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Preface

The subject of matrix field theory involves matrix models, noncommutative
geometry, fuzzy physics and noncommutative field theory, and their interplay.

These lecture notes contain a systematic construction of matrix models of
quantum field theories with noncommutative and fuzzy geometries. Emphasis is
placed on the matrix formulation of noncommutative and fuzzy spaces and on
the nonperturbative treatment of the corresponding field theories. In particular, the
phase structure of noncommutative phi-four theory is treated in great detail, and
an introduction to noncommutative gauge theory is given. The text has evolved
partly from my own personal notes on the subject and partly from lectures given,
intermittently, to my doctoral students during the past few years. Thus, the list
of topics, while not necessarily representing the exact state of the art, reflects the
research interests of the author and the educational goals of Annaba University.

The references included are not meant to be comprehensive or exhaustive, but
they will provide a solid bibliography and a reliable guide to background reading.

Small parts of these lectures have already appeared in various preprints on the
arXiv. Reference to this Springer publication is made there.

The book is primarily written as a self-study guide for postgraduate students—
with the aim of pedagogically introducing them to key analytical and numerical
tools as well as useful physical models in applications. Last but not least, I dedicate
this work to my father Saad Ydri, 1943-2015, for his continuous support.

Annaba, Algeria Badis Ydri
July 2016
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Chapter 1
Introductory Remarks

Abstract This chapter presents some general introductory remarks and an outline
of the topics which will be covered in this book.

1.1 Noncommutativity, Fuzziness and Matrices

It has been argued, by combining the principles of quantum mechanics and general
relativity, that the manifold structure of spacetime will necessarily break down at
the Planck scale, and that, at this scale, spacetime becomes quantized, expressed by
the commutation relations [48, 49]

[, 3] = A2 Q. (1.1)

This can be seen as follows. Measuring for example the coordinate x of an event
with an accuracy a will cause, by the Heisenberg principle, an uncertainty in
momentum of the order of 1/a. An energy of the order of 1/a is transmitted to
the system and concentrated at some time around x. This in turn will generate a
gravitational field by Einstein’s equations for the metric. The smaller the uncertainty
a the larger the gravitational field which can then trap any possible signal from the
event. At this scale localization looses thus its operational meaning, the manifold
picture breaks down, and one expects spacetime uncertainty relations which in
turn strongly suggest that spacetime has a quantum structure expressed by the
above commutation relations (1.1). The geometry of spacetime at the very small
is therefore noncommutative.

On the other hand, noncommutative geometry [38], see also [41, 61, 100, 110,
151] and [56], allows for the description of the geometry of arbitrary spaces in terms
of their underlying C*-algebras. Von Neumann called this “pointless geometry”
meaning that there are no underlying points. The so-called Von-Neumann algebras
can be viewed as marking the birth of noncommutative geometry.

Noncommutative geometry was also proposed, in fact earlier than renormal-
ization, as a possible way to eliminate ultraviolet divergences in quantum field
theories [143, 155]. This phenomena of regularization by quantization occurs also
in quantum mechanics.

© Springer International Publishing AG 2017 1
B. Ydri, Lectures on Matrix Field Theory, Lecture Notes in Physics 929,
DOI 10.1007/978-3-319-46003-1_1



2 1 Introductory Remarks

Noncommutative field theory is by definition a field theory based on a noncom-
mutative spacetime [50, 147]. The most studied examples in the literature are the
Moyal-Weyl spaces Rg which correspond in (1.1) to the case Q,,, = 6, where 0,,,
are rank 2 (or 1) antisymmetric constant tensors, i.e.

[x;uxv] = ieuv- (1.2)

This clearly breaks Lorentz symmetry. The corresponding quantum field theories
are not UV finite [55], and furthermore they are plagued with the so-called UV-IR
mixing phenomena [117]. This means in particular that the physics at very large
distances is altered by the noncommutativity which is supposed to be relevant only
at very short distances.

Another class of noncommutative spaces which will be important to us in these
notes are fuzzy spaces [14, 125]. Fuzzy spaces, and their field theories and fuzzy
physics, are discussed for example in [1, 16, 88, 99, 144, 156]. Fuzzy spaces are finite
dimensional approximations to the algebra of functions on continuous manifolds
which preserve the isometries and (super)symmetries of the underlying manifolds.
Thus, by construction the corresponding field theories contain a finite number of
degrees of freedom. The basic and original motivation behind fuzzy spaces is non-
perturbative regularization of quantum field theory similar to the familiar technique
of lattice regularization [70, 71]. Another very important motivation lies in the fact
that string theory suggests that spacetime may be fuzzy and noncommutative at its
fundamental level [2, 83]. A seminal example of fuzzy spaces is the fuzzy two-
dimensional sphere S]2V [84, 109], which is defined by three N x N matrices x;, i =
1,2, 3, playing the role of coordinates operators, satisfying Zix% = 1, and the
commutation relations

1 N -1 (1.3)
\/Cz’cz_ 4 . .

The fuzzy sphere, and its Cartesian products, and the Moyal-Weyl spaces are the
main noncommutative spaces discussed in these lectures.

Original work on the connection between random matrix theory and physics
dates back to Wigner, Dyson and then t’"Hooft. More recently, random matrix theory
was investigated, in fact quite extensively, with connection to discrete 2-dimensional
gravity and dynamical triangulation of random surfaces. See for example [45] and
references therein. In recent years, it has also become quite clear that the correct
description of noncommutative field theory must be given in terms of matrix degrees
of freedom.

Fuzzy spaces and their field theories are, by construction, given in terms of finite
dimensional matrix models, whereas noncommutative Moyal-Weyl spaces must
be properly thought of as infinite dimensional matrix algebras, not as continuum
manifolds, and as such, they should be regularized by finite dimensional matrices.
For example, they can be regularized using fuzzy spaces, or simply by just
truncating the Hilbert space of the creation and annihilation operators.

[x;, %] = iOejpxy , 0 =



1.2 Noncommutativity in Quantum Mechanics 3

However, these regularization are different from the usual, more natural one,
adopted for Moyal-Weyl spaces, which is based on the Eguchi-Kawai model
[51], and the noncommutative torus [6, 8, 9]. The so-called twisted Eguchi-Kawai
model was employed as a non-perturbative regularization of noncommutative gauge
theory on the Moyal-Weyl space in [24-26]. Another regulator providing a finite
dimensional matrix model, but with boundary, is given by the fuzzy disc [104, 106—
108].

There are two types of matrix field theories which are potentially of great interest.
First, matrix Yang-Mills theories, with and without supersymmetries, which are
relevant to noncommutative and fuzzy gauge theories, emergent geometry, emergent
gravity and emergent time and cosmology. Second, matrix scalar field theories
which are relevant to noncommutative, fuzzy and multitrace ¢>4 models and their
phase structure and renormalizability properties. The main theme, of these lectures,
will be the detailed discussion of the phase structure of noncommutative ¢4, and
noncommutative gauge theory, on Moyal-Weyl spaces and fuzzy projective spaces.

1.2 Noncommutativity in Quantum Mechanics

Spacetime noncommutativity is inspired by quantum mechanics. When a classical
phase space is quantized we replace the canonical positions and momenta x;, p; with
Hermitian operators X;, p; such that

[x,-,pj] = zhé’,, (14)

The quantum phase space is seen to be fuzzy, i.e. points are replaced by Planck cells
due to the basic Heisenberg uncertainty principle

1
AxApZZh. (1.5)

The commutative limit is the quasiclassical limit i—>0. Thus, phase space acquires
a cell-like structure with minimum volume given roughly by #. In this section we
will rederive this result in an algebraic form in which the noncommutativity is
established at the level of the underlying algebra of functions.

It is a textbook result that the classical atom can be characterized by a set of
positive real numbers v; called the fundamental frequencies. The atom if viewed as
a classical system will radiate via its dipole moment interaction until it collapses.
The intensity of this radiation is given by

I, < |<v,n>|*

<v,n>= Znivi,niez. (1.6)

1



4 1 Introductory Remarks

It is clear that all possible emitted frequencies < v,n > form a group I" under the
addition operation of real numbers

I' ={<n,v>;neZ}. (1.7)

Indeed, given two frequencies < v,n >= Y . my;and < v,n’ >=) . nv;in I itis
obvious that < v,n +n' >=)".(n; + n})v;is alsoin T.

The algebra of classical observables of this atom can be obtained as the
convolution algebra of the abelian group I'. To see how this works exactly one first
recalls that any function on the phase space X of this atom can be expanded as (an
almost) periodic series

F@.pi) =Y flg.pime™ " n = (n,...,m). (1.8)

The Fourier coefficients f (g, p; n) are labelled by the elements n€I". The convolution
product is defined by

frglq.pien) =Y f(q.p:t;m)g(q, pit;na) (1.9)
ni+nm=n
f(g,p;t;n) = f(q,p;n)expRmi < n,v > 1). (1.10)

This leads to the ordinary commutative pointwise multiplication of the correspond-
ing functions f (g, p; t) and g(q, p; t), namely

f8(q.p:0) = £(q.ping(q.p:t) = Y_fi * fo(q.pitin). (1.11)

The key property leading to this result is the fact that I" is an abelian group.

If we take experimental facts into account then we know that the atom must obey
the Ritz-Rydberg combination principle which says that (a) rays in the spectrum
are labeled with two indices and (b) frequencies of these rays obey the law of
composition, viz

Vij = Vix + V. (1.12)

We write this as
(i.)) = (i.k) o (k. )). (1.13)
The emitted frequencies v;; are therefore not parametrized by the group I" but rather
by the groupoid A of all pairs (i,j). It is a groupoid since not all frequencies can

be composed to give another allowed frequency. Every element (i, j) has an inverse
(J, 1) and o is associative.
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The quantum algebra of observables is then the convolution algebra of the
groupoid A and it turns out to be a noncommutative (matrix) algebra as one can
see by rewriting (1.10) in the form

FiFyij = Z F1ipoFak).- (1.14)
(i,k)o(kj)=(iy)

One can easily check that F1F,#F,F so F's fail to commute.
To implement the element of the quantum algebra as matrices one should replace

F(q.p:t:n) = f(q, p; n)e¥™i<nv>t by
F(Q. P:1)ij = F(Q. P)ipe™™". (1.15)

From here the Heisenberg’s equation of motion, phase space canonical commutation
relations, and Heisenberg’s uncertainty relations follow in the usual way.

1.3 Matrix Yang-Mills Theories

The first indication that noncommutative gauge theory is related to Yang-Mills
matrix models goes back to the early days of noncommutative field theories. Indeed,
noncommutative gauge theories attracted a lot of interest originally because of their
appearance in string theory [40, 137, 139]. For example, it was discovered that the
dynamics of open strings, moving in a flat space, in the presence of a non-vanishing
Neveu-Schwarz B-field, and with Dp-branes, is equivalent, to leading order in the
string tension, to a gauge theory on a Moyal-Weyl space R‘; . The resulting action is

det(76B Ao 1
:\/e(n )TV’H -

S 22 (ilbi, D] — . B;'). (1.16)

Extension of this result to curved spaces is also possible, at least in one particular
instance, namely the case of open strings moving in a curved space with S* metric.
The resulting effective gauge theory lives on a noncommutative fuzzy sphere SIZ\,
[2, 3, 83].

This same phenomena happens already in quantum mechanics. Consider the
following Lagrangian

L, = m(dx,-
2 dt

dx,- B
— .A,’ s A,’ = — , €jX;. (117)

2
) dt 2
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After quantization the momentum space becomes noncommutative given by the
commutation relations
dx;
[7:, 7] = iBej, mi=m . (1.18)
dt
It is well known that spatial noncommutativity arises in the limit m—>0, i.e. from
the following Lagrangian

B dxi
E():—zéij dt.x]'. (119)
In this case we have
. 1
[xi,x;] = ife;;, 6 = B (1.20)

The limit m—>0 keeping B fixed is the projection onto the lowest Landau level
(recall that the mass gap is B/m). This projection is also achieved in the limit
B—o00 keeping m fixed.

The is precisely what happens in string theory. We get noncommutative gauge
theories on Moyal-Weyl planes or fuzzy spheres depending on whether the strings
are moving, in a Neveu-Schwarz B-field, in a flat or curved (with $3 metric)
backgrounds respectively. The corresponding limit is o’ —>0.

At almost around the same time, it was established that reduced Yang-Mills
theories play a central role in the nonperturbative definitions of M-theory and
superstrings. The BFSS conjecture [17] relates discrete light-cone quantization
(DLCQ) of M-theory, to the theory of N coincident DO branes which at low energy,
small velocities and/or string coupling, is the reduction to 0 4 1 dimension of the
10 dimensional U(N) supersymmetric Yang-Mills gauge theory [154]. The BFSS
model is therefore a Yang-Mills quantum mechanics which is supposed to be the
UV completion of 11 dimensional supergravity.

As it turns out, the BFSS action is nothing else but the regularization of the
supermembrane action in the light cone gauge [44].

The BMN model [20] is a generalization of the BFSS model to curved back-
grounds. It is obtained by adding to the BFSS action a one-parameter mass
deformation corresponding to the maximally supersymmetric pp-wave background
of 11 dimensional supergravity. See for example [27, 28, 96]. We also note,
in passing, that all maximally supersymmetric pp-wave geometries can arise as
Penrose limits of AdS, x §7 spaces [128].

The IKKT model [86] is, on the other hand, a Yang-Mills matrix model obtained
by dimensionally reducing 10 dimensional U(N) supersymmetric Yang-Mills gauge
theory to 0 + 0 dimensions. The IKKT model is postulated to provide a constructive
definition of type II B superstring theory, and for this reason, it is also called type
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IIB matrix model. The dynamical variables are d matrices of size N with action
N ) -
S = —4Tr[X,L,XV] + Try TulX,., vl (1.21)

The supersymmetric analogue of the IKKT model also exists in dimensions d = 3, 4
and 6 while the partition functions converge only in dimensions d = 4,6 and 10
[12,97,98]. In d = 3,4 the determinant of the Dirac operator is positive definite
[7,98], and thus there is no sign problem. Mass deformations such as the Myers term
[120] are essential in order to reproduce non-trivial geometrical backgrounds such
as the fuzzy sphere in these Yang-Mills matrix models including the IKKT matrix
model. Supersymmetric mass deformations in Yang-Mills matrix models and Yang-
Mills quantum mechanics models are considered for example in [29, 91].

The IKKT Yang-Mills matrix models can be thought of as continuum Eguchi-
Kawai reduced models as opposed to the usual lattice Eguchi-Kawai reduced model
formulated originally in [51].

We point out here the similarity between the conjecture that, the lattice Eguchi-
Kawai reduced model allows us to recover the full gauge theory in the large N
theory, and the conjecture that, the IKKT matrix model allows us to recover type 11
B superstring.

The relation between the BFSS Yang-Mills quantum mechanics and the IKKT
Yang-Mills matrix model is discussed at length in the seminal paper [40], where it
is also shown that toroidal compactification of the D-instanton action, the bosonic
part of the IKKT action, yields, in a very natural way, a noncommutative Yang-
Mills theory on a dual noncommutative torus [39]. From the other hand, we can
easily check that the ground state of the D-instanton action is given by commuting
matrices, which can be diagonalized simultaneously, with the eigenvalues giving the
coordinates of the D-branes. Thus at tree-level an ordinary spacetime emerges from
the bosonic truncation of the IKKT action, while higher order quantum corrections
will define a noncommutative spacetime.

The central motivation behind these proposals of using Yang-Mills matrix models
and Yang-Mills quantum mechanics as non-perturbative definitions of M-theory and
superstring theory lies in D-brane physics [131, 132, 148]. At low energy the theory
on the (p+1)-dimensional world-volume of N coincident Dp-branes is the reduction
to p 4+ 1 dimensions of 10 dimensional supersymmetric Yang-Mills [154]. Thus we
geta (p + 1) dimensional vector field together with 9 —p normal scalar fields which
play the role of position coordinates of the coincident N Dp-branes. The case p = 0
corresponds to DO-branes. The coordinates become noncommuting matrices.

The main reasons behind the interest in studying these matrix models are
emergent geometry transitions and emergent gravity present in these models.
Furthermore, the supersymmetric versions of these matrix models provide a natural
non-perturbative regularization of supersymmetry which is very interesting in its
own right. Also, since these matrix models are related to large N Yang-Mills theory,
they are of paramount importance to the string/gauge duality, which would allow us
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to study non-perturbative aspects of gravity from the gauge side of the duality. See
for example [76, 77, 87, 124].

In summary, Yang-Mills matrix models provide a non-perturbative framework
for emergent spacetime geometry [138], and noncommutative gauge theories
[10, 11]. Since noncommutativity is the only extension which preserves maximal
supersymmetry, Yang-Mills matrix models will also provide a non-perturbative
regularization of supersymmetry [123]. Indeed, Yang-Mills matrix models can be
used as a non-perturbative regularization of the AdS/CFT correspondence [111].
This allows, for example, for the holographic description of a quantum black holes,
and the calculation of the corresponding Hawking radiation [79]. This very exciting
result can be found in [78]. Yang-Mills matrix models also allow for the emergence
of 3 + ldimensional expanding universe [92] from string theory, as well as yielding
emergent gravity [146].

Thus the connections between noncommutative gauge theories, emergent geom-
etry, emergent physics and matrix models, from one side, and string theory, the
AdS/CFT correspondence and M-theory, from the other side, run deep.

1.4 Noncommutative Scalar Field Theory

A noncommutative field theory is a non-local field theory in which we replace
the ordinary local point-wise multiplication of fields with the non-local Moyal-
Weyl star product [63, 119]. This product is intimately related to coherent states
[93, 112, 129], Berezin quantization [21] and deformation quantization [94]. It is
also very well understood that the underlying operator/matrix structure of the theory,
exhibited by the Weyl map [152], is the singular most important difference with
commutative field theory since it is at the root cause of profound physical differences
between the two theories. We suggest [4] and references therein for elementary and
illuminating discussion of the Moyal-Weyl product and other star products and their
relations to the Weyl map and coherent states.

Noncommutative field theory is believed to be of importance to physics beyond
the standard model and the Hall effect [50] and also to quantum gravity and string
theory [40, 139].

Noncommutative scalar field theories are the most simple, at least conceptually,
quantum field theories on noncommutative spaces. Some of the novel quantum
properties of noncommutative scalar field theory and scalar phi-four theory are as
follows:

1. The planar diagrams in a noncommutative ¢* are essentially identical to the
planar diagrams in the commutative theory as shown originally in [55].

2. As it turns out, even the free noncommutative scalar field is drastically different
from its commutative counterpart contrary to widespread believe. For example,
it was shown in [145] that the eigenvalues distribution of a free scalar field on
a noncommutative space with an arbitrary kinetic term is given by a Wigner
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semicircle law. This is due to the dominance of planar diagrams which reduce
the number of independent contractions contributing to the expectation value
< ¢*" > from 2"n! to the number Nplanar(21) of planar contractions of a vertex
with 2n legs. See also [121, 133, 149, 150] for an alternative derivation.

More interestingly, it was found in [117] that the renormalized one-loop action
of a noncommutative ¢* suffers from an infrared divergence which is obtained
when we send either the external momentum or the non-commutativity to zero.
This non-analyticity at small momenta or small non-commutativity (IR) which
is due to the high energy modes (UV) in virtual loops is termed the UV-IR
mixing.

We can control the UV-IR mixing found in noncommutative ¢* by modi-
fying the large distance behavior of the free propagator through adding a
harmonic oscillator potential to the kinetic term [67]. More precisely, the
UV-IR mixing of the theory is implemented precisely in terms of a certain
duality symmetry of the new action which connects momenta and positions
[101]. The corresponding Wilson-Polchinski renormalization group equation
[90, 130] of the theory can then be solved in terms of ribbon graphs drawn on
Riemann surfaces. Renormalization of noncommutative ¢* along these lines
was studied for example in [35, 36, 65, 67, 68, 74, 134]. Other approaches to
renormalization of quantum noncommutative ¢* can be found for example in
[18, 19, 62, 73, 75, 140].

. In two-dimensions the existence of a regular solution of the Wilson-Polchinski

equation [130] together with the fact that we can scale to zero the coefficient of
the harmonic oscillator potential in two dimensions leads to the conclusion that
the standard non-commutative ¢* in two dimensions is renormalizable [65].
In four dimensions, the harmonic oscillator term seems to be essential for the
renormalizability of the theory [68].

The beta function of noncommutative ¢* theory at the self-dual point is zero
to all orders [46, 47, 66]. This means in particular that the theory is not
asymptotically free in the UV since the RG flow of the coupling constant is
bounded and thus the theory does not exhibit a Landau ghost, i.e. not trivial. In
contrast the commutative ¢* theory although also asymptotically free exhibits
a Landau ghost.

Noncommutative scalar field theory can be non-perturbatively regularized using
either fuzzy projective spaces CP" [15] or fuzzy tori T" [8]. The fuzzy tori are
intimately related to a lattice regularization whereas fuzzy projective spaces,
and spaces [16, 125] in general, provide a symmetry-preserving sharp cutoff
regularization. By using these regulators noncommutative scalar field theory on
a maximally noncommuting space can be rewritten as a matrix model given by
the sum of kinetic (Laplacian) and potential terms. The geometry in encoded in
the Laplacian in the sense of Connes [38, 56].

The case of degenerate noncommutativity is special and leads to a matrix
model only in the noncommuting directions. See for example [64] where it was
also shown that renormalizability in this case is reached only by the addition of
the doubletrace term [ d”x(Tr¢)? to the action.



10

10.

11.

12.

1 Introductory Remarks

. Another matrix regularization of non-commutative ¢* can be found in [60,

102, 103] where some exact solutions of noncommutative scalar field theory
in background magnetic fields are constructed explicitly. Furthermore, in order
to obtain these exact solutions matrix model techniques were used extensively
and to great efficiency. For a pedagogical introduction to matrix model theory
see [32, 52, 89, 115, 141]. Exact solvability and non-triviality is discussed at
great length in [69].

A more remarkable property of quantum noncommutative ¢* is the appearance
of a new order in the theory termed the striped phase which was first computed
in a one-loop self-consistent Hartree-Fock approximation in the seminal paper
[72]. For alternative derivations of this order see for example [33, 34]. It is
believed that the perturbative UV-IR mixing is only a manifestation of this
more profound property. As it turns out, this order should be called more
appropriately a non-uniform ordered phase in contrast with the usual uniform
ordered phase of the Ising universality class and it is related to spontaneous
breaking of translational invariance. It was numerically observed in d = 4
in [5] and in d = 3 in [23, 116] where the Moyal-Weyl space was non-
perturbatively regularized by a noncommutative fuzzy torus [8]. The beautiful
result of Bietenholz et al. [23] shows explicitly that the minimum of the
model shifts to a non-zero value of the momentum indicating a non-trivial
condensation and hence spontaneous breaking of translational invariance.
Therefore, noncommutative scalar ¢* enjoys three stable phases: (1) disordered
(symmetric, one-cut, disk) phase, (2) uniform ordered (Ising, broken, asym-
metric one-cut) phase and (3) non-uniform ordered (matrix, stripe, two-cut,
annulus) phase. This picture is expected to hold for noncommutative/fuzzy
phi-four theory in any dimension, and the three phases are all stable and are
expected to meet at a triple point. The non-uniform ordered phase [30] is a full
blown nonperturbative manifestation of the perturbative UV-IR mixing effect
[117] which is due to the underlying highly non-local matrix degrees of freedom
of the noncommutative scalar field. In [34, 72], it is conjectured that the triple
point is a Lifshitz point which is a multi-critical point at which a disordered,
a homogeneous (uniform) ordered and a spatially modulated (non-uniform)
ordered phases meet [85].

In [34] the triple (Lifshitz) point was derived using the Wilson renormalization
group approach [153], where it was also shown that the Wilson-Fisher fixed
point of the theory at one-loop suffers from an instability at large non-
commutativity. See [13, 95] for a pedagogical introduction to the subject of the
functional renormalization group. The Wilson renormalization group recursion
formula was also used in [37, 53, 54, 82, 122] to study matrix scalar models
which, as it turns out, are of great relevance to the limit # — oo of
noncommutative scalar field theory [22].

The phase structure of non-commutative ¢* in d = 2 and d = 3 using as
a regulator the fuzzy sphere was studied extensively in [43, 57, 58, 113, 114,
127, 158]. It was confirmed that the phase diagram consists of three phases: a
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disordered phase, a uniform ordered phases and a non-uniform ordered phase
which meet at a triple point. In this case it is well established that the transitions
from the disordered phase to the non-uniform ordered phase and from the
non-uniform ordered phase to the uniform ordered phase originate from the
one-cut/two-cut transition in the quartic hermitian matrix model [32, 141]. The
related problem of Monte Carlo simulation of noncommutative ¢* on the fuzzy
disc was considered in [105].

The above phase structure was also confirmed analytically by the multitrace
approach of O’Connor and Saemann [126, 136] which relies on a small kinetic
term expansion instead of the usual perturbation theory in which a small
interaction potential expansion is performed. This is very reminiscent of the
Hopping parameter expansion on the lattice [42, 118, 135, 142]. See also
[157] for a review and an extension of this method to the noncommutative
Moyal-Weyl plane. For an earlier approach see [145] and for a similar more
non-perturbative approach see [121, 133, 149, 150]. This technique is expected
to capture the matrix transition between disordered and non-uniform ordered
phases with arbitrarily increasing accuracy by including more and more terms
in the expansion. Capturing the Ising transition, and as a consequence the stripe
transition, is more subtle and is only possible if we include odd moments in the
effective action and do not impose the symmetry ¢ — —¢.

The multitrace approach in conjunction with the renormalization group
approach and/or the Monte Carlo approach could be a very powerful tool
in noncommutative scalar field theory. For example, multitrace matrix models
are fully diagonalizable, i.e. they depend on N real eigenvalues only, and
thus ergodic problems are absent and the phase structure can be probed quite
directly. The phase boundaries, the triple point and the critical exponents can
then be computed more easily and more efficiently. Furthermore, multitrace
matrix models do not come with a Laplacian, yet one can attach to them an
emergent geometry if the uniform ordered phase is sustained. See for example
[161, 162]. Also, it is quite obvious that these multitrace matrix models lend
themselves quite naturally to the matrix renormalization group approach of
Brezin and Zinn-Justin [31], Higuchi et al. [80, 81], Zinn-Justin [164].

Among all the approaches discussed above, it is strongly believed that the
renormalization group method is the only non-perturbative coherent framework
in which we can fully understand renormalizability and critical behavior of
noncommutative scalar field theory in complete analogy with the example
of commutative quantum scalar field theory outlined in [163]. The Wilson
recursion formula, in particular, is the oldest and most simple and intuitive
renormalization group approach which although approximate agrees very well
with high temperature expansions [153]. In this approximation we perform
the usual truncation but also we perform a reduction to zero dimension which
allows explicit calculation, or more precisely estimation, of Feynman diagrams.
See [53, 54, 122]. This method was applied in [159] to noncommutative
scalar ¢* field theory at the self-dual point with two strongly noncommuting
directions and in [160] to noncommutative O(N) model.
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Chapter 2
The Noncommutative Moyal-Weyl Spaces R‘;

Abstract This chapter contains a detailed discussion of the Heisenberg algebra
and its representation theory. Then a systematic construction of the Moyal-Weyl
noncommutative spaces, in a generic non-zero magnetic field, and their scalar field
theories is put forward. A self-contained discussion of two other closely related non
commutative space, the noncommutative torus and the fuzzy disc, is also included.

2.1 Heisenberg Algebra and Coherent States

2.1.1 Representations of the Heisenberg-Weyl Algebra

Let us start with a dynamical system consisting of a single degree of freedom g with
Lagrangian L(q, ¢). The phase space is two-dimensional with points given by (g, p)
where p = dL/0q is the conjugate momentum. We define observables by functions
f(g,p) on the phase space. Canonical quantization introduces a Hilbert space H
where the coordinate operator g, the momentum operator p and the observable
operators f (g, p) act naturally. The fundamental commutation relation is given by

[g.p] = ih. 2.1)

This is the famous Heisenberg-Weyl algebra W, and it is the first concrete
example of a noncommutative space. It defines, as we will see, the Moyal-Weyl
noncommutative plane.

The subsequent discussion will follow closely [29] but also [16]. Related
discussions of coherent states can also be found in [6, 15, 26, 34].

The Heisenberg-Weyl algebra W, algebra is a three-dimensional Lie algebra
given by the elements ¢; = ip/~/h, e; = ig/~/h and e3 = il. They satisfy

ler,ex] =e3, [er,e3] = [ez,e3] = 0. (2.2)

We introduce the annihilation and creation operators by

g+ ip §— ip
a:q P’a+:q P. 2.3)
V2h V2h
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They satisfy

[a.at] = 1. (2.4)
A general element of WV is written as

x = (s,x1,X%) = x1€] + X202 + se3

=aat —a*a+is. (2.5)
X1 — iJCQ
o=— . (2.6)
V2
As we will see later x; = —g/~/4 and x, = p/~/h. We compute the commutator
[x,y] = w(x,y)e; where w(x,y) is the symplectic form on the plane (g, p), viz

w(x,y) = x1y2 — X2)1-
The Heisenberg-Weyl algebra Lie group W; is obtained by exponentiation of the
Lie algebra. A general element of W) is given by

¢ =e"D(a), D(a) = erat—a"a, 2.7)

The multiplication law of the group elements D(«) is given by (withA = aa™ —a*a
and B = Bat — B*a)

D(a)D(B) = &'eP

=exp _[A, Blexp(A + B)

N = N =

=exp _(af* —a*B)D(a + B). (2.8)
In the second line we have used the Baker-Campbell-Hausdorff formula. From this
multiplication law it follows immediately that

D(a)D(B) = exp(af™ — ™ B)D(B)D(a). (2.9)

This is another form of the Heisenberg-Weyl algebra completely equivalent to (2.1)
or (2.4). The operators D(«), as opposed to ¢ and p, are bounded and as consequence
their domain of definition is the whole Hilbert space H. The algebra (2.9) is the
defining equation of the noncommutative torus as we will also discuss in due time.

The elements e* = e“D(c) of the group W; will be denoted by g. More precisely
¢ D(a) should be viewed as a representation of the element g characterized by the
real number s and the operator D(w).
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The center of the Heisenberg-Weyl algebra WV, consists of all elements of the
form (s, 0, 0) which correspond to the group elements go = €. It is then obvious
that given any unitary irreducible representation 7(g) of the Heisenberg-Weyl group
W) the elements T'(go) provide a unitary representation of the subgroup H = {go}.
Obviously

T(go) = ¢™'1. (2.10)

The following result is due to Kirillov. The unitary irreducible representation 7'(g)
for A # 0 is infinite dimensional fixed precisely by the real number A whereas for
A = 0 the unitary irreducible representation 7'(g) is one-dimensional fixed by two
real numbers 1 and v given explicitly by T(g) = e/(*¥1 V221,

Obviously for a fixed value of A # 0 any two unitary irreducible representations
are unitarily equivalent. This is in fact a general result of representation theory.

2.1.2 Coherent States

The first basis of the Hilbert space H, we consider here, is the number basis. We
introduce a vacuum state |0 > in the Hilbert space H defined as usual by a|0 >= 0.
The number basis is defined by

aln>= nn—1> ,atln>=vVn+1n+1>. (2.11)

The number operator is defined by N = ata, viz N[n >= n|n >. Explicitly the
number basis is given by

1
J '(a+)”|0> ,n=0,12,... (2.12)
n

Another very important basis of the Hilbert space H is provided by so-called
coherent states. A coherent state is a quantum state with properties as close as
possible to classical states. Let 7(g) be a unitary irreducible representation of the
Heisenberg-Weyl group W; and let |1y > be some fixed vector in the Hilbert space
‘H. We define now the coherent state by

n >=

[Ye > = T(g)[Yo >
=™ D(a) |V > . (2.13)
It is obvious that the isotropy subgroup of the state |y > (the maximal subgroup

which leaves |y > invariant or stable) is precisely H = {go}. This crucial fact can
also be formulated as follows. For g = go we obtain from the above definition the
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behavior of |1y > under the action of H to be given by

T(g0)| Vo > = ™|y > . (2.14)

By substituting back we obtain

[ > = e ™ T(gg0) V0 >
= e M| Ygg > (2.15)

This means that all the group elements of the form ggo with g fixed and go € H
define the same coherent state. In other words the coherent state [, > is an
equivalence class in W /H given by |a >= {|¥4,, > . g0 € H}. The equivalence
class is identified with &« = —(x; — ix»)/~/2 since we can choose go in such a
way that it cancels precisely the phase ¢™** for all g. Alternatively we may think of
G as a fiber bundle over the base space X = G/H with fiber H where the choice
g is a particular section. The base space X = G/H is precisely the plane (g, p)
and the coherent state |y, > will contain information about the quantum point
(x1 = —q/~h,x2 = p/~/h). Indeed the coherent state |/, > is a mapping from the
phase plane (g, p) into the Hilbert space 7. We write then the coherent state [/, >
as simply |o > where

|l > = D(a)|yrog > . (2.16)

The standard coherent state corresponds to the choice |y >= |0 >. We will only
concentrate on this case for simplicity. The coherent state |o > is an eigenstate of
the annihilation operator a with eigenvalue «. The proof goes as follows. By using
the Baker-Campbell-Hausdorff formula we compute first the following

D(@) = e 2l e e

e aguat 2.17)

G

The coherent state can then be expressed as
1 2
lo > = e 2l e““+|0 >

o0
= ¢zl Z (a+) |0 >

—O

1\0(\2 Z \/n' (2.18)
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Now we can show that

o n
o
ala > = e 2lol? E aln >
o Vn!

o2l n—1>

‘2
Z \/(n— 1)'
=aja >. (2.19)

The coherent states |o >, although complete (overcomplete) because the represen-
tation 7T'(g) is irreducible, they are not orthogonal. Indeed we compute

S *\m & n
o
< Bla > = e 2P E (f/)' < m|.e" 2k E J '|n>
m=0 m: =0 n.

— o BP—blaPtap™ (2.20)
Thus
p(B—a)=|<Bla> | =elF ", (221)
Next we compute the action of D(«) on a coherent state | >. We find
D(a)| > = D(a)D(B)|0 >

= exp (@ —a*H)D(@ + IO >

1

2(0(,3* —a*Bla+ B >. (2.22)

= exp

The action of the Heisenberg-Weyl group W, is therefore equivalent to the action
of the group of translations in the o plane modulo a phase. Indeed this action is not
effective since the whole subgroup H = {go} acts as the identity. In other words the
group of translations in the o« plane is given by W, /H. The invariant metric in the o
plane is obviously given by

1 1
ds* = da*da = de% + deg. (2.23)

The invariant measure in the « plane is then given by

du(a) = Cda™da = Cdxidxs. (2.24)
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Let us consider the projector | >< «/| on the coherent state |« > and let us consider
the operator [ dj(a)|e >< «|. We compute (using D(B)*T = D(—P), du(e) =
du(a + p) and < a|D(B) =< a — Blexp(—af™ + a*p)/2)

D(ﬁ)/dﬂ(a)la ><a| = /du(a)eé(ﬁ“*‘ﬁ*mlﬁ +o><al
= /du(a)eéwa*—ﬂ*ana ><a—f
= /d,u(oz)la >< «a|D(B). (2.25)

In other words [ du (o)l >< «| commutes with all D(f) and as a consequence
(Schur’s lemma) it must be proportional to the identity, viz

/d,u(a)|a ><a| =N"'1. (2.26)
The average of this operator over a coherent state | > is immediately given by
/d,u(oc) <Bla><alf>=N"" (2.27)
Equivalently
Nl = /d,u(a)p(ot) = C/ dxldxze_é(x%”%). (2.28)

In general we choose C such that N = 1, viz

1= /d,u(a)p(a). (2.29)
This gives immediately
C= ! (2.30)
S 2n’ '

The measure in the o plane and the resolution of unity become
| 1
du(e) = _ doa*do = _ dxidx;. (2.31)
2w 2w

/d,u(oz)la >< ol =1 (2.32)
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2.1.3 Symbols

States and Their Symbols Any state |y > in the Hilbert space H can be expanded
in the coherent states basis using the resolution of unity as follows

[y >= /d,u(oz) <ol > |a>. (2.33)

The wave function < «|yy > determines the state [ > completely. It is called the
symbol of the state |1 >. This provides a functional realization of the Hilbert space
‘H as we will now show. We compute

3] *\n 00
o
<oz|1/f>=e_;la|22(\/)| <n|§ Cm|m >
— Vn!

m=0

_ by, @)
=e ;Cn \/n'
= 2Py o). (2.34)

The function v («) is given by

o0 a”
Y(a) = ;cnun(a) () = Tt

The sum (2.35) is absolutely convergent for all z € C. The proof goes as follows.
By using Schwarz’s inequality we have

(2.35)

n

V(@) = % <nly > 5,1!'

el o
< n§=0| <nl|y > IJn!
o o]
2.36
<Illy > IIHE=0 Jn (2.36)

The ratio of the 7+ 1th term to the nth term is ||/ +/n + 1 which goes to 0 as n —>
0. Hence the sum (2.35) is absolutely convergent for all z € C and as a consequence
¥ (@) is an entire or integral function. We note that only entire functions subjected
to some growth restriction are in fact allowed.

The normalization condition can be chosen to be given by

<yly ==Y lal = [ du@e F p@P = 1. 237)
n=0
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From this we can define the scalar product of any two entire functions v («) and

¥a() by
<l > = / @)y @)y (). (2.38)

The set of all entire analytic functions v () endowed with the above scalar product
form a Hilbert space F which provides the so-called Fock-Bargmann representation
of the Hilbert space . The orthonormal basis elements are given precisely by u,(c).
These are orthonormal functions because

<mn>= / dp(e)e ™ u* (o) ()

1 2
= / dp(@)e " (@) ()"

1 1 rontm _r? ip(m—n
- n!m! 2n/rdr(— «/2) ¢’ /d(pe‘p( )

1 =D _ n4+m+2 o
_ r ip(m n). 2.
PR (Y 239)

Obviously < njm >= 0if n # m and < n|n >= 1 as it should be. The resolution
of unity in the basis u,(«) reads

> un@u (o) = " (2.40)

n

We remark

la|?

() =u(@*)=e?2 <ajn>. (2.41)

In the Hilbert space F the action of the operators a and a™ is given by differentiation
with respect to «* and multiplication by a* respectively since

<alat|y >=a* <aly > . (2.42)
<alaly > = [ du(p)p <alp =< plv >
o 0
= [au®)( + ) <alp =< ply >

0
= (5 + o) <ly > (2.43)
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Operator Symbols A large class of operators acting on the Hilbert space H can
also be represented by functions called their symbols. The symbols of an operator A
can be given by the functions A(a*, 8) and A(«*, 8) defined by

A(@*,p) = < alA|p >

— exp(- o 8 > Aot @ ). (2.44)
i@ ) =™ T e p)
=Y A () un(B). (2.45)
Explicitly we have
A@*,B) = ZmAm w:!m! ()" B". (2.46)

Let us now imagine that the diagonal matrix elements A~(a*, «) vanish, viz
A(a*,a) = 0. In order for this to be true an entire function of the variables o*
and S defined precisely by the above double series must vanish on the domain given
by B = a in C%. A known result from complex analysis states that if an entire two-
variable function vanishes on the domain 8 = « for all « it must vanish identically
everywhere in C2. In other words A(a*, 8) = 0 for all o and f and as a consequence
the operator itself vanishes identically, viz A=o.

It is a general result that the diagonal matrix elements of an operatorA (bounded'
or a polynomial in @ and a*) in the coherent states basis determine completely
the operator. This can also be seen as follows. By introducing new variables u =
(@* 4+ B)/2 and v = i(a* — B)/2 the matrix element A(a*, B) defines an entire
function of u and v given by F(u,v) = A(a*, B). Any entire function of complex
variables u and v is determined completely by its values at real  and v. Alternatively
every monomial (a*)"a™ in the double series defining A(e*, ) = 0 is uniquely
analytically continued to (*)” ™. This is precisely the statement that the operator
A is determined completely by its diagonal matrix elements

04 = A(a*, &) = exp(—|a|))A(a*, @) =< a|A|a > . (2.47)

'We note that only bounded operators subjected to some growth restriction are in fact allowed in
analogy with the allowed entire functions.
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This is called the Q symbol or lower symbol of the operator A. Let us derive this
crucial result in a more explicit fashion. We have

04 = e 1P < 0] AT |0 > | At a) =< 0]e* A 0> . (2.48)

We then compute
a - oy n
exp(B, A @) =< 0]¢" afebat paat |0 > (2.49)

Then

exp(—« g ) exp(B ’ A(e* ) = < 0|ea*”12\eﬂ“+|0 >
B da

= g2laP 2181 o a|121|,3 >
= A(a*, B). (2.50)
In other words A(a*, B) is obtained from A(a*, o) by the action with the translation
operator twice [1]. This can be made more transparent as follows. We compute
d d 1 U B D I
exp(—ey Jexp(By ) =D (=e)"(y0) ; LB )

m=0

0o 00 11 m d m " 0 "
=22 GO B @S

n=0 m=0
We use the result
0 n!
m n — n—m > .
()" B = (B iz m
=0, n<m. (2.52)

We get then

d 3 g n! N I
exp(—a ) exp( ;) =;n!m§m!(n_mﬂ(—a) B )

3

1 n a n
’;n!(ﬂ—a) (3,

—

d
=:exp((f — ) 804) : (2.53)
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The end result is

—

- 0 -
A*, B) = :exp((f — a) aoc) A, ). (2.54)

The Q symbol of the operator A is related to the Wick ordering of the operator A
defined by

A=>"Am(a™)"a". (2.55)
We compute immediately
Q@ o) =) Ap(@*)"a". (2.56)

By knowing the symbol Q4 of the operator A, ie. the coefficients A,, we can
reconstruct the operatorﬁ completely.

We can also construct a different symbol (P symbol or upper symbol) by
considering the anti-Wick ordering of the operatorA defined by

A=) "ALd" (@) (2.57)
We compute
A= /d,u(a) ZA;,ma”ﬂa >< al(at)"
= /d,u(oc) ZA:MO{V"(O[*)"|O{ >< o

= /d,u(oz)PA(a*,oz)m >< al. (2.58)

This is precisely the defining equation of the P symbol. We have explicitly

Py(a*,a) = ZA,/nnam(a*)”. (2.59)

The relation between the Q and P symbols is given by

0u(@*.a) [ du(B)PAB* )| < alp >

;ﬂ / dB*dBPA(B*. B) exp(—la — BI*). (2.60)
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2.1.4 Weyl Symbol and Star Products

Weyl Symbol Let us consider the symmetrical ordering of the operator A defined
by

A= Z " 4 )1 P[(a*)"a". 2.61)

The operator P is the symmetrization operator given by the sum of (m + n)!
permutations of the factors. For example

Pl(a)?a] = 2[(a")?a + aTaa’ + a(a™)?. (2.62)
Pl(a)?d®] = 4[(a™)*a + ataa™ + a(@™)?|a + 4[a*at + aaTa + ata*a”.
(2.63)
The function associated with the operator (2.61) is given by
Wale* ) = Y Al (@*)"a". (2.64)

This is the Weyl symbol of the operator A. We want to write down the Fourier
transform with respect to the plane waves

exp(—ikx) = exp(—iki x| — ikyxy) = exp(na™ — n* ). (2.65)

The complex number 7 defines the complex momentum space in the same way that
the complex number « defines the complex position space. It is defined by

1
1= h (ko + iky). (2.66)
We have immediately
1, 1
du(n) = . dn*dn= _ dkidk,. (2.67)
2 2

These two equations are the analogues of

1 1 1
o= —\/2 (x1 —ixp) , du(a) = - doa*doa = 5o dxidx;. (2.68)



2.1 Heisenberg Algebra and Coherent States

31
We introduce the Fourier transform y4(n*, n) of Wa(a™, @) by
xa(n*.n) = / dp(e) exp(—na™ + n"a)Wa(e™, a). (2.69)
Wae @) = [ dutm expina® = n*eatn’ . @70)
We compute
o n 1
* % — *\Nn—m %k m
exp(a” = n’a) Z%,Eomun—mn(”“) (=n"a)
o o 1
=20 () ) @.71)
nlm!

n=0m=0
Let us derive the operator analogue of this formula. We have

(&)
1
+ k) + _ ¥ )
exp(ia na)—z_(:)n!(na )"

(2.72)

We need the binomial expansion of (A + B)" where A and B are operators in terms
of the symmetrization operator P. For concreteness we consider n = 4. We compute

(A + B)* = A* + B* + (A’B* + B*A” 4+ ABAB + BABA + AB’A + BA’B)

+(A’B + BA® + A’BA + ABA®) + (AB® + B°A + B*AB + BAB?)
1 1 1 1 1

P[A* P|B* P[A%B? P[A®B P[AB?
24[]+24[]+4[ ]+6[ ]+6[ ]

4

Z ! : 'P[A4_'”Bm]. (2.73)
v (4 —m)!'m!

Generalization of this result is given by

n

A+B)" =" " _1 PIATB").

Im!
— m)!m

(2.74)

By employing this result we get

— 1 ¢ 1
explna’ —w'a) =D\ DL PLOa T " 279)
n=0""m=0 o
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Now we use the result

> "1 [ IS 1
)3) SRR 35 SO 270

n=0 m=0 n=0 m=0

We get then

* o 1 1 n * m
exp(na® —u'a) =D D o P ) @.TT)

n=0 m=0

This is the operator version of (2.71).
By substituting (2.71) into W, we obtain

Wi = Y Y@ ya O [aumirory oo, @)

n=0 m=0
In other words

="

An = ! / dp(mn™ (*)" xa(n*, n). (2.79)

By substituting these components into the equation for the operator A given
by (2.61) and then using the result (2.77) we obtain

1 1

I'n!
. (n+m)! nlm

A= / dpe(m) xa (. n) Pl ay]

- / () xa(7* ) exp(na™ — *a). (2.80)

This should be compared with the function (2.70). In fact the analogy between (2.70)
and (2.80) is the reason why we want to associate the operator A with the function
W,. This association can be made more precise as follows. First we have

Op(e*,a) = < alAla >

1
=AY, ey a|P[(at)"a" e >

m,n

= ; (n'rn)' /dﬂ(n)ﬂm(n*)nXA(n*’ 7’}) (m N n)' < a|P[(a+)’"a"]|a >

1 1
- /d,U«(n)XA(ﬂ*’ Y. mint (m £ al(na®)"(=n*a)"ja >

m,n
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= /du(n)xA(n*, n) < a|exp(na™ —n*a)la >
= /du(n)xA(n*, ) eXp(—;lnl2 + e’ —n*a). (2.81)
From the other hand we have
[ dn@was* press(-2la - 1)
= /du(n)xA(n*, ) / du(B) exp(=2la — BI> + nB* —n*B)
= [anair.pe e [P epaipr —u + i)

a* —n*a dZy - oo
/ dp(n) xa(m*, me™ " / o exp(—y* + iky)

1 * *
) / dpa () xa(p*, e 2l Fne e (2.82)

Hence we obtain the result
0:(@*.0) = < alila >=2 / du(BYWa(B*. B)exp(~2le — BP).  (2.83)

Alternatively the operatorA can be rewritten in terms of the function Wy as follows.
From (2.80) we have immediately

A= / dp(n) / dpu(e) exp(—na™ + 1 a)Wa(a™, a) exp(na™ —n*a)
= /du(a)T(a)WA(oz*,a). (2.84)
The operator T'() is given by

T(a) = / dp(n) exp(—na* + n*a)exp(nat — n*a). (2.85)



34 2 The Noncommutative Moyal-Weyl Spaces R‘g

Star Products We consider now the product C of two operators A and B, viz C =
AB. The corresponding Q symbol is given by

Oc(a*,a) = < a|ABla >

- /du(ﬂ) < alAlf > < plBle >

- [ du(B) exp(—lal® — |BPYA@™. HB(B* @), (2.86)

Thus
Ca ) = [ du(®)exp- IR HBE ). 287)
We employ now the result (2.54) rewritten as
Kl
A(*, B) = Ae*,a) : exp(aa B—0a)):. (2.88)

We need also to express B(8*, &) in terms of B(a*, @) using the equation

—

. . ] 9 -
rexp((B* — “*)aa*) : B(e*,a) = exp(—a* 3ﬁ,k)exp(ﬁ* aa*)B(a*,a)
= 2P < BBl >
= B(B*, ). (2.89)
We get
Y A (% (3 2
Cla™, ) =A(a ,a)-/du(ﬁ):exp(aa (B —0a)) s exp(=[B")
cexp((B* —a™) aa*) D B(a*, o). (2.90)
o

At this point we shift the variable as  —> B’ = B — «. The ordering becomes
irrelevant and we end up with

—_—

<
- - 0 J . -
Ca o) = Aa*.a). [ du@rexs(, Bresp(-Ip +aPyexp(s” )G )

<«
- 0
—i@o). [ du@expi(,, ~a")B)exp-IB ~laf)
—

x exp(B* (—a + 32*)).B(a*,a). (2.91)
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We have also
N

9 ) <1 7
eXp('B(aa — o)A@, a) = Z n,ﬁ"(aa — ™))" exp(aa™)Qala™, @)
n=0

—

E : B" exp(aa™)( ’ )'Qala™, @)
n! o
n=0""

Kl
exp(la’) exp(B , )0a(@",@). (2.92)

Similarly

— —

ad ~ ad
eXP(ﬁ*(aa* —a))B(a*, a) = exp(la|’) exp(B* aa*)QB(a*,Ol)- (2.93)

‘We obtain then the result

«— —

d 0
Octa” @)= ). [ d(B)exp((,) )P exp(-IR)exp(B” ) Oatar” ),
(2.94)

The integral over § is a simple Gaussian and can be done trivially. We have

1% T8 1% o
Oc(a*,a) = QA(“*’“)-eXP(‘l(aa + aa*)z) eXP(—4(aa - aa*)z).QB(oz*,oz)
= Oa(a™, @) *y Qp(a™, ). (2.95)

The star product *y is defined by
“——>
Jd d

2ot s (2.96)

*y = exp(

Th is the Voros star product [33].

We would like now to find the star product associated with the Weyl symbol
which is known as the Groenewold-Moyal-Weyl product [11, 27]. By using
Eq. (2.80) and comparing with Eq. (2.81) we obtain

Oup = < OllABlOl >

1
= / dp(n) exp(na™ — n*a) exp(— 2|’7|2)XAB(77*v n). (2.97)
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The Fourier transform y4p is given by

1
tan = [ du(e)a = p)s(e)exp , (06" = 1" ). (2.98)

By substituting into (2.70) we get

1
Was = [ (o) [ dieoyxatn = phxato) explna” = n*a)exp ) (10 = 1),

(2.99)
From the other hand there must exist a star product * such that
Wap = Wy x Wp
= / dp(n) / du(p)xa(n — p) xs(p) exp((n — p)a* — (n* — p*)a) *
x exp(pa™ — p*a). (2.100)

It is not difficult to see that this star product is given by
“— —

* =€ b(o @ 99 (2.101)

=P o\ o da* T e e ) ’

Indeed we compute
exp((n — p)a™ — (" — p*)a) * exp(pa™ — p*a)
1
= exp(na” —n"a)exp (10" — 11" p). (2.102)

The two star products *y and * are equivalent. See for example [1] for a proof.

2.2 Noncommutativity from a Strong Magnetic Field

The relation between the noncommutative star product and path integral quantiza-
tion was noted a long time ago in [31].

The quantization of a non-relativistic electron in a strong magnetic field will lead
to noncommutative coordinates. We will follow here the brief discussion found in
[5, 28].

We consider a point particle of mass m and charge ¢ moving in an electromag-
netic field (E , E). The equation of motion is given by the Lorentz force

m"  =qE+7VAB). (2.103)
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In terms of the 4-vector gauge potential A* = (V, ;\) the electric and magnetic fields
E and B are given by

. - A - - -
E=-VV-— 5 ,B=VxA. (2.104)

The Lorentz force reads explicitly

dzx,- 8A, . .
m dt2 = q(—a,’V — 9 + xja,-Aj — XjajA,')
dA;

We can trivially check that this equation of motion can be derived from the
Lagrangian

1
L= me? + q(Ad; — V). (2.106)
Now we consider motion confined to the xy plane under the influence of a constant
perpendicular magnetic field, viz E = 0, B = Bz. We have then A, = A,(x,y),
Ay =A,(x,y),A; = 0and V = 0. The conjugate momenta and the Hamiltonian are
given by

pi =mki+qA;, i=12. (2.107)
H = xipi—L
1
= mi
2
1 2
= _ (pi—qA)". (2.108)
2m

We will also need the usual momenta
n,-:m)'c,-:p,-—qA,-, = 1,2 (2109)

We have B = 0,A,—0,A,. We know that the electric and magnetic fields are invariant
(physically observable) under the gauge transformations V. — V + dV/ oz, A—>
A-— %){. In the symmetric gauge we can choose A, = —By/2 and A, = Bx/2, i.e.
Ai = —Beijxj/Z.

In the quantum theory x; and p; become operators X; and p; satisfying the
commutation relations

(%, pj] = ihd; , [xi,X] =0, [pi,p;] = 0. (2.110)
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Equivalently we have

3, 7] = ik, [, %] = 0, [#, 75] = qlpj, Al — qlpi Aj]
= ihqBe;. (2.111)

We introduce the creation and annihilation operators & and a* by

1 1
a= (A +iny) , at = (7, — iTty). (2.112)
\/thB ’ \/thB »
We have also
hqB hqB
Ao = \/ Z @t +a). iy, = i\/ Z @ —a). 2.113)

Equivalently the creation and annihilation operators & and a™ can be given by

a=—i(d:+ ), at = —id, - ). (2.114)
2 2
They satisfy
[a.at] = 1. (2.115)

The complex coordinate z is defined by

_ |aB .
7= \/Zh (x + iy). (2.116)

The Hamiltonian operator is given by

N 1
H= 7}
2m

1
= ho(atTa + 2). (2.117)

The cyclotron (Larmor) frequency is defined by

B
o=, (2.118)

m
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We can immediately conclude that the corresponding energy levels, known as
Landau energy levels, are given by

1
E, = how.(n + 2), n e N. (2.119)

These levels are infinitely degenerate which we will now show.

We introduce the so-called guiding center coordinates by imposing on them the
requirement that they commute with the momenta ;. After some work we find that
the correct definition is given by

1 1
Ry = V/qB(y— AN VaB(x + 5 (2.120)
The relevant commutation relations are
[Ri ] = 0. [Ri.R] = ihe; , [, 7] = ihgBe;. 2.121)

In analogy with the creation and annihilation operators & and a™* corresponding to
#; we introduce the creation and annihilation operators b and b corresponding to
R,’ by
. |
b= Ry +iRy), b™ =

R. —iR). 2.122
\/Zh ( l y) ( )

1
V2h
We have also

X Boay  aon hoay s
R, = \/2(b+ +b), R, = i\/z(b+ —b). (2.123)

Equivalently the creation and annihilation operators band bt can be given by

Z

A 7
b=i bt =i(0; -
l(az+2)’ l(az 2

). (2.124)
They satisfy

b,b%] = 1. (2.125)
The Landau energy levels are infinitely degenerate simply because they do not
depend on the eigenvalues m of the number operator b b.

The ground energy level n = 0 is the lowest Landau level (LLL) which is defined
by the condition

ay(z,7) = —i(: + ;)W(z, 7 =0. (2.126)



40 2 The Noncommutative Moyal-Weyl Spaces R‘g

There is an infinite number of solutions given by
U@ = ° ex (—|Z|2) (2.127)

ml\Z,2) = x/m! p 5/ .
It is not difficult to observe that ¥, ~ (13+)’"1//0, i.e. we can obtain all the LLLs by

acting repeatedly with b on the Gaussian wave function ¥ = exp(—|z|%/2).
The angular momentum is computed to be

A
L= (xdy—yd)
l
= (29, — 205). (2.128)

Thus we can see immediately that the wave function ¥, carries angular momentum
L = m and as a consequence the Gaussian wave function ¥y = exp(—|z|?/2) carries
zero angular momentum, viz

Lyn(z,2) = hmy(2, 2). (2.129)

Much more importantly is the fact that the LLL wave function v,,(z,z) can be
understood as the component of the coherent state |z > on the number vector state
|m >. Indeed from (2.18) we have

_ 7" |z|?
(2.7) = = Y 2.1
Ym(z,2) = < zlm > ! exp( 5 ) (2.130)
We have made the identification « = z or equivalently x; = —x\/ gB/h and x, =

—y \/ gB/h. We know from the Heisenberg algebra (2.1) that [x, X;] = —i and hence
we expect that within the LLLs we will have [, y]11. = —ih/qB. We will now show
this result in some detail.

In the strong magnetic field limit B — oo the cyclotron frequency becomes very
large and therefore the gap between the LLLs and the higher Landau levels becomes
very large. The dynamics becomes thus largely described by the LLLs. The LLLs
provide then an overcomplete basis in this limit simply because they are identified
with coherent states. Indeed from (2.33) and (2.34) we know that every state vector
in the Hilbert space can be expanded in terms of the coherent states |z > as

||

2
5 W@z > . (2.131)

Iy >= / du(2) exp(—

The wave functions v (z) are given by (2.35), viz

o m

V@ =Y cntin@ ., un@) =

. (2.132)
m=0 \/m'
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The wave functions u,,, as opposed to ,,(z, z), are analytic. They are essentially the
lowest Landau levels without the exponential decay, namely

||

2
) YVm(z,2). (2.133)

um(z) = exp(

The scalar product is defined by (2.38), viz
<l > = [ du@e Qe (2.134)
We compute immediately
<l > = [du@e Pyt @00
— - [ du@0.7 i @00

= /d/,L(z)e_ldz.lﬁl*(Z)-Z-Wz(z)

<Vilzyn > . (2.135)

In the second line we have dropped a surface term. Thus within the lowest Landau
levels, which dominate the dynamics in the strong magnetic field limit, we can make
the identification 9, —> z and as a consequence we have 1 = [0,z = [Z, Z]Lr-
This is equivalent to the commutation relation

h
(%, V) =—i0, 6 = B (2.136)

This is a noncommutative plane.

2.3 Noncommutative Moyal-Weyl Spacetimes

In this section we will follow the reviews [9, 32], as well as the articles [3, 20], and
the articles [10, 12-14, 17-19].

2.3.1 Algebra, Weyl Map, Derivation and Integral/Trace

A Groenewold-Moyal-Weyl spacetime Rg is a deformation of ordinary d dimen-
sional Euclidean spacetime R? in which the coordinates x; are replaced with
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Hermitian operators X; satisfying the Heisenberg-Weyl commutation relations
[Xi, %] = i6;. (2.137)

The space Rz in general can be only partially non-commutative, i.e. the Poisson
tensor 8 is of rank 2r<d. This means in particular that we have only 2r non-
commuting coordinates. The Poisson tensor, also known as the noncommutativity
parameter, can thus be brought by means of an appropriate linear transformation of
the coordinate operators to the canonical form

0 660. . 0.
—-6;00. . 0.
0 — e ) 138
0 0..0 6. ( )
0 0..-6,0.
In the above equation 6, = 6,,_15,. In the spirit of Connes’ noncommutative

geometry [8], we will describe the Groenewold-Moyal-Weyl spacetime R‘gi in terms
of the algebra of functions on R¢, endowed with an associative noncommutative
product between elements f and g denoted by f * g. This star product is, precisely,
the Groenewold-Moyal-Weyl star product derived in previous sections. The algebra
corresponding to the space R‘(g will be denoted .Ay. The algebra Ay corresponding
to the commutative space R? is clearly the algebra of functions on R¢ with the usual
pointwise multiplication of functions. Specification of the algebra will determine
only topological properties of the space R‘gi . In order to specify the metric aspects
we must also define proper derivation operations on the algebra 4y. The Weyl map
will allow us to map the algebra Ay to the correct operator algebra generated by the
coordinate operators X;.

The algebra of functions on RY, of interest to us here, is the algebra of Schwartz
functions of sufficiently rapid decrease at infinity. These are functions with all their
derivatives vanishing at infinity. Equivalently Schwartz functions are functions f(x)
which admit well defined Fourier transforms f (k), viz

f&%=/d%ﬂ@fw- (2.139)

The Fourier transforms f (k) are also Schwartz functions, i.e. their derivatives to any
order vanish at infinity in momentum space. The functions f(x) are given by the
inverse Fourier transforms, viz

'k - .
fO) = / el B¢ (2.140)
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The Weyl operator f acting in some, infinite dimensional separable, Hilbert space
‘H which corresponds to the function f(x) is obtained by requiring that f(x) is the
Weyl symbol of f‘ . In analogy with the Weyl map between (2.61) and (2.64) we can
immediately deduce the form of the operator f to be given by

n dk . ..
f= / () S R)e™. (2.141)

We have only replaced the coordinates x; by the coordinate operators ;. This is a
bounded operator which is also compact.

For simplicity we will assume maximal noncommutativity,i.e. d = 2r. The Weyl
map, or quantizer, is given by

Ak .
Ay xi) = / e (2.142)

As we have discussed previously this correspond to the symmetric ordering of the
operator. We have explicitly

f= / d'xf (x) A, xi). (2.143)
It is obvious that if f = f; = exp(ikx) then f :fk = exp(ikx), viz
exp(ikx) = / d?x exp(ikx) A(x;, x;). (2.144)

The derivative operators on the non-commutative space R‘; can be given by the inner
derivations

b= - . @149

The coordinate operators X act on the right of the algebra, viz )%ff = f‘fc,-. These
derivative operators satisfy the conditions

[0, 0] = 0. [0:,%] = 8. (2.146)

The derivative operators on Rg can also be given by any outer derivations satisfying
the above two requirements.
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We have the basic identity

A "o
e =" i )

Nk

n=1

N

ki (ky!
n!

M

3
Il
-

e (2.147)

s
X .

In the second line we have used the second equation of (2.146) which is valid for all
derivations inner or outer. We have therefore the result

= [ o e 2.148)

is = K} e . .
@2m)?

This suggest that we associate the operator [35, f1 with the function d;f (x;). The proof

goes as follows. First we have

dk
(2m)?
= —8,~A(5c,~,x,~). (2149)

[0, AGi, x)] = ik; kit gikixi

By using the above result we have
01 = [ @yl A%
= / dxf (x;)9; A (R, x7)
_ / A f () A G x). (2.150)

In other words the operator [5,-, f ] corresponds to the function 9;f (x;) as it should be.

In the commutative limit —0 the operator A(%;, x;) reduces in an obvious way
to the delta function §%(* — x). This is in fact obvious from (2.144). For o;€R we
compute

T ; A o a
eaBEkae ol _ ezakea3+the «d

= ik eik, (2.151)
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The unitary operator exp(aé) corresponds to a translation operator in spacetime by
a vector &. By using the above result we obtain

eo‘éA(fc,-, x,-)e_o‘é = A()%,', Xi — Ol,'). (2152)

We can then conclude that Try A(X;, x;) is independent of x for any trace Try on
H since Try A(Xi, x;) = Try A(Xi, x; — «;). In other words Try; A(X;, x;) is simply an
overall normalization which we can choose appropriately. We choose (see below for
a derivation of this overall normalization in the Landau basis)

1

Tr A)?i,xi = .
A %) Jdet(20)

(2.153)

In some sense \/ det(270) is the volume of an elementary cell in noncommutative
spacetime if we think of R‘g as a phase space. This can also be understood from the
result

Vdet(2m 0) Try ™ = / déxe™ = (27)48 (k). (2.154)
Similarly we can compute
VdetRr0)Tryf = / dxf(x;). (2.155)
The analogue of the identity (2.153) is the identity
/ dxAGi, x;) = 1. (2.156)

We want now to show that the Weyl map is indeed one-to-one. The proof goes as
follows. First we compute

\/det(ZT[Q) Try eikfreipfr = \/det(Zn Q)Tre_ é Bijkip; ei(k‘"[’):r
= 2n)*8(k + p). (2.157)
Hence
Ak _,. d’p
e e
@2n)d @2n)d
X \/ det(2w0)Try Pt
=8(x—y). (2.158)

—ipy

VdetQr0) Try A, x) AGi, yi) =
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Using this last formula one can immediately deduce

() = /detQa0)Tryf A, xi). (2.159)

This shows explicitly that the Weyl map A provides indeed a one-to-one correspon-
dence between fields and operators.

