eβ = L+ .

When one also determines the other commutation relations, for example:

[

H1 , Eα + β

]

= (α1 + β1) Eα + β = +
√
3
2
Eα + β and

[

H2 , Eα + β

]

= (α2 + β2) Eα + β = +1
2
Eα + β ,

then one finds moreover:

Eα + β = K+ , E−α = I− , E−β = L− and E−α − β = K− .

The Lie algebra is now completely known and irreps can be constructed. Notice
that all this information is contained in the Dynkin diagram of formula ( 11.37).
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Chapter 12

The orthogonal group in four
dimensions.

Rotations in four dimensions may not seem relevant for physics, but incidentely
SO(4) is the symmetry group of (distance)−1 potentials, like the Newton gravita-
tional potential and the Coulomb potential for the Hydrogen atom. We will study
this group in some detail, because it is also closely related to the symmetries of
special relativity.

12.1 The generators of SO(N).

The logarithm of any real, unimodular, orthogonal N × N matrix is, according to
the results of chapter 5 (see formulas 5.22 and 5.24), a real, traceless and anti-
symmetric N × N matrix. Moreover, the diagonal elements of an anti-symmetric
matrix are zero. Consequently, an anti-symmetric matrix is automatically traceless.
An elementary set of real, antisymmetric N × N matrices is formed by the set of
matrices Mab (a, b = 1, 2, . . .N), whose matrix elements are defined by:

(

Mab

)

kℓ
= −δakδbℓ + δaℓδbk , (12.1)

i.e. matrix element ab of Mab (a 6= b) equals −1, matrix element ba of Mab (a 6= b)
equals +1 and all other of its matrix elements vanish.
The matrices Mab are not all independent, because of the following properties:

Mba = −Mab and M11 = M22 = · · ·MNN = 0 . (12.2)

As a consequence, one ends up with a set of 1
2
(N2 − N) independent matrices

Mab. This set forms a basis for the space of generators of the group SO(N). Any
real, unimodular, orthogonal N ×N matrix O can be written as the exponent of a
linear combination of the matrices Mab, as follows:

O(α) = exp







N∑

i, j = 1

1
2
αijMij







. (12.3)

As a consequence of property ( 12.2), one may choose for the set of real constants
αij the properties:
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αji = −αij and α11 = α22 = · · ·αNN = 0 . (12.4)

This implies that all real, unimodular, orthogonal N × N matrices can be para-
metrized by a set of 1

2
(N2−N) independent parameters. Consequently, SO(N) is a

1
2
N(N − 1) parameter group. SO(2) is thus a one parameter group, SO(3) a three

parameter group and SO(4) a six parameter group.
Alternatively, one might define the set of purely imaginary, traceless, Hermitean

N ×N matrices Mab, defined by:

Mab = iMab . (12.5)

Then, substituting definition ( 12.5) into expression ( 12.3) we find that any real,
unimodular, orthogonal N ×N matrix O can be written as the exponent of a linear
combination of the matrices Mab, as follows:

O(α) = exp







N∑

i, j = 1
− i

2
αijMij







. (12.6)

For the generators Mab of SO(N) one has the following commutation relations:

[Mab , Mcd] = i
{

δacMbd + δbdMac − δadMbc − δbcMad

}

. (12.7)

In order to proof the above relations, we determine one of the matrix elements of
the commutator in ( 12.7), using the definitions ( 12.1) and ( 12.5):

(

[Mab , Mcd]
)

ij
=

(

MabMcd −McdMab

)

ij

=
(

Mab

)

ik

(

Mcd

)

kj
−
(

Mcd

)

ik

(

Mab

)

kj

= −
(

δaiδbk − δakδbi

) (

δckδdj − δcjδdk

)

+

+
(

δciδdk − δckδdi

) (

δakδbj − δajδbk

)

= δac
{

δbiδdj − δdiδbj

}

+ δbd

{

δaiδcj − δciδaj

}

+

+ δad

{

δciδbj − δbiδcj

}

+ δbc

{

δdiδaj − δaiδdj

}

= δaci
(

Mbd

)

ij
+ δbdi (Mac)ij + δadi

(

Mcb

)

ij
+ δbci

(

Mda

)

ij

= i
{

δacMbd + δbdMac − δadMbc − δbcMad

}

ij
,

which shows the equality ( 12.7) for each matrix element and thus proofs relations
( 12.7).
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12.2 The generators of SO(4).

