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Introduction and Overview
Definition: Group
A set G = {a, b, c , . . .} is called a group, if there exists a group multiplication
connecting the elements in G in the following way

(1) a, b ∈ G : c = a b ∈ G (closure)

(2) a, b, c ∈ G : (ab)c = a(bc) (associativity)

(3) ∃ e ∈ G : a e = a ∀a ∈ G (identity / neutral element)

(4) ∀a ∈ G ∃ b ∈ G : a b = e, i.e., b ≡ a−1 (inverse element)

Corollaries

(a) e−1 = e

(b) a−1a = a a−1 = e ∀a ∈ G (left inverse = right inverse)

(c) e a = a e = a ∀a ∈ G (left neutral = right neutral)

(d) ∀a, b ∈ G : c = a b ⇔ c−1 = b−1a−1

Commutative (Abelian) Group
(5) ∀a, b ∈ G : a b = b a (commutatitivity)

Order of a Group = number of group elements
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Examples
I integer numbers Z with addition

(Abelian group, infinite order)

I rational numbers Q\{0} with multiplication
(Abelian group, infinite order)

I complex numbers {exp(2πi m/n) : m = 1, . . . , n} with multiplication
(Abelian group, finite order, example of cyclic group)

I invertible (= nonsingular) n × n matrices with matrix multiplication
(nonabelian group, infinite order, later important for representation theory!)

I permutations of n objects: Pn

(nonabelian group, n! group elements)

I symmetry operations (rotations, reflections, etc.) of equilateral triangle
≡ P3 ≡ permutations of numbered corners of triangle – more later!

I (continuous) translations in Rn: (continuous) translation group
≡ vector addition in Rn

I symmetry operations of a sphere
only rotations: SO(3) = special orthogonal group in R3

= real orthogonal 3× 3 matrices
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Group Theory in Physics
Group theory is the natural language to describe symmetries of a physical
system

I symmetries correspond to conserved quantities

I symmetries allow us to classify quantum mechanical states
• representation theory
• degeneracies / level splittings

I evaluation of matrix elements ⇒ Wigner-Eckart theorem
e.g., selection rules: dipole matrix elements for optical transitions

I Hamiltonian Ĥ must be invariant under the symmetries
of a quantum system

⇒ construct Ĥ via symmetry arguments

I . . .
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Group Theory in Physics

Classical Mechanics

I Lagrange function L(q, q̇),

I Lagrange equations
d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi
i = 1, . . . ,N

I If for one j :
∂L

∂qj
= 0 ⇒ pj ≡

∂L

∂q̇j
is a conserved quantity

Examples

I qj linear coordinate
• translational invariance
• linear momentum pj = const.
• translation group

I qj angular coordinate
• rotational invariance
• angular momentum pj = const.
• rotation group
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Group Theory in Physics

Quantum Mechanics
(1) Evaluation of matrix elements

I Consider particle in potential V (x) = V (−x) even

I two possiblities for eigenfunctions ψ(x)

ψe(x) even: ψe(x) = ψe(−x)

ψo(x) odd: ψo(x) = −ψo(−x)

I overlapp
∫
ψ∗i (x)ψj(x) dx = δij i , j ∈ {e, o}

I expectation value 〈i |x |i〉 =
∫
ψ∗i (x) x ψi (x) dx = 0

well-known explanation

I product of two even / two odd functions is even

I product of one even and one odd function is odd

I integral over an odd function vanishes
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Group Theory in Physics

Quantum Mechanics
(1) Evaluation of matrix elements (cont’d)

Group theory provides systematic generalization of these statements

I representation theory
≡ classification of how functions and operators transform

under symmetry operations

I Wigner-Eckart theorem
≡ statements on matrix elements if we know how the functions

and operators transform under the symmetries of a system
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Group Theory in Physics

Quantum Mechanics
(2) Degeneracies of Energy Eigenvalues

I Schrödinger equation Ĥψ = Eψ or i~∂tψ = Ĥψ

I Let Ô with i~∂tÔ = [Ô, Ĥ] = 0 ⇒ Ô is conserved quantity

⇒ eigenvalue equations Ĥψ = Eψ and Ôψ = λÔ ψ
can be solved simultaneously

⇒ eigenvalue λÔ of Ô is good quantum number for ψ

Example: H atom

I Ĥ =
~2

2m

(
∂2

∂r 2
+

2

r

∂

∂r

)
+

L̂2

2mr 2
− e2

r
⇒ group SO(3)

⇒ [L̂2, Ĥ] = [L̂z , Ĥ] = [L̂2, L̂z ] = 0

⇒ eigenstates ψnlm(r): index l ↔ L̂2, m↔ L̂z

I really another example for representation theory

I degeneracy for 0 ≤ l ≤ n − 1: dynamical symmetry (unique for H atom)
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Group Theory in Physics

Quantum Mechanics
(3) Solid State Physics

in particular: crystalline solids, periodic assembly of atoms

⇒ discrete translation invariance

(i) Electrons in periodic potential V (r)

I V (r + R) = V (r) ∀R ∈ {lattice vectors}

⇒ translation operator T̂R : T̂R f (r) = f (r + R)

[T̂R, Ĥ] = 0

⇒ Bloch theorem ψk(r) = eik·r uk(r) with uk(r + R) = uk(r)

⇒ wave vector k is quantum number for the discrete translation invariance,
k ∈ first Brillouin zone
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Group Theory in Physics

Quantum Mechanics
(3) Solid State Physics

(ii) Phonons

I Consider square lattice
by 90o

rotation

I frequencies of modes are equal

I degeneracies for particular propagation directions

(iii) Theory of Invariants

I How can we construct models for the dynamics of electrons
or phonons that are compatible with given crystal symmetries?
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Group Theory in Physics

Quantum Mechanics
(4) Nuclear and Particle Physics

Physics at small length scales: strong interaction

Proton mp = 938.28 MeV

Neutron mn = 939.57 MeV

}
rest mass of nucleons almost equal
∼ degeneracy

I Symmetry: isospin Î with [̂I , Ĥstrong] = 0

I SU(2): proton | 12
1
2 〉, neutron | 12 −

1
2 〉

Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Mathematical Excursion: Groups

Basic Concepts

Group Axioms: see above

Definition: Subgroup Let G be a group. A subset U ⊆ G that is itself a
group with the same multiplication as G is called a subgroup of G.

Group Multiplication Table: compilation of all products of group elements
⇒ complete information on mathematical structure of a (finite) group

Example: permutation group P3

e =

(
1 2 3
1 2 3

)
a =

(
1 2 3
2 3 1

)
b =

(
1 2 3
3 1 2

)
c =

(
1 2 3
1 3 2

)
d =

(
1 2 3
3 2 1

)
f =

(
1 2 3
2 1 3

)
P3 e a b c d f
e e a b c d f
a a b e f c d
b b e a d f c

c c d f e a b
d d f c b e a
f f c d a b e

I {e}, {e, a, b}, {e, c}, {e, d}, {e, f }, G are subgroups of G
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Conclusions from
Group Multiplication Table

P3 e a b c d f
e e a b c d f
a a b e f c d
b b e a d f c

c c d f e a b
d d f c b e a
f f c d a b e

I Symmetry w.r.t. main diagonal
⇒ group is Abelian

I order n of g ∈ G: smallest n > 0 with gn = e

I {g , g 2, . . . , gn = e} with g ∈ G is Abelian subgroup (a cyclic group)

I in every row / column every element appears exactly once because:

Rearrangement Lemma: for any fixed g ′ ∈ G, we have

G = {g ′g : g ∈ G} = {gg ′ : g ∈ G}
i.e., the latter sets consist of the elements in G rearranged in order.

proof: g1 6= g2 ⇔ g ′g1 6= g ′g2 ∀g1, g2, g
′ ∈ G

Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Goal: Classify elements in a group

(1) Conjugate Elements and Classes

I Let a ∈ G. Then b ∈ G is called conjugate to a if ∃ x ∈ G with b = x ax−1.

Conjugation b ∼ a is equivalence relation:

• a ∼ a reflexive
• b ∼ a ⇔ a ∼ b symmetric
• a ∼ c

b ∼ c

}
⇒ a ∼ b transitive

a = xcx−1 ⇒ c = x−1ax
b = ycy−1 = (xy−1)−1a(xy−1)

I For fixed a, the set of all conjugate elements
C = {x ax−1 : x ∈ G} is called a class.

Example: P3

x e a b c d f

e e a b c d f
a e a b d f c
b e a b f c d
c e b a c f d
d e b a f d c
f e b a d c f

⇒ classes {e}, {a, b},
{c, d , f }

• identity e is its own class x ex−1 = e ∀x ∈ G
• Abelian groups: each element is its own class

x ax−1 = ax x−1 = a ∀a, x ∈ G
• Each b ∈ G belongs to one and only one class

⇒ decompose G into classes

• in broad terms: “similar” elements form a class
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Goal: Classify elements in a group

(2) Subgroups and Cosets
I Let U ⊂ G be a subgroup of G and x ∈ G. The set x U ≡ {x u : u ∈ U}

(the set Ux) is called the left coset (right coset) of U .

I In general, cosets are not groups.
If x /∈ U , the coset x U lacks the identity element:

suppose ∃u ∈ U with xu = e ∈ x U ⇒ x−1 = u ∈ U ⇒ x = u−1 ∈ U
I If x ′ ∈ x U , then x ′U = x U any x ′ ∈ x U can be used to define coset x U
I If U contains s elements, then each coset also contains s elements

(due to rearrangement lemma).

I Two left (right) cosets for a subgroup U are either equal or disjoint
(due to rearrangement lemma).

I Thus: decompose G into cosets
G = U ∪ x U ∪ y U ∪ . . . x , y , . . . /∈ U

I Thus Theorem 1: Let h order of G
Let s order of U ⊂ G

}
⇒ h

s
∈ N

I Corollary: The order of a finite group is an integer multiple of the
orders of its subgroups.

I Corollary: If h prime number ⇒ {e},G are the only subgroups
⇒ G is isomorphic to cyclic group
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Goal: Classify elements in a group

(3) Invariant Subgroups and Factor Groups
connection: classes and cosets

I A subgroup U ⊂ G containing only complete classes of G is called
invariant subgroup (aka normal subgroup).

I Let U be an invariant subgroup of G and x ∈ G
⇔ x Ux−1 = U
⇔ x U = Ux (left coset = right coset)

I Multiplication of cosets of an invariant subgroup U ⊂ G:

x , y ∈ G : (x U) (y U) = xy U = z U where z = xy

well-defined: (x U) (y U) = x (U y)U = xy U U = z U U = z U

I An invariant subgroup U ⊂ G and the distinct cosets x U
form a group, called factor group F = G/U
• group multiplication: see above
• U is identity element of factor group
• x−1 U is inverse for x U

I Every factor group F = G/U is homomorphic to G (see below).
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Example: Permutation Group P3

e a b c d f
e e a b c d f
a a b e f c d
b b e a d f c
c c d f e a b
d d f c b e a
f f c d a b e

invariant subgroup U = {e, a, b}

⇒ one coset cU = dU = f U = {c , d , f }

factor group P3/U = {U , cU}
U cU

U U cU
cU cU U

I We can think of factor groups G/U as coarse-grained versions of G.

I Often, factor groups G/U are a helpful intermediate step when
working out the structure of more complicated groups G.

I Thus: invariant subgroups are “more useful” subgroups than other
subgroups.
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Mappings of Groups
I Let G and G′ be two groups. A mapping φ : G → G′ assigns to each

g ∈ G an element g ′ = φ(g) ∈ G′, with every g ′ ∈ G′ being the image
of at least one g ∈ G.

I If φ(g1)φ(g2) = φ(g1 g2) ∀g1, g2 ∈ G,
then φ is a homomorphic mapping of G on G′.

• A homomorphic mapping is consistent with the group structures

• A homomorphic mapping G → G′ is always n-to-one (n ≥ 1):
The preimage of the unit element of G′ is an invariant subgroup U of G.
G′ is isomorphic to the factor group G/U .

I If the mapping φ is one-to-one, then it is an isomomorphic mapping
of G on G′.
• Short-hand: G isomorphic to G′ ⇒ G ' G′
• Isomorphic groups have the same group structure.

I Examples:

• trivial homomorphism G = P3 and G′ = {e}
• isomorphism between permutation group P3 and symmetry group C3v of

equilateral triangle
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Products of Groups
I Given two groups G1 = {ai} and G2 = {bk}, their outer direct product

is the group G1 × G2 with elements (ai , bk) and multiplication

(ai , bk) · (aj , bl) = (aiaj , bkbl) ∈ G1 × G2

• Check that the group axioms are satisfied for G1 × G2.

• Order of Gn is hn (n = 1, 2) ⇒ order of G1 × G2 is h1h2

• If G = G1 × G2, then both G1 and G2 are invariant subgroups of G.
Then we have isomorphisms G2 ' G/G1 and G1 ' G/G2.

• Application: built more complex groups out of simpler groups

I If G1 = G2 = G = {ai}, the elements

(ai , ai ) ∈ G ⊗ G
define a group G̃ ≡ G ⊗ G called the inner product of G.

• The inner product G ⊗ G is isomorphic to G (⇒ same order as G)

• Compare: product representations (discussed below)

Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Matrix Representations of a Group
Motivation

I Consider symmetry group Ci = {e, i} e = identity
i = inversion

Ci e i

e e i
i i e

I two “types” of basis functions: even and odd

I more abstract: reducible and irreducible representations

matrix representation (based on 1× 1 and 2× 2 matrices)

Γ1 = {De = 1, Di = 1}
Γ2 = {De = 1, Di = −1}
Γ3 =

{
De =

(
1
0

0
1

)
, Di =

(
1
0

0
−1

)}
 consistent with group

multiplication table

where Γ1 : even function fe(x) = fe(−x)

Γ2 : odd functions fo(x) = −fo(−x)

}
irreducible
representations

Γ3 : reducible representation:
decompose any f (x) into even and odd parts

f (x) = fe(x)+fo(x) with

{
fe(x) = 1

2

[
f (x) + f (−x)

]
fo(x) = 1

2

[
f (x)− f (−x)

]
How to generalize these ideas for arbitrary groups?
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Matrix Representations of a Group
I Let group G = {gi : i = 1, . . . , h}
I Associate with each gi ∈ G a nonsingular square matrix D(gi ).

