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Preface

The subject of matrix field theory involves matrix models, noncommutative
geometry, fuzzy physics and noncommutative field theory, and their interplay.

These lecture notes contain a systematic construction of matrix models of
quantum field theories with noncommutative and fuzzy geometries. Emphasis is
placed on the matrix formulation of noncommutative and fuzzy spaces and on
the nonperturbative treatment of the corresponding field theories. In particular, the
phase structure of noncommutative phi-four theory is treated in great detail, and
an introduction to noncommutative gauge theory is given. The text has evolved
partly from my own personal notes on the subject and partly from lectures given,
intermittently, to my doctoral students during the past few years. Thus, the list
of topics, while not necessarily representing the exact state of the art, reflects the
research interests of the author and the educational goals of Annaba University.

The references included are not meant to be comprehensive or exhaustive, but
they will provide a solid bibliography and a reliable guide to background reading.

Small parts of these lectures have already appeared in various preprints on the
arXiv. Reference to this Springer publication is made there.

The book is primarily written as a self-study guide for postgraduate students—
with the aim of pedagogically introducing them to key analytical and numerical
tools as well as useful physical models in applications. Last but not least, I dedicate
this work to my father Saad Ydri, 1943–2015, for his continuous support.

Annaba, Algeria Badis Ydri
July 2016
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Chapter 1
Introductory Remarks

Abstract This chapter presents some general introductory remarks and an outline
of the topics which will be covered in this book.

1.1 Noncommutativity, Fuzziness and Matrices

It has been argued, by combining the principles of quantum mechanics and general
relativity, that the manifold structure of spacetime will necessarily break down at
the Planck scale, and that, at this scale, spacetime becomes quantized, expressed by
the commutation relations [48, 49]

Œx�; x�� D i	2pQ��: (1.1)

This can be seen as follows. Measuring for example the coordinate x of an event
with an accuracy a will cause, by the Heisenberg principle, an uncertainty in
momentum of the order of 1=a. An energy of the order of 1=a is transmitted to
the system and concentrated at some time around x. This in turn will generate a
gravitational field by Einstein’s equations for the metric. The smaller the uncertainty
a the larger the gravitational field which can then trap any possible signal from the
event. At this scale localization looses thus its operational meaning, the manifold
picture breaks down, and one expects spacetime uncertainty relations which in
turn strongly suggest that spacetime has a quantum structure expressed by the
above commutation relations (1.1). The geometry of spacetime at the very small
is therefore noncommutative.

On the other hand, noncommutative geometry [38], see also [41, 61, 100, 110,
151] and [56], allows for the description of the geometry of arbitrary spaces in terms
of their underlying C�-algebras. Von Neumann called this “pointless geometry”
meaning that there are no underlying points. The so-called Von-Neumann algebras
can be viewed as marking the birth of noncommutative geometry.

Noncommutative geometry was also proposed, in fact earlier than renormal-
ization, as a possible way to eliminate ultraviolet divergences in quantum field
theories [143, 155]. This phenomena of regularization by quantization occurs also
in quantum mechanics.
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2 1 Introductory Remarks

Noncommutative field theory is by definition a field theory based on a noncom-
mutative spacetime [50, 147]. The most studied examples in the literature are the
Moyal-Weyl spaces Rd

� which correspond in (1.1) to the case Q�� D ��� where ���
are rank 2 (or 1) antisymmetric constant tensors, i.e.

Œx�; x�� D i���: (1.2)

This clearly breaks Lorentz symmetry. The corresponding quantum field theories
are not UV finite [55], and furthermore they are plagued with the so-called UV-IR
mixing phenomena [117]. This means in particular that the physics at very large
distances is altered by the noncommutativity which is supposed to be relevant only
at very short distances.

Another class of noncommutative spaces which will be important to us in these
notes are fuzzy spaces [14, 125]. Fuzzy spaces, and their field theories and fuzzy
physics, are discussed for example in [1, 16, 88, 99, 144, 156]. Fuzzy spaces are finite
dimensional approximations to the algebra of functions on continuous manifolds
which preserve the isometries and (super)symmetries of the underlying manifolds.
Thus, by construction the corresponding field theories contain a finite number of
degrees of freedom. The basic and original motivation behind fuzzy spaces is non-
perturbative regularization of quantum field theory similar to the familiar technique
of lattice regularization [70, 71]. Another very important motivation lies in the fact
that string theory suggests that spacetime may be fuzzy and noncommutative at its
fundamental level [2, 83]. A seminal example of fuzzy spaces is the fuzzy two-
dimensional sphere S2N [84, 109], which is defined by three N � N matrices xi, i D
1; 2; 3, playing the role of coordinates operators, satisfying

P
i x
2
i D 1, and the

commutation relations

Œxi; xj� D i�
ijkxk ; � D 1p
c2
; c2 D N2 � 1

4
: (1.3)

The fuzzy sphere, and its Cartesian products, and the Moyal-Weyl spaces are the
main noncommutative spaces discussed in these lectures.

Original work on the connection between random matrix theory and physics
dates back to Wigner, Dyson and then t’Hooft. More recently, random matrix theory
was investigated, in fact quite extensively, with connection to discrete 2-dimensional
gravity and dynamical triangulation of random surfaces. See for example [45] and
references therein. In recent years, it has also become quite clear that the correct
description of noncommutative field theory must be given in terms of matrix degrees
of freedom.

Fuzzy spaces and their field theories are, by construction, given in terms of finite
dimensional matrix models, whereas noncommutative Moyal-Weyl spaces must
be properly thought of as infinite dimensional matrix algebras, not as continuum
manifolds, and as such, they should be regularized by finite dimensional matrices.
For example, they can be regularized using fuzzy spaces, or simply by just
truncating the Hilbert space of the creation and annihilation operators.
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However, these regularization are different from the usual, more natural one,
adopted for Moyal-Weyl spaces, which is based on the Eguchi-Kawai model
[51], and the noncommutative torus [6, 8, 9]. The so-called twisted Eguchi-Kawai
model was employed as a non-perturbative regularization of noncommutative gauge
theory on the Moyal-Weyl space in [24–26]. Another regulator providing a finite
dimensional matrix model, but with boundary, is given by the fuzzy disc [104, 106–
108].

There are two types of matrix field theories which are potentially of great interest.
First, matrix Yang-Mills theories, with and without supersymmetries, which are
relevant to noncommutative and fuzzy gauge theories, emergent geometry, emergent
gravity and emergent time and cosmology. Second, matrix scalar field theories
which are relevant to noncommutative, fuzzy and multitrace �4 models and their
phase structure and renormalizability properties. The main theme, of these lectures,
will be the detailed discussion of the phase structure of noncommutative �4, and
noncommutative gauge theory, on Moyal-Weyl spaces and fuzzy projective spaces.

1.2 Noncommutativity in QuantumMechanics

Spacetime noncommutativity is inspired by quantum mechanics. When a classical
phase space is quantized we replace the canonical positions and momenta xi; pj with
Hermitian operators Oxi; Opj such that

Œxi; pj� D i„ıij: (1.4)

The quantum phase space is seen to be fuzzy, i.e. points are replaced by Planck cells
due to the basic Heisenberg uncertainty principle

�x�p�1
2
„: (1.5)

The commutative limit is the quasiclassical limit „�!0. Thus, phase space acquires
a cell-like structure with minimum volume given roughly by „. In this section we
will rederive this result in an algebraic form in which the noncommutativity is
established at the level of the underlying algebra of functions.

It is a textbook result that the classical atom can be characterized by a set of
positive real numbers �i called the fundamental frequencies. The atom if viewed as
a classical system will radiate via its dipole moment interaction until it collapses.
The intensity of this radiation is given by

In / j < �; n > j4

< �; n > D
X

i

ni�i; ni2Z: (1.6)
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It is clear that all possible emitted frequencies < �; n > form a group � under the
addition operation of real numbers

� D f< n; � >I ni2Zg: (1.7)

Indeed, given two frequencies< �; n >DP
i ni�i and < �; n0 >DP

i n
0
i�i in � it is

obvious that < �; nC n0 >DP
i.ni C n0

i/�i is also in � .
The algebra of classical observables of this atom can be obtained as the

convolution algebra of the abelian group � . To see how this works exactly one first
recalls that any function on the phase space X of this atom can be expanded as (an
almost) periodic series

f .q; pI t/ D
X

n

f .q; pI n/e2
 i<n;�>tI n � .n1; : : : ; nk/: (1.8)

The Fourier coefficients f .q; pI n/ are labelled by the elements n2� . The convolution
product is defined by

f � g.q; pI tI n/ D
X

n1Cn2Dn

f .q; pI tI n1/g.q; pI tI n2/ (1.9)

f .q; pI tI n/ D f .q; pI n/ exp.2
i < n; � > t/: (1.10)

This leads to the ordinary commutative pointwise multiplication of the correspond-
ing functions f .q; pI t/ and g.q; pI t/, namely

fg.q; pI t/ � f .q; pI t/g.q; pI t/ D
X

n

f1 � f2.q; pI tI n/: (1.11)

The key property leading to this result is the fact that � is an abelian group.
If we take experimental facts into account then we know that the atom must obey

the Ritz-Rydberg combination principle which says that (a) rays in the spectrum
are labeled with two indices and (b) frequencies of these rays obey the law of
composition, viz

�ij D �ik C �kj: (1.12)

We write this as

.i; j/ D .i; k/ ı .k; j/: (1.13)

The emitted frequencies �ij are therefore not parametrized by the group � but rather
by the groupoid � of all pairs .i; j/. It is a groupoid since not all frequencies can
be composed to give another allowed frequency. Every element .i; j/ has an inverse
. j; i/ and ı is associative.
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The quantum algebra of observables is then the convolution algebra of the
groupoid � and it turns out to be a noncommutative (matrix) algebra as one can
see by rewriting (1.10) in the form

F1F2.i;j/ D
X

.i;k/ı.k;j/D.i;j/
F1.i;k/F2.k;j/: (1.14)

One can easily check that F1F2¤F2F1 so F0s fail to commute.
To implement the element of the quantum algebra as matrices one should replace

f .q; pI tI n/ D f .q; pI n/e2
 i<n;�>t by

F.Q;PI t/.i;j/ D F.Q;P/.i;j/e
2
 i�ijt: (1.15)

From here the Heisenberg’s equation of motion, phase space canonical commutation
relations, and Heisenberg’s uncertainty relations follow in the usual way.

1.3 Matrix Yang-Mills Theories

The first indication that noncommutative gauge theory is related to Yang-Mills
matrix models goes back to the early days of noncommutative field theories. Indeed,
noncommutative gauge theories attracted a lot of interest originally because of their
appearance in string theory [40, 137, 139]. For example, it was discovered that the
dynamics of open strings, moving in a flat space, in the presence of a non-vanishing
Neveu-Schwarz B-field, and with Dp-branes, is equivalent, to leading order in the
string tension, to a gauge theory on a Moyal-Weyl space Rd

� . The resulting action is

S D
p

det.
�B/

2g2
TrH

�
iŒ ODi; ODj� � 1

�
B�1
ij

�2
: (1.16)

Extension of this result to curved spaces is also possible, at least in one particular
instance, namely the case of open strings moving in a curved space with S3 metric.
The resulting effective gauge theory lives on a noncommutative fuzzy sphere S2N
[2, 3, 83].

This same phenomena happens already in quantum mechanics. Consider the
following Lagrangian

Lm D m

2
.
dxi
dt
/2 � dxi

dt
:Ai ; Ai D �B

2

ijxj: (1.17)
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After quantization the momentum space becomes noncommutative given by the
commutation relations

Œ
i; 
j� D iB
ij ; 
i D m
dxi
dt
: (1.18)

It is well known that spatial noncommutativity arises in the limit m�!0, i.e. from
the following Lagrangian

L0 D �B
2

ij
dxi
dt

xj: (1.19)

In this case we have

Œxi; xj� D i�
ij ; � D 1

B
: (1.20)

The limit m�!0 keeping B fixed is the projection onto the lowest Landau level
(recall that the mass gap is B=m). This projection is also achieved in the limit
B�!1 keeping m fixed.

The is precisely what happens in string theory. We get noncommutative gauge
theories on Moyal-Weyl planes or fuzzy spheres depending on whether the strings
are moving, in a Neveu-Schwarz B-field, in a flat or curved (with S3 metric)
backgrounds respectively. The corresponding limit is ˛0�!0.

At almost around the same time, it was established that reduced Yang-Mills
theories play a central role in the nonperturbative definitions of M-theory and
superstrings. The BFSS conjecture [17] relates discrete light-cone quantization
(DLCQ) of M-theory, to the theory of N coincident D0 branes which at low energy,
small velocities and/or string coupling, is the reduction to 0 C 1 dimension of the
10 dimensional U.N/ supersymmetric Yang-Mills gauge theory [154]. The BFSS
model is therefore a Yang-Mills quantum mechanics which is supposed to be the
UV completion of 11 dimensional supergravity.

As it turns out, the BFSS action is nothing else but the regularization of the
supermembrane action in the light cone gauge [44].

The BMN model [20] is a generalization of the BFSS model to curved back-
grounds. It is obtained by adding to the BFSS action a one-parameter mass
deformation corresponding to the maximally supersymmetric pp-wave background
of 11 dimensional supergravity. See for example [27, 28, 96]. We also note,
in passing, that all maximally supersymmetric pp-wave geometries can arise as
Penrose limits of AdSp � Sq spaces [128].