For the six parameter group SO(4) we define the following six generators:

L1 =M23 , L2 =M31 , L3 =M12 ,

K1 =M14 , K2 =M24 , K3 =M34 . (12.8)

Or, using the property ( 12.2) of the matrices Mab, in a more compact notation:

Li =
1
2
ǫijkMjk (i, j, k = 1, 2, 3) and Ki =Mi4 (i = 1, 2, 3) . (12.9)

The related matrices are explicitly given by:

L1 =








· · · ·
· · −i ·
· i · ·
· · · ·








, L2 =








· · i ·
· · · ·
−i · · ·
· · · ·








, L3 =








· −i · ·
i · · ·
· · · ·
· · · ·








,

(12.10)

K1 =








· · · −i
· · · ·
· · · ·
i · · ·








, K2 =








· · · ·
· · · −i
· · · ·
· i · ·








, K3 =








· · · ·
· · · ·
· · · −i
· · i ·








.

(12.11)
Using the commutation relations ( 12.7) for the matrices Mab, we find for the

generators ~L and ~K the following commutation relations:

[Li , Lj ] = iǫijkLk , [Li , Kj ] = iǫijkKk and [Ki , Kj ] = iǫijkLk . (12.12)

The simple way to proof the above relations is just to use the explicit form of the
commutation relations ( 12.7) and the definitions ( 12.8), i.e.:

[L1 , L2] = [M23 , M31] = −iM21 = iM12 = iL3

[L2 , L3] = [M31 , M12] = −iM32 = iM23 = iL1

[L3 , L1] = [M12 , M23] = −iM13 = iM31 = iL2

[L1 , K1] = [M23 , M14] = 0

[L1 , K2] = [M23 , M24] = iM34 = iK3

[L1 , K3] = [M23 , M34] = −iM24 = −iK2
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[L2 , K1] = [M31 , M14] = −iM34 = −iK3

[L2 , K2] = [M31 , M24] = 0

[L2 , K3] = [M31 , M34] = iM14 = iK1

[L3 , K1] = [M12 , M14] = iM24 = iK2

[L3 , K2] = [M12 , M24] = −iM14 = iK1

[L3 , K3] = [M12 , M34] = 0

[K1 , K2] = [M14 , M24] = iM12 = iL3

[K2 , K3] = [M24 , M34] = iM23 = iL1

[K3 , K1] = [M34 , M14] = iM31 = iL2

When we define the following six parameters:

n1 = α23 , n2 = α31 , n3 = α12 , k1 = α14 , k2 = α24 , k3 = α34 ,

then, using the relations ( 12.2), ( 12.4), ( 12.6) and ( 12.8), we may express any
real, unimodular, orthogonal 4×4 matrix O by the exponent of a linear combination
of the matrices ~L and ~K, as follows:

O
(

~n,~k
)

= exp
{

−i~n · ~L− i~k · ~K
}

. (12.13)

From the commutation relations ( 12.12) for the generators ~L, one might observe
that the transformations O(~n, 0) form a subgroup of SO(4) which is equivalent to
SO(3). However, since the matricesO(~n, 0) are 4×4, they cannot form an irreducible
representation of SO(3), since irreducible representations of SO(3) can only have
odd dimensions. The reduction of the 4 × 4 matrices O(~n, 0) is most conveniently
studied by determining the Casimir operator L2 for the four dimensional represen-
tation, i.e. L2 = (L1)

2 + (L2)
2 + (L3)

2. Using the explicit expressions ( 12.10) and
( 12.11), we obtain for L2 the following result:

L2 =








2 · · ·
· 2 · ·
· · 2 ·
· · · 0








.