If the resulting set {D(gi ) : i = 1, . . . , h} is homomorphic to G
it is called a matrix representation of G.

• gi gj = gk ⇒ D(gi )D(gj) = D(gk)

• D(e) = 1 (identity matrix)

• D(g−1
i ) = D−1(gi )

I dimension of representation = dimension of representation matrices

Example (1): G = C∞ = rotations around a fixed axis (angle φ)
I C∞ is isomorphic to group of orthogonal 2× 2 matrices SO(2)

D2(φ) =

(
cosφ − sinφ
sinφ cosφ

)
⇒ two-dimensional (2D) representation

I C∞ is homomorphic to group {D1(φ) = 1} ⇒ trivial 1D representation

I C∞ is isomorphic to group

{(
1 0
0 D2(φ)

)}
⇒ higher-dimensional

representation

I Generally: given matrix representations of dimensions n1 and n2,
we can construct (n1 + n2) dimensional representations
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Matrix Representations of a Group (cont’d)

Example (2): Symmetry group C3v of equilateral triangle
(isomorphic to permutation group P3)

x

y

id
en

ti
ty

ro
ta

ti
o

n
φ

=
1

2
0
◦

ro
ta

ti
o

n
φ

=
2

4
0
◦

re
fl

ec
ti

o
n

y
↔
−
y

ro
to

-
re

fl
ec

ti
o

n
φ

=
1

2
0
◦

ro
to

-
re

fl
ec

ti
o

n
φ

=
2

4
0
◦

P3 e a b = a2 c = ec d = ac f = bc

Koster E C3 C 2
3 σv σv σv

Γ1 (1) (1) (1) (1) (1) (1)

Γ2 (1) (1) (1) (−1) (−1) (−1)

Γ3

(
1 0

0 1

) (
− 1

2
−
√

3
2√

3
2
− 1

2

) (
− 1

2

√
3

2

−
√

3
2
− 1

2

) (
1 0

0 −1

) (
− 1

2
−
√

3
2

−
√

3
2

1
2

) (
− 1

2

√
3

2√
3

2
1
2

)

multipli-
cation
table

P3 e a b c d f

e e a b c d f
a a b e f c d
b b e a d f c
c c d f e a b
d d f c b e a
f f c d a b e

I mapping G → {D(gi )} homomorphic,
but in general not isomorphic (not faithful)

I consistent with group multiplication table

I Goal: characterize matrix representations of G
I Will see: G fully characterized by its “distinct”

matrix representations (only three for G = C3v !)
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Goal: Identify and Classify Representations
I Theorem 2: If U is an invariant subgroup of G, then every representation

of the factor group F = G/U is likewise a representation of G.

Proof: G is homomorphic to F , which is homomorphic to the representations of F .

Thus: To identify the representations of G it helps to identify the representations of F .

I Definition: Equivalent Representations

Let {D(gi )} be a matrix representation for G with dimension n.
Let X be a n-dimensional nonsingular matrix.

The set {D′(gi ) = X D(gi ) X−1} forms a matrix representation
called equivalent to {D(gi )}.
Convince yourself: {D′(gi )} is, indeed, another matrix representation.

Matrix representations are most convenient if matrices {D} are unitary. Thus

I Theorem 3: Every matrix representation {D(gi )} is equivalent to a unitary
representation {D′(gi )} where D′ †(gi ) = D′ −1(gi )

I In the following, it is always assumed that matrix representations are unitary.
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Proof of Theorem 3 (cf. Falicov)

Challenge: Matrix X has to be choosen such that it makes all matrices
D′(gi ) unitary simultaneously.

I Let {D(gi ) ≡ Di : i = 1, . . . , h} be a matrix representation for G
(dimension h).

I Define H =
h∑

i=1

DiD†i (Hermitean)

I Thus H can be diagonalized by means of a unitary matrix U.

d ≡ U−1HU =
∑
i

U−1Di D−1
i U =

∑
i

U−1Di U︸ ︷︷ ︸
=D̃i

U−1D−1
i U︸ ︷︷ ︸

=D̃†i=
∑
i

D̃i D̃†i with dµν = dµδµν diagonal

I Diagonal entries dµ are positive:

dµ =
∑
i

∑
λ

(D̃i )µλ(D̃†i )λµ =
∑
iλ

(D̃i )µλ(D̃∗i )µλ =
∑
iλ

|(D̃i )µλ|2 > 0

I Take diagonal matrix d̃± with elements (d̃±)µν ≡ d
±1/2
µ δµν

I Thus 1 = d̃− d d̃− = d̃−
∑
i

D̃i D̃†i d̃− (identity matrix)
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Proof of Theorem 3 (cont’d)

I Assertion: D′i = d̃− D̃i d̃+ = d̃−U−1Di U d̃+ are unitary matrices
equivalent to Di

• equivalent by construction: X = d̃−U
−1

• unitarity:

D′i D′ †i = d̃−D̃i d̃+

=1︷ ︸︸ ︷
(d̃−

∑
k

D̃kD̃†k d̃−) d̃+D̃†i d̃−

= d̃−
∑
k

D̃i D̃k︸ ︷︷ ︸
= D̃j

D̃†k D̃
†
i︸ ︷︷ ︸

= D̃†j (rearrangement lemma)︸ ︷︷ ︸
= d

d̃−

= 1

qed
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Reducible and Irreducible Representations
(RRs and IRs)

I If for a given representation {D(gi ) : i = 1, . . . , h}, an equivalent
representation {D′(gi ) : i = 1, . . . , h} can be found that is block
diagonal

D′(gi ) =

(
D′1(gi ) 0

0 D′2(gi )

)
∀gi ∈ G

then {D(gi ) : i = 1, . . . , h} is called reducible, otherwise irreducible.

I Crucial: the same block diagonal form is obtained
for all representation matrices D(gi ) simultaneously.

I Block-diagonal matrices do not mix, i.e., if D′(g1) and D′(g2) are
block diagonal, then D′(g3) = D′(g1)D′(g2) is likewise block diagonal.

⇒ Decomposition of RRs into IRs decomposes the problem
into the smallest subproblems possible.

I Goal of Representation Theory

Identify and characterize the IRs of a group.

I We will show

The number of inequivalent IRs equals the number of classes.
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Schur’s First Lemma
Schur’s First Lemma: Suppose a matrix M commutes with
all matrices D(gi ) of an irreducible representation of G

D(gi ) M = M D(gi ) ∀gi ∈ G (♠)

then M is a multiple of the identity matrix M = c1, c ∈ C.

Corollaries

I If (♠) holds with M 6= c1, c ∈ C, then {D(gi )} is reducible.

I All IRs of Abelian groups are one-dimensional

Proof: Take gj ∈ G arbitrary, but fixed.
G Abelian ⇒ D(gi )D(gj) = D(gj)D(gi ) ∀gi ∈ G
Lemma ⇒ D(gj) = cj1 with cj ∈ C, i.e., {D(gj) = cj} is an IR.
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Proof of Schur’s First Lemma (cf. Bir & Pikus)

I Take Hermitean conjugate of (♠): M† D†(gi ) =D†(gi ) M†

Multiply with D†(gi ) = D−1(gi ): D(gi ) M† = M† D(gi )

I Thus: (♠) holds for M and M†, and also the Hermitean matrices

M ′ = 1
2 (M + M†) M ′′ = i

2 (M −M†)

I It exists a unitary matrix U that diagonalizes M ′ (similar for M ′′)
d = U−1 M ′ U with dµν = dµδµν

I Thus (♠) implies D′(gi ) d = d D′(gi ), where D′(gi ) = U−1D(gi ) U

more explicitly: D′µν(gi ) (dµ − dν) = 0 ∀i , µ, ν

Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Proof of Schur’s First Lemma (cont’d)

Two possibilities:

I All dµ are equal, i.e, d = c1.

So M ′ = UdU−1 and M ′′ are likewise proportional to 1, and so is
M = M ′ − iM ′′.

I Some dµ are different:

Say {dκ : κ = 1, . . . , r} are different from {dλ : λ = r + 1, . . . , h}.

Thus: D′κλ(gi ) = 0
∀κ = 1, . . . , r ;
∀λ = r + 1, . . . , h

Thus {D′(gi ) : i = 1, . . . , h} is block-diagonal, contrary to the
assumption that {D(gi )} is irreducible qed
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Schur’s Second Lemma
Schur’s Second Lemma: Suppose we have two IRs
{D1(gi ), dimension n1} and {D2(gi ), dimension n2},
as well as a n1 × n2 matrix M such that

D1(gi ) M = M D2(gi ) ∀gi ∈ G (♣)

(1) If {D1(gi )} and {D2(gi )} are inequivalent, then M = 0.

(2) If M 6= 0 then {D1(gi )} and {D2(gi )} are equivalent.
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Proof of Schur’s Second Lemma (cf. Bir & Pikus)

I Take Hermitean conjugate of (♣); use D†(gi ) = D−1(gi ) = D(g−1
i ),

so
M†D1(g−1

i ) = D2(g−1
i )M†

I Multiply by M on the left; Eq. (♣) implies M D2(g−1
i ) = D1(g−1

i ) M,
so

MM†D1(g−1
i ) = D1(g−1

i )MM† ∀g−1
i ∈ G

I Schur’s first lemma implies that MM† is square matrix with
MM† = c1 with c ∈ C (*)

I Case a: n1 = n2

• If c 6= 0 then detM 6= 0 because of (*), i.e., M is invertible.
So (♣) implies

M−1 D1(gi )M = D2(gi ) ∀gi ∈ G
thus {D1(gi )} and {D2(gi )} are equivalent.

• If c = 0 then MM† = 0, i.e.,∑
ν

MµνM
†
νµ =

∑
ν

MµνM
∗
µν =

∑
ν

|Mµν |2 = 0 ∀µ

so that M = 0.
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Proof of Schur’s Second Lemma (cont’d)

I Case b: n1 6= n2 (n1 < n2 to be specific)
• Fill up M with n2 − n1 rows to get matrix M̃ with det M̃ = 0.

• However M̃M̃† = MM†, so that

det(MM†) = det(M̃M̃†) = (det M̃) (det M̃†) = 0

• So c = 0, i.e., MM† = 0, and as before M = 0.
qed
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Orthogonality Relations for IRs
Notation:

I Irreducible Representations (IR): ΓI = {DI (gi ) : gi ∈ G}
I nI = dimensionality of IR ΓI

I h = order of group G

Theorem 4: Orthogonality Relations for Irreducible Representations
(1) two inequivalent IRs ΓI 6= ΓJ

h∑
i=1

DI (gi )
∗
µ′ν′ DJ(gi )µν = 0

∀ µ′, ν′= 1, . . . , nI

∀ µ, ν = 1, . . . , nJ

(2) representation matrices of one IR ΓI

nI

h

h∑
i=1

DI (gi )
∗
µ′ν′ DI (gi )µν = δµ′µ δν′ν ∀ µ′, ν′, µ, ν = 1, . . . , nI

Remarks
I [DI (gi )µν : i = 1, . . . , h] form vectors in a h-dim. vector space

I vectors are normalized to
√

h/nI (because ΓI assumed to be unitary)

I vectors for different I , µν are orthogonal

I in total, we have
∑

I n2
I such vectors; therefore

∑
I n2

I ≤ h

Corollary: For finite groups the number of inequivalent IRs is finite.
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Proof of Theorem 4: Orthogonality Relations for IRs

(1) two inequivalent IRs ΓI 6= ΓJ

I Take arbitrary nJ × nI matrix X 6= 0 (i.e., at least one Xµν 6= 0)

I Let M ≡
∑
i

DJ(gi ) X DI (g−1
i )

⇒ DJ(gk) M =
∑
i

DJ(gk)DJ(gi )︸ ︷︷ ︸ X DI (g−1
i )

=M︷ ︸︸ ︷
D−1

I (gk)︸ ︷︷ ︸DI (gk)

=1︷ ︸︸ ︷
=
∑
i

DJ(gk gi︸︷︷︸
=gj

) X D−1
I (gk gi︸︷︷︸

=gj

) DI (gk)

=
∑
j

DJ(gj) X DI (g−1
j )︸ ︷︷ ︸ DI (gk)

= M DI (gk)

⇒ (Schur’s Second Lemma)

0 = Mµµ′ ∀µ, µ′

=
∑
i

∑
κ,λ

DJ(gi )µκ XκλDI (g−1
i )λµ′

in particular correct for
Xκλ = δνκ δλν′

=
∑
i

DJ(gi )µν DI (g−1
i )ν′µ′

=
∑
i

DI (gi )
∗
µ′ν′ DJ(gi )µν qed
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Proof of Theorem 4: Orthogonality Relations for IRs (cont’d)

(2) representation matrices of one IR ΓI

First steps similar to case (1):

I Let M ≡
∑
i

DI (gi ) X DI (g−1
i ) with nI × nI matrix X 6= 0

⇒ DI (gk) M = M DI (gk)

⇒ (Schur’s First Lemma): M = c 1, c ∈ C

I Thus c δµµ′ =
∑
i

∑
κ,λ

DI (gi )µκ XκλDI (g−1
i )λµ′ choose Xκλ = δνκ δλν′

=
∑
i

DI (gi )µν DI (g−1
i )ν′µ′ = Mµµ′

I c =
1

nI

∑
µ

Mµµ =
1

nI

∑
i

∑
µ
DI (gi )µν DI (g−1

i )ν′µ︸ ︷︷ ︸
DI (g−1

i gi = e)ν′ν = δνν′

=
h

nI
δνν′ qed
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Goal: Characterize different irreducible representations of a group

Characters
I The traces of the representation matrices are called characters

χ(gi ) ≡ trD(gi ) =
∑

i D(gi )µµ

I Equivalent IRs are related via a similarity transformation

D′(gi ) = X D(gi )X−1 with X nonsingular

This transformation leaves the trace invariant: trD′(gi ) = trD(gi )

⇒ Equivalent representations have the same characters.