2.3.2 Star Product and Scalar Action

The most natural problem now is to determine the image under the Weyl map of the
pointwise product f g of the two operatorsf and g. From our previous discussion of
the coherent states we know that the answer is given by the star product f * g where
* is the Groenewold-Moyal-Weyl product (2.101). We rederive this fundamental
result one more time in this section.

First we compute the generalization of (2.157) given by

Vdet(2m0) Try e e e® = =209 (27)484 (k + p + q). (2.160)
This leads immediately to

d'k  dp
(2m)d (2m)?

ik(x=y) yip(x—2) ;= 3 Bijkip;

VdetRr ) Try AR, y) AR, 2)AG, x) =

(2.161)
Hence
An N ddk ddp ~, ~ 0. L. i x
VdetQr0)Tryfa A, x;) = @n)! @) F(k)z(p)e= 2 0ikins gik+p)
= *g(x). (2.162)

The above definition of the star product is precisely the one given in (2.101). This
star product can also be given by

£ g@) = 2% £ (x + £)g(x + n)lemymo. (2.163)

The above result can also be put in the form

Fa= [ s+ g AGi ). (2.164)
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This leads to the identity
Vet 0)Tryfé = / dxfxg(x) = / dxf(x)g(x). (2.165)

From the other hand we know that the operator [él f] corresponds to the function
d;f (x;). We can then also write down

Vdet2w0) Try[9;.F> = / dx 0.f % 0 (x) = / dx(3,£)%.  (2.166)

We are now in a position to propose a free, i.e. quadratic scalar action. This will be
given simply by

12

)

Shee = / dx q>(—;af +
n 1 ~ A ,u,z n
= \/det(ZnG)TrHQD(— 2[ai, [0;,...]] + 5 )q>. (2.167)

Next we add a phi-four interaction as a typical example of noncommutative
interacting field theory. First we note that the operators ® and $? correspond to
the fields ® and ®? respectively. Indeed we have
Vet ) Try A G, xi) = P(x). (2.168)
VAetr0)Try P AR x;) = ® * D(x). (2.169)
Hence we must have immediately

VdetQrO) Try ®* AGix;) = ® % d % ® (x). (2.170)

The phi-four interaction term must therefore be of the form

A s A
Sinteraction = \/det(2n9)4'TrH<I>4 = / dx® % @ % O x d (x). (2.171)

2.3.3 The Langmann-Szabo-Zarembo Models

In this section, we will write down the most general action, with a phi-four
interaction, in a non-commutative R‘gi , under the effect of a magnetic field which
induces noncommutivity also in momentum space. Then, we will regularize the
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partition function of the theory by replacing the field operator ) by an N x N matrix
M, and also replacing the infinite dimensional trace Try; by a finite dimensional
trace Try. The resulting theory is a single-trace matrix model, with a matrix phi-
four interaction, and a modified propagator. We will mostly follow [20].

For simplicity, we start by considering a 2-dimensional Euclidean spacetime,
with non-commutativity given by 6;;. Generalization to higher dimension will be
sketched in Sect. 2.3.5. We also introduce non-commutativity in momentum space,
by introducing a minimal coupling to a constant background magnetic field B;;. The
derivation operators become

Di=0;—iByX;, Ci = 0; + iB;X;. (2.172)

In above X; is defined by

Ai &R
L= 2.173)
2
Hence
R . B . . B_,
Di = —i(07" + )y + 07" = )]
N B B
Ci=—i(07" = )y +i(07" + )i 2.174)
We also remark
[X;.X;] = 0. (2.175)
[D;. D)) = 2By, [Ci, C}] = —2iB;. (2.176)
[Di. X)) = (€. X] = [8:. X)) = 8. @177)

Instead of the conventional Laplacian A = (—5,-2 + ©?)/2 we will consider the
generalized Laplacians
2
A=—ob?—5E2 4"
2
R R 2
= —(0 +6) + (0 — 5)iBy{X. 8;} — (0 + 6)(BYsXiX; + *; . (2.178)
The case 0 = & corresponds to the Grosse-Wulkenhaar model [12—-14], while the
model 0 = 1,6 = 0 corresponds to Langmann-Szabo-Zarembo model considered
in [18]. o .
Let us introduce the operators Z = X + iXa, Z=7"=X,—iXp,0 =0, —i0»

and § = -9t = 51 + iéz. Also introduce the creation and annihilation operators
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(with 6y = 0/2, 60 = 01)

= ;(\/905+ j@OZ), at = ;(—\/905+ «/1902)
= (‘/9°a+¢eoz) l3+=;(—\/903+¢1€02)-
We have
X| = */0( +htyat+b), X, = ‘/0( +ht—at
3 = 2;90(21—13+—a++13), wgo(a—b++a

We compute by using [Z, 7] =0, [é,Z] = [5,2] = 2, [3,2] =

[3, 9] = 0 the commutation relations
[a.at1=1, [b.bT] = 1.

The rest are zero.
We consider, now, the rank-one Fock space operators

Gim = |l >< m.

We have immediately

Ay
¢l,m = ¢m,l-
¢l,m¢l/,m/ = Sm,l/d)l,m’-
TrH¢l,m = Sl,m-

Try ¢;,,¢l',m’ = 51,1/ 8m,m/.

49

(2.179)

(2.180)

_[;)

—b). (2.181)

[5,2] = 0, and

(2.182)

(2.183)

(2.184)
(2.185)
(2.186)
(2.187)

We are, therefore, led to consider expanding the arbitrary scalar operators ®, and

@, in terms of ¢y, as follows

00
&) == Z Mlmd)lm s Z Mlmd)lm
Im=1

ILm=1

(2.188)

The infinite dimensional matrix M should be thought of, as a compact operator,
acting on some separable Hilbert space H; of Schwartz sequences, with sufficiently
rapid decrease [20]. This, in particular, will guarantee the convergence of the

expansions of the scalar operators ®, and O



50 2 The Noncommutative Moyal-Weyl Spaces R‘g

Next, we compute

o0

D = N (MM)iprm- (2.189)

Im=1

The representation of this operator product, in terms of the star product of functions,
can be obtained as follows. In the operators QASLm = |l >< m|, we can identify the
kets |/ > with the states of the harmonic oscillator operators a, and a*, whereas the
bras < m/| can be identified with the states of the harmonic oscillator operators b,
and b*. More precisely, the operators QASLm are, in one-to-one correspondence, with
the wave functions ¢;,,(x) =< x|l,m > known as Landau states [10, 17]. These
states will be constructed explicitly in Appendix A. Landau states are defined by

adim = V1= 1Grorm » & Prm = Vidrs1m. (2.190)
qul,m = m— 1¢A)1,m—1 , BdA)lm = \/mdA)I,m-i-l- (2.191)

These states, as we will show, satisfy, among other things, the following properties

Gl (%) = i (). (2.192)
1
¢11,m1 * ¢12,le (-x) = \/47[ 90 8m1,lz¢11,m2 (-x) (2193)
/ &*x Gr(x) = /4760 8. (2.194)
/ Ax B} . % Blyny (X) = 811, m,.my - (2.195)

By comparing with (2.184)—(2.187) we conclude immediately that the field/operator
(Weyl) map is given by

V270 Gty oy <> Brym- (2.196)

/ d’x < \/det(2m0)Try,. (2.197)

We are therefore led to consider scalar functions ® and ®* corresponding to the
scalar operators ®, ®* given explicitly by

o0 o0
@ =210 Y Mg . ®F =270 Y My, — b, DT (2.198)

Im=1 Im=1
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Indeed the star product is given by
o0
®x @ =210 > (MM ). (2.199)
I.m=1

In other words, the star product is mapped to the operator product as it should be,
viz

D x @ < O, (2.200)
The operator Xd = éfc,ﬁD + ééfci corresponds to the function éx,- * O+ éCIJ *X; =
x;®. As a consequence, the differential operators f)?, and 6‘12 will be represented in
the star picture by the differential operators

Dl‘ = ai - iBinj , Ci = ai + lBUx/ (2201)

The Landau states are actually eigenstates of the Laplacians Diz, and Ci2 at the special
point

B’0} = =1. (2.202)

Indeed, we can compute (witho = 1+ B6y, f =1 —Bby,andaff =1 — 3293) the
following

- 1 e 1 . .
46,D? = —4a’(aTa + 2) —4B2(b™b + 2) +daf(ab +a*tbt). (2.203)

A 1 a1 . .
40,C? = —4p>@ata + 2) — 400D + 2) +4af(ab +atht). (2.204)

For 8 = 0, we observe that D?, and C? depend only on the number operators a*ta,
and b*b respectively. For ¢ = 0, the roles of Diz, and Ciz, are reversed.

Next, we write down, the most general single-trace action with a phi-four
interaction in a non-commutative R‘g under the effect of a magnetic field, as follows

A N ~ 2\ . Asaia ala
S = \/det(ZnG)TrHI:CI>+(—GD? —&C7 + “2 )q> + 4'<1>+q> ot

Moty aa
+ 4'c1>+q>+ qmb] (2.205)
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By using the above results, as well as the results of the previous section, we can
rewrite this action in terms of the star product as follows

2 p
S:/dzx[d>+(—aDl.2—6Cl.2+“2)<I>+4'd>+*<b*d>+*®

A/
+4‘c1>+ * 1 % @ x cb] (2.206)

In most of the following we will assume A’ = 0.

2.3.4 Duality Transformations and Matrix Regularization

Duality Transformations The action, of interest, reads
n ~ n Mz N ArAi”A o, a
S = \/det(ZnQ)TrH[CI)"’(— oD} —5C? + 5 )cb + ot <1>+c1>}
n? A
= /dzx[<1>+(—oD,.2 —65C? + 5 )cb + 4'<1>+ * @ x O x c1>] (2.207)
This action enjoys, a remarkable, symmetry under certain duality transformations
which exchange, among other things, positions and momenta. See [18-20] for

the original derivation. This property can be shown as follows. We start with the
quadratic action given by

2
S,[®, B] = / dzx[CI>+ ( —oD? —5C? + “2 )@] (2.208)

We define k; = B;lkj. The Fourier transform of ®(x), and D;®(x), are ®(k), and
—D;®(k), where

o (k) = / d*x®(x) e ki, (2.209)

- bi&)(k) = / dsz,-CD(x) o Hhixi
0 ..
= _(81}- — iByjk;) @ (k). (2.210)

Then, we can immediately compute that

/ P (Di®) () (D®) () = / PE (DD BB, 21D
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The new field, CTD, is defined by

-~ B -~ -
k) = \/|det |®(Bk). (2.212)
2
A similar result holds for the other quadratic terms. By renaming the variable as
k = x, we can see that the resulting quadratic action has, therefore, the same form
as the original quadratic action, viz

S,[®, B] = S»[®, B]. (2.213)

Next, we consider the interaction term
Sine[P, B] = /d2x¢+ xDx OT x @

d*k &k - o i )
:/(ZH)IZ”‘/(27r)12q)+(kl)Q(k2)®+(k3)q>+(k4)V(k1,kz,kg,k4).
2214)

The vertex in momentum space is given by

Viky ko, ks, k) = (27)?8% (k) — ks + k3 — k4)e_iew(k‘*‘k2”+k3"k““). (2.215)
By substituting, k = Bk, we obtain
Sl 8] = [ @i .. [ RS C0@E ST ) ®T RVl o s ).
(2.216)

The new vertex is given by

detB

oy Pl =T + T R @ (ot ide) - .17)

Viky, ko, k3, ks) =
The interaction term, can also, be rewritten as

Sin[®. B] = / Pxi . / Py (1) D(x2) D (1) D (x) V(1. 3. 53, x3).
(2.218)
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The vertex in position space is given by

d*k, d’ky

@mn)?r ) @2n)?
1

= (27)2|detd)]

_ 7 ik1x1—ikyxp +ik3x3—ikgx.
V(x1,x2,x3,%4) = Vi(ki, ka, ks, kq)e 101 —ikoxatiksvs —ikaxa

_ip—1 WO e
82(x1 — X +x3 —x4)e (67 (2 +335)

(2.219)

We can see immediately from comparing Egs. (2.216) and (2.217), to Egs. (2.218)
and (2.219), that the interaction term in momentum space, has the same form as
the interaction term in position space, provided that the new noncommutativity
parameter, and the new coupling constant, are given by

0 =-B"'o"'B7". (2.220)

detB | - A
© o=

A = _ . 2.221
(27)2  (27)% deth |detBo| ( )

In summary, the duality transformations under which the action retains the same
form, are given by

X —> ];i = B;lk] (2222)
_ o~ B - -
d(x) — P(k) = \/ |det2 | D(Bk). (2.223)
T
0 — 6 =—B"'9"'B7. (2.224)
A—> A= A (2.225)
" |detBO| :

Matrix Regularization Now, we want to express the above action, which is given
by Eq. (2.207), in terms of the compact operators M, and M. First, we compute

Try @t ® = Trg, M M. (2.226)

Tru®" (ab+a™b")® = Try (TTMTTM + MTTTMT). (2.227)
1

Trp® (aTa+ 2)<1> = Tru, MTEM. (2.228)
1

Trpu® (b b + 2)<1> = Try, MEM™". (2.229)

Try @t ® T = Try MTMMTM. (2.230)
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The infinite dimensional matrices I', and E are defined by
1

(C)im = Vm = 18—t . (E)pw = (I — 2)5zm- (2.231)

The action becomes

det(2m 6
S = Vdet (2 )|:—(0+6)a,3TrH1 (T*M*TTM + M TTMT)

o
2 | =2 2, =2 6o
+(0a? + 6B2)Tru, MTEM + (0p* + 6a*)Try, MEM ™ + 5 Tru,M*tM
Ao TE—
+ Tru, MMMt M |. (2.232)

We regularize the theory by taking M to be an N x N matrix. The states ¢y, (x),
with [,m < N, where N is some large integer, correspond to a cut-off in position,
and momentum spaces [12]. The infrared cut-off is found to be proportional to R =
V20N, while the UV cut-off is found to be proportional to A = \/ 8N/6. In [20],
a double scaling strong noncommutativity limit, in which N/6 (and thus A) is kept
fixed, was considered.

2.3.5 The Grosse-Wulkenhaar Model

We will be mostly interested in the so-called Grosse-Wulkenhaar model. This
contains, compared with the usual case, a harmonic oscillator term in the Laplacian,
which modifies, and thus allows us, to control the IR behavior of the theory. This
model is perturbatively renormalizable, which makes it, the more interesting. The
Grosse-Wulkenhaar model, corresponds to the values 0 = ¢ # 0, so that the mixing
term, in (2.178), cancels. We consider, without any loss of generality,c = & = 1/4.
We obtain therefore the action

. 1~ 1 2N A aisoaia
S = \/det(ZnH)TrHI:CI>+(— 28? + 2(B,‘,»X,»)2 + F; )q> + 4'<1>+q> q>+q>]

1 1 2 A
= /dzx[cl>+(— Za% + 2(B,;,.x,-)2 + P; )cb + 4'@+ * ®x O % @(x):|.
(2.233)

In two dimensions, we can show that (Bjx;)? = Q2%%, where ¥; = 2(07!);x;, and
Q2 is defined by

BO = 2Q. (2.234)
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We get therefore the action
o Toyg o 1ogn P\ a Aays aia
S = \/detQn0)Try | dT( — LI+ X+ o+ OTO TS
1 1 w? A
= | x| ot — 07+ Q%% P+ Ot dx DT kD
/ x[ ( PRSI R
(2.235)
Similarly, to x; = Z(G_I)ijxj, we have defined X; = 2(9_1)in/. This action, is also
found, to be covariant under a duality transformation which exchanges, among other
things, positions and momenta as x; <> p; = Biyl p;- Let us note here, that because of
the properties of the star product, the phi-four interaction, is actually invariant under
this duality transformation. The value Q> = 1, gives an action which is invariant
under this duality transformation, i.e. the kinetic term becomes invariant under this

duality transformation for Q% = 1.
In the Landau basis, the above action, reads

S = ”92 [(92 — )Ty (T*M*TM + MTT*+MT)

29 A0
+(Q% + ) Try(MTEM + MEM*) + P 5 TruM ™M + " TrHM+MM+M}.
(2.236)

This is a special case of (2.232). Equivalently

1 A
S = 1% Z (2(M+)mnGmn,klel + 4!(M+)mnMnk(M+)klMlm)- (2237)

mn,k,l

Gt = (12 + i 0m +n—1))8,18m1 — 13 Vo — 1) —1) 81 481
N Omn 8y 1 kSmr 1. (2.238)

The parameters of the model are uz, A, and
vy = /det@nf) , p2 =2(Q2+1)/0, Jo =(Q>—-1)/(Q2+1). (2.239)

There are, only, three independent coupling constants in this theory, which we can
take to be u?, A, and Q2.
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Generalization Generalization of the above results, to higher dimensions d = 2n,
assuming maximal noncommutativity for simplicity, is straightforward. The action
reads

n n n 2\ . A Al nA A, a
S = \/det(20)Try [qﬁ(—oDﬁ —65C? + *; )q>+ 4‘c1>+q> c1>+c1>}
- HZ A
:/ddx[q>+(—oz)?—5c$+ 2)q>+4'q>+*q>*q>+*q>] (2.240)

In order to be able to proceed, we will assume that the noncommutativity tensor
6, and the magnetic tensor B, are simultaneously diagonalizable. In other words, 6
and B, can be brought together, to the canonical form (2.138). For example, in four
dimension, we will have

0 912 0 0 0 312 0 0

-6, 0 0 O —Bi, 0 0 O
0= , B= 2.241
0 0 0 6 0 0 O By ( )

0 0 —65 0 0 0 —B3y O

The d-dimensional problem will, thus, split into a direct sum, of #» independent, and
identical, two-dimensional problems.
The expansion of the scalar field operator is, now, given by

o0
b= ZMT(]%J?: = k) s = (. my). (2.242)
i
Obviously
b = [ [ d1m: (2.243)
i=1
And
2 1/4
;5 < det2m0)'* ¢ - (2.244)

The quantum numbers /;, and m; correspond to the plane x;—; —xp;. They correspond
to the operators Xpi—1, X2 321’—1, and 32i, or equivalently, to the creation, and
annihilation operators @, a®*, b0, pO+_ Indeed, the full Hilbert space H,, in
this case, is a direct sum of the individual Hilbert spaces H(i), associated, with the
individual planes.

The above action can be given, in terms of the compact operators M and M, by
essentially Eq. (2.232). The explicit detail will be left as an exercise.
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The Grosse-Wulkenhaar model, in higher dimensions, corresponds, as before, to
the values 0 = 6 = 1/4. However, in higher dimensions, we need also to choose
the magnetic field B, such that

BO =2Q1. (2.245)

The action reduces, then, to
&+ Loy 1o 1 4 Azpa aya
S = \/det(2n0)Try | d PTG LA R

d| o+ Loy oo W2 A ot +
= | dx| ® —28i+29xi+2 d>+4'<I> * Dk O x P,
(2.246)

Again this action will be given, in terms of the compact operators M and M ™, by
essentially the same equations (2.236) and (2.237).

2.3.6 A Sphere Basis

Since we have two sets of creation and annihilation operators we can construct the
following SU(2) algebra (we drop here the hats for ease of notation)

Je=Th+ih=atb,J =01 —ifhh=bta, Js = ;(a+a—b+b12.247)

TP =R+TR+T=TT+1), T = ;(a"'a +bTh).  (2.248)
We can check that
[T T) = i€ T (2.249)
Thus

20D} = ~4(1+ " Vaat )= 4=V b+ )

B%0?
—4( L 1)(ab+a™b™). (2.250)

BO 1 BO 1
20C? = —4(1 — 2(aT —4(1 )
0C; ( 2)(aa+2) (+2)( +2)

B?6?
—4( . 1)(ab+a™b™). (2.251)
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We compute
B26* B26?
20D? +260C? = —8(1 + A YT + 1) +8(1 — A Yab + atb™).
(2.252)

Thus the Laplacian on the sphere can be given at the self-dual point by

R 0 2

J? = [16(1),? + C,.Z)} - . (2.253)
2.4 Other Spaces
2.4.1 The Noncommutative/Fuzzy Torus
We assume in this section degenerate noncommutativity Rz = Ré x R%72. The

action of interest is therefore given by (with slight change of notation)
S=3S80+ S8

A
:/ddx [@(—8?—8}3—}—“2)@—}— 4'CI>*<I>*CI>*<I>(x)i|

= /det(276) / d2x Trﬂ[cﬁ( — [0 [0 1= @ + Mz)cb + i' ci>4]
(2.254)

The goal next is to write down the corresponding matrix model, i.e. we want to
replace the infinite dimensional trace Try; with a finite N-dimensional trace. The
x,,-dependent operators ® will be replaced with x;,-dependent N x N matrices. The
resulting theory for d = 2 is a scalar field theory on the noncommutative fuzzy torus
TZZ\,. As it turns out this can also be obtained by putting the noncommutative scalar
field theory on Ré on a finite periodic N x N lattice. Generalization to d > 3 is trivial
since the extra directions are assumed to be commuting. The relation between the
matrix and lattice degrees of freedom will now be explained. See also [2, 3].

We start by defining the lattice theory and we only consider d = 2. First we
restrict the points to x; € aZ where a is the lattice spacing. The momentum in each
direction will be assumed to have the usual periodicity k; — k1 + 2;’ Jky — ks

orki — ki, kp — ky + 2; . The periodicity over the Brillouin zone will then read

it Tk ol Lj=1,2. (2.255)
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This equation can be put into the form
eati it =1 j=1,2. (2.256)
We obtain the quantization condition
Oypi € 2aZ , j=1,2. (2.257)

This condition is characteristic of noncommutativity. It is not present in the
commutative case & = 0. The above Eq. (2.256) becomes

diti=1,j=1,02. (2.258)
In other words the eigenvalues of x; for a fixed i are on a one-dimensional lattice

with lattice spacing a. But since x; and X, do not commute the lattice sites are really
fuzzy. We can also immediately compute

i i Ul — QTG g (2.259)

This relation means that v; must be like the eigenvalues of x;, i.e. v; € aZ. Thus the
derivatives will be given by the shift operators

Di=¢"% i=1,2. (2.260)
By assuming that [3;, éj] = iB;; we find
DiD; = ¢ BiD;D;. (2.261)

The quantization condition (2.257) indicates that the two dimensional noncommu-
tative space must be compact. We consider the periodic boundary conditions

Oxi + 21,00+ 2o1) = ¢(x1,x2)
Gx1 + Zi2, 02 + Z22) = ¢(x1,x2). (2.262)

The periods X;; are integer multiples of the lattice spacing a. These last two
equations lead to the momentum quantization

k,ZU = Zﬂmj' < kl‘ = 27‘[(2);17)1/ , my eZ. (2263)

The momentum periodicity k; — k. = k; + 2; i, j = 1,2 takes in terms of the
integers m; the form m; — mj’ =m; + tllZij, i = 1, 2. Since the momentum k; is
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restricted to be such that 9;k; € 2aZ we get a restriction on the integers m; given by
Ty -1
0yX; my € L. (2.264)
a
Thus there must exist a 2 x 2 integer-valued matrix M given by

M =", (2.265)

a

The components of this matrix M must therefore satisfy
b4

My Zjy = B 0y (2.266)
Thus lattice regularization of noncommautativity requires compactness. The contin-
uum limit is a — 0. Keeping M and 6 fixed we see that in the continuum limit
a —> 0 the period matrix ¥ goes to infinity, i.e. the infrared cutoff disappears. In
the commutative limit & — 0 and keeping a fixed the matrix M goes to zero. The
continuum limit does not commute with the commutative limit. This is the source
of the UV-IR mixing in the quantum theory.

Due to the periodicity condition ¢ (x; + X;;) = ¢(x;) with j = 1,2 we can use
instead of the coordinate operators X;, i = 1, 2 the coordinate operators

Z =N j=1.2. (2.267)
Indeed we compute
ot = 2T M g g i Oromim (2.268)
The noncommutativity parameter on the lattice is ©. It is given by
0 = 273,60, ;. (2.269)

We can immediately compute

2,7; = 7;Ze" "%, (2.270)
Also we compute
Dlzjbl—l— — eaéizje—aéi — ZjeZm’anTl ' (2.271)

From (2.266) we see that the noncommutativity parameter on the lattice must satisfy
the restriction

1
My= ) Su®y. (2.272)
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Since the periods X are integer multiples of the lattice spacing a and M is a 2 x 2
integer-valued matrix the noncommutativity parameters ®;; must be rational-valued.

In summary we found that lattice regularization of noncommutative Ré yields
immediately the noncommutative torus. In the remainder we will consider the lattice
R?)/noncommutative torus given by the periods

Z,’j = Na8,~j. (2273)
This is the case studied in Monte Carlo simulations [2, 7]. The periodic boundary

conditions become ¢ (x; + a,x) = ¢(x1,x2), ¢p(x1,x2 + a) = ¢(x1,x2). The
Heisenberg algebra becomes

22, = 23600 Dbt = 765 (2.274)

Zi=end Di=e j=1,2, (2.275)
27

0= o6 (2.276)

The momentum quantization reads

k=ka=2rx ', ,i=12. (2.277)

Momentum periodicity IAc,- — IAc,- +2mé;; yields then the valuesm; = 0,1,...,N—1.
Quantization of the noncommutativity parameters 6 and © read

Na*M;; 6. = My

0 = . Q= (2.278)
In the following we will choose
M;; = €. (2.279)
Thus
Ot = P ML g gma o mum (2.280)
The Weyl map between fields and operators is given by
N—1 N—1I
N2 O3 e o gmiime, (2.281)

m1=0my=0
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The point x; is on the lattice aZ with period aN. In other words x;=0, a, 2a, .
(N — 1)a. We compute for x; # 0 that

N—1 2711 _1 )
Soedwma =0 T =0, =1, (2.282)

Xl —
m=0 e aN 1

For x; = 0 we clearly get Z o€ @m¥ = N.Thus we must have the identity

N—1 N-—1

2mi
e Z > QNN g MY = § 08 . (2.283)

m;=0mp=0

We consider the operators and lattice fields defined respectively by

N—1 N—1
d=> > & (m)Zm 2 ¢ N mime, (2.284)
m1=0my=0
N=1 N=1 .
) =Y D plm) e, (2.285)
m;=0mp=0
Let us compute
Ter1 =Tr ezz\l’l:l"‘. (2.286)

We diagonalize X;. Since the eigenvalues lie on a periodic one dimensional lattice

with lattice spacing a and period Na we get the eigenvalues an; with n; = 0,
.,(N — 1)a. Thus
—1 )
A T[Iml
TrZ" =Y e ¥ " = Nbuy. (2.287)
n1=0
Similarly
N—1
A 2mimy
TrZy =) e N "™ = Nbp,o. (2.288)

ny=0
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We also compute

5 Sn _ Sn s 4min
ZzZl = Z1Z2 e N
A oA AR __4min
Z1Z’21 = Zng e N

4mimn

Sman __ Anism
o = m etV

Hence
2;"12'2"2 2’1112'212 - 211711+n12;n2+n2 i
T2 222 = Ne N Sy i Buyns-
1 L2741 4 S S
TrZI”lZZ’ZA(x) = Iile_zﬁimlmz efg\jmixi‘
Therefore

TrgA(x) = ¢(x)

Also we compute

N—1 N—1
E ei’,{,’ (mi—ni)x;i _ E E ezﬁ’(mi—ni)ri — N28m,n-
X r1=0r=0

§ eaN m,x,A(x) mIZmz mlmz

Y pWAE =

We define the star product on the lattice by
b1 % $2(x) = NTr oA (x)
=N p1(0hQTrA®AGAR).

.z

We compute

NTer1+nlzm2+n2 Ax) =e 25 omy+my) (my+n2) eiﬁ/ ((m1+n1)xl+(m2+n2)x2)_

NTFA()AMAR) = N14 S Y R ) 3 (i),

my,mz ny,n2

(2.289)

(2.290)

(2.291)

(2.292)

(2.293)

(2.294)

(2.295)

(2.296)

(2.297)

(2.298)

(2.299)
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We use the identities

2mi 2ri

¢ Na ny(amy+x1—21) _ Ngamz—l—xl—zl , e Na my(—ami+x2—22) _

N8—am1 +x2—2-
ni na

(2.300)

We thus get

NTrA(x)A()A(z) = le exp (Z”i € (i — yi) (xj — z,-)). (2.301)

a’N

In other words

1 2mi
¢1 * Pa(x) = A2 D exp (aaneii(xi — i) — Zj))¢1()’)¢2(z)
.z

1
- Zexp(—2ie,-;l(x,-—y,-)(xf—z,-))qsl(y)qsz(z). (2.302)
.z

It is not difficult to show that in the continuum limit this reduces to the star product
on Moyal-Weyl space. By using the fact that )~ A(x) = 1 we obtain

> b1 % da(x) = NTrdihs. (2.303)
Next we compute
DigDf = 3" dm)z 2y &N memt, (2.304)
mp,myp
NTrD DT Ax) = e (¢ (x)). (2.305)
Similarly we compute
NTrDy DY A(x) = e (¢ (x)). (2.306)

In other words

NTr(btii)l* - é)&(x) = (e”ai - l)(¢(x)) Li=1,2. (2.307)
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Thus if we take ¢;(x) = (e“a" - 1) (¢(x)) the corresponding operator will be ¢A>,- =

ﬁ,ngf — ¢3 We can immediately write the kinetic term

2
D odixpi(0)+au’ Y pxpx) = NTr(fJiq%i)i+ - q?) + Na* 1> Tr¢p?.
) ' (2.308)

This is the regularized version of the noncommutative kinetic action
/ d’x p(—0% + ) = \/det(zné)TrHés( — [0 [0s, .. )+ ;ﬁ)q@. (2.309)
We add the interaction
azkzcb*qb*qb*q&(x)—NazATrq% (2.310)
41 4 ' ’
This is the regularized version of the noncommutative interaction

:! /d2x¢ xPx Pk (x) = \/det(27r§) j! Trud*. (2.311)

Clearly we must have \/det(ZJré) = 27601, = Na?. In other words § = 0/2.

The noncommutative torus is given by the algebra a)zlzz = 2221, b121151+ =
\/a)Zl, [)222[);— = \/0)22, ﬁzzlb;— = 21 and ﬁlzzbil— = 22. The twist w is given
in terms of the noncommutativity ®, by

4mi

—e. (2.312)

w = leri@lz
The algebra of the noncommutative torus admits a finite dimensional representation
when the noncommutativity parameter ®; is a rational number which is the case
here since N®, = 2. The dimension of this representation is exactly N. This is
the fuzzy torus. In this case the algebra of the noncommutative torus is Morita
equivalent to the algebra of smooth functions on the ordinary torus. More precisely
the algebra of the noncommutative torus is a twisted matrix bundle over the algebra
of smooth functions on the ordinary torus of topological charge N®|, = 2 where
the fibers are the algebras of complex N x N matrices.
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To construct a finite dimensional representation of the algebra of the noncommu-
tative torus we introduce shift and clock matrices I'; and I} given by

01
001
[ = (M) =68k, (O =68y, T =10 = 1.
01
1 0
(2.313)
1
w
0)2
Fz = a)3 s (FZ)Lj = a)’_ISiJ s (F2+)lj = a)l_’&;j s
L =0 =1 (2.314)

These are traceless matrices which satisfy Iy = f‘g’ = 1. We compute the 't Hooft-
Weyl algebra

flfz = a)f‘sz. (2315)
We can immediately define Z: by the matrices

Zi=1y,2,=T]. (2.316)

By using the 1dent1t1es w M (l"*‘)NJrl = f‘z(f‘f—)le, (F+)N+l =

3T 2 I (F+) 7 and 07 = = /o we can show that the algebra D,-Zle. =
e ’fZ, is satisfied provided we choose D; such that

N1 N+

Di=1,2 D= (2.317)

We also compute

A A A~ _wi(N+1) A A

DD, =w ( 2 )2D2D1 =e N D,D,. (2.318)

By comparing with Eq. (2.261) we get Bj201, = —(N + 1).
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The matrices I} generate the finite dimensional algebra of N x N complex
matrices. We introduce the generators

™ = "5 Zm 7, (2.319)
We have
~ 1 i
Aw =, ST W, (2.320)
We compute
(N) (N . 2w (V)
[7,,”.T,”] = 2sin N (nimy —mn)T, [ . (2.321)

Thus

_ 27

N A 2 2
Aw.A00= ., 3 sin ]\7; (nymy — myng) T, e o misitni)

=Y K(x—zy-2A@). (2.322)

2 27T i
Kx—zy—2) = N Z sin B (nymy — mny) e~ o (miCi—z)Fnii=2) (2.323)
m,n

We have used the identity

Z e 2 (mi(xi_zi)+”i()’i_zi))A(Z) — Tr(n]\-?n e~ 2n (mixi+niyi) (2.324)
z

The operators TV generate the finite dimensional Lie algebra g/(N, C) of dimen-

sion N2. Anti-Hermitian combinations of T\’ in a unitary representation span the
Lie algebra su(N).

2.4.2 The Fuzzy Disc of Lizzi-Vitale-Zampini

The original construction can be found in [21-24] with some related discussions
found in [4, 30].

The starting point is the algebra of functions on the noncommutative plane and
then implementing the constraint x> + y?> < R?. Let the algebra of functions on
the noncommutative plane be denoted by As = (F(R?), %) where * is the Voros
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star product (f * g)(z,z) =< z[fgrlz >. This algebra is isomorphic to an algebra of
infinite dimensional matrices (operators). The algebra of functions on the disc Agv)
is defined by a projector ng) via the relation

AN = PN s Ag % PYV, (2.325)

_,Z/QZN: P T(N+1,2/6)
n!or

p(N) _ ™) _
P, E n >< Y| = Py
v Vil 'N+1)

n=1

(2.326)

The algebra A;N) is isomorphic to the finite dimensional (N + 1) x (N + 1) matrix
algebra Maty . Functions on the fuzzy disc are defined explicitly by

N N N

m,n=0

\/ - (2.327)
mln m Vl

Obviously, the function f on the noncommutative plane is given by the same
expansion (Berezin symbol) with N = co.
The commutative limit of the continuum disc is defined by

N — 00, § —> 0 keeping R? = ON = fixed. (2.328)

In this limit, the projector P} goes to 1 for 2 < R%, to 1/2 for r* = R2 and to 0
for 7> > R* which is precisely the characteristic function of a disc on the plane.

The geometry of the fuzzy disc is fully encoded in the Laplacian. The Laplacian
on the Moyal-Weyl plane is given

4 R
V2 = g <31 atlz > . (2.329)

We can give the operator f , corresponding to the function f, by the expression
o0
F=Y" funl¥m >< vnl. (2.330)
m,n=0

On the fuzzy disc we define the Laplacian by the formula

4 . ~
POl PR Aty (2331)

v -
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Clearly, the truncated operator f ™) is given by the expression

N
7= fonl¥m >< vul. (2.332)

m,n=0

Explicitly the above Laplacian is given by Eq.(C.41) of Lizzi et al. [25]. The
corresponding eigenvalues have been computed numerically and have been found
to converge to the spectrum of the standard Laplacian on the continuum disc with
Dirichlet boundary conditions.
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Chapter 3
The Fuzzy Sphere

Abstract In this chapter the quantization of the commutative sphere which yields
the noncommutative fuzzy sphere is discussed in great detail. We explicitly
construct coherent states, the star product, the flattening limit as well as noncom-
mutative scalar field theories on the fuzzy sphere. A brief introduction to fuzzy CP?
and to fuzzy fermions and Dirac operators on the fuzzy sphere is also presented.

3.1 Quantization of S?

3.1.1 The Algebra C*™(S?) and the Coadjoint Orbit
SU@2)/U@)

We start by reformulating, some of the relevant aspects of the ordinary differential
geometry of the two-sphere S?, in algebraic terms. The sphere is a two-dimensional
compact manifold defined by the set of all points (x|, x2, x3) of R? which satisfy

43 +3 =R (3.1)

The algebra A = C*(S?) of smooth, complex valued, and bounded functions on
the sphere, is of course, commutative with respect to the pointwise multiplication of
functions. A basis for this algebra, can be chosen to be provided, by the spherical
harmonics Y}, (0, ¢), namely

f(‘x) :f(97 ¢)) = Z ﬁll ak-xal -xak
= chmYlm(ea d’) (3.2)
im

The derivations on S? will be given, by the generators of the rotation group L,,
defined by

Ea = —iea;,cx;,ac. (3.3)
© Springer International Publishing AG 2017 73
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They satisfy
[Eav Eb] = i€gpcLe. (3.4)
The Laplacian on the sphere S? will be, obviously, given by

A =L
= L,L,, eigenvalues =I[(I+ 1), [ =0,..., 0. 3.5

According to [13, 14], all the geometry of the sphere, is encoded in the K-cycle,
or spectral triple, (A, H, A). H is the infinite dimensional Hilbert space, of square
integrable functions, on which the functions of A are represented. Alternatively, H
can be thought of as the Hilbert space with basis provided by the standard infinite
dimensional set of kets {|X >}, and thus the action of an element f of A on |X >,
will give the value of this function at the point X.

In order to encode the geometry of the sphere, in the presence of spin structure,
we use instead the K-cycle (A, H, D, y), where y, and D are the chirality, and the
Dirac operator on the sphere [11].

A manifestly SU(2)-invariant description of A can also be given following [18].
In this case, the algebra A is given by the quotient of the algebra C*®(R?) of all
smooth functions on R3, by its ideal Z consisting of all functions of the form
h(x)(x.xs — R?). Let f, g€ A, and f(x),g(x) are their representatives in C*®(R?)
respectively, then a scalar product on A is given by

Fg)=

- / P8 (e — RO (500). (3.6)

We can also define the sphere by the Hopf fibration (with n, = x,/R)

7:8UQR) — §?

g — gosg ' =n.

Qs

. (3.7

We can check, by squaring both sides of the equation go3g™' = 7.5, that Z?: \nk=
1. Clearly the structure group, U(1), of the principal fiber bundle

U(1)—SU(2)—S?, (3.8)

leaves the base point 7 invariant, in the sense that, all the elements g exp(io360/2) of
SU(2), are projected onto the same point 72 on the base manifold S%. One can then,
identify the point 7€S?, with the equivalence class [gexp(io36/2)]eSU((2)/U(1),
viz

i€ 8%« [gexp(ioz6/2)]eSUQ)/U(1). (3.9)
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In other words, S? is the orbit of SU(2) through the Pauli matrix o3. It is the set
{go3g7" : g € SU(2)}. The sphere is, therefore, the co-adjoint orbit SU(2)/U(1).
In fact, SU(2)/U(1), s also the complex projective space CP'. We have then

§? = CP! = sU2)/U(1). (3.10)

Let us say few more words about this important result [25]. Any element g € G =
SU(2) can be parameterized by

g= ( “ﬂ) la> + |B> = 1. (3.11)
—,305

In other words, SU(2) is topologically equivalent to the three-dimensional sphere
S3. This group contains the subgroup of diagonal matrices

1)

This is a U(1) group. It is quite straightforward to see, that the quotient space
X = G/H, is isomorphic to the elements of G of the form

{(_"‘Bg)},azﬂmzzl. (3.13)

This must be the sphere S%. Indeed, by using g = al, — 107 + if,07 in gozg™! =

N40q, We obtain n; = 2B, ny = 2af,, andn3 = 20> — 1, or equivalently

0 0
o = cos 5 B = sin 5 exp(ig). (3.14)

3.1.2 The Symplectic Form d cos § A d¢

The symplectic two-form on the sphere 8 is dcosf A d¢. This can also be given by
the two-form —ejnidniAdn;/2. Thus, we have

A
w = AdcosOndyp = — 5 EapeNagdnpNdne. (3.15)

The significance of the real number A will be clarified shortly. We claim that this
symplectic two-form can be rewritten, in terms of the group element g € SU(2), as

0= Aid|:Tr03g_ldg:|. (3.16)
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This can be seen as follows. From d(gcr3g_1) = dn,.0,, We get [dg.g_l, no, =
dn,o,, which indicates that dg.g™' is in the Lie algebra, viz dg.g~' = r,0,. From
[ra04, na04] = dngo,, we derive dn. = 2i€gpcr,np. We can express r,, in terms of n,
and dn,, as follows

. 1
Ta — (rn)na = 2.€ahcnbdnc‘ (3.17)
1

We can, then, show immediately that

1

w = —iATrgosg” '.dgg™' Adgg™

= 2A€abcna Ipre

A
s EapeNadnpNdn. (3.18)

It is not difficult to show that the two-form w is gauge invariant, under the right
U(1) gauge transformations g —> gexp(ifo3/2). This gauge invariance can also
be seen, from the fact, that we can express @ in terms of n,. As a consequence, a
gauge invariant action Swz, can be constructed out of the two-form w, as follows [4]

Swz = /a) (3.19)

This is the so-called Wess-Zumino action. The domain of the integration is clearly
two-dimensional, and also it must be closed, as we now explain.

Let us think of n; as the coordinates of a string, parameterized by o € [0, 1],
moving on the sphere S2. Thus n; = n;(0, 1), where ¢ is the time variable which goes,
say, from #; to f,. Hence, g = g(o, f). We will assume that g(0, r) = go, where g is
some fixed element of SU(2), and we set g(1,) = g(¢). If one defines the triangle
A in the plane (z,0), by its boundaries given by the three paths dA| = (o,11) ,
dA; = (0, 1) and A3 = (1,1), then it is a trivial exercise to show that [4]

SWZ:/(U
A

5] 1 ag ag
= / Lwzdt + Ai/ doTros |:g(0, n)~" ) (o.n) —glo.n)™" " (o, lz)}-
n 0 do do
(3.20)

The Wess-Zumino Lagrangian L is given by
Lwz = AiTr(o3g7'%). (3.21)

The equations of motion derived from the action (3.20), are precisely those, obtained
from the Wess-Zumino term given by (5.182). This is, because, the second term
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of (3.20), will not contribute to the equations of motion, since it involves the fixed
initial, and final times, where g is not varied.

The Lagrangian Ly arises, generally, when one tries to avoid singularities of
the phase space. In other words, when one tries to find a smooth global system
of canonical coordinates for the phase space. In such cases, a global Lagrangian
can not be found by a simple Legendre transformation of the Hamiltonian, and
therefore, one needs to enlarge the configuration space. A global Lagrangian, over
this new extended configuration space, can then be shown, to exist, and it turns out
to contain (5.182) as a very central piece. Basically (5.182) reflects the constraints
imposed on the system.

Two examples, for which the above term plays a central role, are the cases of
a particle with a fixed spin, and the system of a charged particle in the field of a
magnetic monopole. These two problems were treated in great detail in [4].

3.1.3 Quantization of the Symplectic Form on S*

The fuzzification of the sphere S? is the procedure of its discretisation by quanti-
zation. The starting point is the Wess-Zumino term (5.182). This same procedure,
as will show in due time, works for all co-adjoint orbits such as CP". Spacetimes
and spatial slices, which are not co-adjoint orbits, require other procedures for their
fuzzification.

Let us now turn to the quantization of the Lagrangian (5.182). First, we
parametrize the group element g by the set of variables (£, &, &3). The conjugate
momenta ; are given by the equations

0Lwz _10g
= = AiTr(o ). (3.22
o (038 8§l) )

&; and m; will satisfy, as usual, the standard Poisson brackets {§;, §;} = {m;, mj} = 0,
and {E,’, 71']'} = 5,]

A change in the local coordinates, &—>f(¢), which is defined by g(f(¢)) =
exp(i€;0:/2)g(§), will lead to the identity

) o,
5 ne = 1750, Mo = " Lo (3.23)

0€;
The modified conjugate momenta ¢; are given by

= _anji = An;. (324)
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They satisfy the interesting Poisson’s brackets

Oi
li,gy =1
{ti. g} i,8
o
gy =—ig?t!
g} g™,
{ti. tj} = et (3.25)

Putting Eq. (3.24), in the last equation of (3.25), one can derive the following result
{xi,xj} = Rejxi/A, which is the first indication that we are going to get a fuzzy
sphere under quantization. The classical sphere would correspond to A—>0c0.

However, a more precise treatment, would have to start by viewing Eq. (3.24), as
a set of constraints rather than a set of identities on the phase space (§;, t;). In other
words, the functions P; = t; — An; do not vanish identically on the phase space
{(&;, t;)}. However, their zeros will define the physical phase space as a submanifold
of {(&;, t;)}. To see that the P;’s are not the zero functions on the phase space, one can
simply compute the Poisson brackets {P;, P;}. The answer turns out to be {P;, P;} =
€k (P — Ang), which clearly does not vanish on the surface P; = 0, so the P;’s
should only be set to zero after the evaluation of all Poisson brackets. This fact will
be denoted by setting P; to be weakly zero, i.e.

P; ~ 0. (3.26)

Equation (3.26) provide the primary constraints of the system. The secondary
constraints of the system are obtained from the consistency conditions {P;, H} ~ 0,
where H is the Hamiltonian of the system. Since H is given by H = v;P; where v; are
Lagrange multipliers, the requirement {P;, H} ~ 0 will lead to no extra constraints
on the system. It will only put conditions on the v’s [4].

From Eq. (3.25), it is obvious that #; are generators of the left action of SU(2). A
right action can also be defined by the generators

1 = —1;R;(g). (3.27)

Rij(g) define the standard SU(2) adjoint representation, viz R;(g)o; = g(fjg_l.

These right generators satisfy the following Poisson brackets

(. g} = —igzi
ey =il
(i, 15} = ety (3.28)

In terms of th the constraints (3.26) will, then, take the simpler form

R~ —ASy;. (3.29)
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These constraints are divided into one independent first class constraint, and two
independent second class constraints. t§ ~ —A is first class, because on the surface
defined by (3.29), one have {ff,/%} = 0, for all i. It corresponds to the fact
that the Lagrangian (5.182) is weakly invariant, under the gauge transformations
g—>gexp(ioz0/2), namely Lwz—>Lwz — A6. The two remaining constraints,
R ~ 0 and 1§ ~ 0, are second class. They can be converted to a set of first class
constraints by taking the complex combinations t’i = R +if ~ 0. We would, then,
have {1%, 18 } = Firf , and therefore all the Poisson brackets {r%, /% } vanish on the
surface (3.29).

Let us now construct the physical wave functions of the system described by
the Lagrangian (5.182). One starts with the space F of complex valued functions
on SU(2), with a scalar product defined by (Y1, ¥») = fSU(Z) du(@)v(g)* v (g),
where du stands for the Haar measure on SU(2). The physical wave functions
are elements of F which are also subjected to the constraints (3.29). They span a
subspace H of F. For A < 0, one must then have

By = —Ay
Ry =0. (3.30)
In other words, v transforms as the highest weight state of the spin [ = |A]|

representation of the SU(2) group. Thus, |A| is quantized to be either an integer
or a half integer number, viz

N-1
Al=1="_ " N=12... (3.31)

The physical wave functions are, then, linear combinations of the form

1
v(g) = Z Cy < Im|D'(g)|ll > . (3.32)

m=—I[

The D'(g) is the spin [ = (N — 1)/2 representation of the element g of SU(2).

If A was positive the second equation of (3.30) should be replaced by Ry =
0, and as a consequence, ¥ would be the lowest weight state of the spin [ = A
representation of the SU(2) group.

Clearly the left action of SU(2) on g will rotate the index m in such a way that
< Im|D'(g)|ll > transforms as a basis for the Hilbert space of the N-dimensional
irreducible representation [ = (N — 1)/2 of SU(2). Under the right action of SU(2)
on g, the matrix element < Im|D'(g)|ll > will, however, transform as the highest
weight state [ = |A|, m = |A] of SU(2).

In the quantum theory, we associate with the modified conjugate momenta #;, the
operators L; satisfying

[Li, Lj] = iejaLy, L} = I(1+ 1). (3.33)
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These are (21 4+ 1) x (21 4+ 1) matrices, which furnish, the spin / = (N — 1)/2
irreducible representation of SU(2). In a sense, the L;’s provide the fuzzy coordinate
functions on the fuzzy sphere SIZ\,. Fuzzy points are defined by the eigenvalues
of the operators L;, and the fact that these operators can not be diagonalized,
simultaneously, is a reflection of the fact that fuzzy points can not be localized.

Observables of the system will be functions of L;, i.e. f(L;)) = f(Ly, Lo, L3).
These functions are the only objects which will have, by construction, weakly zero
Poisson brackets with the constraints (3.29). This is because, by definition, left and
right actions of SU(2) commute. These observables are linear operators which act
on the left of {(g) by left translations, namely

ilis) = [ & v ¥)] (3.34

t=0

The operators f(L;) can be represented by (2/ + 1)x(2/ 4 1) matrices of the form

f@) =" e il ... Li. (3.35)

The summations in this equation will clearly terminate because the dimension of the
space of all (2/ + 1)x(2[ 4 1) matrices is finite equal to (2/ + 1).

The fuzzy sphere SIZ\, is, essentially, the algebra A of all operators of the
form (3.35). This is the algebra of N x N Hermitian matrices Maty, viz A = Maty.
More precisely, the fuzzy sphere S is defined by the spectral triple (Ar, Hz, Az),
where H; is the Hilbert space H spanned by the physical wave functions (3.32). We
leave the construction of the Laplacian operator Ay to the next section.

3.2 Coherent States and Star Product on Fuzzy SIZV

The sphere is the complex projective space CP!, which is also a co-adjoint orbit.
The quantization of the symplectic form on S8? yields the fuzzy sphere SIZ\,. In this
section, we will explain this result, one more time, by constructing the coherent
states, and star product on the fuzzy sphere S12v following [26] and [7]. We will also
construct the correct Laplacian on the fuzzy sphere.

Coherent States We start with classical S? defined as the orbit of SU(2) through
the Pauli matrix o3. This orbit can also be given by the projector

1
P = 2(lz + 1404). (3.36)

The requirement P> = P will lead to the defining equation of S?, as embedded in
R?, given by

n? = 1. (3.37)
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The fundamental representation 2 of SU(2) is generated by the Lie algebra of Pauli
matrices t, = 0,/2,a = 1,..., 3. These matrices satisfy

[taa tb] = ieahctc

1 .
24ty = 28ah12 + i€apctc

] 8(1
Tritpt, = ;eabc, Trity, = Zb, Trt, = 0. (3.38)

Let us specialize the projector (3.36) to the “north” pole of S? given by the point
np = (0,0, 1). We have then the projector Py = diag(1,0). So at the “north” pole,
P projects down onto the state |/o >= (1,0) of the Hilbert space H 3)2 = C2, on
which the defining representation of SU(2) is acting.

A general point 7€ S? can be obtained from 7, by the action of an element
g€eSU(2), as n = R(g)ny. P will then project down onto the state | >= g|yo > of
Hﬁ)z One can show that

P=|y ><y|=glvo><olg" = gPog". (3.39)
Equivalently
ghg " = Nl (3.40)

It is obvious that U(1) is the stability group of #; and hence S*> = SU(2)/U(1).
Thus, points 72 of 82, are equivalent classes [g] = [gh], heU(1).

We will set | >= |ng, 1/2 > and | >= |1, 1/2 >. By using the result (3.14),
we can now compute, very easily, that

. L1
|n, ><n, | =P
2
= gPog”"
20 1 0 ib
_ cos? ,sinhe? ) (3.41)
lgin?e  gin??
o SIn, 2

And (with dQ2 = sin 6d0d¢ being the volume form on the sphere)

a | 1 J 1 1
|n,  ><n, |=_. (3.42)
@ 4T 2 2 2
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Also we compute

IV U | | IV |
<n, 2|n7 2 > = < ny, 2|g+(l’l )g(n)|n0, 2 >
=da+pp
0 0 . 6 6
=cos _ cos . + €@ Pgin_ sin _. (3.43)
2 2 2 2

The fuzzy sphere S% is the algebra of operators acting on the Hilbert space H?,
which is the (2/ 4+ 1)-dimensional irreducible representation of SU(2), with spin
[ = (N — 1)/2. This representation can be obtained from the symmetric tensor
product of N — 1 = 2/ fundamental representations 2 of SU(2). Indeed, given any
element geSU(2), its [-representation matrix U'(g) can be obtained, in terms of the
spin 1/2 fundamental representation UV/?(g) = g, as follows

U%g) = UV (9)®;...@,UY?(g), (N — 1) — times. (3.44)

Clearly, the states |y > and | > of H1 /20 will correspond in Hl(z) , to the two states
|70, I > and |7, | > respectively. Furthermore the equation | >= g|yy > becomes

1,1 >= UY(g)|ig, 1 > . (3.45)

This is the SU(2) coherent state in the irreducible representation with spin [ =
(N — 1)/2. The matrix elements of the operators UV (g), in the basis |Im >, are
precisely the Wigner functions

<LmlU@lLm >=D! (9. (3.46)

The states |7ig, [ > and |7g, 1/2 >, can be identified, with the highest weight states
|I,{ > and |1/2,1/2 > respectively.
The analogue of (3.43) is, easily found to be, given by

VAN 11 2
< ,l ,l > = < )
n,ln ( n, 2| 5 )
9’ 0 0 0\
= cos +e’(¢ ~Psin _ sin . (3.47)
2 2 2 2

The projector P will be generalized to P;, which is the symmetric tensor product of
2l copies of P, and hence, P = Py, and

P=P®,...QP
= |n,l><n,l|. (3.48)



3.2 Coherent States and Star Product on Fuzzy S, 83

This is also a rank one projector. The analogue of (3.43) must be of the form
e -
/ |, ><n,ll =N. (3.49)
S2 4

By taking, the expectation value of this operator identity in the state |ﬁ/,l >, we
obtain

a. .o .
/S2 47T|<n,1||n,1>|2=1\/. (3.50)

Equivalently

4 4

/ dQ 2 0 2 0 . 0
cos cos —+ sin
s 4m 2 2 2

This is valid for any point #'. We can use rotational invariance to choose 7’ along
. 4 .
the z axis, and as a consequence, we have 8 = 0. We get, then, the integral

o 1. ’ 2
sin’ ) + 2sin@ sin @ cos(¢ —¢)) =N.

(3.51)

/ dcosO(1 4 cos0)* = —2VN/. (3.52)
S2
We get
N=! (3.53)
=N .

Star Product To any operator F on Hl(z) , we associate a “classical” function F(n)
on a classical S? by

Fi(7) =< nI|F|, 1> . (3.54)

We check

. e’ .
TrP)F = N <n,lPFln,l>
S2 47

7

e - I
:N/ <n,l|Pn,l ><n,l|F|n,Il>
S2 4
Q' L. IR
:N/ <nmlF|n,l><n,lPlnl>
S2 4
= < l|Fn,1>

— Fi(7). (3.55)
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The product of two such operators F and G is mapped to the star product of the
corresponding two functions, viz

F; % Gi() =< i, I|[FG|i, | >= TrPFG. (3.56)
From this equation follows the identity

a2 - | I
/ F +Gh) = _ TrFG. (3.57)
S2 4 N

We want, now, to compute this star product in a closed form. First, we will use the
result that any operator F, on the Hilbert space Hl(z) , admits the expansion

F= / du(hF(yUu® (n). (3.58)
SU(_2)

U (h) are assumed to satisfy the normalization
U (UO () = Ns(h™' = 1). (3.59)

Using the above two equations, one can derive, the value of the coefficient F(h) to
be

F(h) = IlvTrﬁU“) . (3.60)
Using the expansion (3.197), in (3.54), we get
Fi(n) = /S v du(WF(hw® @, h), oV @G, h) = <, JUYR)|R, 1> . (3.61)
On the other hand, using the expansion (3.197), in (3.56), will give

F, % G(it) = / / du(h)d(WEh)GH)o® G, hi). (3.62)
SU(2) JSU(2)

The computation of this star product boils down to the computation of w®® (i, hh/).
We have

oV (1, h)

< UV )7, 1 >

<n 1|® ®, <7 1|
= n, s . ®s <1,
2 2
) ) o1 1
U@, UM || > @ @i >

= [0 @, W), (3.63)
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where
Iy -
02 G, h) = < y|UP )|y > . (3.64)

In the fundamental representation 2 of SU(2), we have U® (h) = exp(imqt,)
= c(m)1, + is,(m)t,, and therefore

0@ (. h) = < Yle(m) + isa )ty >= c(m) + isa(m) < Y|ty > .

(3.65)
Further
w @, h) = < y|UP )|y >
= < Yl(cm)1 + isa(m)ta) (c(m ) + isa(m )ta) |y >
= c(m)e(m') + ilc(m)sq(m) + c(m')sa(m)]
< Yltaly > —sa(m)sp(m) < Yltaty| Y > .
(3.66)
Now it is not difficult to check that
1
< Y|t,|¥ > = Trt,P = 2”“
| .
< wltatbhh > = Tri,pP = 48ab + iéabcnc- (367)
Hence, we obtain
w(;)(ﬁ,h) = c(m) + ;sa(m)na. (3.68)

And
o (G, hh') = c(m)c(m’) — isa(m)sa(m/) + ;'[c(m)sa(m/) + c(m’)sa(m)}na
—ieabcncsa(m)s;,(m/). (3.69)

These two last equations can be combined to get the result

0D G, i) — 02 (G, DD @G, h) = — 5(m)3m) — ;eabcncsa(m)sb(m’)

+ nanbsa(m)sb(m/). (3.70)

G s
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Hence, in this last equation, we have got ridden of all reference to ¢’s. We would

like also to get ride of all reference to s’s. This can be achieved by using the formula

2
Sa(m) = l.giaw@(ﬁ,h).

(3.71)
We get then
QG hh G DG H R P R T e
w2 (n,hh) — 02’ (n,h)w'2’(n,h ) = Ky . o2 (n,h)a p @2 (n,h). (3.72)
n
The symmetric rank-two tensor K is given by
Ky = Sab — NgNp + (€apcNe (373)
Therefore, we obtain
e = [ [ i) Facn) 6 nP
SU2) JsU(2)
i @1 . X
= ayby - agby
£ (21— k!
- Y= ok 0 4y = 0 Y=
du(h)F(h)[w'2’ (n, h)] w'2’(n,h)... w2’ (n, h)
SU(2) anal anak
x/ du OGP+ 2 wOany. . L wOan).
SUQ) onp, onyp,
(3.74)
We have also the formula
21—k)! 0 ad -
@2n!  dng, ong,
~ N ad - 0 -
/ duWEM) w2 @+ " oD@ ) ... 0 oD@, h).
SU2) ong, ong,
(3.75)
This allows us to obtain the final result [7]
(21 ) ad d .. 0 d -
F; %G, Kb, ... K, F Gi(n).
1 Gil#) = Z pqany Ko Kavg, o, T 5, g, GO

(3.76)
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Derivations and Laplacian The [-representation matrix U®" () can be given by
UD (h) = exp(in.L,). Now if we take 7 to be small, then, one computes

< UYm) |, 1 >= 14 in, < n,l|La|n, 1> . (3.77)

On the other hand, we know that the representation U") (k) is obtained by taking the
symmetric tensor product of 2/ fundamental representations 2 of SU(2), and hence

R - 21 o1 1
<, | UV )i, 1 >= (< 7, 2|1 + inata|ii, 5 > =1+ (21)ina2na. (3.78)

In above we have used L, = 1,®;....Qqt,, |1, s >= |7, ; > Q... Q1. ; >, and

the first equation of (3.67). We get, thus, the important result
< L1, 1 >= In,. (3.79)

From this equation, we see explicitly that L, /! are, indeed, the coordinate operators
on the fuzzy sphere S3,.

We define derivations by the adjoint action of the group. For example, derivations
on S? are generated by the vector fields £, = —i€pcn0. Which satisfy [L,, L] =
i€qpc L. The corresponding action on the Hilbert space H, (2), will be generated, by
the commutators [L,, . ..]. The proof goes as follows. We have

< UV YEUY ()il > = < i, | F|i 0 > —in, < 3,1 [Le, F]J, 1>

(3.80)
Equivalently
< U YFUO (W) |7, 1 > = F; — inal(ng % Fi — F) % ng)
=F - ;na(Kab — Kia)pFi
= F;—in,L.F). (3.81)

Therefore, fuzzy derivations on the fuzzy sphere must, indeed, be given by the
commutators [L,, . . .], since we have

(LaF)i(R) = < i, 1| [La, F]J7, 1> . (3.82)

A natural choice of the Laplacian operator Ay on the fuzzy sphere, is therefore,
given by the following Casimir operator

Ap = L2 =Ly, [La. ). (3.83)
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It is not difficult to show that this Laplacian has a cut-off spectrum of the form
k(k+ 1), where k = 0, 1, ..., 2l. This result will be discussed, much further, in due
course.

3.3 The Flattening Limit of R}

In this section, we will discuss a, seemingly, different star product on the fuzzy
sphere, which admits a straightforward flattening limit, to the star product on the
Moyal-Weyl plane. We will follow [1].

3.3.1 Fuzzy Stereographic Projection

We have established, in previous sections, that the coordinate operators X, on the
fuzzy sphere are proportional to the generators L,, of the group SU(2), in the
irreducible representation with spin / = (N — 1)/2. Since Y_, L2 = I(l + 1), and
since we want ) _ %2 = R?, we define the coordinate operators on the fuzzy sphere
S3 by

X Rl (r+1 N1 (3.84)
Xg = , € = = . .
\/6‘2 2 4

This definition is slightly different from (3.79). Hence, the commutation relations
on the fuzzy sphere read

A A iR N
[xa’xh] = €abcXc- (3.85)

Ve

‘We must also have

Y =R (3.86)

We define the stereographic projections a and a*, in terms of the operators %,, as
follows

1 1
a= 2(;%1 —i%)b, at = Zb(fcl + i%y), (3.87)
where

b=~ . (3.88)
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We can compute immediately that [a,b~!] = —aa/2 and [a",b7'] = aat/2,
where o = 6?/R, and 62 = R?/ ,/c,. Hence we conclude that b~! commutes with
|a|?> = aa™. From the other hand, we can show by using Jacobi’s identity that b~
commutes with [a, a™], and thus b must also commute with a™a. By using this fact,
and also x3 = R — 2b™!, as well as [b,a] = —abab/2, we obtain the analogue of
the commutation relation [x, %] = iR¥3/ \/c2, which takes the simpler form

la.a*] = F(lal*), |a]* = aa™. (3.89)

R 62 R?
Flal?) = ab| 1 +|a? = “blaP = "b|, a =, 02 = " . 3.90
(af) = ab|1-+1af = Gplaf = Y| o= G0 = 0 o0

The constraint ), X2 = R? reads in terms of the new variables
52 o 2 2
4,319 —(,3+2)b+1+|a| =0, B =R+ a|al". (3.91)

This quadratic equation can be solved, and one finds the solution

2 1 4R? 4R
b=b(la|®) = ~ + 1—\/1+ + 2. 3.92
(P =2+ ey orar| M| o)
We are interested in the limit « — 0. Since o = R/, /c», the limit ¢ — 0

corresponds to the commutative limit of the fuzzy sphere. As a consequence, we
have

1 1 |af? 2
= [1- o), 3.93
g = gll—o g 1+0@) (3.93)
and hence
«, )
219 = ZR(I + |al%), (3.94)
or equivalently
1
[a,at] = (1 4+ |al*)? + 0(?). (3.95)
2\/6‘2

From the formula |a|* = L_(./c; — L3) 2Ly, it is easy to find the spectrum of the
operator F(|a|?). This is given by

N_
F(la»)|l,m >= F(Ayn)|l,m >, 1 = 5 (3.96)
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c; —m(m+ 1) n(N —n)
A = = P

= = =A,_
(Jer—m—1)2 (2 +1—n)?
m=-—Il,....+L,n=14+m+1=1,...,N. (3.97)

Now we introduce ordinary creation and annihilation operators ao and ag' , which
are defined as usual by [ao, ag' ] = 1, with the canonical basis |n > of the number
operator Ny = a(')"ao. In other words, we have Ny|n >= n|n >, agln >= /n|n —
1 >, and ag' [n >= /n+ 1|n + 1 >. Next we embed the N-dimensional Hilbert
space Hy, generated by the eigenstates |/, m >, in the infinite dimensional Hilbert
space generated by the eigenstates |n >.