We find that the four dimensional representation of the subgroup SO(3) of SO(4)
can easily be reduced into two irreducible representations of SO(3): one of dimension
three (L2 = 2), and one of dimension one (L2 = 0).
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In order to construct irreducible representations of SO(4) it is convenient to in-
troduce yet another set of generators for this group, i.e.:

~A = 1
2

(

~L+ ~K
)

and ~B = 1
2

(

~L− ~K
)

. (12.14)

When, using the expression ( 12.13), we define the following six parameters:

~a = ~n+ ~k and ~b = ~n− ~k ,

then we may express any real, unimodular, orthogonal 4× 4 matrix O by the expo-
nent of a linear combination of the matrices ~A and ~B, as follows:

O
(

~a,~b
)

= exp
{

−i~a · ~A− i~b · ~B
}

. (12.15)

The commutation relations for the generators ~A and ~B can easily be obtained,
using the relations ( 12.12)

[Ai , Aj ] = iǫijkAk , [Bi , Bj ] = iǫijkBk and [Ai , Bj ] = 0 . (12.16)

Because of the latter commutation relation and relation ( 12.15), remembering the
Baker-Campbell-Hausdorf relations, we may express any real, unimodular, orthog-
onal 4 × 4 matrix O by the product of two exponents: one of a linear combination
of the matrices ~A and one of a linear combination of the matrices ~B, as follows:

O
(

~a,~b
)

= exp
{

−i~a · ~A
}

exp
{

−i~b · ~B
}

. (12.17)

The matrices ~A and ~B are explicitly given by:

A1 =
1

2








· · · −i
· · −i ·
· i · ·
i · · ·







, A2 =

1

2








· · i ·
· · · −i
−i · · ·
· i · ·







, A3 =

1

2








· −i · ·
i · · ·
· · · −i
· · i ·







,

(12.18)

B1 =
1

2








· · · i
· · −i ·
· i · ·
−i · · ·







, B2 =

1

2








· · i ·
· · · i
−i · · ·
· −i · ·







, B3 =

1

2








· −i · ·
i · · ·
· · · i
· · −i ·







.

(12.19)

The generator subset formed by the matrices ~A generates a subgroup SA of SO(4)
which, because of the commutation relations ( 12.16), is equivalent either to SO(3)

or to SU(2), and similar for the generator subset formed by the matrices ~B. From
expressions ( 12.18) and ( 12.19) it is easy to determine the Casimir operators A2

and B2 for each of the two subspaces of SO(4). One finds A2 = 3
4
and B2 = 3

4
.

Consequently, the subgroup SA of real, unimodular, orthogonal 4×4 matricesO(~a, 0)
may be reduced to a two-dimensional representation of the group SU(2) as well as
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the subgroup SB of real, unimodular, orthogonal 4 × 4 matrices O(0,~b). This can
be shown more explicitly, using the following similarity transformation S:

S =
1√
2








1 0 0 −1
i 0 0 i
0 −1 −1 0
0 −i i 0








with S−1 =
1√
2








1 −i 0 0
0 0 −1 i
0 0 −1 −i
−1 −i 0 0








.

When we apply this basis transformation to the matrices ( 12.18) and ( 12.19),
we find:

S−1 ~AS =
~σ

2
⊗ 1 and S−1 ~BS = 1⊗ ~σ

2
. (12.20)

Consequently, for any real, unimodular, orthogonal 4× 4 matrix O we obtain:

S−1O
(

~a,~b
)

S = exp

{

−i~a · ~σ
2

}

⊗ exp

{

−i~b · ~σ
2

}

. (12.21)

Each group element O
(

~a,~b
)

of SO(4) is equivalent to the direct product of

two group elements U (~a ) = exp
{

−i~a · ~σ
2

}

and U
(

~b
)

= exp
{

−i~b · ~σ
2

}

of SU(2).

Consequently, SO(4) is homomorphous with SU(2) ⊗ SU(2). However, those two
groups are not equal.

12.3 The group SU(2) ⊗ SU(2).

We represent the direct product U
(

~a,~b
)

of two elements U (~a) and U
(

~b
)

of SU(2)
in the following abstract way, by:

U
(

~a,~b
)

=
(

U (~a) , U
(

~b
))

. (12.22)

The group product is defined in analogy with the product ( 5.29) of two direct
products of two matrices, as follows:

U
(

~a,~b
)

U
(

~c, ~d
)

=
(

U (~a)U (~c) , U
(

~b
)

U
(

~d
))

. (12.23)

It is easy to verify that under the product ( 12.23) the elements ( 12.22) form a
group, the group SU(2)⊗ SU(2): For example, the identity element I is given by:

I = U(0, 0) = (1 , 1) , (12.24)

and the inverse of group element U
(

~a,~b
)

by (compare formula ( 5.30)):

[

U
(

~a,~b
)]−1

=
(

[U (~a)]−1 ,
[

U
(

~b
)]−1

)

. (12.25)

The structure of SU(2)⊗ SU(2) is similar to the structure of SO(4) as described

in section ( 12.2). Their algebras are equal. The generators ~A and ~B defined in
formula ( 12.14) and in detail related to SU(2)⊗ SU(2) in formula ( 12.20), might

here, using the operators ~J for SU(2) defined in formula ( 9.15), be defined by:
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~A =
(
σ

2
, 0
)

= ( ~J, 0) and ~B =
(

0,
σ

2

)

= (0, ~J) . (12.26)

The generators ~A generate the subgroup SA = {(U (~a) ,1)} of SU(2) ⊗ SU(2),

and the generators ~B the subgroup SB =
{(

1, U
(

~b
))}

. The group elements of

SU(2) ⊗ SU(2) can be represented by direct products of matrices. An irreducible
representation is fully determined by the eigenvalues of the two Casimir operators
A2 and B2, or alternatively by ja and jb, i.e.

D(ja, jb)
(

U
(

~a,~b
))

= D(ja) (U (~a))⊗D(jb)
(

U
(

~b
))

=

{

e−i~a · d
(ja)( ~J)

}

⊗
{

e−i~b · d
(jb)( ~J)

}

. (12.27)

The dimension of the irreducible representation is given by:

dim
(

D(ja, jb)
)

= (2ja + 1)(2jb + 1) . (12.28)

The first few irreps of SU(2)⊗SU(2) and their dimensions are listed in the table
( 12.1).

d (ja, jb) d (ja, jb)

1 (0,0) 9 (1,1), (0,4), (4,0)

2 (0,1
2
), (1

2
,0) 10 (0,9

2
), (9

2
,0), (2,1

2
), (1

2
,2)

3 (0,1), (1,0) 11 (0,5), (5,0)

4 (0,3
2
), (3

2
,0), (1

2
,1
2
) 12 (0,11

2
), (11

2
,0), (1

2
,5
2
), (5

2
,1
2
), (1,3

2
), (3

2
,1)

5 (0,2), (2,0) 13 (0,6), (6,0)

6 (0,5
2
), (5

2
,0), (1,1

2
), (1

2
,1) 14 (0,13

2
), (13

2
,0), (3,1

2
), (1

2
,3)

7 (0,3), (3,0) 15 (0,7), (7,0), (1,2), (2,1)

8 (0,7
2
), (7

2
,0), (1

2
,3
2
), (3

2
,1
2
) 16 (0,15

2
), (15

2
,0) (1

2
,7
2
), (7

2
,1
2
), (3

2
,3
2
)

Table 12.1: Irreps of SU(2)⊗ SU(2) and their dimensions (d).
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As an example, let us study the two dimensional irrep (0,1
2
) of SU(2)⊗SU(2). A

group element U
(

~a,~b
)

is, according to formula ( 12.27), represented by:

D(0, 1
2
)
(

U
(

~a,~b
))

= D(0) (U (~a))⊗D(
1
2
)
(

U
(

~b
))

=
{

e0
}

⊗





e
−i~b · ~σ2







= 1⊗





e
−i~b · ~σ2






= e

−i~b · ~σ2 , (12.29)

which represents a 2× 2 matrix.
The two dimensional irrep (0,1

2
) is not a faithfull representation of SU(2)⊗SU(2),

as one has:

D(0, 1
2
)
(

U
(

~a1,~b
))

= D(0, 1
2
)
(

U
(

~a2,~b
))

for all ~a1 and ~a2 .

The identity I=(1,1) is, as always, represented by the unit matrix, according to:

D(0, 1
2
) (I) = D(0) (1)⊗D(

1
2
) (1) = 1⊗ 1 =

(

1 0
0 1

)

.

The group element (−1,−1) is represented by the minus unit matrix, according
to:

D(0, 1
2
) ((−1,−1)) = D(0) (−1)⊗D(

1
2
) (−1) = 1⊗ (−1) = −

(

1 0
0 1

)

.

Notice from the above two expressions that for the two dimensional irrep (0,1
2
)

one has:

D(0, 1
2
) ((1,1)) 6= D(0, 1

2
) ((−1,−1)) .