The IKKT model [86] is, on the other hand, a Yang-Mills matrix model obtained
by dimensionally reducing 10 dimensional U.N/ supersymmetric Yang-Mills gauge
theory to 0C0 dimensions. The IKKT model is postulated to provide a constructive
definition of type II B superstring theory, and for this reason, it is also called type
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IIB matrix model. The dynamical variables are d matrices of size N with action

S D �N
4
TrŒX�;X��

2 C Tr N ��ŒX�;  �: (1.21)

The supersymmetric analogue of the IKKT model also exists in dimensions d D 3; 4
and 6 while the partition functions converge only in dimensions d D 4; 6 and 10
[12, 97, 98]. In d D 3; 4 the determinant of the Dirac operator is positive definite
[7, 98], and thus there is no sign problem. Mass deformations such as the Myers term
[120] are essential in order to reproduce non-trivial geometrical backgrounds such
as the fuzzy sphere in these Yang-Mills matrix models including the IKKT matrix
model. Supersymmetric mass deformations in Yang-Mills matrix models and Yang-
Mills quantum mechanics models are considered for example in [29, 91].

The IKKT Yang-Mills matrix models can be thought of as continuum Eguchi-
Kawai reduced models as opposed to the usual lattice Eguchi-Kawai reduced model
formulated originally in [51].

We point out here the similarity between the conjecture that, the lattice Eguchi-
Kawai reduced model allows us to recover the full gauge theory in the large N
theory, and the conjecture that, the IKKT matrix model allows us to recover type II
B superstring.

The relation between the BFSS Yang-Mills quantum mechanics and the IKKT
Yang-Mills matrix model is discussed at length in the seminal paper [40], where it
is also shown that toroidal compactification of the D-instanton action, the bosonic
part of the IKKT action, yields, in a very natural way, a noncommutative Yang-
Mills theory on a dual noncommutative torus [39]. From the other hand, we can
easily check that the ground state of the D-instanton action is given by commuting
matrices, which can be diagonalized simultaneously, with the eigenvalues giving the
coordinates of the D-branes. Thus at tree-level an ordinary spacetime emerges from
the bosonic truncation of the IKKT action, while higher order quantum corrections
will define a noncommutative spacetime.

The central motivation behind these proposals of using Yang-Mills matrix models
and Yang-Mills quantum mechanics as non-perturbative definitions of M-theory and
superstring theory lies in D-brane physics [131, 132, 148]. At low energy the theory
on the . pC1/-dimensional world-volume ofN coincident Dp-branes is the reduction
to pC 1 dimensions of 10 dimensional supersymmetric Yang-Mills [154]. Thus we
get a . pC1/ dimensional vector field together with 9�p normal scalar fields which
play the role of position coordinates of the coincident N Dp-branes. The case p D 0
corresponds to D0-branes. The coordinates become noncommuting matrices.

The main reasons behind the interest in studying these matrix models are
emergent geometry transitions and emergent gravity present in these models.
Furthermore, the supersymmetric versions of these matrix models provide a natural
non-perturbative regularization of supersymmetry which is very interesting in its
own right. Also, since these matrix models are related to large N Yang-Mills theory,
they are of paramount importance to the string/gauge duality, which would allow us
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to study non-perturbative aspects of gravity from the gauge side of the duality. See
for example [76, 77, 87, 124].

In summary, Yang-Mills matrix models provide a non-perturbative framework
for emergent spacetime geometry [138], and noncommutative gauge theories
[10, 11]. Since noncommutativity is the only extension which preserves maximal
supersymmetry, Yang-Mills matrix models will also provide a non-perturbative
regularization of supersymmetry [123]. Indeed, Yang-Mills matrix models can be
used as a non-perturbative regularization of the AdS/CFT correspondence [111].
This allows, for example, for the holographic description of a quantum black holes,
and the calculation of the corresponding Hawking radiation [79]. This very exciting
result can be found in [78]. Yang-Mills matrix models also allow for the emergence
of 3C 1dimensional expanding universe [92] from string theory, as well as yielding
emergent gravity [146].

Thus the connections between noncommutative gauge theories, emergent geom-
etry, emergent physics and matrix models, from one side, and string theory, the
AdS/CFT correspondence and M-theory, from the other side, run deep.

1.4 Noncommutative Scalar Field Theory

A noncommutative field theory is a non-local field theory in which we replace
the ordinary local point-wise multiplication of fields with the non-local Moyal-
Weyl star product [63, 119]. This product is intimately related to coherent states
[93, 112, 129], Berezin quantization [21] and deformation quantization [94]. It is
also very well understood that the underlying operator/matrix structure of the theory,
exhibited by the Weyl map [152], is the singular most important difference with
commutative field theory since it is at the root cause of profound physical differences
between the two theories. We suggest [4] and references therein for elementary and
illuminating discussion of the Moyal-Weyl product and other star products and their
relations to the Weyl map and coherent states.

Noncommutative field theory is believed to be of importance to physics beyond
the standard model and the Hall effect [50] and also to quantum gravity and string
theory [40, 139].

Noncommutative scalar field theories are the most simple, at least conceptually,
quantum field theories on noncommutative spaces. Some of the novel quantum
properties of noncommutative scalar field theory and scalar phi-four theory are as
follows:

1. The planar diagrams in a noncommutative �4 are essentially identical to the
planar diagrams in the commutative theory as shown originally in [55].

2. As it turns out, even the free noncommutative scalar field is drastically different
from its commutative counterpart contrary to widespread believe. For example,
it was shown in [145] that the eigenvalues distribution of a free scalar field on
a noncommutative space with an arbitrary kinetic term is given by a Wigner
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semicircle law. This is due to the dominance of planar diagrams which reduce
the number of independent contractions contributing to the expectation value
< �2n > from 2nnŠ to the number Nplanar.2n/ of planar contractions of a vertex
with 2n legs. See also [121, 133, 149, 150] for an alternative derivation.

3. More interestingly, it was found in [117] that the renormalized one-loop action
of a noncommutative �4 suffers from an infrared divergence which is obtained
when we send either the external momentum or the non-commutativity to zero.
This non-analyticity at small momenta or small non-commutativity (IR) which
is due to the high energy modes (UV) in virtual loops is termed the UV-IR
mixing.

4. We can control the UV-IR mixing found in noncommutative �4 by modi-
fying the large distance behavior of the free propagator through adding a
harmonic oscillator potential to the kinetic term [67]. More precisely, the
UV-IR mixing of the theory is implemented precisely in terms of a certain
duality symmetry of the new action which connects momenta and positions
[101]. The corresponding Wilson-Polchinski renormalization group equation
[90, 130] of the theory can then be solved in terms of ribbon graphs drawn on
Riemann surfaces. Renormalization of noncommutative �4 along these lines
was studied for example in [35, 36, 65, 67, 68, 74, 134]. Other approaches to
renormalization of quantum noncommutative �4 can be found for example in
[18, 19, 62, 73, 75, 140].

5. In two-dimensions the existence of a regular solution of the Wilson-Polchinski
equation [130] together with the fact that we can scale to zero the coefficient of
the harmonic oscillator potential in two dimensions leads to the conclusion that
the standard non-commutative �4 in two dimensions is renormalizable [65].
In four dimensions, the harmonic oscillator term seems to be essential for the
renormalizability of the theory [68].

6. The beta function of noncommutative �4 theory at the self-dual point is zero
to all orders [46, 47, 66]. This means in particular that the theory is not
asymptotically free in the UV since the RG flow of the coupling constant is
bounded and thus the theory does not exhibit a Landau ghost, i.e. not trivial. In
contrast the commutative �4 theory although also asymptotically free exhibits
a Landau ghost.

7. Noncommutative scalar field theory can be non-perturbatively regularized using
either fuzzy projective spaces CPn [15] or fuzzy tori Tn [8]. The fuzzy tori are
intimately related to a lattice regularization whereas fuzzy projective spaces,
and spaces [16, 125] in general, provide a symmetry-preserving sharp cutoff
regularization. By using these regulators noncommutative scalar field theory on
a maximally noncommuting space can be rewritten as a matrix model given by
the sum of kinetic (Laplacian) and potential terms. The geometry in encoded in
the Laplacian in the sense of Connes [38, 56].

The case of degenerate noncommutativity is special and leads to a matrix
model only in the noncommuting directions. See for example [64] where it was
also shown that renormalizability in this case is reached only by the addition of
the doubletrace term

R
dDx.Tr�/2 to the action.
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8. Another matrix regularization of non-commutative �4 can be found in [60,
102, 103] where some exact solutions of noncommutative scalar field theory
in background magnetic fields are constructed explicitly. Furthermore, in order
to obtain these exact solutions matrix model techniques were used extensively
and to great efficiency. For a pedagogical introduction to matrix model theory
see [32, 52, 89, 115, 141]. Exact solvability and non-triviality is discussed at
great length in [69].

9. A more remarkable property of quantum noncommutative �4 is the appearance
of a new order in the theory termed the striped phase which was first computed
in a one-loop self-consistent Hartree-Fock approximation in the seminal paper
[72]. For alternative derivations of this order see for example [33, 34]. It is
believed that the perturbative UV-IR mixing is only a manifestation of this
more profound property. As it turns out, this order should be called more
appropriately a non-uniform ordered phase in contrast with the usual uniform
ordered phase of the Ising universality class and it is related to spontaneous
breaking of translational invariance. It was numerically observed in d D 4

in [5] and in d D 3 in [23, 116] where the Moyal-Weyl space was non-
perturbatively regularized by a noncommutative fuzzy torus [8]. The beautiful
result of Bietenholz et al. [23] shows explicitly that the minimum of the
model shifts to a non-zero value of the momentum indicating a non-trivial
condensation and hence spontaneous breaking of translational invariance.

10. Therefore, noncommutative scalar �4 enjoys three stable phases: (1) disordered
(symmetric, one-cut, disk) phase, (2) uniform ordered (Ising, broken, asym-
metric one-cut) phase and (3) non-uniform ordered (matrix, stripe, two-cut,
annulus) phase. This picture is expected to hold for noncommutative/fuzzy
phi-four theory in any dimension, and the three phases are all stable and are
expected to meet at a triple point. The non-uniform ordered phase [30] is a full
blown nonperturbative manifestation of the perturbative UV-IR mixing effect
[117] which is due to the underlying highly non-local matrix degrees of freedom
of the noncommutative scalar field. In [34, 72], it is conjectured that the triple
point is a Lifshitz point which is a multi-critical point at which a disordered,
a homogeneous (uniform) ordered and a spatially modulated (non-uniform)
ordered phases meet [85].

11. In [34] the triple (Lifshitz) point was derived using the Wilson renormalization
group approach [153], where it was also shown that the Wilson-Fisher fixed
point of the theory at one-loop suffers from an instability at large non-
commutativity. See [13, 95] for a pedagogical introduction to the subject of the
functional renormalization group. The Wilson renormalization group recursion
formula was also used in [37, 53, 54, 82, 122] to study matrix scalar models
which, as it turns out, are of great relevance to the limit � �! 1 of
noncommutative scalar field theory [22].

12. The phase structure of non-commutative �4 in d D 2 and d D 3 using as
a regulator the fuzzy sphere was studied extensively in [43, 57, 58, 113, 114,
127, 158]. It was confirmed that the phase diagram consists of three phases: a
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disordered phase, a uniform ordered phases and a non-uniform ordered phase
which meet at a triple point. In this case it is well established that the transitions
from the disordered phase to the non-uniform ordered phase and from the
non-uniform ordered phase to the uniform ordered phase originate from the
one-cut/two-cut transition in the quartic hermitian matrix model [32, 141]. The
related problem of Monte Carlo simulation of noncommutative �4 on the fuzzy
disc was considered in [105].

13. The above phase structure was also confirmed analytically by the multitrace
approach of O’Connor and Saemann [126, 136] which relies on a small kinetic
term expansion instead of the usual perturbation theory in which a small
interaction potential expansion is performed. This is very reminiscent of the
Hopping parameter expansion on the lattice [42, 118, 135, 142]. See also
[157] for a review and an extension of this method to the noncommutative
Moyal-Weyl plane. For an earlier approach see [145] and for a similar more
non-perturbative approach see [121, 133, 149, 150]. This technique is expected
to capture the matrix transition between disordered and non-uniform ordered
phases with arbitrarily increasing accuracy by including more and more terms
in the expansion. Capturing the Ising transition, and as a consequence the stripe
transition, is more subtle and is only possible if we include odd moments in the
effective action and do not impose the symmetry � �! ��.

14. The multitrace approach in conjunction with the renormalization group
approach and/or the Monte Carlo approach could be a very powerful tool
in noncommutative scalar field theory. For example, multitrace matrix models
are fully diagonalizable, i.e. they depend on N real eigenvalues only, and
thus ergodic problems are absent and the phase structure can be probed quite
directly. The phase boundaries, the triple point and the critical exponents can
then be computed more easily and more efficiently. Furthermore, multitrace
matrix models do not come with a Laplacian, yet one can attach to them an
emergent geometry if the uniform ordered phase is sustained. See for example
[161, 162]. Also, it is quite obvious that these multitrace matrix models lend
themselves quite naturally to the matrix renormalization group approach of
Brezin and Zinn-Justin [31], Higuchi et al. [80, 81], Zinn-Justin [164].

15. Among all the approaches discussed above, it is strongly believed that the
renormalization group method is the only non-perturbative coherent framework
in which we can fully understand renormalizability and critical behavior of
noncommutative scalar field theory in complete analogy with the example
of commutative quantum scalar field theory outlined in [163]. The Wilson
recursion formula, in particular, is the oldest and most simple and intuitive
renormalization group approach which although approximate agrees very well
with high temperature expansions [153]. In this approximation we perform
the usual truncation but also we perform a reduction to zero dimension which
allows explicit calculation, or more precisely estimation, of Feynman diagrams.
See [53, 54, 122]. This method was applied in [159] to noncommutative
scalar �4 field theory at the self-dual point with two strongly noncommuting
directions and in [160] to noncommutative O.N/ model.