Next, we introduce the map fy = fy(No + 1) between the usual harmonic
oscillator algebra generated by ay and ag' , and the deformed harmonic oscillator
algebra generated by a and a™, by the equation

a=fy(No + Dao, a* = af fy(No + 1). (3.98)
It is easy to check that (Ny + 1)f2(No + 1) = |a|?, and hence
(No + DfE(No + Dn—1 >=nfi(n)n—1> . (3.99)
This should be compared with |a|?|l, m >= A,—_|l,m >. In other words, we identify
the first N states |[n >, in the infinite dimensional Hilbert space of the harmonic
oscillator, with the states |/, m > of Hy, via

Lm><n—1> n=I14+m+1. (3.100)

‘We must also have the result

A
fu(n) = \/ . L (3.101)

This clearly indicates that the above map (6.104) is well defined, as it should be, only
for states n<N. For example, a|0 >= fy(Ny + 1)ap|0 >= 0, because a|0 >= 0,
but also because

1
al0 >= 2(&1 — i%)b(|la|P)|l, - >= b(x,,_,)2 L_|l,—l>=0. (3.102)

R
Ve
The above map also vanishes identically on |,/ >= |[N—1 > since A;; = Ay—; = 0.

The relation between F and fy is easily, from Egs. (3.89) and (3.98), found to be
given by

F(A,) = (n 4 Dfi(n+ 1) —nfi(n). (3.103)
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3.3.2 Coherent States and Planar Limit

Coherent States The coherent states |z7; N >, associated with the deformed
harmonic oscillator creation and annihilation operators a and a* in the limit
N — o0, are constructed in [21]. For large but finite N, they are defined by the
equation [1]

N—1 "
< 2

N> = , X = . 3.104

N> ¢MN(x),§¢n![fN<n>]!'"> x=H (3109

In the above equation [fy(n)]! = fv(0)fn(1)...fy(n — 1)fy(n). These states are
normalized, viz

N—1 n

<zZN|zzN > =1 < My(x) = Z

= nl([fv(m]H? (3.105)

These states satisfy

1 o
VMy () /(N = DN = D]!

alz;N >=z|z;N > — IN—1>. (3.106)

In the large N limit, we can check, see below, that My (x)—> (N — 1)(1 + x)N~2
exp((x + 1)/4(N — 1)), and \/(N— D![fy(N — 1)]'— /7, and hence a|z;N >
—>z|z; N >, which means that |z; N > becomes exactly an a-eigenstate. Indeed, in
this limit we have

N > exp(efy ' (No)ag )y (No)[0 > . (3.107)

1
My ()

These are the states constructed in [21].
As it is the case with standard coherent states, the above states |z; N > are not
orthonormal, since

1 1 _
< zi;N|z22; N >= My(|z1 ) "2 My (|22|?) "2 My (Z122). (3.108)

Using this result, as well as the completeness relation [ duy(z,2)|z;N >< z;N| =
1, where duun(z, z) is the corresponding measure, we can deduce the identity

() = [ ante ™ . (3.109)
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This last equation allows us to determine that the measure dj(z, 7) is given by
dun(z,2) = iMy (2| Xy (2|2 dzndz = 2My (r) Xy () rdrdf.  (3.110)

In other words,

My(1) = / ar’Xy(r?) / dOMy (re” \My (re ™). (3.111)

Equivalently

N—1

1 N—
Z; (]2 Z

/ dr*rXy(r?).  (3.112)
=0 n'([fN(”)]‘)z)

The function Xy must therefore satisfy the condition

/Oo dx ¥ Xy (x) = L) (s = DIY*. (3.113)
0 2

This is the definition of the Mellin transform of Xy (x). The inverse Mellin transform
is given by

Xy(x) = 27111' /_+oo POl = DI (3.114)

o 21
The solution of this equation was found in [1]. It is given by (see below)

N-—-1
2nXy(x) = Fi(y + N,y + NN+ 1, —x), y = /o — 5 (3.115)

For large N, where |z|> << N, we have the behavior
1 -N
Xv(x)= . (14+x)". (3.116)
2

The behavior of the measure duy(z,z) coincides, therefore, with the ordinary
measure on S, viz

N—-1 idzndz

or (14 [Py (3.117)

dpun(z,2)~

This shows explicitly that the coherent states |z; N > correspond, indeed, to the
coherent states on the fuzzy sphere, and that the limit N — oo corresponds to the
commutative limit of the fuzzy sphere.
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We can associate to every operator O a function Oy(z,zZ) by setting <

7z N|O|z; N >= Op(z,7). It is therefore clear that the trace of the operator O is
mapped to the integral of the function Oy, i.e.

TrO = /d,uN(z, 2)O0n(z, 2). (3.118)

Given now two such operators O and P, their product is associated to the star product
of their corresponding functions, namely

ON *PN(Z,Z) =< Z;N|0P|Z;N >

_ - MyGEn)My(72) _
= | du(n,7)On(n,2) Py(z, 7). (3.119)
/ My(|z»)Mn(In|?)
The symbols are given by
<z N|O|p;N > _._ <mN|P|z;N >
On(n,2) = , Pn(z,n) = . 3.120
N2 = _ ANIN > v = _ nN|gN > ( )

The large N limit of this star product is given by the Berezin star product on the
sphere [8], namely

idyAdi] [ (1 +zn)(1 + 72)

.. N-—1 i} N=2 )
o =" 1 [ [ ona] (TGS [ e

(3.121)
The Planar Limit Finally we comment on the planar, or flattening, limit of the

above star product which is, in fact, the central point of our discussion here. We are
interested in the double scaling limit

R2
N — 00, R — 0, % = = fixed. (3.122)
Ve
In this limit, we also set X3 = —R, where the minus sign is due to our definition of

the stereographic coordinate b in (3.88). The stereographic coordinates b, @ and a™*
are scaled in this limit as

1 1 1
b= ,a= _a a" = 2R&+’ a=3x—ix, at =% +it. (3.123)

This scaling means, in particular, that the coordinates z and Z must scale as z = Z/2R
and z = Z/2R. From (3.95), which holds in the large N limit, we can immediately
conclude that [a, a*] = 262 in this limit, or equivalently

[X1, %] = —if°. (3.124)
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Next, from the result My (x)—> (N — 1)(1 4+ x)¥~2, when N—>o0, we can conclude
that, in the above double scaling limit, we must have

My(|z)—>N e (3.125)

The measure duy(z, z7) behaves in this limit as

dun(z.3) = 4; g diNdE. (3.126)

Putting all these results together we obtain the Berezin star product on the plane [8],
namely

0P332 = / dWAdHOR,3) e w2 CNEDps By (3.127)

i
47 0?

3.3.3 Technical Digression

We want to compute the deformed factorial

(1) = RRO(1) ... fy(n). (3.128)

By using f2(n) = (N —n)/(a—n)*, witha = \Je; + I, anda®(a—1)>...(a—n +
1)2(a —n)?> = I'*(a + 1)/ T?(a — n), we arrive at

N! I'?(a —n)

2 _
> = ey

(3.129)

We substitute in My (x), we introduce y = ,/c —! = a + 1 — N, we change the
variable as n —> n' = N — 1 — n, we remember that I'(k) = (k — 1)1, to obtain

2y + N) x" T(1+mn)
M(x) = T'(1 + N) Z «T(N—n) T2y +n)’ (3.130)
We use the identity
'N+1) _(_1)nI'(n +1 —N)' G.131)

I'(N—n) I'(—N)
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We obtain

My() = — N T2y +N) S Z( 1)" (14 n)

['(—N) I'2(1 + N) F( +1_N)F2(V+n)'
(3.132)

This should be compared with the hypergeometric function

L_r r(1
Fa(l,1,as,7,7, = ) F((V;Z( " F(3+n)F2Ey:Z;. (3.133)

For integer values of as, such as a3 = —N + 1, the summation over n truncates
atn = N — 1, and as a consequence, the hypergeometric function becomes the
extended Laguerre polynomial. This is given by

(14 n)
I2(y +n)’

(3.134)

1 2

We can rewrite My (x) in terms of 3F,(1,1,—N + 1,y,y,—1/x) as

I'’(y + N)

_ —1
M) = NIN — DIT2(y)

1
sF(1,1,=N+1,7.7,— ). (3.135)
X

In the limit N — oo, we have y = 1/2, and [1]

2(2+N) x+1

My(x) = (N —1)(1 + )V : 3.136

W = (V= DAY ST e (T 330
We use the result that I'(k 4+ «)/ ' (k) = k%, for large k. Then
+1

My@) = (N — D1 +0)"2exp 137

N = W=D+ Pexp T (3.137)

By comparing the first term of (3.135) with the last term of (3.105) we obtain

2y +N) 1
P+ M)~ (= DY (139
In the large N limit we, thus, have
VN = DN = D)) = /7. (3.139)

This is quite different from the result stated in [1].
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We are also interested in the inverse Mellin transform, of the function
L (s)([fv(s — 1)]")?, given by

+o0 _ 2
Xy(x) = 27111' / F(S)(VNZ(; DI = s, (3.140)
By using (3.129) we get
M+, 1 [fTEy+N-s) _
27 TN+ 1)XN()C) = 5 /_OO I+ N—s) x'ds. (3.141)

We integrate along a path in the complex plane such that the poles of I'(y +N—s) lie
to the right of the path. This function should be compared with the hypergeometric
function

I'2(y + N) 1 (TR T@r2(y+N-5)
(1 + N) 2F1(V+N,J/+N,1+N,—x)—27”,/_00 T(1+N—s) x ds.
(3.142)
In other words,
1
Xy(x) = ZﬂzFl(y—f—N,y—f—N,l + N, —x). (3.143)

3.4 The Fuzzy Sphere: A Summary

The Commutative Sphere The round unit sphere can be defined as the 2-
dimensional surface embedded in flat 3-dimensional space with global coordinates
n, satisfying the equation Z?;:l nﬁ = 1. The rotation generators L, = —i€pNp0,
define global derivations on the sphere.

The continuum sphere is the spectral triple (A, 7, A) where A = C*®(S?) is the
algebra of smooth bounded functions on the sphere, A = £,L, is the Laplacian on
the sphere, and H = L?(S?) is the Hilbert space of square-integrable functions on

the sphere. The Laplacian is given explicitly by

A= Eaﬁa

! 82+ ! a('08) (3.144)
= sin . .
sin2 6 0¢2  sin6 96 90
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The eigenfunctions of this Laplacian are the spherical harmonics Y,,(0, ¢) with
[=0,1,2,...andm = —I,...,+I[, viz

AY(0,9) = I(l + ) Y3(0.¢), 1=0,1,2,.... (3.145)
L3Yim(0, ) = mYi(0, ), m = —1, ..., +L. (3.146)

The spherical harmonics form a complete set of orthonormal functions. The
orthonormalization condition reads (with d<2 being the solid angle on the sphere)

s,
/S 0 V(0. 0)Yr,0 (0.9) = 85, (3.147)

Thus, a smooth and bounded function on the sphere, i.e. a function where the set
of its values is bounded, can be expanded as a linear combination of the spherical
harmonics, namely

oo+l
f(97 ¢) = Z Z Clelm(97 ¢) (3148)
=0 m=—I
It is not difficult to show that
dQ
S2? 47

The function (0, ¢) is in fact more than just bound, it is square-integrable, i.e. its
norm defined by

d2
IIFI1> = (£.f) = /S dn IF (6. ¢)I%, (3.150)

is finite. In other words, f(6, ¢) is square-integrable with respect to the standard
measure d2 on the sphere. The Hilbert space H = L*(S?), of square-integrable
functions on the sphere, is the space of all functions on the sphere with inner product

dQ2
G.0)= [ ot 0.0 9) R
S§2 4T

The Fuzzy Sphere The fuzzy sphere was originally conceived in [19, 20]. It can
be viewed as a particular deformation of the above triple which is based on the fact
that the sphere is the coadjoint orbit SU(2)/U(1), viz

8038~ " = nuo,, geSU(2), neS?, (3.152)
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and is therefore a symplectic manifold which can be quantized in a canonical fashion
by quantizing the volume form

1
w = sin0dOANdp = 2ea;,cm,dn;,/\dnc. (3.153)

The result is the spectral triple (Az, Hy, Ap) where A, = Maty, with N = L+ 1, is
the algebra of N x N Hermitian matrices. Maty becomes the N2-dimensional Hilbert
space structure H; when supplied with the inner product

A A 1 AL A A A
(F,G) = NTr(F+G), F,GeMaty. (3.154)

The spin/ = L/2 = (N — 1)/2 irreducible representation of SU(2) has both a left
and a right action on the Hilbert space H; generated by L, and LE respectively. The
right generators are obviously defined by LRF = L,F, F € Maty. These generators
satisfy

NZ—1
Lo, Ly = i€apeLle, and > 12 =c¢y, ¢ =11+ 1) = ) 3.155
[ bl = i€ap an Z =02, 2 (I+1 4 ( )

a

(L. LF] = —ieaeLE, and Y (LR = c3. (3.156)

It is obvious that elements of the matrix algebra Maty will play the role of functions
on the fuzzy sphere S2,, while derivations are inner and given by the generators of
the adjoint action of SU(2) defined by

Lo F = (L, — LMF = [L,. F). (3.157)

A natural choice of the Laplacian on the fuzzy sphere is therefore given by the
Casimir operator

= [La, [La; -]]- (3.158)

Thus, the algebra of matrices Maty decomposes under the action of SU(2) as the
tensor product of two SU(2) irreducible representations with spin [ = L/2, viz

L L

2®2 =001026..0L. (3.159)
The first L/2 stands for the left action of SU(2), i.e. it corresponds to L,, while
the other L/2 stands for the right action, i.e. it corresponds to —LX. Hence,
the eigenvalues of the Laplacian A, = (L, — LF)? are given by I(I + 1)
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where | = 0,1,...,L. This is identical with the spectrum of the commutative
Laplacian A = L2 up to the cut-off L. The corresponding eigenmatrices of
AL = (L, — Lff 2 are given by the canonical SU(2) polarization tensors fﬁm and
form a basis for H;.

We have then the following fundamental result: The Laplacian A, = (L, —
Lff)2 has a cut-off spectrum with eigenvalues /(/ 4+ 1), where / = 0,1,...,L, and
eigenmatrices f/lm, i.e.

ALYy =11+ DY, 1=0,1,...,L. (3.160)

The polarization tensors are defined by Varshalovich et al. [27]

(Lo (Lo Yiull = 10+ DYi, (3.161)
[Li, Y] = VIFm)(£m 4+ )Y iry, [Ls, Yin] = mY,. (3.162)
They satisfy

P 1 T LT T = 8118 3.163
Im _( ) I—m> N r llml 12m2 - 1112 mjy,my - ( . )

They satisfy also the completeness relation

N—1
(V] YAB(¥))CP = §APSEC (3.164)
Im

=0 m=—I

The coordinates operators on the fuzzy sphere S12v are proportional, as in the
commutative theory, to the polarization tensors Y1, ~ Ly, viz

L(l
%o = . (3.165)
NG
They satisfy
PR+ =1 k) = jq Capeke. (3.166)

A general function on the fuzzy sphere is an element of the algebra Maty which can
be expanded in terms of polarization tensors as follows

L
F= Z Z cimYim- (3.167)
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The coefficient ¢y, are given by

| RPN
Cim = NTVYsz- (3.168)
The commutative limit is given by N—>00. The polarization tensors tend, in this
limit, to the spherical harmonics. For example, the completeness relation (3.164)
becomes

1

Y Y Y61 1) Yin(62, $2) = S(cos by — cos 02)8(¢1 — o). (3.169)
=0 m

=1

Therefore, the fuzzy sphere can be described as a sequence of triples (Maty, Hy, LAﬁ)
with a well defined limit given by the triple (C*°(S?),H,£?). The number of
degrees of freedom of the fuzzy sphere SZZ\, is N> and the noncommutativity
parameteris 0 = 1/,/c.

Coherent States and Star Product The fuzzy sphere as the spectral triple
(Maty, Hy, Ay) is isomorphic to the spectral triple (C°(S?), H, £*)« which cor-
responds to the algebra on the commutative sphere with the ordinary pointwise
multiplication of functions replaced by the star product on the fuzzy sphere. This
isomorphism, i.e. invertible map between matrices and functions, can be given in
terms of coherent states or equivalently the Weyl map.

Let Hl(z) = CV be the Hilbert space associated with the irreducible representation
of SU(2) with spin/ = L/2 = (N — 1)/2. We may make the identification Hl(z) =
Hy. The representation of the group element g € SU(2) is given by U"(g). The
matrix elements of the operators U (g) are precisely the Wigner functions

<ILmlUYg)|l.m >=D" ,(g). (3.170)

mm

We pick a fiducial state corresponding to the north pole 7y = (0,0, 1) to be the
highest weight state |/,/ >, viz |, [ >= |I,] >. The coherent state corresponding
to the point 2 € S? is defined by

7,1 >= UY(g)|70. [ > . (3.171)

These states are nonorthogonal and overcomplete, viz

’ ’

o 0 6 . 0 0\
<n,ln,l>={cos _cos + @ =P gin _ sin . (3.172)
2 2 2 2

ae . - 1
/ n,l><nll = _. (3.173)
S2 4]T N
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The projector P; onto the coherent state |72, [ > is given by

Py = |n,l><n,l

= UO(g)PuUY (g™). 3.174)

The projector Py, = |ig,l >< np,l| = |I,1 >< 1,1| is clearly given, in the basis
|lm >, by Py; = diag(1,0,...,0). Under g —> gh where h € U(l), i.e. h =
exp(ift3), we have UV (g) — UV (g)UWY (h) where UV (h) = exp(ifLs). It is then
obvious that U® (h) Py U O (h*) = Py which means that the coherent state |n, 1> is
associated with the equivalent class 7 = [gh].

By using the coherent states |72, [ >, we can associate to each matrix F € Maty a
function F; € C*°(S?) by the formula

F/(R) = TrP,F
= <nlFnl>. (3.175)
For example, the operators L, are mapped under this map to the coordinates In,, viz
< L1, 1 >= In,. (3.176)
Hence we can indeed identify X, = L,/I with the coordinate operators on the
fuzzy sphere S12v~ This relation can be generalized to a map between higher spherical
harmonics and higher polarization tensors given by

< 1, Y|, >= Yi(). (3.177)

Thus we may think of the polarization tensors as fuzzy spherical harmonics. The
function F; and the matrix F can then be expanded as

L l L !
F = Z Z CimYim, ﬁ = Z Z Clm?lm‘ (3.178)

From these results, we can now construct the appropriate Weyl map on the fuzzy
sphere. We find the map [24]

L 1 L [
Wi =D Y Y@V =0 Y Yo (@) i (3.179)

=0 m=—1 =0 m=—I

Indeed, we can calculate

1 PSP a2 s
Fi= TW,WF, F= / Wy (R)F (7). (3.180)
N S? 4
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Another important application is the Weyl map of the derivations £, = —i€4pcNp0,
on the commutative sphere S? given by the derivations Lo=L,— LR on the fuzzy
sphere S2 Indeed we compute

(LoF)(7) = < i, |[La, Fl|5, 1> . (3.181)

The product of two operators F and G is mapped to the star product of the
corresponding two functions, viz

F; % Gi(7) =< i, I|[FG|i, | >= TrPFG. (3.182)

From this equation follows the identity
ds2 . 1 ~a
FixGn) = _TrFG. (3.183)
S2? 4 N

We can calculate the star product in a closed form. After a long calculation we get,
with K, = 84 — nanp + i€qpente, the result

) 9 9 9 9

2l—k . .
FixG Kip ... K, ... F ... G(n).
1x Gi(n) = Z k(20! 161 b ong, ong, 1) ony, ony, ()

(3.184)

Limits of Szzv In many applications, we scale the coordinate operators on the fuzzy
sphere as x, —> RX,, so that the fuzzy sphere becomes of radius R. The coordinate
operators on the fuzzy sphere S3, are then given by

RL,
g= e (3.185)
Ve
They satisfy
22 2 e o iR R
BHB+E5 =R R = \/Czea;,cxc. (3.186)

The fuzzy sphere admits several limits, commutative and non commutative, which
are shown on Table 3.1.

Table 3.1 Lirr21its of the N R 0 =R/\/c Limit

fuzzy sphere Sy Finite  Finite  Finite s
00 Finite 0 S?
00 00 0 R?

oo oo Finite R}
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3.5 Fuzzy Fields and Actions

3.5.1 Scalar Action on SIZ\,

A real scalar field ® on the fuzzy sphere is an element of the matrix algebra Maty.
The Laplacian on the fuzzy sphere provides a kinetic term for the scalar field P,
while a mass term is obtained by squaring the matrix ®, and the interaction is given
by a higher order polynomial in ®. For example, the action of a ®*, which is the
most important case for us, is given explicitly by

N 1 1 ~ 1 ~ g »
S[@] =  Tr| — _[La @ 292 oM 3.187
81 = \7r( =l BF + Jd7 4 (3.187)
In terms of the star product this action reads

d2 1 1
S[d] = / ( (La®@y) * (L, D)) + 2m2d>1 * @ + f' D+ Dy Py % CDZ)

¢4\ 2
(3.188)
This has the correct commutative limit, viz
d2 1 1 g
S[®] = — (L,D)? 29? o* 3.189
(@] /52471( o (La®) i em ) (3.189)

The path integral of this theory, in the presence of an N X N matrix source J, is given
by

Zl) = / dd exp ( — S[®] — ]lvmcb). (3.190)

The measure is well defined given by ordinary integrals over the components Dy
of the matrix ®. More explicitly, we have

N N
dd = l_[dci)aa ]_[ dRe®,,dIm®,,. (3.191)
a=1 b=a+1

3.5.2 Extension to SIZV X SIZV

On the fuzzy 4-sphere S3, x S2, each of the spheres (Zixl(“)xl(“) = R@* 4 =1,2)
is approximated by the algebra Maty, 41 of (2[, + 1) x (2[, + 1) matrices. The
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quantization prescription is given as usual by

@ _ ROLY
50 = P
Vlalla + 1)

—

(3.192)

A0

This prescription follows naturally from the canonical quantization of the symplec-
tic structure on the classical 4-sphere S? x S? by treating it as the co-adjoint orbit

SUQ2)/U(1) x SU(2)/U(1). The LL@ ’s above are the generators of the irreducible
representation I, of SU(2). Thus they satisfy [LE“), L](.“)] = ieijkL,(:’) and Y0_, Lf") 2
l,(l, + 1). Thus

R@
O = 8% el (3.193)
\/la(la + 1) ‘

Formally the fuzzy sphere Si,xS]ZV is the algebra A = Maty;, +1®Maty;, +1 which is
generated by the identity 1®1, the angular momenta operators Lfl) ®1 and 1®L§2),
together with higher spherical harmonics (see below). This algebra A acts trivially
on the (2/; 4+ 1)(2/; 4+ 1)-dimensional Hilbert space H = H;®%H; with an obvious
basis {|11m1) |12m2>}.

The fuzzy analogue of the continuum derivations £\ = —ieijkn;a) 9 are given
by the adjoint action. We make the replacement
LOSKY = [ - [OF (3.194)

The LEH)L’S generate a left SO(4) (more precisely SU(2)®SU(2)) action on the
algebra A given by L'"M = L'’M where MeA. Similarly, the L“*’s generate
aright action on the algebra, namely LE“)RM = MLE“). Remark that Ki(“) ’s annihilate
the identity 1®1 of the algebra A as is required of a derivation.

In fact, it is enough to set [, = [, = [l and R, = R, = R as this corresponds
in the limit to a noncommutative R* with an Euclidean metric R>xR?. The general
case simply corresponds to different deformation parameters in the two R? factors
and the extension of all results is thus obvious.

In close analogy with the case of a single sphere, and by putting together the
above ingredients, the action on the fuzzy 4-sphere SIZV X SIZV is given by

R4

2 Ly ) 4 Lo, 5 5
S#l= 1)2TrH[R2q>[L§ L. &)+ R2q>[L§ P, d) + 2o + V(<I>)}.

(3.195)
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This action has the correct commutative (i.e. [ — oo, R fixed) limit:
dQW a1 1 1
_ p4 1) ~(1) (2) ~(2) 252
S[®] = R /S2 i dn [chbci L@) + o, L7 L7 (@) + 12 +V(d>)].
(3.196)

We will mostly restrict ourselves to quartic interactions, viz V(CTJ) = 14 /4%
We have explicitly introduced factors of R wherever necessary to sharpen the
analogy with flat-space field theories. For example, the integrand R*d$2;d2, has
canonical dimension of (Length)* like d*x, the field has dimension (Length)™", 1
has (Length)=! and A is dimensionless.

Again by analogy with the case of a single sphere, the scalar field/matrix ® can
be expanded in terms of polarization operators [27] as

ki 21 1

21
S=+1DY > D T (DT, (). (3.197)

k1=0my=—k| py=0n1=—pi

Therefore the field ® has a finite number of degrees of freedom totaling to (2} +
1)2(21; + 2)%. The Ty, ([) are the polarization tensors which satisfy

a 1
@mwm=¢2ﬁwww—mw¢MMm@

Vv

KO Tim (D) = my Ty (D),

(K'Y T, () = ky(kt + 1) Tim, (1)
and the identities

TrHTklml (l)Tplnl (l) = (_l)ml 5k1p1 8Wt1+n1,0’ T]jl—ml (l) = (_l)ml Tkl—ml (l)
Obviously

1
VN

Our interest is restricted to hermitian fields since they are the analog of real fields in
the continuum. Imposing hermiticity, i.e. ®T = ®, we obtain the conditions

Teom D) =, Vi, (3.198)

(¢k1m1p1n1)* — (_1)m1+nl¢kl—mll’l—"l . (3.199)

Since the field on a fuzzy space has only a finite number of degrees of freedom,
the simplest and most obvious route to quantization is via path integrals. We should
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then consider the partition function

Zl] = / dd exp ( — S[®] — IlvTrJé). (3.200)

3.6 Introducing Fuzzy CP?

In this section we will give the K-cycle associated with the classical Kidhler manifold
CP? (which is also the co-adjoint orbit SU(3)/U(2)) as a limit of the K-cycle which
defines fuzzy (or quantized) CP? when the noncommutativity parameter goes to 0.
We will follow the construction of Balachandran et al. [7].

Let T,, a = 1,...,8 be the generators of SU(3) in the symmetric irreducible
representation (7, 0) of dimension N = ;(n + 1)(n 4 2). They satisfy

[Tas Tb] = iﬁleTC . (3.201)

1 2n+3
7= o+ 3) = i, dan T, = ”;r T. (3.202)
Let 7, = A,/2 (where A, are the usual Gell-Mann matrices) be the generators of
SU(3) in the fundamental representation (1, 0) of dimension N = 3. They satisfy

1
Ztath = 35ab + (dahc + l:ﬂzhc)tc
1 1 .
r3taty = S irsatyte = (dave + ifanc). (3.203)

The N-dimensional generator 7, can be obtained by taking the symmetric product
of n copies of the fundamental 3-dimensional generator ¢,, viz

T, = (t.®1®...01 + 181, ... Q1 + ... + 1Q1® ... ®fy)symmetric- (3.204)

In the continuum CP? is the space of all unit vectors | > in C> modulo the phase.
Thus ¢ |y >, for all #€[0, 27| define the same point on CP?. It is obvious that all
these vectors ¢ |1 > correspond to the same projector P = | >< v/|. Hence CP?
is the space of all projection operators of rank one on C>. Let Hy and Hj be the
Hilbert spaces of the SU(3) representations (n, 0) and (1, 0) respectively. We will
define fuzzy CP? through the canonical SU(3) coherent states as follows. Let 7 be
a vector in R®, then we define the projector

1
Py = 1+ n, (3.205)



3.6 Introducing Fuzzy CP? 107

The requirement P; = P; leads to the condition that 7 is a point on CP? satisfying
the equations

4 2
[nas nb] =0, n¢2, = 3’ dapchalty = 3nc- (3.206)
We can write
P =|n,3><3,5|. (3.207)

We think of |71,3 > as the coherent state in Hz (level 3 x 3 matrices) which is
localized at the point 72 of CP?. Therefore the coherent state |n,N > in Hy (level
N x N matrices) which is localized around the point 7z of CP? is defined by the
projector

Py = |I_’i,N >< N,}_’il = (P3QP3:Q... ®P3)symmetric- (3.208)

We compute that
- - 1 - - n
tr3t,P3 =< n,3|t,|n,3 >= 2na, tryT,Py =< n,N|T,|n,N >= zna. (3.209)

Hence it is natural to identify fuzzy CP?* at level N = ;(n + 1)(n +2) (or CP%) by
the coordinates operators

2
Xy = T, (3.210)
n

They satisfy

2i 3
[xa, xp] = fa;,cxc, x = (1 + ) dupeXaXp = (1 + 2n)xc. (3.211)

Therefore in the large N limit we can see that the algebra of x, reduces to the
continuum algebra of n,. Hence x,—n, in the continuum limit N—oo0.

The algebra of functions on fuzzy CPIZV is identified with the algebra of NxN
matrices Maty generated by all polynomials in the coordinates operators x,. Recall
that N = ;(n + 1)(n + 2). The left action of SU(3) on this algebra is generated
by (n,0) whereas the right action is generated by (0,n). Thus the algebra Maty
decomposes under the action of SU(3) as

(n,0)®(0,n) = ®,_o(p,p)- (3.212)
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A general function on fuzzy CPZZ\, is therefore written as

PLRY PLY'

F=Y"F T2 (3.213)
p=0

The Tl(f Z)Y are SU(3) matrix polarization tensors in the irreducible representation

(p.p). I>. I and Y are the square of the isospin, the third component of the isospin
and the hypercharge quantum numbers which characterize SU(3) representations.
The derivations on fuzzy CPZZ\, are defined by the commutators [7,,..]. The
Laplacian is then obviously given by Ay = [T, [Ty, . . .]]. Fuzzy CPZZ\, is completely
determined by the spectral triple CP12V = (Maty, Ay,Hy). Now we can compute

tryFPy =< ii, N|F|ii, N >= Fy(fi) = ZF}QILYY}{’Z’,Y(;Z). (3.214)
p=0

The Yl(fz) , (1) are the SU(3) polarization tensors defined by

Yo (i) =<, NITZ? i N > . (3.215)
Furthermore we can compute
try[Ta, FIPy =< i, N|[Ty, Fll, N >= (L FN) (1), Lo = —ifapenpde.  (3.216)
And
trynFGPy =< i, N|FG|i, N >= Fy * Gy (7). (3.217)

The star product on fuzzy CPIZV is found to be given by (see below)

n

o (n—p)! - o
Fy % Gy(i) = [;) i Kapy - Koy 0a, - 00, Fn() 3, . .. 0, G (71)
2 .
Kab = 38417 — nahyp + (dabc + lﬁlbc)nc- (3218)

3.7 Fuzzy Fermions

In this section we will follow the construction found in [2, 3, 5, 6].
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3.7.1 Continuum Dirac Operators

It is a known result that the Dirac operator in arbitrary coordinates on a manifold M
is given by Eguchi et al. [12]

1
D= iy" (@ + gouanly”, Y’D. (3.219)

The y** are the generators of the curved Clifford algebra, namely {y*, y"} = 2g"”
with y#2 = 1 and y** = y*. The y“ are the generators of the flat Clifford algebra
which are defined as follows. First one decomposes the metric g"*¥ into tetrads, viz
guw = nahe;‘ieﬁ and n“” = g’“’eﬁe’; where 7, is the flat metric §,,. The generators
y“ of the flat Clifford algebra are then defined by y* = y“E} where El is the
inverse of e/, given by E; = nag""e}. This E; satisfies therefore the following
equations El eZ = 8¢ and n’ELE) = g". Thus ¢4, is the matrix which transforms
the coordinate basis dx* of the cotangent bundle T (M) to the orthonormal basis
e’ = e} dx!" whereas E!/ is the matrix transforming the basis d/dx* of the tangent

bundle 7, (M) to the orthonormal basis E, = E agﬂ . The above Dirac operator can
then be rewritten as

1
oualy’, v")). (3.220)

D= iy“Eff(B,L + 3

The w4, in the above equations is the affine spin connection one-form. All the
differential geometry of the manifold M is completely coded in the two following
tensors. The curvature two-form tensor Rj, and the torsion two form-tensor 7¢. They
are given by Cartan’s structure equations

1
a a a c__ i c d
R, = dw, + w; /\whzszcde Ne

1
T e net. (3.221)

T = de" + w;’AebEZ

The wj; means wy = wj, dx". The Levi-Civita connection or Christoffel symbol I‘;‘ﬂ
on the manifold M is determined by the two following conditions. First, one must
require that the metric is covariantly constant, namely g,v:0 = 0u8uv — Féuglv —

I'2 g1 = 0. Secondly, one requires that there is no torsion, i.e Tgﬂ = é([‘gﬂ -
Fga) = 0. The Levi-Civita connection is then uniquely determined to be 1"5/3 =

; 8" (0a8vg + 088va — 0v8ap)- In the same way the Levi-Civita spin connection is
obtained by restricting the affine spin connection w,;, to satisfy the metricity and the
no-torsion conditions respectively

Wap + Wpe = 0, de® + w,‘,’/\el7 =0. (3.222)
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The Levi-Civita spin connection on $? with metric ds> = p2d0> + p*sin®0d¢? is
given by

Wy = cosOdg. (3.223)

From the other hand, the Levi-Civita spin connection on R? with metric ds> =
dr? + r2d0* + r*sin®0dg? is given by

wn] = COSQd(P, w3 = sin9d¢w13 =d6. (3224)

Now we are in the position to calculate the Dirac operators on the sphere S? and on
R3. On the sphere we obtain

1 ! 1 2
D, = iy*EH (0, + 4w/wby"yb) = ij;e (09 + thgH) + i);? sinfdy.  (3.225)

From the other hand, we obtain on R?

2
Dy = iy E*(9, +

1 w W 1 Y 4 1
'y =17 @+ g +i Ty 0+ ).

4 sin 0
(3.226)
Thus Dj restricted on the sphere is related to D, by the equation
i3
y
Dy = Dsl,—p — R (3.227)

This equation will always be our guiding rule for finding the Dirac operator on S?
starting from the Dirac operator on R?. However, there is an infinite number of
Dirac operators on S? which are all related by U(1) rotations and therefore they are
all equivalent. The generator of these rotations is given by the chirality operator y
on the sphere which is defined by

-

y=6ii=yT:y*=1; yDy + Dy =0, it = ; (3.228)

D»y is the Dirac operator on the sphere which is obtained from a reference Dirac
operator D,, by the transformation

Drg = exp(i0y)Drgexp(—ify)
= (c0520) Dy + i(s5in260)yDy,. (3.229)

Next we find algebraic global expressions of the Dirac operator D, with no reference
to any local coordinates on the sphere S2. There are two different methods to do this
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which lead to two Dirac operators on the sphere denoted by D,, and D,,. The
operator D, stands for the Dirac operator due to [15-17], whereas D,,, stands for
the Dirac operator due to [9, 10]. On the continuum sphere these two Dirac operators
are equivalent while on the fuzzy sphere these operators become different. We start
with the standard Dirac operator on R3, viz

D3 = io,-a,-. (3230)

0.X

- and the identity y? = 1wecan

The o; are the Pauli matrices. Now defining y =
rewrite D3 as

-

G.X G.X

Dy = y?Ds = () )ioid) = ij;(x,-ai +iegod). (3231

r

Recalling that £; = —ieg;x;0; one can finally find

Dy =iy, — ). (3.232)
r

This operator is selfadjoint. On the sphere S? the Dirac operator will be simply given
by

3

Dy =Dil,p—i’ =—iyDy,. (3.233)
P
In above we have made the identification y = y> and where D, is the Dirac
operator given by
1 . =
Dyy = R(U.E +1). (3.234)

Another global expression for the Dirac operator D, on the sphere can be found as
follows

R I - 1
D; = i0;0; = io[n(n.d) — nx(nxd)] = iyd, + GijkO'inﬁk. (3.235)

2
Thus we get the operator
1 ¥y
Dzw = R2 GijkGinﬁk — lR. (3.236)
By using the identity ‘g =— Rlz €jk0ix; % one can rewrite Eq. (3.236) in the form
1 O
'Dzw = R2 éiiji)Qj(ACk + 9 ) (3237)
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From the above construction it is obvious that D,, = —iyD,, and therefore
from Eq.(3.229) one can make the following identification D,, = D,p with
¢ = —7 . A more general Dirac operator can be obtained from D,, by the general
transformation (3.229).

The two Dirac operators (3.234) and (3.237) are clearly equivalent because one
can show that both operators have the same spectrum. This can be seen from the fact
that D3, = Dj3,. The spectrum of D, can be derived from the identity

lp= = 1
Dy, = R[j2—£2+ 4]. (3.238)

The eigenvalues of L2 are I(I+ 1) wherel = 0, 1,2,... whereas the eigenvalues of
J?are j(j+ 1) where j = I+ é Hence we get the spectrum

1 1 135
Dy =4{£ (j N 3.239
g =AELUF ) T= e (3.239)
The Laplacian on the sphere is defined by
1 = , 1
A= RZE =D, — Rng. (3.240)

3.7.2 Fuzzy Dirac Operators

There is a major problem associated with conventional lattice approaches to the
nonperturbative formulation of chiral gauge theories with roots in topological
features. The Nielsen-Ninomiya theorem [22, 23] states that if we want to maintain
chiral symmetry then one cannot avoid the doubling of fermions in the usual lattice
formulations. We will show that this problem is absent on the fuzzy sphere and as
consequence it will also be absent on fuzzy 8% x S2. It does not arise on fuzzy CP?
as well.

We can show that in the continuum, the spinors  belong to the fiber H, of the
spinor bundle &, over the sphere. H, is essentially a left .A-module, in other words,
if fe A and ¥ €H, then fiy €H,. Recall that A = C>(S?). H, can also be thought of
as the vector space H, = A®C?. The noncommutative analogue of the projective
module H, is the projective module H, = A®C? where A = Maty 4. This is
clearly an A-bimodule since there is a left action as well as a right action on the
space of spinors H, by the elements of the algebra A. The left action is generated
by LF = L; whereas the right action will be generated by LF defined by LFf = fL,;
for any f € A. We also have [L}, L] = iy and [Lf, L}] = —ie L. Derivations
on the fuzzy sphere are given by the commutators by £; = [L;,..] = Ll.L - LIR.

The fuzzy Dirac operators and the fuzzy chirality operators must be defined
in such a way that they act on the Hilbert space H,. The Dirac operators must
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anticommute with the fuzzy chirality operators. They must be selfadjoint and
reproduce the continuum operators in the limit L—oo.

To get the discrete version of y = o,n, one first simply replaces n, by x, to get
0,X,. We can check that this operator does not square to 1. Indeed, we can check
that

1 - 1o
(GL+ ) =1 (3.241)
(5 +5)? 2

In other words, the chirality operator in the discrete is given by

1 - 1
,(@.L+

rt=
ity 2

). (3.242)

By construction this operator has the correct continuum limit and it squares to one.
However, by inspection I'* does not commute with functions on S?. The property
that the chirality operator must commute with the elements of the algebra is a
fundamental requirement of the K-cycle (A, H, D, I") describing Si. To overcome
this problem one simply replace L by —IR. Since these generators act on the right of
the algebra A, they will commute with anything which act on the left and therefore
the chirality operator will commute with the algebra elements as desired. The fuzzy
chirality operator is then given by the formula

[
‘= (-o.f+ ,) (3.243)
2 2

The fuzzy version of Watamuras’s Dirac operator (3.237) is simply given by

Ok

1
Dy, = eioili(Ly — LE + 5 ). (3.244)

R\/ (&)
By construction this Dirac operator has the correct continuum limit. It can also be
rewritten as

1
o LY. (3.245)

DZW = _R2

From this expression it is obvious that this Dirac operator is selfadjoint. Next, we
compute

1
D2vvFR =~ /L 1
R(2 + 2)\/C2
1
[fiikUlUiLiLfo — ie,;ikeklmolU,LiLfl — 26,’jijL§LlR + zéijkO','Lij]
1 1
rtp,, = — [—eino1oi LLRLR + €0 L LEK]. (3.246)
w L, 1 A e | ijkOibjby
R(; + ) e 2
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Taking the sum one gets
Dy, TR + TED,,, = 0. (3.247)

The fuzzy version of the Grosse-Klimcik-Pres$najder Dirac operator defined by
Eq. (3.234) is simply given by

1

R(&.Z—&.ZR +1). (3.248)

Dy =
This Dirac operator does not anticommute with the chirality operator (3.243) and
therefore it is no longer unitarily equivalent to D,,,. Indeed, the two operators Dy,
and D,,, will not have the same spectrum.
Let us start first with D,,,. To find the spectrum of D,,, one simply rewrites the
square D%W in terms of the two SU(2) Casimirs 72 and K? where J and £ are defined
by

}=Z+;,E=Z—ZR. (3.249)

A straightforward computation leads to the result

5n o 1- - P o - 1- 1 - 1
2 _ 2(7R\2 2 R\2_ 2 O 2 tye_tagre_ 1A
DZW_RZLE[L ") +2[L + LN =LN (2) +J 2L 2(L) 2[, ]]
(3.250)
The eigenvalue j takes the two values j = [ + ; andj = [ — ; for each value of
I where [ = 0,1,..., L. The eigenvalues of the above squared Dirac operator will
then read
1 1, [+ DP 0+ DG+3)?
D2 (i) = ; 2 — 2 3.251
2w(.]) RZ |:(.] + 2) + 4L§ 2[% ( )
We get the spectrum
1 1 1 1—(+,)?
Dy(j=1+ )=+ _(j 1 L 3.252
2li =1 ) R(J+2)\/[ ] (3.252)

The computation of the spectrum of the Dirac operator D, is much easier. It turns
out that the spectrum of D, is exactly equal to the spectrum of the continuum Dirac
operator up to the eigenvalue j = L — é Thus D,, is a better approximation to

the continuum than D,,, and there is no fermion doubling. This can be seen from
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the equation

1=y 2 11
ngzR[Jz—£2—2(2+1)+1]
1 1
= R[j(j+1)—l(l+1)+4]. (3.253)

Again for each fixed value of / the quantum number j can take only the two values
j=1+jandj=1— ) Forj =1+ ) weget Dy(j) = p(j+ }) withj =
1/2,3/2,...,L+ 1/2 whereas forj = [ — ; we get Dy, (j) = —Ile(j+ ;) with j =
1/2,3/2,...,L—1/2. The chirality operator I'® is equal +1 for Dy, (j) = 11e(j+ é)
withj = 1/2,3/2,...,L + 1/2 and it is equal —1 for Dy,(j) = —L(j + 1) with
j=1/2,3/2,...,L—1/2. Thus the top modes with j = L 4+ 1/2 are not paired. In
summary we have the spectrum

1 1 1 1 13 1
Dy(j=1lx )==+ (j TRG=1+ Y==+1,j= _,,...,L—
2 (J 2) R(]+2) (Jj 2) J=55 5
D ('—l+1)—1('+1)FR('—1+1)—+1 '—L+1 (3.254)
BUZIT )= gUT =T ) =T =81, :

By inspection one can immediately notice that there is a problem with the top modes
j=L+ ; The top eigenvaluesj = L+ ; in the spectrum of D,, are not paired to any
other eigenvalues which is the reason why D, does not have a chirality operator.
Indeed D,, does not anticommute with I'®. We find

R R 2R
Dy I + T'"Dye = L+ lng. (3.255)
This equation follows from the fact that
L+1
Dy =",n (Tt +T%). (3.256)

The Dirac operator D,,, vanishes on the top modes j = L + ; and therefore the
existence of these modes spoils the invertibility of the Dirac operator D;,,. The
Dirac operator D,,, has the extra disadvantage of having a very different spectrum
compared to the continuum. In other words D, is a much better Dirac operator
than D,,, if one can define for it a chirality operator. Towards this end we note the
following identity

1
Dy, TR = 20,1 — Day. 3.257
[D2g. I'] l\/ L+12 D2 ( )



116 3 The Fuzzy Sphere

This leads to the crucial observation that the two operators D,, and D,, anticom-
mute, viz

'ngtDzw + DZWDZg =0. (3.258)

If we restrict ourselves to the subspace with j<L — é then clearly D,, must have a
chirality operator. Let us then define the projector P by

1 1
P|L+ 2,j3 >=0, PU,jg, >= U,j3 >, forall j<L — ok (3.259)

Let us call V the space on which P projects down. The orthogonal space is W.
Our aim is to find the chirality operator of the Dirac operator PD,,P. To this end
one starts by making some observations concerning the continuum. From the basic
continuum result D,,, = —iyD,, we can trivially prove the identity y = iFs./>,
where F, and J», are the sign operators of the Dirac operators D,, and D,,
respectively defined by F», = ‘g: | and Fp, = %ﬁﬁ - The fuzzification of these
expressions is only possible if one confine ourselves to the vector space V since on
the fuzzy sphere the operator J>,, will not exist on the whole space V@W. Taking
all of these matters into considerations one ends up with the following chirality
operator

T = iFo Foy. (3.260)
D,
Foo= % . onV
¢ |D2g|
=0, onW. (3.261)
r D2w v
w = , on
» 7 Dol
=0, onW. (3.262)

By construction (3.260) has the correct continuum limit. If it is going to assume
the role of a chirality operator on the fuzzy sphere it must also square to one on
V, in other words one must have on the whole space V@&W: (I'Y)2 = P. It should
also be selfadjoint and should anticommute with the Dirac operator PD,,P. The key
requirement for all of these properties to hold is the identity {F»,, F2,} = 0. This
identity follows trivially from the result (3.258). It is an interesting fact that the three
operators Fa,, F7, and I'® constitute a Clifford algebraon V.

Thus, we have established that fermions can be defined on S% with no fermion
doubling at least in the absence of fuzzy monopoles. It is however easy to include
them as well.
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Chapter 4
Quantum Noncommutative Phi-Four

Abstract In this chapter quantum noncommutative ®* theories on Moyal-Weyl
spaces, the noncommutative fuzzy torus, and the fuzzy spheres S and S% x S%
are presented. This includes analytical results such as the UV-IR mixing, the stripe
phase, the exact solution of the self-dual theory, as well as Monte Carlo results
such as the phase structure on the fuzzy sphere, and the dispersion relation on
the noncommutative fuzzy torus. Other results such as quantum noncommutative
®* theory on fuzzy S x S? and the Wilson renormalization group approach to
noncommutative ®* in the Moyal-Weyl picture and in the matrix basis at the self-
dual point are also briefly discussed.

4.1 The UV-IR Mixing
We consider here the action (with a real field T = )
2 2 Aoy
S = /detrO)Try | ®| — 8> + p2 | @ + n®
d 2 2 A
= [ d% P -0 +pu d>+4'<I>*d>*<I>*d>. 4.1)

We will use elegant background field method to quantize this theory. We write ® =
®y + ®; where Py is a background field which satisfy the classical equation of
motion and ®; is a fluctuation. We compute

A
S[®] = S[Po] + \/det(ZJT@)TquDI ( -2+t 44'q)%) @,

A
+2,, Vdet(20) Try @, @y @, D) 4 O(D?). (4.2)
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The linear term vanished by the classical equation of motion. Integration of ®; leads
to the effective action

1
Ser[@o] = S[®o] + | TR log 2. (4.3)
=—9+ 2+4A<I>2+2Ad>d>R (4.4)
IR e Tt ‘

The matrix ®F acts on the right. The 2-point function is deduced from the quadratic
action

glad / d’x c1>0( -7+ Mz) @,
A 2 ) 1 R
+4!TR(_8?+M2¢0+ _a?+uzd>od>0). (4.5)

The fields &, and d>§ are infinite dimensional matrices. We can also think of them as
operators acting on infinite dimensional matrices and as such they carry four indices
as follows

(®o)as.co = (Po)acdpr » (P)ap.co = (Po)padac. (4.6)

The propagator is an operator defined by

| AB.CD d% 1 KiNAB [ —iki\DC
(_3'2 N ,uz) = \/det(270) / OO I 4 12 @) (™). @)
We have also
okt — iR =i ikip; (4.8)

saad — /ddx <1>0( — 97 + ;ﬁ) @,

k1 ” o
o \/det(27r9) / Gy + (2c1>§ LRy %)

= /ddx <I>0(—8i2+u2)<1>0

A dk 1 . )
Q) 2 + 12 /ddx (243(2) + ™ % By x e x @0)

AA
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Fig. 4.1 The one-loop planar k

and non-planar contributions k
p p /"'\

Y

dp
_ Ol (D + 12
| ohten e+ )
A [ dip L[ dk 1 .
o [ ol [ S5 e @)

The first term is the classical quadratic action. The second term comes from the
planar diagram while the last term comes from the non-planar diagram. See Fig. 4.1.
In other words,

A dk 1
Z‘planar =2 412 2
) ek +p
A dk 1

X on planar(p) = e—i@,:,-k,-p_,-. (4.10)

4 @rydi 4

We need now to regularize and then renormalize these one-loop contributions. We
will use the Schwinger parametrization

1 © kz 2
24 :/ da e @K +1), 4.11)
M 0
We compute
dk 1 ;
h(p) = e~ m
2m)d k? + pu?
— /00 dad /ddk e—d(ki‘i‘i@zlyjj)z e—(elilg)z —DZMZ
o (2m)
)2
- / Oo (zda)d / dlk e = (4.12)
0 T
d
In above we can use [d%k = [k¥'dkdQ-1, [dQu-1 = 12"J(Td2) and
2

2a° o k4 dk ek = I X2 ldx e = I'(). Thus we get

1 o0 d (©j .)2
hL(p) = d/ ?e_ e, (4.13)
(4m)2 Jo a2
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In order to regulate the singular « — 0 behaviour we introduce a cut-off A by
1
multiplying the integrand by e «a2. We get

00 Oy
L(p.A) = 1 d/ d(f e o he e
4mth o
_d
= (27T2) zudEZ(At )2;‘1/(1;8_/\‘:“(:_‘_”
ff

€

- 4 2—d 2
=0T (o) K ()

. (4.14)
eff 2 Aeff

The K 42 is the modified Bessel function. The cutoff is defined by the equation

4 4
A=t (50} (4.15)
eff

Hence the two-point function is given by
) 2 2 A A
'Y (p)=p +u +24'12(0, A) + 4'12(17, A). (4.16)

4-Dimensions In this case

W ANer 20
L(p,A) = K . 4.17
A 1(Aeff) @17
We use the expansion
Iz, z
Kixd= +_In_+... (4.18)
z 2 2
We obtain
L(p,A) = V(a2 -2 Agff+ (4.19)
2P A) = oo | Aer — 471N w ) :

In the limit A — oo the non-planar one-loop contribution remains finite whereas
the planar one-loop contribution diverges quadratically as usual. Furthermore the
two-point function I'®( p) which can be made finite in the limit A —> oo through
the introduction of the renormalized mass m?> = pu? + 2 j! I,(0, A) is singular in the
limit p — 0 or § — 0. This is because the effective cutoff Acr = 2/(6;p)l
diverges as p —> 0 or 6 — 0. This is the celebrated UV-IR mixing problem
discussed originally [26]. More results can be found there.
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2-Dimensions In this case

L(p.A) = ;N Ko(i’;). (4.20)
We use the expansion
Ko(z) = —In ; T 4.21)
We obtain
L(p.A) = 41ﬁ In ’:;ff + ... (4.22)

The same comment applies.

4.2 The Stripe Phase

4.2.1 The Disordered Phase

After quantization we get the 2-point function

A dk 1 1,
r@(p) =p*+p>+2 1 —ifyjkip;
(P =p +u+2, (Zn)dk2+,u2( e )
Pk 1

A 1,
2 2 i0;ikipj

= 2 1 ikipy) 4.23
A (Zn)dk2+,u2(+ze ) (4.23)

A self-consistent Hartree treatment means that we replace the free 2-point function
with the full 2-point function and thus it leads to the result

dk 1

1 i@i'ki)/'
() TO®) (1+ e b). (4.24)

A
() =p*+u*+2,, /
The dimensionless parameters of the model are

WA

2
o paa s OA (4.25)

Assuming a cutoff regularization the renormalized mass is defined as usual by
absorbing into w? the divergence coming from the momentum integral. Since
the noncommutativity does not modify the large k£ behaviour we must still have
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'@ (k) ~ k? for k> — oo and therefore the momentum integral is proportional to
A?72. The renormalized mass will be defined by

2 2+2’\/ k1 (4.26)
m = . .
B2 )L @y ro)

The parameter m> remains finite in the limit A —> oo. Hence

A dk 1 ,
1'\(2) — 2 2 l@,:/'kipj
= +m+ | amirow
=p*+m+ A el box 4.27)
g 4 re@ " '
dQu—1 910
X, = ijKipj
- / @n) ¢
de—] 'k'q'
- it 428
2m)d ¢ (4-28)
We remark that ¢ = —0;04pjpc = 0°p? where we have assumed maximal

noncommutativity with eigenvalues +6. By choosing the direction of the vector
g along the direction of one of the axis we get

de-] i0k, .
X1 = Bhpeosar 4.29
-1 / @r) © (4.29)

In other words X;_; is a function of kg = 0kp only. We write this function as

d

1 2n:2

= @nyi T X1 (0kp). (4.30)
2

Xi—1

Clearly X,_;(0) = 1. Furthermore it is clear from the integral (4.29) that only one
angle (namely «) among the d — 1 angles involved in d€2,—; will yield a non-trivial
integral.

For d = 2 we have

1
X1 = Jo(ekp) (431)
2

X1 (0kp) = Jo(Okp). (4.32)

Generalization of this result is given by Gubser and Sondhi [16]

d
2471r(d)

X1 (8kp) = L2 Ja= (Okp). (4.33)
(Bkp) 2~ 2
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Hence
1 Ja—2(Okp)
Xg—1 = L (4.34)
(2m)2 (Okp) 2
We get
Aol 1 Ja2(0kp)
T@(p) =p*+m’ + / - S, (435)
4 2m)e L@ (k) (Grp)*>*
For d = 4 we obtain
A1 1 Ji(6kp)
r®p) =p*+m? / K dk 4.36
(P =P +m+ 4 ony rO®x) Okp (4.36)
In summary, we have shown that
A d*k 1 . A1 1 Ji(0k
kv — / Kk 1OR) 43
41 ] Q2m)* TAk%) 4! (2m)? r@k) 0Okp
The first non-trivial order in A reads
A d*k 1 , A1 1 Ji(0k
ekt = / K dk O (4 58
4] Qro)*k+m? 4! (27)? K+ m? Okp
However, from the previous section we know that
A d4k 1 ei@,jkip_/ — A 1 AZ _ mz In Agff + (4 39)
41 ] Qo) k2 + m? 411672\ cft m2 )T
The effective cutoff is A = 2/(0p). Thus
A1 4 4
2 _ 2 2 2
I'“(p)=p " +m +4!16712(92p2 mlnngzpz—i-...). (4.40)
Immediately
dr®(p) A1 4 m?
=, =1 — ... | =0. 4.41
i = g (gt o) =0 @

There exists a solution p, which for § —> oo is given by p. = 2/(m8) — 0. For
6 large but finite we expect that p.. to be small but # 0. Also '®(p,.) # 0. Now by
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using the identity

d (J, Jn
( (X)) — +1(X)7 (4.42)
dx\ x" X"
we find to all orders in A the result
dr®(p) Aol 1 D(0kp)
=p. = 1 — °d, =0. 4.43
ap2 " 41 (2m)? / k) Okp. (4.43)

The existence of a minimum p, in I'®(p) can be inferred from the behaviour at
p — 0and at p — oo of I'?(p) given by

r'®(p) = p* , for p large. (4.44)

A
r'?(p) o , for p small. (4.45)
02p2

The first identity means that noncommutativity does not alter the large p behaviour.

The second identity means that the small momentum modes of the field & can not

condense and as a consequence the ordered phase will break translational invariance.
Around the minimum p, we can write I'®(p) as

I'®(p) =& (p* —p2)* +r.forp ~ p,. (4.46)

From the other hand we have

L Ji(6kp)

FO® ok (4.47)

A1
rp) = p? 2 /k3dk
(P) =P+ M+ 4 oy

» We compute for '@ (k) = k2, p ~ p,. and large g the contribution

o 1 Ji(Bkp) 1 /00
k> dk = dkJ (Okp)
/q TO®k) Okp p ), !

1 o0
= dxJy (x)
(pe)2 Opq :

1 o0
= d
(p9) /W i)

1 Opeq
= (p0)? (1 —/0 dx.ll(x)) (4.48)



4.2 The Stripe Phase 127

The behaviour I'® (k) = k? can be assumed to be starting from the minimum p..
Thus we can make the approximation ¢ = p.. Furthermore we have obtained for
0 large (in unit of A2) a small but non zero value of p.. The product fp, is of
order 1. Thus 6p? << 1 and as a consequence

00 1 Ji(0kp) 1
k> dk = . 4.4
/q Krow okp — (poy (4.49)

 We also compute for I'® (k) = £2(k*> — p?)> + r, p =~ p. and €| and €, small the
contribution

I dk =p .
— r@k) 6Okp 0p2  Jp—ey 4EIP2(k—p)?+r

(4.50)

/f’v+ez L Ji(Bkp) S J1(0p7) [Pt dk
P

For k —> oo the integrand behaves as 1/k> — 0 and hence we can take the
upper limit of the integral to infinity without modifying very much the result. In
other words we can approximate this integral by

/Pc+62 Bk 1 Ji(6kp) _ p3 J1 (9173) /00 dk
Pe—€l re (k) Okp ¢ ng Pe—¢€l 4551’%(" _Pc)2 +r
Ji(6p?) 7 2&0p.
= t
250\/% ( ) 4+ arctan \/r 61)
2
P¢ V4 2‘§>:Opc
= ¢ t . 4.51
450\/r(2 + arctan r €1) 4.51)

We remark that since p. is small we could have also taken the lower limit of
the integral to zero without changing very much the result. Thus in the above
equation we can make the approximation €; = p,. Since §p, is of order 1 (see
below) we can see that the arctan function is of order €, = p. and hence this
whole term is of order p?, i.e. subleading. We get

B dk g= 0. (4.52)

/m+ez 3 1 11(9/617) _ P% 850
pe—el T (k)  Okp EVr Jr

*  We remark that the ratio J‘éiﬁ” ) is of order 1/2 near k = 0 where I'® (k) behaves

as 1/k%. The contribution from small momenta is therefore negligible.

The final result is obtained by adding the contributions (4.49) and (4.52). We get
with the definition

, A1

T4 )2 (4.53)

8
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the result

1 P
l—‘(2)(1)) :p2 +m2 +g2((p9)2 + El \/r) ’ p :pc- (454)

Clearly

1 p2
) _ 2 2 2 c
C'“(p) =p;+m +g ((pc@)2 + gl¢r)‘ (4.55)

But from Eq. (4.46) we have '®(p,.) = r. Thus

1 pz.
r=p;+m+ 2( + ¢ ) (4.56)
Pe N2 " ayr

We remark from the other hand that Eq. (4.46) can also be put in the form

T @(p) = 4&p*(p — po)* + r ,for p = p.. (4.57)
We must have
Aglp =1, pc = : (4.58)
(Ve s Pe 2&) .
Thus
r'(p) =p* +p? —2ppe + r ,forp ~ p,. (4.59)

By substituting the value of r given by Eq. (4.56) and then equating with Eq. (4.54)
we get

2p. g1
p4pe  62pp2 (460
In other words
Do = \/2’. (4.61)
To summarize we have
pC 250 0 ’ pc g él \/r * *

Since p.0 is of order 1 we conclude that g must go to zero as 1/6 when 6 goes
to o0.
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4.2.2 The Ordered Phase

We expand the scalar field as
@ =Dy +¢. (4.63)
The action
d 2 2 A
S[®] = dx<I>(—3,-+,u)<I>+4'd>*<I>*d>*<D, (4.64)
becomes
S[®o + ¢] = S[Po] + Sl + Z/ddeDO( — %+ 12
A d
+44' dxq)o*q)o*q)o*¢
A d
+4, dx|4Dg * Do * ¢ x ¢ + 2Dg * P * Do * ¢

A d
+44'/dx¢*¢*¢>*d>0.
(4.65)

The background in the ordered phase is assumed to be a stripe which breaks
translation invariance, i.e. a configuration of the form (with x = x)

g = Acosp.x. (4.66)

In general an ordered configuration is only expected to be a periodic function
of x with period T = 27 /p.. However, at small coupling the most important
configuration is the above stripe phase. In the above ansatz A is assumed to be small
so that perturbation theory is justified.