I Theorem 5: If gi , gj ∈ G belong to the same class Ck of G, then for
every representation ΓI of G we have χI (gi ) = χI (gj)

Proof:
• gi , gj ∈ C ⇒ ∃ x ∈ G with gi = x gj x

−1

• Thus DI (gi ) = DI (x)DI (gj)DI (x
−1)

• χI (gi ) = tr
[
DI (x)DI (gj)DI (x

−1)
] (trace invariant under

cyclic permutation)

= tr
[
DI (x

−1)DI (x)︸ ︷︷ ︸
=1

DI (gj)
]

= χI (gk)
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Characters (cont’d)
Notation

I χI (Ck) denotes the character of group elements in class Ck

I The array [χI (Ck)] with I = 1, . . . ,N (N = number of IRs)

k = 1, . . . , Ñ (Ñ = number of classes)
is called character table.

Remark: For Abelian groups the character table is the table

of the 1× 1 representation matrices

Theorem 6: Orthogonality relations for characters

Let {DI (gi )} and {DJ(gi )} be two IRs of G. Let hk be the number of
elements in class Ck and Ñ the number of classes. Then

Ñ∑
k=1

hk

h
χ∗I (Ck)χJ(Ck) = δIJ ∀ I , J = 1, . . . ,N

Proof: Use orthogonality
relation for IRs

I Interpretation: rows [χI (Ck) : k = 1, . . . Ñ] of character table
are like N orthonormal vectors in a Ñ-dimensional vector space
⇒ N ≤ Ñ.

I If two IRs ΓI and ΓJ have the same characters, this is necessary and
sufficient for ΓI and ΓJ to be equivalent.
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Example: Symmetry group C3v of equilateral triangle

(isomorphic to permutation group P3)
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P3 e a b = a2 c = ec d = ac f = bc

Koster E C3 C 2
3 σv σv σv

Γ1 (1) (1) (1) (1) (1) (1)

Γ2 (1) (1) (1) (−1) (−1) (−1)

Γ3

(
1 0

0 1

) (
− 1

2
−
√

3
2√

3
2
− 1

2

) (
− 1

2

√
3

2

−
√

3
2
− 1

2

) (
1 0

0 −1

) (
− 1

2
−
√

3
2

−
√

3
2

1
2

) (
− 1

2

√
3

2√
3

2
1
2

)

multipli-
cation
table

P3 e a b c d f

e e a b c d f
a a b e f c d
b b e a d f c
c c d f e a b
d d f c b e a
f f c d a b e

Character table

P3 e a, b c, d , f

C3v E 2C3 3σv

Γ1 1 1 1
Γ2 1 1 −1
Γ3 2 −1 0
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Interpretation: Character Tables
I A character table is the uniquely defined signature of a group and

its IRs ΓI [independent of, e.g., phase conventions for representation
matrices DI (gi ) that are quite arbitrary].

I Isomorphic groups have the same character tables.

I Yet: the labeling of IRs ΓI is a matter of convention. – Customary:
• Γ1 = identity representation: all characters are 1

• IRs are often numbered such that low-dimensional IRs come first;
higher-dimensional IRs come later

• If G contains the inversion, a superscript ± is added to ΓI indicating
the behavior of Γ±I under inversion (even or odd)

• other labeling schemes are inspired by compatibility relations
(more later)

I Different authors use different conventions to label IRs. To compare
such notations we need to compare the uniquely defined characters
for each class of an IR.
(See, e.g., Table 2.7 in Yu and Cardona: Fundamentals of Semiconductors;

here we follow Koster et al.)
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Decomposing Reducible Representations (RRs)
Into Irreducible Representations (IRs)

Given an arbitrary RR {D(gi )} the representation matrices {D(gi )} can
be brought into block-diagonal form by a suitable unitary transformation

D(gi ) → D′(gi ) =



D1(gi ) 0. . .
D1(gi )

. . .
DN(gi )

. . .0 DN(gi )



}
a1 times

...}
aN times

Theorem 7: Let aI be the multiplicity, with which the IR ΓI ≡ {DI (gi )}
is contained in the representation {D(gi )}. Then

(1) χ(gi ) =
N∑
I=1

aI χI (gi )

(2) aI =
1

h

h∑
i=1

χ∗I (gi )χ(gi ) =
Ñ∑

k=1

hk

h
χ∗I (Ck)χ(Ck)

We say: {D(gi )} contains the IR ΓI aI times.
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Proof: Theorem 7

(1) due to invariance of trace under similarity transformations

(2) we have
N∑

J=1

aJ χJ(gi ) = χ(gi )

∣∣∣∣ 1

h

h∑
i=1

χ∗I (gi )×

⇒
N∑

J=1

aJ
1

h

h∑
i=1

χ∗I (gi )χJ(gi )︸ ︷︷ ︸
=δIJ

=
1

h

h∑
i=1

χ∗I (gi )χ(gi ) qed

Applications of Theorem 7:

I Corollary: The representation {D(gi )} is irreducible if and only if
h∑

i=1

|χ(gi )|2 = h

Proof: Use Theorem 7 with aI =

{
1 for one I
0 otherwise

I Decomposition of Product Representations (see later)
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Where Are We?

We have discussed the orthogonality relations for

I irreducible representations

I characters

These can be complemented by matching completeness relations.

Proving those is a bit more cumbersome. It requires the
introduction of the regular representation.
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The Regular Representation
Finding the IRs of a group can be tricky. Yet for finite groups we can derive

the regular representation which contains all IRs of the group.

I Interpret group elements gν as basis vectors {|gν〉 : ν = 1, . . . h}
for a h-dim. representation

⇒ Regular representation:
νth column vector of DR(gi ) gives image |gµ〉 = gi |gν〉 ≡ |gigν〉
of basis vector |gν〉

⇒ DR(gi )µν =

{
1 if gµg−1

ν = gi

0 otherwise

I Strategy:

• Re-arrange the group multiplication table
as shown on the right

g−1
1 g−1

2 g−1
3 . . .

g1 e . . .
g2 e
g3

... e
... e

• For each gi ∈ G we have DR(gi )µν = 1,
if the entry (µ, ν) in the re-arranged
group multiplication table equals gi ,
otherwise DR(gi )µν = 0.
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Properties of the Regular Representation {DR(gi)}
(1) {DR(gi )} is, indeed, a representation for the group G
(2) It is a faithful representation, i.e., {DR(gi )} is isomorphic to G = {gi}.

(3) χR(gi ) =

{
h if gi = e
0 otherwise

Proof:

(1) Matrices {DR(gi )} are nonsingular, as every row / every column
contains “1” exactly once.

Show: if gigj = gk , then DR(gi )DR(gj) = DR(gk)

Take i , j , µ, ν arbitrary, but fixed{
DR(gi )µλ = 1 only for gµ g

−1
λ = gi ⇔ gλ = g−1

i gµ
DR(gj)λν = 1 only for gλ g

−1
ν = gj ⇔ gλ = gj gν

⇔
∑
λ

DR(gi )µλ DR(gj)λν = 1 only for g−1
i gµ = gj gν

⇔ gµ g
−1
ν = gi gj = gk [definition of DR(gk)µν ]

(2) immediate consequence of definition of DR(gi )

(3) DR(gi )µµ =

{
1 if gi = gµ g

−1
µ = e

0 otherwise

⇒ χR(gi ) =
∑
µ

DR(gi )µµ =

{
h if gi = e
0 otherwise
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Example: Regular Representation for P3

g e a b c d f

e e a b c d f
a a b e f c d
b b e a d f c
c c d f e a b
d d f c b e a
f f c d a b e

⇒

g−1 e b a c d f

e e b a c d f
a a e b f c d
b b a e d f c
c c f d e a b
d d c f b e a
f f d c a b e

Thus

e =


1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

 a =


0 0 1
1 0 0
0 1 0

0 1 0
0 0 1
1 0 0

 b =


0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0



c =


1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

 d =


0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

 f =


0 0 1
1 0 0
0 1 0

0 1 0
0 0 1
1 0 0


Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Completeness of Irreducible Representations
Lemma: The regular representation contains every IR nI times,
where nI = dimensionality of IR ΓI .

Proof: Use Theorem 7: χR(gi ) =
∑
i

aI χI (gi ) where

aI = 1
h

∑
i

χ∗I (gi )χR(gi ) = 1
h
χ∗I (e)︸ ︷︷ ︸

=nI

χR(e)︸ ︷︷ ︸
=h

= nI

Corollary (Burnside’s Theorem): For a group G of order h,
the dimensionalities nI of the IRs ΓI obey∑

I

n2
I = h

Proof: h = χR(e) =
∑

I aI χI (e) =
∑

I n
2
I

serious constraint for dimensionalities of IRs

Theorem 8: The representation matrices DI (gi ) of a group G of order h
obey the completeness relation∑

I

∑
µ,ν

nI

h
D∗I (gi )µν DI (gj)µν = δij ∀ i , j = 1, . . . , h (*)

Proof:

I Theorem 4: Interpret [DI (gi )µν : i = 1, . . . , h] as orthonormal row vectors
of a matrix M

I Corollary: M has h columns

}
⇒ M is square matrix: unitary
⇒ column vectors also orthonormal

= completeness (*)
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Completeness Relation for Characters
Theorem 9: Completeness Relation for Characters
If χI (Ck) is the character for class Ck and irreducible representation I ,
then hk

h

∑
I

χ∗I (Ck)χI (Ck′) = δkk′ ∀ k, k ′ = 1, . . . , Ñ

I Interpretation: columns

 χ1(Ck )
...

χN(Ck )

 of character table [k = 1, . . . , Ñ]

are like Ñ orthonormal vectors in a N-dimensional vector space

I Thus Ñ ≤ N. (from com-
pleteness)

I Also N ≤ Ñ (from ortho-
gonality)

}
Number N of irreducible representations

= Number Ñ of classes

I Character table
• square table
• rows and column form orthogonal vectors
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Proof of Theorem 9: Completeness Relation for Characters

Lemma: Let {DI (gi )} be an nI -dimensional IR of G. Let Ck be a class of
G with hk elements. Then∑

i∈Ck

DI (gi ) =
hk

nI
χI (Ck)1

The sum over all representation matrices in a class of an IR is proportional to

the identity matrix.

Proof of Lemma:

I For arbitrary gj ∈ G
DI (gj)

[ ∑
i∈Ck
DI (gi )

]
DI (g−1

j ) =
∑
i∈Ck
DI (gj)DI (gi )DI (g−1

j )︸ ︷︷ ︸
=DI (gi′ ) with i ′∈Ck

=x
because gj maps gi1 6= gi2 onto gi′

1
6= gi′

2

∑
i ′∈Ck

DI (gi ′)

⇒ (Schur’s First Lemma):
∑
i∈Ck
DI (gi ) = ck 1

I ck =
1

nI
tr
[ ∑
i∈Ck
DI (gi )

]
=

hk

nI
χI (Ck) qed
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Proof of Theorem 9: Completeness Relation for Characters

I Use Theorem 8 (Completeness Relations for Irreducible Representations)

N∑
I=1

∑
µ,ν

nI

h
D∗I (gi )µν DI (gj)µν = δij

∣∣∣∣ ∑
i∈Ck

∑
j∈Ck′

⇒
∑
I

nI

h

∑
µ,ν

[ ∑
i∈Ck
D∗I (gi )

]
µν︸ ︷︷ ︸

hk

nI
χ∗I (Ck) δµν

[ ∑
j∈Ck′
DI (gj)

]
µν︸ ︷︷ ︸

hk′

nI
χI (Ck′) δµν (Lemma)︸ ︷︷ ︸

hk hk′

n2
I

χ∗I (Ck) χI (Ck′)
∑
µ,ν

δµν︸ ︷︷ ︸
=nI

qed

= hkδkk′
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Summary: Orthogonality and Completeness Relations

Theorem 4: Orthogonality Relations for Irreducible Representations

nI

h

h∑
i=1

DI (gi )
∗
µ′ν′ DJ(gi )µν = δIJ δµµ′ δνν′

I , J = 1, . . . ,N
µ′, ν′= 1, . . . , nI
µ, ν = 1, . . . , nJ

Theorem 8: Completeness Relations for Irreducible Representations

N∑
I=1

∑
µ,ν

nI

h
D∗I (gi )µν DI (gj)µν = δij ∀ i , j = 1, . . . , h

Theorem 6: Orthogonality Relations for Characters

Ñ∑
k=1

hk

h
χ∗I (Ck)χJ(Ck) = δIJ ∀ I , J = 1, . . . ,N

Theorem 9: Completeness Relation for Characters

hk

h

N∑
I=1

χ∗I (Ck)χI (Ck′) = δkk′ ∀ k, k ′ = 1, . . . , Ñ
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More on
Unreducible
hhhhhhhhhIrreducible Problems
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Group Theory in Quantum Mechanics

Topics:
I Behavior of quantum mechanical states and operators

under symmetry operations

I Relation between irreducible representations and invariant subspaces
of the Hilbert space

I Connection between eigenvalue spectrum of quantum mechanical
operators and irreducible representations

I Selection rules: symmetry-induced vanishing of matrix elements
and Wigner-Eckart theorem

Note:

Operator formalism of QM convenient to discuss group theory.

Yet: many results also applicable in other areas of physics.
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Symmetry Operations in Quantum Mechanics (QM)

I Let G = {gi} be a group of symmetry operations of a qm system

e.g., translations, rotations, permutation of particles

I Translated into the language of group theory:

In the Hilbert space of the qm system we have a group of unitary

operators G′ = {P̂(gi )} such that G′ is isomorphic to G.

Examples
I translations Ta

→ unitary operator P̂(Ta) = exp (i p̂ · a/~) (p̂ = momentum)

P̂(Ta)ψ(r) =
[
1 +∇ · a + 1

2 (∇ · a)2 + . . .
]
ψ(r) = ψ(r + a)

I rotations Rφ
→ unitary operator P̂(n, φ) = exp

(
i L̂ · nφ/~

) (L̂ = angular momentum
φ = angle of rotation
n = axis of rotation)
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Transformation of QM States
I Let {|ν〉} be an orthonormal basis

I Let P̂(gi ) be the symmetry operator for the symmetry transformation gi

with symmetry group G = {gi}.