12 1 Introductory Remarks

References

1. Abe, Y.: Construction of fuzzy spaces and their applications to matrix models (2010).
arXiv:1002.4937 [hep-th]

2. Alekseev, A.Y., Recknagel, A., Schomerus, V.: Noncommutative world volume geometries:
branes on SU(2) and fuzzy spheres. J. High Energy Phys. 9909, 023 (1999). doi:10.1088/
1126-6708/1999/09/023 [hep-th/9908040]

3. Alekseev, A.Y., Recknagel, A., Schomerus, V.: Brane dynamics in background fluxes and
non-commutative geometry. J. High Energy Phys. 0005, 010 (2000) [arXiv:hep-th/0003187]

4. Alexanian, G., Pinzul, A., Stern, A.: Generalized coherent state approach to star products and
applications to the fuzzy sphere. Nucl. Phys. B 600, 531 (2001) [hep-th/0010187]

5. Ambjorn, J., Catterall, S.: Stripes from (noncommutative) stars. Phys. Lett. B 549, 253 (2002)
[hep-lat/0209106]

6. Ambjorn, J., Makeenko, Y.M., Nishimura, J., Szabo, R.J.: Finite N matrix models of noncom-
mutative gauge theory. J. High Energy Phys. 9911, 029 (1999) [arXiv:hep-th/9911041]

7. Ambjorn, J., Anagnostopoulos, K.N., Bietenholz, W., Hotta, T., Nishimura, J.: Large N
dynamics of dimensionally reduced 4D SU(N) super Yang-Mills theory. J. High Energy Phys.
0007, 013 (2000) [arXiv:hep-th/0003208]

8. Ambjorn, J., Makeenko, Y.M., Nishimura, J., Szabo, R.J.: Lattice gauge fields and discrete
noncommutative Yang-Mills theory. J. High Energy Phys. 0005, 023 (2000) [hep-th/0004147]

9. Ambjorn, J., Makeenko, Y.M., Nishimura, J., Szabo, R.J.: Nonperturbative dynamics of
noncommutative gauge theory. Phys. Lett. B 480, 399 (2000) [arXiv:hep-th/0002158]

10. Aoki, H., Iso, S., Kawai, H., Kitazawa, Y., Tada, T.: Space-time structures from IIB matrix
model. Prog. Theor. Phys. 99, 713 (1998) [arXiv:hep-th/9802085]

11. Aoki, H., Ishibashi, N., Iso, S., Kawai, H., Kitazawa, Y., Tada, T.: Noncommutative Yang-
Mills in IIB matrix model. Nucl. Phys. B 565, 176 (2000) [arXiv:hep-th/9908141]

12. Austing, P., Wheater, J.F.: Convergent Yang-Mills matrix theories. J. High Energy Phys. 0104,
019 (2001) [arXiv:hep-th/0103159]

13. Bagnuls, C., Bervillier, C.: Exact renormalization group equations. An Introductory review.
Phys. Rep. 348, 91 (2001) [hep-th/0002034]

14. Balachandran, A.P.: Quantum spacetimes in the year 1. Pramana 59, 359 (2002) [arXiv:hep-
th/0203259]

15. Balachandran, A.P., Dolan, B.P., Lee, J.H., Martin, X., O’Connor, D.: Fuzzy complex
projective spaces and their star products. J. Geom. Phys. 43, 184 (2002) [hep-th/0107099]

16. Balachandran, A.P., Kurkcuoglu, S., Vaidya, S.: Lectures on fuzzy and fuzzy SUSY physics,
191 p. World Scientific, Singapore (2007). arXiv:[hep-th/0511114]

17. Banks, T., Fischler, W., Shenker, S.H., Susskind, L.: M theory as a matrix model: a conjecture.
Phys. Rev. D 55, 5112 (1997) [arXiv:hep-th/9610043]

18. Becchi, C., Giusto, S., Imbimbo, C.: The Wilson-Polchinski renormalization group equation
in the planar limit. Nucl. Phys. B 633, 250 (2002) [hep-th/0202155]

19. Becchi, C., Giusto, S., Imbimbo, C.: The Renormalization of noncommutative field theories
in the limit of large noncommutativity. Nucl. Phys. B 664, 371 (2003) [hep-th/0304159]

20. Berenstein, D.E., Maldacena, J.M., Nastase, H.S.: Strings in flat space and pp waves from
N D 4 super Yang Mills. J. High Energy Phys. 0204, 013 (2002) [arXiv:hep-th/0202021]

21. Berezin, F.A.: General Concept of quantization. Commun. Math. Phys. 40, 153 (1975)
22. Bietenholz, W., Hofheinz, F., Nishimura, J.: On the relation between non-commutative field

theories at theta D infinity and large N matrix field theories. J. High Energy Phys. 0405, 047
(2004) [hep-th/0404179]

23. Bietenholz, W., Hofheinz, F., Nishimura, J.: Phase diagram and dispersion relation of the
noncommutative lambda phi**4 model in d D 3. J. High Energy Phys. 0406, 042 (2004)
[hep-th/0404020]

doi:10.1088/1126-6708/1999/09/023
doi:10.1088/1126-6708/1999/09/023


References 13

24. Bietenholz, W., Hofheinz, F., Nishimura, J., Susaki, Y., Volkholz, J.: First simulation results
for the photon in a non-commutative space. Nucl. Phys. Proc. Suppl. 140, 772 (2005)
[arXiv:hep-lat/0409059]

25. Bietenholz, W., Bigarini, A., Hofheinz, F., Nishimura, J., Susaki, Y., Volkholz, J.: Numerical
results for U(1) gauge theory on 2d and 4d non-commutative spaces. Fortschr. Phys. 53, 418
(2005) [arXiv:hep-th/0501147]

26. Bietenholz, W., Nishimura, J., Susaki, Y., Volkholz, J.: A non-perturbative study of 4d U(1)
non-commutative gauge theory: the fate of one-loop instability. J. High Energy Phys. 0610,
042 (2006) [arXiv:hep-th/0608072]

27. Blau, M., Figueroa-O’Farrill, J.M., Hull, C., Papadopoulos, G.: A new maximally super-
symmetric background of IIB superstring theory. J. High Energy Phys. 0201, 047 (2002)
[arXiv:hep-th/0110242]

28. Blau, M., Figueroa-O’Farrill, J.M., Hull, C., Papadopoulos, G.: Penrose limits and maximal
supersymmetry. Classical Quantum Gravity 19, L87 (2002) [arXiv:hep-th/0201081]

29. Bonelli, G.: Matrix strings in pp-wave backgrounds from deformed super Yang-Mills theory.
J. High Energy Phys. 0208, 022 (2002) [arXiv:hep-th/0205213]

30. Brazovkii, S.A.: Phase transition of an isotropic system to a nonuniform state. Zh. Eksp. Teor.
Fiz. 68, 175–185 (1975)

31. Brezin, E., Zinn-Justin, J.: Renormalization group approach to matrix models. Phys. Lett. B
288, 54 (1992) [arXiv:hep-th/9206035]

32. Brezin, E., Itzykson, C., Parisi, G., Zuber, J.B.: Planar diagrams. Commun. Math. Phys. 59,
35 (1978)

33. Castorina, P., Zappala, D.: Nonuniform symmetry breaking in noncommutative lambda
phi**4 theory. Phys. Rev. D 68, 065008 (2003) [hep-th/0303030]

34. Chen, G.-H., Wu, Y.-S.: Renormalization group equations and the Lifshitz point in noncom-
mutative Landau-Ginsburg theory. Nucl. Phys. B 622, 189 (2002) [hep-th/0110134]

35. Chepelev, I., Roiban, R.: Renormalization of quantum field theories on noncommutative
R**d. 1. Scalars. J. High Energy Phys. 0005, 037 (2000) [hep-th/9911098]

36. Chepelev, I., Roiban, R.: Convergence theorem for noncommutative Feynman graphs and
renormalization. J. High Energy Phys. 0103, 001 (2001) [hep-th/0008090]

37. Cicuta, G.M.: Matrix models in statistical mechanics and in quantum field theory in the large
order limit. In: Honor of the 70th Birthday of Eduardo R. Caianiello. Structure from Physics
to General Systems. Contribution to Festschrift

38. Connes, A.: Noncommutative Geometry. Academic, London (1994)
39. Connes, A., Rieffel, M.A.: Yang-Mills for noncommutative two-tori. Contemp. Math. 62, 237

(1987)
40. Connes, A., Douglas, M.R., Schwarz, A.S.: Noncommutative geometry and matrix theory:

compactification on tori. J. High Energy Phys. 9802, 003 (1998) [hep-th/9711162]
41. Coquereaux, R.: Noncommutative geometry: a physicist’s brief survey. J. Geom. Phys. 11,

307 (1993)
42. Creutz, M.: Quarks, Gluons and Lattices. Cambridge Monographs on Mathematical Physics,

p. 169. Cambridge University Press, Cambridge (1983)
43. Das, C.R., Digal, S., Govindarajan, T.R.: Finite temperature phase transition of a single scalar

field on a fuzzy sphere. Mod. Phys. Lett. A 23, 1781 (2008) [arXiv:0706.0695 [hep-th]]
44. de Wit, B., Hoppe, J., Nicolai, H.: On the quantum mechanics of supermembranes. Nucl.

Phys. B 305, 545 (1988)
45. Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: 2-D Gravity and random matrices. Phys.

Rep. 254, 1 (1995). doi:10.1016/0370-1573(94)00084-G [hep-th/9306153]
46. Disertori, M., Rivasseau, V.: Two and three loops beta function of non commutative Phi(4)**4

theory. Eur. Phys. J. C 50, 661 (2007) [hep-th/0610224]
47. Disertori, M., Gurau, R., Magnen, J., Rivasseau, V.: Vanishing of Beta Function of Non

Commutative Phi**4(4) Theory to all orders. Phys. Lett. B 649, 95 (2007) [hep-th/0612251]
48. Doplicher, S., Fredenhagen, K., Roberts, J.E.: Space-time quantization induced by classical

gravity. Phys. Lett. B 331, 39 (1994)

doi:10.1016/0370-1573(94)00084-G


14 1 Introductory Remarks

49. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of space-time at
the Planck scale and quantum fields. Commun. Math. Phys. 172, 187 (1995) [arXiv:hep-
th/0303037]

50. Douglas, M.R., Nekrasov, N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977
(2001) [hep-th/0106048]

51. Eguchi, T., Kawai, H.: Reduction of dynamical degrees of freedom in the large N gauge
theory. Phys. Rev. Lett. 48, 1063 (1982)

52. Eynard, B.: Random matrices. Cours de Physique Theorique de Saclay. Unpublished lectures
53. Ferretti, G.: On the large N limit of 3-d and 4-d Hermitian matrix models. Nucl. Phys. B 450,

713 (1995) [hep-th/9504013]
54. Ferretti, G.: The critical exponents of the matrix valued Gross-Neveu model. Nucl. Phys. B

487, 739 (1997) [hep-th/9607072]
55. Filk, T.: Divergencies in a field theory on quantum space. Phys. Lett. B 376, 53 (1996)
56. Frohlich, J., Gawedzki, K.: Conformal field theory and geometry of strings. In: Gawedzki,

K. (eds.) Proceedings, Mathematical Quantum Theory, vol. 1, pp. 57–97, 44 p. Vancouver
(1993). Preprint

57. Garcia Flores, F., O’Connor, D., Martin, X.: Simulating the scalar field on the fuzzy sphere.
PoS LAT 2005, 262 (2006) [hep-lat/0601012]

58. Garcia Flores, F., Martin, X., O’Connor, D.: Simulation of a scalar field on a fuzzy sphere.
Int. J. Mod. Phys. A 24, 3917 (2009) [arXiv:0903.1986 [hep-lat]]

59. Golner, G.R.: Calculation of the critical exponent eta via renormalization-group recursion
formulas. Phys. Rev. B 8, 339 (1973)

60. Gracia-Bondia, J.M., Varilly, J.C.: Algebras of distributions suitable for phase space quantum
mechanics. 1. J. Math. Phys. 29, 869 (1988)

61. Gracia-Bondia, J.M., Varilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry.
Birkhaeuser, Boston (2001)

62. Griguolo, L., Pietroni, M.: Wilsonian renormalization group and the noncommutative IR / UV
connection. J. High Energy Phys. 0105, 032 (2001) [hep-th/0104217]

63. Groenewold, H.J.: On the Principles of elementary quantum mechanics. Physica 12, 405
(1946)

64. Grosse, H., Vignes-Tourneret, F.: Quantum field theory on the degenerate Moyal space. J.
Noncommut. Geom. 4, 555 (2010) [arXiv:0803.1035 [math-ph]]

65. Grosse, H., Wulkenhaar, R.: Renormalization of phi**4 theory on noncommutative R**2 in
the matrix base. J. High Energy Phys. 0312, 019 (2003) [hep-th/0307017]

66. Grosse, H., Wulkenhaar, R.: The beta function in duality covariant noncommutative phi**4
theory. Eur. Phys. J. C 35, 277 (2004) [hep-th/0402093]

67. Grosse, H., Wulkenhaar, R.: Power counting theorem for nonlocal matrix models and
renormalization. Commun. Math. Phys. 254, 91 (2005) [hep-th/0305066]

68. Grosse, H., Wulkenhaar, R.: Renormalization of phi**4 theory on noncommutative R**4 in
the matrix base. Commun. Math. Phys. 256, 305 (2005) [hep-th/0401128]

69. Grosse, H., Wulkenhaar, R.: Self-dual noncommutative �4-theory in four dimensions is a
non-perturbatively solvable and non-trivial quantum field theory . Commun. Math. Phys. 329,
1069 (2014). doi:10.1007/s00220-014-1906-3. arXiv:1205.0465 [math-ph]

70. Grosse, H., Klimcik, C., Presnajder, P.: On finite 4-D quantum field theory in noncommu-
tative geometry. Commun. Math. Phys. 180, 429 (1996). doi:10.1007/BF02099720 [hep-
th/9602115]