Now we quantize the field ¢ by writing ¢ = é + X where X is the fluctuation
field. The linear term in X is found to be

- A ~ -~
Z/ddx(q)o+¢)(—3i2+,u2)X+44'/ddx|:3d>o*d>o*¢+3<l>o*¢*¢

+® % Dy« Dy + ¢ * P * qB}X. (4.67)
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This is made to vanish by choosing the background <;~5 appropriately. The quadratic
term in X is

A -
/ddxX( — 7 +pu?)X + " /ddxX[4¢ * ¢+ 20 * pF + 4Dy x Dy+2Dg * DX
+4¢ % By + 4D) * P + 4 * @ﬁ}x. (4.68)

We neglect higher order terms in X. By integrating the fluctuation field X we get the
effective action at one-loop to be

S[®o + @] = S[®o] + S[g] + 2 / d'x®o(— 07 + 11*) ¢
A y ~
+44' dxCD()*CD()*CD()*QZﬁ
A 4 -~ ~ ~
+4' dx| 4Dy« Dy x P x P + 2P x ¢ *x Dy *x ¢
A R
+44' d°xp * ¢ *x ¢ x D
1 2 2 As o A g
+ TRlog| —0i+pu"+4 dxdp+2 ¢dx¢
2 41 41
A A
+4, Pox Do +2 ) P x o8
A - A ~ A~ R
+44!¢*<D0+44!<D0*¢+44!¢*d>0 ) (4.69)
Tadpole Graphs The tadpole graphs (terms which are linear in <;§) at one-loop are
d 2 2\ % A d 7
Tadople = 2 | d’x¢o(— 07 + p )¢+44' dx¢po * Po * Po * @

A
+2 'TR

4 (¢;*¢0+¢0*<}~5+¢~>*¢§)

97 + pu?

dp

=2 ] @ny

. A -
B (T =570 )3 + 4, [ g,
(4.70)

For the origin and computation of the term §T'?(p) = 3A%A(1 + cosp. A p)/4!
see below. Since &y = Po(x) = Acosp.x we have ®y(p) = Po(pi.pt) =
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AR pH)(8(p1 — pe) + 8(p1 + pe))/2 and @F = A2(3D(x) + Po(3x))/4

We get

d? 5
Tadople = 2/ (2nl;d¢3‘(p) (F(Z)(p) — 8F(2)(p))¢(p)

a2 [0 5 (360 + 6m)
a1 ] @nya P PP P
A - A3 A - A3 A
=A|T?(p) — 64’ o) +3 e 3pe) + hee.
(row) - 6ay, )ao +3% a0+ 4 a0 +he
4.71)
In above the momentum p, stands for p. = (p.,0,...,0). Since p, is of order 1/6
and 0 large, i.e. p. is small, we will make the approximation
$(3pe) = p(po). (4.72)
Also I'?(p,) = r. Thus we obtain
- ) A
Tadople = 24¢(p.)(r — 4A A '). 4.73)
For a stable phase we need a vanishing tadpole, i.e. we must have either
A = 0, disordered phase “4.74)
or
) A
r=4A , ordered phase. 4.75)

41

Quadratic Action The one-loop contribution

uTR 1
2417 P 4+ p2

(4q§ % ¢+ 2¢ % pF + 4Dy x Dy + 2P * q>§), (4.76)

corrects the quadratic part of the classical action S[®] + S[¢] as before. To this we
add the first and second terms in the second line of Eq. (4.69). These are given by

(with the notation [ d‘p/(2n)* = [))
/ddx[4d>0*d>0*q~5*q~5+2q>0*¢~5*c1>0*¢~5i|

= 2/ o (p1)Do(p2)d(p3)d*(p1 + p2 + p3)
P1.p2.P3

xe— 2 (P1AP2HPIAP3HP2AP3) (2 + ¢iP21r3)
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= 2A2/43(p)43*(p)(1 + ;cosm AD)
P

~ ~ 1 .
+A? / $(P)$™(p+2p)(, + e + h.c}. 4.77)
P
Again we will make the approximation

é(p +2pc) = ¢(p). (4.78)

Thus

A -~ - - -
4'/ddx|:4d>0*d>0*¢*¢+2d>0*¢*d>0*¢:|

We get then f()l‘p ~ pC the I‘esult

1 2
2t h
(p0)>  &ivr
1 p? ) A

2 2. 2 ¢ 2

=p+m + + + 6A

! ¢ ((p9)2 b1y 4

2

2t P
(p0)>  &ivr
Higher Order Terms The last term in the second line of Eq. (4.69) is not important

for our case since it is cubic in the field ¢. Also the quartic term in S [¢] is irrelevant
to our discussion.

A
F<2>(p):p2+m2+g2( )+3A24'(1+CospcAp)

=p*+m+ gz( + 6A2(27r)2). (4.80)

4.2.3 The Phase Structure: A Lifshitz Triple Point

Free Energy By using the above results, it is not difficult to show that

1 8 2 2, 2 Ph 242 2
. = = , r=2p.+m + ¢ 4+ 65°A°(2n)". (4.81)
Pe= e \/9 P 8 e r T 68 (2m)

In other words, the last term in 7 is the only difference with the case of the disordered
phase. We will also need the parameters

7
_ g _mge

o = ,t:22.+m2. 4.82
§ T 4g T 45
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The minimum is

r=1 424728247 + © . (4.83)
Jr
The condition for an ordered phase is
r=1672g°A%. (4.84)
Thus we get that r = r, must be a solution of the equation
2
O=r,+2t+ . (4.85)
Jro
This equation can be put in the form (with s = ry + 43’, s = 53x)
16 2 27 o
_ 3 2 3 20— .3
0=y —31s—27r —4a°,0=x —x—\/27(1+ 413). (4.86)
The discriminant is
27
A = —128a*(c® + o o?). (4.87)
This is positive definite for
3
T < —Zai. (4.88)

In this range there are three real solutions two of them r,; and r,, are positive.
For the disordered phase we have instead A = 0 and hence r = r, is a solution
of the equation

O=rj—1— © . (4.89)

Vra
2t T

This equation can be put in the form (withs =ry — 5,5 = \/gx)

2 27 a?

¢27(1 = ) 490

1 2
0=s— 3rzs—i— 27t3—a2, 0=x—x+
The discriminant is

o?). 4.91)
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This is always negative and we have one single real root. We note the identity
2r§ + r(z) =2t(rg — 1ro) + 20(/ra — /7o) (4.92)

The free energy difference between the two phases is calculated as

" dA dF
AF=| 4 . 4.93
/,( " dr dA 495

From the equation of the tadpole graphs (4.73) we have
d 2,242
_ Tadople = 2A(r — 167g°A%). (4.94)
do.
We will make the identification

dFr

d
= dd;lTadople = 2A(r — 1677g%A%). (4.95)

(&

Also we remark that A can be given by the function

A= ! \/2 - (4.96)
" 4ng 3\/r t Jr '

This works in both phases. Then we compute

L 1 22
Fa=Fo = 32n2g2ro + 48722 (rd—ro +20‘(«/"d_«/ro))
= 967T2g2 (V(27+2r[21+40é(\/rd—\/r0)). 4.97)

This formula is slightly different from the result of [16] in which the authors, by
their own admission, were not careful with their factors. We check that the larger
value for r, (remember that we have two solutions r,; and r,,) leads to a lower free
energy. The free energy difference can also be put into the form

F;—F, (3r§ + 615 — 4t (ry— r(,)). (4.98)

= 9672g2

Equivalently we can write

F,—F,= 48;2g2 (WTa— /To) (30{ +t(Jra + \/r(,)). (4.99)



4.2 The Stripe Phase 135

The First-Order Behavior Let us summarize our main results so far. The problem
has a single parameter. We take

e (4.100)
€ = — . .
V3a?
We must have
9
€> €y = \/38. (4.101)
The minimum in the ordered phase is a solution to the equation
2 93
X —x,— - v ) = 0. (4.102)
V217 4e
'R, R 2 (4.103)
Fo = — 0 » Ity = —Xp . .
V3 V3
The minimum in the disordered phase is a solution to the equation
2 9v3
3
3 g+ 1+ =0. 4.104
Xt 27( 2e ) (4.104)
T 2
g = — \/3Rd . Rd = —X4 — \/3 (4105)

The free energy difference is

1 72
Fa=Fo= 4g 00 JSG(\/Rd — V2R,) (3 — Ve(VRs + ¢2Ro)). (4.106)

The transition between the two phases is given by the condition
0 =3 — Je(v/Ri+ v/2R,). (4.107)

This is where the free energy difference changes sign. This is a first-order transition
(see below). We find the transition point

9
€ = c\/38 Le> 1. (4.108)
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The coefficient ¢ can be determined from numerics. For negative m? such that m? <

—2g/0 the parameter € is positive in the region €x; < € < €4 which corresponds

to the disordered phase, while for sufficiently negative m?, viz m> << —2g/0, € is

sufficiently positive in the region € > €4, which corresponds to the ordered phase.
Equation (4.108) is equivalent to

2 g 3(nc ; 8 :
=-27 — . 4.109
TR0 Ty ( 2 ) 0 (4109
In a naive one-loop we will not get the term o/ \/r in I'® (p) and as a consequence
we find the minima o = —27 and r; = 7. The transition point is therefore at 7, = 0
or equivalently miz = —2g/0. The vanishing of the renormalized mass r, i.e. the

divergence of the correlation length, at the transition point indicates a second-order
behavior. Correspondingly, I''?( p) becomes negative near p = p. = \/ g/, since
I'®(p.) = r, which signals a second order transition to an ordered phase. However,
in our case the system avoids the second-order behaviour by an amount proportional
to g’/3. It is also very useful to compare the second-order behaviour miz = —2g/0
with the critical point of real quartic matrix models (see latter). The phenomena of
a phase transition of an isotropic system to a nonuniform phase was in fact realized

a long time ago by Brazovkii [3].

Lifshitz Point At 0A?> = oo only the planar graphs survive. This maximally
noncommuting theory has the same critical point 2 and the same transition as the
planar theory (which is defined as the sum over planar diagrams only). The planar
theory has the usual Ising symmetry & —> —® and the usual broken symmetry
phase which can be reached by traversing a continuous, i.e. a second-order phase
transition at u2. The planar theory is also the N —> 0o of some hermitian matrix
model. From this point of view the second-order transition is seen to be different
from the standard Ising transition in d < 4, i.e. it lies in a different universality
class.

For A? very large but finite we have instead a first-order phase transition since
we have found a non-zero latent heat. The calculation was done near the massless
Gaussian theory where both g and m? scale to zero with powers of 1/6. For large g
more complicated patterns become favored over stripes.

For OA? sufficiently small we get the standard Ising critical point in >4. Clearly
for A% = 0 the minimum of T'®(p) is at p = 0. This remains the minimum for
sufficiently small OA2. The transition is therefore second-order to the usual uniform
phase of the Ising model in d>4 in which the symmetry ® — —® will be broken.
There is a critical value (9A?), ~ 1/g where the minimum starts to move away from
p = 0. The second-order line will therefore meet with the first-order line which was
computed for large OA? at a triple point (Lifshitz point). The triple point is located
at u> = —oo in our current self-consistent treatment of the one-loop theory. This
is however only an artifact of this approximation, i.e. a finite triple point is actually
more than expected and as a consequence a transition from the stripe phase to the
uniform phase exists. The phase diagram is displayed on Fig.4.2.
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OA? = +0 2" Order (Planar limit, matrix model)

Stripe
(non-uniform)
(d=A cos pcx)

" /¥~ First order

Disordered

($=0)

Self-consistant

teatment 4
of the ——

one-coop |

approximation |

<«— Triple (Lifshitz) point

Uniform

(b =41) -~

2" order (Ising type)

> Uz/A?

-

Fig. 4.2 The phase diagram of noncommutative ®* in d = 4 at fixed A ~ g?

In 3 dimensions there is a transition to a stripe phase. In this case the transition
is made first order only by logarithmic divergences. The stripe phase in this case is
stable under infrared fluctuations.

In 2 dimensions it is claimed that the stipe phase is unstable (long range order
is impossible) due to infrared fluctuations. This is thought to be a consequence of
the Coleman-Mermin-Wagner theorem which states that a continuous symmetry (in
this case translation invariance) can not be spontaneously broken in 2 dimensions.
Indeed, if such a spontaneous symmetry breaking occurred then the corresponding
massless Goldstone bosons would have an infrared divergent 2-point correlation
function. As we will show this expectation is not correct as the Coleman-Mermin-
Wagner theorem does not really apply since the conditions on which it is based do
not generally hold in noncommutative field theory.

4.2.4 Stripes in 2 Dimension
Disordered Phase

The two-point function in the self-consistent Hartree approximation in this case is
given by

1 / 1 g 1 Jd;z (Bkp)

A
T(p) = p? + m?
(= oK) (Okp)'s

4! 27)s

= 2+mz+A ! /kdk ! Jo(Okp) (4.110)
-P 41 (27) re )’ o '



138 4 Quantum Noncommutative Phi-Four

We recall that m? is the renormalized mass. We also recall that the non-planar
contribution is given by

A dk 1

HNP — —i@,:/'k,‘pj
P =4 | eryiie+m?
A2 — 2
= d (MAeff)dzde*Z( m). (4.111)
4! (4m)2 2 Aetr

As before we have introduced a cutoff A and defined the effective cutoff

1 1 0;p;)?
= O™ (4.112)

Ay A 4
We fix d = 2. Taking the limit p —> 0 and/or § — O first and then A — oo
second we obtain the UV divergence

A2 A
" (p) = In . 4.11
P)= 4 4r ™ “113)
Taking the limit A —> oo first and then p — 0 and/or & — 0 second we obtain
the IR divergence
A2 |0ipil

¥ (p) = — 1 ) 4.114
(P) ==y 4p 0 @.114)

This is the UV-IR mixing problem. In summary we obtain the behaviour

r(p)=p*, p> — oo

AZlmep )

r@(p) = — 07— (4.115)

In above we have assumed that 6; = 0¢; and p = /p;p;. We conclude that there
must be a minimum at p = p, # 0 in the two-point function. In other words, around
P = p. We can write

r?(p) = a(p* —p2)* +b. (4.116)

The minimum p, can be estimated as follows. The derivative of I'® ( p) with respect
to p? is given by

dr@(p) - dTIN?(p)

dp? dp?
A sz/\eff 2m
=1- K
41 87 l(Aeff)

A1 1 2292 2292
+mp mmP

~ . 47rp2( A A )- (4.117)
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In the third line we have assumed that 6 — 0 and/or p — 0. The minimum is

thus located at
Al g’
2
= =" . 4.118
Pe= gran = 2 (4.118)

We will consider the weak coupling limit A —> 0, i.e. p. —> 0. We are interested
in the evaluation of the integral

o0 1
/O kdk o, © Jo(Okp). (4.119)

We split this integral into three pieces. The piece associated with small k, the piece
associated with large k and the piece associated with the region around k = p.. For
small k the corresponding integral is

Pe 1
kdk Jo(Bkp). 4.120
[k 008 (4.120)

This can be neglected since p, is very small for weak coupling and thus we
can approximate 1/I'® (k) with —1/Ink which goes to 0 when k — 0 and
approximate Jo(6kp) with 1. For k around p, the integral of interest is

/Pr+€2 1 peter 1
kdk Jo(Okp) = / kdk Jo(0kp)
Pe—€1 1“(2) (k) Pe—¢€1 a(kZ —Pf)z + b
pc+€2 1
= Jo(Opcp) kdk
Pe—¢€1 a(k2 _pg)2 + b
Jo(Opcp) \/ a \/a
= tan 2exp. | . — arctan 2€;p, )
2 Jab arctan 2e,p b arctan 2¢€p b

(4.121)

Clearly the value of the integral does not change significantly if we send €; to infinity
and €; to p.. We get

pete 1 Jo(Opep) (7 \/a
kdk Jo(Bkp) = ¢ — arctan 2p? )
/pr-s row” ) =) (2 P\

T
4Jab’

For large momenta we have the integral (with g some large momentum)

[

(4.122)

/ookdk ! J(ek)—/oodkj(ek) (4.123)
. rew P = )k O '
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We remark that
d o0 1 o0
- kdk Jo(Bkp) = J1(0kp). 4.124
d(@p)/q row) 0(0kp) /q 1(0kp) (4.124)
This is essentially the 4-dimensional integral which we already know. The result is

d [ 1 1
= dm) /q kdk (k)Jo(ekp) = 4 (4.125)

We get thus the estimation

/q - Kk (21 (o 0kp) = —1n mzf’l’_ (4.126)
Thus we get
/ Kk (; (0O = 4jab —n m29p . (4.127)
Hence
r@(p) = p*+m* + g2[ T } (4.128)
4+/ab 2
Since I'?(p.) = b we conclude that
b=p§+m2+g2[ i —lnmep‘}. (4.129)
4+/ab 2
Furthermore I'®( p) around p = p, can be rewritten as
I'®(p) = 4ap’(p —pc)* + b. (4.130)
In other words by comparing with (4.128) we get immediately
dap* =1 a= b1 . (4.131)
¢ apz  2¢°

There remains

r'®(p) = p* + p*> — 2pp. + b. (4.132)
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Now by comparing (4.128) and (4.132) we get

p
2pe(pe —p) = —¢ lnp : (4.133)

c

Hence

1 g
2pe(pe—p) =8 (pc—p) & p.= ° . (4.134)
Pe V)

Ordered Phase

In the ordered phase the calculation of the two-point function goes through the same
steps taken in the case of four dimensions. We end up with the result

Af a1 X[ dik et
rO(p) = 2 24,
P =P+ 2, | omie s "ol enie e

A
+3A2 " (1 + cosp. A p).
(4.135)
The amplitude A of the stripe configuration is assumed to be small so that
perturbation theory is justified. In the disordered phase obviously A = 0 whereas in
the ordered phase we have

b = 8mwg*A%. (4.136)

In the consistent Hartree-Fock approximation we obtain

6p A
O =P +m 4+ ° —In"7P)y £ 342" (1 4 cosp. A p).
(p)=p g(4\/ab 5 ) 4!( Pe A D)
(4.137)
From I'®(p) = a(p? — p?)? + b we obtain
g mOp,
b=p>+m*+¢* —In + 6A%¢%(27). 4.138
P. g (4\/ab 5 ) g (2m) ( )

From here on the steps we can take seem to be identical to those taken in four
dimensions. We introduce the parameters

_ g _ g

o= = cT=p*+m—g*hn g 4.139
bja 8 2 8 ( )
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The problem has a single parameter. We take

e (4.140)
€ = — . .
V3a?
We must have
9
€> €y = \/38. (4.141)
The minimum in the ordered phase is a solution to the equations
2 2 2 943
by=—"" Ry.Ry=—x0+ , .B—x— . (1— ‘/)zo.
V3 V3 V217 de
(4.142)
The minimum in the disordered phase is a solution to the equations
T 2 2 93
bi=— , Ri, Rai = —xq4— LX) —xg + 1+ )=0
V3 V3 V27 2¢
(4.143)
The free energy difference between the two phases is
FamFa= T (R V2R3 Ve R+ V2R ).
487T2g2 \/36
(4.144)
The transition between the two phases is given by the condition
0 =3 — e(/Ri+ v/2R,). (4.145)

This is where the free energy difference changes sign. There is therefore a transition
point given by

9
€ = c¢38 ,e> 1. (4.146)

The region €x; < € < €4, corresponds to the disordered phase whereas € > €4,
corresponds to the ordered phase.
Equation (4.146) is equivalent to

T3c3. (4.147)
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This equation can be rewritten as

92 4
r—lnr=In" 5. (4.148)
€o
m2 1430203
r=27% , co = dextalmas (4.149)
g
Since r — Inr > 0 we must have
92 4
s (4.150)
<o

otherwise there will be no solution and hence no transition to a stripe phase. Thus a
stripe phase can exist only for values of the coupling constant such that

P>, 4.151)

Since g? is small we conclude that the weak coupling expansion will only make
sense for sufficiently large values of the noncommutativity. The stripe phase does
not exist for small & which is very reasonable and since it exists for large 6 we
suspect that this phase is related, or even is the same, as the matrix model transition
since in the limit & —> oo we obtain a matrix model from noncommutative ®*.

A More Systematic Approach

Near p = p. we have

r%p) =p*+m*+¢° / kdk Jo(Okp) + 127A%g%.  (4.152)

1
C®(k)
Define

IP(p) =p* + m* + 127A%g8% + A(p). (4.153)

Thus

1

To(0kp). 4.154
K2+ 2 + 127422 + A O (4.154)

Ap) =& / kdk
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Integrating both sides over p we get

1
dpA(p) = g° | kdk dpJo(0k
/ pA(p) =8 / K2 42 + 120422 + Ay ] P o(6kp)

2 1

8
= dk dxJ
9 / K24 m + 127A% 4+ Ak) ] PO
2
g 1
= dk . 4.155
0 / k2 +m? + 12mA%2g% + A(k) ( )
Thus
g 1
dk| A(k) — =0. 4.156
/ |: ) 0 k2 +m? + 127A%g> + A(k)i| ( )
We conclude that
g 1
A(k) — = f(k). 4.157
(k) 0 k2 +m? + 127A2g% + A(k) f® ( )
The function f(k) is such that
/dkf(k) =0. (4.158)
The above equation can also be put into the form
@y 12 2 22 & _
r'“(k) —k-—m~— 127A b FO) = f(k). (4.159)

The physical solution is

\/ (k2 + m? + 127A%% + f(K)> + % + K> +m? + 1214%¢> + £(K)

r@k) =
(k) )

(4.160)

The minimum is determined by the function f (k). It is given by the equation

df (k)
L+ e =0, (4.161)

In perturbation theory we have the asymptotic behaviour
r®w =k*, k¥ —

Ok
rO%) = —g¢*In m2 K —>0. (4.162)
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Thus in one-loop perturbation theory we must have

flk)y =0, k* — o0

Ok
flh)= —¢*In m2 , k> — 0. (4.163)
A model is given by
Inx mok
F(x) = —gz(1 PR AR F(x) = f(k). (4.164)

Using dimensionless parameters k2 = 0k%, Om? = r, g0 = u, '@ = 4r® and

A

f = 6f we have

o \/ (K2 + r + 12742 + F (k)2 + 4u + & + r + 127A% + f(k)
(b = ) .
(4.165)

The Limit # — 0 The coupling constants u and r can be made small either by
making g2 and m? small or 6 small. We will assume that § — 0 keeping g> and m?
fixed. In the limit &6 — O the function f(k) = F(x) captures most of the relevant
physics of the problem. The minimum in this limit is located at

mo m202i2

2="_"mok—006%) - """ —o®H)N . @l
5 2(m9 0(6%)) 5 (2k 0(6%)) In A (4.166)
Thus
A~ u g
E=_sk= " +00). 4.167
) 2 (0) ( )
We can also compute
Flemt, = —u+ ... (4.168)

Since u and r are small we have

Qyu+...)+ 2+ r+ 120A% + f (k)

%) = 5 (4.169)
In other words,
o — Qvu+...)+ 2+ r+ 12nA% + f (k)
n 2
2Ju+..) =" +r+ 127A?
_ (2vu =5t “ (4.170)

2
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Thus

(2\/u+...)—g+r‘

Oby =
d 2

And

@Vu+...)=5+r+127A%

0by = 5

Oby (2Vu+...)—4+r

= 87A%u < =
4 2

The transition occurs at

by =b; =
We get the critical point
u
re = —2/u+ 5
We find
1 2 Ju—"%+r
A= \/Hb s .
V6mu 2
Thus
ldA 1
6db  12muA’

We compute the free energy difference between the two phases as

by
AF — / db dA dF
L dbdA

o

1

_ IRRY)
B 327ru9(r x)

1
= —327rg2 (m2 — I’l’li)2

4.171)

(4.172)

(4.173)

(4.174)

(4.175)

(4.176)

4.177)

We immediately observe that AF = 0 at r = r, i.e. there is no latent heat and the

transition is not first order.

The Limit § — oo The minimum is precisely located at

m20?

2
14y’ —g»' [l +y+2Iny]=0,y= "

(4.178)
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In the limit § —> oo keeping g> and m? fixed the solution k. goes to 0 such that 6k,
is kept fixed. In this limit we have

1+y+2ny=0. (4.179)
The solution is
y=04752>~1/2. (4.180)
We compute
2.2 2
gy (1+y) 3g
ko) = — ~— 4.181
ko) 2 14y? 20 ( )
Define
Ly =k +m’ + 12nA%g” + f(k). (4.182)
\/L2 +% 4 L
F(Z)(k) _ ‘A 6
2
2 4 6
g 8 2
=L - e 4.183
Toon, ey Toors T @189
In the disordered phase the renormalized mass is
2
\/L% +% + L
by =
2
2 4 6
8 g 28
=Ly+ - + +... 4.184
Lot or "oz T oo “.184)
16 3g? 3g?
=2+ m? 4 fk) = 2 ~m? -0 4.185

It is crucial to note that for Ly > O the renormalized mass b, is always strictly
positive, i.e. by > 0. It remains positive if Ly takes negative values up to a critical
point where it vanishes. Indeed we have

1 2 4
by = (L3+ng—g)

I 0 62
1 g2 \/582 g2 \/582

= 12 - 2 . 4.1
L3(°+29 26 )(°+29+ 29) (4.186)
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For Ly < 0 this expression is positive for

_ 2 _
L0>—\/‘/5 ! g oms 8 —\/‘/S Le (4.187)
20 2 /o

Below this value we are in the ordered phase. In this phase we have

2 4
8 8
b, =L —
“For, o3 T
2 4
= Lo + 127A%¢? 8 - 8
Lo+ 12mA°8°+ o 1o 4 127A22) ~ 02(Lo + 127A2%2) T
— Lo+ 127A%7 + 8 &L (4.188)
0L QZLS
But we know that
b, = 8wA%g>. (4.189)
Thus
b, = —2by,. (4.190)
We have then
1 2 g2 gt )
A= b— (Lo + — +..9. 4.191
N \/3( (Lo 0Ly  62L3 ) @191
dA 1 1
= . (4.192)
db  24mwg? A
We compute the free energy difference between the two phases as
ba- dA dF
AF = / db
by db dA
(bg — by)*. (4.193)

- 48 g?

Again we can show that AF = 0 at the critical point and thus there is no latent heat
and the transition is not first order.
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4.3 The Self-Dual Noncommutative Phi-Four

4.3.1 Integrability and Exact Solution

The self-dual noncommutative phi-four is obtained by setting Q22 = 1 or equiva-
lently By = B6/2 = 1 and thus @ = 2 and 8 = 0 in (2.232). We get immediately

S =dn [40TrH1M+EM + 46 Trg MEM* + 1 2290 Tra, M M+ Aﬁo Tr, (M+M)2:|.
(4.194)

The matrix E is defined by
E, = (- ;)51,1. (4.195)

A regularized theory is obtained by restricting the Landau quantum numbers [, n to
I,n=1,2,..N. We also introduce the cutoff

(4.196)

Let us remark that A? is essentially the energy of the Nth Landau level. Indeed
Ay, = 2(87A> —2/0)py, where A; = —D? = 4B(a+a + 1/2). This energy
remains constant equal to 167A? in the limit N, —> oo while keeping A?
constant.

We are thus led to the following N x N matrix model

—NTr I:MJF (& +GER+m> )M+ (M+M)21|
ZylE] = / [dAM)[dM e

(4.197)
167 167 1 w?
En= _ Ei= I— ). m* = g = . (4198
I N B N ( 2) s =0 8= e )
We use now the Hubbard-Stratonovich transformation given by
—NTr| b x2+ixmt M:|
e STt _ / [dX]e [zg . (4.199)

The auxiliary field X is a hermitian N x N matrix. The partition function Zy|E]
becomes

Zv[E] = /[dM][dM+][dX]e—g,Trxze—NTrM+(U£L+&5R+m2+ixR)M_ (4.200)
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The notation X®/X~ means that the matrix X acts on the right/left of M, viz XXM =
MX, X*M = XM. Integrating over M and M yields now the partition function of
the Penner model given by

Zy[E] = /[dx]e—g’grrxze—mlog (re@14+510E +n?+i10X) 4.201)

The trace TR is N?-dimensional, i.e. acting in the adjoint representation, as opposed
to the trace Tr which is N-dimensional. This is due to the fact that we have left
action (given by E) and right action (given by X¥) on M. In the remainder we will
concentrate on the model of [19] given by the values

o=1,5=0. (4.202)

We have then the partition function
ZulE] = /[dX]e—ggTrxze—TRlog (5®1+m2+i1®X)' 4.203)

In [19] it was shown that this model is integrable, i.e. it can be solved at finite N for
general external matrix E. We will follow [19] closely to derive the exact solution
at large N which is relevant to our original noncommutative phi-four.

Before we continue with this model we comment on a related problem of great
interest. For hermitian fields ®* = ® we get hermitian matrices M™ = M. By
going through the same steps we get in this case the partition function

ZyIE] = /[dx]e—ggrrxze—;mlog (G+d)e@1+n+i1@X) (4.204)

This is valid for all values of o and 6. The only difference with the previous case is
the factor of 1/2 multiplying the determinant contribution.

We go back now to our problem and start by diagonalizing the hermitian N x N
matrix X by writing the polar decomposition X = U XU, Xy = diag(xy,....,xy),
for unitary N x N matrices U. The measure becomes

N
[dx] = [aU] | [ dxiAn (). (4.205)
=1

In above [dU] is the Haar measure on the group U(N) whereas Ay(x) is the
Vandermonde determinant defined by

Av@) = [ @-x. (4.206)

1<il<n<N
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The unitary matrix U commutes with the external field £ because U acts on the right
whereas £ acts on the left. Thus the integration over U decouples. Also recall that £
is diagonal. We will write (£ + m?);, = ¢;8;, where

167 1
= I— 2, 4207
e N ( 2) +m ( )

As a consequence we obtain the partition function

N
ZN[E] = ZN[61 yeeay eN] = / l_[ dxle_NSeff[el """ en¥il
=1

N
1 1 . 1 5
Settler, ..., ensx,] = 2 ;XZZ'FN %:bg(ez + lxn)—2N E log(x; — x,)°.

n#l
(4.208)
The saddle point equation is given by
dSett x| 1 1 2 1
— — =0. 4.209
dx; g+N’;x1—ien Né;xz—xn ( )

We rewrite this equation in a different way in terms of the resolvent function defined
by

1L 1
Y(z) = . 4.210
@ N;ﬂ_z (4.210)
Then we can compute
1 1
14+2z3(z) = xp). 4.211
@ N;xl_z( ) (@211)
1 1L 1 (2 1
@) - Y() = . 4212
@ N @ N;xz—z(N;xn—xl) ( )
N N
1 3(2) — X(iey) 1 1 1 1
= . 4.213
an=:1 z—le, N;xl—z N’;xl—ien ( )
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Hence Eq. (4.209) can be put in the form

N

1 3 (z) — X(ien)
Z =

;(1+ZE(Z))+E(Z)2_;]Z/(Z)+N i—ie,

0. (4.214)

n=1

Clearly the term 1{, ¥'(z) becomes subleading in the limit N —> oo. In this limit we
can also introduce a density of eigenvalues p(e) defined by

1 1 &
ple) = | Tri(e—E) = N;S(e—ez). (4.215)

In the limit N — oo the eigenvalues ¢; are of order 1 and hence p(e) becomes a
continuous function satisfying p(e)>0 and fah de p(e) = 1. The real interval [a, b]
for some a and b is the support of this function.

Thus the saddle point Eq. (4.214) becomes in the limit N — oo the following
so-called loop equation

(2) — X(ie) _

b
1(1 +:2(2) + 2R+ / de p(e) x , 0. (4.216)
8 a z—1le

The resolvent ¥(z) which is related to the two-point function as follows. We
compute

<®T@P() > =270 > < M )uMyw > G () ()
m U'm/

1 91nZy[E]

<Mt WMy gy > = —
( )Z’ h N aelm,l’m’

s Clmlm’ = 8m,1’8m/,lem- (4217)

We can further convince ourselves that [19]

1 31n Zy[E]

1
< M) oMy py >= — 8y iWiew) , Wien) =
(M™ )My, N Omr B (em) (em) N de,

(4.218)
The extra factor of 1/N can be verified by computing < TrM+tM >. We can also

compute with respect to the partition function (4.208) that

i 1
W(e,) =< >, 4.219
(em) N ;xz—iem ( )
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This suggests the identification W(z) = iX(iz) and as a consequence the loop
equation (4.216) becomes

b —
;(1 + W) — W(2)* — / de ple) VA =WE _ g (4.220)

a i—e

Obviously, the resolvent of the density of the eigenvalues p(e) of the background
matrix E is given by the function

w(z) = / " e 4.221)

1 t—e

Let also us note that W(z) is essentially the resolvent function of the matrix X,
because of the identification W(z) = iX (iz), and thus it can be rewritten in a similar
way in terms of another density of eigenvalues p(x). Correspondingly, we can use
W(z) = iX(iz) to show the perturbative behaviour

1
W(z) — — , z—> oo, (4.222)
Z

Next we can see that Eq.(4.220) can be solved for the following function (z)
defined by

Q) = / de Zp ie)e We). (4.223)
Indeed, Eq. (4.220) can be rewritten as
Q(z) = W(z) — (; —w(2)W() — ; ,z€C. (4.224)

The goal is to find W(z). Q2(z) is determined in terms of W(z) while w(z), or
equivalently the density of eigenvalues p, is known. From Eqs. (4.221) and (4.223)
we can immediately compute

ap 1
/ de p(e) = — .gﬁdw(z),
a 2mi

a 1
/ de p(e)W(e) =~ §£dz Q(2). (4.225)

ap

The contour is a large circle which encloses the interval [a;, az]. In terms of w(e)
and 2(e) we get (with a contour which is very close to [a, b])

ple) = _Zylri(w(e + i0) — w(e —i0)) = —;ia)_(e)

ple)W(e) = —2:”,(9(6» +i0) — Q(e — i0)) = —;isz_(e). (4.226)
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The functions w_(z) and 2_(z) are the singular parts of the functions w(z) and 2(z)
respectively. They are related as

Q(2) =w-(0W() . z € [ar. a]. (4.227)
The functions w(z) and 2(z) are analytic everywhere away from their branch cut on
[a1, a;] and hence we can extend the domain of the above constraint to the full real
line, viz

Q_(z2) =w_(@W(@) ., zeR (4.228)

The continuous part of the functions w(z) and €2(z) are defined by

wy(e) = ;(a)(e 4 i0) + w(e —i0)) , Q4 (e) = ;(Q(e + i0) + Q(e — i0)).

(4.229)
From Egs. (4.224) and (4.228) we can derive that 2 must satisfy
Q4() = W2(2) — (2 — 0L @IW(E) - ; . zeR (4.230)
This can be rewritten in the form
20 = W0 + W20 = — 0 W) - ;
FW_(2W4 — 2 twi), zeR (4.231)

However, from Eq. (4.224) we can read the continuous part of €2(z) as follows

24 = Wi + W20 = C — 0 W)+ 0-(OW-() - ; L€ lanal.

(4.232)

The continuous and singular parts of the function W are W and W_ respectively
whereas the continuous and singular parts of the function W? are Wi + W2 and
2Wy W_ respectively. Similarly, the continuous part across the interval [a;, a;] of
w(2)W(2) is 0+ (2) W+ (2) + w—(z) W_(z) whereas the singular part is w4 (2) W_(2) +
w—(z2)W4(z). Since Q4 is continuous we must conclude from (4.231) and (4.232)
the constraints

W_(2Ws - +wi)=0,z€R
8

W_ =0, z€[a1a)l (4.233)
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This means in particular that W_ can only be non-zero on an interval [b;, b,] such
that [by, bo] N [a1,a2] = ¢. On this interval we must clearly have w_ = 0 because
w is analytic away from [a,, a;] and hence we must have

Wy = 229 b (4.234)
2g 2

Let us say that the singular part of $2(z) from (4.224) is given by

Q_(2) = 2W4 (W-(2) — (; — 04 @Q)W-(2) + 0- (W4 (2) , 2 € [a1, a2).
(4.235)

This gives nothing new.

Let us now consider the function 1//(z — b1)(z — by) over the interval [by, b).
By choosing a contour which is a large circle which encloses the interval [by, b;]
we can show that the continuous part of 1/ \/ (z — by)(z — by) is 0 while the singular
part is given by 1/ i\/ (z — b1)(z — by). The square root 4/z — by changes sign when
we go around b, with a full circle. Hence we can immediately write (4.235) as a
Riemann-Hilbert equation

( I ) _E z€bib].  (4236)
\/(Z—bl)(Z—bz) — i\/(z_bl)(bz_z)’ 1,02]. .

It is almost obvious (use for example (4.226)) that this discontinuity equation leads
to the solution (with a contour which encloses [b1, b3])

W _95 a5 =" Je—b)e—b) (4.237)
2ni 2=z (@ - b)) ~b) .

We substitute the function w(z) given by Eq. (4.221). We compute the integral

I = lggdz’ 7 Jz=b)z—b)

28 ) 2mid —z2\/(Z — b)) (@ — b))

_ zggdz’ 1 /z—b)(z—b) n 1 95611/ V(@ —=b1)(z—b)

26 2mid =2/ — b)) —by) 28T 27 /(2 — b)) —b2)

oz Ne@=b)e=b) [ d 1
* 2g 56

= . 4.238
2g 271 /(7 — b1)(Z — ba) ( )
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The last integral is equal 1 (just set 7 = Re' with R —> oo in the integral). Also
we can compute the integral

I — 195 d? () /(z—b1)(z—b2)
2) 2mid —z2\/(7 —b)(Z — b2)

1/"2dep(e)[g§ 1V @=b)E=b)

2 z—e 2ni7 —z \/(Z’—bl)(z/—bz)

_§£ d7 1 \/(Z_bl)(z_bZ):|

2wi7 —e \/(z’ —Db1)(Z — by)
_ 1 /az de p(e) [1 _ VACEEDIEE b2)i|, (4.239)

1

2 z—e V(e—by)(e—by)
We get then
—b))(z—b 1 [ —b))(z—b
W = ° - VEmbGE=b) / @map_J& e ﬁ]
2g 2g 2Jy z—e V(e —bi)(e —by)
(4.240)
In the limit z — oo we get
by+b by —by)? 1 1 [
W(z) = 1+2+(1 2 _ de ple)
4g 16gz 2z 2 )4 V(e —bi)(e—by)
by + by /“2 ple)
- de
4z Jo V(e —bi)(e—b)
1 [* 1
+ / de e ple) +0(,). (4.241)
22 Jay V(e=bi)(e—b) z
By comparing with (4.222) we get
“ ple)
b+ by = —Zg/ de . (4.242)
o (e=Db)(e—b)
Using this equation together with (4.222) we get the extra condition

az
(b1 — by)? + 8g + 2(by + b)? = —Sg/ dee ple)

1 Ve—=b)e—b)
(4.243)
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Recall that [ay, as] is the support of the external density of eigenvalues and therefore
it is known whereas [b, b,] is the support of the quantum density of eigenvalues
which we seek.

Two examples/applications are now in order:

The Pure Quartic Matrix Model In this case we have e = m?1 and thus we obtain

d 1
by + by = -2

. 4244
52 Jle—bi)e—br) (240

1

. (4.245)
52 Jte—bie—bo)

(by — b2)? + 8¢+ 2(by + by)? = —8

In above e = m? and d = 2 since the density of eigenvalues is a delta function. We
write b; = ex;, A = gd/e* and p = (8g)/e” then

A
X1 +x = —
VI =x)(1=x)
(1 =)+ 20 +x2)> +p 4 (4.246)
1= X2 1+ X2 =— . .
V(I —x)(1 —x)
Define x; + x, = y; and x; — x, = y, then
21
yr=-—
Je-y2 -3
81
Vit2yi4p=— . (4.247)
Je-y2 -3
From these two equations we get the quadratic equation
2 =4y +Y+p=0 (4.248)
For 1 — p/2>0, or equivalently m*>4g, this leads to the solution
y§=—2(y1—1—\/1—'(2))(yl—1+\/1—’(2)). (4.249)

In other words, we must have

P P
1—./1="<y,<1 1—". 4.250
\/ y SN +\/ 5 ( )
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The other equation we need to solve is

2X
n=- . (4.251)
Je-y2 -3
This can be put in the form
2 Lo, 2
3= 07 —=2y1 =20 () — 2y1 + 24). (4.252)
1
We have
-1 :b2)k§y%—2y1 +2A<— '(2) £ 2A. (4.253)

Either we must have y? — 2y; £ 2A>0 which can not be satisfied or y7 — 2y; +
21.<0. The condition y% — 2y; — 2A <0 trivially holds. There remains the condition
y% — 2y; + 2A<0. This leads to the two requirements

P
" aa<o
5 TS
—1 + 2A<0. (4.254)

The first equation is equivalent to d < 2 whereas the second equation is equivalent
to m*>2dg. These together with m*>4g we conclude that we must have

d<2, m*>4g. (4.255)

Since in this case the density of eigenvalues is a delta function we have d = 2 and
hence the first constraint trivially holds.

The case of A1 = —DA’2 In this case the external eigenvalues are given by

16m 16m 1
Sn=E+m)y, En=_ E,= 1= )81 4.256
elbin=(E+m)n, & v B N ( 2) L ( )
The eigenvalues [ = 1,...,N correspond to the interval e = 16xl/N + m? €

[m?, 160 + m?]. Thus a = a; = m?, b = ay = m> + 167. Their distribution is
uniform given by

ple) = = . (4.257)
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Then we compute

g 1

16m
by +by=— / de .
P 8 Jo V(e +m?—by)(e+m>—by)

(4.258)

This leads to (with &} = b; — m2, by, =b, — m2)

1
de
Vb, =)y —e)
g /\/hq—l&z 1
47 \/b/l \/b/z — b/l + Z2
_ 8 \/ b 5\ (V/bi—16m
= 4 ln(z+ by —b) +z )'qu

;o /
|, Vo ‘/bf . (4.259)
Am /b — 16w — /by — 167

) g 167
b+ b+ 2m* = — /
1 2 m 87 J,

The second equation can be simplified as follows. We have

167 2
g e+m
(b] — b)* + 8g + 2(b| + by +2m*)? = — / de
27 Jo V@&, =)t —e)

g /\/}/1—1671 i % — 2 4m?
N Vb = b+ 22
= 4(b| + m*) (b} + b + 2m?)

g /b —167 2

- / dZ / /
LN Vb, = by + 22
= 4(b| + m*) (b} + b + 2m?)

1 1
—i(zz\/b;—bg+z2— NCETH
In 7+ \/b/ _ b/ 4 Zz)) \/b/:—l6n

(e Vs —v+2) )1
= 4(b} + m*) (b} + b, + 2m?)

+23;Z (\/b;b; — ] — 1670} - 1671))

+2(b, — b)) (B, + b} + 2m?).

/4

(4.260)
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After some cancellation we get
8
b=t = (\/bgbg - \/(bg —167)(b, — 167r)) _8g.  (4.261)

This is slightly different from the result obtained in [19].
Next we will need to calculate the solution W(A) from Eq. (4.240). We have

immediately
Nam =B = b))
28 28

1[5 e VO =B = bY)
/0 A [1_ ]

327 '—e VB, —e) (b, —e)
_ M JV =B = bh)

W) =

2g 2g
1 /x/bi—lon —2zdz [1 B \/(,v_b/l)(,v_b/z)}
32m N4 A =D+ 22 z\/b’2 b+ 22
_ MmO =B - b
2g 2g
VW =b) =y VAT gy 1
L R L
1 167
In(1 — .
T M=)

(4.262)

The final integral in the 3rd term can be done using Eq.2.284 of [13]. We get after
some more algebra the result

Mmoo VO = b —bh)

W) =
2g 2g
1 m(\/)v_b/l\/b/z_bﬁ+ZZ+\//V—b'ZZ)|\/b§—16n
327\ N = by — b+ 22— N = bz )
1 16
In(1 —
Ty, M=)
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_ M+ m* VO =B = bh)

2g 2g
PRI \//V—b/l\/b/z—l&r—\//V—b/z\/b/l—l6n‘
167 N AN N

(4.263)

4.3.2 Nonperturbative UV-IR Mixing

By plugging equation (4.218) into Eq.(4.217) we obtain the following two-point
function

1 N N
< OFWOE) >=— | Y Wleyny) , yilxy) =270 Y dripi(y).
k=1 =1
(4.264)

We want to compute this two-point function in the limit N — oo, k —> o0
with k/N € [0, 1] kept fixed. In this limit the function W(e;), which should be
identified with the derivative of the free energy with respect to the eigenvalue
M = e = 16mk/N + m?, is given precisely by Eq.(4.263). The sum over the
Landau wavefunctions y,(x, y) can be computed using the techniques developed in
Appendix A. In the large k limit we can evaluate the integral involved in y;(x,y)
using the saddle-point approximation to find the result [19]

Ve (e, y) = 4Jo(A \/A;|x —). (4.265)

In above A = N/476 and A = 167k/N. We have then
167 dr
< dT)P(y) > = —/ A W + m>)Jo(AVA|x —y|)
0 T

4/ A

pdp

= _/ , W(p*/A? + m?)Jo(plx = y]).
0 2nA

(4.266)

Thus the momenta of the scalar field are identified as the square root of the
eigenvalues of the scalar matrix, i.e. p = A~/A. By using the result (4.34) we have

d2 ) 1
X, = / (22 exp(ib;kp;) = 2ﬁ10(9kp)- (4.267)
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Thus we obtain
+ 1 d’p 202 2y —ip(x—y)
<PT()P(y) >=—, ,W(p /A" 4+ m)e” P
A% Jpiaynn (270)
(4.268)
Thus the large 6 limit defined as above gives a rotationally and translationally
invariant quantum noncommutative field theory. The Fourier transform of the exact

propagator of the quantum noncommutative field theory is essentially given by the
exact solution W of the matrix model Schwinger-Dyson equation, viz

G(p) = — /iz W(p*/A* + m?). (4.269)

Now we take the limit A — oco. Towards this end, we will compute the loop
expansion of the above equation. We start by writing

W) =) dwh(). (4.270)
k=0

The Schwinger-Dyson equation (4.220) gives the iteration system of equations

1
wOMR) = — A (4.271)
k—1
WO QWED () PdX p(\) e —1)(y7
wh@) =" . +/ g G =W )).
1=0 a
(4.272)
The free propagator is then given by
~ 1 1
GOp) == WO /N +m) =, (4.273)

We note that from the action (2.208) the actual mass of the scalar field is given
by M?> = u?/2. The one-loop correction (planar+non-planar) is given by (with

g =gA?
GO(p) = = 5, WO (/A 4+ m?)

g (W(O)(A)W(O)(A) 1 m+16m gy

T A2 A 167 /2 A—N wO@)-wo ()‘/)))
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T A2 A 16712 b
21n (16xA%/M?) 2A2
167(p2 + M2 (p?+ M2)3

g (W(O) ()L)W(O) (A) 1 /*rn2+1671 d)k/)

m2

(4.274)

The first term is due to the one-loop planar tadpole diagram which is logarithmically
divergent in two dimensions whereas the second term is due to the one-loop non-
planar diagram which is quadratically divergent in two dimensions. The two-loop
correction as well as higher order loop corrections can be computed in the same
way by means of Eq. (4.272). It will be seen, in particular, that divergences become
worse as we increase the loop order together with the appearance of some additional
divergences in A not found in the ordinary scalar field and which can be traced to
divergences in the summations over Landau levels in the matrix model.

4.4 Noncommutative Phi-Four on the Fuzzy Sphere

4.4.1 Action and Limits

A real scalar field @ on the fuzzy sphere is an N x N hermitian matrix where N =
L + 1. The action of a A®* model is given by

1
S = NTr[CD[La, [La, ®]] + m*®* + w‘}. (4.275)
It has the correct continuum large N limit, viz

dQ
S = / A [cpcf,cb +m* P + A<I>4] (4.276)
T

Quantum field theories on the fuzzy sphere were proposed originally in [14, 15].
In perturbation theory of the matrix model (4.275) only the tadpole diagram can
diverge in the limit N — oo [5, 36]. See also [37, 38]. On the fuzzy sphere the
planar and non-planar tadpole graphs are different and their difference is finite in the
limit. This is the UV-IR mixing. This problem can be removed by standard normal
ordering of the interaction [7].

Another remarkable limit of the matrix action (4.275) is the limit of the noncom-
mutative Moyal-Weyl plane. This planar limit is defined by N — 0o, R —> 00
(the radius of the sphere) keeping the ratio R*//c, = 67 fixed. The parameter 6
is the noncommutativity parameter and c; is the Casimir ¢c; = (N?> —1/)4. The
coordinates on the fuzzy sphere are x, = RL,/./c> with commutation relations
[Xa. Xp] = i0%€upex./R. In the above planar limit restricting also to the north pole on
the sphere we have x3 = R and the commutation relations become [x;, x;] = i6%¢;;.
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These are the commutation relations on the plane. In this planer limit the matrix
action becomes therefore

62 1
S = 5 Tr9[94 d[x;, [x;, @) + mid* + Aeqf‘] (4.277)

In the above equation we have also made the replacement R?Tr/N = 6>Tr/2 with
02Trg /2 where Try is an infinite dimensional trace and @ is an infinite dimensional
matrix (operator) on the corresponding Hilbert space. We have also the identification
m2 =m?/R*and Ay = A/R%.

4.4.2 The Effective Action and The 2-Point Function
We write the above action as
1
S = NTr(CDACD + m>P? + Acb“) . A =L (4.278)

To quantize this model we write ® = ¥y + ®; where P is a background field
which satisfy the classical equation of motion and @, is a fluctuation. We compute

S[®] = S[Dg] + Trd, (A +m? + 41@5) ) + 2ATrd, Dy P Py 4+ O(P3).
(4.279)

The linear term vanished by the classical equation of motion. Integration of ®; leads
to the effective action

1
Sexr[®0] = S[@o] + , TR log 2. (4.280)

The Laplacian €2 is given by

Qpacp = (A)pa.co + m*8pcdap + 4A( D) pcdap + 2A(do)sc(Po)pa. (4.281)

Formally we write
Q = A +m? + 4ADE + 21D DF. (4.282)

The matrix ®F acts on the right. The 2-point function is deduced from

1
Sg;]fad = NTrCDO (A + mz) Dy + ATR( ) <I>§ + 5 c1>0q>§), (4.283)

A+m A+m
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Let us insist that the trace TR is not the same as the trace 7r. To see this explicitly
let us introduce the propagator

1 AB,CD |
pC.
(A + mz) - Z A(k) + m? kks( kk3) (4.284)
koks

The eigenbasis {Ti,} is such ATy, = A(k)Tw, where A(k) = k(k + 1). The
matrices Ty, are the polarization tensors where k = 0, 1,2, .., N — 1 and —k<k3 <k,
viz Ty, = Ykk3 / +/N. Thus while the trace Tr is N dimensional the trace TR is
actually N dimensional. We will also need the resolution of the N*-dimensional
identity matrix

§ACSED =3 " TiB (T )Pe. (4.285)
k.k3

For any matrix M* acting on the left and any matrix MR acting on the right we have
the following matrix components

(M"Y ap.cp = MacSpp » (M®)ag.cp = SacMpg. (4.286)

The planar contribution is thus given by

2 2 1 + $2
TR, = 2% =2 > AGR) - e T Tk P
k.k3

=2 Z Z ¢(PP3)¢(‘MS) Z A(k) +m Ter/ﬂ Tpp; qu} Tkk3 .

P.P3 4,93

(4.287)

Similarly, the non-planar contribution is given by

1 " 1 +
TR, 2 ®0%0 = > AG) + m2 TrTiy, @0 T Po
k.k3

= ZZ¢(PP3)¢(CICI3)Z A(k) tm 2 T T Tt T

P.P3 4,93

(4.288)

In above we have clearly expanded the matrix ®¢ as &y = Y ks @ (kk3) Ty, . Since
®, is a matrix we can not move it across the polarization tensors and hence the
contributions are different. These contributions are finite by construction. Formally
they become equal in the continuum limit. However, by doing the sums first then
taking the limit we see immediately that they are different even in the continuum
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limit. This is the source of the so-called UV-IR mixing. We show this point next.
We have the identities

1
DT T T Tty = 2k Dby (1. (4289)
k3

ss
Z Ir T/j/;z Tops Tits Tags = (2k + 1)8p 48ps.—g5 (_1)[)4—[734—1(4—2‘Y % b } :

kss
k3
(4.290)
In above s is the spin of the SU(2) IRR, vizs = V 2_1 . Thus we obtain
2 1 2k + 1
TR ®2 =2 P, P = ,
A+m2 0 gl(ﬁ(’%)' NXk:k(k—i-l)—}-mz
(4.291)
1
TR 1) qJR — 2HN—P , HN—P
A4 D008 = 22 B(PII () 1 (p)

p.P3

2k+ 1 sS
= ks ) P . (4292
Xk:k(k—f-l)—i-mz( ) kss ( )

The UV-IR mixing is measured by the difference

HN—P_HP= 1 Z 2k+1 N(_1)p+k+2S pss —1/1.
N - k(k+1)+m kss

(4.293)

When the external momentum p is small compared to 2s = N — 1, one can use the
following approximation for the 6;j symbols [39]

—1 p+k+2s 2k2
(ool OV 02 e 0zkane w200

Since P,(1) = 1 for all p, only k >> 1 contribute in the above sum, and therefore
it can be approximated by an integral as follows

_ 1 2k + 1 2k
o' -mf = ) [Ppa—NZ)—l}

N - k(k + 1) + m?
1 +1 dx
= th . hy = R P,(x)—1]|. (4.295)

N2
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Clearly, we can drop the mass for large N. We have the generating function

> 1
P,(x)f" = . (4.296)
X_(:) A V1=2ix 42
=
We can immediately compute
s 2
> ot = [, In(t =0, (4.297)
p=0

In other words hy = 0 and 7,0 = —2Y »_, . We obtain the following UV-IR
mixing on the sphere

2 41
nmv-r—_n? = - ) 4.298
N;n (4.298)

This is non-zero in the continuum limit. It has also the correct planar limit on the
Moyal-Weyl plane. We will show this explicitly for S? x S?. The planar contribution

I17 is given explicitly by 1{, log Z z (if we replace the sum in (4.291) by an integral).
Thus the total quadratic effective action is given by

ad __ 1 N?
glad NI (A +m’ +3ilog - uQ) D,. (4.299)
m
The operator Q = Q(L?) is defined by its eigenvalues Q( p) given by
P

A A~ 1
QYo = Q(0)Vpm . QD) =D . (4.300)

n=1

4.4.3 The 4-Point Function and Normal Ordering

The quartic effective action is obtained from (4.280) as follows. First we rewrite the
Laplacian €2 in the form

Q = A +m* + 220F + 2A(¢F)* + 24D D (4.301)
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This is symmetric between left and right. The quartic effective action is then given
by

A 1 2 1 1
quart __ 4 2 2 2 Ry2
Seir = NTrCDO—A TR[Z(A—}-mZCDO) +2(A+m2d>0)(A+m2(d>0) )

+ ! q><1>R2+4 ! @2 ! oMo
Atm2 000 Arm OJ\Agm2 00

= ;mé =223 b ()b (gq3) (i13) [sz,P +2Vpp

Jj3 3 oqqz 113

+Vn—pN—p + 4VP,N—p:|- (4.302)

We use the notation k = (kk3) and introduce the interaction vertex v(z ] ,q) =
Terk} T, Tpp, Tyq,- The two planar-planar contributions are given by

T7 = U(%,},Z,i)) v@vév;v I_é)
Ver(G,1,4,9)
prU-L g ;;k(k—i—l)—f-mzp(p—i-l)—i-mz

g 7 5 o U(k’,},?,i)) U(Z)sl_év és_i)
Vi 1g.1) = . 4.303
rli L %;%;k(k-ﬁ-l)-l-mzp(p-l-l)-i-mz (4.303)

The non-planar-non-planar contribution is given by

vkjp D) v(p.G.kT)
Vepn—p(.1.3.7) = . (4304
N=pN=P H= Z%;k(k+l)+m2p(p+l)+m2 (4.304)

The planar-non-planar contribution is given by

.. vk, Lp)  v(P.g. k1)
v ) . (4305
ru-r(:1.4.9 ;;k(k-i—l)—}-mzp(p-i-l)—}-mz (4-305)

In the continuum limit the planar-planar contribution Vpp remains finite and

tends to the commutative result. Thus with the continuum vertex w(k, j,p,q) =
I st Y,;,';S Yj,Yypy Yyq; the Vp p in the large N limit takes the form

Vep G.1,3.7)

2 2
T kk+1)+m?>p(p+1)+m
We can check explicitly that this is indeed the commutative answer. It is finite.
Furthermore it is shown in [7] that all other contributions become equal in the
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continuum large N limit to the above commutative result. Hence there is no
difference between planar and non-planar graphs and the UV-IR mixing is absent
in this case.

Hence to remove the UV-IR mixing from this model a standard prescription of
normal ordering which amounts to the substraction of tadpole contributions will be
sufficient. We consider therefore the action

1
S = NTr[cb(A +m? —3NATI? + 2AQ)d> + m“]. (4.307)
In above Q = Q(L2) is given for any N by the expression

A . 1 2%k + 1 ‘
Oy = Q) Q(P) = =, ), k(k + 1) +m[N(_l)p+k+23 {iij} - 1]
k

(4.308)
The first substraction is the usual tadpole substraction which renders the limiting
commutative theory finite. The second substraction is to cancel the UV-IR mixing.

Although this action does not have the correct continuum limit (due to the non-local
substraction) the corresponding quantum theory is standard ®* in 2 dimensions.

4.4.4 The Phase Structure and Effective Potential

The phase structure of A®* theory on the fuzzy sphere can already be understood
by an analysis of the classical potential

1
V= NTr[m2q>2 + ACD“] (4.309)

The minima (solutions of the equation of motion ®(m? + 2A®?) = 0) are given by
the following configurations

® = 0, disordered phase. (4.310)
m2
¢ = ey I' , ordered/matrix phase. 4.311)
In above I' is any Grassmannian element of the form I'=(1,1,1...,—-1,—1,..,—1).

The first k elements of the diagonal matrix I' is 41 and the remaining N —k elements
are —1. The first configuration (4.310) is rotationally invariant, hence the name
disordered, whereas the second configuration (4.311) is not rotationally invariant
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for all ' # 1. We have therefore spontaneous symmetry breaking of rotational
invariance besides the usual breaking of the Z, symmetry ® — —®.

In the commutative theory the matrix I" can only be the identity function. In this
case we will have an ordered phase characterized by

m2
o = oy ordered phase. (4.312)

This is rotationally invariant and only the discrete Z, symmetry ® — —® can be
broken in the commutative theory. In the noncommutative theory this phase also
exists and is renamed uniform ordered phase, but there is also the possibility that
I' # 1 and hence we have a different phase from the usual uniform ordered phase
called the non-uniform ordered phase or matrix phase.

The existence of the uniform ordered (uniform) and matrix (non-uniform)
solutions means in particular that the parameter m> must be negative. The disordered
phase appears generally for negative values of the mass parameter such that m> >
m? whereas the ordered/matrix phase appears for m> < m?2. The critical value m?,
for large values of A, agrees with the prediction of the pure potential term (4.309)
which has in the quantum theory a third order phase transition which occurs for
negative m? at m> = —2N+/A.

Strictly speaking the uniform ordered phase is not stable in the matrix
model (4.309) and the inclusion of the kinetic term is essential for its generation.
However, the above picture is still expected to hold for the full model (4.275) which
is indeed confirmed in Monte Carlo simulation of the model as we will see.

Let us define the following order parameters. The total power P and the power in
the zero modes Py given by

1 .
Trd? > |, Py =< (Trd)? > . (4.313)

P =< N32 \/N

It is not difficult to see that classically the power P becomes a straight line for
negative values of m? given essentially by the following theoretical prediction

P=0, for mzzmi , disordered phase.
2

p= " 2
2N

, for m fmi , ordered/matrix phase. (4.314)

The situation with Py is more involved since it will also depend on k. From the above
potential we have

Py =0, for mzzmi , disordered phase.

2
Py = —2\’7]\& 2k — N)2 for mzfmi , ordered/matrix phase. (4.315)



4.4 Noncommutative Phi-Four on the Fuzzy Sphere 171

We can use this type of reasoning to predict the following theoretical behaviour of
the action

V =0, disordered phase.

4

V= —Z; , ordered/matrix phase. (4.316)

The quantum effective potential of this model is derived from (4.280) with
background &, = +¢1. We get the effective potential

Veir(9) = m*¢? + Lop* + ;TR log(A + m* + 61¢7). (4.317)

Since we want to take m? very large we work instead with the rescaled couplings

m? = N?m? and A = N?im*A. We get
L R0 (¢>2 + ! + A )
N2 08 6i2A  6N2m*A

Vert(®)  ~n 0 ~45 .4
A2 =m¢° +m Ap +2

1 ~
+, log(6N*m*)). (4.318)

Thus we get the potential

Ve - e
If\f/(f) = m*¢* + m*A¢* + log ¢. (4.319)
The ground state is given by
1+ V1—4A
o v - (4.320)
4(—m2)A

This makes sense for 72 < 0 and for all A such that

= N1
A= <. 4.321
m* ~ 4 ( )
This gives the correct critical value
m*>mi = 4N (4.322)

The solution (4.320) corresponds to the uniform ordered phase with cut centered
around &y = +¢1 or &y = —¢1.
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4.4.5 Fuzzy S* x S? and Planar Limit: First Look

By analogy with (4.275) the scalar theory with quartic self-interaction on the fuzzy
4-sphere 8% x §? is

1
s = ol TrTr[opAob + m?®* + /\@4} , A= (L) (LD (4.323)

The Laplacians (ELI’Z)2 clearly correspond to the two different spheres. ® is now an
(N + 1) x (N + 1)? hermitian matrix. It can be expanded in terms of polarization
operators as follows

N—-1 k N-—-1 p
O=NY Y >N oRTT,,. (4.324)

k=0 ky=—k p=0 p3=—p

The effective action of this model is still given by Eq. (4.280) with Laplacian A =
(La”) + (L), viz

1
Sesr[@o] = §'[@o] + , IR log 2
Q = A +m? + 41D} + 24D DE. (4.325)
The 2-point function may now be deduced from
st~ Vg (a g m)oy+atr( @2 b o
off —NZVO +m 0+ A+m2 0+A+m2 0¥ |-
(4.326)

The Euclidean 4-momentum in this setting is given by (k, k3, p, p3) with square
A(k,p) = k(k + 1) + p(p + 1). The propagator is given by

1 AB,CD 1
( ) = Z 2 (TkkS TPP3 )AB((Tkkg, Tpp3 ) + )DC .

2
A+m LD Ak,p) +m
(4.327)
The one-loop correction to the 2-point function is
m?(k,p) = m* + A[znf' + IV"Pk, p)] (4.328)
The planar contribution is given by
x Qa+ 1)(2b + 1)
" =2%"% A(a.b). A(a.b) = (4.329)

.
= a@+1)+bb+1)+m
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The non-planar contribution is given by

25 2s

IV"(k.p) =2 > Ala.b)(=1)!*"** By (a.b),
a=0 b=0

ass, bss

Bay(c,d) = N*{ . s}{d ) s}. (4.330)

As one can immediately see from these expressions both planar and non-planar
graphs are finite and well defined for all finite values of N. A measure for the
fuzzy UV-IR mixing is again given by the difference between planar and non-planar
contributions which can be defined by the equation

oV "k, p)y—11* =2 Z ZA(a, b) |:(—1)k+P+“+kap(a, b) — 1}.

a=0 b=0
(4.331)

The fact that this difference is not zero in the continuum limit is what is meant by
UV-IR mixing on fuzzy S?>xS?. Equation (4.331) can also be taken as the regularized
form of the UV-IR mixing on R*. Removing the UV cut-off N—>00 one can show
that this difference diverges as N2, viz

Ak, p) — N? / / ity [Pk(tx)P,,(ty)—l] (4.332)

_tX

We have assumed that m> << N. This is worse than what happens in the two-
dimensional case. In here not only that the difference survives the limit but also it
diverges.

We can now state with some detail the continuum limit in which the fuzzy spheres
approach (in a precise sense) the noncommutative planes. We are interested in the
canonical large stereographic projection of the spheres onto planes. A planar limit
can be defined as follows

R2
0% = N = fixed as N, R—o0. (4.333)
()

We are now in a position to study what happens to the scalar field theory in this
limit. First we match the spectrum of the Laplacian operator on each sphere with
the spectrum of the Laplacian operator on the limiting noncommutative plane as
follows

ala + 1) = R*a>. (4.334)
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The vector a is the two dimensional momentum on the noncommutative plane which
corresponds to the integer a. However, since the range of a’s is from 0 to N — 1 the
range of @ will be from 0 to 2NA? where A = 1/6. It is not difficult to show that
the free action scales as

2 - e
VAT 2ad%k

DD [a(aJr1)+b(b+1)+mz]|¢>‘"”“b'"b|2 = / 2 [62+132+M2]|¢‘3'“ﬂ'z'“blz.
a,b mg,mp 0
(4.335)

The scalar field is assumed to have the scaling property ¢|Z|‘7’”|b I¢p = R3 gpmabme
which gives it the correct mass dimension of —3. The «, and o), above are the angles
of the two momenta & and b respectively. They are defined by o, = 7m,/a and
ap = mwmy /b and hence they are in the range [—, 7r]. The mass parameter M of the
planar theory is defined by M? = m?/R>.