I Then P̂(gi ) |ν〉=
↑

1=
∑
µ |µ〉〈µ|

∑
µ
|µ〉 〈µ| P̂(gi ) |ν〉︸ ︷︷ ︸

D(gi )µν

I So P̂(gi ) |ν〉 =
∑
µ
D(gi )µν |µ〉 where D(gi )µν =

matrix of a unitary
representation of G
because P̂(gi ) unitary

I Note: bras and kets transform according to complex conjugate
representations 〈ν|P̂(gi )

† =
∑
µ
〈µ| D(gi )

∗
µν

I Let gi , gj ∈ G with gi gj = gk ∈ G. Then (consistent with
matrix multiplication)

P̂(gi ) P̂(gj) |ν〉 =


∑
κµ
|κ〉

D(gi )κµ︷ ︸︸ ︷
〈κ| P̂(gi ) |µ〉

D(gi )µν︷ ︸︸ ︷
〈µ| P̂(gi ) |ν〉 =

∑
κµ
D(gi )κµD(gi )µν |κ〉

P̂(gk) |ν〉 =
∑
κ
D(gk)κν |κ〉

Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Transformation of (Wave) Functions ψ(r)
I P̂(gi )|r〉 = |r′=gi r〉 ⇔ 〈r|P̂(gi ) = 〈r′=g−1

i r| b/c P̂(g)† = P̂(g−1)

I Let ψ(r) ≡ 〈r|ψ〉

⇒ P̂(gi )ψ(r) ≡ 〈r|P̂(gi )|ψ〉 = ψ(g−1
i r) ≡ ψi (r)

I In general, the functions V = {ψi (r) : i = 1, . . . , h} are linear dependent

⇒ Choose instead linear independent functions ψν(r) ≡ 〈r|ν〉 spanning V

⇒ Expand images P̂(gi )ψν(r) in terms of {ψν(r)}:
P̂(gi )ψ(r) = 〈r|P̂(gi )|ψ〉 =

∑
µ
〈r|µ〉〈µ|P̂(gi )|ν〉 =

∑
µ
D(gi )µν ψµ(r)

⇒ P̂(gi )ψν(r) = ψν(g−1
i r) =

∑
µ
D(gi )µν ψµ(r)

I Thus: every function ψ(r) induces a matrix representation Γ = {D(gi )}

I Also: every representation Γ = {D(gi )} is completely characterized by a
(nonunique) set of basis functions {ψν(r)} transforming according to Γ.

I Dirac bra-ket notation convenient for formulating group theory of functions.
Yet: results applicable in many areas of physics beyond QM.
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Important Representations in Physics (usually reducible)

(1) Representations for polar and axial (cartesian) vectors

I generally: two types of point group symmetry operations
• proper rotations gpr = (n, θ) about axis n, angle θ

D[gpr = (n, θ)] = Rodrigues’ rotation formula n2
x (1− cos θ) + cos θ nxny (1− cos θ)− nz sin θ nxnz (1− cos θ) + ny sin θ

nynx (1− cos θ) + nz sin θ n2
y (1− cos θ) + cos θ nynz (1− cos θ)− nx sin θ

nznx (1− cos θ)− ny sin θ nzny (1− cos θ) + nx sin θ n2
z (1− cos θ) + cos θ


I detD(gpr) = +1

I χ(gpr) = trD(gpr) = 1 + 2 cos θ independent of n

• improper rotations gim ≡ i gpr = gpri where i = inversion

I polar vectors
• proper rotations gpr:

I detDpol(gpr) = +1
I trDpol(gpr) = 1 + 2 cos θ

• inversion i : Dpol(i) = −13×3

• improper rotations gim = i gpr:
I Dpol(gim) = −Dpol(gpr)
I detDpol(gim) = −1
I trDpol(gim) = −(1 + 2 cos θ)

• Γpol = {Dpol(g)} ⊆ O(3) always a faithful representation (i.e., isomorphic to G)

• examples: position r, linear momentum p, electric field E
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Important Representations in Physics
(1) Representations for polar and axial (cartesian) vectors (cont’d)

I axial vectors
• proper rotations gpr:

I Dax(gpr) = Dpol(gpr)

I detDax(gpr) = +1

I trDax(gpr) = 1 + 2 cos θ

• inversion i : Dax(i) = +13×3

• improper rotations gim = i gpr:

I Dax(gim) = Dax(gpr) = −Dpol(gpr)

I detDax(gim) = +1

I trDax(gim) = 1 + 2 cos θ

• Γax = {Dax(g)} ⊆ SO(3)

• examples: angular momentum L, magnetic field B

I systems with discrete symmetry group G = {gi : i = 1, . . . , h}:

Γpol = {Dpol(gi ) : i = 1, . . . , h}
Γax = {Dax(gi ) : i = 1, . . . , h}

We have a “universal recipe” to
construct the 3× 3 matrices Dpol(g)
and Dax(g) for each group element
gpr = (n, θ) and gim = i (n, θ)
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Important Representations in Physics (cont’d)

(2) Equivalence Representations Γeq

I Consider symmetric object (symmetry group G)
• vertices, edges, and faces of platonic solids are equivalent by symmetry

• atoms / atomic orbitals |µ〉 in a molecule may be equivalent by symmetry

I Equivalence representation Γeq describes mapping of equivalent objects

I Generally: P̂(g) |µ〉 =
∑
ν
Deq(g)νµ |ν〉

I Example: orbitals of equivalent H atoms in NH3 molecule (group C3v )

Equivalent to: permutations of corners of triangle (group P3)
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Example: Symmetry group C3v of equilateral triangle

(isomorphic to permutation group P3)
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Transformation of QM States (cont’d)

I in general: representation {D(gi )} of states {|ν〉} is reducible

I We have D′(gi ) = U−1D(gi ) U

I More explicitly: D′(gi )µ′ν′ =
∑
µν

U−1
µ′µ D(gi )µν︸ ︷︷ ︸
〈µ| P̂(gi ) |ν〉

Uνν′

=
∑
µν

(
〈µ|U−1

µ′µ

)
P̂(gi )

(
Uνν′ |ν〉

)
= 〈µ′| P̂(gi ) |ν′〉

with |ν′〉 =
∑
ν

Uνν′ |ν〉

I Thus: block diagonalization

{D(gi )} → {D′(gi ) = U−1D(gi ) U}
corresponds to change of basis

{|ν〉} → {|ν′〉 =
∑
ν

Uνν′ |ν〉}
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Basis Functions for Irreducible Representations
I matrices {DI (gi )} are fully characterized by basis functions
{ψI

ν(r) : ν = 1, . . . nI} transforming according to IR ΓI

P̂(gi )ψ
I
ν(r) = ψν(g−1

i r) =
∑
µ
DI (gi )µν ψ

I
µ(r)

I convenient if we need to spell out phase conventions for {DI (gi )} (→ Koster)
I identify IRs for (components of) polar and axial vectors

Example: Symmetry group C3v
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r = (x , y , z) = polar vector, L = (Lx , Ly , Lz) = axial vector
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Relevance of Irreducible Representations

Invariant Subspaces
Definition:

I Let G = {gi} be a group of symmetry transformations.
Let H = {|µ〉} be a Hilbert space with states |µ〉.
A subspace S ⊂ H is called invariant subspace (with respect to G) if

P̂(gi ) |µ〉 ∈ S ∀ gi ∈ G, ∀ |µ〉 ∈ S
I If an invariant subspace can be decomposed into smaller invariant

subspaces, it is called reducible, otherwise it is called irreducible.

Theorem 10:
An invariant subspace S is irreducible if and only if the states in S
transform according to an irreducible representation.

Proof:

I Suppose {D(gi )} is reducible.

I ∃ unitary transformation U with {D′(gi ) = U−1D(gi )U} block diagonal

I For {D′(gi )} we have the basis {|µ′〉 =
∑
µ Uµµ′ |µ〉}

I The block diagonal form of {D′(gi )} implies that {|µ′〉 is reducible
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Invariant Subspaces (cont’d)

Corollary: Every Hilbert space H can be decomposed into irreducible
invariant subspaces SI transforming according to the IR ΓI

Remark: Given a Hilbert space H we can generally have multiple
(possibly orthogonal) irreducible invariant subspaces SαI

SαI =
{
|I να〉 : ν = 1, . . . , nI

}
transforming according to the same IR ΓI

P̂(gi ) |I να〉 =
∑
µ
DI (gi )µν |I µα〉

Theorem 11:

(1) States transforming according to different IRs are orthogonal

(2) For states |I µα〉 and |I νβ〉 transforming according to the same
IR ΓI we have

〈I µα | I νβ〉 = δµν〈I α||I β〉
where the reduced matrix element 〈I α||I β〉 is independent of µ, ν.

Remark: This theorem lets us anticipate the Wigner-Eckart theorem
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Invariant Subspaces (cont’d)

Proof of Theorem 11

I Use unitarity of P̂(gj): 1 = P̂(gj)
† P̂(gj) = 1

h

∑
i

P̂(gi )
† P̂(gi )

I Then

〈I µα |Jνβ〉 = 1
h

∑
i

〈I µα| P̂(gi )
†︸ ︷︷ ︸∑

µ′ 〈I µ′α|DI (gi )∗µ′µ

P̂(gi ) |Jνβ〉︸ ︷︷ ︸∑
ν′ DJ (gi )ν′ν |Jν′β〉

=
∑
µ′ν′
〈I µ′α |Jν′β〉 1

h

∑
i DI (gi )

∗
µ′µDJ(gi )ν′ν︸ ︷︷ ︸

(1/nI ) δIJ δµν δµ′ν′

= δIJ δµν
1
nI

∑
µ′
〈I µ′α |I µ′β〉︸ ︷︷ ︸
≡〈Iα||I β〉 qed
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Discussion Theorem 11

I ΓJ × ΓI contains the identity representation Γ1 if and only if the IR ΓJ is the
complex conjugate of ΓI , i.e., Γ∗J = ΓI ⇔ DJ(g)∗ = DI (g) ∀g .

I If the ket |Jµα〉 transforms according to the IR ΓJ , the bra 〈Jµα|
transforms according to the complex conjugate representation Γ∗J .

I Thus: 〈Jµα|I νβ〉 6= 0 equivalent to
• bra and ket transform according to complex conjugate representations
• 〈Jµα|I νβ〉 contains the identity representation

I Indeed, common theme of representation theory applied to physics:

Terms are only nonzero if they transform according to a representation
that contains the identity representation.

I Variant of Theorem 11 (Bir & Pikus):

If fI (x) transforms according to some IR ΓI , then
∫

fI (x) dx 6= 0

only if ΓI is the identity representation.

I Applications
• Wigner-Eckart Theorem
• Nonzero elements of material tensors
• Our universe would be zero “by symmetry” if the apparently trivial identity
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Decomposition into Irreducible Invariant Subspaces
I Goal: Decompose general state |ψ〉 ∈ H into components from

irreducible invariant subspaces SI
I Generalized projection operator Π̂I

µµ′ := nI
h

∑
i

DI (gi )
∗
µµ′ P̂(gi )

I Theorem 12: (i) Π̂I
µµ′ |Jνα〉 = δIJ δµ′ν |Iµα〉

(ii) Π̂I
µµ′ Π̂J

νν′ = δIJ δµ′νΠ̂J
µν′

(iii)
∑
Iµ

Π̂I
µµ = 1

Proof:

(i) Π̂I
µµ′ |Jνα〉 = nI

h

∑
i

DI (gi )
∗
µµ′ P̂(gi ) |Jνα〉︸ ︷︷ ︸∑

ν′ DJ (gi )ν′ν |Jν
′α〉

=
∑
ν′

nI
h

∑
iDI (gi )

∗
µµ′ DJ(gi )ν′ν︸ ︷︷ ︸

δIJ δµν′ δµ′ν

|Jν′α〉

(ii) Π̂I
µµ′ Π̂J

νν′ = nI
h

∑
i

nJ
h

∑
j

DI (gi )
∗
µµ′DJ(gj)

∗
νν′ P̂(gi ) P̂(gj) subst. gigj = gk

= nI
h

∑
i

nJ
h

∑
k

DI (gi )
∗
µµ′DJ(g−1

i gk)∗νν′ P̂(gk)

= nJ
h

∑
kλ

nI
h

∑
i

DI (gi )
∗
µµ′DJ(g−1

i )∗νλ︸ ︷︷ ︸
DJ (gi )λν︸ ︷︷ ︸

δIJδµλδµ′ν

DJ(gk)∗λν′ P̂(gk)

[or use (i)]

(iii)
∑
Iµ

Π̂I
µµ =

∑
i

1
h

∑
I

∑
µDI (gi )

∗
µµ′︸ ︷︷ ︸

χ∗
I

(gi )

nI︸︷︷︸
χI (e)

P̂(gi ) =
∑
i

δgi e P̂(gi ) = P̂(e) ≡ 1
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Decomposition into Invariant Subspaces (cont’d)

Discussion

I Let |ψ〉 =
∑
Jνα

cJνα |Jνα〉 general state with coefficients cJµα (*)

I Diagonal operator Π̂I
µµ projects |ψ〉 on components |Iµα〉:

• (Π̂I
µµ)2|ψ〉 = Π̂I

µµ|ψ〉 =
∑
α

cIµα |Iµα〉

•
∑
I µ

Π̂I
µµ = 1

I Let Π̂I ≡
∑
µ

Π̂I
µµ = nI

h

∑
i

χ∗I (gi ) P̂(gi ) :

• Π̂I |ψ〉 =
∑
να

cIνα |Iνα〉

• Π̂I projects |ψ〉 on the invariant subspace SI (IR ΓI )

I For functions ψ(r) ≡ 〈r|ψ〉:

Π̂I
µµ′ ψ(r) = nI

h

∑
i

DI (gi )
∗
µµ′ ψ(g−1

i r)
we need not know
the expansion (*)
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Irreducible Invariant Subspaces (cont’d)

Example:

I Group Ci = {e, i} e = identity
i = inversion

Ci e i

e e i
i i e

I character table
Ci e i

Γ1 1 1
Γ2 1 −1

I P̂(e)ψ(x) = ψ(x), P̂(i)ψ(x) = ψ(−x)

I Projection operator Π̂I = nI
h

∑
i

χ∗I (gi ) P̂(gi ) with nI = 1, h = 2

I Π̂1 = 1
2 [P̂(e) + P̂(i)] ⇒ Π̂1 ψ(x) = 1

2 [ψ(x) + ψ(−x)] even part

Π̂2 = 1
2 [P̂(e)− P̂(i)] ⇒ Π̂2 ψ(x) = 1

2 [ψ(x)− ψ(−x)] odd part
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Product Representations
I Let {|Iµ〉 : µ = 1, . . . nI} and {|Jν〉 : ν = 1, . . . nJ} denote basis functions

for invariant subspaces SI and SJ (need not be irreducible)

Consider the product functions

{|Iµ〉 |Jν〉 : µ = 1, . . . , nI ; ν = 1, . . . , nJ}.
How do these functions transform under G?