This is not always the case. For example, for the four dimensional irrep (1
2
,1
2
) one

finds:

D(1
2
, 1
2
) ((1,1)) = 1⊗1 =








1 · · ·
· 1 · ·
· · 1 ·
· · · 1








= (−1)⊗(−1) = D(1
2
, 1
2
) ((−1,−1)) .

(12.30)
and similar:

D(1
2
, 1
2
)
((

U (~a) , U
(

~b
)))

= U (~a)⊗ U
(

~b
)

= {−U (~a)} ⊗
{

−U
(

~b
)}

= D(1
2
, 1
2
)
((

−U (~a) ,−U
(

~b
)))

. (12.31)
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So, also the four dimensional irrep (1
2
,1
2
) is not faithfull, since sets of two elements

of SU(2)⊗ SU(2) are represented by the the same matrix.

12.4 The relation between SO(4) and SU(2) ⊗

SU(2).

As we have seen in formula ( 12.21), each group element O
(

~a,~b
)

of SO(4) is

equivalent to the direct product of two group elements U (~a ) = exp
{

−i~a · ~σ
2

}

and

U
(

~b
)

= exp
{

−i~b · ~σ
2

}

of SU(2). Consequently, SO(4) is isomorphous to the four

dimensional irrep (1
2
,1
2
) of SU(2)⊗ SU(2). Which implies that each group element

of SO(4) is equivalent to two different group elements of SU(2)⊗ SU(2).
The set of group elements of SU(2)⊗SU(2) indicated by {(1,1) , (−1,−1)} is

called the kernel of the homomorphism of SU(2) ⊗ SU(2) onto SO(4). When we
divide SU(2) ⊗ SU(2) by this kernel, which means that when we either consider

group element
(

U (~a) , U
(

~b
))

or group element
(

−U (~a) ,−U
(

~b
))

, then we obtain

the following isomorphism for SO(4):

SO(4) =
SU(2)⊗ SU(2)

{(1,1) , (−1,−1)} . (12.32)

12.5 Irreps for SO(4).

Let us compare the above relation ( 12.32) with the relation between SO(3) and
SU(2). All irreps for SO(3) can be obtained from the irreps of SU(2), provided
that we eliminate those irreps of SU(2) for which D(1) 6= D(−1), i.e. those with
even dimensions. For SO(4) the situation is similar: From all irreps of SU(2)⊗SU(2)
we just must eliminate those for which:

D ((1,1)) 6= D ((−1,−1)) . (12.33)

When we denote the eigenvalues of A2 by 2ja + 1 and of B2 by 2jb + 1, then, as
we have seen in formula ( 12.27), a general irrep for SU(2)⊗SU(2) may be written
in the form

D(ja, jb)
((

U (~a) , U
(

~b
)))

= D(ja) (U (~a ))⊗D(jb)
(

U
(

~b
))

. (12.34)

Now, for the element −1 of SU(2), one has:

D(j) (−1) =







D(j) (1) , j = 0, 1, 2, 3, . . .

−D(j) (1) , j = 1
2
, 3
2
, 5
2
, . . .

. (12.35)

Consequently, using relation ( 12.34), one obtains for the representation of the
comparable group elements of SU(2)⊗ SU(2) the following:
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D(ja, jb) ((−1,−1)) =







D(ja, jb) ((1,1)) , ja + jb = 0, 1, 2, 3, . . .

−D(ja, jb) ((1,1)) , ja + jb =
1
2
, 3
2
, 5
2
, . . .

.

(12.36)
Now, since for SO(4) we must eliminate those irreps of SU(2)⊗ SU(2) for which

relation ( 12.33) holds, we find as a result from the above formula ( 12.36) that:

ja + jb = integer ⇔







either ja and jb both integer

or ja and jb both half-integer
. (12.37)

The dimension of an irrep of SO(4) is given by:

dim
(

D(ja, jb)
)

= (2ja + 1)(2jb + 1) . (12.38)

In table ( 12.2), we indicate the first few irreps of SO(4) and their dimension:

dimension (ja, jb) dimension (ja, jb)

1 (0,0) 9 (1,1), (0,4), (4,0)

2 - 10 -

3 (0,1), (1,0) 11 (0,5), (5,0)

4 (1
2
,1
2
) 12 (1

2
,5
2
), (5

2
,1
2
)

5 (0,2), (2,0) 13 (0,6), (6,0)

6 - 14 -

7 (0,3), (3,0) 15 (0,7), (7,0), (1,2), (2,1)

8 (1
2
,3
2
), (3

2
,1
2
) 16 (1

2
,7
2
), (7

2
,1
2
), (3

2
,3
2
)

Table 12.2: Irreps of SO(4) and their dimension.