With these ingredients, it is not then difficult to see that the flattening limit of the
planar 2-point function (4.329) is given by

n° 2 ONA%  p2NA? 4G dzl;
s =, R R . (4.336)
7= Jo 0 a* + b> + M?

This is the 2-point function on noncommutative R* with the Euclidean metric R? x
R?. By rotational invariance it may be rewritten as

(4.337)

- K2+ M?

HP 2 /ZNA2 d4k
R2 B 7{2 0

We do now the same exercise for the non-planar 2-point function (4.330). Since the
external momenta k and p are generally very small compared to N, one can use the
following approximation for the 6j-symbols

{ass} N(—l)““’ 2b>

bss N P,(1- A2 ). N—oo, a<<s, 0<b<2s. (4.338)

By using all the ingredients of the planar limit we obtain the result

- P(k P _ 2 2 eny /W /W (@ldiah(piaibh , | 0%, | 0°B
Rarem 2R 2R>
(4.339)

Although the quantum numbers k and p in this limit are very small compared to s,
they are large themselves i. e 1 << k,p << s. On the other hand, the angles v,

defined by cosv, = 1 — o'a;

>z can be considered for all practical purposes small, i.e.
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-
YV, = 0 Il"l because of the large R factor, and hence we can use the formula (see for

e.g. [21], page 72)

Py(cosva) = Jo(n) + sin’ 1)Zd |:112(n) — () + n.]3(n)i| + O(Sin4 Va)’
n 6 2
(4.340)

for n >> 1 and small angles v,, with n = (2n + 1) sin . To leading order we then
have

04a? - 1 [ . -
Pl =) = Jo(0%|kl|al) = 271/ dorge!®” cosealklal, (4.341)
0

This result becomes exact in the strict limit of N, R — oo where all fuzzy quantum
numbers diverge with R. We get then

— ONAZ  p2NA? - 27 R R
v P(k p) _ d*ad’b o0 Rl(lalcosay) ,i0 1Bl cos o)
fr2 @ + b2+ M2
(4.342)

By rotational invariance we can set 0>B*’k,a, = 92|7€|(|ZI| cos o), where B2 =
—1. In other words, we can always choose the two-dimensional momentum k, to lie
in the y-direction, thus making «, the angle between a,, and the x-axis. The same
is also true for the other exponential. We thus obtain the canonical non-planar 2-
point function on the noncommutative R* (with Euclidean metric R?> x R?). Again
by rotational invariance, this non-planar contribution to the 2-point function may be
put in the compact form

HN—P k 2 2NA? d4k )
( vp) _ / @LGZPBk. (4343)
0

R x? k* 4+ M?

W can read immediately from the above calculation that the planar contribution is
quadratically divergent as it should be, i.e.

= = . 4.344
3272 R2 (4.344)

1 HP_/ZNA2 k1 1 N
0 Qr)* k2 +M?  8m?H?

The non-planar contribution remains finite in this limit, viz

_ 2
L IVPkp) _ /ZNA R B
3272 R2 0 Q2n)* k* + M?
1 2 ) 2
= Snz[E294 + M?*1In(0 EM)} , E' = B"p,,.
(4.345)
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This is the answer of [26]. This is singular at p = 0 as well as at § = 0.

4.4.6 More Scalar Actions on Moyal-Weyl Plane and Fuzzy
Sphere

We have already considered, in previous sections, the scalar actions on the Moyal-
Weyl plane given by

S, = Tr(CI>+AMqD + V(o™ cb)) . w=0,1,2. (4.346)

The Laplacians A, are given by
Ag = —0?

N a1 1
A= _Di2|self-dual = 4B(a+a + 2) = 4B(j + 7+ 2)

Ar = —(D? + C)|settaua = 4B@Ta +bTh+ 1) = 4B(2J + 1).
(4.347)

The action Sy is what we want at the end. The action S; is the Langmann-Szabo-
Zarembo action, which is exactly solvable, and S, is the Grosse-Wulkenhaar action
which is renormalizable and free from UV-IR mixing. These two last actions should
be compared with the action on the fuzzy sphere given by

S = TrN(q>+Aq> + V(T q>)) , A_4BT? =4BJ(J +1). (4.348)

The trace Tr on the noncommutative plane is infinite dimensional whereas Try is
finite dimensional. In a sense if we cut the trace Tr at some finite value the resulting

action S, is also defining scalar fields on the sphere with the Laplacian 4B \/ J>+ i
instead of the usual Laplacian 4B 2. This can not be said for S; since the term J;
in A breaks the SU(2) symmetry.

The Action S, is UV-IR Free Let us show explicitly that the action S, regularized
by the fuzzy sphere, is free from UV-IR mixing. We consider real phi-four models
given by

Su[®] = Tr(@A,ﬁD + m®? + Acb‘*) , 0T = . (4.349)
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We write ® = &y + & where & is a background field which satisfy the classical
equation of motion and ®; is a fluctuation. We compute

Sﬂ[q)] = SM[CD()] + Tr<I>1 (AM +m+ 4/1@3)@1 + ZATrq)lq)()CDlCDO + O(CD?)
(4.350)

The linear term vanished by the classical equation of motion. Integration of ®; leads
to the effective action

1
Syett[Po] = S[Po] + 2TR log Q (4.351)
where

Qpacp = (Ap)pacp + mSpcdap + 4A(DF)pcSap + 24 (h0)sc(Po)pa-

(4.352)
Formally we write
Q= Ay +m+ 40D} + 22D DF. (4.353)
The matrix ®F acts on the right. The 2-point function is deduced from
S99 g (A, +m )@+ ATR( D @4 dedk
w.eff 0\ 2u 0 A,L+m0 A,L+m00'
(4.354)

Let us introduce the propagator

1 AB,CD
(sem)  =Zaeatmr s

The eigenbasis {Ti,} is such A, T, = A, (k)Ti,. In above we have assumed for

the action S, u = 1, 2 the obvious regularization of the fuzzy sphere. The trace Tr

is thus N dimensional and Ty, are the polarization tensors where k = 0, 1,2, .., N—1

and —k<ks <k. The action Sy is more subtle and needs to be treated independently.
The planar contribution is thus given by

2 1
TR P2 =2 T ®2T,
Ay +m ’ %: Ay(k) +m "k Fo ks

=2> " " ¢(pp)d(qqs) Z A (k) T Topy Ty T

P.P3 4,93

(4.356)
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Similarly, the non-planar contribution is given by

1 1
TR O Pk = TrTE ®0Ti, @
Ap+m 00 ZAu(k)+m My T0 0

= ZZ¢(pp3)¢(qq3)Z A (k) T T T Ty
pP.P3 4,93

(4.357)

In above we have made the expansion &) = Zkks @ (kk3)Tig,. Next we will only
consider the action S,. We can show the identities

1
ZTerks 3 Laqs Thky = N(2k+ 1)8p,q8p3~,—613 (=D7. (4.358)

ZTerk} Ty Tk Tags = (2K + 1)8 485 g5 (— 1)1’+1’*+"+2Y{§“:i } (4.359)

In above s is the spin of the SU(2) IRR, vizs = ¥ ;1 . Thus we obtain

2 1 2k + 1
TR 2 =2 e, nf = . (4.360
Ay m® > 16(pp)l NZAM(k)+m (4.360)
p:P3 k
1
TR O DR = nV"(p),
Ayt m® > 1 (pp3)| (p)
p.P3
2k +1 sS
VNP (p) = 1)PHkt2s % p } _

(P) Zk: Ay(k) +m =D kss

(4.361)

The UV-IR mixing is measured by the difference

1 2k + 1 sSs
mv—r —f = N(—1)t+2s )P —1|. @362
Nzk:A,L(k)+m[ =D kss ( )

For m = 0 we obtain using identity (2) on page 305 of [39] the result

N N ss
HN—P _ HP — 8 201 N(=1 pt+k+2s p —1].
2B + 2B 2BN Z( )|NED kss

(4.363)
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We also have in this case

P 1
In" = . (4.364)
2B
When the external momentum p is small compared to 2s = N — 1, one can use the
following approximation for the 6j symbols

—1 pt+k+2s 2/(2
{iii} ! )N Pp(1 = ), 500, p << 25, 0=k=2s. (4365)

Since P,(1) = 1 for all p, only k >> 1 contribute in the above sum, and therefore
it can be approximated by an integral as follows

N N N [t N N
nv"-mn* = - — dx| Py(x) — 1| = -1,
o T g% T 4p ) P 2B T 4B’"
+1
I, = /1 dxPp(x). (4.366)
We have the generating function
> 1
P,(x)f = . 4.367)
Z_;) b0 V1=2tx+1
=
Thus we can compute
o0
oL =2. (4.368)
p=0
In other words /o = 2 and I, = 0 and as a consequence
nv-r—_m’ =o. (4.369)

There is no UV-IR mixing, Indeed.

Exactly Solvable Actions on The Fuzzy Sphere: Let us now consider the action

S[®, &+ = / dzx(rzq>+A<I> 4ot + “’2’ (@ « @)2). (4.370)
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We take the Laplacian

1 2
16Bz(a+a+ 2)

1
16BZ(J(J+1)+%2+4+J%+%J+$). (4.371)

A=A}

For hermitian matrices (®" = ®) we can drop from the Laplacian all linear terms
in J3 since they will lead to vanishing contributions in the action. We thus obtain
(with r = 1/4B)

S[®] = / dzx[op(jj + JE + i + mz)dD + i @4}. (4.372)

By rewriting this noncommutative ®* scalar field theory in terms of the infinite
dimensional trace of the noncommutative plane and then regularizing the trace we
obtain a ®* scalar field theory on the fuzzy sphere with a distorted metric (since we
have jaz + Jg’ instead of simply jaz), viz

S[®] = 4n9Tr[q>(jj + J7 + i + m2)© + iqﬂ}. (4.373)
The point we want to make is that the regularization of this noncommutative real
scalar filed theory can be thought of in a very precise sense as a real scalar field
theory on the fuzzy sphere. This is basically our motivation for studying this model.
Furthermore this action is exactly solvable. Indeed, the corresponding partition
function can be reduced to (4.203) with £ given by

1
Ein = = 2)281,,1. (4.374)
Let us consider now the general action

S[®, d1] = /dzx(qD“LF(Al)d) +m*odT P + §(¢+ s @)2). (4.375)

F(A,) is some function of the Laplacian A;. A similar calculation leads to the
external matrix
1 167A? 1
Ein= , F - Sin. 4.376
= ( N ( 2)) L ( )
We can immediately use the solution developed in a previous section. In this case
the external eigenvalues are given by
1 16mA? 1
elin=(E+m), =e= F(

_ 2
2 v 2))+m. (4.377)



4.4 Noncommutative Phi-Four on the Fuzzy Sphere 181

The eigenvalues / = 1,...,N correspond now to the interval [a;, a;] such that
a; = m? + Alz F(0) and a; = m® + Alz F(16mA?). Their distribution is now more
complicated given by

1 dl 1 1
= = . 4.378
PO= Nde ™ 161 F (4.378)
Let us choose F such that 1/F’ = e, i.e. we get the linear distribution
1dl 1
= = . 4.379
PO= Nde ™ 162° (4.379)
We get the solution
! Y VS 2 4.380
A2F()c)— m —}—Azx—m . (4.380)

This corresponds to the action
:
S[®, d1] = /dzx[d>+ (m4 + ZAZAI) ® + i(qﬁ ¢ @)2}. (4.381)

It seems that in a A2/m* expansion we will get a kinetic term which is the sum
of a Ay and a A% contributions. The corresponding interval is [a; = m2,ay =
Vm# +327).

The analytical continuation of the solutions (4.242) and (4.243) is defined as
follows. The original model contained the resolvent

1L 1
Y (iey) = . 4.382
(ien) N ; Xx; — iey ( )
Hence, we are interested in X (z) = —iW(—iz) and not W(z). We remark that when

7z —> oo we get X (z) —> —1/z. By making the substitutions z — —iz, e —> —ie,
b; —> —ib; and a; —> —ia; in (4.240) we get

S@ = 4 VEtGe=b) 1 /“zdep(a [1_ \/(z—b1)(z—bz)]

2g 2g 2 z—e V(e —bi)(e—by)
(4.383)
This is essentially an analytic continuation of the solution (4.240). Remark that the

density of eigenvalues changes as p(—ie) = ip(e) by definition. Since X(z) —
—1/z we get as before the boundary conditions (4.242) and (4.243) with g < 0.
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We can now compute

az

by + by = 8“’; [(b1 +by)log [ Vb1 — e + v/by — €] — /(b1 — ) (b — e):|

(4.384)

aj

Also we can compute

(bl _b2)2 + Sg + 2(b1 + b2)2 — 8i |:(3b% + 3[7% —+ 2b1b2) IOg[\/bl —e+ \/b2 - 6]

—(3by + 3by + 2¢) /(b — €)(by — e)] 2

(4.385)

These two equations can be put in the equivalent form

(b1 + b2)8 = =2/(b1 — a2)(bs — a2) + 2+/(b1 — a1) (b — a1).  (4.386)
biby8 — 327 = azy/(by — a2) (b — az) — ar /(b1 — ar) (b — ay). (4.387)

16 by + by —2a; + 2/(b) — ay) (b, —
5 167 ~log 1+ by —2ay 4+ 2/(by — a2) (b 612)' (4.388)
g by + by —2ay + 2./(by — a1) (b — ay)

We consider the ansatz
167
Vb —ax)(by—az) — J(by —a)(by—a)) =a —a, & § = g (4.389)

This leads to the two equations

by + by = —S‘i (a2 —ay). (4.390)

byb) —2g = lgrr (ay —ay)(a; + \/(bl — ) (b — a»))
- 121 (@ —a)(@+ /(b1 —a)b2—an). (4391

Let us solve these last three equations (including the ansatz) in the large m? limit. It
is useful to define

b; = m?b; , g = m*g. (4.392)
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The ansatz takes the form

\/(131 - Z?)(Ez - Z?) - \/(131 Dby —1) = Z? 1 (4.393)

We compute
12872 1
(a2 —apay=16r— = +0( ). (4.394)
m m
Then
~ ~ - 8m 1
by = —b| — 2g[1 -, + o( 8)}. (4.395)
m m

The second equation is much more complicated. It gives

- . _ lémg- - ~ .z
— B —25h, — 2% + m4gb1:g[1+\/(l—bl)(1+2g+b1)

8ng 1—by 87
o4 L
m 14+2g+b m
8 ~ .= 1
o \/(1 —b)(1+2g+ bl):| + O(mg).
(4.396)
To leading order we have
- o .. ~ .= 1
— b} —23b; — 3% = g\/(l —b)A+28+b)+0( ). (4397)

To this leading order we also have Zf =1+ O(ml4) and hence the ansatz (4.393) is
trivially satisfied. We also get

- - 5 1
by = —by —2g + O( 4). (4.398)

m
The~ first requirement we get from (4.397) is that we must have —2g — 1579151 or
1<b;< — 2g — 1. Recall that g is negative given by g = m*g. Let us introduce

x = —b} —2gh,. The above equation becomes

x—33=3V/x+1+28 x> — (2> +62)x+83°—28°=0. (4.399)
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; The equation x = —IB% — 2zb can be solved to give

by =-g+ /22 —x (4.400)

These last two equations require that one must have x<3g and x<g?. The explicit
solution satisfies these conditions. We get

1, 1, )
x= 843+ 2g\/g2+20g+4. (4.401)

We can now find b, from (4.398) and (4.400). This reads

bhy=—-3F V&2 —x (4.402)

We choose always the solution with b, > b;. Let us also say that the above solution
makes sense iff

3+ 20z + 4>0. (4.403)

Therefore the coupling constant g must be such that either g>g. = —10 + 4+/6 or
equivalently

5
m'=% = + Vo). (4.404)
8+ 2
Or it must be such that §<g_ = —10 — 44/6 or equivalently
5
mt<® = ~(; — Vo). (4.405)
8-

Since m? is large, it is the first region we must consider, and thus one must have
g>g+ always. In other words, —2g — 1< — 2g4 — 1<0. Now going back to the
requirements —2g — 15[3151 or 15[315 — 2g — 1 we can see that we must have in
fact —2g — 1<b; <1 or equivalently \/g2 — x<1 + g. Using the solution for x we can
check that this inequality indeed holds.

Furthermore, Eqs. (4.242) and (4.243) were obtained with the crucial condition
that [by,by] N [a;,a2] = ¢. In other words, we must always have b,<1 or
equivalently

— 23/ + 203 + 4<23 4+ 203 + 4. (4.406)

Both sides of this inequality are positive numbers and the inequality always holds
as we can check by direct calculation.

This solution, which was found for the model with the kinetic term F(A)),
corresponds to the region where we have two disjoint supports. The background
support [a;, a;], which consists in the limit of large m? of just one point, and the
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quantum support [by, by]. This solution is expected to be generic for all models
where the kinetic term depends only on A;. Among these models, we find the
Moyal-Weyl plane with the Laplacian A, and the fuzzy sphere with the Laplacian
A%. It is clear that subleading corrections in powers of 1/m* of this solution can be
computed using the above method.

4.5 Monte Carlo Simulations

4.5.1 Fuzzy Sphere: Algorithms and Phase Diagram

The phase diagram of noncommutative phi-four on the fuzzy sphere is shown
on Fig.4.3. The usual phases of commutative phi-four theory are the disordered
(rotationally invariant) phase (< 7r® >= 0) and the uniform ordered phase (
<Trd >= £N \/ —m?2/2)). The phase diagram is found to contain an extra phase
(the matrix phase or the non-uniform ordered phase) which lies between the two
usual phases of the scalar model. In this novel “matrix phase” we have instead
< Trd >= (N — 2k) \/ —2m? /) where k is some integer. The transition from
disordered to matrix is third order with continuous action and specific heat.

Hence, fuzzy scalar phi-four theory enjoys three stable phases: (1) disordered
(symmetric, one-cut, disk) phase, (2) uniform ordered (Ising, broken, asymmetric
one-cut) phase and (3) non-uniform ordered (matrix, stripe, two-cut, annulus) phase.
The three phases meet at a triple point. The non-uniform ordered phase [3] is a full
blown nonperturbative manifestation of the perturbative UV-IR mixing effect [26]
which is due to the underlying highly non-local matrix degrees of freedom of the
noncommutative scalar field.

The problem of the phase structure of fuzzy phi-four was also studied by means
of the Monte Carlo method in [6, 10, 11, 22, 23, 30, 41]. The analytic derivation of
the phase diagram of noncommutative phi-four on the fuzzy sphere was attempted
in [27, 29, 31-35, 42].

Both graphs on Fig. 4.3 were generated using the Metropolis algorithm on the
fuzzy sphere. In the first graph coupling of the scalar field ® to a U(1) gauge field on
the fuzzy sphere is included, and as a consequence, we can employ the U(N) gauge
symmetry to reduce the scalar sector to only its eigenvalues. In the second graph an
approximate Metropolis algorithm, i.e. it does not satisfy detailed balanced, is used.

Another powerful method which allows us to reduce noncommutative scalar phi-
four theory to only its eigenvalues, without the additional dynamical gauge field, is
the multitrace approach [27, 29, 31-35, 42]. See next chapter. The phase diagrams
of various multitrace models of noncommutative phi-four on the fuzzy sphere are
reported in [46, 47]. They are shown on Fig. 4.4.
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Fig. 4.3 The phase diagram of phi-four theory on the fuzzy sphere. In the first figure the fits
are reproduced from actual Monte Carlo data [41]. Second figure reproduced from [11] with the
gracious permission of D. O’Connor
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These phase diagrams were obtained by means of various algorithms which we
will now discuss in some more detail. We have:

e The algorithm used in [11] to compute the phase diagram is based on, a very
complex variation, of the Metropolis algorithm, which does not preserve detailed
balance. In the region of the disordered phase, their algorithm behaves essentially
as the usual Metropolis algorithm, with a processing time per configuration, with
respect to the matrix size, proportional to N*. The new Metropolis algorithm,
described in [11], behaves better and better, as we go farther and farther, from
the origin, i.e. towards the regions of the uniform and non-uniform phases. The
processing time per configuration, with respect to the matrix size, is claimed to
be proportional to N3, for the values of N between 4 and 64. See graph 9.12 of
F.G Flores’ doctoral thesis,! where we can fit this region of N with a straight
line. Also, it is worth noting, that this new algorithm involves, besides the
usual optimizable parameters found in the Metropolis algorithm, such as the
acceptance rate, a new optimizable parameter p, which controls the compromise
between the speed and the accuracy of the algorithm. For p = 0 we have a fast
process with considerable relative systematic error, while for p = 1 we have a
slow process but a very small relative error. This error is, precisely, due to the
lack of detailed balance. Typically we fix this parameter around p = 0.55 — 0.7.

The algorithm of [11] is the only known method, until [41, 46, 47], which is
successful in mapping the complete phase diagram of noncommutative phi-four
on the fuzzy sphere. However we had found it, from our experience, very hard to
reproduce this work.

* An alternative method which is, (1) conceptually as simple as the usual Metropo-
lis method, and (2) without systematic errors, and (3) can map the whole phase
diagram is constructed in [41]. In this method the phase diagram of fuzzy phi-
four theory is computed by Monte Carlo sampling of the eigenvalues A; of the
scalar field ®. This was possible by coupling the scalar field ® to a U(1) gauge
field X, on the fuzzy sphere which then allowed us, by employing the U(N) gauge
symmetry, to reduce scalar phi-four theory to only its eigenvalues, viz

S = 2“(N24_ 1 DA = D (X)yKa)ihid) +bY 27+ ey A
i ij i !

+pure gauge term. (4.407)

The pure gauge term is such that the gauge field X, is fluctuating around X, =
L,, b and ¢ are essentially the parameters m> and A respectively, while a is the
parameter in front of the kinetic term which we have not set equal to one here.
The processing time per configuration, with respect to the matrix size, in this
algorithm, is proportional to N*, which is comparable to the usual Metropolis

INot available on the ArXiv.
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algorithm, but with the virtue that we can access the non-uniform phase. There is
no systematic errors in this algorithm, and hence no analogue of the parameter p
mention above.

* As mentioned above, another powerful method which allows us to reduce
noncommutative scalar phi-four theory to only its eigenvalues, without the
additional dynamical gauge field, is the multitrace approach. The multitrace
expansion is the analogue of the Hopping parameter expansion on the lattice
in the sense that we perform a small kinetic term expansion while treating the
potential exactly. This should be contrasted with the small interaction expansion
of the usual perturbation theory. The effective action obtained in the multitrace
approach is a multitrace matrix model, depending on various moments m, =
TrM" of an N x N matrix M, which to the lowest non-trivial order is of the form

2
V = BTrM? + CTrM* + D|:TrM2:|

+B/(TrM)? 4+ C'TrMTrM? + D' (TrM)* + A'TrM*(TrM)* + ...
(4.408)

The parameters B and C are shifted values of b and c. The primed parameters
depend on a. The second line includes terms which depend on the odd moments
mj and m3. By diagonalization we obtain therefore the N eigenvalues of M as our
independent set of dynamical degrees of freedom with an effective action of the
form

1
Ser = Y _(bA} +cA)) — 5 > In(di - 4)?
i i

r? r
+[ g V21 Z(A, — Aj)2 + 48 V4,1 Z(Az - /\j)4
i#j i#]
2

7
_24[\]2 V22 Z(Al - Aj)z + .. i|
i#j

(4.409)

Since these models depend only on N independent eigenvalues their Monte Carlo
sampling by means of the Metropolis algorithm does not suffer from any ergodic
problem and thus what we get in the simulations is really what should exist in the
model non-perturbatively. The processing time per configuration, with respect
to the matrix size, in this algorithm, is proportional to N2, which is very fast
compared to previous algorithms.

e We also mention for completeness the algorithm of [30] which is based on a
combination of the Metropolis algorithm and annealing. A systematic study of
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the behavior of the eigenvalues distributions of the scalar field across the various
transition lines was conducted using this method in [30].

4.5.2 Fuzzy Torus: Dispersion Relations

The related problem of Monte Carlo simulation of noncommutative phi-four on the
fuzzy torus, and the fuzzy disc was considered in [1, 2, 20] respectively. For a recent
study see [24].

As an example the phase diagram and the dispersion relation of noncommutative
phi-four on the fuzzy torus in d = 3 is discussed in [2]. The phase diagram,
with exactly the same qualitative features conjectured by Gubser and Sondhi, is
shown on Fig. 5 of [2]. Three phases which meet at a triple point are identified. The
Ising (disordered-to-uniform) transition exists for small § whereas transitions to the
stripe phase (disordered-to-stripe and uniform-to-stripe) are favored at large 6. The
collapsed parameters in this case are found to be given by

N’m?, N*X. (4.410)

On the other hand, the dispersion relations are computed as usual from the
exponential decay of the correlation function

; > < @*@.0d@. 1+ 1) (4.411)

This behaves as exp(—E(p) 1) for large 7 and thus we can extract the energy E(p) by
computing the above correlator as a function of . In the disordered phase, i.e. small
A near the uniform phase, we find the usual linear behavior E(p) = ap” and thus in
this region the model looks like its commutative counterpart. As we increase A we
observe that the rest energy £y = E (6) increases, followed by a sharp dip at some
small value of the momentum p?, then the energy rises again with p? and approaches
asymptotically the linear behavior E(p) = ap? for p> —> oo. An example of a
dispersion relation near the stripe phase, for m* = —15, A = 50, is shown on
Fig. 14 of [2] with a fit given by

C1
VP i

The parameters c; and m? are given by Eq. (6.2) of [2]. The minimum in this case
occurs around the cases k = N|p|/2m = /2,2, +/5 so this corresponds actually to
a multi-stripe pattern.

The above behavior of the dispersion relations stabilizes in the continuum limit
defined by the double scaling limit N —> oo (planar limit), a —> 0 (m*> —

EX(p) = cop® + m* + , exp(—c2 \/fﬂ + m?2). (4.412)
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m? = —15.01(8)) keeping A and § = Na?/r fixed. In this limit the rest energy
E, is found to be divergent, linearly with /N o< 1/a, in full agreement with the
UV-IR mixing. The shifting of the energy minimum to a finite non-vanishing value
of the momentum in this limit indicates the formation of a stable stripe phase in
the continuum noncommutative theory. The existence of a continuum limit is also a
strong indication that the theory is non-perturbatively renormalizable.

4.6 Initiation to the Wilson Renormalization Group

4.6.1 The Wilson-Fisher Fixed Point in NC ®*

In this section we will apply the renormalization group recursion formula of Wilson
[40] as applied, with great success, in [8, 17, 28] to ordinary vector models and to
hermitian matrix models in the large N limit. Their method can be summarized as
follows:

1. We will split the field into a background and a fluctuation and then integrate the
fluctuation obtaining therefore an effective action for the background field alone.

2. We will keep, following Wilson, only induced corrections to the terms that are
already present in the classical action. Thus we will only need to calculate
quantum corrections to the 2- and 4-point functions.

3. We perform the so-called Wilson contraction which consists in estimating
momentum loop integrals using the following three approximations or rules:

— Rule 1: All external momenta which are wedged with internal momenta will
be set to zero.

— Rule 2: We approximate every internal propagator A(k) by A(A) where A is
a typical momentum in the range pA < 1 < A.

— Rule 3: We replace every internal momentum loop integral fk by a typical
volume.

The two last approximations are equivalent to the reduction of all loop integrals
to their zero dimensional counterparts. These two approximations are quite
natural in the limit p —> 1.

As it turns out we do not need to use the first approximation in estimating
the 2-point function. In fact rule 1 was proposed first in the context of a non-
commutative ®* theory in [4] in order to simply the calculation of the 4-point
function. In some sense the first approximation is equivalent to taking the limit
6 = OAN> — 0.

4. The last step in the renormalization group program of Wilson consists in
rescaling the momenta so that the cutoff is restored to its original value. We
can then obtain renormalization group recursion equations which relate the new
values of the coupling constants to the old values.
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This strategy was applied to the noncommutative ®* in [4] and to a noncommutative
O(N) sigma mode in [44]. In the context of the O(N) sigma model, discussed in the
next section, we can take into account, in the large N limit, all leading Feynman
diagrams and not only the one-loop diagrams and thus the result is non perturbative.
In this section we will apply the above Wilson renormalization group program to
noncommutative ®* model, i.e. to a noncommutative O(1) sigma model, to derive
the Wilson-Fisher fixed in this case. We will follow [4].

Cumulant Expansion

The action we will study is given by
d 2 2 Aoy
S= | d%| P(—0; + p )P + 4'd>* . (4.413)
Recall that the star product is defined by

Fagla) = S48, a?zjf(x + £)g(x + 0)le=yo. (4.414)

[xi, x;] = i6. (4.415)

We compute

/ddxcbi =/ .../(2n)d8(p1+...+p4)¢>(p1)...¢>(p4)u(p1,...,p4).
P1

P4
4.416)
u( )= 1 cos PN P2 COSP3/\P4+COSP1AP3 cog P2 NP4
D1s-..,D4 3 2 2 2 2

A A

+ cospl pa cos P27 Ps . 4.417)
2 2

PN k= eiipikj- (4.418)

We introduce the field ¢ (k) in momentum space by

O(x) = /k o (k) ™. (4.419)
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We start from the free action

S0 = [ 00+ )0 = [+ iR, @a420)
We introduce a cut-off, viz

So[®. 1. A] = / ® + 1)K (4421)

k<A

Let 0 < b < 1. We introduce the modes with low and high momenta given by

¢(k) = ¢r(k) , k < bA. (4.422)
¢(k) = pu(k) , DA <k < A. (4.423)
We compute
Solg. 1. A] = / (0 + p)lgL () + / W+ ph)lgu®)* - (4.424)
k<bA bA<k<A

In the path integral we can integrate over the modes ®p (k). We will be left with the
effective action (using the same symbol)

Sl A= [ @+ NGO = Sl bAL @425)
We introduce the renormalization group transformations
k— kK = g
9uk) —> ¢'(K) = b2¥' gy (k). (4.426)
Then we find
Solg, 11, A] = Sol¢’, 1, A (4.427)

The ¢’ can be rewritten as ¢ in the path integral. The mass parameter p/? is given
by

=" (4.428)

Thus only the massless theory, i.e. the point 4 = ' = 0 is a fixed point of the
renormalization group transformations (4.426).
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From the tree level action Si[¢p] we find that the renormalization group
transformation of the interaction vertex Au(py, ..., ps) is given by

Au(pr,.....ps)) = b~ u(bp,, ... bpy). (4.429)

In the limit & — 0 we find the usual renormalization group transformation of A,
viz

A= b4 (4.430)

But we also find in this limit that the noncommutativity parameter 6 is an irrelevant
operator with a renormalization group transformation given by

6" = b%0. (4.431)

In this limit we are always near the Wilson-Fisher fixed point.
Let us consider the path integral

7z = /dd) e~ So0l¢l=Sal¢] — /d¢L don o~ SolpL]=S0(¢n]—Sal¢L.pu]
— /d¢L e~ Solo] e—Sf;[tﬁL]' (4.432)
The effective interaction S} [¢,] is defined through

oSl _ / dipy &—S00n1=53101.n]
= constant x < e S49r.¢x] >0 - (4.433)

The expectation value < ... >y is taken with respect to the probability distribution
eSol#u] We verify the identity

e_S:*[‘M = constant x < e S4l¢L-dH] >0H

—<Salr.pul>on+} (<S§ [¢Ls¢H]>0H_<S4[¢Lq¢H]>(2)H)
= constant X e

—Sa4[pr)—<8SlpL . dul>on+ ) (<5S2[¢Ls¢H]>0H_<85[¢Ls¢H]>%H)
= constant X e .

(4.434)
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This is known as the cumulant expansion. The action 4 is defined by

8STgn. bul = 4 / b1(p)dL ()b (p3) i (pa)

LiLyL3Hy

+6 / SL(p)IL )b (p3)bir(ps)
LiLyH3Hy

+4 / b1(p0)b(p2)bu( p3)bia(pa)
LiHyH3Hy

+ / S (p)Su(p)bu(p3)bu(ps).  (4.435)
H{H,H3Hy

The integral sign includes the delta function and the interaction vertex j! u. We will
write

8S¢r, pul = 881 + 883 + 883 + 884. (4.436)

The 2-Point Function

We compute

1
< 8S[¢r, pu] >on = 7 / dy e §S[¢py, 1] = constant
oH

A
+6 / / / / @2n)*8*(p
A Jpi<on Jpr<bn Jon<ps<n Joa<pi<a

+...+pu(pr+ ...+ ps)

x¢r(p)pL(p2) < du(p3)Pu(ps) >om -
(4.437)

The constant comes from the quartic terms in ®y whereas S4[¢;] comes from the
zeroth order term in ®p. The cubic and the linear terms in ®y vanish because the
path integral is even under the Z, symmetry ¢y —> —¢py. The coefficient 6 comes
from the fact that we have six contractions and « is fully symmetric. The two point
function is given by

1 1
< ¢u(p3)Pu(ps) >on = 2(2n)d5d(p3 +p4) - (4.438)
p3t+u

< 8S[ér, pu] >on = constant + N éL(p)pL(—p)ALL(p).  (4.439)
p<
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A dk 1
AT = 2 A k).
2(p) A1 /bASksA Q) 2 + Hz( + cosp A k)
(4.440)
We define the integral
o0 2 Opp)?
I(p,0) :/ da V(b,A) e "™ 4 | (4.441)
0
where
A d
dk
V(b,A) = / L
pa (27)
& 1 aA?
_ S dex®l e, (4.442)
2 % Jar2a

In above Sy = Sq/2m)¢ = Ky, Sy = ZJrg/F(g). We make the approximation

§d 1 2 ah? d
V(b,A) = e oA / dx x27!
o

2 alzt b2A2
gd d dy —ah?
= A a=ph et (4.443)

Thus we compute

gd d d
I(p,0)= ~A“(1-0b . 4.444
(PO =" [N =bY (4.444)
We also compute
A gl Sy
Vi(b,A) = = "TAY 1 = bY). 4.445
R N e (4.445)

[ee) S‘ 1
-0 :/ do Vi(b, A) e = "TAY1—bY) . (4.446)
0 d u?
Alternatively, we can use (with n = dgz)

A k1 1
ATy (p) =2 1+ e ki
2Py =2, /bASkSA ani e+ 2t )

A1 1 1 1 J,,(0k
=2 {,/ Kk 2[ TR p)}. (4.447)
4 2m)2 Jonsk=a k2 + p? | 2m0m! 2 (Bkp)"
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The above integral can be approximated as follows

A1 1 1 Jn(HAp)i| / -
AT =2 + k" dk
2(r) 4 om)s A2+ 2 [2””! 2 (0Ap)" 1 Jon<k<n

KqA? Ju(OA
= 8KaAT Ly gy OAP) (4.448)
12(1+r) (OAp)"
We have used Ky = Sq/(2m)%, g = AAY™*, u? = rA%. We get the result
K, Inb Ja(bOA
poo T 8K bl GOAP] )
12 b? (bOAP)" 1,

In the above equation the external momentum p was also rescaled so that it lies in
the range [0, A]. We may use the expansion

Sy 1 x? 1 x

- - .. 4.450
T 2l 2 D 20 (22 (4:450)

Wave Function Renormalization

The wave function renormalization is contained in the p-dependent part of the
quadratic term given by

gKa(0A?)?

( 192 ) /,, o $L(P)PL(=p)P". (4.451)

Remember that In b is negative and thus we have obtained a negative wave function
renormalization which signals a possible instability in the theory. Indeed, this term
can be rewritten as

/ s o1 (P (P (4.452)
P=

d+2—y
pL(P)=b 2 ¢.(p). (4.453)
The anomalous dimension y is given explicitly by

_ 8Ki(ON?)

4.454
192 (4.454)
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This is also #-dependent. This result also implies a novel behavior for the 2-point
function which must behave as

1
< ¢ (0) >~ xfd-2+7 (4.455)

This should vanish for large distances as it should be as long asd —2 + y > 0. Thus
for large values of 6 we get an instability because d — 2 + y becomes negative. The
critical value of 6 is precisely given by

196(d — 2)

d—2+4+7y.=0= (0.A*)* =
8Ku

(4.456)

This behavior is certainly consistent above D = 4 where it is expected that the
Gaussian fixed point will control the IR fixed with the usual mean field theory
critical exponents.

The 4-Point Function
Next we compute the 4-point function. We compute

88 = 887 + 885 + 883 + 857 + 2851883 + 285,884 + ... (4.457)
The first term yields a correction of the 6-point function. The third and the last terms
give 2-loop mass corrections. The fourth gives a constant. The fifth is a reducible

correction to the 4-point function. We get using Wick’s theorem

<88 >=<85>

36 | " [ IR AT TATR ATy
< ¢u(p3)Pu(ps)pu(p7)pu(ps) >
—3 [ " / o BB P P )
< u(p3)bn(p) < I p)bu(ps) >
a72 | " / o BB P

< ¢u(p3)du(p7r) >< ¢u(ps)pu(ps) > . (4.458)
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The first contribution corresponds to a disconnected graph. We thus have

1 A2
2(< 88*> — <88 >2) = 9(4') / (27r)d5d(1?1 + p2 + ps + ps)
. 1256

d(p)L(p2)PL(ps)PL(Ps)
y / u(p1,p2,p3, pa) u(ps, pe, —p3, —Pa)
3w p3+p? P+ p?
2n)*8%(ps + ps — p3 — pa). (4.459)

We compute using the symmetry under the exchanges 3 <> 4 and 5 < 6 the
following result

2 piApy  PpsAP3y  DsAps Py ADp4
u(p1,pa. p3. pa)u( ps, ps. —p3. —ps) = _ cos cos cos cos

9 2 2 2 2
2 psAps  p1Aps  prAps  p3Aps
+ cos cos cos cos
9 2 2 2 2
4 piAps  prAps  psAps  peAps
+ cos cos cos cos
9 2 2 2 2
1
+ P (4.460)
18
The P is given by
AN AN
Plzcospl2p2005p52p6(1+00sp3/\p4). (4.461)

Again by using the symmetry under the exchanges 3 <> 4,1 <> 2 and 5 <> 6 and
conservation of momenta we get

2 A A A A 1 1
9cos P 2172 cos ps 2173 cosp6 2p4 cos ps 2174 = 18P1 + 18P2’ (4.462)

2 A A A A 1 1
0s Ps 7 Pe cospl ps cos P2/ pPa cos P3P _ Py + 18P3, (4.463)

C
2 2 2 2 18
where
A A A
P, = cospl zpz[cos (Ps 2p6 + P4 Aps) + cos (Ps 2p6 — P4 /\pé)i|.

(4.464)
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A A A
P3 = cos ps Po cos prap + pas Apa ) + cos prap2 —paApr )|
2 2 2
(4.465)

Also we compute

4 A A A A 1
Spl p3 OSp2 p4COSp5 p3c05p6 p4: P4+AP4, (4466)

co C
9 2 2 2 2 18
where
A A A A
Py = 2cos pr/p2 +p3 pa — pa A Pp1 | cos Ps 7 Ps +173 b + pa A ps
2 2 2 2
A A
= cos (P12 P50 pe —paA(p1+pe)
2 2
A A
+Cos(pl2p2—p52p6—p4/\(p1+p5)), (4.467)
and
1 PLAP2  P3AD4 D5 APs  D3APps
AP, = — P4 A —
4 9 cos ( ) + ’ Ppa A p1 ] cos ’ ’
1 P5sAPs D3 AD4 P1ADP2 D3AP4
+ cos + + A cos —
9 ( 2 o PR 2 2
1 P5sAPs D3APs PLAD2  P3APps
+ cos — cos —
9 2 2 2 2
1 1 1
= Pi+ P>+ _Ps. (4.468)

18 18 18
The final result is [25]

1 1 1 1
. D2, D3, . D6, —D3, — =2 P P P Py ).
u(p1,p2, p3. p)u(ps, ps, —p3, —Pa) (9 1+ 18 ) + 18 3+36 4)

(4.469)

We get the effective coupling constant (with p3 = b(ps + ps) — p4)

(gu(p1.p2.ps.pe)) = b'"*(gu(bpy. bpa. bps. bpe))
e & / N dp, 1
48A=4 Jo 2m) (p3 + p2)(ps + 12)
(4P) + 2Py + 2P5 + Py).
(4.470)
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In above we have rescaled the external momenta such that they lie in the range
[0, A]. We make the approximation that any internal momenta when wedged with
an external momenta yields 0. In other words

A A
Pl:PZ:P3:P4=ZCosb2p12pzcosb2p52p6. (4.471)
We then get, after resymmetrization of the external momenta, the result
(gu(p1.p2.ps.ps)) = b**(gu(bp1. bpa. bps. bps))
_ -4 188%u(bp1, bp2. bps, bpe)
48 Ad—4
A d
d 1
/ T C W)
pa 2m)4 (p5 + u?)(py + u?)

By assuming that the external momenta are very small compared to the cutoff we
obtain

8K
,2.D5.p6)) = b** 2 Inb Ju(bpy, bps. bps, bpe).
(8u(p1.p2.ps. ps)) g+sg 481+ 2 u(bpi, bpa, bps, bpe)
(4.473)
Equivalently
_ 3Ky
f=pt 2 Inb ). 4.474
4 g+eg (1 + 12 n ( )
In other words
0’ = b*6. (4.475)
RG Equations
In summary we have obtained
., &Ka Inbr  gKy Inb
r=ry— g (1—}’)]92 =2 3 (l—r)bz. (4.476)

3K,
¢ = b (g +g° 8" (1—2r)In b). (4.477)
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We compute the flow equations (with b near 1 and r near 0)

dr/ gKy gKy
b "= (=2 - . 4.478
db (-2+ 3 )To 3 ( )
dg/ 3g/2Kd
b = (d—4)g . 4.479
P G S ( )
The fixed points are then given by the equation
K K
0= (=24 &0y, 88 (4.480)
8 8
3g3Ka
0=(d—4g«+ e (4.481)
We get immediately the two solutions
r« = g« = 0, trivial (Gaussian) fixed point, (4.482)

and the usual Wilson-Fisher fixed point in dimension d < 4 with small ¢ = 4 —d
given by

641>
- —Z  ge = Z € | Wilson-Fisher fixed point. (4.483)
The critical exponent v is given by the usual value whereas the critical exponent 7
is now 6-dependent given by

geKa(OA?)? _ (OA?)e

= 4.484
384 72 ( )

n=vl=

This is proportional to € (and not €?) and is negative. The behavior of the 2-point
function is now given by

1
<$W0) >~ |x|2—e(1+©0A2?2/72)” (4.485)

We obtain now the critical point

12
0.A* = . 4.486
Je ( )

The noncommutative Wilson-Fisher fixed point is only stable for 8 < 6.
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The above negative anomalous dimension, which is due to the non-locality of the
theory, leads immediately to the existence of a first order transition to a modulated
phase via the Lifshitz scenario [18]. Indeed, we can show that below the critical
value 6. the coefficient of k? is positive whereas above 6, the coefficient of k?
becomes negative and thus one requires, to maintain stability, the inclusion of the
term proportional to k* which turns out to have a positive coefficient as opposed
to the commutative theory. We can show explicitly that at & = 6, the dispersion
relation changes from k2 to k*. Thus the effective action is necessarily of the form
(with positive a and b)

d
/ (jn];dd’(k)‘ﬁ(_k)[(l — agfA*)k* + bk*] + interaction. (4.487)

The Lifshitz point is a tri-critical point in the phase diagram where the coefficient
of k? vanishes exactly and that of k* is positive. In this case, this point is given
precisely by the value & = 0., and the transition is a first order transition because
it is not related to a change of symmetry. In this transition the system develops a
soft mode associated with the minimum of the kinetic energy and as a consequence
the ordering above 6, is given by a modulating order parameter. A more thorough
discussion of this point can be found in [4].

4.6.2 The Noncommutative O(N) Wilson-Fisher Fixed Point

A non perturbative study of the Ising universality class fixed point in noncom-
mutative O(N) model can be carried out along the above lines [44, 45]. In this
case the analysis is exact in 1/N. It is found that the Wilson-Fisher fixed point
makes good sense only for sufficiently small values of 6 up to a certain maximal
noncommutativity. This fixed point describes the transition from the disordered
phase to the uniform ordered phase. Another fixed point termed the noncommutative
Wilson-Fisher fixed point is identified in this case. It interpolates between the
commutative Wilson-Fisher fixed point of the Ising universality class which is found
to lie at zero value of the critical coupling constant a, of the zero dimensional
reduction of the theory and a novel strongly interacting fixed point which lies at
infinite value of a. corresponding to maximal noncommutativity. This is identified
with the transition between non-uniform and uniform orders.

4.6.3 The Matrix Fixed Point

As discussed above, in the Wilson recursion formula we perform the usual
truncation but also we perform a reduction to zero dimension which allows explicit
calculation, or more precisely estimation, of Feynman diagrams. This method was
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also applied to noncommutative scalar ¢* field theory at the self-dual point on a
degenerate noncommutative spacetime with two strongly noncommuting directions
[43, 45]. In the matrix basis this theory becomes, after appropriate non-perturbative
definition, an N x N matrix model where N is a regulator in the noncommutative
directions, i.e. N here has direct connection with noncommutativity itself. More
precisely, in order to solve the theory we propose to employ, following [8, 9, 28], a
combination of

* 1. the Wilson approximate renormalization group recursion formula
and

» 2. the solution to the zero dimensional large N counting problem given in this
case by the Penner matrix model which can be turned into a multitrace matrix
model for large values of 6.

As discussed neatly in [9] the virtue and power of combining these two methods
lies in the crucial fact that all leading Feynman diagrams in 1/N will be counted
correctly in this scheme including the so-called “setting sun” diagrams. The analysis
in this case is also exact in 1/6. In the same way that the noncommutative Wilson-
Fisher fixed point describes transition from the disordered phase to the uniform
ordered phase the matrix model fixed point, obtained in this model, describes the
transition from the one-cut (disordered) phase to the two-cut (non-uniform ordered,
stripe) phase.

Thus the analysis of phi-four theory on noncommutative spaces using a com-
bination of the Wilson renormalization group recursion formula and the solution
to the zero dimensional vector/matrix models at large N suggests the existence
of three fixed points. The matrix model § = oo fixed point which describes
the disordered-to-non-uniform-ordered transition. The Wilson-Fisher fixed point
at 6 = 0 which describes the disordered-to-uniform-ordered transition, and a
noncommutative Wilson-Fisher fixed point at a maximum value of 6 which is
associated with the transition between non-uniform-order and uniform-order phases.
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Chapter 5
The Multitrace Approach

Abstract In this chapter we apply the powerful multitrace approach to noncom-
mutative ®* theory on the Moyal-Weyl plane R} , and on the fuzzy sphere S} and
employ random matrix theory to solve for the phase structure of the theory. Then a
discussion of the planar theory is given in some detail.

5.1 Phase Structure of Fuzzy and Noncommutative &4

A scalar phi-four theory on a non-degenerate noncommutative Euclidean spacetime
is a matrix model of the form

S = Try (a®AD + bD* + D). (5.1)

The Laplacian A defines the underlying geometry, i.e. the metric, of the noncommu-
tative Euclidean spacetime in the sense of [6, 13]. This is a three-parameter model
with the following three known phases:

* The usual second order Ising phase transition between disordered < & >= 0
and uniform ordered < & >~ 1 phases. This appears for small values of c.
This is the only transition observed in commutative phi-four, and thus it can be
accessed in a small noncommutativity parameter expansion, using conventional
Wilson renormalization group equation ([44]; the Wilson recursion formula was
reconsidered more carefully in [17]). See [47] for an analysis along this line
applied to the O(N) version of the phi-four theory.

* A matrix transition between disordered < ® >= 0 and non-uniform ordered
< ® >~ T phases with I'’> = 1. For a finite dimensional Hilbert space H,
this transition coincides, for very large values of ¢, with the third order transition
of the real quartic matrix model, i.e. the model with a = 0, which occurs at
b = —2+/Nc. In terms of b = bN3/2 and ¢ = cN~2 we have

b= —2+/¢. (5.2)
This is therefore a transition from a one-cut (disc) phase to a two-cut (annulus)

phase [5, 39].
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e A transition between uniform ordered < ® >~ 1y and non-uniform ordered
< ® >~ T phases. The non-uniform phase, in which translational/rotational
invariance is spontaneously broken, is absent in the commutative theory. The
non-uniform phase is essentially the stripe phase observed originally on Moyal-
Weyl spaces in [1, 23].

Let us discuss a little further the phase structure of the pure potential model
V = Try(b®? + c®*), in the case when the Hilbert space H is N-dimensional, in
some more detail. The ground state configurations are given by the matrices

@) = 0. (5.3)
b
®, = \/_chyU+ L yrP=1y, UUT =UTU = 1y. (5.4

We compute V[®g] = 0 and V[®,] = —b?/4c. The first configuration corresponds
to the disordered phase characterized by < ® >= 0. The second solution makes
sense only for b < 0, and it corresponds to the ordered phase characterized by <
® >+ 0. As mentioned above, there is a non-perturbative transition between the two
phases which occurs quantum mechanically, not at 5 = 0, butat b = b, = —2+/Nc,
which is known as the one-cut to two-cut transition. The idempotent y can always
be chosen such that y = y; = diag(1;, —1y—¢). The orbit of y; is the Grassmannian
manifold U(N)/(U(k) x U(N —k)) which is d;-dimensional where d;, = 2kN —2k?.
It is not difficult to show that this dimension is maximum at k = N/2, assuming that
N is even, and hence from entropy argument, the most important two-cut solution
is the so-called stripe configuration given by y = diag(1y/2, —1x/2). In this real
quartic matrix model, we have therefore three possible phases characterized by the
following order parameters:

< ® >= 0 disordered phase. (5.5
b . .
<d>=+ ~5 1y Ising (uniform) phase. (5.6)
c
b . : :
<®>=+ 5 y matrix (nonuniform or stripe) phase. 6.7
c

The above picture is expected to hold for noncommutative/fuzzy phi-four theory
in any dimension, and the three phases are expected to meet at a triple point. This
structure was confirmed in two dimensions by means of Monte Carlo simulations on
the fuzzy sphere in [15, 16]. The phase diagram looks like those shown on Fig.4.3.
Both figures were generated using the Metropolis algorithm on the fuzzy sphere.
In the first figure coupling of the scalar field ® to a U(1) gauge field on the fuzzy
sphere is included, and as a consequence, we can employ the U(N) gauge symmetry
to reduce the scalar sector to only its eigenvalues.
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The problem of the phase structure of fuzzy scalar phi-four was also studied in
[10, 30, 31, 36]. The analytic derivation of the phase diagram of noncommutative
phi-four on the fuzzy sphere was attempted in [35, 37, 38, 43]. The related problem
of Monte Carlo simulation of noncommutative phi-four on the fuzzy torus, and the
fuzzy disc was considered in [1, 4], and [28] respectively. For a recent study see [32].

5.2 Noncommutative Phi-Four Revisited

2
5.2.1 The Moyal-Weyl Plane Ro,sz

We start by considering a phi-four theory on a generic noncommutative Moyal-
Weyl space Rg with d = 2. We introduce non-commutativity in momentum space
by introducing a minimal coupling to a constant background magnetic field B;, as
was done originally by Langmann et al. in [26, 27]. The most general action with a
quartic potential takes, in the operator basis, the form

~ ~ ~ 2\ . Aain Al n
S = \/det(270)Try [q>+(—oD,.2 —6C? + "; )<I> + 4'c1>+c1> R

Moo at aan
+ 4'q>+c1>+ c1>c1>] (5.8)

In this equation D; = 3,- — iB;jX; and G = 5,- + iB;iX;, where X; = (%; + 25)/2. In
the original Langmann-Szabo model, we choose 0 = 1,6 = 0 and A’ = 0 which,
as it turns out, leads to a trivial model [25].

The famous Grosse-Wulkenhaar model corresponds to 0 = & and A’ = 0. We
choose without any loss of generality 0 = & = 1/4. The Grosse-Wulkenhaar model
corresponds to the addition of a harmonic oscillator potential to the kinetic action
which modifies, and thus allows us, to control the IR behavior of the theory. A
particular version of this theory was shown to be renormalizable by Grosse and
Waulkenhaar in [20-22]. The action of interest, in terms of the star product, is given
by

1 1 2 A
S:/ddx[d>+(—28,-2+2925c,-2+”;)d>+4'q>+*q>*cl>+*d>}. (5.9)

The harmonic oscillator coupling constant  is defined by Q2 = B?>#?/4 whereas
the coordinate X; is defined by ¥; = 2(6~');x;. It was shown in [25] that this action
is covariant under a duality transformation which exchanges among other things
positions and momenta as x; <> k; = Biylkj. The value Q> = 1 in particular gives
an action which is invariant under this duality transformation. The theory at Q2 = 1
is essentially the original Langmann-Szabo model.
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Under the field/operator Weyl map we can rewrite the above action as
bt Loy 1ogo M\ Ao ays
S =viTry| P —23,-+2QX,-+2 d>+4'<I> PP D|. (5.10)

The Planck volume v, is defined by v; = \/ det(27r0). We can expand the scalar
fields in the Landau basis {¢A>m,,,} as

oo

o0
}j My . ® :=ng§:naﬁzw (5.11)
= mun=1

The Landau basis is constructed for example in [18]. The infinite dimensional matrix
M should be thought of as a compact operator acting on some separable Hilbert
space H. In the Landau basis the action becomes

1 1
S = TrH|:2r2\/a)(F+M+FM +MTTTMT) + 2r2E{M, My
+bMTM + c(M+M)2:|. (5.12)

The coupling constants b, c, r* and 1/ are defined by

1 Al 4r(Q2+1) Q21
b= _m", c= = 5.13
2" avg " w VT gy OB
The matrices I' and E are given by
1
(D)in = ~/m =181 E)im = (U= ). (5.14)

We can regularize the theory by taking M to be an N x N matrix. The states ¢y, (x)
with I,m < N, where N is some large integer, correspond to a cut-off in position
and momentum spaces [22]. The infrared cut-off is found to be proportional to R =
V26N, while the UV cut-off is found to be proportional to Ay = \/ 8N/6.

The regularized action for a real scalar field d =t or equivalently M = M,
is then given by (the trace Try is replaced by the ordinary 7r with 7r1 = N)

S = Tr[r2¢wr+MrM + rPEM? + bM? + cM‘*] (5.15)

A more rigorous regularization of noncommutative ®*-theory with a harmonic
oscillator term in two dimensions follows.
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2
5.2.2 The Fuzzy Sphere SN,SZ

The fuzzy sphere [24, 29] is the spectral triple (Maty, Hy, Ay), where Maty is the
algebra of N x N hermitian matrices, Hy is the Hilbert space associated with the
irreducible representation of SU(2) with spin (N — 1)/2, and Ay = L,L, is the
Laplacian on the fuzzy sphere where £, are inner derivations givenby £, = [L,, . . .]
with L, being the generators of SU(2). The fuzzy sphere is an elegant regulator
which preserves symmetry, supersymmetry and topology. For more detail see for
example [2].

A real scalar field  on the fuzzy sphere is an element of the matrix algebra
Maty. The action of a ®*-theory is given explicitly by

_ 47 R?

S =
N+1

1 112 1 2452 A 4
Tr(—ZRZ[La,Q] + O, (5.16)

The radius of the sphere is R whereas the noncommutativity parameter is 6 =
R?/ /2. We expand the scalar field ® as (withm = i—I—1and ®,,,,n, = M;i/ \/V2)

+1 N N
d = Z D Dy ><my| = jUZZZM,-j|i><j|. (5.17)

i=1 j=1
The action takes then the form

1

N+1
EM? — MT3MT5 — + rtMrm
V2 RZUZ

4 R? N+1
S =
RZUZ R2

= r
N +1

VIR (5.18)
2 vy 4! v% ' '

The matrices I', I's and E are given by

1
(T3)m = 83 . (D) = \/(m —1)(1 - N’i DBt + (Elin = (1= )i
(5.19)

A harmonic oscillator term on the fuzzy sphere was constructed in [45]. It
corresponds to the modified Laplacian

Ang = [La, [La....]] + Q*[Ls, [Ls....]] + QL. {L;,...}}. (5.20)

The analogue of (5.10) with d* = donthe fuzzy sphere is therefore given by

5= L ayad+ Lmdr 1 A o (5.21)
= r m . .
N+1"\2r 7M7) 41
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In terms of M this reads

S = Tr[r2 VoI TMTM — r* /o3 TsMT3M + r*EM* + bM? + CM4:|. (5.22)
The parameters b, c, r? and /o are defined

bzlz\/N—l _)Ll\/N—l ) _ AT+ 1) J Q-1

2"VN+1 T VNt v Ty
(5.23)
These are essentially the same parameters appearing in the action (5.15) on the

noncommutative plane Réﬂ [see (5.13)]. Only the second term in (5.22), which is
subleading in 1/N, is absent in (5.15). Indeed, the parameter ,/wj3 is defined by

1

Jos= L (5.24)

We rewrite (5.14) and (5.19) collectively as

(F3)lm = 181111 s (F)lm = \/(m - 1)(1 _GNHJ_ I)SZm—l s (E)lm = (l_ ;)Slm

(5.25)
For consistency we redefine the parameter w3 as
J ) (5.26)
w3 = . .
TN+
The parameter € takes one of two possible values corresponding to
€ =1, sphere
€ =0, plane. (5.27)

We will also need the kinetic matrix which is defined, on the regularized
noncommutative plane, by

Kip = 2r2\/wTrNF+tAFtB + 2}’2«/(1)T}’NF+IBFIA — 4r2\/w3TrNF3tAI‘3tB
+22TryE{ts, t5}). (5.28)

We note that the parameter 72, on the noncommutative plane, does not scale in the
large N limit. On the other hand, it scales as N on the fuzzy sphere, and the correct



5.3 Multitrace Approach on the Fuzzy Sphere 213

definition of the kinetic matrix is given by
Kap = Try[La, tal[La, 1] + Q22 Try[Ls. ta][Ls. tp] — Q2Trn{Li, ta}{Ls. 1}

= (N =+ 1)|:— \/COTFNF+IAF[B — \/O)TVNF+IBFIA + 2\/CO3T}"NF3IAF3IB

—T}’NE{[A,IB}i| (5.29)

In other words,

272

— Kag. 5.30
N4 1 Kas (5.30)

Kip =

This coincides with the convention of O’Connor and Saemann [35, 38]. Indeed, they
used in O’Connor and Saemann [35] the parameter 7> defined by

- I Q*+1 [N-1
P2 = = . (5.31)
N+1 R? N+1
5.3 Multitrace Approach on the Fuzzy Sphere
We start from the action and the path integral'
47 R? 1 . ool L, A
= T D[L;, [Li, 2p? o
N+1r(2R2 (i [Liy ]+ @+
= Tr( —a[L;, ®) + bd* + cci>4). (5.32)
7= /dﬁ) exp (— ). (5.33)
First, we will diagonalize the scalar matrix as
d=UvAU"". (5.34)
We compute
5P = U(SA +[U7'sU, A]) U (5.35)

'n this article we make the identification Try = Tr.
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Thus (with U™'8U = i§V being an element of the Lie algebra of SU(N))
Tr(§D)* = Tr(SA)* + Tr[U™'SU, A]?

=Y (A7 + D (i — A)*8Vy8Vy. (5.36)
i i#j

We count N? real degrees of freedom as there should be. The measure is therefore
given by

d® = [ [dxi [ [dviav; v/det(metric)

i i#j
= [Tar ] Javsavy [T — )™ (5.37)
i i i
We write this as
d® = dAdUA*(N). (5.38)

The dU is the usual Haar measure over the group SU(N) which is normalized such
that f dU = 1, whereas the Jacobian A%(A) is precisely the so-called Vandermonde
determinant defined by

AYA) =TT =2 (5.39)
i>j

The path integral becomes

Z= / dA A*(A) exp ( — Tr(bA? + cA4)) / dU exp (aTr[U_lL,-U, A]Z).
(5.40)

The fundamental question we want to answer is: can we integrate the unitary group
completely?

The answer, which is the straightforward and obvious one, is to expand the
kinetic term in powers of a, perform the integral over U, then resume the sum back
into an exponential to obtain an effective potential. This is very reminiscent of the
hopping parameter expansion on the lattice.
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Towards this end, we will expand the scalar field @ in the basis formed from by
the Gell-Mann matrices t,,> viz

b = Zcpm , ¢ = 2Trd1, = 2TFrUAU 1, (5.41)

We introduce the kinetic matrix
Kab = TV[L,', ta][Liv tb]- (542)
We will use the SU(N) orthogonality relation (in any irreducible representation p)

1

(o) Subi. (5.43)

/ dUp(U)yo(U™ g =

We have then

/ dU exp (aTr[U_lLaU, A]2> = / dU exp (aKa,,qb”qb”)

/ dU exp (4aKa,,(TrUAU_1ta)(TrUA U_lt,,)>.

(5.44)

By following the steps:

+ expanding up to the second order in a,’

e using (TrA)(TrB) = Trpz (A ® B) and (A ® C)(B® D) = AB® CD,

+ decomposing the N2-dimensional and the N*-dimensional Hilbert spaces, under
the SU(N) action, into the direct sums of subspaces corresponding to the
irreducible representations p contained in NQN and NQ N Q N @ N respectively,

* and using the orthogonality relation (5.43),

we obtain (see [35, 38], the next section and Appendix for a detailed discussion)
1

TroA @ A.Trpt, @ty
im(p) " ?

—1 2
/ dU exp (aTr[U LU, A] ) =1+ 4aKa;,2p: ‘

1 1
4a)’K K., Tr, A
+ 5 4 Kap "Zp: dim(p) "

ATty @ ...l + ... (5.45)

’In this case, the kinetic term is independent of the identity mode in the scalar field d.
3This can be expanded to any order in an obvious way which will be discussed in the next section.
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The tensor products of interest are [14]

A®B=ABEB2. (5.46)
A
B B ABC _ABD ACD
ARB®CBD=ABCD® L&) & 1, &
D
AD AC AB
®B ®B ©C @éﬁ@ég. (5.47)
c D D

The dimensions of the various irreducible representations, appearing in the above
equations, are given by Egs. (5.100)—(5.106), whereas the relevant SU(N) characters
are given by Egs. (5.102), and (5.107)—(5.111). By employing these results we arrive
at the formula

/ dU exp (aTr[U_lLaU, A]z)
=1+ 2a|:(s1,2 + SZJ)(T}’NA)Z + (512 — S2,1)T}’NA2:|
2 1 4
+8a 4(.3‘174 —S41 —S23 + 532)Trv A
(S1.4 + 541 — $22)TrnATry A®

+

+(S14+ 521 — 823 — 532 + 2522) (Try A?)?

A = 00 = W =

+ (S14— a1+ 523 — 532)TryA*(Try A)?