71. Grosse, H., Klimcik, C., Presnajder, P.: Towards finite quantum field theory in noncommuta-
tive geometry. Int. J. Theor. Phys. 35, 231 (1996) [hep-th/9505175]

72. Gubser, S.S., Sondhi, S.L.: Phase structure of noncommutative scalar field theories. Nucl.
Phys. B 605, 395 (2001) [hep-th/0006119]

73. Gurau, R., Rosten, O.J.: Wilsonian renormalization of noncommutative scalar field theory. J.
High Energy Phys. 0907, 064 (2009) [arXiv:0902.4888 [hep-th]]

74. Gurau, R., Magnen, J., Rivasseau, V., Vignes-Tourneret, F.: Renormalization of non-
commutative phi(4)**4 field theory in x space. Commun. Math. Phys. 267, 515 (2006)
[hep-th/0512271]

doi:10.1007/BF02099720


References 15

75. Gurau, R., Magnen, J., Rivasseau, V., Tanasa, A.: A Translation-invariant renormalizable non-
commutative scalar model. Commun. Math. Phys. 287, 275 (2009) [arXiv:0802.0791 [math-
ph]]

76. Hanada, M., Hyakutake, Y., Nishimura, J., Takeuchi, S.: Higher derivative corrections to black
hole thermodynamics from supersymmetric matrix quantum mechanics. Phys. Rev. Lett. 102,
191602 (2009) [arXiv:0811.3102 [hep-th]]

77. Hanada, M., Miwa, A., Nishimura, J., Takeuchi, S.: Schwarzschild radius from Monte Carlo
calculation of the Wilson loop in supersymmetric matrix quantum mechanics. Phys. Rev. Lett.
102, 181602 (2009) [arXiv:0811.2081 [hep-th]]

78. Hanada, M., Hyakutake, Y., Ishiki, G., Nishimura, J.: Holographic description of quan-
tum black hole on a computer. Science 344, 882 (2014). doi:10.1126/science.1250122
[arXiv:1311.5607 [hep-th]]

79. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)
[Commun. Math. Phys. 46, 206 (1976)]. doi:10.1007/BF02345020

80. Higuchi, S., Itoi, C., Sakai, N.: Renormalization group approach to matrix models and vector
models. Prog. Theor. Phys. Suppl. 114, 53 (1993) [arXiv:hep-th/9307154]

81. Higuchi, S., Itoi, C., Nishigaki, S., Sakai, N.: Renormalization group flow in one and two
matrix models. Nucl. Phys. B 434, 283 (1995) [Erratum-ibid. B 441, 405 (1995)] [arXiv:hep-
th/9409009]

82. Hikami, S., Brezin, E.: Large-order behaviour of the 1/N expansion in zero and one
dimensions. J. Phys. A 12, 759 (1979)

83. Hikida, Y., Nozaki, M., Sugawara, Y.: Formation of spherical 2D brane from multiple
D0 branes. Nucl. Phys. B 617, 117 (2001). doi:10.1016/S0550-3213(01)00473-4 [hep-
th/0101211]

84. Hoppe, J.: Quantum theory of a massless relativistic surface and a two-dimensional bound
state problem. Ph.D. thesis, MIT (1982)

85. Hornreich, R.M., Luban, M., Shtrikman, S.: Critical behavior at the onset of k-space
instability on the lamda line. Phys. Rev. Lett. 35, 1678 (1975)

86. Ishibashi, N., Kawai, H., Kitazawa, Y., Tsuchiya, A.: A large-N reduced model as superstring.
Nucl. Phys. B 498, 467 (1997) [arXiv:hep-th/9612115]

87. Ishiki, G., Kim, S.W., Nishimura, J., Tsuchiya, A.: Deconfinement phase transition in N D 4

super Yang-Mills theory on R � S3 from supersymmetric matrix quantum mechanics. Phys.
Rev. Lett. 102, 111601 (2009) [arXiv:0810.2884 [hep-th]]

88. Karabali, D., Nair, V.P., Randjbar-Daemi, S.: Fuzzy spaces, the M(atrix) model and the
quantum Hall effect. In: Shifman, M., et al. (eds.) From Fields to Strings, vol. 1, pp. 831–
875 [hep-th/0407007]

89. Kawahara, N., Nishimura, J., Yamaguchi, A.: Monte Carlo approach to nonperturbative
strings - demonstration in noncritical string theory. J. High Energy Phys. 0706, 076 (2007)
[hep-th/0703209]

90. Keller, G., Kopper, C., Salmhofer, M.: Perturbative renormalization and effective Lagrangians
in phi**4 in four-dimensions. Helv. Phys. Acta 65, 32 (1992)

91. Kim, N., Park, J.H.: Massive super Yang-Mills quantum mechanics: classification and the
relation to supermembrane. Nucl. Phys. B 759, 249 (2006) [arXiv:hep-th/0607005]

92. Kim, S.W., Nishimura, J., Tsuchiya, A.: Expanding (3+1)-dimensional universe from a
Lorentzian matrix model for superstring theory in (9+1)-dimensions. Phys. Rev. Lett. 108,
011601 (2012). doi:10.1103/PhysRevLett.108.011601 [arXiv:1108.1540 [hep-th]]

93. Klauder, J.R., Skagerstam, B.-S.: Coherent States: Applications in Physics and Mathematical
Physics. World Scientific, Singapore (1985)

94. Kontsevich, M.: Deformation quantization of Poisson manifolds. 1. Lett. Math. Phys. 66, 157
(2003) [arXiv:q-alg/9709040 [q-alg]]

95. Kopietz, P., Bartosch, L., Schutz, F.: Introduction to the functional renormalization group.
Lect. Notes Phys. 798, 1 (2010)

96. Kowalski-Glikman, J.: Vacuum states in supersymmetric Kaluza-Klein theory. Phys. Lett. B
134, 194 (1984)

doi:10.1126/science.1250122
doi:10.1007/BF02345020
doi:10.1016/S0550-3213(01)00473-4
doi:10.1103/PhysRevLett.108.011601


16 1 Introductory Remarks

97. Krauth, W., Staudacher, M.: Finite Yang-Mills integrals. Phys. Lett. B 435, 350 (1998)
[arXiv:hep-th/9804199]

98. Krauth, W., Nicolai, H., Staudacher, M.: Monte Carlo approach to M theory. Phys. Lett. B
431, 31 (1998) [hep-th/9803117]

99. Kurkcuoglu, S.: Explorations in fuzzy physics and non-commutative geometry (2004). UMI-
31-60408

100. Landi, G.: An Introduction to Noncommutative Spaces and Their Geometry. Springer, Berlin
(1997) [arXiv:hep-th/9701078]

101. Langmann, E., Szabo, R.J.: Duality in scalar field theory on noncommutative phase spaces.
Phys. Lett. B 533, 168 (2002) [hep-th/0202039]

102. Langmann, E., Szabo, R.J., Zarembo, K.: Exact solution of noncommutative field theory in
background magnetic fields. Phys. Lett. B 569, 95 (2003) [hep-th/0303082]

103. Langmann, E., Szabo, R.J., Zarembo, K.: Exact solution of quantum field theory on
noncommutative phase spaces. J. High Energy Phys. 0401, 017 (2004) [hep-th/0308043]

104. Lizzi, F.: Fuzzy two-dimensional spaces. In: Mankoc Borstnik, N., Nielsen, H.B., Froggatt,
C.D., Lukman, D. (eds.) Proceedings to the Euroconference on Symmetries Beyond the
Standard Model. Proceedings. Part 1 of 2. hep-ph/0401043 (2004)

105. Lizzi, F., Spisso, B.: Noncommutative field theory: numerical analysis with the fuzzy disc.
Int. J. Mod. Phys. A 27, 1250137 (2012) [arXiv:1207.4998 [hep-th]]

106. Lizzi, F., Vitale, P., Zampini, A.: From the fuzzy disc to edge currents in Chern-Simons theory.
Mod. Phys. Lett. A 18, 2381 (2003) [hep-th/0309128]

107. Lizzi, F., Vitale, P., Zampini, A.: The fuzzy disc. J. High Energy Phys. 0308, 057 (2003)
[hep-th/0306247]

108. Lizzi, F., Vitale, P., Zampini, A.: The Beat of a fuzzy drum: fuzzy Bessel functions for the
disc. J. High Energy Phys. 0509, 080 (2005) [hep-th/0506008]

109. Madore, J.: The fuzzy sphere. Classical Quantum Gravity 9, 69 (1992)
110. Madore, J.: An Introduction to Noncommutative Differential Geometry and its Physical

Applications. Cambridge University Press, Cambridge (1995)
111. Maldacena, J.M.: The Large N limit of superconformal field theories and supergravity. Int.

J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]. doi:10.1023/A:
1026654312961 [hep-th/9711200]

112. Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: f oscillators and nonlinear coherent
states. Phys. Scr. 55, 528 (1997) [quant-ph/9612006]

113. Martin, X.: A matrix phase for the phi**4 scalar field on the fuzzy sphere. J. High Energy
Phys. 0404, 077 (2004) [hep-th/0402230]

114. Medina, J., Bietenholz, W., O’Connor, D.: Probing the fuzzy sphere regularisation in
simulations of the 3d lambda phi**4 model. J. High Energy Phys. 0804, 041 (2008)
[arXiv:0712.3366 [hep-th]]

115. Mehta, M.L.: Random Matrices. Academic, New York (1967)
116. Mejía-Díaz, H., Bietenholz, W., Panero, M.: The continuum phase diagram of the

2d non-commutative lambda phi**4 model. J. High Energy Phys. 1410, 56 (2014).
doi:10.1007/JHEP10(2014)056. arXiv:1403.3318 [hep-lat]

117. Minwalla, S., Van Raamsdonk, M., Seiberg, N.: Noncommutative perturbative dynamics. J.
High Energy Phys. 0002, 020 (2000) [hep-th/9912072]

118. Montvay, I., Munster, G.: Quantum Fields on a Lattice. Cambridge Monographs on Mathe-
matical Physics, p. 491. Cambridge University Press, Cambridge (1994)

119. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99
(1949)

120. Myers, R.C.: Dielectric-branes. J. High Energy Phys. 9912, 022 (1999) [arXiv:hep-
th/9910053]

121. Nair, V.P., Polychronakos, A.P., Tekel, J.: Fuzzy spaces and new random matrix ensembles.
Phys. Rev. D 85, 045021 (2012) [arXiv:1109.3349 [hep-th]]

122. Nishigaki, S.: Wilsonian approximated renormalization group for matrix and vector models
in 2 < d < 4. Phys. Lett. B 376, 73 (1996) [hep-th/9601043]

doi:10.1023/A:1026654312961
doi:10.1023/A:1026654312961


References 17

123. Nishimura, J.: Non-lattice simulation of supersymmetric gauge theories as a probe to quantum
black holes and strings. PoS LAT2009, 016 (2009) [arXiv:0912.0327 [hep-lat]]

124. Nishimura, J., Anagnostopoulos, K.N., Hanada, M., Takeuchi, S.: Putting M theory on a
computer. PoS LAT2007, 059 (2007) [arXiv:0801.4205 [hep-lat]]

125. O’Connor, D.: Field theory on low dimensional fuzzy spaces. Mod. Phys. Lett. A 18, 2423
(2003)

126. O’Connor, D., Saemann, C.: Fuzzy scalar field theory as a multitrace matrix model. J. High
Energy Phys. 0708, 066 (2007) [arXiv:0706.2493 [hep-th]]

127. Panero, M.: Numerical simulations of a non-commutative theory: the scalar model on the
fuzzy sphere. J. High Energy Phys. 0705, 082 (2007) [hep-th/0608202]

128. Penrose, R.: Any spacetime has a plane wave limit. In: Differential Geometry and Gravity.
Mathematical Physics and Applied Mathematics, vol. 3, pp. 271–275. Springer, Dordrecht
(1976)

129. Perelomov, A.M.: Generalized Coherent States and Their Applications. Springer, Berlin
(1986)

130. Polchinski, J.: Renormalization and effective Lagrangians. Nucl. Phys. B 231, 269 (1984)
131. Polchinski, J.: Dirichlet-Branes and Ramond-Ramond charges. Phys. Rev. Lett. 75, 4724

(1995) [arXiv:hep-th/9510017]
132. Polchinski, J.: Lectures on D-branes. In: Efthimiou, C., Greene, B. (eds.) Fields, Strings and

Duality: Tasi 96: Proceedings, 1069 p. World Scientific, Singapore (1997)
133. Polychronakos, A.P.: Effective action and phase transitions of scalar field on the fuzzy sphere.

Phys. Rev. D 88, 065010 (2013). doi:10.1103/PhysRevD.88.065010. arXiv:1306.6645 [hep-
th]

134. Rivasseau, V., Vignes-Tourneret, F., Wulkenhaar, R.: Renormalization of noncommutative
phi**4-theory by multi-scale analysis. Commun. Math. Phys. 262, 565 (2006) [hep-
th/0501036]

135. Rothe, H.J.: Lattice gauge theories: an introduction. World Sci. Lect. Notes Phys. 74, 1 (2005)
136. Saemann, C.: The multitrace matrix model of scalar field theory on fuzzy CP**n. SIGMA 6,

050 (2010) [arXiv:1003.4683 [hep-th]]
137. Schomerus, V.: D-branes and deformation quantization. J. High Energy Phys. 9906, 030

(1999) [arXiv:hep-th/9903205]
138. Seiberg, N.: Emergent spacetime. In: Gross, D., Henneaux, M., Sevrin, A. (eds.) Proceedings

of the 23rd Solvay Conference in Physics: The Quantum Structure of Space and Time, 272 p.
World Scientific, Hackensack (2007)

139. Seiberg, N., Witten, E.: String theory and noncommutative geometry. J. High Energy Phys.
9909, 032 (1999) [hep-th/9908142]

140. Sfondrini, A., Koslowski, T.A.: Functional renormalization of noncommutative scalar field
theory. Int. J. Mod. Phys. A 26, 4009 (2011) [arXiv:1006.5145 [hep-th]]

141. Shimamune, Y.: On the phase structure of large n matrix models and gauge models. Phys.
Lett. B 108, 407 (1982)

142. Smit, J.: Introduction to quantum fields on a lattice: a robust mate. Camb. Lect. Notes Phys.
15, 1 (2002)

143. Snyder, H.S.: Quantized space-time. Phys. Rev. 71, 38 (1947)
144. Steinacker, H.: Field theoretic models on covariant quantum spaces. Habilitation Thesis

(2004)
145. Steinacker, H.: A non-perturbative approach to non-commutative scalar field theory. J. High

Energy Phys. 0503, 075 (2005) [hep-th/0501174]
146. Steinacker, H.: Emergent geometry and gravity from matrix models: an introduction.