I Definition: Let DI (g) and DJ(g) be representation matrices for g ∈ G.

The direct product (Kronecker product) DI (g)⊗DJ(g) denotes the matrix
whose elements in row (µν) and column (µ′ν′) are given by

[DI (g)⊗DJ(g)]µν,µ′ν′ = DI (g)µµ′ DJ(g)νν′
µ, µ′ = 1, . . . , nI
ν, ν′ = 1, . . . , nJ

I Example: Let DI (g) =

(
x11 x12

x21 x22

)
and DJ(g) =

(
y11 y12

y21 y22

)

DI (g)⊗DJ(g) =

(
x11DJ(g) x12DJ(g)
x21DJ(g) x22DJ(g)

)
=


x11y11 x11y12 x12y11 x12y12

x11y21 x11y22 x12y21 x12y22

x21y11 x21y12 x22y11 x22y12

x21y21 x21y22 x22y21 x22y22


I Details of the arrangement in the following not relevant
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Product Representations (cont’d)
I Dimension of product matrix

dim [DI (g)⊗DJ(g)] = dim DI (g) dim DJ(g)

I Let ΓI = {DI (gi )} and ΓJ = {DJ(gi )} be representations of G. Then

ΓI × ΓJ ≡ {DI (g)⊗DJ(g)}
is a representation of G called product representation.

I ΓI × ΓJ is, indeed, a representation:

Let DI (gi )DI (gj) = DI (gk) and DJ(gi )DJ(gj) = DJ(gk)

⇒
(
[DI (gi )⊗DJ(gi )] [DI (gj)⊗DJ(gj)]

)
µν,µ′ν′

=
∑
κλ

DI (gi )µκDJ(gi )νλDI (gj)κµ′ DJ(gj)λν′

→ DI (gk)µµ′ → DJ(gk)νν′

= [DI (gk)⊗DJ(gk)]µν,µ′ν′

I Let P̂(g) |Iµ〉 =
∑
µ′ DI (g)µ′µ |Iµ′〉

P̂(g) |Jν〉 =
∑
ν′ DJ(g)ν′ν |Jν′〉

Then P̂(g) |Iµ〉|Jν〉 =
∑
µ′ν′

[DI (g)⊗DJ(g)]µ′ν′,µν |Iµ′〉|Jν′〉
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Product Representations (cont’d)

I The characters of the product representation are
χI×J(gi ) = χI (gi ) χJ(gi )
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Decomposing Product Representations
I Let ΓI = {DI (gi )} and ΓJ = {DJ(gi )} be irreducible representations of G

The product representation ΓI × ΓJ = {DI×J(gi )} is generally reducible

I According to Theorem 7, we have

ΓI × ΓJ =
∑
K

aI JK ΓK where aI JK =
Ñ∑

k=1

hk

h
χ∗K (Ck) χI×J(Ck)︸ ︷︷ ︸

=χI (Ck )χJ (Ck )

I The multiplication table for the
irreducible representations ΓI of G
lists

∑
k aI JK ΓK

ΓI × ΓJ Γ1 Γ2 . . .
Γ1

Γ2
...

I Example: Permutation group P3

χ(C) e a, b c , d , f
Γ1 1 1 1
Γ2 1 1 −1
Γ3 2 −1 0

ΓI × ΓJ Γ1 Γ2 Γ3

Γ1 Γ1 Γ2 Γ3

Γ2 Γ1 Γ3

Γ3 Γ1 + Γ2 + Γ3
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(Anti-) Symmetrized Product Representations

Let {|σµ〉} and {|τν〉} be two sets of basis functions for the same n-dim.

representation Γ = {D(g)} with characters {χ(g)}. (again: need not be
irreducible)

(1) “Simple” Product: (discussed previously)

I |ψµν〉 = |σµ〉|τν〉, µ = 1, . . . , n
ν = 1, . . . n

}
total: n2

I P̂(g)|ψµν〉 =
n∑

µ′=1

n∑
ν′=1

D(g)µ′µD(g)ν′ν |σµ′〉|τν′〉

≡
n∑

µ′=1

n∑
ν′=1

[D(g)⊗D(g)]µ′ν′,µν |ψµ′ν′〉

I Character tr[D(g)⊗D(g)] = χ2(g)
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(Anti-) Symmetrized Product Representations (cont’d)

(2) Symmetrized Product:

I |ψs
µν〉 = 1

2 (|σµ〉|τν〉+ |σν〉|τµ〉), µ = 1, . . . , n
ν = 1, . . . µ

}
total: 1

2
n(n + 1)

I P̂(g)|ψs
µν〉 = 1

2

n∑
µ′=1

n∑
ν′=1

Dµ′µDν′ν (|σµ〉|τν〉+ |σν〉|τµ〉)

=
n∑

µ′=1

[
µ′−1∑
ν′=1

(Dµ′µDν′ν +Dµ′νDν′µ)|ψs
µ′ν′〉+Dµ′µDµ′ν |ψs

µ′µ′〉
]

≡
n∑

µ′=1

µ′∑
ν′=1

[D(g)⊗D(g)]
(s)
µ′ν′,µν |ψs

µ′ν′〉

I tr[D(g)⊗D(g)](s) =
n∑
µ=1

[
µ−1∑
ν=1

(DµµDνν +DµνDνµ) +DµµDµµ
]

= 1
2

n∑
µ=1

n∑
ν=1

[Dµµ(g)Dνν(g) +Dµν(g)Dνµ(g)]

= 1
2

n∑
µ=1

[
Dµµ(g)

n∑
ν=1
Dνν(g) +Dµµ(g 2)

]
= 1

2 [χ(g)2 + χ(g 2)]
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(Anti-) Symmetrized Product Representations (cont’d)

(3) Antisymmetrized Product:

I |ψa
µν〉 = 1

2 (|σµ〉|τν〉 − |σν〉|τµ〉), µ = 1, . . . , n
ν = 1, . . . µ− 1

}
total: 1

2
n(n − 1)

I P̂(g)|ψa
µν〉 = 1

2

n∑
µ′=1

n∑
ν′=1

Dµ′µDν′ν (|σµ〉|τν〉 − |σν〉|τµ〉)

=
n∑

µ′=1

µ′−1∑
ν′=1

(Dµ′µDν′ν −Dµ′νDν′µ)|ψa
µ′ν′〉

≡
n∑

µ′=1

µ′−1∑
ν′=1

[D(g)⊗D(g)]
(a)
µ′ν′,µν |ψa

µ′ν′〉

I tr[D(g)⊗D(g)](a) =
n∑
µ=1

µ−1∑
ν=1

(DµµDνν −DµνDνµ)

= 1
2

n∑
µ=1

n∑
ν=1

[Dµµ(g)Dνν(g)−Dµν(g)Dνµ(g)]

= 1
2

n∑
µ=1

[
Dµµ(g)

n∑
ν=1
Dνν(g)−Dµµ(g 2)

]
= 1

2 [χ(g)2 − χ(g 2)]
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Intermezzo: Material Tensors
to be added . . .

Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Discussion
I Representation – Vector Space

The matrices {D(gi )} of an n-dimensional (reducible or irreducible)
representation describe a linear mapping of a vector space V onto itself.

u = (u1, . . . , un) ∈ V : u
D(gi )−−−→ u′ ∈ V with u′µ =

∑
ν
D(gi )µν uν

I Irreducible Representation (IR) – Invariant Subspace
The decomposition of a reducible representation into IRs ΓI corresponds to
a decomposition of the vector space V into invariant subspaces SI such that

SI
DI (gi )−−−−→ SI ∀gi ∈ G (i.e., no mixing)

This decomposition of V lets us break down a big physical problem

into smaller, more tractable problems

I Product Representation – Product Space
A product representation ΓI × ΓJ describes a linear mapping of the product
space SI × SJ onto itself

SI × SJ
DI×J (gi )−−−−−→ SI × SJ ∀gi ∈ G

I The block diagonalization ΓI × ΓJ =
∑

K aIJK ΓK corresponds to a
decomposition of SI × SJ into invariant subspaces SK
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Discussion (cont’d)

Clebsch-Gordan Coefficients (CGC)

I The block diagonalization ΓI × ΓJ =
∑

K aIJK ΓK corresponds
to a decomposition of SI × SJ into invariant subspaces SK

⇒ Change of Basis: unitary transformation{ SI × SJ −→
∑
K

aIJK∑̀
=1

S`K

old basis {eI
µeJ
ν} −→ new basis {eK`

κ }

Thus eK`
κ =

∑
µν

(
I J K `
µ ν κ

)
eI
µ eJ

ν
index ` not needed
if often aIJK ≤ 1

where

(
I J K `
µ ν κ

)
= Clebsch-Gordan coefficients (CGC)

Clebsch-Gordan coefficients describe the unitary transformation for the

decomposition of the product space SI × SJ into invariant subspaces S`K
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Clebsch-Gordan Coefficients (cont’d)

Remarks
I CGC are independent of the group elements gi

I CGC are tabulated for all important groups (e.g., Koster, Edmonds)

I Note: Tabulated CGC refer to a particular definition (phase convention)
for the basis vectors {eI

µ} and representation matrices {DI (gi )}

I Clebsch-Gordan coefficients C describe a unitary basis transformation

C† C = C C† = 1

I Thus Theorem 13: Orthogonality and completeness of CGC∑
µν

(
I J K `
µ ν κ

)∗(
I J K ′ `′

µ ν κ′

)
= δKK ′ δκκ′ δ``′

∑
K`κ

(
I J K `
µ ν κ

)∗(
I J K `
µ′ ν′ κ

)
= δµµ′ δνν′
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Clebsch-Gordan Coefficients (cont’d)

Clebsch-Gordan coefficients
block-diagonalize the representation
matrices (unitary transformation)

(1)

(
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I x J

)
= C

(
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��� )

C†

(2)

(
��
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���
���
���
���

���
���
���
��� )

= C†
(
�����
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�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

I x J

)
C

More explicitly:

Theorem 14: Reduction of Product Representation ΓI × ΓJ

(1) DI (gi )µµ′ DJ(gi )νν′ =
∑
K`

∑
κκ′

(
I J K `
µ ν κ

)
DK (gi )κκ′

(
I J K `
µ′ ν′ κ′

)∗
(2) DK (gi )κκ′ δKK ′ δ``′

=
∑
µµ′

∑
νν′

(
I J K `
µ ν κ

)∗
DI (gi )µµ′ DJ(gi )νν′

(
I J K ′ `′

µ′ ν′ κ′

)
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Evaluating Clebsch-Gordan Coefficients
I A group G is called simply reducible if its product representations

ΓI × ΓJ contain the IRs ΓK only with multiplicities aIJK = 0 or 1.

I For simply reducible groups (⇒ no index `) according to Theorem 14 (1):
nK

h

∑
i

DI (gi )µµ′ DJ(gi )νν′D∗K (gi )κ̃κ̃′

=
∑
K ′

∑
κκ′

(
I J K ′

µ ν κ

)(
I J K ′

µ′ ν′ κ′

)∗
nK

h

∑
i

DK ′(gi )κκ′D∗K (gi )κ̃κ̃′︸ ︷︷ ︸
= δK ′K δκ̃κ δκ̃′κ′ (Theorem 4)=

(
I J K
µ ν κ̃

)(
I J K
µ′ ν′ κ̃′

)∗
I Choose triple µ = µ′ = µ0, ν = ν′ = ν0, and κ̃ = κ̃′ = κ0 such that LHS 6= 0

⇒
(

I J K
µ0 ν0 κ0

)
=

√
nK

h

∑
i

DI (gi )µ0µ0 DJ(gi )ν0ν0D∗K (gi )κ0κ0 > 0

Given the representation matrices {DI (g)}, the CGCs are unique for each
triple I , J,K up to an overall phase that we choose such that

(
I J K
µ0 ν0 κ0

)
> 0

⇒
(

I J K
µ ν κ

)
=

1(
I J K
µ0 ν0 κ0

) nK

h

∑
i

DI (gi )µµ0 DJ(gi )νν0D∗K (gi )κκ0

∀µ, ν, κ
I If aIJK > 1: CGCs not unique ⇒ trickier!
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Example: CGC for group P3 ' C3v

This group is simply reducible, aIJK ≤ 1, so we may drop the index `.

Here: For Γ3 use the representation matrices {D3(g)} corresponding to
the basis functions x , y .(

1

1

1

1

∣∣∣∣11
)

=

(
1

1

2

1

∣∣∣∣21
)

=

(
2

1

2

1

∣∣∣∣11
)

= 1

(
1

1

3

µ

∣∣∣∣3ν
)

=

(
1 0
0 1

)
µν

(
2

1

3

µ

∣∣∣∣3ν
)

=

(
0 1
−1 0

)
µν(

3

µ

3

ν

∣∣∣∣11
)

=

(
1/
√

2 0

0 1/
√

2

)
µν

(
3

µ

3

ν

∣∣∣∣21
)

=

(
0 1/

√
2

−1/
√

2 0

)
µν(

3

µ

3

ν

∣∣∣∣31
)

=

(
1/
√

2 0

0 −1/
√

2

)
µν

(
3

µ

3

ν

∣∣∣∣32
)

=

(
0 −1/

√
2

−1/
√

2 0

)
µν
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Comparison: Rotation Group
I Angular momentum j = 0, 1/2, 1, 3/2, . . . corresponds to the

irreducible representations of the rotation group

I For each j , these IRs are (2j + 1)-dimensional, i.e., the z component
of angular momentum labels the basis states for the IR Γj .

I Γj=0 is the identity representation of the rotation group

I The product representation Γj1 × Γj2 corresponds to the addition of
angular momenta j1 and j2;

Γj1 × Γj2 = Γ|j1−j2| + . . .+ Γj1+j2

Here all multiplicities aj1j2j3
are one.

I In our lecture, Clebsch-Gordan coefficients have the same meaning
as in the context of the rotation group:

They describe the unitary transformation from the reducible product
space to irreducible invariant subspaces.

This unitary transformation depends only on (the representation
matrices of) the IRs of the symmetry group of the problem so that
the CGC can be tabulated.
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Symmetry of Observables

I Consider Hermitian operator (observable) Ô.