From this table, we notice that for some dimensions (2, 6 ,10, 14, . . .) SO(4) has
no corresponding irreps. Whereas for other dimensions more than one inequivalent
irrep exist. There are, for instance, two three dimensional irreps, namely (ja = 0,
jb = 1) and (ja = 1, jb = 0). Let us, as an example, show that those two irreps are
not equivalent:
For the first irrep (ja = 0, jb = 1) we have the representations:

d(0,1)( ~A) = 0 and d(0,1)( ~B) = ~L , (12.39)

where ~L represents the three 3× 3 matrices given in formula ( 8.24). For the group

element O
(

~a,~b
)

of SO(4) we obtain then the representation:
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D(0,1)
(

O
(

~a,~b
))

= exp
{

−i~a · d(0,1)( ~A)
}

⊗ exp
{

−i~b · d(0,1)( ~B)
}

= 1⊗ e−i~b · ~L = e−i~b · ~L , (12.40)

which represents a 3× 3 matrix.
Similarly, for the other irrep (ja = 1, jb = 0) we have the representations:

d(1,0)( ~A) = ~L and d(1,0)( ~B) = 0 , (12.41)

leading for the representation of the group element O
(

~a,~b
)

of SO(4) to the expres-
sion:

D(1,0)
(

O
(

~a,~b
))

= e−i~a · ~L . (12.42)

Now, representations (ja = 0, jb = 1) and (ja = 1, jb = 0) are equivalent when

there exists a similarity transformation S, such that for all possible ~a and ~b yields:

S−1 D(0,1)
(

O
(

~a,~b
))

S = D(1,0)
(

O
(

~a,~b
))

, (12.43)

which, using the expressions ( 12.40) and ( 12.42), amounts in finding a basis trans-
formation S such that:

S−1 e−i~b · ~L S = e−i~a · ~L , (12.44)

or at the level of the algebra, such that:

S−1 ~b · ~L S = ~a · ~L for all ~a and ~b . (12.45)

This relation must hold for arbitrary and independent ~a and~b, which is impossible
for one single transformation S. Consequently, the two irreps (ja = 0, jb = 1) and
(ja = 1, jb = 0) are not equivalent.

12.6 Weight diagrams for SO(4).

Let us for the irreducible representation D(ja, jb), select basis vectors {|ma, mb >}
which are simultaneously eigenvectors for d(ja, jb) (A3) and d

(ja, jb) (B3) with eigen-
values ma and mb respectively, i.e.:

d(ja, jb) (A3) |ma, mb > = ma |ma, mb > and

d(ja, jb) (B3) |ma, mb > = mb |ma, mb > . (12.46)

One might, in analogy with SO(3), also define the step operators A± = A1 ± iA2

for which:
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d(ja, jb) (A±) |ma, mb >=
√

ja(ja + 1)−ma(ma ± 1) |ma ± 1, mb > . (12.47)

Similarly, we might define the step operators B± = B1 ± iB2 for which:

d(ja, jb) (B±) |ma, mb >=
√

ja(ja + 1)−mb(mb ± 1) |ma, mb ± 1 > . (12.48)

Weight diagrams for SO(4) have consequently two dimensions. Let us select the
horizontal axis to indicate ma and the vertical axis to indicate mb. Each basis vector
|ma, mb > is represented by a point as shown in the figure below.

ma

mb • |ma, mb >

- A+
�

A−

6
B+

?
B−

In this figure are also indicated the directions in which act the various step oper-
ators.
As an example we show in the figure below the weight diagrams for the two eight

dimensional irreps of SO(4) indicated by (1
2
,3
2
) and (3

2
,1
2
).