Classical Quantum Gravity 27, 133001 (2010). doi:10.1088/0264-9381/27/13/133001
[arXiv:1003.4134 [hep-th]]

147. Szabo, R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207 (2003)
[arXiv:hep-th/0109162]

148. Taylor, W.: Lectures on D-branes, gauge theory and M(atrices). 2nd Trieste Conference on
Duality in String Theory (1997)

doi:10.1088/0264-9381/27/13/133001


18 1 Introductory Remarks

149. Tekel, J.: Random matrix approach to scalar fields on fuzzy spaces. Phys. Rev. D 87(8),
085015 (2013) [arXiv:1301.2154 [hep-th]]

150. Tekel, J.: Uniform order phase and phase diagram of scalar field theory on fuzzy CP**n.
J. High Energy Phys. 1410, 144 (2014). doi:10.1007/JHEP10(2014)144. arXiv:1407.4061
[hep-th]

151. Varilly, J.C.: An introduction to nc geometry (1997) [arXiv:physics/9709045]
152. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1931)
153. Wilson, K.G., Kogut, J.B.: The Renormalization group and the epsilon expansion. Phys. Rep.

12, 75 (1974). The Wilson recursion formula was reconsidered more carefully in [59]
154. Witten, E.: Bound states of strings and p-branes. Nucl. Phys. B 460, 335 (1996) [arXiv:hep-

th/9510135]
155. Yang, C.N.: On quantized space-time. Phys. Rev. 72, 874 (1947)
156. Ydri, B.: Fuzzy physics. Ph.D Thesis (2001)
157. Ydri, B.: A multitrace approach to noncommutative ˆ42. Phys. Rev. D 93(6), 065041 (2016).

doi:10.1103/PhysRevD.93.065041. arXiv:1410.4881 [hep-th]
158. Ydri, B.: New algorithm and phase diagram of noncommutative �4 on the fuzzy sphere. J.

High Energy Phys. 1403, 065 (2014) [arXiv:1401.1529 [hep-th]]
159. Ydri, B., Ahmim, R.: Matrix model fixed point of noncommutative �4 theory. Phys. Rev. D

88(10), 106001 (2013) [arXiv:1304.7303 [hep-th]]
160. Ydri, B., Bouchareb, A.: The fate of the Wilson-Fisher fixed point in non-commutative �4. J.

Math. Phys. 53, 102301 (2012) [arXiv:1206.5653 [hep-th]]
161. Ydri, B., Rouag, A., Ramda, K.: Emergent geometry from random multitrace matrix models

(2015). arXiv:1509.03572 [hep-th]
162. Ydri, B., Ramda, K., Rouag, A.: Phase diagrams of the multitrace quartic matrix models of

noncommutative ˆ4. Phys. Rev. D 93(6), 065056 (2016). doi:10.1103/PhysRevD.93.065056.
arXiv:1509.03726 [hep-th]

163. Zinn-Justin, J.: Quantum field theory and critical phenomena. Int. Ser. Monogr. Phys. 113, 1
(2002)

164. Zinn-Justin, J.: Random vector and matrix and vector theories: a renormalization group
approach. J. Stat. Phys. 157, 990 (2014) [arXiv:1410.1635 [math-ph]]



Chapter 2
The Noncommutative Moyal-Weyl Spaces Rd

�

Abstract This chapter contains a detailed discussion of the Heisenberg algebra
and its representation theory. Then a systematic construction of the Moyal-Weyl
noncommutative spaces, in a generic non-zero magnetic field, and their scalar field
theories is put forward. A self-contained discussion of two other closely related non
commutative space, the noncommutative torus and the fuzzy disc, is also included.

2.1 Heisenberg Algebra and Coherent States

2.1.1 Representations of the Heisenberg-Weyl Algebra

Let us start with a dynamical system consisting of a single degree of freedom q with
Lagrangian L.q; Pq/. The phase space is two-dimensional with points given by .q; p/
where p D @L=@Pq is the conjugate momentum. We define observables by functions
f .q; p/ on the phase space. Canonical quantization introduces a Hilbert space H
where the coordinate operator Oq, the momentum operator Op and the observable
operators Of .Oq; Op/ act naturally. The fundamental commutation relation is given by

ŒOq; Op� D i„: (2.1)

This is the famous Heisenberg-Weyl algebra W1 and it is the first concrete
example of a noncommutative space. It defines, as we will see, the Moyal-Weyl
noncommutative plane.

The subsequent discussion will follow closely [29] but also [16]. Related
discussions of coherent states can also be found in [6, 15, 26, 34].

The Heisenberg-Weyl algebra W1 algebra is a three-dimensional Lie algebra
given by the elements e1 D iOp=p„, e2 D iOq=p„ and e3 D i1. They satisfy

Œe1; e2� D e3 ; Œe1; e3� D Œe2; e3� D 0: (2.2)

We introduce the annihilation and creation operators by

a D OqC iOpp
2„ ; aC D Oq � iOpp

2„ : (2.3)
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They satisfy

Œa; aC� D 1: (2.4)

A general element of W1 is written as

x � .s; x1; x2/ D x1e1 C x2e2 C se3

D ˛aC � ˛�aC is: (2.5)

˛ D �x1 � ix2p
2

: (2.6)

As we will see later x1 D �q=
p„ and x2 D p=

p„. We compute the commutator
Œx; y� D !.x; y/e3 where !.x; y/ is the symplectic form on the plane .q; p/, viz
!.x; y/ D x1y2 � x2y1.

The Heisenberg-Weyl algebra Lie group W1 is obtained by exponentiation of the
Lie algebra. A general element of W1 is given by

ex D eisD.˛/ ; D.˛/ D e˛a
C�˛�a: (2.7)

The multiplication law of the group elements D.˛/ is given by (with A D ˛aC�˛�a
and B D ˇaC � ˇ�a)

D.˛/D.ˇ/ D eAeB

D exp
1

2
ŒA;B� exp.AC B/

D exp
1

2
.˛ˇ� � ˛�ˇ/D.˛ C ˇ/: (2.8)

In the second line we have used the Baker-Campbell-Hausdorff formula. From this
multiplication law it follows immediately that

D.˛/D.ˇ/ D exp.˛ˇ� � ˛�ˇ/D.ˇ/D.˛/: (2.9)

This is another form of the Heisenberg-Weyl algebra completely equivalent to (2.1)
or (2.4). The operatorsD.˛/, as opposed to Oq and Op, are bounded and as consequence
their domain of definition is the whole Hilbert space H. The algebra (2.9) is the
defining equation of the noncommutative torus as we will also discuss in due time.

The elements ex D eisD.˛/ of the group W1 will be denoted by g. More precisely
eisD.˛/ should be viewed as a representation of the element g characterized by the
real number s and the operator D.˛/.
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The center of the Heisenberg-Weyl algebra W1 consists of all elements of the
form .s; 0; 0/ which correspond to the group elements g0 D eis. It is then obvious
that given any unitary irreducible representation T.g/ of the Heisenberg-Weyl group
W1 the elements T.g0/ provide a unitary representation of the subgroup H D fg0g.
Obviously

T.g0/ D ei	s1: (2.10)

The following result is due to Kirillov. The unitary irreducible representation T.g/
for 	 ¤ 0 is infinite dimensional fixed precisely by the real number 	 whereas for
	 D 0 the unitary irreducible representation T.g/ is one-dimensional fixed by two
real numbers � and � given explicitly by T.g/ D ei.�x1C�x2/1.

Obviously for a fixed value of 	 ¤ 0 any two unitary irreducible representations
are unitarily equivalent. This is in fact a general result of representation theory.

2.1.2 Coherent States

The first basis of the Hilbert space H, we consider here, is the number basis. We
introduce a vacuum state j0 > in the Hilbert space H defined as usual by aj0 >D 0.
The number basis is defined by

ajn >D pnjn� 1 > ; aCjn >D pnC 1jnC 1 > : (2.11)

The number operator is defined by N D aCa, viz Njn >D njn >. Explicitly the
number basis is given by

jn >D 1p
nŠ
.aC/nj0 > ; n D 0; 1; 2; : : : (2.12)

Another very important basis of the Hilbert space H is provided by so-called
coherent states. A coherent state is a quantum state with properties as close as
possible to classical states. Let T.g/ be a unitary irreducible representation of the
Heisenberg-Weyl group W1 and let j 0 > be some fixed vector in the Hilbert space
H. We define now the coherent state by

j g > D T.g/j 0 >
D ei	sD.˛/j 0 > : (2.13)

It is obvious that the isotropy subgroup of the state j 0 > (the maximal subgroup
which leaves j 0 > invariant or stable) is precisely H D fg0g. This crucial fact can
also be formulated as follows. For g D g0 we obtain from the above definition the
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behavior of j 0 > under the action of H to be given by

T.g0/j 0 > D ei	sj 0 > : (2.14)

By substituting back we obtain

j g > D e�i	sT.gg0/j 0 >
D e�i	sj gg0 > : (2.15)

This means that all the group elements of the form gg0 with g fixed and g0 2 H
define the same coherent state. In other words the coherent state j g > is an
equivalence class in W1=H given by j˛ >D fj gg0 > ; g0 2 Hg. The equivalence
class is identified with ˛ D �.x1 � ix2/=

p
2 since we can choose g0 in such a

way that it cancels precisely the phase ei	s for all g. Alternatively we may think of
G as a fiber bundle over the base space X D G=H with fiber H where the choice
g is a particular section. The base space X D G=H is precisely the plane .q; p/
and the coherent state j g > will contain information about the quantum point
.x1 D �q=

p„; x2 D p=
p„/. Indeed the coherent state j g > is a mapping from the

phase plane .q; p/ into the Hilbert space H. We write then the coherent state j g >

as simply j˛ > where

j˛ > D D.˛/j 0 > : (2.16)

The standard coherent state corresponds to the choice j 0 >D j0 >. We will only
concentrate on this case for simplicity. The coherent state j˛ > is an eigenstate of
the annihilation operator a with eigenvalue ˛. The proof goes as follows. By using
the Baker-Campbell-Hausdorff formula we compute first the following

D.˛/ D e� 1
2 j˛j2e˛aC

e�˛�a

D e
1
2 j˛j2e�˛�ae˛a

C

: (2.17)

The coherent state can then be expressed as

j˛ > D e� 1
2 j˛j2e˛aC j0 >

D e� 1
2 j˛j2

1X

nD0

˛n

nŠ
.aC/nj0 >

D e� 1
2 j˛j2

1X

nD0

˛np
nŠ
jn > : (2.18)
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Now we can show that

aj˛ > D e� 1
2 j˛j2

1X

nD0

˛np
nŠ
ajn >

D e� 1
2 j˛j2

1X

nD1

˛n
p
.n � 1/Š jn � 1 >

D ˛j˛ > : (2.19)

The coherent states j˛ >, although complete (overcomplete) because the represen-
tation T.g/ is irreducible, they are not orthogonal. Indeed we compute

< ˇj˛ > D e� 1
2 jˇj2

1X

mD0

.ˇ�/mp
mŠ

< mj:e� 1
2 j˛j2

1X

nD0

˛np
nŠ
jn >

D e� 1
2 jˇj2� 1

2 j˛j2C˛ˇ�

: (2.20)

Thus

�.ˇ � ˛/ D j < ˇj˛ > j2 D e�jˇ�˛j2 : (2.21)

Next we compute the action of D.˛/ on a coherent state jˇ >. We find

D.˛/jˇ > D D.˛/D.ˇ/j0 >

D exp
1

2
.˛ˇ� � ˛�ˇ/D.˛ C ˇ/j0 >

D exp
1

2
.˛ˇ� � ˛�ˇ/j˛ C ˇ > : (2.22)

The action of the Heisenberg-Weyl group W1 is therefore equivalent to the action
of the group of translations in the ˛ plane modulo a phase. Indeed this action is not
effective since the whole subgroup H D fg0g acts as the identity. In other words the
group of translations in the ˛ plane is given by W1=H. The invariant metric in the ˛
plane is obviously given by

ds2 D d˛�d˛ D 1

2
dx21 C

1

2
dx22: (2.23)

The invariant measure in the ˛ plane is then given by

d�.˛/ D Cd˛�d˛ D Cdx1dx2: (2.24)
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Let us consider the projector j˛ >< ˛j on the coherent state j˛ > and let us consider
the operator

R
d�.˛/j˛ >< ˛j. We compute (using D.ˇ/C D D.�ˇ/, d�.˛/ D

d�.˛ C ˇ/ and < ˛jD.ˇ/ D< ˛ � ˇj exp.�˛ˇ� C ˛�ˇ/=2)

D.ˇ/
Z

d�.˛/j˛ >< ˛j D
Z

d�.˛/e
1
2 .ˇ˛

��ˇ�˛/jˇ C ˛ >< ˛j

D
Z

d�.˛/e
1
2 .ˇ˛

��ˇ�˛/j˛ >< ˛ � ˇj

D
Z

d�.˛/j˛ >< ˛jD.ˇ/: (2.25)

