Introduction to Group Theory

With Applications to Quantum Mechanics and Solid State Physics

Roland Winkler

rwinkler@niu.edu

August 2011

(Lecture notes version: November 3, 2015)

Please, let me know if you find misprints, errors or inaccuracies in these notes. Thank you.

General Literature

- ▶ J. F. Cornwell, Group Theory in Physics (Academic, 1987) general introduction; discrete and continuous groups
- ▶ W. Ludwig and C. Falter, Symmetries in Physics (Springer, Berlin, 1988). general introduction; discrete and continuous groups
- ▶ W.-K. Tung, Group Theory in Physics (World Scientific, 1985). general introduction; main focus on continuous groups
- ▶ L. M. Falicov, Group Theory and Its Physical Applications (University of Chicago Press, Chicago, 1966). small paperback; compact introduction
- E. P. Wigner, Group Theory (Academic, 1959). classical textbook by the master
- ▶ Landau and Lifshitz, Quantum Mechanics, Ch. XII (Pergamon, 1977) brief introduction into the main aspects of group theory in physics
- ▶ R. McWeeny, Symmetry (Dover, 2002) elementary, self-contained introduction
- \blacktriangleright and many others

Specialized Literature

- ▶ G. L. Bir und G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974) thorough discussion of group theory and its applications in solid state physics by two pioneers
- ► C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon, 1972) comprehensive discussion of group theory in solid state physics

 \triangleright G. F. Koster et al., Properties of the Thirty-Two Point Groups (MIT Press, 1963)

small, but very helpful reference book tabulating the properties of the 32 crystallographic point groups (character tables, Clebsch-Gordan coefficients, compatibility relations, etc.)

- ▶ A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1960) comprehensive discussion of the (group) theory of angular momentum in quantum mechanics
- \blacktriangleright and many others

These notes are dedicated to Prof. Dr. h.c. Ulrich Rössler from whom I learned group theory

R.W.

Introduction and Overview

Definition: Group

A set $G = \{a, b, c, ...\}$ is called a group, if there exists a group multiplication connecting the elements in G in the following way

(1) $a, b \in \mathcal{G}: c = ab \in \mathcal{G}$ (closure) (2) $a, b, c \in \mathcal{G}$: $(ab)c = a(bc)$ (associativity) (3) $\exists e \in \mathcal{G} : a e = a \quad \forall a \in \mathcal{G}$ (identity / neutral element) (4) $\forall a \in \mathcal{G}$ $\exists b \in \mathcal{G}$: $ab = e$, i.e., $b \equiv a^{-1}$ (inverse element) **Corollaries** (a) $e^{-1} = e$ (b) a^{-1} $(left$ inverse = right inverse) (c) $e a = a e = a \quad \forall a \in \mathcal{G}$ (left neutral = right neutral) (d) $\forall a,b\in\mathcal{G}: c=a\,b \Leftrightarrow c^{-1}=b^{-1}a^{-1}$ Commutative (Abelian) Group

(5) $\forall a, b \in \mathcal{G}$: $ab = ba$ (commutatitivity)

Order of a Group = number of group elements

Examples

- integer numbers $\mathbb Z$ with addition (Abelian group, infinite order)
- rational numbers $\mathbb{Q}\backslash\{0\}$ with multiplication (Abelian group, infinite order)
- \triangleright complex numbers {exp(2πi m/n) : m = 1, ..., n} with multiplication (Abelian group, finite order, example of cyclic group)
- invertible (= nonsingular) $n \times n$ matrices with matrix multiplication (nonabelian group, infinite order, later important for representation theory!)
- permutations of *n* objects: P_n (nonabelian group, n! group elements)
- \triangleright symmetry operations (rotations, reflections, etc.) of equilateral triangle $\equiv \mathcal{P}_3 \equiv$ permutations of numbered corners of triangle – more later!
- \blacktriangleright (continuous) translations in \mathbb{R}^n : (continuous) translation group $=$ vector addition in \mathbb{R}^n

\blacktriangleright symmetry operations of a sphere only rotations: $SO(3)$ = special orthogonal group in \mathbb{R}^3 $=$ real orthogonal 3 \times 3 matrices

Group Theory in Physics

Group theory is the natural language to describe symmetries of a physical system

- \triangleright symmetries correspond to conserved quantities
- \triangleright symmetries allow us to classify quantum mechanical states
	- representation theory

 \blacktriangleright

- degeneracies / level splittings
- \triangleright evaluation of matrix elements \Rightarrow [Wigner-Eckart theorem](#page-97-0) e.g., selection rules: dipole matrix elements for optical transitions
- \blacktriangleright Hamiltonian \hat{H} must be *invariant* under the symmetries of a quantum system
	- \Rightarrow construct \hat{H} via symmetry arguments

Group Theory in Physics Classical Mechanics

Lagrange function $L(\mathbf{q}, \dot{\mathbf{q}})$,

$$
\blacktriangleright \text{ Lagrange equations } \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i} \qquad i = 1, \ldots, N
$$

• If for one j :
$$
\frac{\partial L}{\partial q_j} = 0 \Rightarrow p_j \equiv \frac{\partial L}{\partial \dot{q}_j}
$$
 is a conserved quantity

Examples

- \blacktriangleright q_j linear coordinate
	- translational invariance
	- linear momentum $p_i = \text{const.}$
	- translation group
- \blacktriangleright q_i angular coordinate
	- rotational invariance
	- angular momentum $p_i = \text{const.}$
	- rotation group

(1) Evaluation of matrix elements

- ► Consider particle in potential $V(x) = V(-x)$ even
- ighthropossiblities for eigenfunctions $\psi(x)$

$$
\psi_e(x)
$$
 even: $\psi_e(x) = \psi_e(-x)$

 $\psi_{\alpha}(x)$ odd: $\psi_{\alpha}(x) = -\psi_{\alpha}(-x)$

- ► overlapp $\int \psi_i^*(x) \psi_j(x) dx = \delta_{ij}$ $i, j \in \{e, o\}$
- ► expectation value $\langle i|x|i\rangle = \int \psi_i^*(x) x \psi_i(x) dx = 0$

well-known explanation

- product of two even / two odd functions is even
- \triangleright product of one even and one odd function is odd
- \blacktriangleright integral over an odd function vanishes

Group Theory in Physics Quantum Mechanics (1) Evaluation of matrix elements (cont'd)

Group theory provides systematic generalization of these statements

- \blacktriangleright representation theory
	- \equiv classification of how functions and operators transform under symmetry operations
- \triangleright [Wigner-Eckart theorem](#page-97-0)
	- $=$ statements on matrix elements if we know how the functions and operators transform under the symmetries of a system

(2) Degeneracies of Energy Eigenvalues

► Schrödinger equation $\hat{H}\psi = E\psi$ or $i\hbar\partial_t\psi = \hat{H}\psi$

► Let \hat{O} with $i\hbar\partial_t\hat{O} = [\hat{O}, \hat{H}] = 0 \Rightarrow \hat{O}$ is conserved quantity

 \Rightarrow eigenvalue equations $\hat{H}\psi = E\psi$ and $\hat{O}\psi = \lambda_{\hat{O}}\psi$ can be solved simultaneously

 \Rightarrow eigenvalue $\lambda_{\hat{O}}$ of \hat{O} is good quantum number for ψ

Example: H atom

$$
\begin{aligned}\n\blacktriangleright \hat{H} &= \frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{\hat{L}^2}{2mr^2} - \frac{e^2}{r} \implies \text{group } SO(3) \\
\Rightarrow \left[\hat{L}^2, \hat{H} \right] &= \left[\hat{L}_z, \hat{H} \right] = \left[\hat{L}^2, \hat{L}_z \right] = 0\n\end{aligned}
$$

 \Rightarrow eigenstates $\psi_{\mathit{nlm}}(\mathbf{r})$: \quad index $l \leftrightarrow \hat{L}^2, \quad m \leftrightarrow \hat{L}_z$

 \blacktriangleright really another example for representation theory

 \triangleright degeneracy for $0 \leq l \leq n-1$: dynamical symmetry (unique for H atom) Roland Winkler, NIU, Argonne, and NCTU 2011−2015

(3) Solid State Physics

- in particular: crystalline solids, periodic assembly of atoms
- ⇒ discrete translation invariance

(i) Electrons in periodic potential $V(r)$

- $V(r + R) = V(r)$ $\forall R \in \{$ lattice vectors $\}$
- \Rightarrow translation operator $\hat{\mathcal{T}}_{\mathsf{R}}: \quad \hat{\mathcal{T}}_{\mathsf{R}} f(\mathsf{r}) = f(\mathsf{r}+\mathsf{R})$ $[\, \hat{\mathsf{T}}_\textsf{\textbf{R}}, \hat{H}] = 0$
- \Rightarrow Bloch theorem $\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} \, u_{\mathbf{k}}(\mathbf{r})$ with $u_{\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{\mathbf{k}}(\mathbf{r})$
- \Rightarrow wave vector **k** is quantum number for the discrete translation invariance, k ∈ first Brillouin zone

- (3) Solid State Physics
- (ii) Phonons
	- \blacktriangleright Consider square lattice

- \triangleright frequencies of modes are equal
- \blacktriangleright degeneracies for particular propagation directions

(iii) Theory of Invariants

 \blacktriangleright How can we construct models for the dynamics of electrons or phonons that are compatible with given crystal symmetries?

Group Theory in Physics Quantum Mechanics (4) Nuclear and Particle Physics

Physics at small length scales: strong interaction

Proton $m_p = 938.28 \text{ MeV}$ rest mass of nucleons almost equal
Neutron $m_n = 939.57 \text{ MeV}$ \rightarrow degeneracy \sim degeneracy

- ▶ Symmetry: isospin \hat{l} with $[\hat{l}, \hat{H}_{\text{strong}}] = 0$
- ► SU(2): proton $\left|\frac{1}{2}, \frac{1}{2}\right\rangle$, neutron $\left|\frac{1}{2}, -\frac{1}{2}\right\rangle$

Mathematical Excursion: Groups Basic Concepts

Group Axioms: see above

Definition: Subgroup Let G be a group. A subset $U \subseteq G$ that is itself a group with the same multiplication as G is called a subgroup of G .

Group Multiplication Table: compilation of all products of group elements \Rightarrow complete information on mathematical structure of a (finite) group

Conclusions from Group Multiplication Table

 \triangleright Symmetry w.r.t. main diagonal \Rightarrow group is Abelian

 \mathcal{P}_3 e a b c d t $e \mid e \mid a \mid b \mid c \mid d \mid t$ $a \mid a \mid b \mid e \mid f \mid c \mid d$ $b \mid b$ e a $\mid d$ f c $c \, | \, c \, d \, f \, e \, a \, b$ d d f c b e a f | f c d a b ϵ

► order *n* of $g \in \mathcal{G}$: smallest $n > 0$ with $g^n = e$

- ► $\{g, g^2, \ldots, g^n = e\}$ with $g \in \mathcal{G}$ is Abelian subgroup (a cyclic group)
- \triangleright in every row / column every element appears exactly once because:

Rearrangement Lemma: for any fixed $g' \in \mathcal{G}$, we have

$$
\mathcal{G} = \{g'g : g \in \mathcal{G}\} = \{gg' : g \in \mathcal{G}\}
$$

i.e., the latter sets consist of the elements in G rearranged in order. proof: $g_1 \neq g_2 \Leftrightarrow g'g_1 \neq g'g_2 \quad \forall g_1, g_2, g' \in \mathcal{G}$

Goal: Classify elements in a group (1) Conjugate Elements and Classes

► Let $a \in \mathcal{G}$. Then $b \in \mathcal{G}$ is called conjugate to a if $\exists x \in \mathcal{G}$ with $b = x a x^{-1}$. Conjugation $b \sim a$ is equivalence relation:

- $a \sim a$ reflexive • $b \sim a$ ⇔ $a \sim b$ symmetric • $a \sim c$ $b \sim c$ $\}$ ⇒ a ∼ b transitive $a = xcx^{-1}$ ⇒ $c = x^{-1}ax$ $b = ycy^{-1} = (xy^{-1})^{-1}a(xy^{-1})$
- \triangleright For fixed a, the set of all conjugate elements $\mathcal{C} = \{x\,a x^{-1} : x \in \mathcal{G}\}$ is called a class.
	- identity e is its own class $xe^{1} = e \quad \forall x \in G$
	- Abelian groups: each element is its own class $xax^{-1} = axx^{-1} = a$ $\forall a. x \in G$
	- Each $b \in \mathcal{G}$ belongs to one and only one class \Rightarrow decompose G into classes
	- in broad terms: "similar" elements form a class

Goal: Classify elements in a group (2) Subgroups and Cosets

- In Let $U \subset \mathcal{G}$ be a subgroup of \mathcal{G} and $x \in \mathcal{G}$. The set $xU \equiv \{xu : u \in U\}$ (the set $U(x)$ is called the left coset (right coset) of U .
- \blacktriangleright In general, cosets are not groups. If $x \notin \mathcal{U}$, the coset $x \mathcal{U}$ lacks the identity element: suppose $\exists u \in \mathcal{U}$ with $xu = e \in x\mathcal{U} \Rightarrow x^{-1} = u \in \mathcal{U} \Rightarrow x = u^{-1} \in \mathcal{U}$
- If $x' \in x\mathcal{U}$, then $x'\mathcal{U} = x\mathcal{U}$ any $x' \in x\mathcal{U}$ can be used to define coset $x\mathcal{U}$
- If U contains s elements, then each coset also contains s elements (due to rearrangement lemma).
- \triangleright Two left (right) cosets for a subgroup U are either equal or disjoint (due to rearrangement lemma).
- \triangleright Thus: decompose G into cosets $G = U \cup xU \cup yU \cup ... x,y,... \notin U$
- ► Thus Theorem 1: Let *h* order of G
Let *s* order of $U \subset G$ $\Big\}$ \Rightarrow $\frac{h}{s}$ $\frac{0}{s} \in \mathbb{N}$
- \triangleright Corollary: The order of a finite group is an integer multiple of the orders of its subgroups.
- ► Corollary: If h prime number \Rightarrow $\{e\}, G$ are the only subgroups
	- \Rightarrow G is isomorphic to cyclic group Roland Winkler, NIU, Argonne, and NCTU 2011−2015

Goal: Classify elements in a group

(3) Invariant Subgroups and Factor Groups

connection: classes and cosets

- A subgroup $U \subset \mathcal{G}$ containing only complete classes of \mathcal{G} is called invariant subgroup (aka normal subgroup).
- Exect Let U be an invariant subgroup of G and $x \in \mathcal{G}$ \Leftrightarrow $xUx^{-1} = U$ $\Leftrightarrow x\mathcal{U} = \mathcal{U}x$ (left coset = right coset)
- \triangleright Multiplication of cosets of an invariant subgroup $U \subset \mathcal{G}$: $x, y \in \mathcal{G}$: $(x \mathcal{U})(y \mathcal{U}) = xy \mathcal{U} = z \mathcal{U}$ where $z = xy$

well-defined: $(x \mathcal{U})(y \mathcal{U}) = x(\mathcal{U} y) \mathcal{U} = xy \mathcal{U} \mathcal{U} = z \mathcal{U} \mathcal{U} = z \mathcal{U}$

- An invariant subgroup $U \subset G$ and the distinct cosets xU form a group, called factor group $\mathcal{F} = \mathcal{G}/\mathcal{U}$
	- group multiplication: see above
	- \bullet $\mathcal U$ is identity element of factor group
	- x^{-1} U is inverse for x U

Every factor group $\mathcal{F} = \mathcal{G}/\mathcal{U}$ is homomorphic to \mathcal{G} (see below).

Example: Permutation Group P_3

invariant subgroup $\mathcal{U} = \{e, a, b\}$ \Rightarrow one coset $c\mathcal{U} = d\mathcal{U} = f\mathcal{U} = \{c, d, f\}$ factor group $P_3/U = \{U, cU\}$ U cU и и си cU cU U

- \triangleright We can think of factor groups \mathcal{G}/\mathcal{U} as coarse-grained versions of \mathcal{G} .
- \triangleright Often, factor groups \mathcal{G}/\mathcal{U} are a helpful intermediate step when working out the structure of more complicated groups \mathcal{G} .
- \blacktriangleright Thus: invariant subgroups are "more useful" subgroups than other subgroups.

Mappings of Groups

- ► Let $\mathcal G$ and $\mathcal G'$ be two groups. A mapping $\phi : \mathcal G \to \mathcal G'$ assigns to each $\mathcal{g} \in \mathcal{G}$ an element $\mathcal{g}' = \phi(\mathcal{g}) \in \mathcal{G}'$, with every $\mathcal{g}' \in \mathcal{G}'$ being the image of at least one $g \in \mathcal{G}$.
- If $\phi(g_1)\phi(g_2) = \phi(g_1 g_2)$ $\forall g_1, g_2 \in \mathcal{G}$, then ϕ is a homomorphic mapping of ${\cal G}$ on ${\cal G}'$.
	- A homomorphic mapping is consistent with the group structures
	- A homomorphic mapping $\mathcal{G} \to \mathcal{G}'$ is always *n*-to-one $(n \geq 1)$: The preimage of the unit element of \mathcal{G}' is an invariant subgroup $\mathcal U$ of $\mathcal G.$ \mathcal{G}' is isomorphic to the factor group $\mathcal{G}/\mathcal{U}.$
- If the mapping ϕ is one-to-one, then it is an isomomorphic mapping of G on G' .
	- Short-hand: $\mathcal G$ isomorphic to $\mathcal G'\Rightarrow \mathcal G\simeq \mathcal G'$
	- Isomorphic groups have the same group structure.
- \blacktriangleright Examples:
	- trivial homomorphism $G = P_3$ and $G' = \{e\}$
	- isomorphism between permutation group P_3 and symmetry group C_{3v} of equilateral triangle Roland Winkler, NIU, Argonne, and NCTU 2011−2015

Products of Groups

Given two groups $\mathcal{G}_1 = \{a_i\}$ and $\mathcal{G}_2 = \{b_k\}$, their outer direct product is the group $\mathcal{G}_1 \times \mathcal{G}_2$ with elements (a_i,b_k) and multiplication

 $(a_i,b_k)\cdot(a_j,b_l)=(a_ia_j,b_kb_l)\in\mathcal{G}_1\times\mathcal{G}_2$

- Check that the group axioms are satisfied for $G_1 \times G_2$.
- Order of \mathcal{G}_n is h_n $(n = 1, 2) \Rightarrow$ order of $\mathcal{G}_1 \times \mathcal{G}_2$ is $h_1 h_2$
- If $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$, then both \mathcal{G}_1 and \mathcal{G}_2 are invariant subgroups of \mathcal{G} . Then we have isomorphisms $G_2 \simeq G/G_1$ and $G_1 \simeq G/G_2$.
- Application: built more complex groups out of simpler groups

\n- If
$$
\mathcal{G}_1 = \mathcal{G}_2 = \mathcal{G} = \{a_i\}
$$
, the elements $(a_i, a_i) \in \mathcal{G} \otimes \mathcal{G}$ define a group $\tilde{\mathcal{G}} \equiv \mathcal{G} \otimes \mathcal{G}$ called the inner product of \mathcal{G} .
\n

- The inner product $G \otimes G$ is isomorphic to $G \implies$ same order as G)
- Compare: product representations (discussed below)

Matrix Representations of a Group

Motivation

- ► Consider symmetry group $C_i = \{e, i\}$ $e =$ identity $i =$ inversion
- \triangleright two "types" of basis functions: even and odd
- \triangleright more abstract: reducible and irreducible representations matrix representation (based on 1×1 and 2×2 matrices)

$$
\left.\begin{array}{lcl}\n\Gamma_1 & = & \{\mathcal{D}_e = 1, \ \mathcal{D}_i = 1\} \\
\Gamma_2 & = & \{\mathcal{D}_e = 1, \ \mathcal{D}_i = -1\} \\
\Gamma_3 & = & \{\mathcal{D}_e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathcal{D}_i = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\}\n\end{array}\right\}
$$
 consistent with group

where $\mathsf{\Gamma}_1$: even function $f_e(\mathsf{x}) = f_e(-\mathsf{x})$ $Γ₂$: odd functions $f_o(x) = -f_o(-x)$ irreducible representations

$$
\begin{aligned}\n\Gamma_3: \text{ reducible representation:} \\
\text{decompose any } f(x) \text{ into even and odd parts} \\
f(x) &= f_e(x) + f_o(x) \quad \text{with} \\
\begin{cases}\nf_e(x) = \frac{1}{2} \left[f(x) + f(-x) \right] \\
f_o(x) &= \frac{1}{2} \left[f(x) - f(-x) \right]\n\end{cases}\n\end{aligned}
$$

How to generalize these ideas for arbitrary groups?

Roland Winkler, NIU, Argonne, and NCTU 2011−2015

 $\mathcal{C}_i \mid e - i$ $e \mid e \mid i$ i i e

Matrix Representations of a Group

lacktriangleright Let group $G = \{g_i : i = 1, ..., h\}$

► Associate with each $g_i \in G$ a nonsingular square matrix $\mathcal{D}(g_i)$. If the resulting set $\{D(g_i) : i = 1, ..., h\}$ is homomorphic to G it is called a matrix representation of G .

•
$$
g_i g_j = g_k \Rightarrow D(g_i) D(g_j) = D(g_k)
$$

- $D(e) = 1$ (identity matrix)
- $\mathcal{D}(g_i^{-1}) = \mathcal{D}^{-1}(g_i)$

 \triangleright dimension of representation $=$ dimension of representation matrices

Example (1): $\mathcal{G} = \mathcal{C}_{\infty}$ = rotations around a fixed axis (angle ϕ)

- ► C_{∞} is isomorphic to group of orthogonal 2 \times 2 matrices $SO(2)$ $\mathcal{D}_2(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$ sin ϕ cos ϕ $\Big)$ ⇒ two-dimensional (2D) representation
- ► C_{∞} is homomorphic to group $\{D_1(\phi)=1\} \Rightarrow$ trivial 1D representation
- ► C_{∞} is isomorphic to group $\left\{\left(\begin{array}{cc} 1 & 0 \ 0 & \mathcal{D}_2(\phi) \end{array} \right)\right\} \;\; \Rightarrow \;\;$ higher-dimensional representation

Generally: given matrix representations of dimensions n_1 and n_2 , we can construct $(n_1 + n_2)$ dimensional representations

Matrix Representations of a Group (cont'd)

Example (2): Symmetry group C_{3v} of equilateral triangle (isomorphic to permutation group P_3)

Goal: Identify and Classify Representations

Theorem 2: If U is an invariant subgroup of G , then every representation of the factor group $\mathcal{F} = \mathcal{G}/\mathcal{U}$ is likewise a representation of \mathcal{G} .