Let G = {gi} be a group of symmetry transformations
with {P̂(gi )} the group of unitary operators isomorphic to G.

• For arbitrary |φ〉 we have |ψ〉 = Ô|φ〉.
• Application of gi gives |ψ′〉 = P̂(gi )|ψ〉 and |φ′〉 = P̂(gi )|φ〉.
• Thus |ψ′〉 = Ô′|φ′〉 requires Ô′ = P̂(gi ) Ô P̂(gi )

−1

If Ô′ = P̂(gi ) Ô P̂(gi )
−1 = Ô ⇔ [P̂(gi ), Ô] = 0 ∀gi ∈ G

we call G the symmetry group of Ô which leaves Ô invariant.
Of course, we want the largest G possible.

I Lemma: If |n〉 is an eigenstate of Ô, i.e., Ô |n〉 = λn |n〉,
and [P̂(gi ), Ô] = 0, then P̂(gi ) |n〉 is likewise an eigenstate of Ô
for the same eigenvalue λn.

As always P̂(gi ) |n〉 need not be orthogonal to |n〉.

Proof: Ô [P̂(gi ) |n〉] = P̂(gi ) Ô |n〉 = λn [P̂(gi ) |n〉]
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Symmetry of Observables (cont’d)
I Theorem 15:

Let G = {P̂(gi )} be the symmetry group of the observable Ô.
Then the eigenstates of a d-fold degenerate eigenvalue λn of Ô
form a d-dimensional invariant subspace Sn.

The proof follows immediately from the preceding lemma.

I Most often: Sn is irreducible

• central property of nature for applying group theory to physics problems
• unless noted otherwise, always assumed in the following
• Identify d-fold degeneracy of λn with d-dimensional IR of G.

I Under which cirumstances can Sn be reducible?

• G does not include all symmetries realized in the system, i.e., G $ G′
(“hidden symmetry”). Then Sn is an irreducible invariant subspace of G′.
Examples: hydrogen atom, m-dimensional harmonic oscillator (m > 1).

• A variant of the preceding case: The extra degeneracy is caused by the
antiunitary time reversal symmetry (more later).

• The degeneracy cannot be explained by symmetry: rare!

(Usually such “accidental degeneracies” correspond to singular points
in the parameter space of a system.) Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Symmetry of Observables (cont’d)

Remarks:

I IRs of G give the degeneracies that may occur in the spectrum
of observable Ô.

I Usually, all IRs of G are realized in the spectrum of observable Ô
(reasonable if eigenfunctions of Ô form complete set)
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Application 1: Symmetry-Adapted Basis
Let Ô = Ĥ = Hamiltonian

I Classify the eigenvalues and eigenstates of Ĥ according to the IRs ΓI

of the symmetry group G of Ĥ.

Notation: Ĥ |Iµ, α〉 = EIα |Iµ, α〉 µ = 1, . . . , nI
α: distinguish different
levels transforming
according to same ΓI

If ΓI is nI -dimensional, then eigenvalues EIα are nI -fold degenerate.

Note: In general, the “quantum number” I cannot be associated directly

with an observable.

I For given EIα, it suffices to calculate one eigenstate |Iµ0, α〉. Then

{|Iµ, α〉 : µ = 1, . . . , nI} = {P̂(gi ) |Iµ0, α〉 : gi ∈ G}
(i.e., both sets span the same subspace of H)

I Expand eigenstates |Iµ, α〉
in a symmetry-adapted basis

{
|Jν, β〉 :

J = 1, . . . ,N;
ν = 1, . . . , nJ ;
β = 1, 2, . . .

}
|Iµ, α〉 =

∑
Jν,β

〈Jν, β|Iµ, α〉︸ ︷︷ ︸
=δIJ δµν 〈Iα||I β〉 see Theorem 11

|Jν, β〉 =
∑
β

〈I α||I β〉 |Iµ, β〉

⇒ partial diagonalization of Ĥ independent of specific details
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Application 2: Effect of Perturbations

I Let Ĥ = Ĥ0 + Ĥ1, Ĥ0 = unperturbed Hamiltonian: Ĥ0|n〉 = E
(0)
n |n〉

Ĥ1 = perturbation

I Perturbation expansion En = E (0)
n + 〈n|Ĥ1|n〉+

∑
n′ 6=n

|〈n|Ĥ1|n′〉|2

E
(0)
n − E

(0)
n′

+ . . .

⇒ need matrix elements 〈n|Ĥ|n′〉 = E (0)
n δnn′ + 〈n|Ĥ1|n′〉

I Let G0 = symmetry group of Ĥ0

G = symmetry group of Ĥ

}
usually G $ G0

I The unperturbed eigenkets {|n〉} transform according to IRs Γ0
I of G0

I {Γ0
I } are also representations of G, yet then reducible

I Every IR Γ0
I of G0 breaks down into (usually multiple) IRs {ΓJ} of G

Γ0
I =

∑
J

aJ ΓJ (see Theorem 7)

⇒ compatibility relations for irreducible representations

I Theorem 16: 〈n = Jµα|Ĥ|n′ = J ′µ′α′〉 = δJJ′ δµµ′〈Jα||Ĥ||J ′α′〉
Proof: Similar to Theorem 11 with Ĥ = P̂(gj)

†Ĥ P̂(gj) = 1
h

∑
i P̂(gi )

†Ĥ P̂(gi )
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Example: Compatibility Relations for C3v ' P3

I Character table C3v ' P3 C3v E 2C3 3σv

P3 e a, b c , d , f

Γ1 1 1 1
Γ2 1 1 −1
Γ3 2 −1 0

I C3v ' P3 has two subgroups C3 = {E ,C3,C
2
3 = C−1

3 } ' G1 = {e, a, b}
Cs = {E , σv}'G2 = {e, c}= {e, d}= {e, f }

I Both subgroups are Abelian, so they have only 1-dim. IRs

C3 E C3 C 2
3

E E C3 C 2
3

C3 C3 C 2
3 E

C 2
3 C 2

3 E C3

C3 E C3 C 2
3

Γ1 1 1 1
Γ2 1 ω ω∗

Γ3 1 ω∗ ω
ω≡e2πi/3

Cs E σi

E E σi
σi σi E

Cs E σi

Γ1 1 1
Γ2 1 −1

I compatibility relations

C3v P3 Γ1 Γ2 Γ3

C3 G1 Γ1 Γ1 Γ2 + Γ3

Cs G2 Γ1 Γ2 Γ1 + Γ2

Γ2

Γ2

Γ2

3vC

Γ2

Γ1

3C

Γ2

Γ2

sC

Γ3

Γ1

Γ1

Γ1

2−fold degen.

nondegen.

nondegen.
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Discussion: Compatibility Relations

Compatibility relations and Theorem 16 tell us how a degenerate level
transforming according to the IR Γ0

I of G0 splits into multiple levels

transforming according to certain IRs {ΓJ} of G when the perturbation Ĥ1

reduces the symmetry from G0 to G $ G0.

Thus qualitative statements:

I Which degenerate levels split because of Ĥ1?

I Which degeneracies remain unaffected by Ĥ1?

I These statements do not require any perturbation theory in the
conventional sense.
(For every pair G0 and G, they can be tabulated once and forever!)

I These statements do not require some kind of “smallness” of Ĥ1.

I But no statement whether (or how much) a level will be raised
or lowered by Ĥ1.
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(Ir)Reducible Operators

I Up to now: symmetry group of operator Ô requires

P̂(gi ) Ô P̂(gi )
−1 = Ô ∀gi ∈ G

I More general: A set of operators {Q̂ν : ν = 1, . . . , n} with

P̂(gi ) Q̂ν P̂(gi )
−1 =

n∑
µ=1
D(gi )µνQ̂µ

∀ ν = 1, . . . , n
∀ gi ∈ G

is called reducible (irreducible), if Γ = {D(gi ) : gi ∈ G}
is a reducible (irreducible) representation of G.

Often a shorthand notation is used: gi Q̂ν ≡ P̂(gi ) Q̂ν P̂(gi )
−1

I We say: The operators {Q̂ν} transform according to Γ.

I Note: In general, the eigenstates of {Q̂ν} will not transform
according to Γ.
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(Ir)Reducible Operators (cont’d)

Examples:
I Γ1 = “identity representation”; D(gi ) = 1 ∀gi ∈ G; nI = 1

⇒ P̂(gi ) Q̂ P̂(gi )
−1 = Q̂ ∀gi ∈ G

We say: Q̂ is a scalar operator or invariant.

I most important scalar operator: the Hamiltonian Ĥ
i.e., Ĥ always transforms according to Γ1

The symmetry group of Ĥ is the largest symmetry group
that leaves Ĥ invariant.

I position operator x̂ν

momentum operator p̂ν = −i~ ∂xν
ν = 1, 2, 3 (polar vectors)

⇒ {x̂ν} and {p̂ν} transform according to 3-dim. representation Γpol

(possibly reducible!)

I composite operators (= tensor operators)

e.g., angular momentum l̂ν =
∑
λ,µ

ελµν x̂λp̂µ ν = 1, 2, 3 (axial vector)
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Tensor Operators

I Let Q̂I ≡ {Q̂I
µ : µ = 1, . . . , nI} transform according to ΓI = {DI (gi )}

Q̂J ≡ {Q̂J
ν : ν = 1, . . . , nJ} transform according to ΓJ = {DJ(gi )}

I Then
{
Q̂I
µ Q̂J

ν : µ = 1, . . . , nI
ν = 1, . . . , nJ

}
transforms according to the product

representation ΓI × ΓJ

I ΓI × ΓJ is, in general, reducible

⇒ The set of tensor operators
{
Q̂I
µ Q̂J

ν

}
is likewise reducible

I A unitary transformation brings ΓI × ΓJ = {DI (gi )⊗DJ(gi )}
into block-diagonal form

⇒ The same transformation decomposes
{
Q̂I
µ Q̂J

ν

}
into irreducible tensor

operators (use CGC)
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Where Are We?

We have discussed

I the transformational properties of states

I the transformational properties of operators

Now:

I the transformational properties of matrix elements

⇒ Wigner-Eckart Theorem
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Wigner-Eckart Theorem
Let {|Iµ, α〉 : µ = 1, . . . , nI} transform according to ΓI = {DI (gi )}

{|I ′µ′, α′〉 : µ′ = 1, . . . , nI ′} transform according to ΓI ′= {DI ′(gi )}
Q̂J = {Q̂J

ν : ν = 1, . . . , nJ} transform according to ΓJ = {DJ(gi )}

Then 〈I ′µ′, α′ | Q̂J
ν | Iµ, α〉 =

∑
`

(
J I I ′ `
ν µ µ′

)
〈I ′α′ || Q̂J || Iα〉`

where the reduced matrix element 〈I ′α′ || Q̂J || Iα〉` is independent
of µ, µ′ and ν.

Proof:

I
{
Q̂J
ν |Iµ, α〉 : µ = 1, . . . , nI

ν = 1, . . . , nJ

}
transforms according to ΓI × ΓJ

I Thus CGC expansion Q̂J
ν |Iµ, α〉 =

∑
Kκ,`

(
J I K `
ν µ κ

)
|Kκ, `〉

I 〈I ′µ′, α′ | Q̂J
ν | Iµ, α〉 =

∑
Kκ,`

(
J I K `
ν µ κ

)
〈I ′µ′, α′ |Kκ, `〉︸ ︷︷ ︸
≡ δI ′K δµ′κ 〈I ′α′ || Q̂J || Iα〉`

Theorem 11
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Discussion: Wigner-Eckart Theorem
I Matrix elements factorize into two terms

• the reduced matrix element independent of µ, µ′ and ν

• CGC indexing the elements µ, µ′ and ν of ΓI , ΓI ′ and ΓJ .
(CGC are tabulated, independent of Q̂J)

I Thus: reduced matrix element = “physics”
Clebsch-Gordan coefficients = “geometry”

I Matrix elements for different values of µ, µ′ and ν have a fixed ratio
independent of Q̂J

I If ΓI ′ is not contained in ΓI × ΓJ
Equivalent to: If Γ∗

I ′ × ΓJ × ΓI does not
contain the identity representation

⇒
(
J I I ′ `
ν µ µ′

)
= 0 ∀ ν, µ, µ′

⇒ 〈I ′µ′, α′ | Q̂J
ν | Iµ, α〉 = 0 ∀ ν, µ, µ′

Many important selection rules are some variation of this result.

I Theorems 11 and 16 are special cases of the WE theorem for
Q̂1 = 1 and Q̂1 = Ĥ (yet we proved the WE theorem via Theorem 11)
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Discussion: Wigner-Eckart Theorem (cont’d)

Application: Perturbation theory

I Compatibility relations and Theorem 16 describe splitting of degenerate
levels using the symmetry group G of perturbed problem

I Alternative approach
Splitting of levels using the symmetry group G0 of unperturbed problem
(i.e., no need to know group G of perturbed problem)

• Let Q̂J be tensor operator transforming according to IR ΓJ of G0

• Often: perturbation Ĥ1 = F J · Q̂J = FJ
ν Q̂J

ν i.e., Ĥ1 is proportional to
only νth component of tensor operator Q̂J

Q̂J projected on component Q̂J
ν via suitable orientation of field F J

• Symmetry group of Ĥ = Ĥ0 + Ĥ1 is subgroup G ⊂ G0 which leaves Q̂J
ν invariant.

• WE Theorem:

〈n|Ĥ1|n′〉 = FJ
ν 〈n=Iµα|Q̂J

ν |n′=I ′µ′α′〉 =
∑̀(

J I ′ I `
ν µ′ µ

)
〈Iα || Q̂J || I ′α′〉` (∗)

• Changing the orientation of F J changes only the CGCs in (∗)
The reduced matrix elements 〈Iα || Q̂J || I ′α′〉` are “universal”
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Example: Optical Selection Rules
Example: Optical transitions for a system with symmetry group C3v

(e.g., NH3 molecule)

I Optical matrix elements 〈iI |e · r̂|fJ〉 (dipole approximation)

where |iI 〉 = initial state (with IR ΓI ); |fJ〉 = final state (IR ΓJ)
e = (ex , ey , ez) = polarization vector
r̂ = (x̂ , ŷ , ẑ) = dipole operator (≡ position operator)

I x̂ , ŷ transform according to Γ3

ẑ transforms according to Γ1

I e.g., light xy polarized: 〈i1|ex x̂ + ey ŷ |f3〉
• transition allowed because Γ3 × Γ3 = Γ1 + Γ2 + Γ3

• in total 4 different matrix elements, but only one reduced matrix
element

I z polarized: 〈i1|ez ẑ |f3〉
• transition forbidden because Γ1 × Γ3 = Γ3

I These results are independent of any microscopic models for the
NH3 molecule!
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Goal: Spin 1/2 Systems and Double Groups

Rotations and Euler Angles

I So far: transformation of functions and operators dependent on position

I Now: systems with spin degree of freedom
⇒ wave functions are two-component Pauli spinors

Ψ(r) = ψ↑(r) |↑〉+ ψ↓(r) |↓〉 ≡
(
ψ↑(r)
ψ↓(r)

)
I How do Pauli spinors transform under symmetry operations?