In other words
R
d�.˛/j˛ >< ˛j commutes with all D.ˇ/ and as a consequence

(Schur’s lemma) it must be proportional to the identity, viz

Z

d�.˛/j˛ >< ˛j D N�11: (2.26)

The average of this operator over a coherent state jˇ > is immediately given by

Z

d�.˛/ < ˇj˛ >< ˛jˇ > D N�1: (2.27)

Equivalently

N�1 D
Z

d�.˛/�.˛/ D C
Z

dx1dx2e
� 1
2 .x

2
1Cx22/: (2.28)

In general we choose C such that N D 1, viz

1 D
Z

d�.˛/�.˛/: (2.29)

This gives immediately

C D 1

2

: (2.30)

The measure in the ˛ plane and the resolution of unity become

d�.˛/ D 1

2

d˛�d˛ D 1

2

dx1dx2: (2.31)

Z

d�.˛/j˛ >< ˛j D 1: (2.32)
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2.1.3 Symbols

States and Their Symbols Any state j > in the Hilbert space H can be expanded
in the coherent states basis using the resolution of unity as follows

j >D
Z

d�.˛/ < ˛j > j˛ > : (2.33)

The wave function < ˛j > determines the state j > completely. It is called the
symbol of the state j >. This provides a functional realization of the Hilbert space
H as we will now show. We compute

< ˛j > D e� 1
2 j˛j2

1X

nD0

.˛�/np
nŠ

< nj
1X

mD0
cmjm >

D e� 1
2 j˛j2

1X

nD0
cn
.˛�/np

nŠ

D e� 1
2 j˛j2 .˛�/: (2.34)

The function  .˛/ is given by

 .˛/ D
1X

nD0
cnun.˛/ ; un.˛/ D ˛np

nŠ
: (2.35)

The sum (2.35) is absolutely convergent for all z 2 C. The proof goes as follows.
By using Schwarz’s inequality we have

j .˛/j D j
1X

nD0
< nj >

˛np
nŠ
j

�
1X

nD0
j < nj > j j˛j

n

p
nŠ

� jjj > jj
1X

nD0

j˛jnp
nŠ

(2.36)

The ratio of the nC1th term to the nth term is j˛j=pnC 1 which goes to 0 as n �!
0. Hence the sum (2.35) is absolutely convergent for all z 2 C and as a consequence
 .˛/ is an entire or integral function. We note that only entire functions subjected
to some growth restriction are in fact allowed.

The normalization condition can be chosen to be given by

<  j >D
1X

nD0
jcnj2 D

Z

d�.˛/e�j˛j2 j .˛/j2 D 1: (2.37)
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From this we can define the scalar product of any two entire functions  1.˛/ and
 2.˛/ by

<  1j 2 > D
Z

d�.˛/e�j˛j2 �
1 .˛/ 2.˛/: (2.38)

The set of all entire analytic functions  .˛/ endowed with the above scalar product
form a Hilbert space F which provides the so-called Fock-Bargmann representation
of the Hilbert spaceH. The orthonormal basis elements are given precisely by un.˛/.
These are orthonormal functions because

< mjn > D
Z

d�.˛/e�j˛j2u�
n .˛/um.˛/

D 1p
nŠmŠ

Z

d�.˛/e�j˛j2 .˛�/n.˛/m

D 1p
nŠmŠ

1

2


Z

rdr
� � rp

2

�nCm
e� r2

2

Z

d'ei'.m�n/

D 1p
nŠmŠ

.�1/nCm

2

�.

nC mC 2
2

/

Z

d'ei'.m�n/: (2.39)

Obviously < njm >D 0 if n ¤ m and < njn >D 1 as it should be. The resolution
of unity in the basis un.˛/ reads

X

n

un.˛/u
�
n .˛

0/ D e˛.˛
0/� : (2.40)

We remark

u�
n .˛/ D un.˛

�/ D e
j˛j2

2 < ˛jn > : (2.41)

In the Hilbert space F the action of the operators a and aC is given by differentiation
with respect to ˛� and multiplication by ˛� respectively since

< ˛jaCj >D ˛� < ˛j > : (2.42)

< ˛jaj > D
Z

d�.ˇ/ˇ < ˛jˇ >< ˇj >

D
Z

d�.ˇ/
�˛

2
C @

@˛�
�
< ˛jˇ >< ˇj >

D �˛

2
C @

@˛�
�
< ˛j > : (2.43)
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Operator Symbols A large class of operators acting on the Hilbert space H can
also be represented by functions called their symbols. The symbols of an operator OA
can be given by the functions A.˛�; ˇ/ and QA.˛�; ˇ/ defined by

A.˛�; ˇ/ D < ˛j OAjˇ >

D exp.�j˛j
2 C jˇj2
2

/
X

n;m

OAnmu
�
n .˛/um.ˇ/: (2.44)

QA.˛�; ˇ/ D exp.
j˛j2 C jˇj2

2
/A.˛�; ˇ/

D
X

n;m

OAnmu
�
n .˛/um.ˇ/: (2.45)

Explicitly we have

QA.˛�; ˇ/ D
X

n;m

OAnm
1p
nŠmŠ

.˛�/nˇm: (2.46)

Let us now imagine that the diagonal matrix elements QA.˛�; ˛/ vanish, viz
QA.˛�; ˛/ D 0. In order for this to be true an entire function of the variables ˛�

and ˇ defined precisely by the above double series must vanish on the domain given
by ˇ D ˛ in C2. A known result from complex analysis states that if an entire two-
variable function vanishes on the domain ˇ D ˛ for all ˛ it must vanish identically
everywhere in C2. In other words QA.˛�; ˇ/ D 0 for all ˛ and ˇ and as a consequence
the operator itself vanishes identically, viz OA D 0.

It is a general result that the diagonal matrix elements of an operator OA (bounded1

or a polynomial in a and aC) in the coherent states basis determine completely
the operator. This can also be seen as follows. By introducing new variables u D
.˛� C ˇ/=2 and v D i.˛� � ˇ/=2 the matrix element QA.˛�; ˇ/ defines an entire
function of u and v given by F.u; v/ D QA.˛�; ˇ/. Any entire function of complex
variables u and v is determined completely by its values at real u and v. Alternatively
every monomial .˛�/n˛m in the double series defining QA.˛�; ˛/ D 0 is uniquely
analytically continued to .˛�/nˇm. This is precisely the statement that the operator
OA is determined completely by its diagonal matrix elements

QA D A.˛�; ˛/ D exp.�j˛j2/ QA.˛�; ˛/ D< ˛j OAj˛ > : (2.47)

1We note that only bounded operators subjected to some growth restriction are in fact allowed in
analogy with the allowed entire functions.
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This is called the Q symbol or lower symbol of the operator OA. Let us derive this
crucial result in a more explicit fashion. We have

QA D e�j˛j2 < 0je˛�a OAe˛aC j0 > ; QA.˛�; ˛/ D< 0je˛�a OAe˛aC j0 > : (2.48)

We then compute

exp.ˇ
@

@˛
/ QA.˛�; ˛/ D< 0je˛�a OAeˇaC

e˛a
C j0 > : (2.49)

Then

exp.�˛ @
@̌
/ exp.ˇ

@

@˛
/ QA.˛�; ˛/ D < 0je˛�a OAeˇaC j0 >

D e
1
2 j˛j2C 1

2 jˇj2 < ˛j OAjˇ >
D QA.˛�; ˇ/: (2.50)

In other words QA.˛�; ˇ/ is obtained from QA.˛�; ˛/ by the action with the translation
operator twice [1]. This can be made more transparent as follows. We compute

exp.�˛ @
@̌
/ exp.ˇ

@

@˛
/ D

1X

mD0

1

mŠ
.�˛/m. @

@̌
/m

1X

nD0

1

nŠ
.ˇ/n.

@

@˛
/n

D
1X

nD0

1X

mD0

1

nŠ

1

mŠ
.�˛/m. @

@̌
/m.ˇ/n.

@

@˛
/n: (2.51)

We use the result

.
@

@̌
/m.ˇ/n D nŠ

.n � m/Š
ˇn�m ; n � m:

D 0 ; n < m: (2.52)

We get then

exp.�˛ @
@̌
/ exp.ˇ

@

@˛
/ D

1X

nD0

1

nŠ

nX

mD0

nŠ

mŠ.n � m/Š
.�˛/mˇn�m.

@

@˛
/n

D
1X

nD0

1

nŠ
.ˇ � ˛/n. @

@˛
/n

D W exp..ˇ � ˛/
�!
@

@˛
/ W (2.53)
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The end result is

QA.˛�; ˇ/ D W exp..ˇ � ˛/
�!
@

@˛
/ W QA.˛�; ˛/: (2.54)

The Q symbol of the operator OA is related to the Wick ordering of the operator OA
defined by

OA D
X

m;n

Amn.a
C/man: (2.55)

We compute immediately

QA.˛
�; ˛/ D

X

m;n

Amn.˛
�/m˛n: (2.56)

By knowing the symbol QA of the operator OA, i.e. the coefficients Amn we can
reconstruct the operator OA completely.

We can also construct a different symbol (P symbol or upper symbol) by
considering the anti-Wick ordering of the operator OA defined by

OA D
X

m;n

A0
mna

m.aC/n: (2.57)

We compute

OA D
Z

d�.˛/
X

m;n

A0
mna

mj˛ >< ˛j.aC/n

D
Z

d�.˛/
X

m;n

A0
mn˛

m.˛�/nj˛ >< ˛j

D
Z

d�.˛/PA.˛
�; ˛/j˛ >< ˛j: (2.58)

This is precisely the defining equation of the P symbol. We have explicitly

PA.˛
�; ˛/ D

X

m;n

A0
mn˛

m.˛�/n: (2.59)

The relation between the Q and P symbols is given by

QA.˛
�; ˛/ D

Z

d�.ˇ/PA.ˇ
�; ˇ/j < ˛jˇ > j2

D 1

2


Z

dˇ�dˇPA.ˇ
�; ˇ/ exp.�j˛ � ˇj2/: (2.60)
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2.1.4 Weyl Symbol and Star Products

Weyl Symbol Let us consider the symmetrical ordering of the operator OA defined
by

OA D
X

m;n

AW
m;n

1

.mC n/Š
PŒ.aC/man�: (2.61)

The operator P is the symmetrization operator given by the sum of .m C n/Š
permutations of the factors. For example

PŒ.aC/2a� D 2Œ.aC/2aC aCaaC C a.aC/2�: (2.62)

PŒ.aC/2a2� D 4Œ.aC/2aC aCaaC C a.aC/2�aC 4Œa2aC C aaCaC aCa2�aC:
(2.63)

The function associated with the operator (2.61) is given by

WA.˛
�; ˛/ D

X

m;n

AW
m;n.˛

�/m˛n: (2.64)

This is the Weyl symbol of the operator OA. We want to write down the Fourier
transform with respect to the plane waves

exp.�ikx/ D exp.�ik1x1 � ik2x2/ D exp.�˛� � ��˛/: (2.65)

The complex number � defines the complex momentum space in the same way that
the complex number ˛ defines the complex position space. It is defined by

� D 1p
2
.k2 C ik1/: (2.66)

We have immediately

d�.�/ D 1

2

d��d� D 1

2

dk1dk2: (2.67)

These two equations are the analogues of

˛ D � 1p
2
.x1 � ix2/ ; d�.˛/ D 1

2

d˛�d˛ D 1

2

dx1dx2: (2.68)
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We introduce the Fourier transform �A.�
�; �/ of WA.˛

�; ˛/ by

�A.�
�; �/ D

Z

d�.˛/ exp.��˛� C ��˛/WA.˛
�; ˛/: (2.69)

WA.˛
�; ˛/ D

Z

d�.�/ exp.�˛� � ��˛/�A.��; �/: (2.70)

We compute

exp.�˛� � ��˛/ D
1X

nD0

nX

mD0

1

mŠ.n � m/Š
.�˛�/n�m.���˛/m

D
1X

nD0

1X

mD0

1

nŠmŠ
.�˛�/n.���˛/m: (2.71)

Let us derive the operator analogue of this formula. We have

exp.�aC � ��a/ D
1X

nD0

1

nŠ
.�aC � ��a/n: (2.72)

We need the binomial expansion of .AC B/n where A and B are operators in terms
of the symmetrization operator P. For concreteness we consider n D 4. We compute

.AC B/4 D A4 C B4 C .A2B2 C B2A2 C ABABC BABAC AB2AC BA2B/

C.A3BC BA3 C A2BAC ABA2/C .AB3 C B3AC B2ABC BAB2/

D 1

24
PŒA4�C 1

24
PŒB4�C 1

4
PŒA2B2�C 1

6
PŒA3B�C 1

6
PŒAB3�

D
4X

mD0

1

.4 �m/ŠmŠ
PŒA4�mBm�: (2.73)

Generalization of this result is given by

.AC B/n D
nX

mD0

1

.n �m/ŠmŠ
PŒAn�mBm�: (2.74)

By employing this result we get

exp.�aC � ��a/ D
1X

nD0

1

nŠ

nX

mD0

1

.n� m/ŠmŠ
PŒ.�aC/n�m.���a/m�: (2.75)
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Now we use the result

1X

nD0

nX

mD0

1

nŠ
Vn�m;m D

1X

nD0

1X

mD0

1

.nC m/Š
Vn;m: (2.76)

We get then

exp.�aC � ��a/ D
1X

nD0

1X

mD0

1

.nCm/Š

1

nŠmŠ
PŒ.�aC/n.���a/m�: (2.77)

This is the operator version of (2.71).
By substituting (2.71) into WA we obtain

WA.˛
�; ˛/ D

1X

nD0

1X

mD0
.˛�/m˛n

.�1/n
nŠmŠ

Z

d�.�/�m.��/n�A.��; �/: (2.78)