(1
2
, 3
2
)

•

•

•

•

•

•

•

•

mb

ma−1
2

+1
2
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2
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2

−1
2

−3
2|−1

2 ,−
3
2>

|−1
2 ,−

1
2>

|−1
2 ,+

1
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3
2>
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2 ,−

3
2>

|+1
2 ,−

1
2>
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2 ,+

1
2>

|+1
2 ,+

3
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(3
2
, 1
2
)

• • • •

• • • •

mb

ma−3
2

−1
2

+1
2

+3
2
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2
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2
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1
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2> |−1
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12.7 Invariant subgroups of SO(4).

In this section we show that the sets of group elements SA = {O(~a, 0)} and SB =
{

O(0,~b)
}

are invariant subgroups of SO(4). Let us, using the expression ( 12.21),

represent group element O(~a,~b) of SO(4) by:

O
(

~a,~b
)

= S
{

U (~a )⊗ U
(

~b
)}

S−1 . (12.49)

According to the definition of an invariant subgroup of a group, which is given in
formula ( 1.24), we must concentrate on the following expression:

[

O
(

~α, ~β
)]−1O

(

~a,~b
) [

O
(

~α, ~β
)]

. (12.50)

Inserting the above expression ( 12.49) and using formula ( 5.30), we obtain:

S
{

[U (~α )]−1 ⊗
[

U
(

~β
)]−1

}

S−1S
{

U (~a )⊗ U
(

~b
)}

S−1S
{

U (~α )⊗ U
(

~β
)}

S−1 .

Next, using the property ( 5.29) for the product of direct products of matrices,
we obtain:

S
({

[U (~α )]−1 U (~a )U (~α )
}

⊗
{[

U
(

~β
)]−1

U
(

~b
)

U
(

~β
)})

S−1 .

In case that the group element O(~a,~b) belongs to one of the two subgroups SA or
SB, we find in particular:







S
({

[U (~α )]−1 U (~a )U (~α )
}

⊗ 1
)

S−1 for ~b = 0,

S
(

1⊗
{[

U
(

~β
)]−1

U
(

~b
)

U
(

~β
)})

S−1 for ~a = 0.

This can be written in terms of the transformed vectors ~a ′ and ~b ′, according to:







S (U (~a ′)⊗ 1)S−1 for ~b = 0,

S
(

1⊗ U
(

~b ′
))

S−1 for ~a = 0.

(12.51)

So, we find that under the transformation ( 12.50) each subgroup element O(~a, 0)
of SA is transformed into another (or the same) subgroup element of SA and similar
for SB. It implies that for an arbitrary element O of SO(4) we have:

O−1 SA O = SA and O−1 SB O = SB . (12.52)

Consequently, SA and SB are invariant subgroups of SO(4). From the commu-

tation relations ( 12.16) for the generators ~A of SA and ~B of SB, we conclude that
those subgroups are moreover not Abelian.
One may show in general that SO(4) has non-trivial invariant subgroups, but no

non-trivial Abelian invariant subgroups. Such a group is called semi-simple.
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12.8 The Hydrogen atom

As an application of the representations of SO(4) we study in this section the Hy-
drogen atom.

1. Classically

Classically, the equations of motion of a charged spinless particle in a central
atractive Coulomb field (or a massive particle in a gravitational field) can be derived
from the following Lagrangian:

L
(

~r, ~̇r
)

= 1
2
~̇r 2 +

1

r
. (12.53)

The equations of motion are given by:

~̈r = − ~r

r3
. (12.54)

Associated with the Lagrangian ( 12.53) are the following two conserved quanti-
ties:

The orbital angular momentum ~L = ~r × ~̇r d~L
dt = 0

The Runge-Lenz vector ~M = −~̇r × ~L+ ~r
r

d ~M
dt = 0

Using the equations of motion ( 12.54), it is easy to show that the above quantities
are conserved:

d~L

dt
= ~̇r × ~̇r + ~r × ~̈r = 0 + ~r ×

(

− ~r

r3

)

= 0.

d ~M

dt
= −~̈r × ~L− ~̇r × ~̇L+

~̇r

r
− ~r

r3

(

~r · ~̇r
)

=
~r

r3
× ~L− 0 +

~̇r

r
− ~r

r3

(

~r · ~̇r
)

=
~r

r3
×
(

~r × ~̇r
)