I Parameterize rotations via Euler angles α, β, γ

z

x

y

α

axis z, αangle

x’

z

y’

x

y

z

α

x’

z

y’

β

axis y’, angle β

y’
z’

x’’

x

y

z

α

y’

x’

z

β y’
z’

x’’

z’

x’’’
γ

y’’

axis z’, angle γ

I Thus general rotation R(α, β, γ) = Rz′(γ) Ry ′(β) Rz(α)
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Rotations and Euler Angles (cont’d)

I General rotation R(α, β, γ) = Rz′(γ) Ry ′(β) Rz(α)

I Difficulty: axes y ′ and z ′ refer to rotated body axes (not fixed in space)

I Use Rz′(γ) = Ry ′(β) Rz(γ) R−1
y ′ (β)

Ry ′(β) = Rz(α) Ry (β) R−1
z (α)

preceding rotations
are temporarily undone

I Thus R(α, β, γ) = Ry ′(β)︸ ︷︷ ︸
Rz (α) Ry (β) R−1

z (α)
rotations about
z axis commute

Rz(γ) R−1
y ′ (β) Ry ′(β)︸ ︷︷ ︸

=1

Rz(α)

I Thus R(α, β, γ) = Rz(α) Ry (β) Rz(γ) rotations about
space-fixed axes!

I More explicitly: rotations of vectors r = (x , y , z) ∈ R3

Rz(α) =

 cosα − sinα 0
sinα cosα 0

0 0 1

 , Ry (β) =

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 etc.

I SO(3) = set of all rotation matrices R(α, β, γ)

= set of all orthogonal 3× 3 matrices R with det R = +1.

I R(2π, 0, 0) = R(0, 2π, 0) = R(0, 0, 2π) = 1 ≡ e
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Rotations: Spin 1/2 Systems
I Rotation matrices for spin-1/2 spinors (axis n)

Rn(φ) = exp
(
− i

2σ · nφ
)

= 1 cos(φ/2)− in · σ sin(φ/2)

I R(α, β, γ) = Rz(α)Ry (β)Rz(γ)

=

(
e−i(α+γ)/2 cos(β/2) −e−i(α−γ)/2 sin(β/2)
e−i(α−γ)/2 sin(β/2) e i(α+γ)/2 cos(β/2)

)
transformation matrix for spin 1/2 states

I SU(2) = set of all matrices R(α, β, γ)

= set of all unitary 2× 2 matrices R with detR = +1.

I R(2π, 0, 0) = R(0, 2π, 0) = R(0, 0, 2π) = −1 ≡ ē rotation by 2π
is not identity

I R(4π, 0, 0) = R(0, 4π, 0) = R(0, 0, 4π) = 1 = e rotation by 4π
is identity

I Every SO(3) matrix R(α, β, γ) corresponds to two SU(2) matrices
R(α, β, γ) and R(α + 2π, β, γ) = R(α, β + 2π, γ) = R(α, β, γ + 2π)

= ēR(α, β, γ) = R(α, β, γ) ē

⇒ SU(2) is called double group for SO(3)
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Double Groups
I Definition: Double Group

Let the group of spatial symmetry transformations of a system be

G = {gi = R(αi , βi , γi ) : i = 1, . . . , h} ⊂ SO(3)

Then the corresponding double group is

Gd = {gi = R(αi , βi , γi ) : i = 1, . . . , h}
∪ {gi = R(αi + 2π, βi , γi ) : i = 1, . . . , h} ⊂ SU(2)

I Thus with every element gi ∈ G we associate two elements gi and
ḡi ≡ ē gi = gi ē ∈ Gd

I If the order of G is h, then the order of Gd is 2h.

I Note: G is not a subgroup of Gd because the elements of G
are not a closed subset of Gd .

Example: Let g = rotation by π
• in G: g 2 = e the same group element g is thus

interpreted differently in G and Gd• in Gd : g 2 = ē

I Yet: {e, ē} is invariant subgroup of Gd
and the factor group Gd/{e, ē} is isomorphic to G.

⇒ The IRs of G are also IRs of Gd Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Example: Double Group C3v

C3v E Ē 2C3 2C̄3 3σv 3σ̄v

Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 −1 −1
Γ3 2 2 −1 −1 0 0

Γ4 2 −2 1 −1 0 0
Γ5 1 −1 −1 1 i −i
Γ6 1 −1 −1 1 −i i

I For Γ1, Γ2, and Γ3 the “barred” group elements have the same
characters as the “unbarred” elements.
Here the double group gives us the same IRs as the “single group”

I For other groups a class may contain both “barred” and “unbarred”
group elements.
⇒ the number of classes and IRs in the double group need not be
twice the number of classes and IRs of the “single group”
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Time Reversal (Reversal of Motion)
I Time reversal operator θ̂ : t → −t

I Action of θ̂: θ̂ r̂ θ̂−1 = r̂
}

independent of t

θ̂ p̂ θ̂−1 = −p̂

θ̂ L̂ θ̂−1 = −L̂

 linear in t

θ̂ Ŝ θ̂−1 = −Ŝ

I Consider time evolution: Û(δt) = 1− i Ĥ δt/~

⇒ Û(δt) θ̂ |ψ〉 = θ̂ Û(−δt) |ψ〉

⇔ −i Ĥ θ̂ |ψ〉 = θ̂ i Ĥ |ψ〉 but need also [θ̂, Ĥ] = 0

⇒ Need θ̂ = UK
U = unitary operator
K = complex conjugation

Properties of θ̂ = UK :
I K

(
c1|α〉+ c2|β〉

)
= c∗1 |α〉+ c∗2 |β〉 (antilinear)

I Let |α̃〉 = θ̂ |α〉 and |β̃〉 = θ̂ |β〉


θ̂ = UK is
antiunitary
operator

⇒ 〈β̃|α̃〉 = 〈β|α〉∗ = 〈α|β〉
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Time Reversal (cont’d)

The explicit form of θ̂ depends on the representation

I position representation: θ̂ r̂ θ̂−1 = r̂ ⇒ θ̂ ψ(r) = ψ∗(r)

I momentum representation: θ̂ p̂ θ̂−1 = −p̂ ⇒ θ̂ ψ(p) = ψ∗(−p)

I spin 1/2 systems:

• θ̂ = iσy K ⇒ θ̂2 = −1
• all eigenstates |n〉 of Ĥ are at least two-fold degenerate

(Kramers degeneracy)
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Time Reversal and Group Theory

I Consider a system with Hamiltonian Ĥ.

I Let G = {gi} be the symmetry group of spatial symmetries of Ĥ

[P̂(gi ), Ĥ] = 0 ∀gi ∈ G

I Let {|Iν〉 : ν = 1, . . . , nI} be an nI -fold degenerate eigenspace of Ĥ
which transforms according to IR ΓI = {DI (gi )}

Ĥ |Iν〉 = EI |Iν〉 ∀ν

P̂(gi ) |Iν〉 =
∑
µ
DI (gi )µν |Iµ〉

I Let Ĥ be time-reversal invariant: [Ĥ, θ̂] = 0
⇒ θ̂ is additional symmetry operator (beyond {P̂(gi )}) with

[θ̂, P̂(gi )] = 0

I P̂(gi ) θ̂ |Iν〉 = θ̂ P̂(gi )|Iν〉 = θ̂
∑
µ
DI (gi )µν |Iµ〉 =

∑
µ
D∗I (gi )µν θ̂ |Iµ〉

I Thus: time-reversed states {θ̂ |Iν〉} transform according to
complex conjugate IR Γ∗I = {D∗I (gi )}
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Time Reversal and Group Theory (cont’d)

I time-reversed states {θ̂ |Iν〉} transform according to
complex conjugate IR Γ∗I = {D∗I (gi )}

Three possiblities (known as “cases a, b, and c”)
(a) {|Iν〉} and {θ̂ |Iν〉} are linear dependent

(b) {|Iν〉} and {θ̂ |Iν〉} are linear independent
The IRs ΓI and Γ∗I are distinct, i.e., χI (gi ) 6= χ∗I (gi )

(c) {|Iν〉} and {θ̂ |Iν〉} are linear independent
ΓI = Γ∗I , i.e., χI (gi ) = χ∗I (gi ) ∀ gi

Discussion
I Case (a): time reversal is additional constraint for {|Iν〉}

e.g., nI = 1 ⇒ |ν〉 reell

I Cases (b) and (c): time reversal results in additional degeneracies

I Our definition of cases (a)–(c) follows Bir & Pikus. Often (e.g., Koster)
a different classification is used which agrees with Bir & Pikus for spinless
systems. But cases (a) and (c) are reversed for spin-1/2 systems.
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Time Reversal and Group Theory (cont’d)

I When do we have case (a), (b), or (c)?

Criterion by Frobenius & Schur

1

h

∑
i

χI (g 2
i ) =


η case (a)

0 case (b)

−η case (c)

where η =

{
+1 systems with integer spin

−1 systems with half-integer spin

Proof: Tricky! (See, e.g., Bir & Pikus)
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Example: Cyclic Group C3
I C3 is Abelian group with 3 elements: C3 = {q, q2, q3 ≡ e}

I Multiplication table

C3 e q q2

e e q q2

q q q2 e
q2 q2 e q

Character table

C3 e q q2 time
reversal

Γ1 1 1 1 a
Γ2 1 ω ω∗ b
Γ3 1 ω∗ ω b

ω≡e2πi/3

I IR Γ1: no additional degeneracies because of time reversal

I IRs Γ2 and Γ3: these complex IRs need to be combined

⇒ two-fold degeneracy because of time reversal symmetry
(though here no spin!)
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Group Theory in Solid State Physics

First: Some terminology

I Lattice: periodic array of atoms (or groups of atoms)

I Bravais lattice:

Rn = nxax + nyay + nzaz
n = (n1, n2, n3) ∈ Z3

ai linearly independent

Every lattice site Rn is occupied with one atom

Example: 2D honeycomb lattice is not a Bravais lattice

I Lattice with basis:

• Every lattice site Rn is occupied with z atoms

• Position of atoms relative to Rn: τ i , i = 1, . . . , q

• These q atoms with relative positions τ i form a basis.

• Example: two neighboring atoms in 2D honeycomb lattice
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Symmetry Operations of Lattice

I Translation t (not necessarily by lattice vectors Rn)

I Rotation, inversion → 3× 3 matrices α

I Combinations of translation, rotation, and inversion

⇒ general transformation for position vector r ∈ R3:

r′ = αr + t ≡ {α|t} r

I Notation {α|t} includes also

• Mirror reflection = rotation by π about axis perpendicular
to mirror plane followed by inversion

• Glide reflection = translation followed by reflection
• Screw axis = translation followed by rotation

Symmetry operations {α|t} form a group

I Multiplication {α′|t′} {α|t} r︸ ︷︷ ︸
r′=αr+t

= α′r′ + t′ = α′αr + α′t + t′

= {α′α|α′t + t′} r

I Inverse Element {α|t}−1 = {−α−1| − α−1t}
because {α|t}−1 {α|t} = {α−1α|α−1t− α−1t} = {1|0}
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Classification

Symmetry Groups of Crystals

to be added . . .
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Symmetry Groups of Crystals

Translation Group

Translation group = set of operations {1|Rn}

I {1|Rn′} {1|Rn} = {1|Rn′ + 1Rn} = {1|Rn′+n}
⇒ Abelian group

I associativity (trivial)

I identity element {1|0} = {1|R0}

I inverse element {1|Rn}−1 = {1| − Rn}

Translation group Abelian ⇒ only one-dimensional IRs
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Irreducible Representations of Translation Group

(for clarity in one spatial dimension)

I Consider translations {1|a}
I Translation operator T̂a = T̂{1|a} is unitary operator
⇒ eigenvalues have modulus 1

I eigenvalue equation T̂a |φ〉 = e−iφ |φ〉 −π < φ ≤ π
more generally T̂na |φ〉 = e−inφ |φ〉 n ∈ Z

I ⇒ representations D({1|Rna}) = e−inφ − π < φ ≤ π

Physical Interpretation of φ

Consider

〈r−a|︷ ︸︸ ︷
〈r | T̂a | φ〉︸ ︷︷ ︸

e−iφ|φ〉

⇒ 〈r − a|φ〉 = e−iφ 〈r |φ〉

Thus: Bloch Theorem (for φ = ka)
I The wave vector k (or φ = ka) labels the IRs of the translation group
I The wave functions transforming according to the IR Γk are

Bloch functions 〈r |φ〉 = e ikruk(r) with

e ik(r−a)uk(r − a) = e ikruk(r)e−ika or uk(r − a) = uk(r)
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Irreducible Representations
of Space Groups

to be added . . .
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Theory of Invariants Luttinger (1956)
Bir & Pikus

Idea:

I Hamiltonian must be invariant under all symmetry transformations
of the system

I Example: free particle

Ĥ = Ekin =
p̂2

2m︸︷︷︸
scalar

+ HHc1 p̂︸︷︷︸
not inversion
symmetric

+ XXXXc2 r̂ · p̂︸ ︷︷ ︸
breaks time
reversal

+ c4 p̂4︸ ︷︷ ︸
scalar

+ . . .

I Crystalline solids:

Ekin = E (k) = kinetic energy of Bloch electron
with crystal momentum p = ~k

⇒ dispersion E (k) must reflect crystal symmetry

E (k) = a0 + a1 k︸︷︷︸
only in crystals without inversion symmetry

+a2 k2 + a3 k3︸︷︷︸+ . . .
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Theory of Invariants (cont’d)

More generally:

I Bands E (k) at expansion point k0 n-fold degenerate

I Bands split for k 6= k0

I Example: GaAs (k0 = 0)

E

k

valence band

band

conduction

LH

SO

HH

I Band structure E (k) for small k via diagonalization
of n × n matrix Hamiltonian H(k).