In other words

AW
m;n D

.�1/n
nŠmŠ

Z

d�.�/�m.��/n�A.��; �/: (2.79)

By substituting these components into the equation for the operator OA given
by (2.61) and then using the result (2.77) we obtain

OA D
Z

d�.�/�A.�
�; �/

X

m;n

1

.nC m/Š

1

nŠmŠ
PŒ.�aC/m.���a/n�

D
Z

d�.�/�A.�
�; �/ exp.�aC � ��a/: (2.80)

This should be compared with the function (2.70). In fact the analogy between (2.70)
and (2.80) is the reason why we want to associate the operator OA with the function
WA. This association can be made more precise as follows. First we have

QA.˛
�; ˛/ D < ˛j OAj˛ >

D
X

m;n

AW
m;n

1

.mC n/Š
< ˛jPŒ.aC/man�j˛ >

D
X

m;n

.�1/n
nŠmŠ

Z

d�.�/�m.��/n�A.��; �/
1

.mC n/Š
< ˛jPŒ.aC/man�j˛ >

D
Z

d�.�/�A.�
�; �/

X

m;n

1

mŠnŠ

1

.mC n/Š
< ˛j.�aC/m.���a/nj˛ >
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D
Z

d�.�/�A.�
�; �/ < ˛j exp.�aC � ��a/j˛ >

D
Z

d�.�/�A.�
�; �/ exp.�1

2
j�j2 C �˛� � ��˛/: (2.81)

From the other hand we have
Z

d�.ˇ/WA.ˇ
�; ˇ/ exp.�2j˛ � ˇj2/

D
Z

d�.�/�A.�
�; �/

Z

d�.ˇ/ exp.�2j˛ � ˇj2 C �ˇ� � ��ˇ/

D
Z

d�.�/�A.�
�; �/e�˛����˛

Z
dˇ�dˇ
2


exp.�2jˇj2 � �ˇ� C ��ˇ/

D
Z

d�.�/�A.�
�; �/e�˛����˛

Z
d2y

2

exp.�Ey2 C iEkEy/

D 1

2

Z

d�.�/�A.�
�; �/e� 1

2 j�j2C�˛����˛: (2.82)

Hence we obtain the result

QA.˛
�; ˛/ D < ˛j OAj˛ >D 2

Z

d�.ˇ/WA.ˇ
�; ˇ/ exp.�2j˛ � ˇj2/: (2.83)

Alternatively the operator OA can be rewritten in terms of the function WA as follows.
From (2.80) we have immediately

OA D
Z

d�.�/
Z

d�.˛/ exp.��˛� C ��˛/WA.˛
�; ˛/ exp.�aC � ��a/

D
Z

d�.˛/T.˛/WA.˛
�; ˛/: (2.84)

The operator T.˛/ is given by

T.˛/ D
Z

d�.�/ exp.��˛� C ��˛/ exp.�aC � ��a/: (2.85)
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Star Products We consider now the product OC of two operators OA and OB, viz OC D
OA OB. The corresponding Q symbol is given by

QC.˛
�; ˛/ D < ˛j OA OBj˛ >

D
Z

d�.ˇ/ < ˛j OAjˇ >< ˇj OBj˛ >

D
Z

d�.ˇ/ exp.�j˛j2 � jˇj2/ QA.˛�; ˇ/ QB.ˇ�; ˛/: (2.86)

Thus

QC.˛�; ˛/ D
Z

d�.ˇ/ exp.�jˇj2/ QA.˛�; ˇ/ QB.ˇ�; ˛/: (2.87)

We employ now the result (2.54) rewritten as

QA.˛�; ˇ/ D QA.˛�; ˛/ W exp.

 �
@

@˛
.ˇ � ˛// W : (2.88)

We need also to express QB.ˇ�; ˛/ in terms of QB.˛�; ˛/ using the equation

W exp..ˇ� � ˛�/
��!
@

@˛� / W QB.˛�; ˛/ D exp.�˛� @

@̌ � / exp.ˇ� @

@˛� / QB.˛�; ˛/

D e
1
2 j˛j2C 1

2 jˇj2 < ˇj OBj˛ >
D QB.ˇ�; ˛/: (2.89)

We get

QC.˛�; ˛/ D QA.˛�; ˛/:
Z

d�.ˇ/ W exp.

 �
@

@˛
.ˇ � ˛// W exp.�jˇj2/

W exp..ˇ� � ˛�/
��!
@

@˛� / W : QB.˛�; ˛/: (2.90)

At this point we shift the variable as ˇ �! ˇ0 D ˇ � ˛. The ordering becomes
irrelevant and we end up with

QC.˛�; ˛/ D QA.˛�; ˛/:
Z

d�.ˇ/ exp.

 �
@

@˛
ˇ/ exp.�jˇ C ˛j2/ exp.ˇ�

��!
@

@˛� /: QB.˛�; ˛/

D QA.˛�; ˛/:
Z

d�.ˇ/ exp..

 �
@

@˛
� ˛�/ˇ/ exp.�jˇj2 � j˛j2/

� exp.ˇ�.�˛ C
��!
@

@˛� //: QB.˛�; ˛/: (2.91)
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We have also

exp.ˇ.

�!
@

@˛
� ˛�// QA.˛�; ˛/ D

1X

nD0

1

nŠ
ˇn.

�!
@

@˛
� ˛�//n exp.˛˛�/QA.˛

�; ˛/

D
1X

nD0

1

nŠ
ˇn exp.˛˛�/.

�!
@

@˛
/nQA.˛

�; ˛/

D exp.j˛j2/ exp.ˇ

�!
@

@˛
/QA.˛

�; ˛/: (2.92)

Similarly

exp.ˇ�.
��!
@

@˛� � ˛// QB.˛�; ˛/ D exp.j˛j2/ exp.ˇ�
��!
@

@˛� /QB.˛
�; ˛/: (2.93)

We obtain then the result

QC.˛
�; ˛/DQA.˛

�; ˛/:
Z

d�.ˇ/ exp..

 �
@

@˛
/ˇ/ exp.�jˇj2/ exp.ˇ�

��!
@

@˛� /:QB.˛
�; ˛/:
(2.94)

The integral over ˇ is a simple Gaussian and can be done trivially. We have

QC.˛
�; ˛/ D QA.˛

�; ˛/: exp.
1

4
.

 �
@

@˛
C
��!
@

@˛� /
2/ exp.�1

4
.

 �
@

@˛
�
��!
@

@˛� /
2/:QB.˛

�; ˛/

D QA.˛
�; ˛/ �V QB.˛

�; ˛/: (2.95)

The star product �V is defined by

�V D exp.

 �
@

@˛

��!
@

@˛� /: (2.96)

Th is the Voros star product [33].
We would like now to find the star product associated with the Weyl symbol

which is known as the Groenewold-Moyal-Weyl product [11, 27]. By using
Eq. (2.80) and comparing with Eq. (2.81) we obtain

QAB D < ˛j OA OBj˛ >

D
Z

d�.�/ exp.�˛� � ��˛/ exp.�1
2
j�j2/�AB.��; �/: (2.97)
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The Fourier transform �AB is given by

�AB D
Z

d�.�/�A.� � �/�B.�/ exp
1

2
.��� � ���/: (2.98)

By substituting into (2.70) we get

WAB D
Z

d�.�/
Z

d�.�/�A.� � �/�B.�/ exp.�˛� � ��˛/ exp
1

2
.��� � ���/:

(2.99)

From the other hand there must exist a star product � such that

WAB D WA �WB

D
Z

d�.�/
Z

d�.�/�A.� � �/�B.�/ exp..�� �/˛� � .�� � ��/˛/ �

� exp.�˛� � ��˛/: (2.100)

It is not difficult to see that this star product is given by

� D exp
1

2

� �
@

@˛

��!
@

@˛� �
 ��
@

@˛�

�!
@

@˛

�

: (2.101)

Indeed we compute

exp..�� �/˛� � .�� � ��/˛/ � exp.�˛� � ��˛/

D exp.�˛� � ��˛/ exp
1

2
.��� � ���/: (2.102)

The two star products �V and � are equivalent. See for example [1] for a proof.

2.2 Noncommutativity from a Strong Magnetic Field

The relation between the noncommutative star product and path integral quantiza-
tion was noted a long time ago in [31].

The quantization of a non-relativistic electron in a strong magnetic field will lead
to noncommutative coordinates. We will follow here the brief discussion found in
[5, 28].

We consider a point particle of mass m and charge q moving in an electromag-
netic field .EE; EB/. The equation of motion is given by the Lorentz force

m
d2Er
dt2
D q.EEC Ev ^ EB/: (2.103)



2.2 Noncommutativity from a Strong Magnetic Field 37

In terms of the 4-vector gauge potential A� D .V; EA/ the electric and magnetic fields
EE and EB are given by

EE D �ErV � @
EA
@t
; EB D Er � EA: (2.104)

The Lorentz force reads explicitly

m
d2xi
dt2
D q.�@iV � @Ai

@t
C Pxj@iAj � Pxj@jAi/

D q.�@iV C Pxj@iAj � dAi

dt
/: (2.105)

We can trivially check that this equation of motion can be derived from the
Lagrangian

L D 1

2
mPx2i C q.AiPxi � V/: (2.106)

Now we consider motion confined to the xy plane under the influence of a constant
perpendicular magnetic field, viz EE D 0, EB D BOz. We have then Ax D Ax.x; y/,
Ay D Ay.x; y/, Az D 0 and V D 0. The conjugate momenta and the Hamiltonian are
given by

pi D mPxi C qAi ; i D 1; 2: (2.107)

H D Pxipi � L

D 1

2
mPx2i

D 1

2m
. pi � qAi/

2: (2.108)

We will also need the usual momenta


i D mPxi D pi � qAi ; i D 1; 2: (2.109)

We haveB D @xAy�@yAx. We know that the electric and magnetic fields are invariant

(physically observable) under the gauge transformations V �! V C @V=@t, EA �!
EA � Er�. In the symmetric gauge we can choose Ax D �By=2 and Ay D Bx=2, i.e.
Ai D �B
ijxj=2.

In the quantum theory xi and pi become operators Oxi and Opi satisfying the
commutation relations

ŒOxi; Opj� D i„ıij ; ŒOxi; Oxj� D 0 ; ŒOpi; Opj� D 0: (2.110)
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Equivalently we have

ŒOxi; O
j� D i„ıij ; ŒOxi; Oxj� D 0 ; Œ O
i; O
j� D qŒOpj; OAi� � qŒOpi; OAj�

D i„q@iAj � i„q@jAi

D i„qB
ij: (2.111)

We introduce the creation and annihilation operators Oa and OaC by

Oa D 1
p
2„qB. O
x C i O
y/ ; OaC D 1

p
2„qB. O
x � i O
y/: (2.112)

We have also

O
x D
r
„qB
2
.OaC C Oa/ ; O
y D i

r
„qB
2
.OaC � Oa/: (2.113)

Equivalently the creation and annihilation operators Oa and OaC can be given by

Oa D �i.@Nz C z

2
/ ; OaC D �i.@z � Nz

2
/: (2.114)

They satisfy

ŒOa; OaC� D 1: (2.115)

The complex coordinate z is defined by

z D
r

qB

2„ .xC iy/: (2.116)

The Hamiltonian operator is given by

OH D 1

2m
O
2i

D „!c.OaC OaC 1

2
/: (2.117)

The cyclotron (Larmor) frequency is defined by

!c D qB

m
: (2.118)
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We can immediately conclude that the corresponding energy levels, known as
Landau energy levels, are given by

En D „!c.nC 1

2
/ ; n 2 N: (2.119)

These levels are infinitely degenerate which we will now show.
We introduce the so-called guiding center coordinates by imposing on them the

requirement that they commute with the momenta 
i. After some work we find that
the correct definition is given by

Rx D
p
qB.y � 1

qB

x/ ; Ry D

p
qB.xC 1

qB

y/: (2.120)

The relevant commutation relations are

Œ ORi; O
j� D 0 ; Œ ORi; ORj� D i„
ij ; Œ O
i; O
j� D i„qB
ij: (2.121)

In analogy with the creation and annihilation operators Oa and OaC corresponding to
O
i we introduce the creation and annihilation operators Ob and ObC corresponding to
ORi by

Ob D 1p
2„ .
ORx C i ORy/ ; ObC D 1p

2„.
ORx � i ORy/: (2.122)

We have also

ORx D
r
„
2
.ObC C Ob/ ; ORy D i

r
„
2
.ObC � Ob/: (2.123)

Equivalently the creation and annihilation operators Ob and ObC can be given by

Ob D i.@z C Nz
2
/ ; ObC D i.@Nz � z

2
/: (2.124)

They satisfy

ŒOb; ObC� D 1: (2.125)

The Landau energy levels are infinitely degenerate simply because they do not
depend on the eigenvalues m of the number operator ObC Ob.

The ground energy level n D 0 is the lowest Landau level (LLL) which is defined
by the condition

Oa .z; Nz/ D �i.@Nz C z

2
/ .z; Nz/ D 0: (2.126)
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There is an infinite number of solutions given by

 m.z; Nz/ D zmp
mŠ

exp.�jzj
2

2
/: (2.127)

It is not difficult to observe that  m � .ObC/m 0, i.e. we can obtain all the LLLs by
acting repeatedly with ObC on the Gaussian wave function  0 D exp.�jzj2=2/.

The angular momentum is computed to be

L D „
i
.x@y � y@x/

D „.z@z � Nz@Nz/: (2.128)

Thus we can see immediately that the wave function m carries angular momentum
L D m and as a consequence the Gaussian wave function 0 D exp.�jzj2=2/ carries
zero angular momentum, viz

L m.z; Nz/ D „m m.z; Nz/: (2.129)

Much more importantly is the fact that the LLL wave function  m.z; Nz/ can be
understood as the component of the coherent state jz > on the number vector state
jm >. Indeed from (2.18) we have

 m.z; Nz/ D < zjm >D zmp
mŠ

exp.�jzj
2

2
/: (2.130)

We have made the identification ˛ D Nz or equivalently x1 D �x
p
qB=„ and x2 D

�ypqB=„. We know from the Heisenberg algebra (2.1) that ŒOx1; Ox2� D �i and hence
we expect that within the LLLs we will have ŒOx; Oy�LLL D �i„=qB. We will now show
this result in some detail.