!
24
... (5.48)

(1.4 + 841 + 3523 + 38532 + 252,2)(TFNA)4:|

There remains the explicit calculation of the coefficients s which are defined in
Eqgs. (5.104) and (5.113)—(5.117). By using the results of Appendix we have

1 1

= Kaa N = — Kaa‘ 549
ANV + 1) 21T Toniv — 1) (549

S1,2
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B 1 N+,
ST ONW + 1)(N+2)(N+3)( 2t oy ‘)’
B 1 e N-2,
s4'l_2N(N—1)(N—2)(N—3)(_ 2t oy 1)'

1 v N+2,
§23 = - X — ,
2T OON(NE = 1)(N +2) S A

1 o N-2,
8§32 = — .
PToONN: - -2\ ov !

1

= X;.
22 = o — !

The operators X; and X, are given by
X, =2K% + K2,
1
X, = Kachd(zdahkdcdk + duakdpck)-

We then compute (with t; = TryA')

1
4(51,4 — 541 — $23 + $32)4
B 1 (N? 4+ )ty
1
3 (514 + 541 — S22)1113
. 2t1t3 2(N2 + 1)l‘1t3 X
T NN = D(N2 =9 T N(NE = (N2 — (N2 —9) "
1
g (S1.4 4 S4.1 — 823 — 832 + 2522)83
_ (N? — 6)23 . (2N*=3)53
AN2(N? — 1)(N? — 9) IN(N2 — 1)(N? — 4)(N? — 9)
1
4 (514 =S40 + 523 — S3,2)f2l%

B tzt% % 4+ 5t2t% X
TOANN DN —9) ' T (= (N2 —H(N2—9)

= Tavv— v — 9N T o — yve — gyve — 9y

X5.
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(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)
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1
4 (S14 + sS40 + 3523 + 3832 + 252,2)fl1

4 4
1 51

T ANZ(N? — 1) (N2 — 9)X1 TON(N? — 1) (N2 — 4)(N? — 9)X2. (5.59)

By using these results we get the path integral

/ dU exp (aTr[U_lLaU, A]z)
2 — Nt
a. ! 2 K.,
N(N2—1)
t} + 8tit3 — 2Nt 2 — 2Nty + (N* — 6)13
4N2(N? — 1)(N? —9)
, =5t1 —4(N* + DHtit; — (2N? = 3)3 + 10Nt + N(N? + Dty
' 2N(N2 — 1)(N? — 4)(N? —9)
+.... (5.60)

=1-2
+84°.

+8a .¢)

Since the trace part of the scalar field drops from the kinetic action, the above path
integral can be rewritten solely in terms of the differences A; — A; of the eigenvalues.
Furthermore, this path integral must also be invariant under any permutation of the
eigenvalues, as well as under the parity A; —> —A;, and hence it can only depend
on the following two functions [35]

T, = Nty — 4t1t5 + 3t§

1
=, Z(xi — At (5.61)
i

2
2=, S np]

i
= 1{ — 2Nfit, + N*83. (5.62)
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Indeed we can show

/dU exp (aTr{U'L,U,A?) =1+ 2a Lk
p al , N(N2 . 1) aa
T2 — 2T,

8a’. X
T NV = (N2 — 9)

=572 + (N* + DTy
IN(NZ — 1)(N2 — 4)(N2—9)"°
+.... (5.63)

+8a?

We observe that the quadratic contribution can be expressed in terms of the function
2
T, = Nt, —t 1

1
= P CIEPhE (5.64)
i#j

Now a technical digression, in which we will compute X; and Xj, is in order. First
we compute

N2 —1 N2(N? -1
Kap==", " 8a +2TrLitaLity = Kog = — ( 4 g (5.65)
Also
N2 —1)(N* =1
Kgb = ( ié ) =+ 4TrLitaLithTrthath;,
(N —DWN*=1) , (N*—1)?
- TrL;L))* —
16 + ( ri ]) 16
N2(N2—-1)2 1
_ N 6 ) + 2(TrL+L_)2 + (TrL3)?
_ N} (N?—1)? N 1 N2(N? —1)? N N2(N? —1)2
a 16 2 36 144
N2 NZ -1 2
= ( ) . (5.66)
12
Thus
N4N2_12 N2N2_12
X, = ( ) + ( ) . (5.67)

16 6
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We may also write

N2 —1
K = Z(Ia)vk(th)auK;w,ka s K;w,)ka = - 4 S;LVS)»(T + (Li);w(Li))m‘ (5.68)
A central property of this kinetic matrix is
K;w,vo = K;w,lp. =0. (5.69)

Another important property is the symmetry under the exchange © <> A, v < 0.
We then compute

1
X2 = _NXI + SKachdTrtatbtctd + 4KachdTrtatctbtd
1 1 1
= _NXI + 8. 2chKMM,lo (tctd)o/\ + 4-2chK/w,AU (tc)vu(td)ol
1 N?—1 1
= _NXI + 8( —-N 16 Kaa) + 4-(4KU;L,UAKMU,AG)
1 N3(N? —1)2 N(N? —1)?
=— X TrLLLL; —
s g+ (Ll 6 )
_ 1X N3 (N> —=1)> N@N?>-1)
- N 8 4
N3(N*—1)> NW?>—=1)2> N(N?>-1
_ N )® M )" N( )' (5.70)
16 6 4

By using all these results in the path integral we get

N a? NZ—1
dU MU' LU AP ) =1-“T T2 — 2T, 3N + 8
[ av exp (an P) =1 E @i 2my T N )
7 5T2+(N2+1)T)3N2+1 +
120 772 Y Nr_g T
(5.71)

This result can be verified explicitly for N = 2. By expanding around N —> oo we
get

N N 1
/dU exp (aTr[U_lLaU, A]Z) =1- a2 T, + da*( e T )T
a2
- Ti+... (5.72)

12
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By re-exponentiating this series we get

/ dU exp (aTr[U_lLaU, A]Z) = exp (AV). (5.73)
Av=-Np o 2(1 +..)12 @y (5.74)
2 2 12 2Tt

The first two terms in the above series are of order N2, as they should be, since a =
27 /(N + 1) and T, scales a N>. We note that the second term was not reproduced in
the calculation of O’Connor and Saemann [35]. Furthermore, the third term in the
above series is subleading in N which is also a different result from the one obtained
in [35]. The complete effective potential, up to the quadratic order in a, is given by

V= Z(bkz + ck4) — Zln(k ){j)z + ai\’ Z(Ai — A 2

1751 i#j

4
D= )T + 4 Z(x A .. (5T5)
i#j i#j

5.4 The Real Quartic Multitrace Matrix Model on R?
and S? o

5.4.1 Setup

We will consider in this section the following path integral
= /dM exp ( —Try I:erwF+MFM - rz\/w3F3MF3M + rPEM?
+bM* + cM“D. (5.76)

We will diagonalize the matrix M as
M=UAU". (5.77)
The measure becomes

dM = A*(A)dAdU (5.78)
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The matrix A is diagonal with entries given by the eigenvalues A; of M. dU is the
usual Haar measure over the group SU(N). It is normalized such that [dU = 1.
The Jacobian A%(A) is the so-called Vandermonde determinant defined by

A*(A) =] =A™ (5.79)

i>j
The U(N) generators are given by 14 = (tp = 1y/ V2N, t,) where t,, a =

1,...,N? — 1, are the Gell-Mann matrices. The canonical commutation relations
are

[7a. tB] = ifanctc. (5.80)
They satisfy the Fierz identity
(t)jx(ta)ii = 8jidu. (5.81)

See Appendix for more detail on our conventions. We will expand M in the basis
formed from by the Gell-Mann matrices #, and the identity #y, viz

M =Y "Mty M* = 2TryMty = 2TryUAU 1. (5.82)
A

The kinetic part of the action is given by
Kinetic = Try [# JoTTMTM - Jo;T3MT3M + rzEM2:|

1
= 4KABMAMB, (5.83)
where the symmetric matrix K is given by

Kig = 2r2\/wTrNF+tAFtB + 2}’2«/(1)T}’NF+IBFIA — 4r2\/w3TrNF3tAI‘3tB
+2r TryE{ts, tg). (5.84)

Equivalently

Kinetic = Kug(TrnUAU 1) (TryUAU ™ 1)
= KAB(IA)li(tB)anjkAmp‘Uij(U_l)klUnm(U_l)pq‘ (585)
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The path integral reads explicitly

Z= / dAA*(A) exp (— Try[bA* + cA*]) / dU exp (— Kap(TryUAU 1)
x(TryUAU™'1p)). (5.86)

In ordinary perturbation theory, we usually assume that the potential, or more
precisely the interaction term, is sufficiently small so that we can expand around the
free theory given by the quadratic part of the action, i.e. kinetic+mass terms. The
idea behind the multitrace approach is exactly the reverse. In other words, we will
treat exactly the potential term, i.e. interaction+mass terms, while we will treat the
kinetic term perturbatively. Technically, this is motivated by the fact that the only
place where the unitary matrix U appears is the kinetic term, and it is obviously
very interesting to carry out explicitly the corresponding path integral over it. This
approximation will clearly work if, for whatever reason, the kinetic term is indeed
small compared to the potential term which, as it turns out, is true in the matrix
phase of noncommutative phi-four theory. We note that the multitrace approach
is analogous to the hopping parameter expansion on the lattice. See for example
[33, 40].

By expanding around the pure potential model, we obtain immediately the
following path integral

Z= /dAAZ(A) exp (— Try[bA* + cA*])
X / dU exp (— Kap(TryUAU ™' 12)(TryUA U '15))
= / dAN*(A)exp (— Try[bA* + cA4])[1 — (Kag(ta)ii(t8) gn A je Ap ) Ty

1
+ 2 (KAB(tA)llil (t8)gim Njiky Amipy ) (KCD(tC)lziz (tD) gomy Njoiy Amzpz)lz + ... i| .

(5.87)

The U(N) integrals /; and I, are given explicitly by
I = / dUU;UG' U U, (5.88)
L= / dUUyj, U} Unimy Uy Ussjy U Uy, U (5.89)

In expanding the kinetic term we have only retained up to quartic powers in A in the
spirit of Wilson truncation in the renormalization group which limits the expansion
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of the effective action to only those terms which are already present in the bare
action [44].

At Oth order the above path integral is precisely equivalent to a pure real quartic
matrix model, viz

zZ= / dAAN*(A) exp (— Try[bA* + cA*]). (5.90)

At first order we need to calculate the group integral /;. We can use for example
the diagrammatic method developed in [3, 7, 8] to evaluate this integral. However,
this method becomes very tedious already at the next higher order when we evaluate
I,. Fortunately, the group theoretic method developed in [35, 38], for precisely non-
commutative and fuzzy models, is very elegant and transparent, and furthermore, it
is very effective in evaluating SU(N) integrals such as I; and .

We want to compute

Ist order = Kyp / dU TryUANU "' t4. TryUAU 't

= (Kag(ta)ii(tB) gn N jx Ap) 1y (5.91)

We will use Try2(A ® B) = (TryA)(TryB) and (A ® C)(B ® D) = AB ® CD.
In other words, the original N-dimensional Hilbert space corresponding to the
fundamental representation N of SU(N) is replaced with the N2-dimensional Hilbert
space corresponding to the tensor product N ® N. We have then

Ist order = KAB/dU Trpa(UAU'14) @ (UAU 1)
= KAB/dU T2 (UQ U)Y(A @ AU Q U™ (14 ® 15). (5.92)

Under the action of SU(N) the N2-dimensional Hilbert space is the direct sum of the
subspaces corresponding to the irreducible representations p contained in N @ N.
The trace Try2 reduces, therefore, to the sum of the traces 7r, in the irreducible
representations p, viz

1st order = Kyp Zp(A ® A)jrp(ta @ tB)li/dU p(U® U)ij,o(U_l Q U Hu.
P

(5.93)

We use now the SU(N) (or equivalently U(N)) orthogonality relation

/dUP(U)ijP(U_I)kl = (5.94)

1
dim(p) Bude
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We get

1
1st order = Ky Z . TryA @ ATrpty ® tp. (5.95)
— dim(p)

In above y,2(A) = Tr,A ® A is the character of A in the representation p.
At the second order we need to compute effectively the SU(N) group integral /5.
We have

1
2nd order = / dU (KapTryUAU "1 TryUAU ™' t)
X(KCDTFNUAU_llc.TrNUAU_llD)

1
- 2 (KAB(IA)Zlil (tB)qlnl Ajlkl Am1p1 ) (KCD(IC)lziz (tD)qznz Ajzkz Amzpz)lz'

(5.96)

We follow the same steps as before, viz

1
2nd order = ZKABKCD / dUu T}’N4(UAU_IIA) ® (UAU_ltB)
RUAU 'tc) ® (UAU '1p)
1
= ZKABKCD/dU TrN4(U® . ® U)(A ®...Q A)

x(U'®. U Nt 1tz ®1cQ1p)

1
2KABKCD Z P(A®.& Ajp(ta @t tc ® tp)ii
P

x/dU U®.0U);U"'e..@U Hy

kK, » ! TroAQARARQAT, Qlz Qe D,
= r r, .

2 ABKcD . dim(p) ) olA B C D

(5.97)

Thus, the calculation of the first and second order corrections reduce to the
calculation of the traces Tr 1y ® 1z and Tr 1y ® 13 @ tc ® tp respectively. This
is a lengthy calculation included in Appendix. It is obvious, at this stage, that
generalization to higher order corrections will involve the traces Tr,ty, ® ... ® 14,
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and Tr,A ® ... ® A. Explicitly the nth order correction should read

1
nth order = n'KAlAZ .. 'KAanlAZn Z T}’pA ®...® A.TrptAl ® A,

o
Q... 1y B ta,,. (5.98)

1
dim(p)

5.4.2 The Effective Matrix Action
Quadratic and Quartic Correction

Quadratic Correction Now, we need to know the set of irreducible representations
of SU(N) contained in N ® N and their dimensions. Clearly, an object carrying two
fundamental indices i and j can be symmetrized or antisymmetrized. The symmetric
representation ps = m'"? contains dim(ps) = (N> + N)/2 components, whereas
the antisymmetric representation m>!) = p, contains dim(ps) = (N> — N)/2
components. The Young tableau showing the decomposition of N ® N into its
irreducible parts (where the boxes are also labeled by the vector indices A of the
Gell-Mann matrices t4) is

A®B=AB®2. (5.99)

In terms of dimensions we write

N2+ N N:—N
N®N = ; ® 5 (5.100)

Thus we have

1st order = KAB[ Xs(A)TrpstA R tg + XA(A)TrpAtA ® tBi|.

1 1
dim(ps) dim(pa)

(5.101)

The expressions for the SU(N) characters ys4(A) and for Trs 414 ® tp are derived
in Appendix. The result for the characters is
1 2 1 2
Xs(A) = TrsA ® A = Z(TrNA) —+ 2T}’NA . XA(A) = TrAA ® A

1
2

1
2(TrNA)2 — TryA>. (5.102)
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We get then

1 1
1st order = 2(sl,z +5.1)(TryA)? + 2(sm —52.1)Try A2, (5.103)
where

1 1
KapTrapta @ tg, s21 = KapTronta @ tg. (5.104)

127 dim(1,2) dim(2, 1)

Quartic Correction The tensor product of interest in this case is

A
B B _ABC . ABD _ ACD
aBocep=ascpobanrPCallle
D
AD AC AB
®B ®B ®C @ég@gg. (5.105)
c D D

In terms of dimensions we have

N4+6N3+11N2+6N®N4—6N3+11N2—6N

NQNQNQ®N =
ONON® 24 24
N* 4+ 2N? — N2 —2N
®3.
8
N*—2N3 —N? 4+ 2N N* — N?
®3. o + D 2. . (5.106)

The SU(N) characters of interest to us at this order are given by Eqs. (B.46), (B.57),
(B.64), (B.75) and (B.86) found in Appendix. These are given explicitly by

TranA @A A QA
1
= A1 (6T}’NA4 + 8TVNA3T}’NA + 3(TrNA2)2 + 6TrNA2(TrNA)2 + (TVNA)4).

(5.107)

TranA@ARA®A

1
= 0 (— 6TryA* + 8Try A Try A + 3(TryA*)? — 6Try A*(TryA)* + (TrNA)4).

(5.108)
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TrospA®AR®A®A

1
= ( —2TryA* — (TryA*)? + 2Try A*(Try A)* + (TrNA)4). (5.109)

TrapARARA QA

1
= (2TrNA4 — (TryA2)? = 2TryA*(TryA)? + (TrNA)4). (5.110)

TronAQARA®A

1
=1 ( —4TryATryA® + 3(TryA?)? + (TrNA)4). (5.111)

By employing these results we get

2nd order = _ KupKcp [ dU TryUANU 14 TryUAU 5. Ty UAU ™ 1c. TryUAU ™ i

(o

1

(S14— a1 — 523 + s32)TryA* + 6(S1.4 + 541 — $22)TryATry A’

1 2,2
+ 16(Sl,4 + 541 — 8523 — 832 + 2522) (TryA”)

1
+ 3 (514 =541 + 523 — 532) Ty A2 (Try A)?

1
+ 48 (S1,4 + 541 + 3S2_3 + 3.5‘3,2 —+ 2S2_2)(T}’NA)4. (51 12)

In the above equation the coefficients s;4, S41, $23, 32 and s, are given
respectively by the formulas

1

= KapKepTriata @t @ tc R tp. 5.113
S1.4 dim(1, 4) KanKep T4t Qtp @ tc R tp ( )
1
= KapKcepTrg1yta @ tg Q tc Q 1p. 5.114
541 dim(4. 1) ABKepTrants @t @ tc @ tp ( )
$23= . (2KaKcp + KapKpc)Trosta @ tp ® tc @ tp. (5.115)
dim(2, 3)
§30 = . (KasKcp + 2KacKpp)Tr)ia ® 13 ® tc @ 1p. (5.116)
dim(3, 2)
1
522 (KaKep + KacKpp)Troata Q@ tg ® te @ tp. (5.117)

~ dim(2,2)
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Calculation of the Coefficients s1,2, 52,1, 51,4, 54,1, 52,3, 53,2 and 53 2

By adding all the above contributions and re-exponentiating we obtain an effective
path integral with an effective potential Try(bA% + cA*) + AV, viz

Z= /dAAZ(A) exp (— ITry[bA* + cA*])exp (— AV).  (5.118)
The potential AV is given by
1 , 1
AV = 2(S1,2 + 52,008 + 2(51,2 —521)h

1 1

— (S14a—841— 523+ 532)ta — (514 + 541 — S22)1113
8( + s32)1. 6( + )1t

— 16(S1,4 + 841 —S23 — 532 + 2820 — 2(s12 — 52.1)9)65
1

3 (S1.4 — 841 + 523 — 532 — 2(3%,2 - S%,l))lzl%
1

~ a8 (S1.4 4 Sa1 + 3523 + 3532 + 2500 — 6(s12 + s21)D)1f. (5.119)

The traces #; are of order N and they are defined by
ti = TryA'. (5.120)
The remaining task, which is again very lengthy and tedious, is to compute explicitly

the coefficients s. Let us sketch, for example, the calculation of s1 5, $2.1. By using
the identities (B.29), and the properties of the Gell-Mann matrices #4, we have

1
= — Kaa. 5.121
St s =, Ko N2 — 1)K ( )
1
S12— 821 = _N2 _ IKOO + N2 _ IKAA. (5.122)
The first order correction is then given by
1 Kua 1
Ist order = NKoo — f; — Nt Kot (5.123
st order 2(N2—1)( 00 N)(l 2)+2 00l2 ( )

Since the first term in the above contribution does involve K,,, which does not
depend on the trace part of the scalar field, we must be able to rewrite this term
in terms of the differences A; — A; of the eigenvalues. Indeed, this term does only
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depend on the function T defined by
Ty = l% — Nt

- _; Z(A,- — 1) (5.124)
i#j

We have then

Kua 2, 1 2
1st order = “a— 1)(NK00— N )g(xi—xj) + 2KOOZAi. (5.125)
7] i
Next we have
1 1
Koo Kijji » Kaa = _Kiijj. (5.126)

Y 2

The kinetic matrix K is related to the kinetic matrix Ksp by
Kap = (ta)j(18)1iKij xa- (5.127)
In other words,

K = 2 Vo (T Ty + (DHuTy) — 42 Js(T3)(Ta)w + 257 (Eydu + Ewsy)-
(5.128)

We then compute immediately

Kijj = PN’ (N2 —¢) —¢)). (5.129)

212 2r Jw
3

Kijji = ; N(NG3 —2¢) —¢€) + N(N —1)(3—2¢).  (5.130)

The large N behavior can then be extracted. We get

r? 2
Ist order = . (2—e— 3(«/(0 + 1)(3 = 2¢)) ;(Ai —A)?
i#

Ni? 5
+ (¢w+1)(3—2e)zijxi. (5.131)
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The quadratic part of the effective action is therefore given by

2 2
AV|quadratic = rg (2 —€— 3(\/0) + DB - 26)) Z(A’l - Aj)z
i#j
N Yo+ 1)G-2 3 a2 (5.132)
6( a) €) ,' i :

The calculation of the other coefficients s 4, 4.1, 2.3, $32 and s, » goes along the
same lines. It is, however, very lengthy and tedious. This calculation is found in
Appendix. Here, we will only sketch the formalism and the crucial steps of the
calculation, while we will leave the mostly technical detail to Appendix.

We have five coefficients to compute but only four are independent. Indeed, from
the result (5.112) we obtain, by substituting A = 1, the constraint between the
coefficients given by

1
4

1

Koo = 4N

1
(51,4 — 841 — 523 +532) + 3 (S1,4 + 541 —522)

1 N
+ g (S1.4 + 8541 — 523 — 832+ 252) + A (S1,4 — Sa1 + 523 —532)

N2
+ 24 (S1.4 + 541 + 3523 + 3532 + 252). (5.133)

Obviously the appearance of Kyy, on the left hand side, depends only on the
trace part of the scalar field which drops, from the kinetic part of the action, if
the harmonic oscillator term is set to zero. We expect therefore that this term be
proportional to /w + 1 in the large N limit. Effectively we compute

1 2 1 2
400 = g i
N2 8
- ’4 (Vo +17(1 =€) + ... (5.134)

By using Eqs. (5.121) and (5.122) we arrive at the nice result

1
K2.  (5.135)

N N2 1
) (51, =53 )+ 4 (5124 52.1)* + 4(S1,2 —s51) = 4

Thus the coefficients, appearing in the quartic part of the action (5.119), sum up to
zero in the sense that the constraint (5.133) can be rewritten as

1

N S. N + s + S14 + S S
N 1.4 4,1 23 32 3 1.4 4.1 2,2

1
+ 8(51,4 + 841 — 23— 532 + 2520 — 2(512 — $2.1)°)
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N
+ 4 (14— S41 + 523 — 8§32 — 2(5%,2 - 55,1))

N2
+ 24 (S1.4 + 41 + 3523 + 3532 + 2500 — 6(s12 + 52.1)%) = 0.

(5.136)

This tells us that only four among the five coefficients are really independent. By
using the above constraint in the quartic part of the action (5.119) we obtain

1
2N? AV |quartic = (Sl,4 — 541 — 523 + 532) (] — N°1)

1
3(S14+S41 —822)(1‘1 N2t1t3)
1 22
8(S14 + 541 — 823 — S30 + 2500 — 2(s512 — $2.1)°) (¢} — N*£3)
N 2 4 2
4 (S1,4 — Sa,1 4+ S23 — 532 — 2(51 ) — 55 ))(f] — Nioty).
(5.137)
The coefficients s will depend on the operators:
1 P
(X1 =, Kip +  Kia
1
= o KijuKjiu + 61(,2, i (5.138)
1 1 1
2X2 = ZKABKCD( ZdABKdCDK + dapkdpck)
1 1
= 2Kii,lejj,lk + 4Kij,k1KliJk- (5.139)
N 2
Y = ) (KaaKoo + 2K3,)
1 1
= SKiidekl,lk + 4Kij,kiKlle- (5.140)
Y> = v2NKosKcpdpep
1
= 2KijJZKkk,li- (5.141)
N? )
Y; = 4 Ky
Lo,
(5.142)



5.4 The Real Quartic Multitrace Matrix Model on Rfm and S,Z\,YQ 233

These operators scale at most as N°. The operators Ys, in particular, are due to the
trace part of the scalar field.

We know that, in the limit Q2 — 0 (y/w —> —1), the trace part of the scalar
field drops from the kinetic action, and as a consequence, the action (5.119) can be
rewritten solely in terms of the differences A; — A; of the eigenvalues. Furthermore,
in this limit, the action (5.119) must also be invariant under any permutation of the
eigenvalues, as well as under the parity A; —> —A;, and hence it can only depend
on the following two functions [35]

Ty = Nty — 411t5 + 3t§

1
=5 Z(Ai — At (5.143)
i#]
1 2
=, [ Y (i /\j)z}
i#j
= 1{ — 2N£it + N*83. (5.144)

We observe that the quadratic contribution (5.132) can be expressed, modulo a term
which vanishes as /o + 1 in the limit /@ —> —1, in terms of the function

T, = Nt, — l‘%
1
=, 2 i= 1) (5.145)
i#j

In general, it is expected that for generic values of 1/, away from the zero harmonic
oscillator case /o = —1, the effective action will contain terms proportional to
/o + 1 which can not be expressed solely in terms of the functions 7>, Ty, etc.

By using the functions 7, and T4 in (5.137) we get

2 2
ON* AV quaric = — 4 (514 — 841 — S23 + 832)t4 — 3 (S1.4 + 541 — $22)1113
| L Fsn)+ (st )|
S — S, — S S S S — S
14 841 =523+ 832) + S (s1a F sa0 —820) |1

1 1
+[4N (S14— 841 — 523+ 532) + 3 (514 + 8541 — S2.2)] (T3 — 2Nt T»)

1
+ o (S1a 540 — 523 — 532 + 2520 — 2(s512 — $2.1)°)(T5 — 2Nt:T»)

~ = ©

+ (S1‘4 — 841 + 8523 — 832 — 2(.8‘?2 - S%l))(T22 - leTz). (5146)
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Equivalently
1 1
AV |quartic = ~3 (S1,4 — Sa1 — $23 + S32)t4 — 6(31,4 + 541 — S22)t113
1 1 2
+ SN (S1.4— 541 — 523 +532) + 6(51,4 + 541 —$22) |15
1
_48 (14 + sS40 + 3523 + 3532 + 28520 — 6(512 + 52,1)2)]‘22
N 2
+ 94 (51,4 + 841+ 3523 4+ 3532+ 2522 — 6(s12 + 521)7)
1
+ g (S14— a1 + 523 — 832 —2(s7, — S%,l))i|l2T2- (5.147)

The sum of the first three terms gives rise to the function 7, modulo terms which
vanish as \/w + 1. Indeed, we find, in the large N limit, the results

1

gy e —sar —s23 +s32) = o KiiwKijine = o6 Ki;
4
= 1—e). 5.148
LS (5.148)

Kij jiKi — NS (zKii,lejj.lk + 4Kii.ijkl~lk) + NG Kii-jj

1 _
6(S1’4 + 541 —S22) = 4AN?

4 4
-9+  Vo+hld-e. (5.149)

Thus the action (5.147) becomes

4 4
AV | quartic = —24(1 —€)Ty — 6 (Vo + 1)1 —e)(tit3 — ) + vT5 + wir T,

(5.150)

The definition of the coefficients v and w is obvious. Clearly, the coefficient w
vanishes as /@ + 1 in the limit /o —> —1, since this term can not be rewritten
solely in terms of the functions 7> and Tu, whereas the coefficient v is found to
be non zero as opposed to the result of O’Connor and Saemann [35]. We discuss
now the explicit calculation of the last two coefficients v and w appearing in the
action (5.150).

The operators T% and ©,T, are of order N* and N* respectively, whereas the
effective action is expected to be of order N?, and hence, we only need to look
for terms of order 1/N? and 1/N in the coefficients v and w respectively. As it turns
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out, the leading contributions, in the large N limit, in the coefficients w and v are
precisely of order 1/N and 1/N? respectively given explicitly by

N
W=, (S1.4 4 sa1 4 3525 + 3532 + 2522 — 6(s12 + 521)%)

1
+ g (S1,4 — Sa,1 4+ S23 — 532 — 2(5%,2 - S%,l))

1 1 1
= g Kij iKiji + 8N’ (K,z,,, + 2KijJZKkk,li) ~ANS Kii jiKix
14 1
= V6 |:(\/a) + 1)1 —e)— 15““’ + 1)2(15 - 146)}. (5.151)

1
V=0 (S1.4 4 Sa.1 4 3523 + 3532 + 2520 — 6(s12 + $21)%)

w 1
= _ZN + 16N(S1’4 — 841 + 823 — 832 — 2(.5‘%72 — S%l))
w11 1 ,
=N + 16| ws Kij 1i K ji — N6 KijuKiji + K ji + 6K ji Ky i
1 9 ,
N7 10K K i + 6K jiKi e | — N8 K ;i
Wt ! !
=—- - (1 —¢€)— —1)(9-8 2 — 3¢).
N 6N2(«/(0+ )(1—¢€) 72N2(w )( €) + 48N2( €)
(5.152)

As promised the coefficient w vanishes as \/w + 1 in the limit /w —> —1, whereas
the extra contribution in the coefficient v (the last term) is non zero in this limit.

The main result of this section is the potential AV given explicitly by the sum of
the quadratic part (5.132) and the quartic part (5.150), viz

2 2
AV =" @ 2ot DE-20)Ta+ T (ot DG 200

! !
— 24(1 — )Ty — 6 («/(l) + D(1 —e€)(t1t3 — l%) + UT22 + wihTs.
(5.153)
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This reduces to (5.75) if we set € = 1 and /w = —1. For later purposes, we write
this result in the form

2

r 2N
AV = 4 vo1Tr + 3W1t2 +

4
4
(v4,1T4 ~ N2 V22T7 + 4wy (1113 — 13)

4
+ NW3t2T2) + 0(r%). (5.154)
The coefficients v and w are given by

Vag =2—€— i(\/wdr 1)(3 — 2e). (5.155)
V41 = —(1 - 6). (5156)

var = w3+ (Vo + 1)1 —¢€)+ 112 (w—1)(9—8¢) — é(2 — 3e). (5.157)

wi = (Vo + 1)(3 - 2e). (5.158)
wy = —(Vo + 1)(1 —¢). (5.159)
wy = (Vo + 1)1 —e) — 115(\/(0 + 1)2(15 — 14e). (5.160)

5.5 Matrix Model Solution

5.5.1 Scaling

The original action, on the fuzzy sphere, is given by (5.21), with the substitution
® = M/ /vy, with parameters a = 1/(2R?*) = 1/(N0), b, cand d = a2?, i.e.

S = Tr(aMAN,QM +bM? + cM4). (5.161)

Equivalently this action can be given by (5.21), with parameters r*> = a(Q2> + 1)N,
Jo = (Q>—=1)/(Q*4+ 1) and b, c, viz

1
S = Tr[rZ(Jwr+MrM ~ N MM + EM2) + bM? + cMﬂ.
(5.162)

From the Monte Carlo results of Flores et al. [15, 16], we know that the scaling
behavior of the parameters a, b and ¢ appearing in the above action on the fuzzy
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sphere is given by

_ a - DN®r  _ N*
a= , b= ,E=
a*N

i JV (5.163)

In the above equation we have also included a possible scaling of the field/matrix
M, which is not included in [15, 16], given by §,. The scaling of the parameter a
encodes the scaling of the radius R? or equivalently the noncommutativity parameter
6. There is of course an extra parameter in the above action given by d = aQ?, or
equivalently /o = (2% —1)/(? + 1), which comes with another scaling §; not
discussed altogether in Monte Carlo simulations.

Let us go back now and write down the complete effective action in terms of the
eigenvalues. This is the sum of the classical potential, the Vandermonde determinant
and the effective potential (5.153). This reads explicitly

1
Seit = Y _(bA7 +cA}) — 5 > In(d; - 4))

i#j
2 2
r ,  Nr 2
+[ g U2 Z(/\i—/\j) + 6 M Z/\,-
i#j i
! eyt Adi(A — A))>
+48U4,1Z( i—A) +12W22 iAj(Ai — Aj)
i#] ij
_ I vzz[Z(A‘—A')z]z'i' r W3ZAZZ(A'_’X')2+
24N2 LT 12N o v O
i#] k i#j
(5.164)
The saddle point equation is given by
0Sefr
=0, 5.165
o, ( )
where
8Seff 3 1 2 V2.1 w1 VZN
= 2bA, + 4ch> =2 N( Ap—
M, + 4ch, Zi:/\n—li—i_ r (2 +3) 5 V21m
‘N ‘N
+r6 V4,1 (/X,?; — 3m1/1,21 + 3mad, — m3) + }’6 wz(3m1)ki —4dmod, + m3)
2r*N 2r*N N

- Va2 (my — m)A, + V22 (my — mb)my + w3 (my — m) A,

3 3 3

4N
_r3 wimmy + .. i| (5.166)
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The moments m, depend on the eigenvalues A; and are defined by the usual formula
— Zx‘! (5.167)
q N - l

We will assume now that the four parameters b, c, 7?2 and /o of the matrix
model (5.22) scale as

2
b C R o=V (5.168)

Obviously 8, = §, + 1. Further, we will assume a scaling 6, of the eigenvalues A,
viz

- A
A= (5.169)

Hence, in order for the effective action to come out of order N2, we must have the
following values

8 =1—-26,6.=1—46;, 6, =-28,, 8, =0. (5.170)

By substituting in (5.163) we obtain the collapsed exponents

1 1 3 1 1
h=— ,6a=—_,8=_,6=2,08=—_,68=_. 5.171
! hr 0=, d ) ) ( )
In simulations, it is found that the scaling behavior of the mass parameter b and the
quartic coupling c is precisely given by 3/2 and 2 respectively. We will assume, for
simplicity, the same scaling on the Moyal-Weyl plane.
The derivative of the effective action takes then the form

1 aSeff ~ ~73 2 1 ~ V21 Wi~ ;2 -
. =2bA, + 4ch; — ~ - ' An —
N i, +ach, NZM—M—’_ 7(2 +3) 5 V217
7 > > > 7 > >
+ 6 V4,1 (/X’?; - 3ﬁ11A’21 + 3myA, — 1’713) + 6 W2(3I’7’llki —dmyA, + ﬁ’l3)
274 - T 274 - o 7 - T
- V22 (Mg — m%)kn + 3 Va2 (my — m%)ml + 3 ws(my — m%)kn
;;4
— 3 W3ﬁ11l’;lz + .. i| (5172)

The definition of the scaled moments 77, is obvious, whereas @ = w since §, = 0.
This problem is therefore a generalization of the quartic Hermitian matrix potential
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model, which is labeled by the parameters 7> and /@, and with derivative of the
generalized potential given by

V20

0An 3 2

- . -1
= 2bX, + 4803 + 72[(1);’1 + "D, - U2,1ﬁ’ll:|
4|1 73 ~ 32 ~ 7 ~ 1 - 3 ~ 7 ~
+7 6v4,1 (An = 3mA; + 3imA, — m3) + 6W2(3mlkn —4dmyA, + m3)

- R 2 - e 1 B s
V22 (g — i) Ay + 3 V2.2 (iy — i3 iy + 3W3(mz — ) A

W = W N

W3ﬁ11ﬁ12:| + ... (5.173)

The corresponding saddle point takes the form

10Ser Vg 2 1
N, 0k, N 2 t
= 0. (5.174)

In the following, we will often denote the eigenvalues without the tilde for ease of
notation, i.e. we will set A; = A;.

5.5.2 Saddle Point Equation

The above saddle point equation (5.174) can be solved using the approach outlined
in Eynard [11]. See also next section for more detail.

In the large N limit all statistical properties of the spectrum of M are encoded in
the resolvent W(z), i.e. the one-point function, defined by

I 1
W@ = T - . 5.175
@= N =Ny, ©.173)

i=1 !

From this definition we can immediately remark that W(z) is singular when z
approaches the spectrum of M. In general, the eigenvalues of M are real numbers in
some range [a, b]. In the large N limit we can also introduce a density of eigenvalues
p(A) which is positive definite and normalized to one, viz

b
p(1)=0, / p(M)dr = 1. (5.176)
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Thus, the sum will be replaced by an integral such that

. b
NZ =/ p(A)dA, (5.177)
i=1 a

and hence

b
W) = / pydh (5.178)
a Z_A

We can immediately compute
b 1
/ p(MAkdL = i _(ﬁ W(2)7"dz. (5.179)
a i

The contour is a large circle which encloses the interval [a, b]. In terms of the
resolvent, the density of eigenvalues is therefore obtained, with a contour which
is very close to [a, b], by the formula

p(A) = — 271”,(W(A +i0) — W(A — i0)). (5.180)

In other words, knowing W(z) will give p(A). In terms of the resolvent W(z), the
saddle point equation (5.174) is rewritten as

1 Vi@ = V5o
2 v _ r2,Q r2,Q
W) = Vo q@W@) — PR, PQ) = Z Y . (5.181)
The solution of this quadratic equation is immediately given by
1
W) =, (V2o — \/ V3 o (2) —4P(2)). (5.182)

This is much simpler than the original saddle point equation. It remains only to
determine the coefficients of P(z), which is a much smaller number of unknown, in
order to determine W(z). Knowing W(z) solves the whole problem since it will give
p(A). This W(z) can have many cuts with endpoints located where the polynomial
under the square-root vanishes. The number of cuts is equal, at most, to the degree
of V;Z’Q so in our case it is equal, at most, to 3.
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The derivative of the generalized potential V; 2 o Is given in this case explicitly
by the following equation '

~ 1
M; VA — 2U2,1ﬁ11:|

Vi o (0) = 26X + 4233 + 72[(”;‘ +
4|1 73 ~ 32 L T 1 ~ 32 ~ T
+7 6v4,1(k —3mA° + 3mpA — m3) + 6wz(3m1)k —dmyA + m3)

- oy 2 N e 1 - s
Va2 (iy — ig)A + 3 V22 (iity — g)imy + 3W3(mz — i) A

W = W N

W3ﬁ11ﬁ12:| + ... (5.183)

The next assumption is to suppose a symmetric support of the eigenvalues distribu-
tions, and as a consequence, all odd moments vanish identically. This is motivated
by the fact that the expansion of the effective action employed in the current paper,
i.e. the multitrace technique, is expected to probe, very well, the transition between
the disordered phase and the non-uniform ordered phase. The uniform ordered
phase, and as a consequence the other two transition lines, of the original model
S must also be embedded in the matrix model V2 o because these two models, S
and V2 q, are exactly identical.

We will, therefore, assume that across the transition line between disordered
phase and non-uniform orglered phase, the matrix M remains massless, and the
eigenvalues distribution p(A) is always symmetric, and hence all odd moments 7,
vanish identically, viz

b ~ ~ ~
iy = / dip(M)A? =0, g = odd. (5.184)

The derivative of the generalized potential V; » o becomes

V:ZQ(i) = 2[31 =+ 4513 + ;.2(1);1 + M;l )i

1 = > 2 ~ 2 1 -
+7‘4|:6U4,1 (A3 + 3ﬁ12/1) — 3W2ﬁ121 — 31)2,21;}“12/1 + 3W3ﬁ12Ai| =+ ...
(5.185)

The corresponding matrix model potential and effective action are given respec-
tively by

vy —N/d)L ) B+;2(v2"+wl) kz+(5+;4v )4
e = P 2V 2 T3 247!

~4 2
o [ amoaon] (5.156



242 5 The Multitrace Approach

NZ
Setf = NV,2 g — ) /dkdk’,o(k)p(k’) In(A — /)2 (5.187)
The coefficient 1 is defined by
3 n 1
= —_ v —_
n =" 4 V41 w2 2W3
1 1 1 2
= @4-3)+ (Wo+1)1—e)— _ (Vo+1)*(15—14¢)
8 2 30
1
+12(w— 1)(9 — 8¢). (5.188)

These can be derived from the matrix model given by

Vog = 13+;2(v2’1 + Y ) om? + @+ . )TrM* — et
2.8 2l T3 24741 6N ‘

(5.189)

This matrix model was studied originally in [9] within the context of ¢ > 1 string
theories. The dependence of this result on the harmonic oscillator potential is fully
encoded in the parameter n which is the strength of the double trace term. For Q2 =
0, or equivalently /@ = —1, and € = 1 this model should be compared with the
result of O’Connor and Saemann [35], where a discrepancy between the numerical
coefficients should be noted.

For later purposes we rewrite the derivative of the generalized potential V; 20 in
the suggestive form

Vo) = 2ul + 4g)°. (5.190)
~ ;’2 V21 w1 ;‘4 ~ ;’2 ;’4
=b ’ — My, = b 2—¢€)— n
2 +2(2+3) 3 T +4( €) 3 2
~4 ;.4
g=c+ vgp=c¢— . (1 —e). (5.191)

5.6 The Real Quartic Matrix Model

In this section, we will follow the pedagogical presentation of Eynard [11] in
deriving the various eigenvalues distributions of the real quartic matrix model. First,
we will pretend that the parameters (1 and g are just shifted values with respect to
the original parameters » = N*2b and ¢ = N?c, then, in the next section, we will
take into account the fact that i depends on the second moment m,, which is itself
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computed in terms of the eigenvalues distribution, and thus a deformation of the
critical line is entailed.

5.6.1 Free Theory

For g = 0, we find the famous Wigner semi-circle law, viz

1 2
p(M) = puvsr—2a2, 82 =", (5.192)
w 0

The derivation of this law is straightforward.

5.6.2 The Symmetric One-Cut (Disordered) Phase

The classical minimum of the potential V is given by the condition V'(z) =
2z( + 2gz%) = 0. In other words, V can have only one minimum at z = 0 for
positive values of p and g. Therefore, we can safely assume that the support of
p(A) will consist, in this case, of one connected region [6;, §;] which means that
all eigenvalues of M lie at the bottom of the well around M = 0. In this case the
resolvent W(z) has one cut in the complex plane along [, §,] with branch points at
z = 8; and z = §,. Thus, the polynomial V'%(z) — 4P(z), which is under the square-
root, must have two single roots corresponding to the branch points while all other
roots are double roots.

The above argument works when both p and g are positive. For the more
interesting case when either 1 or g is negative* the potential can have two equivalent
minima but the rest of the analysis will still be valid around one of the minima of the
model. We will only consider here the possibility of . negative for obvious stability
reasons. We get therefore the ansatz

V2(2) — 4P(2) = M?*(2)(z— 81)(z — 6>). (5.194)

4The possibility of g negative is more relevant to quantum gravity in two dimensions. Indeed, a
second order phase transition occurs at the value g = —u?/12. This is the pure gravity critical
point. The corresponding density of eigenvalues p(A) is given by

2

p(A) = ig(;xz —8%)5. (5.193)
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We compute
P(z) = 21 + 4gz° + 4g/dkp()k))kz + 4gz/dkp(k)k. (5.195)

In above we can use the fact that since the potential V is even, we must have §, =
—8; = —§, and hence we must have the identity [ dAp(A)A = 0, i.e.

P(2) = 2p + 4gmy + 4g2”. (5.196)

Let us note that in the large z region the resolvent behaves as 1/z. Hence in this
region we have, from Eq. (5.182), the behavior

1 1
L, Ve — M) V2 -8, (5.197)
or equivalently
_ V'(2)
M(z) = Pol o g (5.198)

where Pol stands for the polynomial part of the ratio. Now, from the behavior
V'(z) ~ 4gz°> when 7 —> o0, M(z) must behave, from (5.197), as 4gz> when
z —> oo. However, M(z) must be at most quadratic from the fact that P(z) is
quadratic together with Eq. (5.194). We must then have

M) = 487 +e. (5.199)
Indeed, we can compute directly from (5.198) that

2z(p + 287%)
V2 -8

In other words, e = 2(u + g8%). Putting all these things together we obtain

M(z) = Pol = 4g7% 4+ 2(u + g82). (5.200)

W(2) = pz+2g2° — (2g2 + ju + g8%) V22 — 82, (5.201)
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This function must still satisfy the condition W ~ 1/z for large z. This gives an
extra equation® which must be solved for §. We have then

W)  pzt 2g73
V72— 82 N
wé?  3g8*

1
= o . 5.202
272 + 472 + (24) ( )

— (282 + p + 88%)

In other words, § must satisfy the quadratic equation
1= Mgy g (5.203)
2 4
The solution is
1
§ = 36 (= + V2 + 12g). (5.204)
Finally from (5.180), we derive the density of eigenvalues
1
p(A) = (2gA% + pu + g8%) V82 — A2, (5.205)
b4

It is not difficult to check that the above density of eigenvalues is positive definite
for positive values of p. For negative values of ;, we must have, in order for p to be
positive definite on the interval [—§, §], the condition

w+ g8* > 0. (5.206)
This leads, by using (5.204), to the requirement
pr<dg & pn=-2g (5.207)

At u?> = 4g we must have a third order phase transition® from the phase with a
density of eigenvalues given by (5.205), with a support given by one cut which is the
interval [—§, 8], to a different phase where the support of the density of eigenvalues
consists of two cuts symmetric around A = 0.7

SThis is equivalent, from Eq. (5.179), to the requirement that the eigenvalues density p(A) must be
normalized to one.

This can be seen by computing the specific heat and observing that its derivative is discontinuous
at this point.

7 Again, this is because the potential is even under M —> —M.
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5.6.3 The Two-Cut (Non-uniform-Ordered) Phase

We observe that the eigenvalues distribution (5.205) at u = —2,/g, or equivalently
w = —g82, becomes given by

2
p(A) = Zik V82— )2, (5.208)

This vanishes at A = 0, and thus effectively the support of the eigenvalues
distribution at u© = —2,/g consists of two cuts [0, §] and [, 0]. For more negative
values of the mass parameter 1, beyond u = —2,/g, the support of the eigenvalues
distribution will split into two disconnected cuts [—6,, —81] and [81, §,] with §; > 6.
We start therefore from the ansatz

V2(z) — 4P(z) = M*(2) (2> — 63 (> — 62). (5.209)
Again we have
P(z) = 240 + dgmy + 4gz°. (5.210)
Now the behavior of the resolvent as 1/z in the large z region gives

V'(2)

M(z) = Pol )
J@ =@ —8)

(5.211)

From the behavior V'(z) ~ 4gz> when z —> oo, M(z) must behave as 4gz when
7 —> 0o. We write then

M(z) =4gz+e. (5.212)

It is not difficult to verify that e = 0 in this case. We obtain then

W) = uz + 262 — 282,/ (@ = (2 - ). (5.213)

This function must also satisfy the condition W ~ 1/z for large z. This gives the
extra equation

W(z) g+ 82 N 38(87 + 83)* — 4g8783 + 2187 + 63)
- 3
J@ - -8 : 4

+0(Z15). (5.214)



5.6 The Real Quartic Matrix Model 247

In other words, §; must satisfy the two equations
©+ g8+ 83) = 0. (5.215)
3g(87 + 83)* — 4g8183 + 2u(87 + 83) = 4. (5.216)

We find immediately the solutions

1 1
2 2

Obviously, §7 makes sense only in the regime
n=<-2s (5.218)

Finally from (5.180), we derive the density of eigenvalues
28
p(A) = IAl \/(12 — 8182 — A2). (5.219)

At p = —2./g, we observe that this eigenvalues density becomes precisely
the critical density of eigenvalues (5.208). This is the sense in which this phase
transition is termed critical although it is actually third order.

Alternative Derivation In deriving the two-cut solution, we may follow the more
compact formalism of Filev and O’Connor [12]. We rewrite the saddle point
equation (5.174), together with (5.289) and introducing a symmetric density of
eigenvalues p(1), as

8
1
wA+2gx> =2 / dlp(x) , . (5.220)
0 Xs—X

In the case of a two-cut solution, we should write the above equation as

w4 2gx* =2 / 'p(x') , . (5.221)
81 X*—X
The two cuts are given by the two intervals [—8,, —6;] and [3;, §>]. Obviously, for
the one-cut solution we must set §; = 0 and 6, = §. We introduce now the
reparametrization
x(z
t= 1+ 20, y() = PO (5.222)

x(2)
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We obtain then the Cauchy problem

C2 1
7= / d7y(7) - (5.223)
o 72—z
c1 = +2g8%, ¢ = ju+ 2g83. (5.224)
A two-cut solution which is symmetric around z = 0 must have ¢; = —z9, c; =
+20, i.e.
2 1 2 1
§i= . (—u—20).8 = (—p+20). (5.225)
2g 2g

The solution to (5.223), in the two-cut phase, is given by

— 1 2_ .2
Y@ = \/zo 2. (5.226)

This can be checked as follows. By using the result 2.282 of Gradshteyn and Ryzhik
[19], page 108, then introducing 7/ = zj sin &, we obtain

2 72
1 \/Zo_z 1 / 1
/ d7 , = / i - 4+ ° / d7
m z—z ™ \/zé 2 7 \/Z% _n

-7 /dz’ 1
d (

7 —2)y/75 — 72

Z2 _ 22 /2 1

0

=0+z+ / do . (5.227)
T —n/2 Z— 208N

The last integral is zero by the result 2.551.3 of Gradshteyn and Ryzhik [19] on
page 179. Hence (5.226) is a solution to (5.223) as anticipated. The corresponding
eigenvalues distribution is immediately obtained to be given by

2
o) = 102 = 8 - ). (5.228)

This is precisely (5.219).
The one-cut solution to (5.223) corresponds to an unbounded function y(z), at
c1 = [, given explicitly by Filev and O’Connor [12]

1 2z+ca—c1)fer—z
2w Jz—ci ’

This reduces to (5.226) if we set ¢, = —c¢; = 2.

y(z) = (5.229)
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A final remark is to note that the one-cut solution is sometimes called the disk
phase and the two-cut solution is sometimes called the annulus phase for obvious
reason.

5.6.4 The Asymmetric One-Cut (Uniform-Ordered) Phase

The real quartic matrix model admits also a solution with 7rM # 0 corresponding to
a possible uniform-ordered (Ising) phase. This U(N)-like solution can appear only
for negative values of the mass parameter u, and it is constructed, for example, in
[39]. It is, however, well known that this solution can not yield to a stable phase
without the addition of the kinetic term to the real quartic matrix model.

We will consider then a one-cut solution centered around 7 in the interval [0 —
7,0 + t]. In this case, we start from the ansatz

V2(z) —4P(z) = M*(2)(z — (0 + 1))z — (0 — 1)). (5.230)

The polynomial P contains now the effect of the first moment which does not vanish
in this phase, viz

P(z) =21 + 4gmy + 4g2° + 4gzm,. (5.231)
Again, we must have for large z the behavior
1 1, ,
.~ (V'(2) = M@) v/ (z— (0 + 1))z — (0 — 1)) (5.232)

In other words,

M(z) = Pol V@ . (5.233)
Vie=(e+ D)= (0 1)
This yields to the expression
M(z) = 4g + fr + e (5.234)
We get immediately the values
e=2u+2g(20% + %), f = 4og. (5.235)

Thus, we obtain

W(z) = puz + 282> — 282> + 2087 + p + 2go* + gv?)
Vz= (0 +1))z-(0—1)). (5.236)
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The requirement that W ~ 1/z for large z gives the condition

W(z)
V= (0 + 1)z~ (0 —1))
o +2g0’ +3got?

Z
21202 + 72) + g(3(0? — t2)2 — 300%(c? — 72) 4 350* 1
N p( )+ 8(3( ) ( ) ) ol

4Z2 13

(5.237)
In other words,

uo + 2go> + 3gor® = 0. (5.238)
2u20” + %) + g(3(0” — *)* — 3007 (0 — 1%) + 350*) = 4. (5.239)

The solution is
2 1 2 2 1 2
o2=  (Bpu+2V/p2—15g), P = _ (=2u—2/u? —15g). (5.240)
10g 15¢
The density of eigenvalues in this case is given by

p(z) = 71T(2gz2 + 2087+ p + 2g0% + gv?) \/((a + 1) —2)(z— (0 — 1)).

(5.241)

This makes sense only for u? > 15g.

5.7 Multicut Solutions of the Multitrace Matrix Model

5.7.1 The One-Cut Phase

The derivation of the eigenvalues distribution (5.205) is still valid when we
consider the case of the multitrace matrix model (5.189), with the normalization
condition ffé dAp(A) = 1 still given by the condition (5.203), only with the
substitution (5.191). We have then the eigenvalues distribution

1 ~4
p(A) = . (280A% + 1o — r3 iy + go82) V82 — A2, (5.242)
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The parameters 11y and g( are obviously given by

—13+'2(2 ) =¢ ;4(1 ) (5.243)
Mo = 4 €), 8o =2¢ 24 €). .

For stability purposes, we will assume, for simplicity, that g is positive definite.
Thus, the domain of definition of the quartic coupling constant ¢ is restricted slightly
above zero on the Moyal-Weyl plane.

The normalization condition ff sdAp(1) = 1is now given by

| 1 Mo 8+ 84 (5.244)
= — n . .
P Mo 3 nn lgo

This gives the second moment

=124 61108 + 9g08*

= 5.245
" 274162 ( )

On the other hand, the second moment must also be given by (with © = po —
#nma /3, ¢ = go)

+35
iy = / dAp(A)A?
—4

ud* + 2g8°
8

1
- 352 _ 2‘2 54 (5.246)

In the last equation we have used the normalization condition (5.203). In other
words, we have another expression for the second moment given by

2482 — 31084
= . 5.247
T g s (5:247)

This formula reduces to the original expression, i.e. to 7y = §2/3 — pod*/24, if we
set n = 0. By comparing (5.245) and (5.247) we obtain the condition on §%> = x as
the solution of a depressed quartic equation given by

Hngoxt — 72(g0 — 1’8 M — 4810x + 96 = 0. (5.248)
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This condition reduces to the condition (5.203), with u = o and g = go, if we
set n = 0 for which the multitrace matrix model (5.189) reduces to an ordinary real
quartic matrix model.®

The eigenvalues distribution (5.242) must always be positive definite, i.e. p(A) >
0 for all A € [—4, 8], and thus we need to require that p(0) > 0. We obtain, using
also (5.245), the analogue of the condition (5.206) given in this case by the equation

” 4
uo—gnﬂn +88* >0 <xi= . (5.249)

80
Actually, the condition (5.206) itself is rewritten in terms of x = 8% as x2 <

x2. Obviously, x.« must also be a solution of the quartic equation (5.248). By
substitution, we get the quadratic equation

=4
7
—3(0— MX2 — 2ptguxs + 4 = 0. (5.250)
We solve this equation for jto« in terms of go, and 7* and 7, to obtain
~4
= 2Jg+ . . (5.251)
Mo 3\/g0

As expected this is a deformation of the real quartic matrix model critical line o« =
—2.,/8o- In terms of the original parameters, we have

~ 72 74 =4
b*z—r4(2—6)—2\/5—;4(1—6)+ " L (5252)
3/E- -0
Several remarks are in order:
* The above critical value pox is negative for
0
80 = 6" (5.253)
e The range of the solution (5.242) is
Mo = Hos- (5.254)

8The case n = 0 can occur, with a non-zero kinetic term, for particular values of Ja) which can
be determined in an obvious way.
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This can be seen as follows. By assuming that 7 is positive,” we can start from
ngox* + 47 nx® < Fngoxt + 47*nx2, and use the quartic equation (5.248), to
arrive at the inequality 2(ox — foxxx) > 3g0(x2 — x?). Since xx > x, we get
immediately (5.254).

e The second moment 72, given by Eq.(5.247) is positive definite, for negative
values of o, if x> < 72/#*n. This is always satisfied for the range (5.249)
provided gy is restricted as in (5.253).

¢ The second moment m, given by Eq. (5.245) can be written in the form

9
iy =90 (x—xp)(x —x_). (5.255)
27 nx
x = L (cpo i+ 1280), (5.256)
380 0

Obviously x4 > 0and x_ < 0. Thus m, > 0if x > x4. We know that x = x4 for
n = 0. For small n, we can then write x = x4 + nA + O(n?). A straightforward
calculation, using the quartic equation (5.248), gives

. 7’4)&_ (goxi_ +4)

> 0. 5.257
T2g0(rs —x) 627

Explicit Solution For 1 # 0, which is equivalent to g # 0 or more importantly to
72 # 0, we can define the reduced parameters

;4
. —72(g0 — [g7) 8- —48u0 )= 96 (5.258)
ngo ' Mngo ngo’ '

The above quartic equation (5.248) takes then the form
4o+ Bx+y=0. (5.259)
The four possible solutions are given by
:l:l\/[—za:i:z —l+4a:l:1 28
3 ( 3 \/t— 2;1 )

= , 5.260
x ) ( )

where ¢ is a solution of the following cubic equation

+ay)— (o =+ ) =0, (5.261)

This can be solved numerically. See Appendix.

9The range of 4/ for which 7 is positive can be determined quite easily.
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5.7.2 The Two-Cut Phase

The eigenvalues distribution, in this case, is still given by (5.219) written now in the
form

o) = 3102 - 863 - 22). (5262)

The normalization condition ffg dAp(A) = 1 reads in this case

4
(8 -8 = . (5.263)
80

This equation is solved by the solution (5.217) which follows from the requirement
that the resolvent must behave as 1/z in the large z regime. This behavior is still a
requirement in our case and hence (5.217) is still the desired solution in our case.
We write this solution in the form

~4

1 7 I
§ = —po +
1 220 (— o 3

- 1 .
iy —24/80) . 8 = (—po+ 1 + 2./20).
2g0 3

(5.264)
The second moment is given by
&
iy =2 / dAp(L)A?
I3
80
=g 23— + 8D
1 [l
=, (=po+ ). (5.265)
2g0 3
In other words,
=3
= 0 (5.266)
680 — 71
By substituting in the solution (5.264) we get
3 7n
8 = —ho — 2 :
1 6g0_;47]( Mo \/g0+3\/g0)
3 7n
8 = - 2./80 — . 5.267
2 6g0_;47]( H0+ \/gO 3\/g0) ( )
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We have §; > 0 iff

7’477
go = 6 (5.268)
1o < Jox. (5.269)
= 2 /g0 + i (5.270)
Hox = 80 3\/go' .

By construction then §, > §;. The above regime (5.268) and critical value (5.270)
agree with the regime and critical value (5.253) and (5.251). The range of p (5.269)
meshes exactly with the range of  of the previous phase given in (5.254).

5.7.3 The Triple Point

Let us summarize some of the most important results so far.
The ®* theory, on the fuzzy sphere SIZV,Q and on the regularized Moyal-Weyl
plane R%?,Q , can be rewritten coherently as the following matrix model

SIM] = FPK[M] + Tr[bM* + cM*]. (5.271)
K[M] = TrI:\/a)F+MI‘M - N i | TsMTM + EM2:|. (5.272)

The first term is precisely the kinetic term. The parameter € takes one of two possible
values corresponding to the topology/metric of the underlying geometry, viz € =
1 on sphere, and € = 0 on plane. The parameters b, c, r* and Jo are related
to the mass parameter m?, the quartic coupling constant A, the noncommutativity
parameter 6 and the harmonic oscillator parameter €2, of the original model, by the
equations

1 A1 2(Q2%2+1 Q-1
b= mz, 2 = €+ ),\/a)

- , = . (5273
P RTE 0 Qa1 O3

Let us discuss the connection between the actions (5.1) and (5.271). We note first
that the original action (5.1) on the fuzzy sphere, with a non zero harmonic oscillator
term, is defined by the Laplacian [45]

A = Lo, [Las .. )] + Q2[Ls. [L3, .. ] + Q%{Li, {Li. .. .}}. (5.274)
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Explicitly we have

R (1 ava® el 4 Lot (5.275)
= r m . .
N+1 \2r2 "M27 7T 41

Equivalently this action with the substitution ® = M/ V270, where M =
Zf.vi:lMijﬁ > < j|, reads

S = Tr(aMAN,QM +bM? + cM4). (5.276)

This is identical to (5.271). The relationship between the parameters a = 1/(2R?)
and 77 is given by 2 = 2a(Q? + 1)N.

The computed effective potential up to the second order in the kinetic parameter
a, or equivalently 2, is given by

2

2N
AV = g (vz,sz +

3

r 4
4 Wltz) + (v4,1T4 A2 vz,szz + 4wy (113 — t%)

4
+ NW3t2T2) + 0(r%). (5.277)

The complete effective action in terms of the eigenvalues is the sum of the classical
potential, the Vandermonde determinant and the above effective potential. The
coefficients v and w are given by

vay =2—€— i(\/a) +1)(3 —2¢). (5.278)

vay =—(1—e). (5.279)

vy =wi+ (Vo + 1)1 —e) + 112 (0 —1)(9 —8¢) — é(z — 3e). (5.280)
wi = (Vo + 1)(3 - 2e). (5.281)

wy = —(Jo + 1) (1 —e). (5.282)

wy = (Vo + D)1 —e) — 115(@ + 1)2(15 — 14e). (5.283)

From the Monte Carlo results of Flores et al. [15, 16] on the fuzzy sphere with
Q2 = 0, we know that the scaling behavior of the parameters a, b and ¢ appearing
in the action (5.276) is given by

a DN cN*%

a= ’b:aN3/2’C:a2N2'

i (5.284)
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We will assume, for now, that the four parameters b, c, r% and /o scale as

b ~ c . r? . Jo
Vo C= s = YO = (5.285)
Obviously 8, = 8, + 1. Further, we will assume a scaling 6, of the eigenvalues A.
Hence, in order for the effective action to come out of order N2, we must have the
following values

0 =1—28,8 =1—46,, 6 =281, 6w =0. (5.286)
By substituting in (5.284) we obtain the collapsed exponents

812—‘1‘,8“:—;,8;,23,8522,5‘1:—;,5,:;. (5.287)

As pointed out earlier, it is found in simulations that the scaling behavior of the mass

parameter b and the quartic coupling c is precisely given by 3/2 and 2 respectively.

The saddle point equation corresponding to the sum V2 of the classical

potential and the effective potential (5.277), which also includes the appropriate
scaling and assuming a symmetric support, takes the form

1 2 1
NS =Vag— D, =0 (5.288)
Vio(A) = 2ud + 4g2°. (5.289)

;,4
M= o — 3 nmy , & = 8o-. (5.290)

This can be derived from the matrix model [9]
7 2
Vg = poTrM? + goTrM* — 6Nn|:TrM2:| ) (5.291)
The coefficient 1 is defined by
3
n="v2— 4U4,1 +wy— 2W3

= ;(4 —3¢) — é(@ +1)(6 — 5¢) + 210(¢w + 1)%(5 — 4e). (5.292)

The above saddle point equation (5.288) can be solved using the approach
outlined in [11] for the real single trace quartic matrix model. We only need to
account here for the fact that the mass parameter © depends on the eigenvalues
through the second moment m1,. In other words, besides the normalization condition
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which the eigenvalues distribution must satisfy, we must also satisfy the requirement
that the computed second moment m,, using this eigenvalues density, will depend
on the mass parameter i which itself is a function of the second moment m,.