+
~̇r

r
− ~r

r3

(

~r · ~̇r
)

=
1

r3

{

~r
(

~r · ~̇r
)

− ~̇r (~r · ~r)
}

+
~̇r

r
− ~r

r3

(

~r · ~̇r
)

= 0

The Runge-Lenz vector for a bound state solution of the equations of motion
(elipse) points from the force center towards the perihelion of the elipse. The mod-

ulus of ~M equals the excentricity of the orbit.
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2. Quantum Mechanically

In Quantum Mechanics, the equations of motion are given by the following Hamil-
tonian:

H = ~̇r · ~p− L
(

~r, ~̇r
)

= 1
2
~p 2 − 1

r
with ~p =

∂L
∂~̇r

= ~̇r . (12.55)

In comparison with the classical case, one may derive from this Hamiltonian the
following constants of motion:

~L = ~r × ~p and ~M = 1
2

{

~L× ~p− ~p× ~L
}

+
~r

r
. (12.56)

It may be verified that both ~L and ~M commute with the Hamiltonian, i.e.

[H , ~L] = [H , ~M ] = 0 . (12.57)

Furthermore, one has the expression:

~L · ~M = ~M · ~L = 0; . (12.58)

When we define next the following operators:

~A = 1
2

(

~L+ ~M
)

and ~B = 1
2

(

~L− ~M
)

, (12.59)

then we may verify for ~A and ~B the same commutation relations as those given in
formula ( 12.16). Moreover, using the commutation relations ( 12.57), it may be

clear that ~A and ~B commute with the Hamiltonian ( 12.55), and using the identity
( 12.58), it follows that the Casimir operators A2 and B2 satisfy the relation:

A2 − B2 = ~L · ~M = 0 . (12.60)

The group associated with the operators ~A and ~B is evidently SO(4). Conse-
quently, we may expect that the eigenstates of the Hamiltonian ( 12.55) can be
grouped into irreps of SO(4).
Eigenstates of the Schrödinger equation may then be chosen such that they are

simultaneously eigenstates of d(A3) and d(B3), i.e.:

H |n,ma, mb > ∼ − 1

n2 |n,ma, mb > ,

d(A3) |n,ma, mb > = ma |n,ma, mb > and

d(B3) |n,ma, mb > = mb |n,ma, mb > . (12.61)

For the Casimir operators A2 and B2 one finds:

A2 |n,ma, mb > = ja(ja + 1) |n,ma, mb > and

B2 |n,ma, mb > = jb(jb + 1) |n,ma, mb > . (12.62)

183



However, because of the relation ( 12.60), one has an extra condition for the
possible irreps of SO(4) into which the eigenstates of the Hamiltonian ( 12.55) can
be grouped, i.e.

ja(ja + 1)− jb(jb + 1) = 0 ⇔ ja = jb . (12.63)

Eigenstates which belong to the same irrep (ja, ja) of SO(4) must have the same
energy eigenvalues, because of the commutation relations ( 12.57). Consequently,
the degeneracy of an energy level is given by the dimension of the associated irrep.
For the permitted irreps of SO(4) we obtain dimensions 1, 4, 9, 16, . . . , which can
easily be verified to be in agreement with the degeneracies of the solutions of the
Schrödinger equation for Hydrogen. In order to see that, we might select a basis for
the eigenstates of the Schrödinger equation which are simultaneously eigenstates of
L2 and d(L3), i.e.:

H |n, ℓ, ℓz > ∼ − 1

n2 |n, ℓ, ℓz > , n = 1, 2, 3, . . .

L2 |n, ℓ, ℓz > = ℓ(ℓ+ 1) |n, ℓ, ℓz > , ℓ < n , and

d(L3) |n, ℓ, ℓz > = ℓz |n, ℓ, ℓz > , |ℓz| ≤ ℓ . (12.64)

Below we compare the degeneracies for the two different bases, ( 12.61) and
( 12.64), for the first few levels of Hydrogen:

ja (2ja + 1)2 energy level, n ℓ < n number of states

0 1 1 0 1

1
2

4 2 0,1 1+3=4

1 9 3 0,1,2 1+3+5=9

3
2

16 4 0,1,2,3 1+3+5+7=16

2 25 5 0,1,2,3,4 1+3+5+7+9=25
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