Proof: G is homomorphic to F , which is homomorphic to the representations of F .

Thus: To identify the representations of G it helps to identify the representations of $\mathcal F$.

\triangleright Definition: Equivalent Representations

Let $\{D(g_i)\}\$ be a matrix representation for G with dimension n. Let X be a *n*-dimensional nonsingular matrix.

The set $\{\mathcal{D}'(\mathcal{g}_i) = X \, \mathcal{D}(\mathcal{g}_i) \, X^{-1}\}$ forms a matrix representation called equivalent to $\{\mathcal{D}(g_i)\}.$

Convince yourself: $\{D'(g_i)\}\;$ is, indeed, another matrix representation.

Matrix representations are most convenient if matrices $\{\mathcal{D}\}\$ are unitary. Thus

• Theorem 3: Every matrix representation $\{D(g_i)\}\$ is equivalent to a unitary representation $\{\mathcal{D}'(\mathcal{g}_i)\}$ where $\mathcal{D}'^{\,\dagger}(\mathcal{g}_i)=\mathcal{D}'^{\,-1}(\mathcal{g}_i)$

In the following, it is always assumed that matrix representations are unitary.

Proof of Theorem [3](#page-25-0) (cf. Falicov)

Challenge: Matrix X has to be choosen such that it makes all matrices $\mathcal{D}'(\mathcal{g}_i)$ unitary simultaneously.

► Let $\{D(g_i) \equiv D_i : i = 1, ..., h\}$ be a matrix representation for $\mathcal G$ (dimension h).

$$
\blacktriangleright \text{ Define } H = \sum_{i=1}^{h} \mathcal{D}_i \mathcal{D}_i^{\dagger} \text{ (Hermitean)}
$$

 \triangleright Thus H can be diagonalized by means of a unitary matrix U.

$$
d \equiv U^{-1}HU = \sum_{i} U^{-1}D_{i} D_{i}^{-1}U = \sum_{i} U^{-1}D_{i} U U^{-1} D_{i}^{-1}U
$$

$$
= \sum_{i} \tilde{D}_{i} \tilde{D}_{i}^{\dagger} \text{ with } d_{\mu\nu} = d_{\mu}\delta_{\mu\nu} \text{ diagonal}^{-\tilde{D}_{i}} \longrightarrow
$$

 \triangleright Diagonal entries d_{μ} are positive:

$$
d_{\mu} = \sum_{i} \sum_{\lambda} (\tilde{\mathcal{D}}_{i})_{\mu\lambda} (\tilde{\mathcal{D}}_{i}^{\dagger})_{\lambda\mu} = \sum_{i\lambda} (\tilde{\mathcal{D}}_{i})_{\mu\lambda} (\tilde{\mathcal{D}}_{i}^{*})_{\mu\lambda} = \sum_{i\lambda} |(\tilde{\mathcal{D}}_{i})_{\mu\lambda}|^{2} > 0
$$

► Take diagonal matrix \tilde{d}_\pm with elements $(\tilde{d}_\pm)_{\mu\nu} \equiv d_\mu^{\pm 1/2} \, \delta_{\mu\nu}$

$$
\blacktriangleright \text{ Thus } \mathbb{1} = \tilde{d}_- d \, \tilde{d}_- = \tilde{d}_-\sum_i \tilde{\mathcal{D}}_i \tilde{\mathcal{D}}_i^{\dagger} \, \tilde{d}_-\ \text{ (identity matrix)}
$$

Proof of Theorem [3](#page-25-0) (cont'd)

► Assertion: $\mathcal{D}'_i = \tilde{d}_-\tilde{D}_i \tilde{d}_+ = \tilde{d}_-\tilde{U}^{-1}\mathcal{D}_i \tilde{U}\tilde{d}_+$ are unitary matrices equivalent to \mathcal{D}_i

- equivalent by construction: $X = \tilde{d}$ U^{-1}
- unitarity: ${\cal D}'_i\,{\cal D}'_i{}^\dagger\;\;=\;\; \tilde{d}_-\tilde{\cal D}_i\tilde{d}_+$ $=1$ $\big(\tilde{d}_-\sum_k \tilde{\mathcal{D}}_k\overline{\tilde{\mathcal{D}}_k^{\dagger}} \, \tilde{d}_-\big) \, \tilde{d}_+\tilde{\mathcal{D}}_i^{\dagger} \, \tilde{d}_ = \tilde{d} - \sum_{k} \tilde{\mathcal{D}}_{i} \tilde{\mathcal{D}}_{k} \tilde{\mathcal{D}}_{k}^{\dagger} \tilde{\mathcal{D}}_{i}^{\dagger} \tilde{d} = \tilde{D}_j = \tilde{D}_j^{\dagger}$ (rearrangement lemma) $= d$ $= 1$

qed

Reducible and Irreducible Representations (RRs and IRs)

If for a given representation $\{D(g_i) : i = 1, ..., h\}$, an equivalent representation $\{\mathcal{D}'(\mathcal{g}_i): i=1,\ldots,h\}$ can be found that is block diagonal

$$
\mathcal{D}'(g_i) = \begin{pmatrix} \mathcal{D}'_1(g_i) & 0 \\ 0 & \mathcal{D}'_2(g_i) \end{pmatrix} \qquad \forall g_i \in \mathcal{G}
$$

then $\{\mathcal{D}(g_i) : i = 1, \ldots, h\}$ is called reducible, otherwise irreducible.

- \triangleright Crucial: the same block diagonal form is obtained for all representation matrices $\mathcal{D}(g_i)$ simultaneously.
- \blacktriangleright Block-diagonal matrices do not mix, i.e., if $\mathcal{D}'(g_1)$ and $\mathcal{D}'(g_2)$ are block diagonal, then $\mathcal{D}'(g_3) = \mathcal{D}'(g_1) \mathcal{D}'(g_2)$ is likewise block diagonal.
	- \Rightarrow Decomposition of RRs into IRs decomposes the problem into the smallest subproblems possible.
- \triangleright Goal of Representation Theory

Identify and characterize the IRs of a group.

 \triangleright We will show

The number of inequivalent IRs equals the number of classes.

Schur's First Lemma

Schur's First Lemma: Suppose a matrix M commutes with all matrices $\mathcal{D}(g_i)$ of an *irreducible* representation of $\mathcal G$

$$
\mathcal{D}(g_i) M = M \mathcal{D}(g_i) \qquad \forall g_i \in \mathcal{G} \qquad (\spadesuit)
$$

then M is a multiple of the identity matrix $M = c1$, $c \in \mathbb{C}$.

Corollaries

- If (\spadesuit) holds with $M \neq c\mathbb{I}$, $c \in \mathbb{C}$, then $\{\mathcal{D}(g_i)\}\)$ is reducible.
- \triangleright All IRs of Abelian groups are one-dimensional

Proof: Take $g_i \in \mathcal{G}$ arbitrary, but fixed. G Abelian $\Rightarrow \mathcal{D}(g_i) \mathcal{D}(g_i) = \mathcal{D}(g_i) \mathcal{D}(g_i) \quad \forall g_i \in \mathcal{G}$ Lemma $\Rightarrow \mathcal{D}(g_i) = c_i \mathbb{I}$ with $c_i \in \mathbb{C}$, i.e., $\{\mathcal{D}(g_i) = c_i\}$ is an IR.

Proof of [Schur's First Lemma](#page-29-0) (cf. Bir & Pikus)

- ▶ Take Hermitean conjugate of (\spadesuit) : $M^{\dagger} \mathcal{D}^{\dagger}(g_i) = \mathcal{D}^{\dagger}(g_i) M^{\dagger}$ Multiply with $\mathcal{D}^{\dagger}(g_i) = \mathcal{D}^{-1}(g_i)$: $\qquad \mathcal{D}(g_i) M^{\dagger} = M^{\dagger} \mathcal{D}(g_i)$
- ▶ Thus: (♦) holds for M and M^{\dagger} , and also the Hermitean matrices $M' = \frac{1}{2}(M + M^{\dagger})$ $M'' = \frac{i}{2}(M - M^{\dagger})$
- It exists a unitary matrix U that diagonalizes M' (similar for M'') $d = U^{-1} M' U$ with $d_{\mu\nu} = d_{\mu} \delta_{\mu\nu}$
- ▶ Thus (♦) implies $D'(g_i) d = d D'(g_i)$, where $D'(g_i) = U^{-1} D(g_i) U$ more explicitly: $\mathcal{D}'_{\mu\nu}(g_i)$ $(d_\mu - d_\nu) = 0 \quad \forall i, \mu, \nu$

Proof of [Schur's First Lemma](#page-29-0) (cont'd)

Two possibilities:

\n- All
$$
d_{\mu}
$$
 are equal, i.e., $d = c \mathbb{1}$.
\n- So $M' = U d U^{-1}$ and M'' are likewise proportional to $\mathbb{1}$, and so is $M = M' - iM''$.
\n

$$
\blacktriangleright
$$
 Some d_{μ} are different:

Say $\{d_{\kappa} : \kappa = 1, \ldots, r\}$ are different from $\{d_{\lambda} : \lambda = r + 1, \ldots, h\}$.

Thus: $\chi'_{\kappa\lambda}(g_i) = 0 \quad \begin{array}{l} \forall \kappa = 1,\ldots,r;\\ \forall \lambda = r+1,\ldots,h. \end{array}$

Thus $\{D'(g_i): i=1,\ldots,h\}$ is block-diagonal, contrary to the assumption that $\{D(g_i)\}\;$ is irreducible qed

Schur's Second Lemma

Schur's Second Lemma: Suppose we have two IRs $\{\mathcal{D}_1(g_i),$ dimension $n_1\}$ and $\{\mathcal{D}_2(g_i),$ dimension $n_2\}$, as well as a $n_1 \times n_2$ matrix M such that

 $\mathcal{D}_1(g_i) M = M \mathcal{D}_2(g_i) \qquad \forall g_i \in \mathcal{G}$ (\clubsuit)

(1) If $\{\mathcal{D}_1(g_i)\}\$ and $\{\mathcal{D}_2(g_i)\}\$ are inequivalent, then $M=0$.

(2) If $M \neq 0$ then $\{D_1(g_i)\}\$ and $\{D_2(g_i)\}\$ are equivalent.

Proof of [Schur's Second Lemma](#page-32-0) (cf. Bir & Pikus)

- ► Take Hermitean conjugate of (\clubsuit) ; use $\mathcal{D}^{\dagger}(g_i) = \mathcal{D}^{-1}(g_i) = \mathcal{D}(g_i^{-1})$, so $M^{\dagger} \mathcal{D}_1(g_i^{-1}) = \mathcal{D}_2(g_i^{-1}) M^{\dagger}$
- ► Multiply by M on the left; Eq. (♣) implies $M D_2(g_i^{-1}) = D_1(g_i^{-1}) M$, so $MM^{\dagger}D_1(g_i^{-1}) = D_1(g_i^{-1})MM^{\dagger}$ $\forall g_i^{-1} \in \mathcal{G}$
- [Schur's first lemma](#page-29-0) implies that MM^{\dagger} is square matrix with $MM^{\dagger} = c \mathbb{1}$ with $c \in \mathbb{C}$ (*)
- \blacktriangleright Case a: $n_1 = n_2$
	- If $c \neq 0$ then det $M \neq 0$ because of (*), i.e., M is invertible. So (♣) implies $M^{-1} \mathcal{D}_1(g_i) M = \mathcal{D}_2(g_i) \qquad \forall g_i \in \mathcal{G}$ thus $\{D_1(g_i)\}\$ and $\{D_2(g_i)\}\$ are equivalent.
	- If $c = 0$ then $MM^{\dagger} = 0$, i.e., $\sum_{\nu} M_{\mu\nu} M_{\nu}^{\dagger} = \sum_{\nu} M_{\mu\nu} M_{\mu\nu}^* = \sum_{\nu} |M_{\mu\nu}|^2 = 0 \quad \forall \mu$ so that $M = 0$.

Proof of [Schur's Second Lemma](#page-32-0) (cont'd)

Gase b: $n_1 \neq n_2$ $(n_1 < n_2$ to be specific)

• Fill up M with $n_2 - n_1$ rows to get matrix \tilde{M} with det $\tilde{M} = 0$.

\n- However
$$
\tilde{M}\tilde{M}^{\dagger} = MM^{\dagger}
$$
, so that $\det(MM^{\dagger}) = \det(\tilde{M}\tilde{M}^{\dagger}) = (\det \tilde{M}) (\det \tilde{M}^{\dagger}) = 0$
\n

• So $c = 0$, i.e., $MM^{\dagger} = 0$, and as before $M = 0$.

Orthogonality Relations for IRs

Notation:

- Irreducible Representations (IR): $\Gamma_1 = {\mathcal{D}_1(g_i) : g_i \in \mathcal{G}}$
- \blacktriangleright n_I = dimensionality of IR Γ_I
- \blacktriangleright h = order of group $\mathcal G$

Theorem 4: Orthogonality Relations for Irreducible Representations

(1) two inequivalent IRs
$$
\Gamma_l \neq \Gamma_J
$$

\n
$$
\sum_{i=1}^h \mathcal{D}_l(g_i)_{\mu'\nu'}^* \mathcal{D}_J(g_i)_{\mu\nu} = 0 \qquad \forall \mu', \nu' = 1, ..., n_J
$$
\n
$$
\forall \mu, \nu = 1, ..., n_J
$$

(2) representation matrices of one IR $Γ_I$

$$
\frac{n_1}{h} \sum_{i=1}^h \mathcal{D}_l(g_i)_{\mu'\nu'}^* \mathcal{D}_l(g_i)_{\mu\nu} = \delta_{\mu'\mu} \, \delta_{\nu'\nu} \qquad \forall \, \mu', \nu', \mu, \nu = 1, \ldots, n_l
$$

Remarks

- \triangleright $[D_l(g_i)_{\mu\nu} : i = 1, \ldots, h]$ form vectors in a h-dim. vector space
- vectors are normalized to $\sqrt{h/n_I}$ (because Γ_I assumed to be unitary)
- riangleright vectors for different $I, \mu\nu$ are orthogonal
- \blacktriangleright in total, we have $\sum_l n_l^2$ such vectors; therefore $\sum_l n_l^2 \leq h$

Corollary: For finite groups the number of inequivalent IRs is finite.
Proof of Theorem [4:](#page-35-0) Orthogonality Relations for IRs

(1) two inequivalent IRs $\Gamma_1 \neq \Gamma_J$ **I** Take arbitrary $n_J \times n_I$ matrix $X \neq 0$ (i.e., at least one $X_{\mu\nu} \neq 0$) ► Let $M \equiv \sum$ $\sum_i \mathcal{D}_J(g_i) \, X \, \mathcal{D}_I(g_i^{-1})$ \Rightarrow $\mathcal{D}_J(g_k) M = \sum$ $\sum_{i} \mathcal{D}_{J}(g_{k}) \overbrace{\mathcal{D}_{J}(g_{i})}^{D_{J}(g_{i})} \times \overbrace{\mathcal{D}_{I}(g_{i}^{-1})}^{D_{I}^{-1}(g_{k})}^{D_{I}^{-1}(g_{k})}^{D_{J}(g_{k})}$ $=\sum \overline{\mathcal{D}_j(g_k g_i)} \times \overline{\mathcal{D}_l^{-1}(g_k g_i)}$ $=M$ $=1$ \sum_{i} \sum_{j} \sum_{k} \equiv_{g_j}) X $\mathcal{D}_I^{-1}(g_k g_l)$ \equiv_{g_j} $\mathcal{D}_I(g_k)$ $= \sum$ $\sum\limits_j {\mathcal{D}}_J({\mathcal{g}}_j) \, X \, {\mathcal{D}}_I({\mathcal{g}}_j^{-1}) \, {\mathcal{D}}_I({\mathcal{g}}_k)$ \overline{M} $=$ M $\mathcal{D}_l(g_k)$ ⇒ [\(Schur's Second Lemma\)](#page-32-0) $0 = M_{\mu\mu'} \qquad \forall \mu, \mu'$

$$
= \sum_{i} \sum_{\kappa,\lambda} \mathcal{D}_{j}(g_{i})_{\mu\kappa} X_{\kappa\lambda} \mathcal{D}_{l}(g_{i}^{-1})_{\lambda\mu'} \qquad \begin{array}{l}\n\text{in particular } \text{c} \\
X_{\kappa\lambda} = \delta_{\nu\kappa} \delta_{\lambda} \\
\text{in particular } \text{c} \\
\sum_{i} \mathcal{D}_{j}(g_{i})_{\mu\nu} \mathcal{D}_{l}(g_{i}^{-1})_{\nu'\mu'}\n\end{array}
$$
\n
$$
= \sum_{i} \mathcal{D}_{l}(g_{i})_{\mu'\nu'}^{*} \mathcal{D}_{j}(g_{i})_{\mu\nu} \qquad \text{quad}
$$
\n
$$
\text{Roland Winkler, NIU, Argonne}
$$

in particular correct for $\lambda = \delta_{\mu\nu} \delta_{\lambda\nu'}$

inkler, NIU, Argonne, and NCTU 2011−2015

Proof of Theorem [4:](#page-35-0) Orthogonality Relations for IRs (cont'd)

(2) representation matrices of one IR Γ

First steps similar to case (1):

- ► Let $M \equiv \sum$ $\sum\limits_i {\mathcal{D}_I(\mathcal{g}_i)}\,X\,\mathcal{D}_I(\mathcal{g}_i^{-1})\;$ with $n_I\times n_I$ matrix $X\neq 0$ \Rightarrow $\mathcal{D}_l(g_k) M = M \mathcal{D}_l(g_k)$
- \Rightarrow [\(Schur's First Lemma\)](#page-29-0): $M = c \mathbb{1}$, $c \in \mathbb{C}$

$$
\begin{aligned}\n\blacktriangleright \text{ Thus } c \, \delta_{\mu\mu'} &= \sum_{i} \sum_{\kappa,\lambda} \mathcal{D}_{i}(g_{i})_{\mu\kappa} X_{\kappa\lambda} \, \mathcal{D}_{i}(g_{i}^{-1})_{\lambda\mu'} & \text{choose } X_{\kappa\lambda} = \delta_{\nu\kappa} \, \delta_{\lambda\nu'} \\
&= \sum_{i} \mathcal{D}_{i}(g_{i})_{\mu\nu} \, \mathcal{D}_{i}(g_{i}^{-1})_{\nu'\mu'} = M_{\mu\mu'} \\
\blacktriangleright c &= \frac{1}{n_{i}} \sum_{\mu} M_{\mu\mu} = \frac{1}{n_{i}} \sum_{i} \sum_{\mu} \mathcal{D}_{i}(g_{i})_{\mu\nu} \, \mathcal{D}_{i}(g_{i}^{-1})_{\nu'\mu} = \frac{h}{n_{i}} \delta_{\nu\nu'} & \text{qed} \\
&= \frac{1}{n_{i}} \sum_{\mu} M_{\mu\mu} = \frac{1}{n_{i}} \sum_{i} \sum_{\mu} \mathcal{D}_{i}(g_{i})_{\mu\nu} \, \mathcal{D}_{i}(g_{i}^{-1})_{\nu'\mu} = \delta_{\nu\nu'} & \text{qed} \\
\end{aligned}
$$

Goal: Characterize different irreducible representations of a group **Characters**

 \triangleright The traces of the representation matrices are called characters $\chi(\mathcal{g}_i) \equiv \operatorname{tr} \mathcal{D}(\mathcal{g}_i) = \sum_i \mathcal{D}(\mathcal{g}_i)_{\mu\mu}$

 \blacktriangleright Equivalent IRs are related via a similarity transformation $\mathcal{D}'(g_i) = X\,\mathcal{D}(g_i)X^{-1}$ with X nonsingular This transformation leaves the trace invariant: tr $\mathcal{D}'(g_i) = \text{tr}\,\mathcal{D}(g_i)$ \Rightarrow Equivalent representations have the same characters.

► Theorem 5: If $g_i, g_j \in \mathcal{G}$ belong to the same class \mathcal{C}_k of \mathcal{G} , then for every representation Γ_l of G we have $\chi_l(g_i) = \chi_l(g_i)$

Proof:

- $g_i, g_j \in \mathcal{C} \Rightarrow \exists x \in \mathcal{G}$ with $g_i = x \, g_j x^{-1}$
- Thus $\mathcal{D}_I(g_i) = \mathcal{D}_I(x) \mathcal{D}_I(g_i) \mathcal{D}_I(x^{-1})$
- $\chi_l(g_i) = \text{tr}[\mathcal{D}_l(x) \mathcal{D}_l(g_j) \mathcal{D}_l(x^{-1})]$ (trace invariant under cyclic permutation) $=$ tr $[\mathcal{D}_I(x^{-1}) \mathcal{D}_I(x) \mathcal{D}_I(g_j)] = \chi_I(g_k)$ $=$ $\frac{1}{2}$ $=1$

Characters (cont'd)

Notation

- $\triangleright \gamma_I(\mathcal{C}_k)$ denotes the character of group elements in class \mathcal{C}_k
- \blacktriangleright The array $[\chi_I(\mathcal{C}_k)]$ with $I = 1, \ldots, N$ ($N =$ number of IRs) $k = 1, \ldots, \tilde{N}$ ($\tilde{N} =$ number of classes) is called character table.

Remark: For Abelian groups the character table is the table of the 1×1 representation matrices

Theorem 6: Orthogonality relations for characters

Let $\{\mathcal{D}_I(g_i)\}\$ and $\{\mathcal{D}_I(g_i)\}\$ be two IRs of G. Let h_k be the number of elements in class C_k and N the number of classes. Then

 \sum N˜ $_{k=1}$ h_k $\frac{\partial k}{\partial h} \chi_l^*(\mathcal{C}_k) \chi_J(\mathcal{C}_k) = \delta_{IJ}$ $\forall I, J = 1, ..., N$ Proof: Use orthogonality relation for IRs

- Interpretation: rows $[\chi_l(\mathcal{C}_k) : k = 1, \dots \tilde{N}]$ of character table are like N orthonormal vectors in a N -dimensional vector space $\Rightarrow N < \tilde{N}$.
- If two IRs Γ and Γ have the same characters, this is necessary and sufficient for Γ_I and Γ_J to be equivalent.