For a concise description of the phase structure of the real quartic matrix model
see [39]. The real quartic multitrace matrix model (5.291) admits the same set of
stable phases. These are given by:

The Disordered Phase The one-cut (disk) solution is given by the equation

1 2 2
pA) = . (2g0A* + ., — g°28 )V82 — A2, (5.293)

52

The radius §? = x is the solution of a depressed quartic equation given by

Hngoxt — 72(g0 — 1’8 M — 4810x + 96 = 0. (5.294)

This eigenvalues distribution is always positive definite for

4
¥<x= . (5.295)
80

Obviously, x4 must also be a solution of the quartic equation (5.294). By substitu-
tion, we get the solution

~4

nr
=-2 . 5.296
Hox \/go + 3\/80 ( )

This critical value o« is negative for go > n7*/6. As expected this line is a
deformation of the real quartic matrix model critical line pox = —2,/g0. By
assuming that the parameter 7 is positive, the range of this solution is found to
be (o > fox-

The Non-Uniform Ordered Phase The two-cut (annulus) solution is given by
2
p(A) = jo |A| \/ (A2 = 89)(83 — A2). (5.297)

The radii §; and 8, are given by

3 ?477
§ = —o —2 :
1= 6g0— ;47]( o —24/80 + 3\/g0)
3 ?477
82 = — 280 — ) 5.298
2 680—7’47]( Mo + \/gO 3\/g0) ( )
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We have 812 > 0, and by construction then 8% > 812, iff

6 ° Ho = Hox- (5.299)

The critical value pos« is still given by (5.296), i.e. the range of p of this phase
meshes exactly with the range of & of the previous phase.

Triple Point In the case of the fuzzy sphere,'’ i.e. ¢ = 1, we have the following
critical line

nit
3¢

We recall that 2 = 2a(Q? + 1)N or equivalently 7 = 2a(Q? + 1). The above
critical line in terms of the scaled parameters (5.284) reads then

=2
by = —r4 N/ (5.300)

- Q2 +1 _ An(R2+1)?
by = — —2Je+ .
* 2 3./c

(5.301)

This should be compared with (5.2). The range go > 7#*1/6 of this critical line reads
now

2 2
. 2n($2 3+ 1) '

c (5.302)

The termination point of this line provides a lower estimate of the triple point and it
is located at

Q241 2(Q2 4 1)2
1 20+ )). (5.303)

(BvE)T: (_ ) s 3

For zero harmonic oscillator, i.e. for the ordinary noncommutative phi-four theory
on the fuzzy sphere with Q2 = 0 and ./ = —1, we have the results

b ! 24/ + ! (5.304)
= — —_ C . .
* 2 62
1
c> . 5.305
‘=12 (5.305)

This line is shown on Fig.5.1. The limit for large c is essentially given by (5.2).
As discussed above, the termination point of this line, which is located at (b, ¢)r =
(—1/2,1/12), yields a lower estimation of the triple point.

10The case of the Moyal-Weyl is similar.
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1.2
I matrix critical IIine of multitrace maltrix model
termination point .
critical line of quartic matrix model -------,
1k ]
disordered phase
0.8 ]
10
s 06 -
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0.2 -
non-uniform-ordered phase
0 L L L L
0 0.5 1 1.5 2 25

a'p

Fig. 5.1 The disordered-to-non-uniform-ordered (matrix) transition of phi-four theory on the
fuzzy sphere

5.8 The Planar Theory

5.8.1 The Wigner Semicircle Law

A noncommutative phi-four on a d-dimensional noncommutative Euclidean space-
time Rz reads in position representation

1 1 A
S = /ddx(za,-q)a,-q)—i- 2ch1>2 + 4c1>1). (5.306)

The first step is to regularize this theory in terms of a finite A/-dimensional
matrix & and rewrite the theory in matrix representation. Then we diagonalize
the matrix ®. The measure becomes [ [],d®;A*(®) [dU where ®@; are the
eigenvalues, A?(®) = ]_[i<j(<I>,- — @))? is the Vandermonde determinant and dU is
the Haar measure. The effective probability distribution of the eigenvalues ®; can be
determined uniquely from the behavior of the expectation values < [ dxd2(x) >.

In the free theory A = 0 we can use Wicks theorem with a sharp UV cutoff A
and a regularized volume V of Rg to compute [41]

< / dx®?(x) >= c(m, A)VAT2. (5.307)
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The most important cases are d = 2 and d = 4 where we have

m? A2

cm A= (1= 1+ ). d=4. (5.308)
1 A2

cmA)=  In(l+ ), d=2. (5.309)
47 m?

This calculation will involve in general planar and non-planar diagrams. However,
the non-planar contribution is always subleading because it is finite with the
exception of possible divergences arising in the limit p — 0 due to the UV-IR
mixing. From a technical point of view non-planar diagrams always involve rapidly
oscillating exponential and thus are finite and subleading in the large A limit. For
example we compute

< / dx®i(x) > = < / dx®? (x) >pla + < / dx®? (x) > non—pla

=< /ddei(x) >pla
= 2¢(m, A)>’VAH42), (5.310)
Hence, we have the ratio

<y [ dix®L(x) >

=2+... 5.311
<y [ dix®(x) >2 ( )

This is generalized as

U [ oad, g2n
= de XL > Npa(2n) + ... (5.312)
<y [ dix®?(x) >"

Npia(2n) is the number of planar contractions of a vertex with 2n legs. In the
commutative theory N, (2n) will be replaced by the total number of contractions of
a vertex with 2n legs, since we have the same contributions from planar and non-
planar diagrams, which is given by 2"n! >> N;1.(2n).

We must also have in the large A limit the cluster property. In other words,
expectation values of products < [ dx®3"(x)... [ dx®3*(x) > will factorize
in the limit A — oo as follows

< ‘l,fddxqfk"‘ ... ‘l/fddxcbi"" (x) >

B ‘1/ [ > < ‘l/fddxCDz(x) = Npla(2n1) .. NpaCme) + ...

(5.313)
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In the matrix representation of the noncommutative theory the integral is replaced
by aregularized and normalized trace in an A/-dimensional Hilbert space as follows

(N
y / dof(x) = | Tif. (5.314)

f is the operator representation of the function f(x). Hence, the observables

1 1
v / dx®2 (x). .. v / dx®¥™ (x) (5.315)
get replaced by
1 2n 2n,
NTrCIJ Lo Trd, (5.316)

These clearly depend only on the eigenvalues ®; of the matrix ®. The corresponding
expectation values are then given in terms of an effective eigenvalues distribution
w(®y, ..., Dp) by the formula

1 1
< /\/_Trq>2”1 ...N_TrCIJZ”k > = /d@l e dPpA (P, .., D)

;/Zqﬁ"l ...;[Zqﬁ"k. (5.317)

For example,

1, 1 2
< Trd >:/dCI)l...ch/\/,lL(ch,---ch/\/)NZcDi

N
=c(m, AN)AT? = iot(z)(m). (5.318)
We redefine the field as
D = . (5.319)
The above expectation value becomes
< ! Tre? >= ! . (5.320)
N 4

In fact, with this normalization all expectation values become finite in the limit
N —> oo. In this limit ' —> oo the eigenvalue ¢; becomes a function ¢(s) where

s =i/N €[0,1] and hence ), f(¢;) /N = fol dsf (¢). The measure (@1, ..., Pn)
becomes then a measure w[p(s)] on the space of functions ¢ : [0,1] — R.
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A density of eigenvalues p can be introduced by

ds
ple) = Jo /dtp(t) =1. (5.321)
Z
The cluster property implies that the measure (g1, ..., @a7) is localized, namely
<[flp) >=f(@(s)). (5.322)

where ¢(s) is a sharp and dominant saddle point of u[p(s)]. This saddle point
corresponds to the desired eigenvalues distribution

P(@) = 3’1 , / dip(t) = 1. (5323)
%

The various expectation values can then be computed by the formula
1 1
< @ = [ as@e) = [ apwro. (5.324)
0

By using this last equation in the result (5.312) we obtain

1 1 n
/ ds@*(s) :Npla(Zn)( / ds@z(s))
0 0

1
= pla(Zn)(4)”- (5.325)
In other words,
1
/ dip(H)f*" = Npla(2n)(4)". (5.326)
A solution is given by the famous Wigner semi-circle law given by
2
o= "V1-£, —1<t<+1. (5.327)
T

Indeed, we can check that

)  T+1/2)
ﬂ/dt«/l—tzt = Tw+2)

1
= Npa(2n)( 4)”. (5.328)

Hence the eigenvalues ®; are distributed in the interval [—oy, +op], i.e. o is
the largest eigenvalue of ®. Furthermore, it is well established that the Wigner
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semi-circle law can be obtained in the large A limit of the matrix model

2N

2
o)

S = Trd2. (5.329)

Now we include weak interactions which do not disturb the Wigner semi-circle law.
First, we compute

< [ dx®¥ (x) exp(—% [ dix®L) >

5.330
<exp(—} [ dix®di) > ( )

< /ddxCDi"(x) >) =

By assuming the applicability of the various laws established previously, in particu-
lar the cluster property, we obtain immediately

< / dx®¥ (x) >) = < / dx® (x) > . (5.331)

The eigenvalues sector of the original theory (5.306) can then be replaced with the
matrix model

2N _ ., AV 4

S= o2 Trd” + 4N_Tr<I> . (5.332)
This model can be used following [41] to discuss renormalizability and critical
behavior of the original theory (5.306). This discussion requires an explicit defi-
nition of the regulator used. There are two main regulators which we can use to
define non perturbatively the Moyal-Weyl spaces Rf)” and their noncommutative
field theories. These are fuzzy projective spaces and fuzzy tori which we will discuss
next.

5.8.2 Introducing Fuzzy Projective Spaces

CP" are adjoint orbits of SU(n + 1) which are compact symplectic spaces. The
sphere is precisely the first projective space CP'. The space of CP" harmonics is
given by

C™(CP") = &) Vpo..0p- (5.333)

=

Fuzzy CP" are finite matrix algebras Hom(Vy) where Vy are some representations
of su(n + 1). We can show that Vy = V(N,0,...,0) and as a consequence

Hom(Vy) = Vy ® Vy

_ p=N
- @p=0 Vp,O,...,O,p

= CP}. (5.334)
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Obviously

(N + n)! N

CPy = Mat(W,C) , N = Nl

(5.335)
The coordinate functions x,, a = 1, N> + 2N, on fuzzy CP" are proportional to the

generators of su(n + 1), and thus satisfy in the normalization of Steinacker [41] the
equations

N 1
[xas xp] = iANfabeXe s XaXa = R? | dupeXaXy = (n—1)( + )Apnxe.
n+1 2
(5.336)

In the above equations Ay = R/ \/ nN2/2(n + 1) + nN/2. The noncommutativity
parameter is defined by

n

R> = N6 .
n+1

(5.337)

The noncommutative Moyal-Weyl space Rﬁ” is obtained in the limit R, N — oo
keeping 6 fixed near the north pole.

The Laplacian on fuzzy CP" is given in terms of the rotation generators J, of
SU(n + 1) by the formula

c 2n
A= Jo.lJan ]l ¢ = . 5.338
oleladle= T (5.338)

The corresponding eigenvalues, eigenvectors and multiplicities are given by

c
Afi = Rzk(k + Dfe, fk € Vio,...0k- (5.339)
. 2k+n ,(k+n—1)> 2 o1
dimV/ = ~ " 5.340
YO, 0k n ( k'(n—1)! ) (n—1)"n ( )
We can now compute on fuzzy CP" the observable
74 A xZn—l
< d'x®*(x) >= / d : 5.341
/Cplnv ¥ > 22n=lgn(n —1)! J, 2 + m? ( )

The variable x is related to the quantum number k by x = ./ck/R and thus the cutoff
A is given by

N 2N
A=, = \/ . (5.342)
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The volume of CP”" is given by

2 1 n

y= 20t ))"”' R, (5.343)

n n

From these results we obtain immediately
V n
ce, N

which is precisely what we need if fuzzy CP" is to be a regularization of Ré”. We
also remark that the result (5.341) agrees precisely with (5.307) and thus (5.308)
and (5.309) can be used on fuzzy CP" with the above definition of V and A.

5.8.3 Fuzzy Tori Revisited

We consider a toroidal lattice with lattice spacing a and N sites in every dimensions.
The lattice size is then L = Na. We consider the unitary operators

2
Z: = expli in) L ZV = 1. (5.345)

The second condition simply restricts the points to x; € aZ. We have immediately
the commutation relations

. . 2
[xi, x;] = 0y & ZiZ; = exp(—2mi®)Z;Z; , © = 2 0. (5.346)
We consider the case 6; = 0Qj; in two and four dimensions where

0

(01 -
Q_(—IO)’Q_ 0
0

The momentum in each direction will be assumed to have the usual periodicity, viz

0
0
0

—
S O O

(5.347)

S = O O

-1

2mm;

ki = 5.348
aN ( )

The period of m; is exactly N. The range of m; is [0, N — 1] or equivalently [—(N —
1)/2, +(N —1)/2] and hence we obtain in the large lattice limit L — oo the cutoff

A=T (5.349)

a
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The quantization of the noncommutativity parameters 6 and ® are given by

0 = , 0= . (5.350)

In other words, we have rational noncommutativity ®, for N > 2, and hence a finite
dimensional representation of the algebra of the noncommutative torus exists. In
general we require N to be odd for ® to come out rational and thus be guaranteed
the existence of the fuzzy torus. The cutoff in this case becomes

Nm
A= \/ 0 (5.351)

This is consistent with the result of the fuzzy CP".
The full Heisenberg algebra of the noncommutative torus includes also the fuzzy
derivative operators

2mwid

z.. 5.352
N ) ( )

Dj = exp(aaj) , D]Z,DI+ = exp(

In two dimensions a finite dimensional N x N representation is given in terms of the
clock and shift operators (with @ = exp(27wi®))

01 1
001 w
602
r = T, = w3 , (5.353)
01
1 0
by
Z=T,,2="T,,D=0)"7 , D=1 (5.354)

The solution in four dimensions is obtained by taking tensor products of these. Thus
areal scalar field ® on the fuzzy torus is a hermitian A< A matrix where N/ = N4/2,
i.e. the space of functions on the fuzzy torus is Mat(N/, C). Furthermore, the integral
is defined by the usual formula

/ = 2n60)*Tr. (5.355)
fuzzy torus
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A basis of Mat(/N, C) is given by the plane waves on the fuzzy torus defined by

d
1 . i 1 ,
¢r71 — Nd/4 l_IZl i 1_[ eXp( N Q,:jm,-mi) = Nd/4 exp(lk,-x,-).
i=1

i<j
They satisfy
o3 = b, TrdS b = Sy

A noncommutative ®* theory on the fuzzy torus is given by

1 m? A
— d/2 HdNT _ )2 2 4
S = (2n0) Tr[za2 Ei (D;®D; D) + ) o + 443 i|

We expand the scalar field ® in the plane waves ¢, as

=) Dy
We compute immediately

DD =Y ®;Dig; D}
2mwim;
= D¢ ex .
2 Padexp(” )
Hence
Tr(D;®D})* = > @07

= Trd?.

Thus the action can be rewritten as

1 m? A
S = (2Na®)¥/*Ti &% — D;®DF® @2 @4 |.
(2Na*)*“Tr 2 Z( T ®) + ) + 4

i

We compute the kinetic term and the propagator given respectively by

1 2
) Z CIJ,;ldD;{(aZ Z(l — cosak;) + mz).

(5.356)

(5.357)

(5.358)

(5.359)

(5.360)

(5.361)

(5.362)

(5.363)
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SZSZ/

< Q;0F >= | .
" 5 (1 —cosak;) +m?

(5.364)

Thus the behavior of the propagator for large momenta is different and as a
consequence the calculation of o on fuzzy tori will be different from the result
obtained using a sharp cutoff. We get [41]

T d%r 1
< d*x®?(x) >= v/ ,d=2.
/fuzzy torus o (m)? Y .(1 —cosr) + m?a%/2
(5.365)
VA2 [T d*r 1
d*x®*(x) >= / ,d=4.
= /fuzzy torus *¥x) > 7 Jo Qm)*Y (1 —cosr)+m?a*/2
(5.366)

5.9 The Non-perturbative Effective Potential Approach

This is due to Nair-Polychronakos-Tekel [34, 37, 42, 43]. Let us start with the action

S = Tr(;er +eMt) =" (;rx% + gx}). (5.367)

We define the moments m,, by

m, =TrM" =) . (5.368)

By assuming that C(1) = 0 and that odd moments are zero we get immediately
1 1 2n
dUexp (— 2TrMICM) = exp(=Seft(t2n)) . ton = Tr(M — NTrM) (5.369)

Let us first consider the free theory g = 0 following [34]. In the limit N — oo
we know that planar diagrams dominates and thus the eigenvalues distribution of M,
obtained via the calculation of 7rM", is a Wigner semicircle law

2N
— 2 2
p(x) = iR, \/RW 22, (5.370)
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with radius given by

N—1

4f(r) Z 2+ 1

R}, = )
v Ky +r

(5.371)

Now the equation of motion of the eigenvalue x; arising from the effective action
Seff contains a linear term in x; plus the Vandermonde contribution plus higher order
terms. Explicitly, we have

Z %f:“ 2 = 22 (5.372)

X; —xj

We consider now g # 0 following [37]. The semicircle distribution is a solution
for g # 0 since it is a solution for g = 0. The term n = 1 alone will give the
semicircle law. Thus the terms n > 1 are cubic and higher order terms which cause
the deformation of the semicircle law. These terms must vanish when evaluated
on the semicircle distribution in order to guarantee that the semicircle distribution
remains a solution. We rewrite the action Se¢ as the following power series in the
eigenvalues

2 3
Sett = aoty + (asts + ant;) + (asts + antsts + axnst;)

+(ag + agptstr + a422a4t§ + azzzzlé) + ... (5.373)
We impose then the condition

0Se
i, flelgner 0,n>1 (5.374)

We use the fact that the moments in the Wigner distribution satisfy

2n)!
tyy = Cpt", Cy = . 5.375
> nl(n + 1)! (5.375)
We get immediately the conditions
a3y =0,as=asp=0, a3 =aep =0, das +asp =0, .... (5.376)

By plugging these values back into the effective action we obtain the form
1
Seif = 2F(t2) + (b1 + bata) (ts — 28)* + c(te — 58) (ts — 383) + ... (5.377)

Thus the effective action is still an arbitrary function F(t,) of #, but it is fully fixed
in the higher moments #4, #,. . .. The action up to 6 order in the eigenvalues depends
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therefore only on #,, viz
1
Seff = 2F(l2) + ... (5.378)

We note that the extra terms vanish for the Wigner semicircle law. The full effective
action is therefore

1
Seir = _F(tr) + Tr(er2 +gM*) + ...

N = N =

F(0) + Tr(;(r + F'(0))M* + gM*) + iF”(O)(TrMZ)z +

(5.379)
The equations of motion of the eigenvalues for g = 0 read now explicitly

aS, as,
Z eff 2n 1 _ eff 2)6,'

3t2n dfr

(F'(12) + r)x;

1
=2 . 5.380
; o (5.380)

The radius of the semicircle distribution is immediately obtained by

5 4N

Ry, = . 5.381
W F'(t) +r ( )

By comparing (5.371) and (5.381) we obtain the self-consistency equation

af(ry 4N

N T P 4 (5.382)

Another self-consistency condition is the fact that #, computed using the effective
action S for g = 0, i.e. using the Wigner distribution, should give the same value,
viz

t = TrM?
Rw
= / dxx?p(x)

—Rw
=, R3,
NZ

= Py 4r (5.383)
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We have then the two conditions

N2
F(t)+r= b t, = f(r). (5.384)
2
The solution is given by
F(t)—NZ/dt(l— ! (1)) (5.385)
2) = 2 t N2g 2))- .

g(ny) is the inverse function of f(r), viz f(g(t2)) = t,.
For the case of the fuzzy sphere with a kinetic term /C(I) = I(I + 1) we have the
result

2
fr)=In(1+ A; )- (5.386)

Thus the corresponding solution is explicitly given by

15}

F(t;) = N°1 .
(12) n 1 —exp(—12)

(5.387)

The full effective action on the sphere is then

S N? | t
eff = n
& 2 1—exp(—t)

_ N? (tz I exp(t/2) —exp(—t/2)

+ Tr(;er + gM4) + ...

1 2 4
=, {5 ) )+Tr(2rM +gM*) + ...

_ V(e "oy Loy +Tr(1rM2+ M*) +... (5.388)
2\ 27 2427 28802 T 2 & e

This should be compared with the result of Ydri [46] with action given by
aTrMKCM + bTrM? + cTrM* and effective action given by their Eq.(3.12) or
equivalently

a’N

aN?
Vo+ AV = TrM?* —
0+ AaYo ( 2 " 12

2
(TrM*)* + .. ) + Tr(bM* + cM*) + ...
(5.389)

It is very strange that the author of [37] notes that their result (5.388) is in agreement
with the result of O’Connor and Saemann [35], given by equation (4.5), which
involves the term Ty = Zi#(xi — xj)*/2. It is very clear that T} is not present in

the above Eq. (5.388) which depends instead on the term T22 where T, = Zi#(xi —
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)cj)2 /2. The work [38] contains the correct calculation which agrees with both the
results of [37] and [46].

The one-cut-to-two-cut phase transition derived from the effective action Seg will
be appropriately shifted. The equation determining the critical point is still given,
as before, by the condition that the eigenvalues distribution becomes negative. We
get [37]

1

r=-5/g— . (5.390)
VET 1 exp(1/ )
For large g we obtain
! 4./g + ! + (5.391)
r=—_-— e .
2" VET 12 s

This is precisely the result obtained in [46] with the identificationa = 1, b = r and
c =4g.

The above discussion can be generalized in a straightforward way to all CP”".
See for example [43]. The effective action and the properties of the one-cut-to-
two-cut transition can be calculated to any order in #, as a perturbative power
series. The result obtained in [43] agrees with the previous result found in [38].
However, the elegant non-perturbative method of Tekel [43] is more transparent
and compact and thus possible errors in the coefficients of the effective action can
be easily spotted and cross checked. The only drawback is that this method does
not allow the calculation of the odd contributions, i.e. terms in the effective action
which depend on odd moments, which are crucial, in our opinion, to the existence
of the uniform ordered phase. These terms can still be calculated with the method
developed in [38].
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Chapter 6
Noncommutative Gauge Theory

Abstract In this chapter we present a reasonably detailed introduction to noncom-
mutative gauge theory on the Moyal-Weyl spaces RZ and on the noncommutative
tori T‘é. An initiation to noncommutative gauge theory on the fuzzy sphere is also
included.

6.1 Gauge Theory on Moyal-Weyl Spaces

The basic noncommutative gauge theory action of interest to us in this article can
be obtained from a matrix model of the form (see [14] and references therein)

V0ddet(nB) ., +/6%et(nB) IS TR
S = 202 TryF; = 2g? Try (z[D,-,Dj] — QB"J' ) . (6.1)
Here i,j = 1,...,d with d even and 6 has dimension of length squared so that the

connection operators D; have dimension of (length)~!. The coupling constant g is

. . _d 1 . . . . . . . .
of dimension (mass)?>~2 and B! is an invertible tensor which in 2 dimensions is
given by B;l = eij_.l = —¢;; while in higher dimensions is given by

)

B! = : . (6.2)

—€jj

The operators A; belong to an algebra A. The trace is taken over some infinite
dimensional Hilbert space H and hence Try [ﬁi, ﬁj] is #0 in general, i.e. Try [ﬁi, ﬁj]
is in fact a topological term [11]. Furthermore we will assume Euclidean signature
throughout.

Minima of the model (6.1) are connection operators D, =B; satisfying

NP
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We view the algebra A as A = Mat,(C) ® A,. The trace Try takes the form
Try = TryTry, Where ‘H,, is the Hilbert space associated with the elements of A,,.
The configurations D; = B; which solve Eq. (6.3) can be written as

L
Bi= = Bj'§®1, (6.4)

The operators x; which are elements of A, can be identified with the coordinate
operators on the noncommutative Moyal-Weyl space R‘(g with the usual commuta-
tion relation

[i.3] = i9B;. 6.5)
Derivations on Rz are defined by
J; = iB:. (6.6)
Indeed we compute
[0;. 3] = 6. (6.7)

The sector of this matrix theory which corresponds to a noncommutative U (n) gauge
field on R‘(g is therefore obtained by expanding D; around B; ® 1,. We write the
configurations

A

1 B3 i+
Di=—9 x®1, +A,,A = A, (6.8)

The operators A; are identified with the components of the dynamical U(n)
noncommutative gauge field. The corresponding U(n) gauge transformations which
leave the action (6.1) invariant are implemented by unitary operators U =
exp(iA) , UUT = UTU = 1, At = A which act on the Hilbert space H =
H, ®...dH,as Di—UD;U™, i.e.Ai—>UAiU+—iU[éi, U] and ﬁ,y—)UI}ijU+.
In other words U(n) in this setting must be identified with U(H,, & ... & H,). The
action (6.1) can be put into the form

V/04det(nB)

S =
492

Try, (F§). 6.9)

The curvature £ i, where C is a U(n) index which runs from 1 to n” is given by

A A A A 1 PN | Ay A
FS = 0,471 = 0,451 = funclAN AP} + duncld) AP 6.10)
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In calculating ﬁg we used [TA, TB] = l'ngcTc, {TA, TB} = dAgcTc and TrTATB =

5‘53. More explicitly we have defined 7, = 12" for the SU(n) part and Ty = jzn 1,

for the U(1) part. The symbols d4pc are defined such that d,. are the usual SU(n)
symmetric symbols while d, 0 = daop = doay = \/ ’218@, daoo = 0 and dyggp = \/ ’21

Finally it is not difficult to show using the Weyl map, viz the map between oper-
ators and fields, that the matrix action (6.9) is precisely the usual noncommutative
U(n) gauge action on R‘(g with a star product * defined by the parameter 0B;; [14, 29].
In particular the trace Try,;, on the Hilbert space #H,, can be shown to be equal to the
integral over spacetime. We get

1

S =
4g2

1 i
/ddx (FS 2 , sz = aLAIC - ajA,C - 2fABC{A?aA?}* + szgc[A?,A?]*.
(6.11)

Let us note that although the dimensions dim# and dim#, of the Hilbert spaces
‘H and H, are infinite the ratio dimH /dim#, is finite equal n. The number of
independent unitary transformations which leave the configuration (6.4) invariant is
equal to dimH — dim?,, — n2. This is clearly less than dim?{ for any n > 2. In other
words from entropy counting the U(1) gauge group (i.e. n = 1) is more stable than
all higher gauge groups. The U(1) gauge group is in fact energetically favorable
in most of the finite N matrix models which are proposed as non-perturbative
regularizations of (6.1). Stabilizing U(n) gauge groups requires adding potential
terms to the action. In the rest of this section we will thus consider only the U(1)
case for simplicity.

6.2 Renormalized Perturbation Theory

6.2.1 The Effective Action and Feynman Rules

The equations of motion are given by

i

8Sp = —p / d’xtr[8A, % [Dy, Fiulx ]==> Dy, Fu ] = 0. (6.12)

We recall that D,, = —id,, + A, and [D,,, f]x = —id,f + [A4.f]«. Let us now write
0 1

Ap=AD +A. (6.13)

The background field ALO) satisfies the classical equations of motion, viz

[Df?) JF ,(LO\? ]« = 0 and Af}) is a quantum fluctuation. Using the fact that one can
always translate back to the operator formalism where | d?xtr behaves exactly like
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a trace we can compute
/ dxtr[DY AV % DV, AP, = / ddxtr[[fo),AL”]*  [DO, AV,
AL < 0. D). |
- / ddxtr[[fo),AL”]* * DO, AD],
—iFfBJ[Aj}%Ag”]*}. (6.14)

Hence, we compute up to quadratic terms in the fluctuation the action
SolA] = oA

1
g2 / ddxrr[[D;?%Ai”]* * (D AL — D AP DY, AL
+2iF() [AL”,A(VI’]*:|. (6.15)

The linear term vanishes by the equations of motion. The gauge symmetry A;L =

UxA, *UT —iUx3,U" reads in terms of the background and the fluctuation
fields as follows

(0) (0)
AM —>AM
AD—Ux AV« Ut + U % DO, U], (6.16)

This is in fact a symmetry of the full action Sy[A] and not a symmetry of the
truncated version written above. This also means that we have to fix a gauge
which must be covariant with respect to the background gauge field. We choose
the Feynamn-’t Hooft gauge given by the actions

1
S = 22 /ddxtr[fo),Af})]* * [D, AV,

-2

1
Sen = . /ddm[a «DPDVe+zx A, DY, c]*]*i|. (6.17)

The partition function is therefore given by

N ( Sdiam + gpara )

1
Z[AO] = =5l / DADDCDE ¢ 2 (6.18)
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In above the actions S and SP*? are given by
gdiam _ / ddxtr[[Dg”,Ag‘)]* « DY ANV —2¢ (Df?))zc:|
P — / dxtr[FQ) % A (8,):0A0)]. (6.19)

(Su)ap = i(8un6vp — 8,58,2) can be interpreted as the generators of the Lorentz
group in the spin one representation after Wick rotating back to Minkowski
signature.

The one-loop effective action can be easily obtained from the above partition
function. We find the result

1
Ty = Se[AQ] — , TraTRLog ((D<°>)25,-,- + 2i;ﬁ§°)) + TRLog(D)%. (6.20)

The operators (D©)2 = DYDY, D and }';O) are defined through a star-
commutator and hence even in the U(1) case the action of these operators is not
trivial. For example Dfo) (A;l))E[DL(.O),AJ(.l)]* = —iBiAj(-l) + [Afo),Aj(.l)]*. The trace
Tr, is the trace associated with the spacetime index i and TR corresponds to the
trace of the different operators on the Hilbert space.

We find now Feynman rules for the noncommutative U (1) gauge theory. We start
with the diamagnetic part S%™ of the action. This part of the action describes in a
sense the motion of the d — 2 physical degrees of freedom of the fluctuation field
Aff) in the background field AE?) which is very much like Landau diamagnetism.
This can also be seen from the partition function

— g _D=2
/ DAVDDE e ™" = [der(DOV)?] 2. (6.21)
The paramagnetic part SP*? of the action describes the coupling of the spin one
noncommutative current A(;) *(S,0) pAAﬁ,l) to the background field A;?). This term is

very much like Pauli paramagnetism.
We write the diamagnetic action as follows

HAO AV 4 269%¢ + 2i20, AV cl)

+2ic[AY), 9,cle — 28[A (A, c]*]*i|. (6.22)
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In momentum space we introduce the Fourier expansions

AD = /k Bu(k)e™ , AlD = /k Qu(k)e™ | ¢ = /k C(kye™ | ¢

_ /k Chye /k _ / (;Z’;d. 623)

We also use the identities

i

ezkx iPX — o7

2 . . .
% e 6 k/\pez(k-l—p)x , [eth’ el[)x]*

62 ,
= —2i sin( 5 k/\p)e’(kﬂ’)x . kAp = Eukupy.

(6.24)

We compute now the following propagators

1 d. 4 (1)92 4 (1) 1 1, 25’“’
— o [ dalEaL = = [0,00(= LR)0u-b— — 7

2 g2

1 ) . k
o / dx 2¢9*c = — /k Clh( - gZ)C(—k):> — (6.25)

The vertex V(BQQ) is defined by

1 1
— oo f @520 AL = [ g (800) 0,001 @B
8 k.p.gq

2i 62
Vi (BQQ) = —g; (k= q)u8y sin(" kna). (6.26)

V(QOBB) is defined by

1 1
— o [ EADACE = [ 5,0170,(0088) B OB @010, 0
2g k.p.q.l 4

4 .62 .62
Ve (QOBB) = 2 8u1bup sm( 5 k/\p)sm( 5 q/\l)

6> 6>
+sin( 5 gAp)sin( 5 k/\l)). (6.27)
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The vertex V(CCB) is given by

1 — -
g /ddx21C|: 3,L[ALO),C]* + [ALO), BMC]*:| = kpl8/(,1,,1V,L(CCB)C(k)BM(p)C(l)

2i ., 0%
V.(CCB) = _g2 (- k)MSIH( 5 p/\l).

(6.28)

The vertex V(CCBB) is given by

1

_ 1 _
92 /ddx ZC[AE?)’[ALO)’C]*]* :/ Sk,,,,q,IV,LV(CCBB) 2B,L(I)Bu(p)C(k)C(q)
8 kp.g.l

2 92

4 e .
V,w(CCBB) = g2 Suv (sm( 5 l/\k)sm( 5 p/\q)
62 62
+sin( 5 pAKk)sin( 5 lAq)). (6.29)
To calculate the paramagnetic vertex we write
F) = /k F (k)e™. (6.30)

Then

1

ara 1 d M M
SEF R /d X Fu A 5 (S,0)1pA0

1
— [ BraViuFOQ) ) P 00: 0)0,(0)
kp.q

2 02
Vouip(FOQ) = 2 (800801 — 8,28,,)sin( ) knq). 6.31)

6.2.2 Vacuum Polarization

The contribution of the diamagnetic vertices to the vacuum polarization tensor is
given by four different diagrams. The graph with two BQQ vertices is equal to

0° (2k = p)u(2k = p)y

1
M )E00) = (e [sin () k) HCLTPY 630
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The graph with one BBQQ vertex is equal to

1 5,07 1
,.,(p)(BBOQ) = (2)(—8d8,w)/sm2( 5 kAp) 2 (6.33)
k
The graph with two BCC vertices is equal to
02 (2k—=p)u(k—p)
— 22 " v
I, (p)(BCC) = (—1)(4) /k sin?( 5 kAp) 2 12 (6.34)
The graph with one BBCC vertex is equal to
07 1
,,,(p)(BBCC) = (—1)(—88,,) [ sin (2 kAp) 2 (6.35)
k
These contributions add to the diamagnetic polarization tensor
. 62 » —2k).(p — 2k) 2
d _ i 2 I v
™ (p) = 2(d —2) /ksm ( 5 k/\p)[ R 02 ~ 8,wi|.
(6.36)
Using the identity 4sina = 2 — ¥ — ¢7%® we can rewrite this result as a

sum of planar and non-planar contributions corresponding to planar and non-planar
diagrams respectively. We have then

A" (p) = 5™ (p) + TN (p)

p—2k)u(p—2k), 2 i|

diam,P _ _ _
it = @2 [[ 7T R

H?jsm,NP(p) — _(d_z)/cos(ezlmp)[(p—2k)M(P—2k)u 2 s :|
k

K2 (p — k)2 Tt
(6.37)

We write now

1

1
1 2
2 — k)2 :/0 dx(PZ—A)Z ,P=k—px, A=x(x—1)p~. (6.38)

Then we compute
diam,P 2 : 2 1
™ (p) = —(d = 2) (P80 — pupv) | dx(1—2
iy (P) ( )(p n pﬂp )/0 x( x) /P(PZ_A)Z

1 1 ,
+(d—2)/0 dx/P P2~ A)? [4P,P, —2(P* — A)S,].

(6.39)
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i62PAp

| 1
Hc/l:rsm,NP(p) = (d— 2)(P28uv _pﬂpv)/ dx(1 — Zx)Z/P (P2 — A)?

192P/\p 5
—(d — 2)/ dx/P (P2 — A)? [4P, P, — 2(P* — A8, ].

(6.40)
In above we have used the fact that fol dx(—1 + 2x) »? ! AR = 0. Introducing also
the Laplace transforms

! / " e Pighigy ! Pty (6.41)
= e e = e e . o
PP—A o CPr-0)y S
We get immediately that
1 1 © 1—d 2
_ —95 —x(1—=x)p-t
/P Fronp = i /0 di 113 ¢~ 0=0p, (6.42)
i62PAp 00 . o)
e _ —t(P—'p)2 —x(l—x)pzt P
= e 2" te e 4 dt
(P2 —A)? /0
i02PAp 1 00
e _ 1-4 —x(1—x)p*t . _
/p(PZ—A)2 N (4n)d/2/0 di' =2y = 0%,
(6.43)
Hence
. d-2) ! o —d (a2
Hdlam,P — 28 _ / dx(1 =2 2/ dt ll 5 ,—x(1=x)p r
J73Y (p) (4n)d/2(p y2ay p/va) 0 'x( 'x) 0 e
(6.44)
d-2
GNP (p) = (( ))(pza,w Pubv) / dx(1 —2x)? / dr 1111
4

d—2
(( ))~ N / dx/dttl 4 mx(=0p? =T (6.45)
477)2
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The contribution of the paramagnetic vertex to the vacuum polarization is given by
one graph with two FQQ vertices. This is equal to

sin’ ( 922 k/\p)
KRp-—k?*

The polarization tensor corresponding to this loop is given by the identity

1
< Fu(p)Fap(-p) >= ()®) /k (8,41.80p — 8.p801) (6.46)

1

[ < P ®Fn) > Fu@)Finp) = |

2.Jp / 5 () B (p) By (—pX6.47)

P

sin? k/\p)
kz(p k)z ’

In above we have clearly used the fact that F,, (p) = ip,B,(p) —ip.B.(p) + .. ..
Going through the same steps as before we rewrite this result as a sum of planar and
non-planar contributions as follows

derd(p) = 16([728;“1 pupv)/ (6.48)

— P NP
TP (p) = TIPWRF (p)  TIRNP, (6.49)

1
ara, _ 2
P (p) = 8(p26,., —pﬂpu)/kz(p_k)z

d(p v Pupv)/ dx/ dr '~ 2e_x(l —p? ' (6.50)
(47T)

NP, o cos(6%kAp)
HEL\J (p) - /»L\J pﬂpl))/ kz(p k)2

dx/ dr 1172 =¥ (1= ’e 41.
(4 )g(p v pupv)/

(6.51)

6.2.3 The UV-IR Mixing and The Beta Function

Let us first start by computing the tree level vacuum polarization tensor. we have

0)2

o—SAO] _ o~ a2 JANFw e_4;2 Jo Fun @) Fpv(=p) _ = 22 I8y =Pupy)Bu()B(=p)+ ..

(6.52)
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From this we conclude that
ee—leve 1
HEV fevel = g2 (nguv _pupu)- (6.53)

As we have seen there are planar as well as non-planar corrections to the vacuum
polarization tensor at one-loop. Non-planar functions are generally UV finite
because of the noncommutativity of spacetime whereas planar functions are UV
divergent as in the commutative theory and thus requires a renormalization. Indeed,
for t—0 which corresponds to integrating over arbitrarily high momenta in the
internal loops we see that planar amplitudes diverge while non-planar amplitudes

are regularized by the exponential exp(—’z) as long as the external momenta p does
not vanish.

Planar functions at one-loop are given from the above analysis by the expressions
(also by suppressing the tensor structure p*§ w — pupy for simplicity and including
an arbitrary mass scale ()

, 1 Lo dx(1 — 2x)? d
P (p) = 2-d)r@2-
P /o (1272 [x(1 —x)flez—%’( ey
8 bl dx d
P (p) = re- ). 6.54
P /o (1?72 [x(1 —x) " . €9

In above we have also used the integrals (in Minkowski signature)

P (PZ — A)Z 2 (471—){2{ 2 Al_g ’ P (P2 — A)2 (471,)(2{ 2 AZ—‘Zt
/e—th _ 11 /e—tPZPZ _ d 1 1
VTt 2 4y 4+
_p 1 11
PP, = _§
/1;8 utv 2 v (47[),2{ tg+1
d d—2 d

re- 2) ==, ra- 2). (6.55)

Ind = 4 4 2¢ we obtain
diam,P 1 12 2 p? ! 2
I ’(p)=162 3( +2y+2)+3ln , 2 dx(1—2%)° Inx(l —x)
7 € M 0

8

1 P’ !
[ParaP — — =1 — —/ dx 1 1-— . 6.56
16”2[ 2 v dx n.x( x)} (6.56)
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Let us also define a®*™ = | 61”2 (§) and P = | 61712 (—8). Obviously, in the limit

€—>0 these planar amplitudes diverge, i.e their singular high energy behaviour is
logarithmically divergent. These divergent contributions needs therefore a renor-
malization. Towards this end it is enough as it turns out to add the following counter
term to the bare action

1 diam para
885 = —, (- . :“ ) / dxFO2, (6.57)

The claim of [22, 23] is that this counter term will also substract the UV divergences
in the 3- and 4-point functions of the theory at one-loop. The vacuum polarization
tensor at one-loop is therefore given by

Hone loop __ (p (Suv pupv) 2( ) 4 Hii;lm,NP 4 Hlpﬁra,NP. (658)
1 : i arz
, — Hbdr + Hcoumer—term + Hdldm,P + deId,P
g ()
1 diam para p2 11 1
= 1 J—
gz—i-(a +a )n’u2 24Jr2)/+24712
1 2
oo [ del(1 =207 —4]Inx(1 ). (6.59)
It is obvious that TT?* = ! while Tcounter—term — —“diam:’”pam. A straightforward

calculation gives then the beta function [22, 23]

dg-(1)

Ble) = %! LEDRW. (660

— (adiam 4 apara)gf (M)E —
8

This is equal to the beta function of ordinary pure SU(2) gauge theory. Non-planar

functions are finite in the UV because of the exponential e~ g . However, it is clear
that this exponential regularizes the behaviour at ~—0 only when the external
momentum p is #0. Indeed, non-planar functions are given by the following Hankel
functions

2 1
I = /dt =5 e =0p? =1, lg=4 = 2[irrH(()l)(Zl\/ab) + h.c]

I = /dt 18 g, |d 4= HY 2ivab) + H" 2iab) + h.c].

4 b1/2[
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Where a = x(1 — x)p? and b = EZ . These integrals are always finite when p£0 and
diverge only for 6—0 and/or p—0 as follows

I =—In (x(l —x)ﬁzpz)

16 ! x(1 = x)p*p?
Nk 8 '
In the limit of small noncommutativity or small momenta we have therefore the
infrared singular behaviour

I (6.61)

2 ﬁﬂﬁv
72 (1‘3)2
Hlpﬁra,NP — _apara(pZSlw _Pppv) In pZﬁZ' (6.62)

Hii]z)lm,NP — _adiam(pZSlw _pupv) In pZﬁZ 4

This also means that the renormalized vacuum polarization tensor diverges in the
infrared limit p—>0 which we take as the definition of the UV-IR mixing in this
theory.

6.3 Quantum Stability

6.3.1 Effective Potential

Quantization of the matrix model (6.1) consists usually in quantizing the
model (6.11). As we will argue shortly this makes sense only for small values
of the coupling constant g> which are less than a critical value g2. Above g2 the
configuration B; given by (6.4) ceases to exist, i.e. it ceases to be the true minimum
of the theory and as a consequence the expansion (6.8) does not make sense.

In order to compute this transition we use the one-loop effective action obtained
in the Feynamn-"t Hooft background field gauge. We have the result

1
['=S+  TrTraln (Dza,;i - 2i]—",;,~) — Troa In D (6.63)

The operators D? = D/D;, D; and Fij act by commutators, viz D) =
[13,-, [ﬁi, L Dil) = [13,-, .Jand Fy(..) = [I:",-j, ..]. Next we compute the effective
potential in the configuration D; = —¢Bi71)?j. The curvature F; in this configuration

is given by OF i = (079> — l)Bl;l. The trace over the Hilbert space H is regularized
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such that Triy1 = N is a very large but finite natural number. We will also need
>_:;B;'B;' = d. The effective potential for d # 2 is given by

Vv

=a(0*¢> —1)> + In¢. 6.64
@y = OO =1 g (6.64
The coupling constant « is given by
d
d w2 1 d
= A =014g 6.65
*Td—22 N § (6.65)

We take the limit N —> oo keeping A?N fixed. It is not difficult to show that the
minimum of the above potential is then given by

T+ 1=
(0g)* = 5 . (6.66)
The critical values are therefore given by

d

d m2
=1 AN= : 6.67
O« & Ay d—2 2 ( )
Thus the configuration D, = —¢B;1)qu exists only for values of the coupling

constant A which are less than A,. Above A, true minima of the model are given by
commuting operators,i.e.

i[B;, B] = 0. (6.68)

By comparing with (6.3) we see that this phase corresponds to § = oco. The limit
6 — oo is the planar theory (only planar graphs survive) [15] which is intimately
related to large N limits of hermitian matrix models [16].

This transition from the noncommutative Moyal-Weyl space (6.3) to the commut-
ing operators (6.68) is believed to be intimately related to the perturbative UV-IR
mixing [24]. Indeed this is true in two dimensions using our formalism here.

In two dimensions we can see that the logarithmic correction to the potential is
absent and as a consequence the transition to commuting operators will be absent.
The perturbative UV-IR mixing is, on the other hand, absent in two dimensions.
Indeed, in two dimensions the first nonzero correction to the classical action S in the
effective action (6.63) is given by

1
F

F:S—Trad ijD2

1
D2 Fij+ ...
1 [1 ph —ikk W —iph
=S+ (On) 2 5 Try Fijle™, e Try Fyle™, e 7]
k P p

~ 1 1
— 2
=S5+ 2/[:TV|F”([))| /k 2 (p— k)z(l — CoS eijpikj)l- (6.69)
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By including a small mass m? and using Feynman parameters the planar and non-
planar contributions are given respectively by

HP—/ 1 1 _ (Oypi)? [ dx 6.70)
ChREmp—k24+m An [y 2 '

1 1 (Ogp)* [ dx
P = / Oipiki = =~ / K (2).
|t (p— k2 S5 Ok s Jy 27 1(2)

6.71)

In above 7 is defined by 7> = (Gijpi)z(mz + x(1 — x)p?) and K| (z) is the modified
Bessel function given by

C

o 2 2 ze
ZK1(2)=/ dte e 4 =1+ 2ln ) + ... (6.72)
0

We observe that in two dimensions both the planar and non-planar functions are UV
finite, i.e. renormalization of the vacuum polarization is not required. The infrared
divergence seen when m*> —> 0 cancel in the difference IT° — ITNP. Furthermore
TP — TIN? vanishes identically in the limit & — 0 or p —> 0. In other words, there
is no UV-IR mixing in the vacuum polarization in two dimensions.

6.3.2 Impact of Supersymmetry

The situation in four dimensions is more involved [22, 23]. Explicitly, we have
found that the planar contribution to the vacuum polarization is UV divergent as
in the commutative theory, i.e. it is logarithmically divergent and thus it requires
a renormalization. Furthermore, it is found that the UV divergences in the 2-, 3-
and 4-point functions at one-loop can be subtracted by a single counter term and
hence the theory is renormalizable at this order. The beta function of the theory
at one-loop is identical to the beta function of the ordinary pure SU(2) gauge
theory. The non-planar contribution to the vacuum polarization at one-loop is UV
finite because of the noncommutativity and only it becomes singular in the limit of
vanishing noncommutativity and/or vanishing external momentum. This also means
that the renormalized vacuum polarization diverges in the infrared limit p—>0
and/or & — 0 which is the definition of the UV-IR mixing.

We expect that supersymmetry will make the Moyal-Weyl geometry and as a
consequence the noncommutative gauge theory more stable. In order to see this
effect let A,, a = 1,...,M be M massless Majorana fermions in the adjoint
representation of the gauge group U(?). We consider the modification of the
action (6.1) given by

JV04det(TB) o~ -
S—S =5+ 0 L TudalDi . (6.73)

a=1
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The irreducible representation of the Clifford algebra in d dimensions is s = 22
dimensional. Let us remark that in the limit & —> 0 the modified action S” has the
same limit as the original action S. By integrating over A, in the path integral we

1
obtain the Pfaffian (pf()/iDi))M. We will assume that pf(y;D;) = (det()/iDi)) 2. The
modification of the effective action (6.63) is given by

i

M
r —I'=rI- , TrsTraaIn (D2 — 2)/,-)/]-]:,7). (6.74)

It is not very difficult to check that the coefficient of the logarithmic term in the
effective potential is positive definite for all M such that Ms < 2d — 4. For Ms =
2d — 4 the logarithmic term vanishes identically and thus the background (6.4) is
completely stable at one-loop order. In this case the noncommutative gauge theory
(i.e. the star product representation) makes sense at least at one-loop order for all
values of the gauge coupling constant g. The case Ms = 2d—4ind =4 (i.e. M = 1)
corresponds to noncommutative A" = 1 supersymmetric U(1) gauge theory. In this
case the effective action is given by

;L 1 P 1 M i 1
I'=S+ 2TrdTrad In(é;— 21D2]-',-- 4 TrsTragIn (1 — zyiyjpzfif .
(6.75)
This is manifestly gauge invariant. In 4 dimensions we use the identity Tr,y;y;vky1 =

s(SijSkl — S + SiZSjk) and the first nonzero correction to the classical action S is
given by the equation

P =5+ (U0 )T L F L Ft
8 D ip2T Y
d—2 T i
=S5+2(1- g )/pTr|F,;,~(p)| /kkz(p_k)z(1—cos9,-jp,-k,~)|.

(6.76)

This correction is the only one-loop contribution which contains a quadratic term in
the gauge field. The planar and non-planar corrections to the vacuum polarization
are given in this case by

1 1 1 ! ®dt s
HP:/kZ(p 0 )“/ i | g e
k - )2 JO 0 2

1 1 1 1 o dr @i
= / > , cosOypiki =, / dx/ o €T
K k2 (p— k) ’ (4m)2 Jo o 271

(6.78)
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The planar correction is UV divergent coming from the limit + — 0. Indeed we
compute (including also an arbitrary mass scale y and defining e = 2 — ‘;)

1 ! d_ P’ d
n* = dx (1?22 (x(1 — 2212 —

2

2\—¢ 1
) [1 —y —/ delnx(1—x" + 0(6)}. (6.79)
0 H

(4m)? Le

The singular high energy behaviour is thus logarithmically divergent. The planar
correction needs therefore a renormalization. We add the counter term

d—2 (n*)~c1 d. 2 d—2 ()1 = 2

8 = — —_ d = — — i .

S=-20-" )(471),5 6/ = =2(1-" )(471),5 E/pIFJ(p)I
(6.80)

The effective action at one-loop is obtained by adding (6.76) and the counter
term (6.80). We get

1 -
Fa= [ o0 6.81)
L, 28 (n) Y
1 d—2 d—2 (ud) <1
o= 420 = T =Yy —2(1 - )
2g*(n)  2g 8 8 " (4m)2 €
1 31 ! P’ 3
= —y— [ delnx(1-— — TP, (6.82
2g2+2(4n)2[ = | x)m] 1 (682

This equation means that the gauge coupling constant runs with the renormalization
scale. The beta function is non-zero given by

dg(p)

g = " 1ex2® W (6.83)

Bg(w) = u

The non-planar correction is UV finite. Indeed we compute the closed expression

2 1
mr= - / dxKo(2) . ©* = (0;p1)°x(1 — x)p. (6.84)
(47)* Jo
In the limit & —> 0 and/or p —> 0 we can use Ko(z) = —In § and obtain the IR
singular behaviour

1 ! (0pi)*x(1 — x)p?
NP _ iiDi
P = 2 /0 dxln ) . (6.85)
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In summary, although the Moyal-Weyl geometry is made stable at one-loop order
by the introduction of supersymmetry we still have a UV-IR mixing in the quantum
gauge theory. The picture that supersymmetry stabilizes the geometry is a recurrent
theme and can be confirmed non-perturbatively, whereas the precise connection to
the UV-IR mixing remains unclear.

6.4 Initiation to Noncommutative Gauge Theory on the
Fuzzy Sphere

Noncommutative gauge theory on the fuzzy sphere was introduced in [9, 20]. As we
have already mentioned it was derived as the low energy dynamics of open strings
moving in a background magnetic field with S* metric in [1, 2, 17]. This theory
consists of the Yang-Mills term YM which can be obtained from the reduction to
zero dimensions of ordinary U(N) Yang-Mills theory in 3 dimensions and a Chern-
Simons term CS due to Myers effect [25]. Thus the model contains three N x N
hermitian matrices X;, X, and X3 with an action given by

1 5  2ia
S=YM+CS = —4Tr[Xa,X;,] + 3 €are TrX , XpX,.. (6.86)

This model contains beside the usual two dimensional gauge field a scalar fluctua-
tion normal to the sphere which can be given by [21]

2 _ 2
X, —a‘c
2\/6‘2

The model was studied perturbatively in [10] and in [6, 19]. In particular in [10]
the effective action for a non-zero gauge fluctuation was computed at one-loop and
shown to contain a gauge invariant UV-IR mixing in the large N limit. Indeed, the
effective action in the commutative limit was found to be given by the expression

= (6.87)

1 a2
r / Fab(l + 2g2A3)Fab

42 ) 4n
1 ds2 d2
— ) €abe / Far(1 + 2g°A3)A. + 2V/N2 — 1 / o
4g 4 4
+non local quadratic terms. (6.88)

The 1in 142g?A; corresponds to the classical action whereas 2g> A3 is the quantum
correction. This provides a non-local renormalization of the inverse coupling
constant 1/g>. The last terms in (6.88) are new non-local quadratic terms which
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have no counterpart in the classical action. The eigenvalues of the operator As are
given by

2
20+1 2L +1 vt | P L L) b +1)
As(p) = (1= (=DrT27)
%;11(11+1)12(12+1) 2220 P+

h(p) + 2 P
(L + 1) =L, + — — L h(p) = — .
(L + 1) =L + 1)) o+ 1) () 2;:11

(6.89)

Inabove L+ 1 = N. The 1 in 1 — (—1)12*P corresponds to the planar contribution
whereas (—1)"12%7 corresponds to the non-planar contribution where p is the
external momentum. The fact that A3 # O in the limit N —> 0 means that we
have a UV-IR mixing problem.

The model YM + CS was solved for N = 2 and N = 3 in [30]. It was studied
nonperturbatively in [5] where the geometry in transition was first observed.

In [26] a generalized model was proposed and studied in which the normal scalar
field was suppressed by giving it a quartic potential V with very large mass. This
potential on its own is an O(3) random matrix model given by

2
V= N[;" Tr(X2)? — azuTr(xj)] (6.90)
)

The parameter y is fixed such that u = m?. The model S + V was studied in [13]
and [12] where the instability of the sphere was interpreted along the lines of an
emergent geometry phenomena. For vanishing potential m?, u —> 0 the transition
from/to the fuzzy sphere phase was found to have a discontinuity in the internal
energy, i.e. a latent heat (Fig. 6.1) and a discontinuity in the order parameter which
is identified with the radius of the sphere, viz

1
= TrD? , X, = aD,. (6.91)
r Ncy

This indicates that the transition is first order. From the other hand, the specific heat
was found to diverge at the transition point from the sphere side while it remains
constant from the matrix side (Fig.6.2). This indicates a second order behaviour
with critical fluctuations only from one side of the transition. The scaling of the
coupling constant « in the large N limit is found to be given by @ = a+/N. We get
the critical value &; = 2.1. The different phases of the model are characterized by
For m # 0 and/or ju # 0 the critical point is replaced by a critical line in the f — ¢
plane where 8* = @*/(1 + m?)® and t = (1 + m?). In other words for generic
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Fig. 6.1 The observable <A§2> for m*> = 0 as a function of the coupling constant for different matrix
sizes N. The solid line corresponds to the theoretical prediction using the local minimum of the
effective potential
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Fig. 6.2 The specific heat for m? = 0 as a function of the coupling constant for N = 16, 24, 32,48.
The curve corresponds with the theoretical prediction for m?> = 0
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Fuzzy sphere (& > &« ) Matrix phase (@ < 0x)
r=1 r=0
C, =1 C, =0.75

values of the parameters the matrix phase persists. The effective potential in these
cases was computed in [10]. We find

1 1 m? m
Ver = a*[ ¢*— ¢’ Y= "¢ +ng. 6.92
eff Ol[4¢ 3¢+4¢ 2¢]+H¢ (6.92)
The extrema of the classical potential occur at

1 1 V144

¢ = 4 m2 0, ¢+ ) (6.93)

For p positive the global minimum is ¢4. The 0 is a local maximum and ¢_ is a
local minimum. In particular for s = m? we obtain the global minimum ¢4 = 1.
For p negative the global minimum is still ¢+ but 0 becomes a local minimum and
¢— alocal maximum. If p is sent more negative then the global minimum ¢4 = 1

becomes degenerate with ¢ = 0 att = —g and the maximum height of the barrier
is given by V_ = B%/324 which occurs at ¢_ = é The model has a first order
transition at t+ = —2/9 where the classical ground states switches from ¢ for

t>—-2/9to0fort <2/9.

Let us now consider the effect of quantum fluctuations. The condition V., = 0
gives us extrema of the model. For large enough & and large enough m and p it
admits two positive solutions. The largest solution can be identified with the ground
state of the system. It will determine the radius of the sphere. The second solution
is the local maximum of Vg and will determine the height of the barrier. As the
coupling is decreased these two solutions merge and the barrier disappears. This is
the critical point of the model. For smaller couplings than the critical value & the
fuzzy sphere solution D, = ¢ L, no longer exists. Therefore, the classical transition
described above is significantly affected by quantum fluctuations.

The condition when the barrier disappears is Vi, = 0. At this point the local
minimum merges with the local maximum. Solving the two equations V., = Vi, =
0 yield the critical value

1 2(hse +2
gz = = i (s + /,L)’ (6.94)
*oad 8

where

b= g amy |1 Jre 2 "] (695)
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Fig. 6.3 The phase diagram
If we take u negative we see that g, goes to zero at (1 + m?) = —1/4 and the

critical coupling @, is sent to infinity and therefore for u(1 + m?) < —}1 the model
has no fuzzy sphere phase. However in the region —i < u(l +m?) < —g the
action S + V is completely positive. It is therefore not sufficient to consider only the
configuration D, = ¢L, but rather all SU(2) representations must be considered.
Furthermore for large & the ground state will be dominated by those representations
with the smallest Casimir. This means that there is no fuzzy sphere solution for
u(l +m?) < —g.

The limit of interest is the limit ;1 = m?

—>00. In this case
(6.96)

This means that the phase transition is located at a smaller value of the coupling
constant & as m is increased. In other words the region where the fuzzy sphere is
stable is extended to lower values of the coupling. The phase diagram is shown on
Fig.6.3.

We note that a simplified version of our model with V quartic in the matrices, i.e.
m? = 0 and & # 0 was studied in [7, 31]. In [27] an elegant pure matrix model was
shown to be equivalent to a gauge theory on the fuzzy sphere with a very particular
form of the potential which in the large N limit leads naturally, at least classically,
to a decoupled normal scalar fluctuation. In [33, 34] and [28] an alternative model
of gauge theory on the fuzzy sphere was proposed in which field configurations live
in the Grassmannian manifold U(2N)/(U(N + 1) x U(N — 1)). In [28] this model
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was shown to possess the same partition function as commutative gauge theory on
the ordinary sphere via the application of the powerful localization techniques.

The matrix phase which is also called the Yang-Mills phase is dominated by
commuting matrices. It is found that the eigenvalues of the three matrices X;, X,
and X3 are uniformly distributed inside a solid ball in 3 dimensions. This was also
observed in higher dimensions in [18]. The eigenvalues distribution of a single
matrix say X3 can then be derived by assuming that the joint eigenvalues distribution
of the three commuting matrices X, X, and X3 is uniform. We obtain

3

4R (R* —¥?). (6.97)

plx) =
The parameter R is the radius of the solid ball. We find the value R = 2. A
one-loop calculation around the background of commuting matrices gives a value
in agreement with this prediction. These eigenvalues may be interpreted as the
positions of DO-branes in spacetime following Witten [32]. In [8] there was an
attempt to give this phase a geometrical content along these lines.

In summary, we find for pure gauge models with global SO(3) symmetry an
exotic line of discontinuous transitions with a jump in the entropy, characteristic
of a first order transition, yet with divergent critical fluctuations and a divergent
specific heat with critical exponent « = 1/2. The low temperature phase (small
values of the gauge coupling constant) is a geometrical one with gauge fields
fluctuating on a round sphere. As the temperature increased the sphere evaporates in
a transition to a pure matrix phase with no background geometrical structure. These
models present an appealing picture of a geometrical phase emerging as the system
cools and suggests a scenario for the emergence of geometry in the early universe.
Impact of supersymmetry is to stabilize the geometry further against quantum
fluctuations [4].

6.5 Gauge Theory on The Noncommutative Torus

In our discussion of noncommutative gauge theory on the noncommutative torus we
will mainly follow the study [3].

6.5.1 The Noncommutative Torus Tz Revisited

The noncommutative (NC) plane R‘g is obtained by replacing the commutative
coordinates x; by hermitian unbounded operators x; which satisfy the commutation
relations

(X, Xj] = i0;. (6.98)
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Thus Rg is the algebra of functions which is generated by the operators %;. The
algebra of functions on the NC torus Tg is the proper subalgebra of Rg which is
generated by the operators

2, = exp(2mi(Z)%)). (6.99)

In terms of Z, the commutation relations (6.98) read

Zh2a = Za2pexp(2mi®g) . O = 27(Z7)10;(Z71). (6.100)
E’ is the d x d period matrix of Td which satisfies ¥/ ¥/ = §V. The indices i,j =
., d denote spacetime dlrectlons whereas a,b = 1,...,d denote directions of

the frame bundle of T¢. The two points x and x + ¢ ion the noncommutative torus
are identified ( where the summation over i is understood and the index a is fixed ).
For the square torus X¢ is proportional to §'.

Let us recall that a general function on the commutative torus is given by

F) = ) fredm = imar, (6.101)

mezd

The corresponding operator on the noncommutative torus is given by

=)0 enEimy (6.102)
mezd
or equivalently
7 d ~aNMg T g MaOapmy
=Y Ha=l(z) 4™ Lua<h MaOablh . (6.103)
mezd

It is not difficult to show that
f= / dxf(x) ® A(x). (6.104)

The product ® is the tensor product between the coordinate and operator represen-
tations. The operator A(x) is periodic in x given by

A _ 1 d 2 \Mg inmg®apmy —2mi(E ) max!
A(X) B |det2| ‘Zd l_[ll=1 (Za) l—[a<he ¢ (6.105)
meZ

or

~ 1 1a 1ya
A 2mi(Z)f max! —2711(2 )i m,,x 6.106
) = det| 2 Z (6.106)
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The star product * on the noncommutative torus can be introduced by means of the
map A(x). Indeed it is the star product fi * f>(x) of the two functions f; and f> (‘and
not their ordinary product fj (x)f>(x) ) which corresponds to the Weyl operator f;f,
given by

fih= / dfi * f(x) ® Ax). (6.107)
Equivalently we have
TrfihAK) = fi * f(x). (6.108)

Let us also recall that derivations on the noncommutatlve torus are anti-hermitian
linear operators 9; defined by the commutation relations [8, ,X;] = 8 or equivalently

[0:,2,) = 27i(=7")%, (6.109)

and [0;, ;] = icy; where c; are some real-valued c-numbers. In particular we have
the result

[0i.7] = / dxdif (x) ® A(x). (6.110)

d
6.5.2 U(N) Gauge Theory on T,

The basic NC action we will study is given by [3]
1 d 2
Sym = _4g2 dxtry (Fij — fij)s- (6.111)

The curvature Fj; is defined by Fj; = 0;A; — 0,A; + i[A;, Aj]« where * is the canonical
star product on the NC plane Rz. A;is a U(N) gauge field on the NC plane Rz while
fij is some given constant curvature and g is the gauge coupling constant. Local
gauge transformations are defined as usual by

Al =UxAix Ut () —iU*UY , Fl = UxFj»UT(x).  (6.112)

U(x) are NxN star-unitary matrices, in other words U(x) is an element of U(N)
which satisfies U * Ut (x) = UT % U(x) = 1y.