I Goal: Set up matrix Hamiltonian H(k) by exploiting the symmetry
at expansion point k0

I Incorporate also perturbations such as
• spin-orbit coupling (spin S)
• electric field E, magnetic field B
• strain ε
• etc.
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Invariance Condition
I Consider n × n matrix Hamiltonian H(K)

I K = K (k,S,E,B, ε, . . .) = general tensor operator

where k = wave vector E = electric field ε = strain field
S = spin B = magnetic field etc.

I Basis functions {ψν(r) : ν = 1, . . . , n} transform according to
representation Γψ = {Dψ(gi )} of group G. (Γψ does not have to be IR)

I Symmetry transformation gi ∈ G applied to tensor K
K → gi K ≡ P̂(gi )K P̂(gi )

−1

⇒ H(K) → H(gi K)

I Equivalent to inverse transformation g−1
i applied to ψν(r):

ψν(r) → ψν(gi r) =
∑
µ
Dψ(g−1

i )µν ψµ(r)

⇒ H(K) → Dψ(gi )H(K)Dψ(g−1
i )

I Thus Dψ(g−1
i )H(gi K)Dψ(gi ) = H(K) ∀ gi ∈ G

really n2 equations!
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Invariance Condition (cont’d)

Remarks
I If −k0 is in the same star as the expansion point k0,

additional constraints arise from time reversal symmetry.

in particular: −k0 = k0 = 0

I If Γψ is reducible, the invariance condition can be applied to each
“irreducible block” of H(K) (see below).
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Invariant Expansion
Expand H(K) in terms of irreducible tensor operators and basis matrices

I Decompose tensors K into irreducible tensors KJ transforming
according to IR ΓJ of G

KJ
ν → gi KJ

ν ≡
∑
µ
DJ(gi )µν KJ

µ

I n2 linearly independent basis matrices {Xq : q = 1, . . . , n2}
transforming as

Xq → gi Xq ≡ Dψ(g−1
i ) Xq Dψ(gi ) =

∑
p
DX (gi )pq Xp

with “expansion coefficents” DX (gi )pq

I Representation ΓX ' Γ∗ψ × Γψ is usually reducible.

We have IR Γψ for the ket basis functions of H and
IR Γ∗ψ (i.e., the complex conjugate IR) for the bras

⇒ from {Xq : q = 1, . . . , n2} form linear combinations X I∗

ν
transforming according to the IRs Γ∗I occuring in Γ∗ψ × Γψ

X I∗

µ → gi X I∗

µ =
∑
ν
D∗I (gi )µν X I∗

µ
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Invariant Expansion (cont’d)

I Consider most general expansion

H(K) =
∑
IJ

∑
µν

bIJ
µν X I∗

µ KJ
ν bIJ

µν = expansion coefficients

I Transformations gi ∈ G:

X I∗

µ →
∑
µ′
D∗I (gi )µ′µ X I∗

µ′ , KJ
ν →

∑
ν′
DJ(gi )ν′ν KJ

ν′

I Use invariance condition (must hold ∀ gi ∈ G)∑
µν

bIJ
µνX I∗

µ KJ
ν =

∑
µν

bIJ
µν

∑
µ′ν′

1
h

∑
i

D∗I (gi )µ′µ DJ(gi )ν′ν︸ ︷︷ ︸
δIJ δµ′ν′ δµν

X I∗

µ′ KJ
ν′

= δIJ
∑
µ

bII
µµ︸ ︷︷ ︸

≡aI

∑
µ′

X I∗

µ′ KI
µ′

I Then H(K) =
∑
I

aI
∑
ν

X I∗

ν KI
ν

Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Irreducible Tensor Operators
Construction of irreducible tensor operators K = K(k,S,E,B, ε)

I Components ki , Si , Ei , Bi , εij transform according to some IRs ΓI of G.

⇒ “elementary” irreducible tensor operators KI

I Construct higher-order irreducible tensor operators with CGC:

KK
κ =

∑
µν

(
I J K `
µ ν κ

)
KI
µKJ

ν

If we have multiplicities aIJK > 1
we get different tensor operators
for each value `

I Irreducible tensor operators KI are “universally valid” for any matrix
Hamiltonian transforming according to G

I Yet: if for a particular matrix Hamiltonian H(K) with basis functions
{ψν} transforming according to Γψ an IR ΓI does not appear in

Γ∗ψ × Γψ, then the tensor operators KI may not appear in H(K).
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Basis Matrices
I In general, the basis functions {ψν(r) : ν = 1, . . . , n} include

several irreducible representations ΓJ

⇒ Decompose H(K) into nJ × nJ′ blocks HJJ′(K), such that
• rows transform according to IR Γ∗J (dimension nJ)
• columns transform according to IR ΓJ′ (dimension nJ′)

H(K) =

 Hcc Hcv Hcv ′

H†cv Hvv Hvv ′

H†cv ′ H
†
vv ′ Hv ′v ′



Γc

Γv

Γv’

E

k

I Choose basis matrices X I∗

ν transforming according to the IRs Γ∗I in Γ∗J × ΓJ′

X I∗

ν → DJ(g−1
i ) X I∗

ν DJ′(gi ) =
∑
µ
D∗I (gi )µν X I∗

µ

I More explicitly: (X I∗

ν )λµ =

(
I J ′ J `
ν µ λ

)∗
which reflects the transformation rules for matrix elements 〈Jλ|KI

ν |J ′µ〉

⇒ For each block we get HJJ′(K) =
∑
I

aI
∑
ν

X I∗

ν KI
ν
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Time Reversal

I time reversal θ̂ connects expansion point k0 and −k0

I often: θ̂ ψk0λ(r) and ψ−k0λ(r) linearly dependent

θ̂ ψk0λ(r) =
∑
λ′
Tλλ′ ψ−k0λ′(r)

I thus additional condition

T −1H(ζK) T = H∗(K) = Ht(K)
ζ = +1 : K even under θ
ζ = −1 : K even under θ

applicable in particular for k0 = −k0 = 0

I k0 6= −k0: often k0 and −k0 also connected by spatial symmetries R

H−k0 (K) = D(R)Hk0 (R−1K)D−1(R).

⇒ T −1Hk0 (R−1K)T = H∗k0
(ζK) = Ht

k0
(ζK) xk

yk

K’ KΓ

graphene: k0 = K

Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Example: Graphene

I Electron states at K point: point group C3v
strictly speaking
D3h = C3v + inversion

I “Dirac cone”: IR Γ3 of C3v
It must be Γ3 because
this is the only 2D IR of C3v

I We have Γ∗3 × Γ3 = Γ1 + Γ2 + Γ3 (with Γ∗3 = Γ3)

⇒ basis matrices X 1
1 = 1; X 2

1 = σy ; X 3
1 = σz , X 3

2 = −σx

I Irreducible tensor operators K up to second order in k:
Γ1 : k2

x + k2
y Γ3 : kx , ky ; k2

y − k2
x , 2kxky Γ2: [kx , ky ] ∝ Bz

I Hamiltonian here: basis functions |x〉 and |y〉

H(K) = a31(kxσz − kyσx) + a11(k2
x + k2

y )1+ a32[(k2
y − k2

x )σz − 2kxkyσx ]

I More common: basis functions |x − iy〉 and |x + iy〉
⇒ basis matrices X 1

1 = 1; X 2
1 = σz ; X 3

1 = σx , X 3
2 = σy

H(K) = a31(kxσx + kyσy ) + a11(k2
x + k2

y )1+ a32[(k2
y − k2

x )σx + 2kxkyσy ]

I additional constraints for H(K) from time reversal symmetry
Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Graphene: Basis Matrices (D3h)

Symmetrized matrices for the invariant expansion of the blocks Hαβ
for the point group D3h.

Block Representations Symmetrized matrices

H55 Γ∗5 × Γ5 Γ1 : 1

= Γ1 + Γ2 + Γ6 Γ2 : σz

 no spin

Γ6 : σx , σy

H77 Γ∗7 × Γ7 Γ1 : 1

= Γ1 + Γ2 + Γ5 Γ2 : σz

Γ5 : σx ,−σy
H99 Γ∗9 × Γ9 Γ1 : 1

= Γ1 + Γ2 + Γ3 + Γ4 Γ2 : σz



with spin

Γ3 : σx
Γ4 : σy

H79 Γ∗7 × Γ9 Γ5 : 1,−iσz
= Γ5 + Γ6 Γ6 : σx , σy

Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Graphene: Irreducible Tensor Operators (D3h)
Terms printed in bold give rise to invariants in HK

55(K) allowed by
time-reversal invariance. Notation: {A,B} ≡ 1

2 (AB + BA).

Γ1 1; k2
x + k2

y ; {kx, 3k2
y − k2

x}; kxEx + kyEy ; εxx + εyy;

(εyy − εxx)kx + 2εxyky; (εyy − εxx)Ex + 2εxyEy ;

sxBx + syBy; szBz; (sxky − sykx)Ez; sz(kxEy − kyEx);

Γ2 {ky , 3k2
x − k2

y }; Bz; kxEy − kyEx;

(εxx − εyy )ky + 2εxyky ; (εxx + εyy)Bz; (εxx − εyy)Ey + 2εxyEx;

sz; sxBy − syBx ; (sxkx + syky )Ez ; sz(εxx + εyy);

Γ3 Bxkx + Byky ; ExBx + EyBy ; EzBz ; (εyy − εxx)Bx + 2εxyBy ;

sxkx + syky ; sxEx + syEy ; szEz ; sx(εyy − εxx) + 2sy εxy
Γ4 Bxky − Bykx ; Ez ; ExBy − EyBx ; (εxx − εyy )By + 2εxyBx ;

(εxx + εyy )Ez ; sxky − sykx ; sxEy − syEx ; sy (εxx − εyy ) + 2sxεxy
Γ5 Bx ,By ; Byky − Bxkx ,Bxky + Bykx ; kyEz ,−kxEz ;

EyBy − ExBx , EyBx + ExBy ; (εxx + εyy )(Bx ,By );

(εxx − εyy )Bx + 2εxyBy , (εyy − εxx)By + 2εxyBx ; 2εxyEz , (εxx − εyy )Ez ;

sx , sy ; syky − sxkx , sxky + sykx ; syBz ,−sxBz ; szBy ,−szBx ;

syEy − sxEx , sxEy + syEx ; (sx , sy )(εxx + εyy );

sx(εxx − εyy )− 2sy εxy , sy (εyy − εxx)− 2sxεxy
Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Graphene: Irreducible Tensor Operators (cont’d)

Γ6 kx, ky; {ky + kx, ky − kx}, 2{kx, ky};
{kx, k

2
x + k2

y},{ky, k
2
x + k2

y}; Bzky ,−Bzkx ;

Ex , Ey ; kyEy − kxEx , kxEy + kyEx ;

EyBz,−ExBz; EzBy,−EzBx;

εyy − εxx, 2εxy; (εxx + εyy)(kx, ky);

(εxx − εyy)kx + 2εxyky, (εyy − εxx)ky + 2εxykx;

2εxyBz , (εxx − εyy )Bz ;

(εxx − εyy )Ex + εxyEy , (εyy − εxx)Ey + εxyEx ;

(εxx + εyy )(Ex , Ey ); szky ,−szkx ;

syBy − sxBx, sxBy + syBx; szEy,−szEx;

syEz,−sxEz; sz(kxEy + kyEx), sz(kxEx − kyEy);

(sxky + sykx)Ez, (sxkx − syky)Ez;

2szεxy , sz(εxx − εyy );

Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Graphene: Full Hamiltonian Winkler and Zülicke,
PRB 82, 245313

H(K) = a61(kxσx + kyσy ) “Dirac term”

+ a12(k2
x + k2

y )1+ a62[(k2
y − k2

x )σx + 2kxkyσy ]
nonlinear + anisotropic
corrections

+ a22(kxEy − kyEx)σz orbital Rashba term

+a21Bzσz orbital Zeeman term

+ a14(εxx + εyy )1+ a66[(εyy − εxx)σx + 2εxyσy ] strain-induced terms

+a15[(εyy − εxx)kx + 2εxyky ]1

+a67(εxx + εyy )(kxσx + kyσy )
isotropic velocity
renormalization

a68{[(εxx − εyy )kx + 2εxyky ]σx
+[(εyy − εxx)ky + 2εxykx ]σy}

anisotropic velocity
renormalization

+a23(εxx + εyy )Bzσz strain - orbital Zeeman

+a24[(εxx − εyy )Ey + 2εxyEx ]σz strain - orbital Rashba

+ a21 szσz intrinsic SO coupling

+ a61 sz(Eyσx − Exσy ) + a62 Ez(syσx − sxσy ) Rashba SO coupling

+a63 sz [(kxEy + kyEx)σx + (kxEx − kyEy )σy ]

+a64 Ez [(sxky + sykx)σx + (sxkx − syky )σy ]

+a11 (sxky − sykx)Ez + a12 sz(kxEy − kyEx)

+ a26(εxx + εyy )szσz strain-mediated SO coupling
Roland Winkler, NIU, Argonne, and NCTU 2011−2015



Symbols
G group
U subgroup

a, b, c, . . . group elements
i , j , k, . . . indeces labeling group elements

e unit element (= identity element) of a group
h order of a group (= number of group elements)
Ck classes of a group
hk number of group elements in class Ck
Ñ number of classes
D(gi ) matrix representation for group element gi

Γ = {D(gi )} (irreducible) representation
I , J,K , . . . indeces labeling irreducible representations

N number of irreducible representations
µ, ν, λ, . . . indeces labeling the elements of representation matrices D(gi )

nI dimensionality of irreducible representation ΓI

χI (gi ) character of representation matrix for group element gi
aIJK multiplicity with which ΓK is contained in ΓI × ΓJ

H Hilbert space, multiband Hamiltonian
SI invariant subspace (IR ΓI )
α, β we may have multiple irreducible invariant subspaces SαI for one IR ΓI

P̂(gi ) unitary operator that realizes the symmetry element gi in the Hilbert space

IR irreducible representation
Roland Winkler, NIU, Argonne, and NCTU 2011−2015
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