Example: Symmetry group C_{3v} of equilateral triangle (isomorphic to permutation group P_3)

Interpretation: Character Tables

- \triangleright A character table is the uniquely defined signature of a group and its IRs $\mathsf{\Gamma}_{I}$ [independent of, e.g., phase conventions for representation matrices $\mathcal{D}_I(g_i)$ that are quite arbitrary].
- \blacktriangleright Isomorphic groups have the same character tables.
- \blacktriangleright Yet: the labeling of IRs Γ_I is a matter of convention. Customary:
	- Γ_1 = identity representation: all characters are 1
	- IRs are often numbered such that low-dimensional IRs come first; higher-dimensional IRs come later
	- If G contains the inversion, a superscript \pm is added to Γ indicating the behavior of $\mathsf{\Gamma}^\pm_l$ under inversion (even or odd)
	- other labeling schemes are inspired by compatibility relations (more later)
- \triangleright Different authors use different conventions to label IRs. To compare such notations we need to compare the uniquely defined characters for each class of an IR.

(See, e.g., Table 2.7 in Yu and Cardona: Fundamentals of Semiconductors; here we follow Koster et al.)

Decomposing Reducible Representations (RRs) Into Irreducible Representations (IRs)

Given an arbitrary RR $\{D(g_i)\}\)$ the representation matrices $\{D(g_i)\}\$ can be brought into block-diagonal form by a suitable unitary transformation

$$
\mathcal{D}(g_i) \rightarrow \mathcal{D}'(g_i) = \begin{pmatrix} \mathcal{D}_1(g_i) & & & \mathbf{0} \\ & \mathcal{D}_1(g_i) & & \\ & & \mathcal{D}_N(g_i) & \\ & & & & \mathcal{D}_N(g_i) \\ \mathbf{0} & & & & \mathcal{D}_N(g_i) \end{pmatrix} \begin{matrix} \end{matrix} \right) a_1 \text{ times}
$$

Theorem 7: Let a_1 be the multiplicity, with which the IR $\Gamma_1 \equiv \{ \mathcal{D}_1(g_i) \}$ is contained in the representation $\{\mathcal{D}(g_i)\}\$. Then

(1)
$$
\chi(g_i) = \sum_{l=1}^{N} a_l \chi_l(g_i)
$$

\n(2) $a_l = \frac{1}{h} \sum_{i=1}^{h} \chi_l^*(g_i) \chi(g_i) = \sum_{k=1}^{\tilde{N}} \frac{h_k}{h} \chi_l^*(C_k) \chi(C_k)$

We say: $\{\mathcal{D}(g_i)\}\)$ contains the IR Γ_i a_i times.

Proof: Theorem [7](#page-42-0)

(1) due to invariance of trace under similarity transformations

(2) we have
$$
\sum_{J=1}^{N} a_{J} \chi_{J}(g_{i}) = \chi(g_{i}) \qquad \Big| \frac{1}{h} \sum_{i=1}^{h} \chi_{I}^{*}(g_{i}) \times
$$

$$
\Rightarrow \sum_{J=1}^{N} a_{J} \underbrace{\frac{1}{h} \sum_{i=1}^{h} \chi_{I}^{*}(g_{i}) \chi_{J}(g_{i})}_{=\delta_{IJ}} = \frac{1}{h} \sum_{i=1}^{h} \chi_{I}^{*}(g_{i}) \chi(g_{i}) \qquad \text{qed}
$$

Applications of Theorem [7:](#page-42-0)

- **Corollary:** The representation $\{\mathcal{D}(g_i)\}\$ is irreducible if and only if $\sum h$ $i=1$ $|\chi(g_i)|^2 = h$ **Proof:** Use Theorem [7](#page-42-0) with $a_1 = \begin{cases} 1 & \text{for one } I \\ 0 & \text{otherwise} \end{cases}$ 0 otherwise
- \triangleright Decomposition of Product Representations [\(see later\)](#page-71-0)

Where Are We?

We have discussed the orthogonality relations for

- \blacktriangleright irreducible representations
- \blacktriangleright characters

These can be complemented by matching completeness relations.

Proving those is a bit more cumbersome. It requires the introduction of the regular representation.

The Regular Representation

Finding the IRs of a group can be tricky. Yet for finite groups we can derive the regular representation which contains all IRs of the group.

- Interpret group elements g_{ν} as basis vectors $\{|g_{\nu}\rangle : \nu = 1, \dots h\}$ for a *h*-dim. representation
- \Rightarrow Regular representation:

 ν th column vector of $\mathcal{D}_R(g_i)$ gives image $|g_\mu \rangle = g_i |g_\nu \rangle \equiv |g_i g_\nu \rangle$ of basis vector $|g_{\nu}\rangle$

$$
\Rightarrow D_R(g_i)_{\mu\nu} = \begin{cases} 1 & \text{if } g_\mu g_\nu^{-1} = g_i \\ 0 & \text{otherwise} \end{cases}
$$

\triangleright Strategy:

- Re-arrange the group multiplication table as shown on the right
- For each $g_i \in \mathcal{G}$ we have $\mathcal{D}_R(g_i)_{\mu\nu} = 1$, if the entry (μ, ν) in the re-arranged group multiplication table equals g_i , otherwise $\mathcal{D}_R(g_i)_{\mu\nu} = 0$.

Properties of the Regular Representation $\{D_R(g_i)\}$

- (1) $\{D_R(g_i)\}\$ is, indeed, a representation for the group G
- (2) It is a *faithful* representation, i.e., $\{\mathcal{D}_R(g_i)\}\$ is isomorphic to $\mathcal{G} = \{g_i\}.$

$$
(3) \ \ \chi_R(g_i) = \left\{ \begin{array}{ll} h & \text{if } g_i = e \\ 0 & \text{otherwise} \end{array} \right.
$$

Proof:

(1) Matrices
$$
\{D_R(g_i)\}
$$
 are nonsingular, as every row / every column
contains "1" exactly once.
Show: if $g_i g_j = g_k$, then $D_R(g_i) D_R(g_j) = D_R(g_k)$
Take i, j, μ, ν arbitrary, but fixed
 $\int D_R(g_i)_{\mu\lambda} = 1$ only for $g_{\mu} g_{\lambda}^{-1} = g_i \Leftrightarrow g_{\lambda} = g_i^{-1} g_{\mu}$
 $\int D_R(g_j)_{\lambda\nu} = 1$ only for $g_{\lambda} g_{\nu}^{-1} = g_j \Leftrightarrow g_{\lambda} = g_j g_{\nu}$
 $\Leftrightarrow \sum_{\lambda} D_R(g_i)_{\mu\lambda} D_R(g_j)_{\lambda\nu} = 1$ only for $g_i^{-1} g_{\mu} = g_j g_{\nu}$
 $\Leftrightarrow g_{\mu} g_{\nu}^{-1} = g_i g_j = g_k$ [definition of $D_R(g_k)_{\mu\nu}$]
(2) immediate consequence of definition of $D_R(g_i)$

(3) $\mathcal{D}_R(g_i)_{\mu\mu} = \begin{cases} 1 & \text{if } g_i = g_\mu g_\mu^{-1} = e_i \ 0 & \text{otherwise} \end{cases}$ 0 otherwise $\Rightarrow \chi_R(g_i) = \sum_{\mu} \mathcal{D}_R(g_i)_{\mu\mu} = \begin{cases} h & \text{if } g_i = e \\ 0 & \text{otherwise} \end{cases}$ 0 otherwise Minkler, NIU, Argonne, and NCTU 2011−2015

Example: Regular Representation for P_3

Thus

Completeness of Irreducible Representations

Lemma: The regular representation contains every IR n_1 times, where $n_l =$ dimensionality of IR Γ_l .

Proof: Use Theorem [7:](#page-42-0) $\chi_R(g_i) = \sum a_i \chi_I(g_i)$ where $a_1 = \frac{1}{h} \sum_i \chi_i^*(g_i) \chi_R(g_i) = \frac{1}{h} \underbrace{\chi_i^*(e)} \underbrace{\chi_R(e)} = n_1$ $= n_l$ $=n_l$ $\sum_{n=1}^{\infty}$ $=$ h

Corollary (Burnside's Theorem): For a group G of order h, the dimensionalities n_1 of the IRs Γ_1 obey

$$
\sum_{l} n_l^2 = h
$$
\nProof: $h = \chi_R(e) = \sum_{l} a_l \chi_l(e) = \sum_{l} n_l^2$
\nserious constraint for dimensionalities of IRs

Theorem 8: The representation matrices $\mathcal{D}_I(g_i)$ of a group $\mathcal G$ of order h obey the completeness relation

$$
\sum_{l} \sum_{\mu,\nu} \frac{n_l}{h} \mathcal{D}_l^*(g_i)_{\mu\nu} \mathcal{D}_l(g_j)_{\mu\nu} = \delta_{ij} \qquad \forall i,j = 1,\ldots,h \qquad (*)
$$

Proof:

- **If** Theorem [4:](#page-35-0) Interpret $[\mathcal{D}_I(g_i)_{\mu\nu} : i = 1, \ldots, h]$ as orthonormal row vectors of a matrix *M*

► $\left\{\n\begin{array}{c}\n\Rightarrow M \text{ is square matrix: unitary} \\
\Rightarrow \text{Corollary: } M \text{ has } h \text{ columns}\n\end{array}\n\right\}$ \Rightarrow column vectors also orthono
- ⇒ column vectors also orthonormal $=$ completeness $(*)$

Completeness Relation for Characters

Theorem 9: Completeness Relation for Characters If $\chi_I(\mathcal{C}_k)$ is the character for class \mathcal{C}_k and irreducible representation I, then \mathbf{L}

$$
\frac{n_k}{h}\sum_l \chi_l^*(\mathcal{C}_k)\chi_l(\mathcal{C}_{k'})=\delta_{kk' }\qquad \forall \ k,k'=1,\ldots,\tilde{N}
$$

Interpretation: columns $\sqrt{ }$ $\overline{ }$ $\chi_1(\mathcal{C}_k)$. . . $\chi_N(\mathcal{C}_k)$ \setminus of character table $[k = 1, \ldots, \tilde{N}]$

are like \tilde{N} orthonormal vectors in a N-dimensional vector space

\n- Thus
$$
\tilde{N} \leq N
$$
. (from complex) $\left\{\n \begin{array}{ll}\n & \text{(from complex) } \\
 \text{p} & \text{(from ortho-)} \\
 \text{anality}\n \end{array}\n \right\}$
\n

Number N of irreducible representations $=$ Number \tilde{N} of classes

\blacktriangleright Character table

- square table
- rows and column form orthogonal vectors

Proof of Theorem [9:](#page-49-0) Completeness Relation for Characters

Lemma: Let $\{D_i(g_i)\}\)$ be an n_I -dimensional IR of G . Let C_k be a class of G with h_k elements. Then

$$
\sum_{i\in\mathcal{C}_k}\mathcal{D}_I(g_i)=\frac{h_k}{n_I}\chi_I(\mathcal{C}_k)\mathbb{1}
$$

The sum over all representation matrices in a class of an IR is proportional to the identity matrix.

Proof of Lemma:

► For arbitrary
$$
g_j \in \mathcal{G}
$$

\n
$$
\mathcal{D}_l(g_j) \left[\sum_{i \in \mathcal{C}_k} \mathcal{D}_l(g_i) \right] \mathcal{D}_l(g_j^{-1}) = \sum_{i \in \mathcal{C}_k} \underbrace{\mathcal{D}_l(g_j) \mathcal{D}_l(g_i) \mathcal{D}_l(g_j^{-1})}_{= \mathcal{D}_l(g_{i'}) \text{ with } i' \in \mathcal{C}_k} = \underbrace{\sum_{i' \in \mathcal{C}_k} \mathcal{D}_l(g_{i'})}_{\text{because } g_j \text{ maps } g_{i_1} \neq g_{i_2} \text{ onto } g_{i_1'} \neq g_{i_2'}}
$$

$$
\Rightarrow \text{ (Schur's First Lemma): } \sum_{i \in C_k} \mathcal{D}_I(g_i) = c_k 1
$$

$$
\triangleright c_k = \frac{1}{n_l} \operatorname{tr} \left[\sum_{i \in C_k} \mathcal{D}_l(g_i) \right] = \frac{h_k}{n_l} \chi_l(C_k) \tag{qed}
$$

Proof of Theorem [9:](#page-49-0) Completeness Relation for Characters

▶ Use Theorem [8](#page-48-0) (Completeness Relations for Irreducible Representations) \sum^N $I=1$ \sum µ,ν n_l $\frac{n_l}{h} \mathcal{D}_l^*(g_i)_{\mu\nu} \mathcal{D}_l(g_j)_{\mu\nu} = \delta_{ij}$ \sum $i ∈ C_k$ \sum $j\in {\cal C}_{k'}$ ⇒ P I n_l $\frac{n_I}{h} \sum_{\mu,\nu} \left[\sum_{i \in \mathcal{C}_k} \right]$ $\mathcal{D}^*_I(g_i) \Bigr]$ µν h_{k} $*(C)$ δ $\frac{n_k}{n_l}\chi_l^*(\mathcal{C}_k)\,\delta_{\mu\nu}$ $\lceil \sum$ $\left[\sum_{j\in\mathcal{C}_{k'}}\mathcal{D}_{l}(g_{j})\right]$ $\mu\nu$ $h_{k'}$ (c) λ $\frac{\partial K}{\partial \mu} \chi_I(\mathcal{C}_{k'}) \delta_{\mu\nu}$ (Lemma) $h_k h_{k' \circ k(C)}$ or (C) \sum S n_l^2 $\chi_l^*(\mathcal{C}_k) \chi_l(\mathcal{C}_{k'}) \sum$ $\sum_{\mu,\nu}\delta_{\mu\nu}$ $=$ n_I qed $= h_k \delta_{kk'}$

Summary: Orthogonality and Completeness Relations

Theorem [4:](#page-35-0) Orthogonality Relations for Irreducible Representations n_l h \sum^h $i=1$ $\mathcal{D}_{I}(g_{i})_{\mu'\nu'}^{*} \mathcal{D}_{J}(g_{i})_{\mu\nu} = \delta_{IJ} \delta_{\mu\mu'} \delta_{\nu\nu'}$ $I, J = 1, ..., N$ $\mu', \nu' = 1, \ldots, n$ $\mu,\nu\ = 1,\ldots,n$,

Theorem [8:](#page-48-0) Completeness Relations for Irreducible Representations

$$
\sum_{l=1}^N \sum_{\mu,\nu} \frac{n_l}{h} \mathcal{D}_l^*(g_i)_{\mu\nu} \mathcal{D}_l(g_j)_{\mu\nu} = \delta_{ij} \qquad \forall i,j=1,\ldots,h
$$

Theorem [6:](#page-39-0) Orthogonality Relations for Characters

$$
\sum_{k=1}^{\tilde{N}} \frac{h_k}{h} \chi_l^*(\mathcal{C}_k) \chi_J(\mathcal{C}_k) = \delta_{IJ} \qquad \forall \, l, J = 1, \ldots, N
$$

Theorem [9:](#page-49-0) Completeness Relation for Characters

$$
\frac{h_k}{h} \sum_{l=1}^{N} \chi_l^* (\mathcal{C}_k) \chi_l (\mathcal{C}_{k'}) = \delta_{kk'} \qquad \forall k, k' = 1, \ldots, \tilde{N}
$$

More on Trreducible Problems Unreducible

Group Theory in Quantum Mechanics

Topics:

- \triangleright Behavior of quantum mechanical states and operators under symmetry operations
- \blacktriangleright Relation between irreducible representations and invariant subspaces of the Hilbert space
- \triangleright Connection between eigenvalue spectrum of quantum mechanical operators and irreducible representations
- \triangleright Selection rules: symmetry-induced vanishing of matrix elements and [Wigner-Eckart theorem](#page-97-0)

Note:

Operator formalism of QM convenient to discuss group theory. Yet: many results also applicable in other areas of physics.

Symmetry Operations in Quantum Mechanics (QM)

- In Let $G = \{g_i\}$ be a group of symmetry operations of a qm system e.g., translations, rotations, permutation of particles
- \triangleright Translated into the language of group theory: In the Hilbert space of the qm system we have a group of unitary operators $\mathcal{G}'=\{\hat{P}(g_i)\}$ such that \mathcal{G}' is isomorphic to $\mathcal{G}.$

Examples

- \triangleright translations T_a
	- \rightarrow unitary operator $\hat{P}(T_a) = \exp(i\hat{\mathbf{p}} \cdot \mathbf{a}/\hbar)$ ($\hat{\mathbf{p}} =$ momentum) $\hat{P}(T_a) \psi(r) = \left[1 + \nabla \cdot \mathbf{a} + \frac{1}{2} (\nabla \cdot \mathbf{a})^2 + \ldots \right] \psi(r) = \psi(r+a)$
- rotations R_{ϕ} $\begin{array}{ll} \text{rotations} \; R_\phi \; \longrightarrow \; \text{unitary operator} \; \; \hat P(\mathbf{n},\phi) = \exp(i\hat{\mathbf{L}}\cdot\mathbf{n}\phi/\hbar) \; \; \quad \phi = \text{angle of rotation} \end{array}$ $=$ axis of rotation)

Transformation of QM States

- In Let $\{|v\rangle\}$ be an orthonormal basis
- In Let $\hat{P}(g_i)$ be the symmetry operator for the symmetry transformation g_i with symmetry group $\mathcal{G} = \{g_i\}.$

$$
\triangleright \text{ Then } \hat{P}(g_i) | \nu \rangle = \sum_{\uparrow} | \mu \rangle \underbrace{\langle \mu | \hat{P}(g_i) | \nu \rangle}_{\mathbb{1} = \sum_{\mu} | \mu \rangle \langle \mu |} \underbrace{\langle \mu | \hat{P}(g_i) | \nu \rangle}_{\mathcal{D}(g_i)_{\mu \nu}}
$$

 \blacktriangleright So $\hat{P}(g_i)|\nu\rangle = \sum$ $\sum\limits_\mu {\mathcal{D}(g_i)_{\mu\nu}} \ket{\mu} \quad \text{ where } \mathcal{D}(g_i)_{\mu\nu} = \text{representation of } \mathcal{G} \notag \ \text{ because } \hat{P}(g_i) \text{ unit} \notag$ matrix of a unitary because $\hat{P}(\mathcal{g}_i)$ unitary

 \triangleright Note: bras and kets transform according to complex conjugate representations $^\dagger = \sum$ $\sum_{\mu} \left\langle \mu \right| {\cal D}({g_i})_{\mu\nu}^*$

$$
\mathsf{P}(g_i, g_j \in \mathcal{G} \text{ with } g_i g_j = g_k \in \mathcal{G}. \text{ Then } \bigcap_{\substack{\mathcal{D}(g_i)_{\kappa\mu} \\ \text{matrix multiplication}}} \bigcap_{\substack{\mathcal{D}(g_i)_{\mu\nu} \\ \text{matrix multiplication}}} \bigcap_{\substack{\mathcal{D}(g_i)_{\mu\nu} \\ \text{matrix multiplication}}} \bigcap_{\substack{\mathcal{D}(g_i)_{\mu\nu} \\ \text{matrix multiplication}}} \bigcap_{\substack{\mathcal{D}(g_i) \\ \text{matrix multiplication}} \bigcap_{\substack{\mathcal{D}(g_i) \\ \text{matrix multiplication}}} \
$$

Transformation of (Wave) Functions $\psi(\mathbf{r})$

- $\hat{P}(g_i)|\mathbf{r}\rangle = |\mathbf{r}'=g_i \mathbf{r}\rangle \Leftrightarrow \langle \mathbf{r}|\hat{P}(g_i) = \langle \mathbf{r}'=g_i^{-1} \mathbf{r}| \quad \text{b/c } \hat{P}(g)^\dagger = \hat{P}(g^{-1})$
- \blacktriangleright Let $\psi(\mathbf{r}) \equiv \langle \mathbf{r} | \psi \rangle$

$$
\Rightarrow \hat{P}(g_i) \psi(\mathbf{r}) \equiv \langle \mathbf{r} | \hat{P}(g_i) | \psi \rangle = \psi(g_i^{-1} \mathbf{r}) \equiv \psi_i(\mathbf{r})
$$

- In general, the functions $V = {\psi_i(\mathbf{r}) : i = 1, ..., h}$ are linear dependent
	- \Rightarrow Choose instead linear independent functions $\psi_{\nu}(\mathbf{r}) \equiv \langle \mathbf{r} | \nu \rangle$ spanning V

$$
\Rightarrow \text{ Expand images } \hat{P}(g_i) \psi_{\nu}(\mathbf{r}) \text{ in terms of } \{\psi_{\nu}(\mathbf{r})\}:
$$
\n
$$
\hat{P}(g_i) \psi(\mathbf{r}) = \langle \mathbf{r} | \hat{P}(g_i) | \psi \rangle = \sum_{\mu} \langle \mathbf{r} | \mu \rangle \langle \mu | \hat{P}(g_i) | \nu \rangle = \sum_{\mu} \mathcal{D}(g_i)_{\mu\nu} \psi_{\mu}(\mathbf{r})
$$

$$
\Rightarrow \quad \hat{P}(g_i) \psi_{\nu}(\mathbf{r}) = \psi_{\nu}(g_i^{-1}\mathbf{r}) = \sum_{\mu} \mathcal{D}(g_i)_{\mu\nu} \psi_{\mu}(\mathbf{r})
$$

- **I** Thus: every function $\psi(\mathbf{r})$ induces a matrix representation $\Gamma = \{ \mathcal{D}(\mathbf{g}_i) \}$
- Also: every representation $\Gamma = {\mathcal{D}(g_i)}$ is completely characterized by a (nonunique) set of basis functions $\{\psi_{\nu}(\mathbf{r})\}$ transforming according to Γ .
- Dirac bra-ket notation convenient for formulating group theory of functions. Yet: results applicable in many areas of physics beyond QM.