Classically the action (6.111) is minimized by gauge fields of non-zero topolog-
ical charge which on compact spaces are given by multi-valued functions. We need
therefore to define these gauge configurations of non-zero topological charge on the
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corresponding covering spaces. Gauge field on the NC torus Tg is thus the gauge
field A; on the NC space RZ with the twisted boundary conditions

A+ T )) = Qu(x) * Ai(x) * QF (1) — i (x) * Q0 T.  (6.113)

If we try writing the N x N star-unitary transition functions Q,, a = 1,...,d,
in the infinitesimal form €2,(x) = 1 + iA4(x) we can show that —z[A,, Aa]* -
AN, + O(Az) = 0 (since the two points x and x + ¥/ ] are identified we have
Ailx+ %/ ]) A;(x)). We can immediately conclude that the functions A, do not
exist and hence (6.113) are called global large gauge transformations. Furthermore,
by computing A;(x + X, i+ ]) in the following two different ways

Ax+ L+ ) = Qe+ B0 J) % Ailx + ) QF (x + 2 )
—iQp(x+ X/ J) % 0, Q2(x + 3, )T (6.114)
and

Ailx+ 2]+ ) = Qalx + T, )« Ailx + X, ) * QF (x + =)
—iQ(x + T, )) % 020 + =, DT (6.115)

we get the consistency conditions

Qp(x + 3 J) * Qu(x) = Qulx + T, J) % Q). (6.116)

6.5.3 The Weyl-’t Hooft Solution

We will choose the gauge in which the N x N star-unitary transition functions €2,
take the form

Qu(x) = ¢ T, 6.117)
where I', are constant SU(N) matrices while o, is a d X d real matrix which
represents the U(1) factor of the U(N) group. We will also assume that o, is chosen

such that (¢X)” = —aX. The corresponding background gauge field is introduced
by

1 .
a; = —2 ,;ixf ® 1y. (6.118)
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By using (6.117) and (6.118) it is a trivial exercise to show that (6.113) takes the
form

1 . . 1 - : -
NICEALI T 2F,( o' e—'“m") ®T.TF +a,®1y. (6.119)

By using the identity ¢ s/ % e~¥ = x 4 @/, and the star-unitary condition
[,[F = 1 we reach the equation

1 1
S Fi¥ = 2Fij91kocak + . (6.120)

The two solutions for « in terms of F and for F in terms of « are given respectively
by

1 1
F=2a"

=-3TF , .
* OF +2 S — faT

(6.121)

Now by putting (6.117) in the consistency conditions (6.116) we obtain the d-
dimensional Weyl-"t Hooft algebra

T, =eNT,T, (6.122)

where Qu, = )1 (i 0ty +0: £l — 0t T}) are the components of the antisymmetric
matrix Q of the non-abelian SU(N) ’t Hooft fluxes across the different non-
contractible 2-cycles of the noncommutative torus. Equivalently Q is given by

0= 21\; (aba” —20%). (6.123)

By construction Q, for a fixed a and b, is quantized, i.e Q,, € Z. This can
be seen for example by taking the determinant of the two sides of the Weyl-’t
Hooft algebra (6.122). This quantization condition is a generic property of fluxes
on compact spaces with non-contractible 2-cycles.

Now let us write the full gauge field A; as the sum of the non-trivial gauge
solution ¢; and a fluctuation gauge field A4;, viz A; = a; + A;. It is a straightforward
exercise to check that the fluctuation field A; transforms in the adjoint representation
of the gauge group. In particular under global large gauge transformations we have

Ai(x 4+ 20 J) = Qu(x) * Ai(x) * 2 (x). (6.124)

We can then compute Fj; = F; + f7 where the curvature of the fluctuation field A;
is given by F;; = D;A; — D;A; + i[A;, Aj]« with the covariant derivative defined by
D;A; = 0;A; + i[a;, Aj]«. The curvature of the background gauge field a; is given
by f = diaj — dja; + ilai, aj)« = Fy + ,Fx0"F;. By requiring that the curvature



304 6 Noncommutative Gauge Theory

f;; of the background gauge field a; to be equal to the constant curvature f; so that
we have

1 kl
Fy+ Fub'Fy=f (6.125)

we can immediately see that the action (6.111) becomes
1
Syy = g / dxtry (F(x))3. (6.126)

This means in particular that the classical solutions of the model in terms of the
fluctuation field 4; are given by the condition of vanishing curvature, i.e F; = 0.
Hence the requirement fl;“ = fij is equivalent to the statement that the vacuum
solution of the action is given by A; = 0. The fluctuation gauge field .4; has
vanishing flux and as a consequence is a single-valued function on the torus.

Finally let us note that the identity (6.120) can be put in the matrix form éF =-
Ba’) = a’ or equivalently

1_ 9;T2—1 =1+ ;HF. (6.127)
By squaring we can derive the identity
1 2
(1 B QaTE—l) =1+6f". (6.128)

Furthermore by using the two identities f = (1 4+ ,F6)F and F(X — fa”) = 2a”
together with the two facts ¥7 = X7 ! and (¢X)” = —aX we can show that the
antisymmetric matrix Q of the non-abelian SU(N) ’t Hooft fluxes given by (6.123)
can be rewritten as

0= 2N PO BT Y £ o) (6.129)
T

By using the identity (6.135) and ® = 27X ~'0 X it is a straightforward matter to
derive the relationship between the curvature f;; of the vacuum gauge configuration
a; on Tg and the SU(N) ’t Hooft magnetic fluxes Q5. This is given by

1
—1 _
b fz_an_Q®Q. (6.130)
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6.5.4 SL(d,Z) Symmetry

We assume that d is an even number. We may use the modular group SL(d, Z) of the
torus 7 to transform the flux matrix Q into Q° where Q = ATQ°A. A is an arbitrary
discrete SL(d, Z) symmetry which can be chosen such that Q° is skew-diagonal, i.e

0 q
—q1 0

0’ = . (6.131)

d
2

~q4 0

Under this SL(d, Z) transformation the d-dimensional Weyl-’t Hooft algebra (6.122)
becomes

ror9 = ¢ ¥ iCuTIr?. (6.132)

a

The transformed twist eating solutions T'? are given in terms of the old twist eaters
I, by the formula

d
r.=[1_, (). (6.133)

In order to verify these relations explicitly it is enough to restrict ourselves to two

dimensions, i.e d = 2. Extension to higher dimensions is straightforward. In two
dimensions we have

r = ()M (T, = (19 ()=, (6.134)
We note ( from (6.132) ) the identity
TVar®s = o YaCopls P 0a (6.135)

We can immediately show that

2 i(A21 05\ A2+An Q(l)zAzz)
Nr,=e LI
= NN p (6.136)

But ATQ°A = Q which is precisely what we want.
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Let us introduce, given the rank N of the SU(N) gauge group and the fluxes
geZi=1,..., d), the following integers

N ;
xi = ged(giN), =", m="T. (6.137)

Xi Xi

Since /; and m;, for every fixed value of i, are relatively prime there exists two
integers a; and b; such that @;/; +b;m; = 1. Let us introduce the following 4 matrices

ll 0 ng
ll —n O
L= M =
1(21 0 mua
la —ma O
2 2
aq O —b1
ag by 0
A’ = , B = . (6.138)
ad 0 —ba
2 2
ad ba 0
2 2

We can then easily verify that Q° = NM°L~! and A°L’ + B°M® = 1. If we
rotate back to a general basis where Q = ATQ°A, L = A™'L°A’, M = ATMA’,
A= A"TAA and B = A"7'B°(AT)~! then we obtain

Q=NML"', AL+ BM = 1. (6.139)

Let us recall that A is the SL(d, Z) transformation which represents the automor-
phism symmetry group of the NC torus Tg . As it turns out the extra SL(d,Z)
transformation A’ will represent the automorphism symmetry group of the dual NC
torus Tg,.

It is a known result that a necessary and sufficient condition for the existence
of d independent matrices FB which solve the Weyl-"t Hooft algebra (6.132) is the
requirement that the product /; .. . llzz divides the rank N of the gauge group, viz

NzNoll...lgzz. (6.140)
The integer N/N, is identified as the dimension of the irreducible representation of

the Weyl-’t Hooft algebra. As we will see shortly the integer N is the rank of the
group of matrices which commute with the twist eating solutions I'?. More explicitly
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the matrices I'Y can be taken in the subgroup SU(Np) ® SU()) ® ... ® SU(lg) of
SU(N) as follows (i =1, ..., 5 )
M =1y®1;,®..0V,®...81,
2

=181, ®..9 (W)"®...01,,. (6.141)
2

Vi, and W;, are the usual SU(/;) clock and shift matrices which satisty V, W, =
exp(zf "YW,,V,,. They are given respectively by the explicit expressions

01 1
001 el

1 0 2=
(6.142)

Let us remark that (W;,)"% = 1, and Vlll_" = 1, and hence (I')._ )" = (Il = 1y.
In general we have (foreachb =1,...,d)

(CpF (o) (D)t = 1. (6.143)

6.5.5 Morita Equivalence

The fluctuation gauAge field A, corresponds to a Weyl operator A; given by the
map (6.104), viz A, = [d%xA;i(x) ® Ax). Similarly the global large gauge
transformation €2, corresponds to the Weyl operator Q. =/ dxQ,(x) ® A(x)

Hence, by using the identity e%% A (x)e™"¥ = A(x — v) for v € R? we can rewrite
the constraints (6.124) as follows

P = QAQT. (6.144)
To be more precise the operator ¢%i means here 1 ® %l where ® stands for
the tensor product between the coordinate and operator representations. The Weyl
operator A; can be expanded in an SU(Ny)®SU(/, ... lg) invariant way. Recall
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that Ny is the rank of the group of matrices which commute with the twist eating
solutions T'0. Thus we may write

A = / d'k et N ]—[ Y ®ai(k,)). (6.145)

Fmod L =1

The matrices I', are given in terms of the twist eaters I‘g by the formula (6.133).
ai(kj) is an Ny x Ny matrix-valued function which is periodic in] so that we
have a;(k,j,) = ai(k,j, + Lg) for each b = 1,...,d. Therefore we have
G1,J2s---sja) ~ (1 + Lip,jo + Lop,...,ja + Lgp) for each b = 1,...,d. For
example in two dimensions we can see ( by using (6.143) ) that we have the result
(Fl)/1+L1b (Fz)/2+L2b = (Fl)jl (Fz)jz and hence (jl,jz) ~ (jl + Lip,jo + Lz;,).

By putting (6.117) and (6.145) in the constraint (6.144) we obtain

/ddk ik; x+2 Z l—[ ja®a (kj)

Fmod L =1

d
_ / dk M ot ST [T ()T @ak)).  (6.146)

jmod L b=1

We work in the special basis where Q = Qp and I'y = 1"3 and then use covariance
of the torus under SL(d, Z) symmetry to extend the result to a general basis. In this
special basis where Q = Qg and I, = 1"3 and for a given value of the index a

(say a = 1) the matrix 1"2 will commute with all factors in the product Hi:l (F;,)jb
except one which we will call Fz? (for example for a = 1 we will have b = 2).

It is then trivial to verify from the identity (6.135) that Fg ]_[Z:l (Fg)j" 1"2+ =
N Qub ]_[ (FI?)‘”’. By rotating back to a general basis we obtain the formula

d d
LT ()"} = ¢ ' Qavlv [T (6.147)
b=1 b=1
The constraint (6.146) becomes
N d '
/ddk eiki (XI+ZZI) (1 _ ezni(fa‘f‘]l/Qalzib)) ® Z l—[ (Fa)]a ®a[(k,j) =0.
jmod L a=l1

(6.148)
The vector &, is defined by

_ ki i 0 __ki _ T
€ = Zn(z" 9@1“@1)_ 271(2 o )ia' (6.149)
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The above equation is solved by ai(k,]) = 0 and if ai(k,]) does not vanish we must
have instead

1
Ea+ NQabjb =n, € Z. (6.150)
By using Q = NML™" and Q" = —Q we can rewrite this constraint as
£, = m.L_,' where m. = npLye + jpMpe. (6.151)

Recalling the identity AL + BM = 1 we can immediately see that this last equation
is solved by the integers n, = m,Ag, and j, = mBgp. In terms of the momentum &
the solution &, = mCLC_al reads k; = 27wm, B, with

1

B = —(2 ~ faT)L (6.152)

Hence, the solution of Eq. (6.148)-or equivalently of the constraint(6.144)- when
a;(k,j) does not vanish is given by the Weyl operator (6.145) such that

ki = 2nmaBai s jo = mpBpa ¥ muEZ. (6.153)

For every fixed set of d integers m, the solution for k; and j, is unique modulo L and
thus the Weyl operator A; becomes (with a;(i1) = a;(2wmaBai, mpBpa))

d
A= Z 2t imaBaidi 1‘[ (ra)’"bBba@)a,.(,;l), (6.154)

mezd a=1
In the special basis (6.131) we can show the following

1 (ﬁ ™) = I (o= )"

a=1 b=1 a=1
= ()™ (roy™En
_ ezﬁiml (B?ZQSIB%)mz (F?)szgl (Fg)mlB?z -

(6.155)

and

[T ()™ = ()™ gy .. (6.156)
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Thus in general we must have the identity

d d d Ma ‘
[T =TT (H (Fb)Bﬂb) [T Fmeomam,  (6.157)
a=1 a=1 ~b=1 a<b
Next it is straightforward to show the identity
- d - Ma 1
EZ”iZa.i maBaiki — l_[ (ezﬂiZi ﬂaixi) l_[e”imaQH/,mb
a=1 a<b
O = 27Buib;iBu. (6.158)
Thus the gauge field becomes
d
A=Y [T @)™ erXemeeum@ayin) (6.159)
mezd a=1

where
R d
2; = ezﬂiﬂaixi ® l—[ (Fh)Bab
b=1
2
O = Ogp = \ (BOB)a. (6.160)

By using Q = NML™" and AL + BM = 1 we obtain @/ = 2zB0B" —2L~'B" +
2AB”. Next, by using f = —)L7'S7'(AF +2), 27" = &7, 0 = 275710 and
14 6f = (1+ }6F)? we can compute that 207 = L™'S71(1 + 6f) SO ).
Furthermore, from the identity 0 = NML™' = ' S7!f(1 4+ 6f)' T we can show
that 1 + 0f = SL(L — ®M)~' 27! and hence 278087 = —(L — OM)~(L7'O)".
Finally, by using AL + BM = 1 or equivalently A® + BML™'® = L™'© and the
fact that (BML™'®)” = BT 4+ (®M — L)L™'B” we conclude that

1
O =27808" = — A® + BT + LB, 6.161
BB L_®M( +B) + ( )

Hence

1
0 = -, @M(A@) +B)T —L7'BT 4+ 24BT (6.162)
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. . . . . . ; T ..
Since AB” is an integral matrix we have immediately e?”"«(4B)am — 1 Similarly,
—immg (L' BT — p—inija — ,—imngja —
we can show that e~ Javiy, — o=imbaja — g=iMNaja — 41 thus

1
Or=— AO + B)T. 6.163
/ L_®M( + B) ( )

The commutation relations satisfied by the operators Z/, can be computed (first in the
special basis (6.131) then rotating back to a general basis) to be given by

37, = 2,3 0T —ymorT),, (6.164)
and thus
22 = 2 2,exp(mi®),) , 0, = 2x(Z)I0(Z 7). (6.165)

The covariant derivative in the Weyl-t’'Hooft solution was found to be given by
D; = 0; — F;¥'. We compute

[D;,2] = 2mi(=' 19z, (6.166)
where
la 1
(= = Bul1 +,0F),, (6.167)
or equivalently
T =3%(0M-L). (6.168)

By comparing the expansion (6.159) to the expansion (6.103) and the commutation
relations (6.165) and (6.166) to the commutation relations (6.100) and (6.109) we
can immediately conclude that the original NC torus Tg is replaced with a dual NC
torus T4, where 8’ = (£'©'%'~!)/27. Indeed, we have obtained the replacements

Za—>Z, di—>D;, ®—©’ and T—> . By analogy with (6.105) we can therefore
define on Tg, a mapping A’(x’) of fields into operators as follows

~ 1 d . ’ oy/—1ha 7i
eI\ § : | | ar mal | inmg® ., mp ,—2mi(X )i max
A0 = |detY | mezd a=1(za) a<he e -(6.169)
The expansion (6.159) thus becomes

A = / YN () @ Al(Y) (6.170)
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where

A;(X/) — Z eZﬂi(E/il)?max’iai(ﬁ;l). (6.171)

mezd

This is a single-valued U(Ny) gauge field on the NC torus Tg/ of volume |detX’|.
The new operator trace T is related to Tr by

. No |det2’|

T try, = Tr try. 6.172
TN N ety Y 6.172)

Finally it is a trivial exercise to check that the action (6.126) becomes on the dual
torus Tg, given by

S =0 / A try, ()2 (6.173)
where
Ny |detX’| g’
2 2
= = det(®QO — N)|. 6.174
8N [dets| = None-t! (00 -N) ©179)
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Appendix A
The Landau States

In the position basis, we can replace the operators X, 0nZ =X +iXs, Z = Z,
3 =9, — i0y, E) = —0%,a,a", b, b*, by the operators x;, 9;, z = x + ix2,Z = 2T,
0=01—1i0,0 =—-0%,a,at,b, bt where

1 - 1
(\/908 + at = _(—/6d+ | 2 (A1)
x/ - 2 Vo
YWoi+ Lo vt =teve+ L3 (A2)
= 0 Z = - 0 2). .
2 V6o 2 Vo
We thus have the quantum mechanical commutation relations
[a.at] =1, [b,bT] = 1. (A3)
The Landau states are given by ¢;,,(x) =< x|[,m >, where
)=l (pryml
|l,m > @) ™) 0> . (A4)
~ V=11
We define
0 -1 —1
s "
|s, t >= [L,m > . (A.5)
Z,,,,Zzl V=Dl /(=1
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We compute
+ 4t
s, t>=¢e" T >
+amt
— +1b esb-l—mlo =

sz+iz
=e VeV |0 > . (A.6)

We define the generating function

) sztiz _
eV < z,7/0 >

Ps(x) =< x|s,t > =e
sz+1z
= e Ve Vo ¢y (x). (A7)
Since a|1,1 >= b|1,1 >= 0 we must have

011 = — ¢ br1, 0y = — ¢ IR (A.8)
6o 6o

A normalized solution is given by

1 _z
x) = e o, A9
$1.1(x) N (A.9)
Thus
1 sehiz %
Pislx) = e e e 2, (A.10)

V6o

The Landau eigenstates can be obtained as follows

1 al—l am—l

¢Z,m(-X) = \/(l— 1)'(}’)’[— 1)' 9sl—1 ggm—1

Ps.1(x)]s=r=0- (A.11)

From P}, = P, , we obtain the first result

Bl = bt (A.12)

The Fourier transform of the generating function Ps,(x) is

Py(k) = / d*x P, (x)
_90[(1_(

= Ay e VOKHIEK) =TT (A.13)

In the above equation K = k; + ik;.
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The star product (2.163) can be put in the form

&Pk [ d*p

ry | @y OFE) e (A.14)

fxgl) =

Hence

2k d%p
@n2 ) @ny

= 4n90/ d2k / dzp e51[1+S2t2 e-i«/e()(le"rl‘]I_(-‘rszP-i-rzi’)
@n)? ) (@2n)?

Pori % Py (X) = Py () Pyy iy (p) €349 164D

e~ 920 (I_(K+PP) % eize (kip2—kap1) ei(k+p)x (AlS)
Integrating over p; and p; yields

d’k : = % (= )
Pai # P =2 [ o e emVilkn) = (RK) i

2
o o~ 2o (BHR+ B HD+0 Ra—koR1) (A.16)

In above R; = x; — +/0o(s2 + 12), and Ry = x5 — i~/0y(s2 — 12). Integrating over k;
and k; yields

7)51’[1 " ’PSZ,,Z(x) _ 19 eSintn e—é(R%-l-R%) e_zle (Q%-I—Q%)' (A.17)
T

Now Q; = iRy + x1 — \/90(.8‘1 + l‘l), and O, = —iR; + xp — i\/é’o(sl — ll). We
compute

Q% + Q2 = —R} — R} + 72z + 2/6o(s22 — 1,2)
+20s11) — 4+/Bos12 — 20(s211 — s112). (A.18)

Thus we get

1
R%+R§+2(Q% + 0}) = 22— 200 (512 + 1,2) + O(s111 + s212) — O(s21) — $112).
(A.19)
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Hence
1 S0t —s1i s1z+nz =
Py * Py (x) = 270 e’ e \/9() e 20
o
= \/4n9 esztl A‘l,fz(x)' (A20)
(0
Now, the definition (A.5), is equivalent to
o $1
’ m(X). A21
PO =2 sy J( e (A21)
This leads to
s h—1 my—1 h—1 o1
! !
Py * Popn (X) = Z 51 1 ) 2

=t VG =D =D /(= DY/ (my = 1)
Bty * Piymy (X).

(A.22)
From the other hand,
oo sll—l tml —1
e Py s (x) = ! !
NZE N " Var 9011,,,1122;”2 VG =D (my = 1)
s my—1
2 2 X 8m m(X). (A23)
Vit = )t m — 1y P
Hence, we obtain
1
Bty * Prymy (X) = \/47{90 Sy 1 Pty s (%) (A.24)
This is the second important result.
Next, from the fact
Pyi(0) = /dzx Pyi(x) = V4, €. (A.25)
We obtain
i Sl—l tm—l / 5 \/ .
d°x ¢rm(x) = 4 H €. (A.26)
Sz V=D m=1)!
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In other words
/ dPx Pru(x) = /4760 1. (A.27)

This is the third result.
Finally we calculate, quite easily, using the second and third results (A.24)
and (A.27), the fourth result

/ Ax @) . * Blyny (X) = 811.1,6m,.my - (A.28)

The results of this section are (A.12), (A.24), (A.27), and (A.28).



Appendix B

The Traces Trty @ tp and Tr,tys @ tp @ tc  Ip

B.1 U(N) Lie Algebra and SU(N) Characters

U(N) Lie Algebra The fundamental representation N of SU(N) is generated by the
Lie algebra of Gell-Mann matrices t, = A,/2,a = 1,... ,N? — 1. The canonical

commutation relations are

[tas tb] = iﬁlbctc-

These matrices also satisfy

1
Ztath = Ngahl + (dabc + iﬁzbc)tc-

We also have

1 8a
Triytpt. = 4(dabc + iﬁlbc‘) , Trtgty = Zb , Trt, = 0.

We have the Fierz identity

1 1
() ta)i = 25ji5kz - 2N5jk51i-
We will define
thy = ! 1
ROV

The U(N) generators t4 = (fo, #,) satisfy then
2tatp = (dapc + ifasc)tc.
© Springer International Publishing AG 2017

B. Ydri, Lectures on Matrix Field Theory, Lecture Notes in Physics 929,
DOI 10.1007/978-3-319-46003-1

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)
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The U(N) structure constants f4pc and symmetric coefficients dspc are given by

2 2
da :da :da = 5a vda :da =d, a:()vd :\/
b0 0b Oab \/N b 00 0a0 00, 000 N

Javo = faop = foap = fa0o = foao = fooa = fooo = 0. (B.7)

’

‘We have then

1 1) N
Tristptc = 4(dABc + ifapc) , Triatg = /;B , Tty = \/25/40- (B.8)

We will also note the identity

1 . .
Trytatptctp = g (dapk + ifask)(depk + ifcpk)- (B.9)

In this case the Fierz identity reads

1
(t)jx(ta)ii = 25ji5k1- (B.10)

SU(N) Characters The SU(N) characters in the representation p of the group are
given by the following traces

Xon(N) =Tr,A® ... Q@ A, nfactors. B.11)

These are calculated for example in [1]. In this appendix, we will compute explicitly
the two traces Tr,ty ® tp and Trpt4 ® tp ® tc @ tp, and then deduce from them, the
characters 7r,A ® A and Tr,A ® A ® A ® A respectively.

The full trace Trty, ® ta, ... ® ta,, n factors, is defined by

Tria, @ tay - ® tay = (ta) ™ P1(142)"2P2 . (ta,) P20, Serps - - - Sanpy-  (B.12)

The trace in the irreducible representation p is defined by means of a projector PL‘”)
as follows

Trpta, @ tay ... . Qlay = (tAl)o”ﬂ‘ (tAz)a2ﬂ2 o (Z‘An)a”ﬂ”P’(f’t)(Salﬂl8a2ﬂ2 o 5%/3”.
(B.13)

The computation of this trace, and as a consequence of the trace Tr,A ® A ® ... ®
A, requires the computation of the projector PS" associated with the irreducible
representation p or equivalently (s, 7). This calculation clearly involves the n-fold
tensor product of the fundamental representation. Thus, we consider all possible
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partitions {m} of n into positive integers m;, where i = 1, ..s and m; > my.. > m; >
0,1i.e.

n=m +...+ m. (B.14)

We call this partition a Young frame which consists of s rows with m; boxes in the
ith row. Obviously s < n which corresponds to the complete anti-symmetrization
of the columns. In order to get a Young diagram we fill out the boxes with numbers
Bis -...Bn, where B; = 1,...,n, such that entries are increasing along rows and
columns. Let P be the subset of the symmetric group S, which permutes only the
indices i of B; of each row among themselves. Let Q be the subset of the symmetric
group S,, which permutes only the indices i of §; of each column among themselves.
We define the so-called Young symmetrizer by

=" sen(g)q y_p. (B.15)

q€0 PEP

The action of g, which anti-symmetrizes the columns $;, and p, which symmetrizes
the rows «;, are typically of the form

&gdlﬂl et ganﬂn = galﬂq(l) et ganﬂq(n)' (B'16)

i)galﬂl <o Banps = apyBi  8pmyBu- (B.17)

An irreducible representation p corresponds to a Young tableau with s rows and ¢
columns which we denote m®? or (s, ) for short. Note that r = m,. The projector
Pf,”) is the projector onto the Hilbert subspace associated with the irreducible

representation p. This projector is proportional to the above Young symmetrizer
[2]. We write

L

o S (B.18)

P’(f’t) —

The constant « is determined from the requirement P> = P.

B.2 The Trace Tr ty ® tp

The full trace Try2t4 ® tp is defined by

Tryota ® tg = (14)P1(18)"2P2 84, 8, 81 - (B.19)



324 B The Traces Trpty @ tg and Tryty ® tz Q tc  tp

The relevant tensor decomposition in this case is
_ A
A®B—ABEBB. (B.20)

Equivalently

N*+N N*—N
N®N = 52 . (B.21)
2 2

In other words, we have an n-fold tensor product of the fundamental representation
with n = 2. We consider all possible partitions {m} of n = 2 into positive integers
m; as explained above. The symmetric irreducible representation corresponds to
m1? | while the antisymmetric irreducible representation corresponds to m>1,
The symmetric representation m? = (N ® N)s corresponds to the partition
m; = 2, while the antisymmetric representation m®! = (N ® N), corresponds
to m; = myp = 1. The trace in the irreducible representation p is defined by means

of a projector ng’t) as follows

Trpta ® tg = (ta)*P (18)2P2 PS84, Sutapr - (B.22)

This projector is proportional to the Young symmetrizer cﬁz}, viz

1
60 _ @
P = oo (B.23)

For example (here the projectors P(z‘”) can be taken to act solely on the indices $;
and f5)

1

1.2 ~ 5

P(2 )8a1ﬂ18a2ﬂ2 = 402 E Sgn(‘Z)QE P8e 1 8arf
q€0 PEP

1 N
= a2 Z s81(q) (81, 8as; + Sap28a21)
q€0

1
= o1 (5011/315012/32 + 5111/328062/31)- (B.24)
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In this case P = S, and the action of g is trivial since we have in every column one
box. We also compute

@1 1 AN -
Py 8011 8crp, = o@D ngn(‘l)q Zp5a1ﬂ15azﬂz
q€Q pEP

1 A
- a(qu) Z Sgn(q)qgalﬂl&yzﬂz
q€Q

1
= oD (8061/318062/32 - 5012}315011}‘52)- (B.25)

In this case the action of p is trivial since every row contains one box and Q = S,.
Acting one more time we obtain

2
2
(P(zl ))28011}3180(2;‘52 = (@192 (8041}318042/32 + 8&1/328&2/31)- (B.26)
2
2,1
(P(z ))28a1518a252 = (a(z,l))z (8011/315012/32 - 8&2/318&1/32)- (B.27)

We conclude that
alD — @D — 9 (B.28)
Thus
I ! . !
Trsty Q tp = 2TrNtATrNtB + 2TrNtAtB s Tratya @1 = ZTVNIAT”B - 2TrNtAtB'
(B.29)

The formulae for the SU(N) characters Tr¢A ® A and Tra A ® A follow in a rather
trivial way.

B.3 The Trace Trpty @ tp @ tc @ tp

Next we study the tensor product of four copies of the fundamental representation
of SU(N). We have

NONQ®N®N =m"Y &m® &m® & m*> @ m*>? & m*?
om®? & m*? @ m?? @ m*V. (B.30)
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In terms of the highest weight (aj,as,...,ay—1) (usually this is written as
(A1, Aa, ..., Ay) witha; = A; — A;+1 and Ay = 0) we have

m%*) =@ =2,a0=1), m®? =@ =a3=1)
m' = (a; =4), m*Y = (ay = 1)

m?? = (a, = 2). (B.31)

We compute the respective dimensions using the formula [2]

dim(ay. . ...ay_) = l_[ (a;+ ... + aj.—l) +j— i (B.32)
I<i<j<N J
We find
N* + 6N? + 1IN? + 6N
dim(m9y = ¥ T 42“4 TN (B.33)
N* —6N? + 1IN? — 6N
dim(m®) = ;4 . (B.34)
N* +2N?> — N2 —2N
dim(m@¥y = T . . (B.35)
N*—2N?® —N? 4+ 2N
dim(m®?) = o v (B.36)
N* — N?
dim(m??) = n o (B.37)

The full trace Trysts ® tp @ tc ® tp is defined by

Tryeta ® tp ® tc ® tp = (14)*P1 (t5)*2P2 (10) P (19) P+ 80, , Soto p S s S
(B.38)

The trace of 14 Q151 ®1p, restricted to a given irreducible representation p = mD
of SU(N), will be given in terms of a projector Pff’r) by

TrPtA Rt Rlc@tp = (tA)alﬂl (tB)a2ﬂ2 (tC)a3ﬂ3 (tD)MﬂAPEtM)galﬂl80!2ﬂ280!3ﬂ38¢14ﬂ4‘
(B.39)

The Young symmetrizer in this case is given by

022} = Z sgn(q)q Z[). (B.40)

q€Q PEP
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Recall that P is the subset of the symmetric group S, (here n = 4) which
permutes only the indices of each row among themselves, while Q is the subset
of the symmetric group S,, which permutes only the indices of each column among
themselves. We have to deal with 5 cases separately which are: m:4, m*D | ;23
m®2 and m®?,

The case m*¥ Explicitly
m'Y=ABCD. (B.41)

In this case g acts trivially while P = S,. The projector PEM) onto the irreducible
representation m!# is given by

(14) _ (4)
P, 4' iy = 4, Zp (B.42)

PpEP

The projector PilA) can be taken to act on the indices §;. Explicitly we have
(1.4) 1 .
Py 80,8, 8as 803 83 8cs s = 4,8011ﬂ1 (8220038584, + 5 permutations)
1 .
+ a1 8c1 B4 (Bs 1y 83 o Oaap; + 5 permutations)
1 .
+ A1 81 B3 Bz 483 py Sy, + 5 permutations)

1
+ A1 et 2 (Bas B3 803 4 Oeapy + 5 permutations).
(B.43)

We find after some calculation

1
Try(tatpite. tp} + tatcits. tp} + tatpitc. tz})

Traaia Q@i Qtc Qtp = 41

1
+ A4 (TI’N[ATI’N[B{Ic, ID} + TI’NIBTI’NIA{tc, [D}
+TercTI’N[A{[B, ID} + TI’N[DTI’NIA{Ic, tB})
1
+4‘ TI’N[A[BTI’NtctD + TrN[AtcTI’N[B[D + TVNIAIDTVN[BIC
1
+ A4 TI’N[A[BTI’NlcTI’NtD + TI’N[AlcTI’NtBTI’NtD

+TrytatpTrytgTryte + TrytgtcTrvtaTrytp
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+TrytgtpTrytaTryte + TerchTerATrNtB)
1
+4'TI’NIATVNIBTVNtcTI’N[D. (B44)

We may use the notation [3]

Trasta @ty @ tc ® tp = {(ABCD)} + {(A)(BCD)} + {(AB)(CD)}
+{(AB)(C)(D)} + {(A)(B)(C)(D)}. (B.45)

From this result we obtain the character
1
TranA @A RARA = N (6TrNA4 + 8TryATry A + 3(TryA?)?
+6TryA*(TryA)* + (TrNA)4). (B.46)

Next we compute

KapKepTry (tatpite, tp} + tatcits, tp} + tatpitc, tg})
1 1
= 2KABKCD(2dABKdCDK + dapkdpck). (B.47)

KapKcp (TrNtATrNtB{tCa tp} + TrntgTrytalte, tp} + TrytcTrytalts, tp}

+TrytpTrataite, lB}) = 4KupKcpTrntaTrytpitc, tp}. (B.48)

This term would be 0 for SU(N), i.e. if A runs only over SU(N) indices. We obtain
instead

KapKcp (TrNtATVNtB{tCs tp} + TrytgTrntaite, tp} + TrntcTrytaits, tp}
+TVNIDTVNIA{lc, lB}) = \/2NKOBKCDdBCD- (B49)
Also we have

1
KapKcp (TrNtAtBTrNtctD+TrNtAtCTrNtBtD+TrNtAtDTrNtBtC) = 4(2K§B + KiA)

(B.50)
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KagKcp (TerAlBTVNlcTVNlD + TrntatcTrytgTrntp + TrvtatpTrntgTryte
+TrntptcTrntaTrntp + TrytptpTrntaTryte + TVNlchTerATVNlB)

N
=) (KaaKoo + 2K32)). (B.51)

Thus
1/1 1
KapKepTraata @ 1 @ tc @ tp = 4 2KAB KCD(2dABKdCDK  dapcacx)
1
+\/2NK()BKCDdBCD + 4 (ZK,%B + K/%A)

N , . N,
+, (KuKoo +2K30) + ) Kiy ). (B.52)

The case m™®V Explicitly

m = (B.53)

Oaw>

In this case p acts trivially while Q = S4. The projector Pff’l)

onto the irreducible
representation m*!) is given explicitly by

1

4.1 ~

Pé(t )8alﬂ18¢12ﬂ28¢13ﬂ38¢14ﬂ4 =4 Z $E0(q) 480, p B 603 3 B s
" q€Q

= 8c1 1 (Bas By 83 3 0ca gy + 2 cyclic permutations — 3 odd permutations)

" 801 84 (B 1 8z 2 0aaps + 2 cyclic permutations — 3 odd permutations)

1
+ A1 801 3 (B pu bz 1 Oaap + 2 cyclic permutations — 3 odd permutations)

A1 8c1 8 (Bas 3 803 o 8eapy + 2 cyclic permutations — 3 odd permutations).

(B.54)
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We get immediately the result

1
Tranta @t Qtc @ tp = — 'TVN(tAtB{th i} + tatclts, tp} + tatpltc, t})

4
1
+4' T}’NZ‘ATFNIB{tc, ID} —+ TFNIBT}’N[A{Ic, Z‘D} “+ TrNtCTrNtA{tB, ID}
+TrntpTrtaitc, tB})
1
+4' TrytatgTrytctp + TrytatcTrytgtp + TrytatpTrytptc
1
—4' TrytatgTrytcTrntp + TrytatcTrytgTrytp + TrytatpTrytgTrytc

+TrytgtcTrntaTrntp + TrytgtpTrytaTryte + TerchTrNtATrNtB)

1
+4'TVNIATVNIBTercTerD. (B.55)

Equivalently

Trania @1 Qtc ® Ip = 1 (— {(ABCD)} + {(A)(BCD)} + {(AB)(CD)}

41

—{(AB)(O)(D)} + {(A)(B)(C)(D)})- (B.56)

From this result we obtain the character

TrunA @A RARA = i! ( — 6TryA* + 8Try A3 Try A + 3(TryA?)?
—6TryA*(TryA)? + (TrNA)4). (B.57)
Similarly to the previous case we can also compute
KapKepTranta @ tp Q tc @ tp = i! ( — ;KABKCD(;dABKdCDK + dapkdpck)
++/2NKosKcpdgep + AIL(ZK‘%B +K2,)

N N?
-, (KaaKoo + 2K30) + A Kgo). (B.58)
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The case m?-¥ Explicitly

23) _ ABC B
m D . (B.59)
In this case P = S3 and Q = S>. Now we have to be careful and symmetrize

over rows (the indices «; in the Kronecker delta symbols) and antisymmetrize over
columns (the indices B; in the Kronecker delta symbols).! Explicitly we have

€33 Sar i Baapa s Baaps = (BanpaBary + Baaps Sarsin) By s — BarBiyp)
(801 py 823 + Berspr O p3) By p1 Ospy — SerspBarapy)
+(8as 8,601 85 + Bt 28z p3) (Berapr s ps — BnpyBaaspy)-
(B.60)

4 .
We can show that (c22?3))28a1,318a2ﬁ28a3ﬁ38a4ﬁ4 = 88,8, 8usp s Saups- This can

also be deduced from the result that (c(gg))z must be proportional to cgg) with a

proportionality factor equal to the product of hook lengths of the Young diagram.
Thus the corresponding projector must be defined by

1
(2,3) (4)
PPV = iy, (B.61)

We compute immediately the desired trace
1
Tronta Qg @tc @ tp = g\~ Trytatp{ts. tc} + Trnta{ts, tc}Trntp

—TrntatptgTrnte — TrytatptcTrytg — TrytatpTrytptc
+TrntatgTrytcTrntp + TrntatcTrntgTrntp

+TrntgtcTrntaTrntp — TrntatpTrntgTrntc

+TVNIATergTercTVNlD). (B.62)
In our notation this reads

Ty @ 15 ®1c ® 1o = | ( — (AD{BC}) + (A{BC}) (D) — (AD{B)(C})
_(AD)(BO) + {(AB)(C)}(D)

—(AD)(B)(C) + (A)(B)(C)(D))- (B.63)

I'This did not matter in the previous cases.
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We obtain the character

1
TronAQARARA = o ( — 2Ty A* — (TryA?)?
+2Try A*(Try A)? + (TrNA)4). (B.64)

By using the fact that K45 is symmetric under the exchange A <> B and the fact
that dapc is completely symmetric in its indices we can show that

(2KasKcp + KapKpc)
(TerA{lB, lc}TerD — TrytatptgTrytc — TerAlchTerB) =0. (B.65)
Next we calculate
(2KapKcp + KapKpc)Trntatpits, tc} = (2KapKep + KapKpc)

1 .
4 (dapk + ifapk)dpck.  (B.66)

By inspection the term involving f vanishes and thus we get

1 1
(2KagKcp + KapKpe)Trntatpits, te} = 2KABKCD(2dABKdCDK + dapkdpck)-

(B.67)
The remaining terms are easy. We have
1
(2KagKcp 4 KapKpe) TrytatpTrytptc = 4(2K/§B + K3, (B.68)
2
(2KasKcp + KapKpe) TrntaTrntsTrytcTrytp = = Kg. (B.69)

4

(ZKABKCD —+ KADKgc) (T}’NIAZ‘BT}"NtcTrNtD —+ TrNtAtcTrNtBTerD

N
+TrytgtcTrntaTrytp — TrNtAtDTrNtBTrNtC) = 2 (KAAK()() + 2K§O)

(B.70)
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By putting these elements together we get

1 1
(2KagKcp 4+ KapKpe)Tro3)ta @ 13 @ tc @ tp = g ( — ZKABKCD

1 1 N
(szBKdCDK + dapkdpck) — 4 K3y + K3y + ) (KaaKoo + 2K3,)

3N?
+ Kgo). (B.71)

The case m®? Explicitly
A B

m®? = c . (B.72)
D

This is very similar to the above case. We only quote the results

1
Trapta @tp Qtc @ tp = 8 (TrNtAtB{tCs tp} + Trytaitc, tp}Trntp

—TrytatgtcTrntp — TrytatptpTryte — TrytatgTrytctp
—TrytetpTrntaTrntg — TrntatcTrytpTryts

—TrniatpTrntcTrntg + TrntatsTrytcTryip
+TrNtATrNtBTrNtcTrNtD)- (B.73)
Traota @ tp Q tc ® Ip
= ; ((AB{CD}) + (A{CD})(B) — (AB{C)(D}) — (AB)(CD)
—{(A)(CD)}(B) + (AB)(C)(D) + (A)(B)(C)(D))- (B.74)
TrapARARA QA

1
=9 (2TrNA4 — (TryA?)? = 2Try A*(TryA)* + (TrNA)4). (B.75)
As before we calculate

1 1
(KaKcep + 2KacKpp) Trntatpite. to} = 2KABKCD(2dABKdCDK + dapkdpck)-
(B.76)
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(KapKcp + 2KacKpp)
(T}’NIA{tc, ID}TFNIB — TrytatgtcTrytp — T}"NIAZ‘BZ‘DT}"Ntc) =0. B.77)
1
(KaKcp + 2KacKpp) TrntatgTrytctp = 4(2K§B +K2,). (B.78)
(KagKep + 2KscKpp) (TVNICZDTVNIATVNIB + TrytatcTrytpTrytp
+TrytatpTrytcTrytg — TVNIAIBTVNlcTVNlD)
N 2
= (KaaKoo +2K3). (B.79)
Thus
1/1 1
(KaKcp + 2KacKpp)Traoyta @ tp @ tc @ tp = g 2KABKCD(2dABKdCDK
1 N 3N?
+dapxdpcx) — 4(2K§B +K3,) — 5 (KasKoo + 2K3) + A Kgo). (B.80)
The case m?? Explicitly
ey _ A B B.81
m cD (B.81)

We have

4)
€2 50¢1ﬂ1 50t2ﬂ2 50t3ﬁ3 50t4ﬁ4

= Z Sgn(Q)EI Zﬁgmﬁl 5azﬁ25a3ﬁ3 5a4ﬁ4

qe€Q PEP
= Z Sgn(q)é(galﬁlgazﬁz + 8azﬂ18¢11ﬂ2)(8¢13ﬂ38¢14ﬂ4 + 50t4ﬂ3 5a3ﬁ4)
q€Q

= (Bo1 18033 — S 38381 (022 Bexs s — BuapyBcaps)
+ (81 81 80aps — Oott B30 1) (82828384 — Bats By Bets)
+ (8028180385 — Bt B30 B1) (81 B2 8ata By — ety By Bers)
+ 80z 81 8crs By — Bz 3 Scra 1) (1 B8t By — Sy By Bers ) - (B.82)
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As before we know that (cg?z))2 must be proportional to cg?z) with a proportionality

factor equal to the product of hooks lengths of the Young diagram.” In this case we
can trivially check that the hooks lengths are

(B.83)

’

32
21
and as a consequence the product of is 12. Thus the corresponding projector must

be defined by

1
(2,2) 4
P4 = 126‘(2!2). (B.84)

We compute then the trace

Tr(2’2)l‘A R Rtc Rtp = (TI’NtAtctB[D + TrNtAtDtBtc — TI’N[AlglctD — TI’N[AlplctB

12
—TrytaTrytgtctp — TrntgTrvtatpte — TrytcTrytatptp
—TrntpTrytatctg + TriatgTrytctp

+TrytatcTrytgtp + TrytatpTrytcts
+TrytatgTrntcTrytp + TrytctpTrytaTrytp

_TrN[A[CTrN[BTrN[D — TVNIBIDTVNIATVN[C

+TI’NIATI’NIBTVNtcTrN[D). (BSS)
The last SU(N) character of interest is therefore

1
Tr(z’z)/\ QRARARA = (— 4T}’NAT}’NA3 + 3(TVNA2)2 + (TVNA)4).

12
(B.86)
We can now immediately observe that
(KapKcep + KacKpp)
(TrNtAtctBtD + Trytatptptc — Trytatgtctp — TrNtAtDtctB) =0.
(B.87)

2This is given by the number of boxes that are in the same row to the right plus the number of
boxes that are in the same column below plus one for the box itself.
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(KagKcp + KacKsp) ( — TrytaTrytptctp — TrytgTrytatptc — TrytcTrytatpip

—TerDTVNlAlclB) = —4KABKCDT}’NIA.TVNZ‘C<{ID, l‘B}.
(B.88)

This would have been 0 if A runs only over SU(N) generators. We get instead
(KapKep + KacKpp) ( — TrntaTrntgtctp — TrntgTrntatpte — TrntcTrntatptp

—TerDTVNlAlclB) = _\/2NdBCDKOBKCD-
(B.89)

We also have
(KapKcp + KacKsp) (TrlAlBTerch + TrytatcTrytptp + TerAlDTerclB)

1
=, (K35 + K30 (B.90)

(KABKCD + KACKBD) (TrNtAtBTrNtCTrNtD + TerctDTI’N[ATI’NtB — TrNtAtcTrNtBTrNtD

_TrN[B[DTrN[ATrNtC> =0. (Bgl)

Hence

1
(KaKep + KacKpp)Tronta @t @ tc @ tp = (— V2NdgcpKopKep

12

1 2 2 N2 2
+, K + KL+ Ko ).

(B.92)

B.4 Calculation of the Coefficients s 4, 54,1, 52,3, 532 and 53 >

Set Up We start by summarizing our results so far. We have
dim(1, 4)s14 = KapKepTraata @te @ tc Q tp

1/1 1
= a (ZKABKCD( szBKdCDK + dapkdpcx) + v 2NKogKepdpep
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(K35 + K34)

B~ -

+

n (B.93)

N =2

N2
(KaaKoo + 2K3) + A Kgo).

dim(4, 1)s41 = KapKepTranta ® s @ tc @ tp
1 1 1
=al- 2KABKCD(2dABKdCDK + daprdpcx) + v 2NKosKepdpep

1 N N?
+ 4(2K§B +K3,) — 5 (KaaKoo + 2K3) + A Kgo). (B.94)

dim(2, 3)s23 = (2KapKep + KapKpc)Tr3ta @ ts @ te Q tp

1/ 1 1 1

=0 ( — 2KABKCD(2dABKdCDK + dapxdpck) — 4(2Kj3 +K34)
N 3N?

+ ) (KaaKoo + 2K3,) + 4 KgO)' (B.95)

dim(3,2)s32 = (KapKcp + 2KacKpp)Tr32)ia ® 13 @ tc @ 1p

1/1 1 1
=4 (2KABKCD( 2dABKdCDK + dapkdpck) — 4 (2K} + K34)

N 3N2
-, (KasKoo + 2K3,) + s Kgo). (B.96)

dim(2,2)s22 = (KapKcp + KacKpp)Tr22)1a @ 13 ® tc Q 1p

1 1 2
= ( — V2NdgcpKosKep + 2(21(33 +K3) + 5 Kgo).
(B.97)

Let us now note that

1 1
KABKCD(ZdABKdCDK + dapkdpck) = KapKepTry (SIAlBlch + 4lAlDlBlc)-
(B.98)

We will use the notation

Kap = (ta)j(18)1iKij xa- (B.99)
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K = 2 Vo (T )Ty + (T Huly) — 4 w3 (T3)(T3)i + 207 (Eydu + Erdy)-

We compute, by using the Fierz identity, the result

(B.100)

1 1
2KABKCD(2dABKdCDK + dapxdpck) = 4KapKepTrtatgtetp + 2KapKepTrtatctptp

1,1 1
= 2( ZKii,lel'j,lk + 4Kij,leliJk)-

Also we compute

1
KABKAB = 4 Kij,leji,lk-

1
Kan = 2Kii.jj-

= 4N Kmi,kankzjn .

1
Ky = 2NKijJ'i.

1
V2NKosKcpdpep = 2KiszKkk,zi-

We will derive, in the next section, the large N behavior

5
KiiuKjjix ~ N
K:wKia ~ N
ij kI i jk
KK ~ N*
ij gl kk i
KijuKiin ~ N*
ij kI i Ik
2 6
KiiJj ~N

5
KiijiKay ~ N

(B.101)

(B.102)

(B.103)

(B.104)

(B.105)

(B.106)

(B.107)

(B.108)

(B.109)

(B.110)

(B.111)

(B.112)
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3
ij,kank.jn ~N

2 4
Kijji~N

Explicit Calculation We will now introduce the notation

1 1, 1.,
=K+ Ky

1 1 1
) X, = 5 KxpKep( ) dapkdcpk + dapkdpck)-

N
Y| = ) (KsaKoo + 2K§0).

Y, = V2NKosKcepdpep.

N?
Y; = K;,.
3 4 00

The operators Ys are due to the trace part of the scalar field. We have then

~ 1 1
N*dyas14 = 4X1 + 2X2 + Y1+ Y+ Vs

~ 1 1
N*dy 141 = 4X1 - 2X2 Y1+ Y+ Vs

Ndy3s23 = — Xi —

X +

B o= RN =
N = N =

Ndss37 = —
. 1
N'dy 5800 = 2X1 — Y, +27;.

We compute

2
(N2 — (V2 — 4) (N — 9)

6N2+1 L, 4y
N 27T

S14+ 841 =

X, + Y + 3Y;5.

X, — Y, +3Y;.

339

(B.113)

(B.114)

(B.115)

(B.116)

(B.117)

(B.118)

(B.119)

(B.120)

(B.121)

(B.122)

(B.123)

(B.124)

1
[(N2 + 11)(4)(1 + Y, + Y3)

(B.125)
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2 6Nz+1 1X +1+7Y
N — S = —
MTRET e (v — 4N - 9) YA Ve
1
+(N* + 11)(2)(2 + Yl):|.
(B.126)
+ 2 1X + 3Y: 2 1X +7Y
s $32 = — — — _
23 1+ 832 (N2 — 1)(N? — 4) 4 3 N , A2 1
(B.127)
2 2 1X +3Y3 | + 1X +7Y
S — S = — — _ .
23— 832 (N2 — 1)(N? — 4) N 4 3 )42 1
(B.128)
! 1X Y, + 27 (B.129)
§22 = — . .
22 N —1\2 1— 12 3
We then further compute
1( + + 3523 + 3532 + 2502) N +6 X
s s s s §22) =
4g 514 T 541 2,3 32 22 SN2(N2 — 1)(N? — 4)(N? — 9) 1
5

TANV? — (V2 — (N2 — 9)
! Y
TAN(NZ = 1)(N2—9) !

N ON? -3 v
IN2(N2 — 1)(N2 — 4)(N2—9) °
N*—8N*+6
+ Ys.
2N2(N? — 1)(N? — 4)(N? - 9)
(B.130)
1 N*+6
_ —53p) = — X
8(31,4 sS40+ 523 — 532) AN(N? — 1)(N? — H)(N2 — 9) !
- > X
2N — 1)(N2 —4) (N2 —9)"7
N> +1

+2(N2 —1)(N2 —4)(N2—9) h
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~ 3N+ 1) Y
2N(N? — 1)(N? — 4)(N? - 9)
v 13)(N2 e (B.131)
1814 T 881 =523 =530+ 2920) = 8N2(N2N—4 1_)(61]VV22—+ 41?1\” —9™
~ 2N -3 X
4N(N?2 — 1)(N? — 4)(N? —9)
- N? +6 ¥
AN(N2 = (N> = 4)(N2 - 9)
. 3(2N*—-3) Y,
2N?*(N? = D)(N? = 4)(N* = 9)
2
Tonzve —31()]\(7N;r —61) W -9
(B.132)
| 2N? -3
6(S1,4 + 541 —522) = N2(N2 — 1)(N? — 4)(N? — 9)Xl
N?+1
TNV - DV — 42— 9)
- 2N+ 1) y
N2 = 1)V — (N> —9) !
N*+3N? + 12
Taneve - v — a2 —9) 2
. 42N -3) Y. (B.133)

N2(N?2 — 1)(N? — 4)(N?> - 9)

1( +522) 2N* -3 X
S — S — S S = —
g W14 T S T 23 T 532 AN(N? — 1)(N2 — 4)(N2—9)"!
N2 +1
X
+4(N2—1)(N2—4)(N2—9) ?
5

T - nwe - -9
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B 3N+ 1) v
AN(N? — 1)(N2 — 4)(N> —9) °
15

TNOE - DN — vz —9) > B3

From this last Eq. (B.134), we obtain the important result

(B.134) 1 25 1 25 ,
N T gNs (=2 - e T O4)Kij K i + L6NS (=2- e T 04K ;
15 1 15
tens 1+ T O9)Kii uKjj i + 16N 1+ e T 04)Kij kiKii jx
5 14 5 14
ten 1+ et 04)Kii jiKia. i + AN 1+ e T 04)Kij iK ji
3 15 15 14 )
TN 1+ A2 + 04)K,:,'=,'1Kkk,1,' — 16N 1+ N2 + 04)KijJi'
(B.135)
In the large N limit, we get the leading behavior
25
gy Sa s — st sma) = (G2, F 09K,
1 15
tens 1+ et 04)Kii jaKjj ik

(B.136)

Similarly, Eq. (B.133) leads to the second important result

25 1 25
N6 2+ N2 + 0 KjjuKji i + ANS 2+ N2

— N a1+ e T O9)KiiiuKijj e — ANS 1+ o

(B.133) = + 0K,

+ O1)Kij uKii ji

1 1+ 15 1 1+ 15

4N> N? 2N3 N?
1 17 1 25 ,
+4N4 (1 + A2 + O4)Kjj iK1 + AN 2+ e + 0K ;.

+ O04)Kii jiKu i — + O4)Kjj kK ji

(B.137)
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The leading N behavior is given by

1 1 25 15
6(51,4 + 541 —822) = 4N" (2 + et 0K} ; — NS 1+ et O04)Kii K ie
15
4N5 (1 + 04)K11211Kk1 lk
1 17
+4N4 1+ N2 + 04)Kij\j1Kkk,li‘

(B.138)

Let us now focus on the combination (B.131). This appears in the action added to
the combination

1L, 1 1, N+ 1
=420 = e _ ) (2Kif~ﬂ =y KKt Kiy ).

(B.139)

We compute immediately the expansion

(B.131) + (B.139) 1
N = oN (S14— 841+ 523 =532 —2(57, — 53 ))

1 20
= (=1— __ + O9)K;juKjin +

8
8N6 N2 +09K;

=2

1
16N6 it jj

14 14
(1 + , + 00)KiiuKjjn + (1 + 5 + 09K uKii ji

4N7 8N7
1 12 1 15
+ (N2 + O04)Kii jiK i + g5 (I+ A2 + 04)Kij1iKiy ji

16N5
15 1 14
(+ T ODKyKii + 8Né( =t 00K ;-

(B.140)

4N6

In the large N limit we get the leading behavior

(S14— 841+ 823 — 32— 2(s7, — 831)) = (=1 + 02)K;j uKji

&N 8N‘J
1 18

16N6 et O9K;

ll\]‘]

4N7 (1 4+ 02)Kii uKjj ik

1 12

s (ve T O9KiiKin
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8N5 (1 + 02)Kjj 1iKu ji

4N6 (1 + OZ)KUJIK](]( li

(=1 + 02)K%.. (B.141)

8 N6 N
On the other hand, the combination (B.132) appears in the action added to the

combination

1 5 1 1, 1 1
— 8(s1,2 —51) = _8(N2 iy (4N2KijJi — 2NKuJ/Kk1 I+ 4K”J]) (B.142)
We compute now the expansion

(B.132) + (B.142) 1
= (s14 + 541 — 523 =532+ 2505 —2(s12 — 52,1)2)

N2 ~ 16N2
1 8 16 ,
= 16N A+ o+ ODKjuKiin + 32N6 (N2 + 00K ;
25 25
v @ g2+ ODKiuKin — 6N7 @+ o + OdKijuKiijy
1 18 1 20
+ 16N7 (—N2 + O4)Kj; jiKp ik — 8N7 (I+ A2 + 04)Kij1iKip ji
3 25 29
+4N8 2+ N2 + 04)K,‘j_j1Kk]< Ii 16N8 (1 —l— —l— 04)K5ﬂ
(B.143)
The large N limit behavior is given by
1 2
Len2 S1atsen =523 = 83042820 = 20512 = 521)7) = 16N6 (I + 02)Kjj 1K
6 2
+32N6 (o T O9Kiij
8N7 (2 + 02)Kii K ik.-

(B.144)

Lastly, the combination (B.130) appears in the action added to the combination

1 1 1
- 8(51,2 +521)% = — Ki i — o KijiKun + Kzzzn)

1 1
8(N2 — 1)2 (4 Wi N AN?
(B.145)
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We get now

(B.130) + (B.145)

1
43 (S14+ 541+ 3525 + 3532 + 2520 — 6(s12 + 52.1)7)

1 20 118 ,
= 16N6(1 + 2 T ODKuKin + (2 T 0K

> (1 + "0 VKiiuK >
8N7 N2 4 )i el i 1k 16N7

8 1 10
(- A2 + O04)K;i jiKi i — 8N (I+ A2 + O9)Kj K ji

14
a+ e T O)Kij 1K ji

+ 16N>
25 1 4

1
T aye @ F o+ OOKGKa + ) (o

2
AN + 04K

(B.146)

The large N limit behavior is given by

1
13 (1.4 + Sa1 + 3523 + 3532 + 28522 — 6(s12 + 52,1)2)

1
" 16NS
1 18
0,)K?
+ 3oy 109

iijj —
+ e onKKu -
16N N2 4) i jj Ikl Ik 8NS5

1 14
2+ 0,)K;j jiKigi
T yne 2 ODKKwii + 0 (o

(1 + 02)Kij K i
5
N7 (1 + 02)Kii uKjjix
(1 + 02)Kij kiKi ji

+ 04)K5‘ﬁ.

(B.147)

B.S Large N Behavior

In the remainder we extract the precise leading N behavior.
First we reduce as follows (using the results trI" = 0, #T? =0, rT3T = 0 and
withI; = Y, I)

KinKjn = 4r4(3N(trE)2 + N’trE* — 4 Jws (trT3)*trE

—4N\/a)3trF3trEF3 + 4dw; (trl"3)2trl"32) .
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= 4/ (31\/112 + NI, — 4N’ + N° — 4 Jwse(I; + NI I, — NI)

+4a)3611212).
(B.148)

KijuKij = 16r*otr(DT) T2 + 16r* Vo (ir{T T, T}E — 2 /wstrT T T3TTS)
+16r*(trE* + w31rT§ — 2/w3trET)

= 161’460(12 — 3 + 2N — 6\/0)3(213 —T7L + 71 — 2N)
+ews(ly — 45 + 51, — 211))
+32r* Vo (12 —2I) + N = 2eJws(l3 — 2L + I) + €3 (I4 — 215 + 12))

1
+16r* (12 L+ N- Vo2l — b) + w3€14>- (B.149)

Kij K = 4r'* Vo (2trEtrIT+ + NI+ T} = 2/wstrTsorT5{T F}>
+8r4((frE)2 + NrE? — 2 /wstrDstrETs — JwstrT3nE

—N\/a)3trEF32 + 2603[FF3[I’F33)

w

7
=8'Vo (112 +NB — NI+ N?

—eJo3(NIy + 3011, — 417 —

SR

5 2
NL + 2N11) + w3e(2 3 — 3L L + I7)
2

N
+8r* (lf +NL—2NL +

—eJw3(3I1, + N — NL — 1) + 2w361113). (B.150)

Kij uKji e = 8r4a)(trl"'|'l")2 + 8r4(Ner2 + (trE)2 + 2a)3(tr1"32)2 — 4Jw31rF3trF3E)

= 8r4a)(11 —N—G\/C()3(12 —11))2
2

N 1
+8r4(112 + NI, — 2NI, + 5~ N 2If) + 2ew31§). (B.151)
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2
Kiiji

164 (NtrE — Jws (IVF3)2)2

2

N 2
= 16r4(N11 -, —er3If) ) (B.152)

Kiizl'ijl,lk = 16}’4(NIVE — \/0)3(1‘}’1—‘3)2)(«/(1)1‘}’1_‘—’—1_‘ + trE — Jwﬂr[‘f)
N2
- 16r‘K/w(NIl -, er31f) (1l — N —eJars(l, — 11))
4 N? 2 N
+16r NI] — 5 —6\/60311 11 — 5 —6\/(1)312 . (B153)

Kj kmKnk jn = 4r4wtr{F+, F}Z + 16r4\/a)(trE{I'+, ry— Jw3trr32{r+, F})
+16r*r(E — JwsT3)?

= 8r'w (212 — 511 + 3N — eyJws (415 — 111, + 91; — 2N)

+ews (214 — 613 + 61, — 211))

+16¢* Vo (212 — 4l + 2N — € \Jw3(413 — 81, 4+ 51, — N)

+ews(2ly — 415 + 31, — Il))

. N
+16r°( L —1; + 4 - 6\/0)3(213 —Db) +ewsly ). (B.154)
K;J.i = 16r4(JwtrF+F + trE — \/a)3tr1"§)2
2
= 16r4w(11 — N —eJws(Ir — 11))
. N
+32r \/a) I, — ) —6\/6()3]2 Il—N—Ex/a)g,(Iz—Il)
N 2

+16r4(11 -, —e¢w312) . (B.155)

In the above we have also used the results

N
wE=1~ . (B.156)

Ty =ely , T3 = eb, , T3 = el3, 1T = €ly. (B.157)
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trETs = I, — ;11 , rET; = I3 — ;12. (B.158)
wE> =L — 1) + IZ. (B.159)

Ty = ely. (B.160)

trET? = e(l; — ;12). (B.161)

tr(TT)X()* = L — 31 + 2N — e/ws (21 — 71, + 711 — 2N)
+ews(Is — 413 + 51, — 21)).

(B.162)

r{ITT, ') = 2(212 — 511 + 3N — e /ws (415 — 111, + 91} — 2N)

+ews (214 — 6l 4+ 61, — 211)).
(B.163)
rE{I'", T} = 2(12 —2I) + N —eJars (I3 — 21, + 11)). (B.164)
t}"F+F3FF3 =L-2L+1 — 6\/0)3(14 -2+ ). (B.165)
trTHT =1} =N — eJos (I, — ). (B.166)
trT3{T T, T} = 2L, — 31, + N — e \Jw3(21; — 3L, + I). (B.167)
tTHTT T} = 21 — 41 + 31, — N — e Jo3 (214 — 415 + 3L, — I).
(B.168)
Next we may use, in the large N limit, the behavior
k+1 1 k

I N+ N+ (B.169)

T k+1 2
We find then the leading N behavior given by

}’4 N3

Kii Ky = ; (13N2 —1—2¢(N + 1)(5N — 2))

4

r 1 32
13— =26+ = ). (B.170)

1
=  KiuKjjux = 3

NS
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1 3
KijuKijp = 16r* (Vo + 1)2(31\/3 —€ 1ON3) +.... (B.171)
4 T 14
KijjiKiii = 8r* (Vo + 1) N N+ (B.172)
2r4N* 2r*wN*
Kij uKjie = r9 (21 — 16¢) + re (9—8¢) +... (B.173)

9

1 € 2 1
2 44 2 2 _ 4
Ki,; =r'N'QN —e(N + 1)) = o Kii =7 (1 - 4(3 + o NZ)).
(B.174)
2 4 3
Kii K = 3" VoN*(N = 1)(2N — (N + 1))(3 — 2¢)
2
+3r4N3(2N— e(N+ 1))(3BN —€(2N + 1))
5 1
=4r*|N°—e(C N+ _N*
r ( 6(6 + 3 )
4 5 4 5 5 2 4
+4r* Vo N° =N —e(6N —3N) +....
(B.175)
1 3
Ko sonKoiejn = 167 (Vo + 1)2(3N3 —¢€ 1ON3 + ) (B.176)

4 4
K= 9r4a)N2(N —1)*(9—8¢) + 9r4JwN2(N —1)(3N — €(2N + 1))(3 — 2¢)

4
+9r4N2(3N— €N + 1))’
4 o 1 oa 24
= 16r'(Jo + 1) 4N —e9N +.... (B.177)
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