Important Representations in Physics (usually reducible)

(1) Representations for polar and axial (cartesian) vectors

- \triangleright generally: two types of point group symmetry operations
	- proper rotations $g_{\text{pr}} = (\mathbf{n}, \theta)$ about axis **n**, angle θ

 $\mathcal{D}[\mathbf{g}_{\text{or}} = (\mathbf{n}, \theta)] =$ Rodrigues' rotation formula $\sqrt{ }$ $\overline{1}$ $n_x^2(1-\cos\theta) + \cos\theta$ $n_x n_y(1-\cos\theta) - n_z \sin\theta$ $n_x n_z(1-\cos\theta) + n_y \sin\theta$ $n_y n_x (1 - \cos \theta) + n_z \sin \theta$ $n_y^2 (1 - \cos \theta) + \cos \theta$ $n_y n_z (1 - \cos \theta) - n_x \sin \theta$ $n_z n_x (1 - \cos \theta) - n_y \sin \theta$ $n_z n_y (1 - \cos \theta) + n_x \sin \theta$ $n_z^2 (1 - \cos \theta) + \cos \theta$ \setminus $\overline{1}$ \blacktriangleright det $\mathcal{D}(g_{\text{pr}}) = +1$

- $\triangleright \ \gamma(\mathbf{g}_{\text{nr}}) = \text{tr} \ \mathcal{D}(\mathbf{g}_{\text{nr}}) = 1 + 2 \cos \theta$ independent of n
- improper rotations $g_{im} \equiv i g_{pr} = g_{pr} i$ where $i =$ inversion
- \blacktriangleright polar vectors

• inversion *i*: $\mathcal{D}_{pol}(i) = -\mathbb{1}_{3\times 3}$

- proper rotations g_{pr} :
	- \blacktriangleright det $\mathcal{D}_{pol}(g_{pr}) = +1$
	- In tr $\mathcal{D}_{pol}(g_{pr}) = 1 + 2 \cos \theta$
- improper rotations $g_{im} = i g_{pr}$:
	- $\triangleright \mathcal{D}_{pol}(g_{im}) = -\mathcal{D}_{pol}(g_{pr})$
	- \blacktriangleright det $\mathcal{D}_{pol}(g_{im}) = -1$
	- \triangleright tr $\mathcal{D}_{pol}(g_{im}) = -(1 + 2 \cos \theta)$

• $\Gamma_{pol} = {\mathcal{D}_{pol}(g)} \subseteq O(3)$ always a faithful representation (i.e., isomorphic to \mathcal{G}) • examples: position r, linear momentum p, electric field $\mathcal E$

Important Representations in Physics

(1) Representations for polar and axial (cartesian) vectors (cont'd)

- \blacktriangleright axial vectors
	- proper rotations g_{pr} :
		- $\blacktriangleright \mathcal{D}_{\text{ax}}(g_{\text{pr}}) = \mathcal{D}_{\text{pol}}(g_{\text{pr}})$
		- \blacktriangleright det $\mathcal{D}_{\text{ax}}(g_{\text{pr}}) = +1$
		- \triangleright tr $\mathcal{D}_{\text{ax}}(g_{\text{pr}}) = 1 + 2 \cos \theta$
	- inversion *i*: $\mathcal{D}_{ax}(i) = +\mathbb{1}_{3\times 3}$
	- improper rotations $g_{im} = i g_{pr}$:
		- $\mathcal{D}_{\text{av}}(g_{\text{im}}) = \mathcal{D}_{\text{ax}}(g_{\text{pr}}) = -\mathcal{D}_{\text{pol}}(g_{\text{pr}})$
		- \blacktriangleright det $\mathcal{D}_{\text{ax}}(g_{\text{im}}) = +1$

$$
\blacktriangleright \; \operatorname{tr} \mathcal{D}_{\mathrm{ax}}(g_{\mathrm{im}}) = 1 + 2 \cos \theta
$$

- $\Gamma_{\text{ax}} = \{ \mathcal{D}_{\text{ax}}(g) \} \subset SO(3)$
- examples: angular momentum L, magnetic field B
- Systems with discrete symmetry group $\mathcal{G} = \{g_i : i = 1, \ldots, h\}$:

$$
\begin{aligned}\n\Gamma_{\text{pol}} &= \{\mathcal{D}_{\text{pol}}(g_i): i = 1, \dots, h\} \\
\Gamma_{\text{ax}} &= \{\mathcal{D}_{\text{ax}}(g_i): i = 1, \dots, h\}\n\end{aligned}
$$

We have a "universal recipe" to construct the 3 \times 3 matrices $\mathcal{D}_{pol}(g)$ and $\mathcal{D}_{\text{ax}}(g)$ for each group element $g_{\text{pr}} = (\mathbf{n}, \theta)$ and $g_{\text{im}} = i(\mathbf{n}, \theta)$ Roland Winkler, NIU, Argonne, and NCTU 2011−2015

Important Representations in Physics (cont'd)

(2) Equivalence Representations Γeq

- \triangleright Consider symmetric object (symmetry group G)
	- vertices, edges, and faces of platonic solids are equivalent by symmetry
	- atoms / atomic orbitals $|\mu\rangle$ in a molecule may be *equivalent* by symmetry
- **Equivalence representation** Γ_{eq} **describes mapping of equivalent objects**

• Generally:
$$
\hat{P}(g) | \mu \rangle = \sum_{\nu} \mathcal{D}_{eq}(g)_{\nu \mu} | \nu \rangle
$$

Example: orbitals of equivalent H atoms in NH₃ molecule (group C_{3v}) Equivalent to: permutations of corners of triangle (group \mathcal{P}_3)

Example: Symmetry group C_{3v} of equilateral triangle (isomorphic to permutation group P_3)

Transformation of QM States (cont'd)

in general: representation $\{D(g_i)\}\$ of states $\{|v\rangle\}$ is reducible

• We have
$$
\mathcal{D}'(g_i) = U^{-1} \mathcal{D}(g_i) U
$$

$$
\begin{aligned}\n\blacktriangleright \text{ More explicitly: } \mathcal{D}'(g_i)_{\mu'\nu'} &= \sum_{\mu\nu} U_{\mu'\mu}^{-1} \underbrace{\mathcal{D}(g_i)_{\mu\nu}}_{\langle \mu | \hat{P}(g_i) | \nu \rangle} U_{\nu\nu'} \\
&= \sum_{\mu\nu} \left(\langle \mu | U_{\mu'\mu}^{-1} \right) \hat{P}(g_i) \left(U_{\nu\nu'} | \nu \rangle \right) \\
&= \langle \mu' | \hat{P}(g_i) | \nu' \rangle \\
\text{with } |\nu'\rangle &= \sum_{\nu} U_{\nu\nu'} |\nu\rangle\n\end{aligned}
$$

 \triangleright Thus: block diagonalization

$$
\{\mathcal{D}(g_i)\}\ \rightarrow\ \{\mathcal{D}'(g_i)=U^{-1}\,\mathcal{D}(g_i)\,U\}
$$

corresponds to change of basis

$$
\{|\nu\rangle\} \;\rightarrow\; \{|\nu'\rangle = \sum_{\nu} U_{\nu\nu'} |\nu\rangle\}
$$

Basis Functions for Irreducible Representations

ightharpoonup matrices $\{D_l(g_i)\}\$ are fully characterized by basis functions $\{\psi_{\nu}^I(\mathbf{r}): \nu=1,\ldots n_I\}$ transforming according to IR Γ_I

$$
\hat{P}(g_i) \psi_{\nu}^I(\mathbf{r}) = \psi_{\nu}(g_i^{-1}\mathbf{r}) = \sum_{\mu} \mathcal{D}_I(g_i)_{\mu\nu} \psi_{\mu}^I(\mathbf{r})
$$

- ▶ convenient if we need to spell out phase conventions for $\{D_I(g_i)\}\;(\to\;{\sf Koster})$
- \triangleright identify IRs for (components of) polar and axial vectors

Example: Symmetry group C_{3v}

$$
\begin{array}{|c||c|c|c|c|c|}\hline \psi & \frac{1}{2} &
$$

Relevance of Irreducible Representations Invariant Subspaces

Definition:

In Let $G = \{g_i\}$ be a group of symmetry transformations. Let $\mathcal{H} = \{|\mu\rangle\}$ be a Hilbert space with states $|\mu\rangle$.

A subspace $S \subset \mathcal{H}$ is called invariant subspace (with respect to \mathcal{G}) if

 $\hat{P}(\mathbf{g}_i)|_{\mu}\rangle \in \mathcal{S} \qquad \forall \mathbf{g}_i \in \mathcal{G}, \quad \forall |\mu\rangle \in \mathcal{S}$

 \triangleright If an invariant subspace can be decomposed into smaller invariant subspaces, it is called reducible, otherwise it is called irreducible.

Theorem 10:

An invariant subspace S is irreducible if and only if the states in S transform according to an irreducible representation.

Proof:

- Suppose $\{\mathcal{D}(g_i)\}\)$ is reducible.
- ► ∃ unitary transformation U with $\{ \mathcal{D}'(g_i) = U^{-1} \mathcal{D}(g_i) \ U\}$ block diagonal
- ▶ For $\{\mathcal{D}'(g_i)\}$ we have the basis $\{|\mu'\rangle = \sum_{\mu} U_{\mu\mu'}|\mu\rangle\}$
- The block diagonal form of $\{D'(g_i)\}\$ implies that $\{| \mu' \rangle$ is reducible

Invariant Subspaces (cont'd)

Corollary: Every Hilbert space H can be decomposed into irreducible invariant subspaces S_I transforming according to the IR Γ_I

Remark: Given a Hilbert space H we can generally have multiple (possibly orthogonal) irreducible invariant subspaces \mathcal{S}^α_l

$$
\mathcal{S}^{\alpha}_{I} = \big\{ |I\nu\alpha\rangle : \nu = 1,\ldots,n_{I} \big\}
$$

transforming according to the same IR Γ

$$
\hat{P}(g_i) | I \nu \alpha \rangle = \sum_{\mu} \mathcal{D}_I(g_i)_{\mu \nu} | I \mu \alpha \rangle
$$

Theorem 11:

- (1) States transforming according to different IRs are orthogonal
- (2) For states $|I \mu \alpha \rangle$ and $|I \nu \beta \rangle$ transforming according to the same IR $Γ_l$ we have

$$
\langle I\mu\alpha | I\nu\beta \rangle = \delta_{\mu\nu} \langle I\alpha || I\beta \rangle
$$

where the reduced matrix element $\langle I\alpha||I\beta\rangle$ is independent of μ, ν .

Remark: This theorem lets us anticipate the [Wigner-Eckart theorem](#page-97-0)

Invariant Subspaces (cont'd)

Proof of Theorem [11](#page-65-0)

▶ Use unitarity of $\hat{P}(g_j)$: $\mathbb{1} = \hat{P}(g_j)^{\dagger} \hat{P}(g_j) = \frac{1}{h} \sum_{j=1}^{h}$ $\sum\limits_{i}\hat{P}(g_{i})^{\dagger}\;\hat{P}(g_{i})$

 \blacktriangleright Then

$$
\langle I\mu\alpha | J\nu\beta \rangle = \frac{1}{\hbar} \sum_{i} \langle I\mu\alpha | \hat{P}(g_{i})^{\dagger} \underbrace{\hat{P}(g_{i}) | J\nu\beta \rangle}_{\sum_{\mu'} \langle I\mu'\alpha | \mathcal{D}_{I}(g_{i})_{\mu'}^*_{\mu}} \underbrace{\sum_{\nu'} \mathcal{D}_{J}(g_{i})_{\nu'\nu} | J\nu'\beta \rangle}_{= \sum_{\mu'\nu'} \langle I\mu'\alpha | J\nu'\beta \rangle \underbrace{\frac{1}{\hbar} \sum_{i} \mathcal{D}_{I}(g_{i})_{\mu'\mu}^* \mathcal{D}_{J}(g_{i})_{\nu'\nu}}_{(1/n) \delta_{IJ} \delta_{\mu\nu} \delta_{\mu'\nu'}}
$$

$$
= \delta_{IJ} \delta_{\mu\nu} \underbrace{\frac{1}{n_{I}} \sum_{\mu'} \langle I\mu' \alpha | I\mu' \beta \rangle}_{\equiv \langle I\alpha | I\beta \rangle}
$$

Discussion Theorem [11](#page-65-0)

- $\blacktriangleright \Gamma_J \times \Gamma_I$ contains the identity representation Γ_1 if and only if the IR Γ_J is the complex conjugate of Γ_I , i.e., $\Gamma_J^* = \Gamma_I \Leftrightarrow \mathcal{D}_J(g)^* = \mathcal{D}_I(g) \; \forall g$.
- If the ket $|J\mu\alpha\rangle$ transforms according to the IR Γ_J , the bra $\langle J\mu\alpha|$ transforms according to the complex conjugate representation $\mathsf{\Gamma}_{J}^{*}.$
- **Fi** Thus: $\langle J\mu\alpha|I\nu\beta\rangle \neq 0$ equivalent to
	- bra and ket transform according to complex conjugate representations
	- $\langle J\mu\alpha|I\nu\beta\rangle$ contains the identity representation
- \blacktriangleright Indeed, common theme of representation theory applied to physics:

Terms are only nonzero if they transform according to a representation that contains the identity representation.

▶ Variant of Theorem [11](#page-65-0) (Bir & Pikus):

If $f_l(x)$ transforms according to some IR Γ,, then $\int\! f_l(x)\,d\!x\neq 0$ only if Γ , is the identity representation.

- \blacktriangleright Applications
	- [Wigner-Eckart Theorem](#page-97-0)
	- Nonzero elements of material tensors
	- Our universe would be zero "by symmetry" if the apparently trivial identity representation did not exist. Roland Winkler, NIU, Argonne, and NCTU 2011−2015

Decomposition into Irreducible Invariant Subspaces

- **► Goal:** Decompose general state $|\psi\rangle \in \mathcal{H}$ into components from irreducible invariant subspaces S_I
- **Generalized projection operator** $\hat{\Pi}^I_{\mu\mu'} := \frac{n_I}{h} \sum_{i=1}^{h}$ $\sum\limits_i {\mathcal{D}_I} {(\mathcal{g}_i)}_{\mu\mu'}^* \, \hat{P}(\mathcal{g}_i)$
- **Find Theorem 12:** (i) $\hat{\Pi}^I_{\mu\mu'}|J\nu\alpha\rangle = \delta_{IJ}\delta_{\mu'\nu}|I\mu\alpha\rangle$ (ii) $\hat{\Pi}^I_{\mu\mu'} \hat{\Pi}^J_{\nu\nu'} = \delta_{IJ} \delta_{\mu'\nu} \hat{\Pi}^J_{\mu\nu'}$ (iii) \sum $\hat{\Pi}^I_{\mu\mu}=\mathbb{1}$

Proof:

Proof:
\n
$$
I_{\mu}
$$
\n(i) $\hat{\Pi}_{\mu\mu'}^I | J\nu\alpha \rangle = \frac{n_I}{h} \sum_i \mathcal{D}_I (g_i)_{\mu\mu'}^* \frac{\hat{P}(g_i) | J\nu\alpha \rangle}{\sum_{\nu'} \mathcal{D}_J (g_i)_{\nu'\nu}} = \sum_{\nu'} \frac{n_I}{h} \sum_i \mathcal{D}_I (g_i)_{\mu\mu'}^* \mathcal{D}_J (g_i)_{\nu'\nu}^* | J\nu'\alpha \rangle$ \n(ii) $\hat{\Pi}_{\mu\mu'}^I \hat{\Pi}_{\nu\nu'}^J = \frac{n_I}{h} \sum_i \frac{n_J}{h} \sum_j \mathcal{D}_I (g_i)_{\mu\mu'}^* \mathcal{D}_J (g_j)_{\nu\nu'}^* \hat{P}(g_i) \hat{P}(g_j)$ subset. $g_i g_j = g_k$
\n
$$
= \frac{n_I}{h} \sum_i \frac{n_J}{h} \sum_k \mathcal{D}_I (g_i)_{\mu\mu'}^* \mathcal{D}_J (g_i^{-1} g_k)_{\nu\nu'}^* \hat{P}(g_k)
$$
\n
$$
= \frac{n_J}{h} \sum_k \frac{n_I}{h} \sum_j \mathcal{D}_I (g_i)_{\mu\mu'}^* \mathcal{D}_J (g_i^{-1})_{\nu\lambda}^* \mathcal{D}_J (g_k)_{\lambda\nu'}^* \hat{P}(g_k)
$$
\n[or use (i)]\n(iii) $\sum_i \hat{\Pi}_{\mu\mu}^I = \sum_i \frac{1}{h} \sum_i \sum_{\nu'} \mathcal{D}_I (g_i)_{\mu\mu'}^* \mathcal{D}_I (g_i)_{\mu\nu'}^*$ \n
$$
\frac{n_I}{\chi_I^*(g_i)} \sum_{\chi_I^*(g_i)} \frac{\hat{P}(g_i)}{\chi_I(e)} = \sum_i \delta_{g_i e} \hat{P}(g_i) = \hat{P}(e) \equiv \mathbb{1}
$$
\nRoll and Winkel, NIU, Argone, and NCTU 2011-2015

Decomposition into Invariant Subspaces (cont'd)

Discussion

 \blacktriangleright Let $|\psi\rangle = \sum$ $\sum_{J\nu\alpha} c_{J\nu\alpha} |J\nu\alpha\rangle$ general state with coefficients $c_{J\mu\alpha}$ (*)

 \blacktriangleright Diagonal operator $\hat{\Pi}^I_{\mu\mu}$ projects $|\psi\rangle$ on components $|I\mu\alpha\rangle$:

•
$$
(\hat{\Pi}^l_{\mu\mu})^2 |\psi\rangle = \hat{\Pi}^l_{\mu\mu} |\psi\rangle = \sum_{\alpha} c_{l\mu\alpha} |l\mu\alpha\rangle
$$

$$
\bullet\;\sum_{I\,\mu}\hat{\Pi}^I_{\mu\mu}=\mathbb{1}
$$

• Let
$$
\hat{\Pi}^I \equiv \sum_{\mu} \hat{\Pi}^I_{\mu\mu} = \frac{n_I}{h} \sum_i \chi_I^*(g_i) \hat{P}(g_i)
$$
:

•
$$
\hat{\Pi}^{\prime}|\psi\rangle = \sum_{\nu\alpha} c_{\nu\alpha} |I\nu\alpha\rangle
$$

• $\hat{\Pi}^I$ projects $\ket{\psi}$ on the invariant subspace \mathcal{S}_I (IR $\mathsf{\Gamma}_I)$

► For functions $\psi(\mathbf{r}) \equiv \langle \mathbf{r} | \psi \rangle$:

$$
\hat{\Pi}^I_{\mu\mu},\psi(\mathbf{r})=\tfrac{n_I}{h}\sum_i \mathcal{D}_I(g_i)^*_{\mu\mu},\psi(g_i^{-1}\mathbf{r})
$$

we need not know the expansion (*)

Irreducible Invariant Subspaces (cont'd) Example:

• Group
$$
C_i = \{e, i\}
$$
 $\begin{array}{ccc} e = \text{identity} & \begin{array}{cc} c_i & e & i \\ e & e & i \end{array} \\ i = \text{inversion} & \begin{array}{cc} i & e & i \\ i & i & e \end{array} \end{array}$

 \blacktriangleright character table

$$
\begin{array}{c|cc}\nC_i & e & i \\
\hline\n\Gamma_1 & 1 & 1 \\
\Gamma_2 & 1 & -1\n\end{array}
$$

$$
\triangleright \hat{P}(e) \psi(x) = \psi(x), \quad \hat{P}(i) \psi(x) = \psi(-x)
$$

Projection operator $\hat{\Pi}^I = \frac{n_I}{h} \sum_{i=1}^{n_I}$ i $\chi_l^*(g_i) \hat{P}(g_i)$ with $n_l = 1$, $h = 2$

$$
\triangleright \hat{\Pi}^1 = \frac{1}{2} [\hat{P}(e) + \hat{P}(i)] \Rightarrow \hat{\Pi}^1 \psi(x) = \frac{1}{2} [\psi(x) + \psi(-x)] \text{ even part}
$$

$$
\hat{\Pi}^2 = \frac{1}{2} [\hat{P}(e) - \hat{P}(i)] \Rightarrow \hat{\Pi}^2 \psi(x) = \frac{1}{2} [\psi(x) - \psi(-x)] \text{ odd part}
$$

Product Representations

Let $\{|I\mu\rangle : \mu = 1, \ldots n_l\}$ and $\{|J\nu\rangle : \nu = 1, \ldots n_J\}$ denote basis functions for invariant subspaces S_I and S_J (need not be irreducible)

Consider the product functions

$$
\{|I\mu\rangle |J\nu\rangle : \mu = 1,\ldots,n_I; \ \nu = 1,\ldots,n_J\}.
$$

How do these functions transform under \mathcal{G} ?

▶ Definition: Let $\mathcal{D}_I(g)$ and $\mathcal{D}_J(g)$ be representation matrices for $g \in \mathcal{G}$.

The direct product (Kronecker product) $\mathcal{D}_I(g) \otimes \mathcal{D}_J(g)$ denotes the matrix whose elements in row $(\mu\nu)$ and column $(\mu'\nu')$ are given by

$$
[\mathcal{D}_I(g)\otimes \mathcal{D}_J(g)]_{\mu\nu,\mu'\nu'}=\mathcal{D}_I(g)_{\mu\mu'}\mathcal{D}_J(g)_{\nu\nu'}\qquad \mu,\mu'=1,\ldots,n_1\\ \nu,\nu'=1,\ldots,n_J
$$

$$
\mathsf{Example: Let } \mathcal{D}_1(g) = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \text{ and } \mathcal{D}_J(g) = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}
$$

$$
\mathcal{D}_1(g) \otimes \mathcal{D}_J(g) = \begin{pmatrix} x_{11} \mathcal{D}_J(g) & x_{12} \mathcal{D}_J(g) \\ x_{21} \mathcal{D}_J(g) & x_{22} \mathcal{D}_J(g) \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} & x_{11}y_{12} & x_{12}y_{11} & x_{12}y_{12} \\ x_{11}y_{21} & x_{11}y_{22} & x_{12}y_{21} & x_{22}y_{12} \\ x_{21}y_{21} & x_{21}y_{22} & x_{22}y_{21} & x_{22}y_{22} \end{pmatrix}
$$

Details of the arrangement in the following not relevant
Product Representations (cont'd)

 \triangleright Dimension of product matrix

 $\dim \left[\mathcal{D}_I(g) \otimes \mathcal{D}_J(g) \right] = \dim \mathcal{D}_I(g) \dim \mathcal{D}_J(g)$

IDE: Let $\Gamma_I = {\mathcal{D}_I(g_i)}$ and $\Gamma_J = {\mathcal{D}_J(g_i)}$ be representations of G. Then $\Gamma_1 \times \Gamma_1 \equiv {\mathcal{D}_1(g) \otimes \mathcal{D}_1(g)}$

is a representation of G called product representation.

 $\blacktriangleright \Gamma_1 \times \Gamma_1$ is, indeed, a representation:

Let
$$
\mathcal{D}_{l}(g_{i}) \mathcal{D}_{l}(g_{j}) = \mathcal{D}_{l}(g_{k})
$$
 and $\mathcal{D}_{J}(g_{i}) \mathcal{D}_{J}(g_{j}) = \mathcal{D}_{J}(g_{k})$
\n
$$
\Rightarrow ([\mathcal{D}_{l}(g_{i}) \otimes \mathcal{D}_{J}(g_{i})][\mathcal{D}_{l}(g_{j}) \otimes \mathcal{D}_{J}(g_{j})])_{\mu\nu,\mu'\nu'}
$$
\n
$$
= \sum_{\kappa\lambda} \mathcal{D}_{l}(g_{i})_{\mu\kappa} \mathcal{D}_{J}(g_{i})_{\kappa\lambda} \mathcal{D}_{l}(g_{j})_{\kappa\mu'} \mathcal{D}_{J}(g_{j})_{\lambda\nu'}
$$
\n
$$
\rightarrow \mathcal{D}_{l}(g_{k})_{\mu\mu'} \rightarrow \mathcal{D}_{J}(g_{k})_{\nu\nu'}
$$
\n
$$
= [\mathcal{D}_{l}(g_{k}) \otimes \mathcal{D}_{J}(g_{k})]_{\mu\nu,\mu'\nu'}
$$

$$
\begin{array}{ll}\text{\footnotesize\blacktriangleright} \text{\textsf{Let}} \;\; \hat{P}(g)\,|I\mu\rangle\,=\, \sum_{\mu'}\, \mathcal{D}_I(g)_{\mu'\mu}\,|I\mu'\rangle \\ & \hat{P}(g)\,|J\nu\rangle\,=\, \sum_{\nu'}\, \mathcal{D}_J(g)_{\nu'\nu}\,|J\nu'\rangle \\ \text{\footnotesize{Then}} \;\hat{P}(g)\,|I\mu\rangle|J\nu\rangle\,=\, \sum_{\mu'\nu'}\,[\mathcal{D}_I(g)\otimes \mathcal{D}_J(g)]_{\mu'\nu',\mu\nu}\,|I\mu'\rangle|J\nu'\rangle \\ & \text{\footnotesize{Roland Winster, NIU, Argone, and NCTU 2011--2015}} \end{array}
$$

Product Representations (cont'd)

 \blacktriangleright The characters of the product representation are $\chi_{I\times J}(g_i) = \chi_I(g_i) \chi_J(g_i)$

Decomposing Product Representations

- Let $\Gamma_1 = {\mathcal{D}_1(g_i)}$ and $\Gamma_2 = {\mathcal{D}_2(g_i)}$ be irreducible representations of G The product representation $\Gamma_I \times \Gamma_J = \{ \mathcal{D}_{I \times J}(g_i) \}$ is generally reducible
- \blacktriangleright According to Theorem [7,](#page-42-0) we have

$$
\Gamma_I \times \Gamma_J = \sum_K a_K^{IJ} \Gamma_K \quad \text{where } a_K^{IJ} = \sum_{k=1}^{\tilde{N}} \frac{h_k}{h} \chi_K^*(\mathcal{C}_k) \underbrace{\chi_{I \times J}(\mathcal{C}_k)}_{= \chi_I(\mathcal{C}_k) \chi_J(\mathcal{C}_k)}
$$

- \blacktriangleright The multiplication table for the irreducible representations Γ _I of G lists $\sum_{k} a_{K}^{IJ} \Gamma_{K}$ $\Gamma_1 \times \Gamma_1$ Γ_1 Γ_2 \ldots Γ1 $\frac{\Gamma_2}{2}$. .
- Example: Permutation group P_3

$$
\begin{array}{c|ccccc}\n\chi(C) & e & a, b & c, d, f \\
\hline\n\Gamma_1 & 1 & 1 & 1 & \\
\Gamma_2 & 1 & 1 & -1 & \\
\Gamma_3 & 2 & -1 & 0 & \\
\end{array}\n\qquad\n\begin{array}{c|ccccc}\n\Gamma_1 \times \Gamma_1 & \Gamma_1 & \Gamma_2 & \Gamma_3 \\
\hline\n\Gamma_1 & \Gamma_1 & \Gamma_2 & \Gamma_3 \\
\Gamma_2 & \Gamma_1 & \Gamma_3 & \\
\Gamma_3 & \Gamma_1 + \Gamma_2 + \Gamma_3 & \\
\end{array}
$$

(Anti-) Symmetrized Product Representations

Let $\{\ket{\sigma_u}\}$ and $\{\ket{\tau_v}\}$ be two sets of basis functions for the same *n*-dim. representation $\Gamma = {\mathcal{D}(g)}$ with characters $\{\chi(g)\}.$ (again: need not be irreducible)

(1) "Simple" Product: (discussed previously)

$$
\blacktriangleright |\psi_{\mu\nu}\rangle = |\sigma_{\mu}\rangle |\tau_{\nu}\rangle, \qquad \begin{array}{c} \mu = 1, \ldots, n \\ \nu = 1, \ldots, n \end{array} \bigg\} \quad \text{total: } n^2
$$

$$
\triangleright \hat{P}(g)|\psi_{\mu\nu}\rangle = \sum_{\mu'=1}^{n} \sum_{\nu'=1}^{n} \mathcal{D}(g)_{\mu'\mu} \mathcal{D}(g)_{\nu'\nu} |\sigma_{\mu'}\rangle |\tau_{\nu'}\rangle
$$

$$
\equiv \sum_{\mu'=1}^{n} \sum_{\nu'=1}^{n} [\mathcal{D}(g) \otimes \mathcal{D}(g)]_{\mu'\nu',\mu\nu} |\psi_{\mu'\nu'}\rangle
$$

► Character tr $[\mathcal{D}(g) \otimes \mathcal{D}(g)] = \chi^2(g)$

(Anti-) Symmetrized Product Representations (cont'd)

(2) Symmetrized Product:

$$
\begin{aligned}\n&\blacktriangleright |\psi_{\mu\nu}^{s}\rangle = \frac{1}{2}(|\sigma_{\mu}\rangle|\tau_{\nu}\rangle + |\sigma_{\nu}\rangle|\tau_{\mu}\rangle), \qquad \mu = 1, ..., n \\
&\blacktriangleright \hat{P}(g)|\psi_{\mu\nu}^{s}\rangle = \frac{1}{2} \sum_{\mu'=1}^{n} \sum_{\nu'=1}^{n} \mathcal{D}_{\mu'\mu} \mathcal{D}_{\nu'\nu} \left(|\sigma_{\mu}\rangle|\tau_{\nu}\rangle + |\sigma_{\nu}\rangle|\tau_{\mu}\rangle\right) \\
&= \sum_{\mu'=1}^{n} \left[\sum_{\nu'=1}^{n'} (\mathcal{D}_{\mu'\mu} \mathcal{D}_{\nu'\nu} + \mathcal{D}_{\mu'\nu} \mathcal{D}_{\nu'\mu})|\psi_{\mu'\nu'}^{s}\rangle + \mathcal{D}_{\mu'\mu} \mathcal{D}_{\mu'\nu}|\psi_{\mu'\mu'}^{s}\rangle\right] \\
&= \sum_{\mu'=1}^{n} \sum_{\nu'=1}^{n'} [\mathcal{D}(g) \otimes \mathcal{D}(g)]_{\mu'\nu',\mu\nu}^{(s)} |\psi_{\mu'\nu'}^{s}\rangle \\
&\blacktriangleright \text{tr}[\mathcal{D}(g) \otimes \mathcal{D}(g)]^{(s)} = \sum_{\mu=1}^{n} \left[\sum_{\nu=1}^{n-1} (\mathcal{D}_{\mu\mu} \mathcal{D}_{\nu\nu} + \mathcal{D}_{\mu\nu} \mathcal{D}_{\nu\mu}) + \mathcal{D}_{\mu\mu} \mathcal{D}_{\mu\mu}\right]\n\end{aligned}
$$

$$
\begin{aligned} \mathcal{L}(\mathcal{D}(g) \otimes \mathcal{D}(g))^{\mathcal{D}} &= \sum_{\mu=1}^{n} \left[\sum_{\nu=1}^{n} (\mathcal{D}_{\mu\mu} \mathcal{D}_{\nu\nu} + \mathcal{D}_{\mu\nu} \mathcal{D}_{\nu\mu}) + \mathcal{D}_{\mu\mu} \mathcal{D}_{\mu\mu} \right] \\ &= \frac{1}{2} \sum_{\mu=1}^{n} \sum_{\nu=1}^{n} [\mathcal{D}_{\mu\mu}(g) \mathcal{D}_{\nu\nu}(g) + \mathcal{D}_{\mu\nu}(g) \mathcal{D}_{\nu\mu}(g)] \\ &= \frac{1}{2} \sum_{\mu=1}^{n} \left[\mathcal{D}_{\mu\mu}(g) \sum_{\nu=1}^{n} \mathcal{D}_{\nu\nu}(g) + \mathcal{D}_{\mu\mu}(g^2) \right] \\ &= \frac{1}{2} [\chi(g)^2 + \chi(g^2)] \end{aligned}
$$

(Anti-) Symmetrized Product Representations (cont'd)

(3) Antisymmetrized Product:

$$
\begin{aligned}\n&\blacktriangleright |\psi_{\mu\nu}^{a}\rangle = \frac{1}{2}(|\sigma_{\mu}\rangle|\tau_{\nu}\rangle - |\sigma_{\nu}\rangle|\tau_{\mu}\rangle), \qquad \mu = 1, \ldots, n \\
&\blacktriangleright \hat{P}(g)|\psi_{\mu\nu}^{a}\rangle = \frac{1}{2} \sum_{\mu'=1}^{n} \sum_{\nu'=1}^{n} \sum_{\nu'\mu} \mathcal{D}_{\nu'\nu} (|\sigma_{\mu}\rangle|\tau_{\nu}\rangle - |\sigma_{\nu}\rangle|\tau_{\mu}\rangle) \\
&= \sum_{\mu'=1}^{n} \sum_{\nu'=1}^{n'-1} (\mathcal{D}_{\mu'\mu}\mathcal{D}_{\nu'\nu} - \mathcal{D}_{\mu'\nu}\mathcal{D}_{\nu'\mu})|\psi_{\mu'\nu'}^{a}\rangle \\
&= \sum_{\mu'=1}^{n} \sum_{\nu'=1}^{n'-1} [\mathcal{D}(g) \otimes \mathcal{D}(g)]_{\mu'\nu',\mu\nu}^{(a)} |\psi_{\mu'\nu'}^{a}\rangle \\
&\blacktriangleright \text{tr}[\mathcal{D}(g) \otimes \mathcal{D}(g)]^{(a)} = \sum_{\mu=1}^{n} \sum_{\nu=1}^{n-1} (\mathcal{D}_{\mu\mu}\mathcal{D}_{\nu\nu} - \mathcal{D}_{\mu\nu}\mathcal{D}_{\nu\mu}) \\
&= \frac{1}{2} \sum_{\mu=1}^{n} \sum_{\nu=1}^{n} [\mathcal{D}_{\mu\mu}(g)\mathcal{D}_{\nu\nu}(g) - \mathcal{D}_{\mu\nu}(g)\mathcal{D}_{\nu\mu}(g)] \\
&= \frac{1}{2} \sum_{\mu=1}^{n} [\mathcal{D}_{\mu\mu}(g) \sum_{\nu=1}^{n} \mathcal{D}_{\nu\nu}(g) - \mathcal{D}_{\mu\mu}(g^{2})] \\
&= \frac{1}{2} [\chi(g)^{2} - \chi(g^{2})]\n\end{aligned}
$$

Intermezzo: Material Tensors

to be added ...

Discussion

▶ Representation – Vector Space

The matrices $\{D(g_i)\}\$ of an *n*-dimensional (reducible or irreducible) representation describe a linear mapping of a vector space $\mathcal V$ onto itself. $\mathbf{u}=(u_1,\ldots,u_n)\in\mathcal{V}: \quad \mathbf{u}\ \xrightarrow{\mathcal{D}(g_i)}\ \mathbf{u}'\in\mathcal{V} \quad \text{with}\ \ u'_\mu=\sum\limits_{i=1}^n\mathcal{V}_i\leftarrow\mathcal{V}_i$ \sum_{ν} D(g_i)_{μν} u_ν

\triangleright Irreducible Representation (IR) – Invariant Subspace

The decomposition of a reducible representation into IRs Γ corresponds to a decomposition of the vector space V into invariant subspaces S_I such that $\mathcal{S}_I \ \xrightarrow{\mathcal{D}_I(g_i)} \ \mathcal{S}_I \quad \forall g_i \in \mathcal{G} \qquad \text{(i.e., no mixing)}$

This decomposition of V lets us break down a big physical problem into smaller, more tractable problems

\triangleright Product Representation – Product Space

A product representation $\Gamma_I \times \Gamma_J$ describes a linear mapping of the product space $S_I \times S_J$ onto itself

$$
S_I \times S_J \xrightarrow{\mathcal{D}_{I \times J}(g_i)} S_I \times S_J \quad \forall g_i \in \mathcal{G}
$$

► The block diagonalization $\Gamma_I \times \Gamma_J = \sum_K a_K^{IJ} \Gamma_K$ corresponds to a decomposition of $S_I \times S_J$ into invariant subspaces S_K

Discussion (cont'd)

Clebsch-Gordan Coefficients (CGC)

- ► The block diagonalization $\Gamma_I \times \Gamma_J = \sum_K a_K^{IJ} \Gamma_K$ corresponds to a decomposition of $S_I \times S_I$ into invariant subspaces S_K
- \Rightarrow Change of Basis: unitary transformation

$$
\begin{cases}\nS_I \times S_J & \longrightarrow & \sum_{K} \sum_{\ell=1}^{a_K^U} S_K^{\ell} \\
\text{old basis } \{e_\mu^I e_\nu^J\} & \longrightarrow & \text{new basis } \{e_\kappa^{K\ell}\}\n\end{cases}
$$

Thus
$$
\mathbf{e}_{\kappa}^{K\ell} = \sum_{\mu\nu} \begin{pmatrix} I & J \\ \mu & \nu \end{pmatrix} \begin{pmatrix} K\ell \\ \kappa \end{pmatrix} \mathbf{e}_{\mu}^{I} \mathbf{e}_{\nu}^{J}
$$
 index ℓ not needed if often $a_{K}^{IJ} \leq 1$

where
$$
\begin{pmatrix} I & J \\ \mu & \nu \end{pmatrix} \begin{pmatrix} K \ell \\ \kappa \end{pmatrix}
$$
 = Clebsch-Gordan coefficients (CGC)

Clebsch-Gordan coefficients describe the unitary transformation for the decomposition of the product space $\mathcal{S}_I \times \mathcal{S}_J$ into invariant subspaces $\mathcal{S}_\mathcal{K}^\ell$

Clebsch-Gordan Coefficients (cont'd)

Remarks

 $K\ell$ κ

- \triangleright CGC are independent of the group elements g_i
- \triangleright CGC are tabulated for all important groups (e.g., Koster, Edmonds)
- \triangleright Note: Tabulated CGC refer to a particular definition (phase convention) for the basis vectors $\{{\bf e}_\mu^I\}$ and representation matrices $\{{\cal D}_I(g_i)\}$
- \blacktriangleright Clebsch-Gordan coefficients $\underline{\mathcal{C}}$ describe a *unitary* basis transformation $\mathcal{\underline{C}}^{\dagger} \, \mathcal{\underline{C}} = \mathcal{\underline{C}} \, \mathcal{\underline{C}}^{\dagger} = \mathbb{1}$
- \triangleright Thus Theorem 13: Orthogonality and completeness of CGC \sum µν $\left(1 \right.$ J | K ℓ μ ν | κ \int^* \int I J $\left| K' \ell' \right|$ $\left\{ \begin{array}{l} I \ \mu \ \nu \end{array} \right\}^{K'\,\ell'} \left(\begin{array}{l} I' \ \kappa' \end{array} \right) = \delta_{KK'} \, \delta_{\kappa\kappa'} \, \delta_{\ell\ell'}$ $\sum (l J | K \ell)$ μ ν | κ \int^{*} \int I J \int $K \ell$ μ' ν' κ $\bigg) = \delta_{\mu\mu'}\,\delta_{\nu\nu'}$

Clebsch-Gordan Coefficients (cont'd)

Clebsch-Gordan coefficients block-diagonalize the representation matrices (unitary transformation)

$$
(1) \begin{pmatrix} x \\ y \end{pmatrix} = \underline{\underline{C}} \begin{pmatrix} \mathbb{E}_{\mathbf{B}} \\ y \end{pmatrix} \underline{\underline{C}}^{\dagger}
$$

$$
(2) \begin{pmatrix} \mathbb{E}_{\mathbf{B}} \\ y \end{pmatrix} = \underline{\underline{C}}^{\dagger} \begin{pmatrix} x \\ y \end{pmatrix} \underline{\underline{C}}^{\dagger}
$$

More explicitly:

Theorem 14: Reduction of Product Representation $\Gamma_1 \times \Gamma_1$

$$
(1) \quad \mathcal{D}_{I}(g_{i})_{\mu\mu'} \mathcal{D}_{J}(g_{i})_{\nu\nu'} = \sum_{K\ell} \sum_{\kappa\kappa'} \left(\begin{array}{cc} I & J \\ \mu & \nu \end{array} \right| \begin{array}{c} K\ell \\ \kappa \end{array} \right) \mathcal{D}_{K}(g_{i})_{\kappa\kappa'} \left(\begin{array}{cc} I & J \\ \mu' & \nu' \end{array} \right| \begin{array}{c} K\ell \\ \kappa' \end{array} \right)^{*}
$$

$$
(2) \quad \mathcal{D}_{K}(g_{i})_{\kappa\kappa'} \, \delta_{KK'} \, \delta_{\ell\ell'} \n= \sum_{\mu\mu'} \sum_{\nu\nu'} \left(\begin{array}{cc} I & J \\ \mu & \nu \end{array} \right| K \ell \bigg)^* \mathcal{D}_{I}(g_{i})_{\mu\mu'} \mathcal{D}_{J}(g_{i})_{\nu\nu'} \left(\begin{array}{cc} I & J \\ \mu' & \nu' \end{array} \right| \begin{array}{c} K' \ell' \\ \kappa' \end{array} \right)
$$

Evaluating Clebsch-Gordan Coefficients

- \triangleright A group G is called simply reducible if its product representations Γ_I \times Γ_J contain the IRs Γ_K only with multiplicities $a_K^{IJ} = 0$ or 1.
- **►** For simply reducible groups (\Rightarrow no index ℓ) according to Theorem [14](#page-82-0) (1):

$$
\frac{n_K}{h} \sum_{i} \mathcal{D}_{i}(g_{i})_{\mu\mu'} \mathcal{D}_{J}(g_{i})_{\nu\nu'} \mathcal{D}_{K}^{*}(g_{i})_{\tilde{\kappa}\tilde{\kappa}'}
$$
\n
$$
= \sum_{K'} \sum_{\kappa\kappa'} \binom{I}{\mu} \frac{J}{\kappa} \binom{K'}{\mu'} \binom{I}{\mu'} \frac{J}{\kappa'} \sum_{i} \frac{n_K}{h} \sum_{i} \mathcal{D}_{K'}(g_{i})_{\kappa\kappa'} \mathcal{D}_{K}^{*}(g_{i})_{\tilde{\kappa}\tilde{\kappa}'}
$$
\n
$$
= \binom{I}{\mu} \frac{J}{\kappa} \binom{K}{\mu'} \binom{I}{\nu'} \frac{K}{\tilde{\kappa}'} \qquad = \delta_{K'K} \delta_{\tilde{\kappa}\kappa} \delta_{\tilde{\kappa}'\kappa'} \quad (\text{Theorem 4})
$$

 \blacktriangleright Choose triple $\mu = \mu' = \mu_0$, $\nu = \nu' = \nu_0$, and $\tilde{\kappa} = \tilde{\kappa}' = \kappa_0$ such that LHS $\neq 0$

$$
\Rightarrow \left(\begin{array}{cc} I & J \\ \mu_0 & \nu_0 \end{array}\Big| \begin{array}{c} K \\ \kappa_0 \end{array}\right)=\sqrt{\frac{n_K}{h}\sum_i \mathcal{D}_I(g_i)_{\mu_0\mu_0}\mathcal{D}_J(g_i)_{\nu_0\nu_0}\mathcal{D}_K^*(g_i)_{\kappa_0\kappa_0}} \Rightarrow 0
$$

Given the representation matrices $\{D_l(g)\}\$, the CGCs are unique for each triple 1, J, K up to an overall phase that we choose such that $\binom{I-J|K}{\mu_0 \nu_0|\kappa_0}>0$

$$
\Rightarrow \left(\begin{array}{cc} I & J \\ \mu & \nu \end{array}\right)K = \frac{1}{\left(\begin{array}{cc} I & J \\ \mu_0 & \nu_0 \end{array}\right)K_0} \frac{n_K}{h} \sum_i \mathcal{D}_l(g_i)_{\mu\mu_0} \mathcal{D}_J(g_i)_{\nu\nu_0} \mathcal{D}_K^*(g_i)_{\kappa\kappa_0}
$$
\n
$$
\triangleright \text{ If } a_K^U > 1: \text{ CGCs not unique} \Rightarrow \text{ trickier!}
$$

Example: CGC for group $P_3 \simeq C_{3v}$

This group is simply reducible, $a_K^{IJ} \leq 1$, so we may drop the index ℓ .

Here: For Γ_3 use the representation matrices $\{D_3(g)\}\$ corresponding to the basis functions x, y .

$$
\begin{aligned}\n\begin{pmatrix}\n1 & 1 \\
1 & 1\n\end{pmatrix} &= \begin{pmatrix}\n1 & 2 \\
1 & 1\n\end{pmatrix} = \begin{pmatrix}\n2 & 2 \\
1 & 1\n\end{pmatrix} = 1 \\
\begin{pmatrix}\n1 & 3 & 3 \\
1 & \mu\n\end{pmatrix} &= \begin{pmatrix}\n1 & 0 \\
0 & 1\n\end{pmatrix}_{\mu\nu} & \begin{pmatrix}\n2 & 3 & 3 \\
1 & \mu\n\end{pmatrix} = \begin{pmatrix}\n0 & 1 \\
-1 & 0\n\end{pmatrix}_{\mu\nu} \\
\begin{pmatrix}\n3 & 3 & 1 \\
\mu\nu & 1\n\end{pmatrix} &= \begin{pmatrix}\n1/\sqrt{2} & 0 \\
0 & 1/\sqrt{2}\n\end{pmatrix}_{\mu\nu} & \begin{pmatrix}\n3 & 3 & 2 \\
\mu\nu & 1\n\end{pmatrix} = \begin{pmatrix}\n0 & 1/\sqrt{2} \\
-1/\sqrt{2} & 0\n\end{pmatrix}_{\mu\nu} \\
\begin{pmatrix}\n3 & 3 & 3 \\
\mu\nu & 1\n\end{pmatrix} &= \begin{pmatrix}\n1/\sqrt{2} & 0 \\
0 & -1/\sqrt{2}\n\end{pmatrix}_{\mu\nu} & \begin{pmatrix}\n3 & 3 & 3 \\
\mu\nu & 2\n\end{pmatrix} = \begin{pmatrix}\n0 & -1/\sqrt{2} \\
-1/\sqrt{2} & 0\n\end{pmatrix}_{\mu\nu}\n\end{aligned}
$$

Comparison: Rotation Group

- Angular momentum $j = 0, 1/2, 1, 3/2, \ldots$ corresponds to the irreducible representations of the rotation group
- \triangleright For each j, these IRs are $(2j + 1)$ -dimensional, i.e., the z component of angular momentum labels the basis states for the IR $\mathsf{\Gamma}_j.$
- \blacktriangleright $\Gamma_{i=0}$ is the identity representation of the rotation group
- \blacktriangleright The product representation $\Gamma_{j_1}\times \Gamma_{j_2}$ corresponds to the addition of angular momenta i_1 and i_2 ;

 $\Gamma_{i_1} \times \Gamma_{i_2} = \Gamma_{|i_1-i_2|} + \ldots + \Gamma_{i_1+i_2}$

Here all multiplicities $a_{j_3}^{j_1j_2}$ are one.

 \blacktriangleright In our lecture, Clebsch-Gordan coefficients have the same meaning as in the context of the rotation group:

They describe the unitary transformation from the reducible product space to irreducible invariant subspaces.

This unitary transformation depends only on (the representation matrices of) the IRs of the symmetry group of the problem so that the CGC can be tabulated. Roland Winkler, NIU, Argonne, and NCTU 2011−2015

Symmetry of Observables

 \triangleright Consider Hermitian operator (observable) $\hat{\mathcal{O}}$.

Let $G = \{g_i\}$ be a group of symmetry transformations with $\{\hat{P}(\vec{g}_i)\}\)$ the group of unitary operators isomorphic to \mathcal{G} .

- For arbitrary $|\phi\rangle$ we have $|\psi\rangle = \hat{\mathcal{O}}|\phi\rangle$.
- Application of g_i gives $|\psi'\rangle = \hat{P}(g_i)|\psi\rangle$ and $|\phi'\rangle = \hat{P}(g_i)|\phi\rangle$.
- \bullet Thus $\ket{\psi'} = \hat{O}' \ket{\phi'}$ requires $\hat{O}' = \hat{P}(g_i) \, \hat{O} \, \hat{P}(g_i)^{-1}$

$$
\text{If } \hat{\mathcal{O}}' = \hat{P}(g_i) \hat{\mathcal{O}} \hat{P}(g_i)^{-1} = \hat{\mathcal{O}} \Leftrightarrow [\hat{P}(g_i), \hat{\mathcal{O}}] = 0 \qquad \forall g_i \in \mathcal{G}
$$

we call G the symmetry group of \hat{O} which leaves \hat{O} invariant. Of course, we want the largest G possible.

Lemma: If $|n\rangle$ is an eigenstate of $\hat{\mathcal{O}}$, i.e., $\hat{\mathcal{O}}|n\rangle = \lambda_n |n\rangle$. and $[\hat{P}(g_i), \hat{O}] = 0$, then $\hat{P}(g_i)|n\rangle$ is likewise an eigenstate of \hat{O} for the same eigenvalue λ_n .

As always $\hat{P}(g_i)|n\rangle$ need not be orthogonal to $|n\rangle$.

Proof: $\hat{\mathcal{O}}[\hat{P}(\mathbf{g}_i)|_n\rangle] = \hat{P}(\mathbf{g}_i)\hat{\mathcal{O}}|_n\rangle = \lambda_n[\hat{P}(\mathbf{g}_i)|_n\rangle]$

Symmetry of Observables (cont'd)

\blacktriangleright Theorem 15:

Let $\mathcal{G} = \{\hat{P}(\mathbf{g}_i)\}\$ be the symmetry group of the observable $\hat{\mathcal{O}}$. Then the eigenstates of a d-fold degenerate eigenvalue λ_n of $\hat{\mathcal{O}}$ form a d-dimensional invariant subspace S_n .

The proof follows immediately from the preceding lemma.

- \triangleright Most often: S_n is irreducible
	- central property of nature for applying group theory to physics problems
	- unless noted otherwise, always assumed in the following
	- Identify d-fold degeneracy of λ_n with d-dimensional IR of \mathcal{G} .
- Inder which cirumstances can S_n be reducible?
	- ${\mathcal G}$ does not include all symmetries realized in the system, i.e., ${\mathcal G} \subsetneqq {\mathcal G}'$ ("hidden symmetry"). Then \mathcal{S}_n is an irreducible invariant subspace of \mathcal{G}' . Examples: hydrogen atom, *m*-dimensional harmonic oscillator ($m > 1$).
	- A variant of the preceding case: The extra degeneracy is caused by the antiunitary time reversal symmetry (more later).
	- The degeneracy cannot be explained by symmetry: rare! (Usually such "accidental degeneracies" correspond to singular points in the parameter space of a system.) Roland Winkler, NIU, Argonne, and NCTU 2011−2015

Symmetry of Observables (cont'd)

Remarks:

- \triangleright IRs of G give the degeneracies that may occur in the spectrum of observable $\hat{\mathcal{O}}$.
- \triangleright Usually, all IRs of G are realized in the spectrum of observable $\hat{\mathcal{O}}$ (reasonable if eigenfunctions of \hat{O} form complete set)

Application 1: Symmetry-Adapted Basis

Let $\hat{\mathcal{O}} = \hat{\mathcal{H}} =$ Hamiltonian

In Classify the eigenvalues and eigenstates of \hat{H} according to the IRs Γ of the symmetry group G of \hat{H} .

Notation: $\hat{H} | I \mu, \alpha \rangle = E_{I\alpha} | I \mu, \alpha \rangle$ $\mu = 1, \dots, n_I$ according to same Γ_I
according to same Γ_I

If Γ_I is n_I -dimensional, then eigenvalues $E_{I\alpha}$ are n_I -fold degenerate.

Note: In general, the "quantum number" I cannot be associated directly with an observable

For given $E_{1\alpha}$, it suffices to calculate one eigenstate $|I\mu_0, \alpha\rangle$. Then $\{|I\mu,\alpha\rangle:\mu=1,\ldots,n_1\}=\{\hat{P}(g_i)|I\mu_0,\alpha\rangle:g_i\in\mathcal{G}\}$

(i.e., both sets span the same subspace of H)

► Expand eigenstates $|I\mu, \alpha\rangle$
in a symmetry-adapted basis $\{ |J\nu, \beta\rangle : \begin{matrix} J = 1, ..., N; \\ \beta = 1, 2, ..., \end{matrix} \}$ $|I\mu,\alpha\rangle = \sum$ Jν,β $\langle J\nu,\beta|I\mu,\alpha\rangle|J\nu,\beta\rangle=\sum$ $= \delta_{IJ} \overline{\delta_{\mu\nu} \langle I\alpha| |I\beta\rangle}$ see Theorem [11](#page-65-0) β $\langle I\alpha||I\beta\rangle |I\mu,\beta\rangle$

 \Rightarrow partial diagonalization of \hat{H} independent of specific details

Application 2: Effect of Perturbations

 \blacktriangleright Let $\hat{H}=\hat{H}_0+\hat{H}_1$, $\quad \hat{H}_0=$ unperturbed Hamiltonian: $\hat{H}_0|n\rangle=E^{(0)}_n|n\rangle$ $\hat{H}_1 =$ perturbation

Perturbation expansion $E_n = E_n^{(0)} + \langle n | \hat{H}_1 | n \rangle + \sum_n$ $n' \neq n$ $|\langle \textit{n}|\hat{H}_1|\textit{n}'\rangle|^2$ $E_n^{(0)} - E_{n'}^{(0)}$ n' $+ \dots$

 \Rightarrow need matrix elements $\langle n|\hat{H}|n'\rangle=E_{n}^{(0)}\,\delta_{nn'}+\langle n|\hat{H}_{1}|n'\rangle$

- ► Let G_0 = symmetry group of \hat{H}_0
 $G =$ symmetry group of \hat{H} $\Big\}$ usually $\mathcal{G} \subsetneqq \mathcal{G}_0$
- ► The unperturbed eigenkets $\{|n\rangle\}$ transform according to IRs Γ^0_I of \mathcal{G}_0
- $\blacktriangleright \{\Gamma^0_j\}$ are also representations of $\mathcal G$, yet then *reducible*
- ► Every IR Γ_I^0 of \mathcal{G}_0 breaks down into (usually multiple) IRs $\{\Gamma_J\}$ of $\mathcal G$ $Γ_l^0 = ∑$ J (see Theorem [7\)](#page-42-0)
	- \Rightarrow compatibility relations for irreducible representations
- **Theorem 16:** $\langle n = J\mu\alpha|\hat{H}|n' = J'\mu'\alpha'\rangle = \delta_{JJ'}\delta_{\mu\mu'}\langle J\alpha||\hat{H}||J'\alpha'\rangle$

Proof: Similar to Theorem [11](#page-65-0) with $\hat{H} = \hat{P}(g_j)^{\dagger} \hat{H} \hat{P}(g_j) = \frac{1}{\hbar} \sum_i \hat{P}(g_i)^{\dagger} \hat{H} \hat{P}(g_i)$

Example: Compatibility Relations for $C_{3v} \simeq \mathcal{P}_3$

$$
\begin{array}{c|cc}\n\text{Character table } C_{3v} \simeq \mathcal{P}_3 & C_{3v} & E & 2C_3 & 3\sigma_v \\
\hline\n\mathcal{P}_3 & e & a, b \, c, d, f \\
\hline\n\begin{array}{ccc}\n\Gamma_1 & 1 & 1 & 1 \\
\Gamma_2 & 1 & 1 & -1 \\
\Gamma_3 & 2 & -1 & 0\n\end{array}\n\end{array}
$$

► $C_{3v} \simeq P_3$ has two subgroups $C_3 = \{E, C_3, C_3^2 = C_3^{-1}\} \simeq G_1 = \{e, a, b\}$ $C_s = {E, \sigma_v} \simeq G_2 = {e, c} = {e, d} = {e, f}$

 \triangleright Both subgroups are Abelian, so they have only 1-dim. IRs

Discussion: Compatibility Relations

Compatibility relations and Theorem [16](#page-90-0) tell us how a degenerate level transforming according to the IR Γ^0_l of \mathcal{G}_0 splits into multiple levels transforming according to certain IRs $\{\mathsf{\Gamma}_J\}$ of ${\mathcal{G}}$ when the perturbation \hat{H}_1 reduces the symmetry from \mathcal{G}_0 to $\mathcal{G} \subsetneq \mathcal{G}_0$.

Thus qualitative statements:

- \blacktriangleright Which degenerate levels split because of \hat{H}_1 ?
- \blacktriangleright Which degeneracies remain unaffected by \hat{H}_1 ?
- \triangleright These statements do not require any perturbation theory in the conventional sense. (For every pair \mathcal{G}_0 and \mathcal{G}_1 , they can be tabulated once and forever!)
- ▶ These statements do not require some kind of "smallness" of \hat{H}_1 .
- \triangleright But no statement whether (or how much) a level will be raised or lowered by \hat{H}_1 .

(Ir)Reducible Operators

- ► Up to now: symmetry group of operator $\hat{\mathcal{O}}$ requires $\hat{P}(g_i)\,\hat{\mathcal{O}}\,\hat{P}(g_i)^{-1} = \hat{\mathcal{O}} \qquad \forall g_i \in \mathcal{G}$
- ► More general: A set of operators $\{\hat{\mathcal{Q}}_\nu : \nu = 1, \ldots, n\}$ with

$$
\hat{P}(g_i) \hat{Q}_{\nu} \hat{P}(g_i)^{-1} = \sum_{\mu=1}^n \mathcal{D}(g_i)_{\mu\nu} \hat{Q}_{\mu} \qquad \forall \nu = 1,\ldots,n\forall g_i \in \mathcal{G}
$$

is called reducible (irreducible), if $\Gamma = \{ \mathcal{D}(g_i) : g_i \in \mathcal{G} \}$ is a reducible (irreducible) representation of G .

Often a shorthand notation is used: $g_i\,\hat{\cal Q}_{\nu}\equiv\hat{P}(g_i)\,\hat{\cal Q}_{\nu}\,\hat{P}(g_i)^{-1}$

- ► We say: The operators $\{\hat{\mathcal{Q}}_{\nu}\}$ transform according to Γ .
- ▶ Note: In general, the eigenstates of $\{\hat{\mathcal{Q}}_{\nu}\}$ will not transform according to Γ.

(Ir)Reducible Operators (cont'd)

Examples:

 $\blacktriangleright \Gamma_1 =$ "identity representation"; $\mathcal{D}(g_i) = 1 \quad \forall g_i \in \mathcal{G}$; $n_i = 1$

 $\Rightarrow\;\; \hat{P}(g_i)\,\hat{\cal Q}\,\hat{P}(g_i)^{-1} = \hat{\cal Q} \qquad \forall g_i \in \cal G$

We say: \hat{Q} is a scalar operator or invariant.

 \blacktriangleright most important scalar operator: the Hamiltonian \hat{H} i.e., \hat{H} always transforms according to Γ_1

The symmetry group of \hat{H} is the largest symmetry group that leaves \hat{H} invariant.

- **•** position operator \hat{x}_ν momentum operator $\hat{p}_{\nu} = -i\hbar \partial_{x}$ $\nu = 1, 2, 3$ (polar vectors)
	- \Rightarrow $\{\hat{x}_{\nu}\}\$ and $\{\hat{p}_{\nu}\}\$ transform according to 3-dim. representation Γ_{pol} (possibly reducible!)
- \triangleright composite operators (= tensor operators) e.g., angular momentum $\;\hat{J}_{\nu}=\sum\;$ $\sum_{\lambda,\mu} \varepsilon_{\lambda\mu\nu} \hat{x}_{\lambda} \hat{p}_{\mu}$ $\nu = 1, 2, 3$ (axial vector)
 λ, μ Roland Winkler, NIU, Argonne, and NCTU 2011–2015 and Winkler, NIU, Argonne, and NCTU 2011−2015

Tensor Operators

- ► Let $\hat{\mathcal{Q}}^I \equiv \{ \hat{\mathcal{Q}}^I_\mu : \mu = 1, \ldots, n_I \}$ transform according to $\Gamma_I = \{ \mathcal{D}_I(g_i) \}$ $\hat{\mathcal{Q}}^{J}\equiv\{\hat{\mathcal{Q}}^{J}_{\nu}:\nu=1,\ldots,n_{J}\}$ transform according to $\Gamma_{J}=\{\mathcal{D}_{J}(g_{i})\}$
- \blacktriangleright Then $\{\hat{\mathcal{Q}}^I_\mu\,\hat{\mathcal{Q}}^J_\nu:\mu=1,\ldots,n_I\}\,$ transforms according to the product representation $Γ₁ × Γ₁$
- $\blacktriangleright \Gamma_1 \times \Gamma_1$ is, in general, reducible

 \Rightarrow The set of tensor operators $\{\hat{\cal Q}^I_\mu\,\hat{\cal Q}^J_\nu\}$ is likewise reducible

A unitary transformation brings $\Gamma_1 \times \Gamma_1 = {\mathcal{D}_1(g_i) \otimes \mathcal{D}_1(g_i)}$ into block-diagonal form

 \Rightarrow The same transformation decomposes $\{\hat{\cal Q}'_\mu\,\hat{\cal Q}'_\nu\}$ into irreducible tensor operators (use CGC)

Where Are We?

We have discussed

- \blacktriangleright the transformational properties of states
- \blacktriangleright the transformational properties of operators

Now:

- \triangleright the transformational properties of matrix elements
- ⇒ [Wigner-Eckart Theorem](#page-97-0)

Wigner-Eckart Theorem

Let $\{|I_{\mu}, \alpha\rangle : \mu = 1, \ldots, n_I\}$ transform according to $\Gamma_I = \{D_I(g_i)\}\$ $\{|I'\mu',\alpha'\rangle\ : \mu'=1,\ldots,n_{I'}\}$ transform according to $\Gamma_{I'} = \{\mathcal{D}_{I'}(g_i)\}\$ $\hat{\mathcal{Q}}^{J} = \{ \hat{\mathcal{Q}}^{J}_{\nu} \colon \nu = 1, \ldots, n_{J} \} \quad \text{transform according to } \mathsf{\Gamma}_{J} = \{ \mathcal{D}_{J} (g_{i}) \}$

Then
$$
\langle I'\mu', \alpha' | \hat{\mathcal{Q}}_{\nu}^J | I\mu, \alpha \rangle = \sum_{\ell} \left(\begin{array}{cc} J & I \\ \nu & \mu \end{array} \middle| \begin{array}{c} I' \\ \mu' \end{array} \right) \langle I'\alpha' | \big| \hat{\mathcal{Q}}^J | \big| I\alpha \rangle_{\ell}
$$

where the reduced matrix element $\bra{I'\alpha'}\Vert \hat{\mathcal{Q}}^J\Vert \mathit{I}\alpha\rangle_\ell$ is independent of μ, μ' and ν .

Proof:

- $\blacktriangleright \left\{ \hat{\mathcal{Q}}_{\nu}^{J} | I \mu, \alpha \right\} : \mu = 1, \ldots, n_{J} \right\}$ transforms according to $\Gamma_{I} \times \Gamma_{J}$
- ► Thus CGC expansion $\hat{Q}^J_\nu | I\mu, \alpha \rangle = \sum_{K\kappa,\ell} \left(\begin{array}{cc} J & I \\ \nu & \mu \end{array} \right| \frac{K}{\kappa}$ $ν$ $μ$ | $κ$ $\bigg\vert K\kappa, \ell \rangle$

$$
\triangleright \langle I' \mu', \alpha' | \hat{\mathcal{Q}}_{\nu}^{J} | I \mu, \alpha \rangle = \sum_{K \kappa, \ell} \begin{pmatrix} J & I \\ \nu & \mu \end{pmatrix} \begin{pmatrix} K \ell \\ \kappa \end{pmatrix} \underbrace{\langle I' \mu', \alpha' | K \kappa, \ell \rangle}_{\equiv \delta_{I'K} \delta_{\mu' \kappa} \langle I' \alpha' | \hat{\mathcal{Q}}^{J} | I \alpha \rangle_{\ell}} \text{ Theorem 11}
$$

Discussion: [Wigner-Eckart Theorem](#page-97-0)

 \triangleright Matrix elements factorize into two terms

- the reduced matrix element independent of μ, μ' and ν
- CGC indexing the elements μ, μ' and ν of Γ_I , $\Gamma_{I'}$ and Γ_J . (CGC are tabulated, independent of $\hat{\mathcal{Q}}^{\jmath})$
- \triangleright Thus: reduced matrix element $=$ "physics" Clebsch-Gordan coefficients $=$ "geometry"
- Matrix elements for different values of μ, μ' and ν have a fixed ratio independent of \hat{Q}^{J}

► If
$$
\Gamma_{l'}
$$
 is not contained in $\Gamma_{l} \times \Gamma_{J}$ Equivalent to: If $\Gamma_{l'}^* \times \Gamma_{J} \times \Gamma_{l}$ does not contain the identity representation
\n
$$
\Rightarrow \begin{pmatrix} J & I \\ \nu & \mu \end{pmatrix} \begin{pmatrix} I' & \ell \\ \mu' \end{pmatrix} = 0 \quad \forall \nu, \mu, \mu'
$$
\n
$$
\Rightarrow \langle I' \mu', \alpha' | \hat{Q}_{\nu'}^{\dagger} | I \mu, \alpha \rangle = 0 \quad \forall \nu, \mu, \mu'
$$

Many important selection rules are some variation of this result.

 \triangleright Theorems [11](#page-65-0) and [16](#page-90-0) are special cases of the [WE theorem](#page-97-0) for $\hat{\mathcal{Q}}^1 = \mathbb{1}$ and $\hat{\mathcal{Q}}^1 = \hat{H}$ (yet we proved the [WE theorem](#page-97-0) via Theorem [11\)](#page-65-0)

Discussion: [Wigner-Eckart Theorem](#page-97-0) (cont'd)

Application: Perturbation theory

 \triangleright Compatibility relations and Theorem [16](#page-90-0) describe splitting of degenerate levels using the symmetry group G of perturbed problem

\blacktriangleright Alternative approach

Splitting of levels using the symmetry group \mathcal{G}_0 of unperturbed problem (i.e., no need to know group G of perturbed problem)

- Let $\hat{\mathcal{Q}}^J$ be tensor operator transforming according to IR Γ $_J$ of \mathcal{G}_0
- \bullet Often: perturbation $\;\hat{H}_1={\bf{\cal F}}^J\cdot\hat{\bf Q}^J={\bf{\cal F}}^J_\nu\;\hat{\bf Q}^J_\nu\;$ i.e., \hat{H}_1 is proportional to only ν th component of tensor operator $\hat{\mathcal{Q}}^{J}$ $\hat{\mathcal{Q}}^J$ projected on component $\hat{\mathcal{Q}}^J_\nu$ via suitable orientation of field \mathcal{F}^J
- Symmetry group of $\hat{H}=\hat{H}_0+\hat{H}_1$ is subgroup $\mathcal{G}\subset\mathcal{G}_0$ which leaves $\hat{\mathcal{Q}}^J_\nu$ invariant.
- [WE Theorem:](#page-97-0)

$$
\langle n|\hat{H}_1|n'\rangle = \mathcal{F}_{\nu}^J \langle n=I\mu\alpha|\hat{\mathcal{Q}}_{\nu}^J|n'=I'\mu'\alpha'\rangle = \sum_{\ell} \begin{pmatrix} J & I' \\ \nu & \mu' \end{pmatrix} I_{\ell}^{\ell} \begin{pmatrix} I\alpha \mid \hat{\mathcal{Q}}^J \mid I'\alpha' \rangle_{\ell} & (*) \end{pmatrix}
$$

• Changing the orientation of \mathcal{F}^J changes only the CGCs in $(*)$ The reduced matrix elements $\bra{I\alpha}\ket{\hat{\cal Q}^J}\ket{I'\alpha'}_{\ell}$ are "universal"

Example: Optical Selection Rules

- **Example:** Optical transitions for a system with symmetry group C_{3v} $(e.g., NH₃ molecule)$
	- ▶ Optical matrix elements $\langle i_I | \mathbf{e} \cdot \hat{\mathbf{r}} | f_J \rangle$ (dipole approximation)

where
$$
|i_1\rangle
$$
 = initial state (with IR Γ_1); $|f_1\rangle$ = final state (IR Γ_J)
\n**e** = (e_x , e_y , e_z) = polarization vector
\n $\hat{\mathbf{r}} = (\hat{x}, \hat{y}, \hat{z})$ = dipole operator (\equiv position operator)

- \triangleright \hat{x} , \hat{y} transform according to Γ_3
	- \hat{z} transforms according to Γ_1
- ► e.g., light xy polarized: $\langle i_1|e_x \hat{x} + e_y \hat{y}|f_3 \rangle$
	- transition allowed because $\Gamma_3 \times \Gamma_3 = \Gamma_1 + \Gamma_2 + \Gamma_3$
	- in total 4 different matrix elements, but only one reduced matrix element
- ▶ z polarized: $\langle i_1|e_z \hat{z} | f_3 \rangle$
	- transition forbidden because $\Gamma_1 \times \Gamma_3 = \Gamma_3$
- \triangleright These results are independent of any microscopic models for the $NH₃$ molecule!

Goal: Spin 1/2 Systems and Double Groups Rotations and Euler Angles

- \triangleright So far: transformation of functions and operators dependent on position
- \triangleright Now: systems with spin degree of freedom \Rightarrow wave functions are two-component Pauli spinors

$$
\Psi(\mathbf{r}) = \psi_{\uparrow}(\mathbf{r}) \ket{\uparrow} + \psi_{\downarrow}(\mathbf{r}) \ket{\downarrow} \equiv \begin{pmatrix} \psi_{\uparrow}(\mathbf{r}) \\ \psi_{\downarrow}(\mathbf{r}) \end{pmatrix}
$$

- \blacktriangleright How do Pauli spinors transform under symmetry operations?
- **Parameterize rotations via Euler angles** α , β , γ

Rotations and Euler Angles (cont'd)

- ► General rotation $R(\alpha, \beta, \gamma) = R_{z'}(\gamma) R_{y'}(\beta) R_z(\alpha)$
- \triangleright Difficulty: axes y' and z' refer to rotated body axes (not fixed in space)

► Use
$$
R_{z'}(\gamma) = R_{y'}(\beta) R_z(\gamma) R_{y'}^{-1}(\beta)
$$
 preceding rotations
\n $R_{y'}(\beta) = R_z(\alpha) R_y(\beta) R_z^{-1}(\alpha)$ are temporarily undone

 \blacktriangleright Thus $R(\alpha, \beta, \gamma) = R_{y'}(\beta)$ $R_z(\alpha) R_y(\beta) R_z^{-1}(\alpha)$ $\overline{=}1$ rotations about z axis commute z axis commute $R_z(\gamma) R_{y'}^{-1}(\beta) R_{y'}(\beta)$ \equiv $\frac{1}{2}$ $R_{z}(\alpha)$

$$
\triangleright \text{ Thus } R(\alpha, \beta, \gamma) = R_z(\alpha) R_y(\beta) R_z(\gamma)
$$

► More explicitly: rotations of vectors $\mathbf{r} = (x, y, z) \in \mathbb{R}^3$ $R_{z}(\alpha) =$ $\sqrt{ }$ \mathcal{L} $\cos \alpha$ – $\sin \alpha$ 0 sin α cos α 0 0 0 1 \setminus $\Big\}$, $R_y(\beta) =$ $\sqrt{ }$ $\overline{1}$ $\cos \beta$ 0 $-\sin \beta$ 0 1 0 sin β 0 $\cos \beta$ \setminus etc.

 \triangleright $SO(3) =$ set of all rotation matrices $R(\alpha, \beta, \gamma)$ = set of all orthogonal 3×3 matrices R with det $R = +1$. $R(2\pi, 0, 0) = R(0, 2\pi, 0) = R(0, 0, 2\pi) = \mathbb{1} \equiv e$

Roland Winkler, NIU, Argonne, and NCTU 2011−2015

rotations about space-fixed axes!

Rotations: Spin 1/2 Systems

 \triangleright Rotation matrices for spin-1/2 spinors (axis **n**)

$$
\mathcal{R}_{\mathbf{n}}(\phi) = \exp(-\frac{i}{2}\boldsymbol{\sigma} \cdot \mathbf{n} \phi) = \mathbb{1} \cos(\phi/2) - i \mathbf{n} \cdot \boldsymbol{\sigma} \sin(\phi/2)
$$

$$
\mathcal{R}(\alpha,\beta,\gamma) = \mathcal{R}_z(\alpha) \mathcal{R}_y(\beta) \mathcal{R}_z(\gamma)
$$

=
$$
\begin{pmatrix} e^{-i(\alpha+\gamma)/2} \cos(\beta/2) & -e^{-i(\alpha-\gamma)/2} \sin(\beta/2) \\ e^{-i(\alpha-\gamma)/2} \sin(\beta/2) & e^{i(\alpha+\gamma)/2} \cos(\beta/2) \end{pmatrix}
$$

transformation matrix for spin 1/2 states

 \triangleright SU(2) = set of all matrices $\mathcal{R}(\alpha,\beta,\gamma)$ = set of all unitary 2 \times 2 matrices R with det $\mathcal{R} = +1$.

$$
\blacktriangleright \ \mathcal{R}(2\pi, 0, 0) = \mathcal{R}(0, 2\pi, 0) = \mathcal{R}(0, 0, 2\pi) = -\mathbb{1} \equiv \bar{e} \quad \begin{array}{c} \text{rotation by } 2\pi \\ \text{is } \underline{\text{not}} \text{ identity} \end{array}
$$

- $\mathcal{R}(4\pi, 0, 0) = \mathcal{R}(0, 4\pi, 0) = \mathcal{R}(0, 0, 4\pi) = 1 = e$ rotation by 4π is identity
- Every $SO(3)$ matrix $R(\alpha, \beta, \gamma)$ corresponds to two $SU(2)$ matrices $\mathcal{R}(\alpha,\beta,\gamma)$ and $\mathcal{R}(\alpha+2\pi,\beta,\gamma) = \mathcal{R}(\alpha,\beta+2\pi,\gamma) = \mathcal{R}(\alpha,\beta,\gamma+2\pi)$ $=\bar{\mathsf{e}} \mathcal{R}(\alpha,\beta,\gamma) = \mathcal{R}(\alpha,\beta,\gamma) \bar{\mathsf{e}}$

 $\Rightarrow SU(2)$ is called **double group** for $SO(3)$

Double Groups

Definition: Double Group

Let the group of spatial symmetry transformations of a system be

 $\mathcal{G} = \{g_i = R(\alpha_i, \beta_i, \gamma_i): i = 1, \dots, h\} \subset SO(3)$

Then the corresponding double group is

$$
\mathcal{G}_d = \{g_i = \mathcal{R}(\alpha_i, \beta_i, \gamma_i) : i = 1, \ldots, h\} \cup \{g_i = \mathcal{R}(\alpha_i + 2\pi, \beta_i, \gamma_i) : i = 1, \ldots, h\} \subset SU(2)
$$

- ▶ Thus with every element $g_i \in \mathcal{G}$ we associate two elements g_i and $\bar{g}_i \equiv \bar{e} g_i = g_i \bar{e} \in \mathcal{G}_d$
- If the order of G is h, then the order of G_d is 2h.
- \triangleright **Note:** G is not a subgroup of \mathcal{G}_d because the elements of G are not a closed subset of \mathcal{G}_d .

Example: Let $g =$ rotation by π

• in G : $g^2 = e$ the same group element g is thus interpreted differently in $\mathcal G$ and $\mathcal G_d$ • in \mathcal{G}_d : $g^2 = \overline{e}$

 \blacktriangleright Yet: $\{e, \overline{e}\}$ is invariant subgroup of \mathcal{G}_d and the factor group $\mathcal{G}_d/\{e,\overline{e}\}\)$ is isomorphic to \mathcal{G} .

 \Rightarrow The IRs of G are also IRs of \mathcal{G}_d Roland Winkler, NIU, Argonne, and NCTU 2011–2015

Example: Double Group C_{3v}

- \blacktriangleright For Γ_1 , Γ_2 , and Γ_3 the "barred" group elements have the same characters as the "unbarred" elements. Here the double group gives us the same IRs as the "single group"
- ▶ For other groups a class may contain both "barred" and "unbarred" group elements.

 \Rightarrow the number of classes and IRs in the double group need not be twice the number of classes and IRs of the "single group"

Time Reversal (Reversal of Motion)

• Time reversal operator
$$
\hat{\theta}
$$
 : $t \to -t$

► Action of $\hat{\theta}$: $\hat{\theta} \, \hat{\mathbf{r}} \, \hat{\theta}^{-1} \, = \, \hat{\mathbf{r}}$ and $\}$ independent of t $\hat{\theta} \, \hat{\mathsf{p}} \, \hat{\theta}^{-1} \, = \, - \hat{\mathsf{p}}$ $\hat{\theta} \, \hat{\mathsf{L}} \, \hat{\theta}^{-1} \, = \, - \hat{\mathsf{L}}$ \mathcal{L} \mathcal{L} I linear in t $\hat{\theta} \, \hat{\mathsf{S}} \, \hat{\theta}^{-1} = - \hat{\mathsf{S}}$

► Consider time evolution: $\hat{U}(\delta t) = 1 - i\hat{H}\delta t/\hbar$ $\Rightarrow~~ \hat{\mathcal{U}}(\delta t)\,\hat{\theta}\,|\psi\rangle\,=\,\hat{\theta}\,\hat{\mathcal{U}}(-\delta t)\,|\psi\rangle$ $\Leftrightarrow \quad -i\hat{H}\,\hat{\theta}\,|\psi\rangle\,=\,\hat{\theta}\,i\hat{H}\,|\psi\rangle\qquad\qquad {\rm but\,\, need\,\, also}\quad [\hat{\theta},\hat{H}]=0$ \Rightarrow Need $\hat{\theta} = UK$ $U =$ unitary operator
 $K =$ complex conjugation

Properties of $\hat{\theta} = UK$: $\blacktriangleright \; \; \mathcal{K}\big(c_1|\alpha\rangle+c_2|\beta\rangle\big) = c_1^*|\alpha\rangle+c_2^*|\beta\rangle \quad \text{(antilinear)}$ \blacktriangleright Let $|\tilde{\alpha}\rangle = \hat{\theta} |\alpha\rangle$ and $|\tilde{\beta}\rangle = \hat{\theta} |\beta\rangle$ \mathcal{L} $\overline{\mathcal{L}}$ \int $\hat{\theta} = \textit{UK}$ is antiunitary $\Rightarrow \langle \tilde{\beta} | \tilde{\alpha} \rangle = \langle \beta | \alpha \rangle^* = \langle \alpha | \beta \rangle$ operator Roland Winkler, NIU, Argonne, and NCTU 2011−2015

Time Reversal (cont'd)

The explicit form of $\hat{\theta}$ depends on the representation

- ► position representation: $\hat{\theta} \, \hat{\mathbf{r}} \, \hat{\theta}^{-1} = \hat{\mathbf{r}} \quad \Rightarrow \quad \hat{\theta} \, \psi(\mathbf{r}) = \psi^*(\mathbf{r})$
- ► momentum representation: $\; \hat{\theta} \, \hat{\mathsf{p}} \, \hat{\theta}^{-1} = \hat{\mathsf{p}} \; \; \Rightarrow \; \hat{\theta} \, \psi(\mathsf{p}) = \psi^*(-\mathsf{p}) \;$
- \blacktriangleright spin $1/2$ systems:
	- \bullet $\hat{\theta} = i\sigma_{\sf y}\, {\sf K}\,\,\, \Rightarrow\,\hat{\theta}^2 = -\mathbb{1}$
	- all eigenstates $|n\rangle$ of \hat{H} are at least two-fold degenerate (Kramers degeneracy)
Time Reversal and Group Theory

 \triangleright Consider a system with Hamiltonian \hat{H} .

• Let
$$
\mathcal{G} = \{g_i\}
$$
 be the symmetry group of spatial symmetries of \hat{H} $[\hat{P}(g_i), \hat{H}] = 0 \quad \forall g_i \in \mathcal{G}$

 \blacktriangleright Let $\{|I\nu\rangle : \nu = 1,\ldots,n_I\}$ be an n_I -fold degenerate eigenspace of \hat{H} which transforms according to IR $\Gamma_I = \{ \mathcal{D}_I(g_i) \}$

$$
\hat{H} |I\nu\rangle = E_I |I\nu\rangle \quad \forall \nu
$$

$$
\hat{P}(g_i) |I\nu\rangle = \sum_{\mu} \mathcal{D}_I(g_i)_{\mu\nu} |I\mu\rangle
$$

 \blacktriangleright Let \hat{H} be time-reversal invariant: $\; [\hat{H},\hat{\theta}]=0$ \Rightarrow $\hat{\theta}$ is additional symmetry operator (beyond $\{\hat{P}(g_i)\}\$) with $[\hat{\theta}, \hat{P}(g_i)] = 0$

$$
\triangleright \ \hat{P}(g_i) \, \hat{\theta} \, |I\nu\rangle = \hat{\theta} \, \hat{P}(g_i) |I\nu\rangle = \hat{\theta} \sum_{\mu} \mathcal{D}_I(g_i)_{\mu\nu} \, |I\mu\rangle = \sum_{\mu} \mathcal{D}_I^*(g_i)_{\mu\nu} \, \hat{\theta} \, |I\mu\rangle
$$

 \blacktriangleright Thus: time-reversed states $\{\hat{\theta} | I\nu\rangle\}$ transform according to complex conjugate IR $\Gamma_I^* = \{ \mathcal{D}_I^*(g_i) \}$

Time Reversal and Group Theory (cont'd)

in time-reversed states $\{\hat{\theta} | I\nu\rangle\}$ transform according to complex conjugate IR $\Gamma_I^* = \{ \mathcal{D}_I^*(g_i) \}$

Three possiblities (known as "cases a, b, and c") (a) $\{|I\nu\rangle\}$ and $\{\hat{\theta} |I\nu\rangle\}$ are linear dependent

(b) $\{|I\nu\rangle\}$ and $\{\hat{\theta} |I\nu\rangle\}$ are linear independent The IRs Γ_I and Γ_I^* are distinct, i.e., $\chi_I(g_i) \neq \chi_I^*(g_i)$

(c)
$$
\{|I\nu\rangle\}
$$
 and $\{\hat{\theta} | I\nu\rangle\}$ are linear independent
\n $\Gamma_I = \Gamma_I^*$, i.e., $\chi_I(g_i) = \chi_I^*(g_i) \quad \forall g_i$

Discussion

- **Case (a): time reversal is additional constraint for** $\{|I\nu\rangle\}$ e.g., $n_1 = 1 \Rightarrow |\nu\rangle$ reell
- \triangleright Cases (b) and (c): time reversal results in additional degeneracies
- ▶ Our definition of cases (a)–(c) follows Bir & Pikus. Often (e.g., Koster) a different classification is used which agrees with Bir & Pikus for spinless systems. But cases (a) and (c) are reversed for spin- $1/2$ systems.

Time Reversal and Group Theory (cont'd)

 \triangleright When do we have case (a), (b), or (c)?

Criterion by Frobenius & Schur

$$
\frac{1}{h} \sum_{i} \chi_{I}(g_{i}^{2}) = \begin{cases} \eta & \text{case (a)} \\ 0 & \text{case (b)} \\ -\eta & \text{case (c)} \end{cases}
$$

where $\eta = \left\{ \begin{array}{cc} +1 & \text{systems with integer spin} \\ 1 & \text{otherwise} \end{array} \right.$ -1 systems with half-integer spin

Proof: Tricky! (See, e.g., Bir & Pikus)

Example: Cyclic Group C_3

► C_3 is Abelian group with 3 elements: $C_3 = \{q, q^2, q^3 \equiv e\}$

 \blacktriangleright Multiplication table

Character table

- \triangleright IR Γ_1 : no additional degeneracies because of time reversal
- **IRs** Γ ₂ and Γ ₃: these complex IRs need to be combined
	- \Rightarrow two-fold degeneracy because of time reversal symmetry (though here no spin!)

Group Theory in Solid State Physics

First: Some terminology

- \triangleright Lattice: periodic array of atoms (or groups of atoms)
- \blacktriangleright Bravais lattice:

 $\mathbf{R_n} = n_x \mathbf{a}_x + n_y \mathbf{a}_y + n_z \mathbf{a}_z$

 $\mathsf{n}=(n_1,n_2,n_3)\in\mathbb{Z}^3$ a_i linearly independent

Every lattice site R_n is occupied with one atom

Example: 2D honeycomb lattice is not a Bravais lattice

\blacktriangleright Lattice with basis:

- Every lattice site \mathbf{R}_n is occupied with z atoms
- Position of atoms relative to \mathbf{R}_{n} : τ_{i} , $i = 1, \ldots, q$
- These q atoms with relative positions τ_i form a basis.
- Example: two neighboring atoms in 2D honeycomb lattice

Symmetry Operations of Lattice

- **Figure 1** Translation **t** (not necessarily by lattice vectors \mathbf{R}_n)
- **►** Rotation, inversion \rightarrow 3 \times 3 matrices α
- \triangleright Combinations of translation, rotation, and inversion

 \Rightarrow general transformation for position vector $\mathbf{r} \in \mathbb{R}^3$:

 ${\sf r}'=\alpha {\sf r}+{\sf t}\equiv\{\alpha|{\sf t}\}$ r

- \triangleright Notation $\{\alpha | \mathbf{t}\}\$ includes also
	- Mirror reflection = rotation by π about axis perpendicular to mirror plane followed by inversion
	- Glide reflection $=$ translation followed by reflection
	- Screw axis $=$ translation followed by rotation

Symmetry operations $\{\alpha | \mathbf{t}\}\$ form a group

► Multiplication {
$$
\alpha'
$$
|**t'**} $\underbrace{\{\alpha|\mathbf{t}\}\mathbf{r}}_{\mathbf{r}'=\alpha\mathbf{r}+\mathbf{t}} = \alpha'\mathbf{r}' + \mathbf{t}' = \alpha'\alpha\mathbf{r} + \alpha'\mathbf{t} + \mathbf{t}'$
= { $\alpha'\alpha|\alpha'\mathbf{t}+\mathbf{t}'$ } **r**

► Inverse Element $\{\alpha | \mathbf{t}\}^{-1} = \{-\alpha^{-1} | -\alpha^{-1} \mathbf{t}\}$ because $\{\alpha | \mathbf{t}\}^{-1}$ $\{\alpha | \mathbf{t}\} = \{\alpha^{-1} \alpha | \alpha^{-1} \mathbf{t} - \alpha^{-1} \mathbf{t}\} = \{\mathbb{1} | \mathbf{0}\}$

Classification Symmetry Groups of Crystals

to be added . . .

Symmetry Groups of Crystals Translation Group

Translation group = set of operations $\{1\mathbb{R}_n\}$

$$
\blacktriangleright \{\mathbb{1}|R_{n'}\}\{\mathbb{1}|R_{n}\} = \{\mathbb{1}|R_{n'} + \mathbb{1}\,R_{n}\} = \{\mathbb{1}|R_{n'+n}\}
$$

⇒ Abelian group

- \triangleright associativity (trivial)
- identity element $\{1|0\} = \{1|R_0\}$
- ► inverse element $\left\{ \mathbb{1}|\mathsf{R}_{\mathsf{n}}\right\} ^{-1}=\left\{ \mathbb{1}|- \mathsf{R}_{\mathsf{n}}\right\}$

Translation group Abelian \Rightarrow only one-dimensional IRs

Irreducible Representations of Translation Group

(for clarity in one spatial dimension)

- \triangleright Consider translations $\{1|a\}$
- \blacktriangleright Translation operator $\hat{\mathcal{T}}_a = \hat{\mathcal{T}}_{\{1\mid a\}}$ is unitary operator \Rightarrow eigenvalues have modulus 1
- \blacktriangleright eigenvalue equation $\hat{T}_a\ket{\phi} = e^{-i\phi}\ket{\phi}$ $-\pi < \phi \leq \pi$ more generally $\hat{T}_{na} \ket{\phi} = e^{-in\phi} \ket{\phi}$ $n \in \mathbb{Z}$
- $\blacktriangleright\;\Rightarrow$ representations $\mathcal{D}(\{\mathbbm{1}|R_{na}\})=e^{-in\phi} \quad -\pi<\phi\leq\pi$

Physical Interpretation of ϕ

Consider
$$
\langle r \mid \hat{T}_a \mid \phi \rangle
$$
 \Rightarrow $\langle r - a | \phi \rangle = e^{-i\phi} \langle r | \phi \rangle$
 $e^{-i\phi} | \phi \rangle$

Thus: **Bloch Theorem** (for $\phi = ka$)

Fig. The wave vector k (or $\phi = k$ a) labels the IRs of the translation group

 \triangleright The wave functions transforming according to the IR Γ_k are Bloch functions $\langle r|\phi\rangle = e^{ikr}u_k(r)$ with

$$
e^{ik(r-a)}u_k(r-a) = e^{ikr}u_k(r)e^{-ika} \quad \text{or} \quad u_k(r-a) = u_k(r)
$$

Irreducible Representations of Space Groups

to be added . . .

Theory of Invariants Luttinger (1956)

Bir & Pikus

Idea:

- \blacktriangleright Hamiltonian must be invariant under all symmetry transformations of the system
- \blacktriangleright Example: free particle

 \triangleright Crystalline solids:

 $E_{kin} = E(\mathbf{k})$ = kinetic energy of Bloch electron with crystal momentum $\mathbf{p} = \hbar \mathbf{k}$

 \Rightarrow dispersion $E(\mathbf{k})$ must reflect crystal symmetry

$$
E(\mathbf{k}) = a_0 + a_1 k + a_2 k^2 + a_3 k^3 + \dots
$$

only in crystals without inversion symmetry

Theory of Invariants (cont'd)

More generally:

- Bands $E(\mathbf{k})$ at expansion point \mathbf{k}_0 *n*-fold degenerate
- Bands split for $k \neq k_0$
- Example: GaAs ($\mathbf{k}_0 = 0$)
- \triangleright Band structure $E(\mathbf{k})$ for small **k** via diagonalization of $n \times n$ matrix Hamiltonian $\mathcal{H}(\mathbf{k})$.
- \triangleright Goal: Set up matrix Hamiltonian $\mathcal{H}(\mathbf{k})$ by exploiting the symmetry at expansion point k_0
- \triangleright Incorporate also perturbations such as
	- spin-orbit coupling (spin S)
	- electric field $\mathcal E$, magnetic field **B**
	- \bullet strain ε
	- etc.

Invariance Condition

- **Consider** $n \times n$ **matrix Hamiltonian** $H(K)$
- $\triangleright \mathcal{K} = \mathcal{K}(\mathbf{k}, \mathbf{S}, \mathcal{E}, \mathbf{B}, \varepsilon, ...) =$ general tensor operator
	- where \mathbf{k} = wave vector $\mathbf{\mathcal{E}}$ = electric field ϵ = strain field $S = \text{spin}$ $B = \text{magnetic field}$ etc.
- **Basis functions** $\{\psi_{\nu}(\mathbf{r}) : \nu = 1, \ldots, n\}$ transform according to representation $\Gamma_{\psi} = {\mathcal{D}_{\psi}(g_i)}$ of group \mathcal{G} . (Γ_{ψ} does not have to be IR)
- ► Symmetry transformation $g_i \in G$ applied to tensor $\mathcal K$

$$
\mathcal{K} \rightarrow g_i \mathcal{K} \equiv \hat{P}(g_i) \mathcal{K} \hat{P}(g_i)^{-1}
$$

$$
\Rightarrow\quad {\cal H}({\cal K})\;\rightarrow\;{\cal H}(g_i\,{\cal K})
$$

- ► Equivalent to *inverse* transformation g_i^{-1} applied to $\psi_{\nu}(\mathbf{r})$: $\psi_{\nu}(\mathbf{r}) \rightarrow \psi_{\nu}(g_i \mathbf{r}) = \sum_{\mu} \mathcal{D}_{\psi}(g_i^{-1})_{\mu\nu} \psi_{\mu}(\mathbf{r})$ $\Rightarrow \quad \mathcal{H}(\mathcal{K}) \,\, \rightarrow \,\, \mathcal{D}_{\psi}({g_{i}}) \, \mathcal{H}(\mathcal{K}) \, \mathcal{D}_{\psi}({g_{i}^{-1}})$
- ► Thus $\mathcal{D}_{\psi}(g_i^{-1}) \mathcal{H}(g_i \mathcal{K}) \mathcal{D}_{\psi}(g_i) = \mathcal{H}(\mathcal{K})$ $\forall g_i \in \mathcal{G}$ really n^2 equations!

Invariance Condition (cont'd)

Remarks

If $-k_0$ is in the same star as the expansion point k_0 , additional constraints arise from time reversal symmetry.

in particular: $-k_0 = k_0 = 0$

If Γ_{ψ} is reducible, the invariance condition can be applied to each "irreducible block" of $H(K)$ (see [below\)](#page-125-0).

Invariant Expansion

Expand $H(K)$ in terms of irreducible tensor operators and basis matrices

 \blacktriangleright Decompose tensors ${\mathcal K}$ into irreducible tensors ${\mathcal K}^J$ transforming according to IR Γ of G

$$
\mathcal{K}_{\nu}^{J} \rightarrow g_{i} \mathcal{K}_{\nu}^{J} \equiv \sum_{\mu} \mathcal{D}_{J} (g_{i})_{\mu \nu} \mathcal{K}_{\mu}^{J}
$$

▶ n^2 linearly independent basis matrices $\{X_q: q = 1, ..., n^2\}$ transforming as

$$
X_q \rightarrow g_i X_q \equiv \mathcal{D}_{\psi}(g_i^{-1}) X_q \mathcal{D}_{\psi}(g_i) = \sum_{p} \mathcal{D}_{X}(g_i)_{pq} X_p
$$

with "expansion coefficents" $\mathcal{D}_X(g_i)_{pq}$

► Representation $\Gamma_X \simeq \Gamma_\psi^* \times \Gamma_\psi$ is usually reducible.

We have IR Γ_{ψ} for the ket basis functions of H and IR $\Gamma_\psi^{\tilde *}$ (i.e., the complex conjugate IR) for the bras

⇒ from $\{X_q: q = 1, ..., n^2\}$ form linear combinations $X^{I^*}_{\nu}$ transforming according to the IRs Γ^*_l occuring in $\Gamma^*_{\psi} \times \Gamma_{\psi}$

$$
X_{\mu}^{I^*} \to g_i X_{\mu}^{I^*} = \sum_{\nu} \mathcal{D}_I^*(g_i)_{\mu\nu} X_{\mu}^{I^*}
$$

Invariant Expansion (cont'd)

 \triangleright Consider most general expansion

 $\mathcal{H}(\mathcal{K})=\sum$ IJ \sum $\sum_{\mu\nu} b^{IJ}_{\mu\nu} \, {\cal X}^{J^*}_{\mu} {\cal K}^{J}_{\nu} \qquad \quad b^{IJ}_{\mu\nu} =$ expansion coefficients

► Transformations $g_i \in \mathcal{G}$:

$$
X_{\mu}^{I^*} \rightarrow \sum_{\mu'} \mathcal{D}_I^*(g_i)_{\mu'\mu} X_{\mu'}^{I^*}, \qquad \mathcal{K}_{\nu}^J \rightarrow \sum_{\nu'} \mathcal{D}_J(g_i)_{\nu'\nu} \mathcal{K}_{\nu'}^J
$$

► Use invariance condition (must hold $\forall g_i \in \mathcal{G}$)

$$
\sum_{\mu\nu} b_{\mu\nu}^{IJ} X_{\mu}^{I^*} K_{\nu}^J = \sum_{\mu\nu} b_{\mu\nu}^{IJ} \sum_{\mu'\nu'} \frac{\frac{1}{b} \sum_{i} D_{i}^{*}(g_{i})_{\mu'\mu} D_{J}(g_{i})_{\nu'\nu}}{\frac{\delta_{IJ} \delta_{\mu'\nu'} \delta_{\mu\nu}}{\delta_{IJ} \delta_{\mu'\nu'} \delta_{\mu\nu}}}
$$

$$
= \delta_{IJ} \sum_{\mu} b_{\mu\mu}^{II} \sum_{\mu'} X_{\mu'}^{I^*} K_{\mu'}^{I^*}
$$

$$
\blacktriangleright \text{ Then } \mathcal{H}(\mathcal{K}) = \sum_{l} a_l \sum_{\nu} X_{\nu}^{l^*} \mathcal{K}_{\nu}^l
$$

Irreducible Tensor Operators

Construction of irreducible tensor operators $\mathcal{K} = \mathcal{K}(\mathbf{k}, \mathbf{S}, \mathcal{E}, \mathbf{B}, \varepsilon)$

- ► Components k_i , S_i , \mathcal{E}_i , \mathcal{B}_i , ε_{ij} transform according to some IRs Γ , of \mathcal{G} . \Rightarrow "elementary" irreducible tensor operators \mathcal{K}^{I}
- \triangleright Construct higher-order irreducible tensor operators with CGC:

$$
\mathcal{K}^{\mathcal{K}}_{\kappa} = \sum_{\mu\nu} \left(\begin{array}{cc|c} I & J & \mathcal{K} \ell \\ \mu & \nu & \kappa \end{array} \right) \mathcal{K}^I_{\mu} \, \mathcal{K}^J_{\nu}
$$

If we have multiplicities $a_K^U > 1$ we get different tensor operators for each value ℓ

- Irreducible tensor operators \mathcal{K}' are "universally valid" for any matrix Hamiltonian transforming according to G
- \blacktriangleright Yet: if for a particular matrix Hamiltonian $\mathcal{H}(\mathcal{K})$ with basis functions $\{\psi_{\nu}\}\$ transforming according to Γ_{ψ} an IR Γ_{I} does not appear in $\mathsf{\Gamma}^*_\psi \times \mathsf{\Gamma}_\psi$, then the tensor operators \mathcal{K}^l may not appear in $\mathcal{H}(\mathcal{K})$.

Basis Matrices

- In general, the basis functions $\{\psi_{\nu}(\mathbf{r}) : \nu = 1, \ldots, n\}$ include several irreducible representations Γ_J
	- \Rightarrow Decompose $\mathcal{H}(\mathcal{K})$ into $n_J\times n_{J'}$ blocks $\mathcal{H}_{JJ'}(\mathcal{K})$, such that
		- rows transform according to IR Γ_J^* (dimension n_J)
		- columns transform according to IR $\Gamma_{J'}$ (dimension $n_{J'}$)

$$
\mathcal{H}(\mathcal{K}) = \begin{pmatrix} \mathcal{H}_{cc} & \mathcal{H}_{cv} & \mathcal{H}_{cv'} \\ \mathcal{H}_{cv}^{\dagger} & \mathcal{H}_{vv} & \mathcal{H}_{vv'} \\ \mathcal{H}_{cv'}^{\dagger} & \mathcal{H}_{vv'}^{\dagger} & \mathcal{H}_{v'v'} \end{pmatrix}
$$

► Choose basis matrices $X^{I^*}_{\nu}$ transforming according to the IRs Γ_I^* in $\Gamma_J^* \times \Gamma_{J'}$ $X^{{l^*}}_{\nu} \ \ \rightarrow \ \ {\cal D}_J (g_i^{-1}) \, X^{{l^*}}_{\nu} \, {\cal D}_{J'} (g_i) = \sum_{\mu} {\cal D}_l^* (g_i)_{\mu \nu} \, X^{{l^*}}_{\mu}$

• More explicitly:
$$
(X_{\nu}^{I^*})_{\lambda\mu} = \left(\begin{array}{cc} I & J' \\ \nu & \mu \end{array} \right) \left(\begin{array}{c} 1 \\ \lambda \end{array}\right)^*
$$

which reflects the transformation rules for matrix elements $\langle J\lambda|{\cal K}^I_\nu|J^\prime\mu\rangle$

For each block we get

$$
\mathcal{H}_{JJ'}(\mathcal{K}) = \sum_{I} a_I \sum_{\nu} X_{\nu}^{I^*} \mathcal{K}_{\nu}^I
$$

Time Reversal

► time reversal $\hat{\theta}$ connects expansion point \mathbf{k}_0 and $-\mathbf{k}_0$

► often: $\hat{\theta} \, \psi_{\mathbf{k}_0\lambda}(\mathbf{r})$ and $\psi_{-\mathbf{k}_0\lambda}(\mathbf{r})$ linearly dependent

$$
\hat{\theta}\,\psi_{\mathbf{k}_0\lambda}(\mathbf{r})=\sum_{\lambda'}\,\mathcal{T}_{\lambda\lambda'}\,\psi_{-\mathbf{k}_0\lambda'}(\mathbf{r})
$$

 \blacktriangleright thus additional condition

$$
\mathcal{T}^{-1} \mathcal{H}(\zeta \mathcal{K}) \mathcal{T} = \mathcal{H}^*(\mathcal{K}) = \mathcal{H}^t(\mathcal{K}) \qquad \begin{array}{c} \zeta = +1: \ \mathcal{K} \text{ even under } \theta \\ \zeta = -1: \ \mathcal{K} \text{ even under } \theta \end{array}
$$

applicable in particular for $\mathbf{k}_0 = -\mathbf{k}_0 = 0$

► $k_0 \neq -k_0$: often k_0 and $-k_0$ also connected by spatial symmetries R $\mathcal{H}_{-\mathbf{k}_0}(\mathcal{K})=\mathcal{D}(R)\,\mathcal{H}_{\mathbf{k}_0}(R^{-1}\mathcal{K})\,\mathcal{D}^{-1}(R).$ \Rightarrow $\mathcal{T}^{-1}\mathcal{H}_{\mathbf{k}_0}(R^{-1}\mathcal{K})\mathcal{T} = \mathcal{H}_{\mathbf{k}_0}^{\dagger}(\zeta\mathcal{K}) = \mathcal{H}_{\mathbf{k}_0}^{\dagger}(\zeta\mathcal{K})$ k^y K Γ K

graphene: $k_0 = K$

Example: Graphene

Electron states at K point: point group C_{3v}

strictly speaking $D_{3h} = C_{3v} +$ inversion

• "Dirac cone": IR
$$
\Gamma_3
$$
 of C_{3v}

It must be Γ³ because this is the only 2D IR of C_{3v}

► We have $\Gamma_3^* \times \Gamma_3 = \Gamma_1 + \Gamma_2 + \Gamma_3$ (with Γ_3^* (with $\Gamma_3^* = \Gamma_3$)

 \Rightarrow basis matrices $X_1^1 = \mathbb{I}$; $X_1^2 = \sigma_y$; $X_1^3 = \sigma_z$, $X_2^3 = -\sigma_x$

- Irreducible tensor operators $\mathcal K$ up to second order in k: $\Gamma_1 : k_x^2 + k_y^2$ $\Gamma_3 : k_x, k_y; k_y^2 - k_x^2$ Γ_2 : $[k_x, k_y] \propto B_z$
- **Hamiltonian** here: basis functions $|x\rangle$ and $|v\rangle$ $\mathcal{H}(\mathcal{K}) = a_{31}(k_{\mathsf{x}}\sigma_{\mathsf{z}} - k_{\mathsf{y}}\sigma_{\mathsf{x}}) + a_{11}(k_{\mathsf{x}}^2 + k_{\mathsf{y}}^2) \mathbb{1} + a_{32}[(k_{\mathsf{y}}^2 - k_{\mathsf{x}}^2)\sigma_{\mathsf{z}} - 2k_{\mathsf{x}}k_{\mathsf{y}}\sigma_{\mathsf{x}}]$
- \triangleright More common: basis functions $|x iy\rangle$ and $|x + iy\rangle$ \Rightarrow basis matrices $X_1^1 = \mathbb{I}$; $X_1^2 = \sigma_z$; $X_1^3 = \sigma_x$, $X_2^3 = \sigma_y$ $\mathcal{H}(\mathcal{K}) = a_{31}(k_{\mathsf{x}}\sigma_{\mathsf{x}} + k_{\mathsf{y}}\sigma_{\mathsf{y}}) + a_{11}(k_{\mathsf{x}}^2 + k_{\mathsf{y}}^2) \mathbb{1} + a_{32}[(k_{\mathsf{y}}^2 - k_{\mathsf{x}}^2)\sigma_{\mathsf{x}} + 2k_{\mathsf{x}}k_{\mathsf{y}}\sigma_{\mathsf{y}}]$

 \blacktriangleright additional constraints for $\mathcal{H}(\mathcal{K})$ from time reversal symmetry

Graphene: Basis Matrices (D_{3h})

Symmetrized matrices for the invariant expansion of the blocks $\mathcal{H}_{\alpha\beta}$ for the point group D_{3h} .

Graphene: Irreducible Tensor Operators (D_{3h})

Terms printed in bold give rise to invariants in $\mathcal{H}_{55}^{\mathsf{K}}(\mathcal{K})$ allowed by time-reversal invariance. Notation: $\{A, B\} \equiv \frac{1}{2}(AB + BA)$.

$$
Γ_1 = 1; kx2 + ky2; {kx, 3ky2 - kx2}; kxεx + kyεy; εxx + εyy;\n(εyy - εxx)kx + 2εxyky; (εyy - εxx)εx + 2εxyεy;\nsxBx + syBy; s2Bz; (sxky - sykx)εz; s2(kxεy - kyεx);\nΓ2 {ky, 3kx2 - ky2}; Bz; kxεy - kyεx;\n(εxx - εyy)ky + 2εxyky; (εxx + εyy)Bz; (εxx - εyy)εy + 2εxyεx;\nsz; sxBy - syBx; (sxkx + syky)εz; s2(εxx + εyy);\nsxkx + syky; εxBx + εyBy; ξzEz; (εyy - εxx) + 2syεxy\nΓ4 Bxk
$$

Graphene: Irreducible Tensor Operators (cont'd)

$$
F_6
$$
\n
$$
k_x, k_y; \{k_y + k_x, k_y - k_x\}, 2\{k_x, k_y\};
$$
\n
$$
\{k_x, k_x^2 + k_y^2\}, \{k_y, k_x^2 + k_y^2\}; B_zk_y, -B_zk_x;
$$
\n
$$
\mathcal{E}_x, \mathcal{E}_y; k_y\mathcal{E}_y - k_x\mathcal{E}_x, k_x\mathcal{E}_y + k_y\mathcal{E}_x;
$$
\n
$$
\mathcal{E}_yB_z, -\mathcal{E}_xB_z; \mathcal{E}_zB_y, -\mathcal{E}_zB_x;
$$
\n
$$
\epsilon_{yy} - \epsilon_{xx}, 2\epsilon_{xy}; (\epsilon_{xx} + \epsilon_{yy})(k_x, k_y);
$$
\n
$$
(\epsilon_{xx} - \epsilon_{yy})k_x + 2\epsilon_{xy}k_y, (\epsilon_{yy} - \epsilon_{xx})k_y + 2\epsilon_{xy}k_x;
$$
\n
$$
2\epsilon_{xy}B_z, (\epsilon_{xx} - \epsilon_{yy})B_z;
$$
\n
$$
(\epsilon_{xx} - \epsilon_{yy})(\mathcal{E}_x, \mathcal{E}_y); \epsilon_zk_y, -\epsilon_{zx}\mathcal{E}_y + \epsilon_{xy}\mathcal{E}_x;
$$
\n
$$
\{k_x + \epsilon_{yy}](\mathcal{E}_x, \mathcal{E}_y); \epsilon_zk_y, -s_zk_x;
$$
\n
$$
s_yB_y - s_xB_x, s_xB_y + s_yB_x; s_z\mathcal{E}_y, -s_z\mathcal{E}_x;
$$
\n
$$
s_y\mathcal{E}_z, -s_x\mathcal{E}_z; s_z(k_x\mathcal{E}_y + k_y\mathcal{E}_x), s_z(k_x\mathcal{E}_x - k_y\mathcal{E}_y);
$$
\n
$$
(s_xk_y + s_yk_x)\mathcal{E}_z, (s_xk_x - s_yk_y)\mathcal{E}_z;
$$
\n
$$
\frac{2s_z\epsilon_{xy}, s_z(\epsilon_{xx} - \epsilon_{yy});
$$

Graphene: Full Hamiltonian Winkler and Zülicke,

$$
\mathcal{H}(\mathcal{K}) = a_{61}(k_{x}\sigma_{x} + k_{y}\sigma_{y}) \qquad \text{"Dirac term"}
$$
\n
$$
+ a_{12}(k_{x}^{2} + k_{y}^{2})1 + a_{62}[(k_{y}^{2} - k_{x}^{2})\sigma_{x} + 2k_{x}k_{y}\sigma_{y}] \qquad \text{nonlinear } + i
$$
\n
$$
+ a_{22}(k_{x}\mathcal{E}_{y} - k_{y}\mathcal{E}_{x})\sigma_{z} \qquad \text{orbital Rashb}
$$
\n
$$
+ a_{21}B_{z}\sigma_{z} \qquad \text{orbital Zeem:}
$$
\n
$$
+ a_{14}(\epsilon_{xx} + \epsilon_{yy})1 + a_{66}[(\epsilon_{yy} - \epsilon_{xx})\sigma_{x} + 2\epsilon_{xy}\sigma_{y}] \qquad \text{strain-induced}
$$
\n
$$
+ a_{15}[(\epsilon_{yy} - \epsilon_{xx})k_{x} + 2\epsilon_{xy}k_{y}]1 \qquad \text{isotropic vel}
$$
\n
$$
a_{68}\{[(\epsilon_{xx} - \epsilon_{yy})k_{x} + 2\epsilon_{xy}k_{y}]\sigma_{x} \qquad \text{anisotropic v}
$$
\n
$$
+ [(\epsilon_{yy} - \epsilon_{xx})k_{y} + 2\epsilon_{xy}k_{x}]\sigma_{y}\}
$$
\n
$$
+ a_{23}(\epsilon_{xx} + \epsilon_{yy})B_{z}\sigma_{z} \qquad \text{strain - orbit:}
$$
\n
$$
+ a_{21}S_{z}\sigma_{z} \qquad \text{strain - orbit:}
$$
\n
$$
+ a_{61}S_{z}(\mathcal{E}_{y}\sigma_{x} - \mathcal{E}_{x}\sigma_{y}) + a_{62}\mathcal{E}_{z}(s_{y}\sigma_{x} - s_{x}\sigma_{y}) \qquad \text{Rashba SO c}
$$
\n
$$
+ a_{63}S_{z}[(k_{x}\mathcal{E}_{y} + k_{y}\mathcal{E}_{x})\sigma_{x} + (k_{x}\mathcal{E}_{x} - k_{y}\mathcal{E}_{y})\sigma_{y}]
$$
\n
$$
+ a_{64}\mathcal{E}_{z}[(s_{x}k_{y} + s_{y}k_{x})\sigma_{x} + (s_{x}k_{x} - s_{y}k_{y})\sigma
$$

PRB 82, 245313

 $nonlinear + anisotropic$ corrections orbital Rashba term orbital Zeeman term $strain-induced terms$

isotropic velocity renormalization anisotropic velocity renormalization strain - orbital Zeeman strain - orbital Rashba intrinsic SO coupling Rashba SO coupling

strain-mediated SO coupling