In the strong magnetic field limit B �!1 the cyclotron frequency becomes very
large and therefore the gap between the LLLs and the higher Landau levels becomes
very large. The dynamics becomes thus largely described by the LLLs. The LLLs
provide then an overcomplete basis in this limit simply because they are identified
with coherent states. Indeed from (2.33) and (2.34) we know that every state vector
in the Hilbert space can be expanded in terms of the coherent states jz > as

j >D
Z

d�.z/ exp.�jzj
2

2
/ .Nz/jz > : (2.131)

The wave functions  .z/ are given by (2.35), viz

 .z/ D
1X

mD0
cmum.z/ ; um.z/ D zmp

mŠ
: (2.132)
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The wave functions um, as opposed to  m.z; Nz/, are analytic. They are essentially the
lowest Landau levels without the exponential decay, namely

um.z/ D exp.
jzj2
2
/ m.z; Nz/: (2.133)

The scalar product is defined by (2.38), viz

<  1j 2 > D
Z

d�.z/e�jzj2 �
1 .Nz/ 2.z/: (2.134)

We compute immediately

<  1j@z 2 > D
Z

d�.z/e�jzj2 : �
1 .Nz/:@z 2.z/

D �
Z

d�.z/@ze
�jzj2 : �

1 .Nz/: 2.z/

D
Z

d�.z/e�jzj2 : �
1 .Nz/:Nz: 2.z/

D <  1jNz 2 > : (2.135)

In the second line we have dropped a surface term. Thus within the lowest Landau
levels, which dominate the dynamics in the strong magnetic field limit, we can make
the identification @z �! Nz and as a consequence we have 1 D Œ@z; z�LLL D ŒNz; z�LLL.
This is equivalent to the commutation relation

ŒOx; Oy�LLL D �i� ; � D „
qB
: (2.136)

This is a noncommutative plane.

2.3 Noncommutative Moyal-Weyl Spacetimes

In this section we will follow the reviews [9, 32], as well as the articles [3, 20], and
the articles [10, 12–14, 17–19].

2.3.1 Algebra, Weyl Map, Derivation and Integral/Trace

A Groenewold-Moyal-Weyl spacetime Rd
� is a deformation of ordinary d dimen-

sional Euclidean spacetime Rd in which the coordinates xi are replaced with
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Hermitian operators Oxi satisfying the Heisenberg-Weyl commutation relations

ŒOxi; Oxj� D i�ij: (2.137)

The space Rd
� in general can be only partially non-commutative, i.e. the Poisson

tensor �ij is of rank 2r�d. This means in particular that we have only 2r non-
commuting coordinates. The Poisson tensor, also known as the noncommutativity
parameter, can thus be brought by means of an appropriate linear transformation of
the coordinate operators to the canonical form

� D

0

B
B
B
B
B
B
B
@

0 �1 0 : : 0 :

��1 0 0 : : 0 :

: : : : : : :

0 0 : : 0 �r :

0 0 : : ��r 0 :
: : : : : : :

1

C
C
C
C
C
C
C
A

: (2.138)

In the above equation �r D �2r�12r . In the spirit of Connes’ noncommutative
geometry [8], we will describe the Groenewold-Moyal-Weyl spacetime Rd

� in terms
of the algebra of functions on Rd, endowed with an associative noncommutative
product between elements f and g denoted by f � g. This star product is, precisely,
the Groenewold-Moyal-Weyl star product derived in previous sections. The algebra
corresponding to the space Rd

� will be denoted A� . The algebra A0 corresponding
to the commutative space Rd is clearly the algebra of functions on Rd with the usual
pointwise multiplication of functions. Specification of the algebra will determine
only topological properties of the space Rd

� . In order to specify the metric aspects
we must also define proper derivation operations on the algebra A� . The Weyl map
will allow us to map the algebra A� to the correct operator algebra generated by the
coordinate operators Oxi.

The algebra of functions on Rd, of interest to us here, is the algebra of Schwartz
functions of sufficiently rapid decrease at infinity. These are functions with all their
derivatives vanishing at infinity. Equivalently Schwartz functions are functions f .x/
which admit well defined Fourier transforms Qf .k/, viz

Qf .k/ D
Z

ddxf .x/e�ikx: (2.139)

The Fourier transforms Qf .k/ are also Schwartz functions, i.e. their derivatives to any
order vanish at infinity in momentum space. The functions f .x/ are given by the
inverse Fourier transforms, viz

f .x/ D
Z

ddk

.2
/d
Qf .k/eikx: (2.140)
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The Weyl operator Of acting in some, infinite dimensional separable, Hilbert space
H which corresponds to the function f .x/ is obtained by requiring that f .x/ is the
Weyl symbol of Of . In analogy with the Weyl map between (2.61) and (2.64) we can
immediately deduce the form of the operator Of to be given by

Of D
Z

ddk

.2
/d
Qf .k/eikOx: (2.141)

We have only replaced the coordinates xi by the coordinate operators Oxi. This is a
bounded operator which is also compact.

For simplicity we will assume maximal noncommutativity, i.e. d D 2r. The Weyl
map, or quantizer, is given by

�.Oxi; xi/ D
Z

ddk

.2
/d
eikiOxie�ikixi : (2.142)

As we have discussed previously this correspond to the symmetric ordering of the
operator. We have explicitly

Of D
Z

ddxf .xi/�.Oxi; xi/: (2.143)

It is obvious that if f D fk D exp.ikx/ then Of D Ofk D exp.ikOx/, viz

exp.ikOx/ D
Z

ddx exp.ikx/�.Oxi; xi/: (2.144)

The derivative operators on the non-commutative space Rd
� can be given by the inner

derivations

O@i D 1

i
.��1/ij.Oxj � OxRj /: (2.145)

The coordinate operators OxRi act on the right of the algebra, viz OxRi Of D Of Oxi. These
derivative operators satisfy the conditions

ŒO@i; O@j� D 0 ; ŒO@i; Oxj� D ıij: (2.146)

The derivative operators on Rd
� can also be given by any outer derivations satisfying

the above two requirements.
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We have the basic identity

ŒO@i; eikOx� D
1X

nD1

in

nŠ
ŒO@i; .kOx/n�

D
1X

nD1

in

nŠ
nki.kOx/n�1

D ikie
ikOx: (2.147)

In the second line we have used the second equation of (2.146) which is valid for all
derivations inner or outer. We have therefore the result

ŒO@i; Of � D
Z

ddk

.2
/d
ikiQf .k/eikOx: (2.148)

This suggest that we associate the operator ŒO@i; Of �with the function @if .xi/. The proof
goes as follows. First we have

ŒO@i; �.Oxi; xi/� D
Z

ddk

.2
/d
ikie

ikiOxie�ikixi

D �@i�.Oxi; xi/: (2.149)

By using the above result we have

ŒO@i; Of � D
Z

ddxf .xi/ŒO@i; �.Oxi; xi/�

D �
Z

ddxf .xi/@i�.Oxi; xi/

D
Z

ddx@if .xi/�.Oxi; xi/: (2.150)

In other words the operator ŒO@i; Of � corresponds to the function @if .xi/ as it should be.
In the commutative limit ��!0 the operator�.Oxi; xi/ reduces in an obvious way

to the delta function ı2.Ox � x/. This is in fact obvious from (2.144). For ˛i2R we
compute

e˛
O@eikOxe�˛ O@ D e

i
2 ˛ke˛

O@CikOxe�˛ O@

D ei˛keikOx: (2.151)
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The unitary operator exp.˛ O@/ corresponds to a translation operator in spacetime by
a vector Ę. By using the above result we obtain

e˛
O@�.Oxi; xi/e�˛ O@ D �.Oxi; xi � ˛i/: (2.152)

We can then conclude that TrH�.Oxi; xi/ is independent of x for any trace TrH on
H since TrH�.Oxi; xi/ D TrH�.Oxi; xi � ˛i/. In other words TrH�.Oxi; xi/ is simply an
overall normalization which we can choose appropriately. We choose (see below for
a derivation of this overall normalization in the Landau basis)

TrH�.Oxi; xi/ D 1
p

det.2
�/
: (2.153)

In some sense
p

det.2
�/ is the volume of an elementary cell in noncommutative
spacetime if we think of Rd

� as a phase space. This can also be understood from the
result

p
det.2
�/TrHeikOx D

Z

ddxeikx D .2
/dıd.k/: (2.154)

Similarly we can compute

p
det.2
�/TrH Of D

Z

ddxf .xi/: (2.155)

The analogue of the identity (2.153) is the identity

Z

ddx�.Oxi; xi/ D 1: (2.156)

We want now to show that the Weyl map is indeed one-to-one. The proof goes as
follows. First we compute

p
det.2
�/TrHeikOxeipOx D p

det.2
�/Tre� i
2 �ijkipj ei.kCp/Ox

D .2
/dıd.kC p/: (2.157)

Hence

p
det.2
�/TrH�.Oxi; xi/�.Oxi; yi/ D

Z
ddk

.2
/d
e�ikx

Z
ddp

.2
/d
e�ipy

�p
det.2
�/TrHeikOxeipOx

D ı2.x � y/: (2.158)
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Using this last formula one can immediately deduce

f .xi/ D
p

det.2
�/TrH Of �.Oxi; xi/: (2.159)

This shows explicitly that the Weyl map� provides indeed a one-to-one correspon-
dence between fields and operators.

2.3.2 Star Product and Scalar Action

The most natural problem now is to determine the image under the Weyl map of the
pointwise product Of Og of the two operators Of and Og. From our previous discussion of
the coherent states we know that the answer is given by the star product f � g where
� is the Groenewold-Moyal-Weyl product (2.101). We rederive this fundamental
result one more time in this section.

First we compute the generalization of (2.157) given by

p
det.2
�/TrHeikOxeipOxeiqOx D e� i

2 �ijkipj.2
/dıd.kC pC q/: (2.160)

This leads immediately to

p
det.2
�/TrH�.Ox; y/�.Ox; z/�.Ox; x/ D

Z
ddk

.2
/d
ddp

.2
/d
eik.x�y/eip.x�z/e� i

2 �ijkipj :

(2.161)

Hence

p
det.2
�/TrH Of Og�.Oxi; xi/ D

Z
ddk

.2
/d
ddp

.2
/d
Qf .k/Qg. p/e� i

2 �ijkipj ei.kCp/x

� f � g.x/: (2.162)

The above definition of the star product is precisely the one given in (2.101). This
star product can also be given by

f � g.x/ D e
i
2 �ij

@
@�i

@
@�j f .xC �/g.xC �/j�D�D0: (2.163)

The above result can also be put in the form

Of Og D
Z

ddxf � g.xi/�.Oxi; xi/: (2.164)
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This leads to the identity

p
det.2
�/TrH Of Og �

Z

ddx f � g.x/ D
Z

ddxf .x/g.x/: (2.165)

From the other hand we know that the operator ŒO@i; Of � corresponds to the function
@if .xi/. We can then also write down

p
det.2
�/TrHŒO@i; Of �2 �

Z

ddx @if � @if .x/ D
Z

ddx.@if /
2: (2.166)

We are now in a position to propose a free, i.e. quadratic scalar action. This will be
given simply by

Sfree D
Z

ddx ˆ.�1
2
@2i C

�2

2
/ˆ

� p
det.2
�/TrH Ô

�

� 1
2
ŒO@i; ŒO@i; : : :��C �2

2

�
Ô : (2.167)

Next we add a phi-four interaction as a typical example of noncommutative
interacting field theory. First we note that the operators Ô and Ô 2 correspond to
the fields ˆ and ˆ2 respectively. Indeed we have

p
det.2
�/TrH Ô�.Oxi; xi/ D ˆ.x/: (2.168)

p
det.2
�/TrH Ô 2�.Oxi; xi/ D ˆ �ˆ.x/: (2.169)

Hence we must have immediately

p
det.2
�/TrH Ô 4�.Oxi; xi/ D ˆ �ˆ �ˆ �ˆ .x/: (2.170)

The phi-four interaction term must therefore be of the form

Sinteraction D
p

det.2
�/
	

4Š
TrH Ô 4 D 	

4Š

Z

ddxˆ �ˆ �ˆ �ˆ .x/: (2.171)

2.3.3 The Langmann-Szabo-Zarembo Models

In this section, we will write down the most general action, with a phi-four
interaction, in a non-commutative Rd

� , under the effect of a magnetic field which
induces noncommutivity also in momentum space. Then, we will regularize the
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partition function of the theory by replacing the field operator Ô by an N�N matrix
M, and also replacing the infinite dimensional trace TrH by a finite dimensional
trace TrN . The resulting theory is a single-trace matrix model, with a matrix phi-
four interaction, and a modified propagator. We will mostly follow [20].

For simplicity, we start by considering a 2-dimensional Euclidean spacetime,
with non-commutativity given by �ij. Generalization to higher dimension will be
sketched in Sect. 2.3.5. We also introduce non-commutativity in momentum space,
by introducing a minimal coupling to a constant background magnetic field Bij. The
derivation operators become

ODi D O@i � iBijXj ; OCi D O@i C iBijXj: (2.172)

In above Xi is defined by

Xi D Oxi C Ox
R
i

2
: (2.173)

Hence

ODi D �i.��1 C B

2
/ij Oxj C i.��1 � B

2
/ij OxRj

OCi D �i.��1 � B

2
/ij Oxj C i.��1 C B

2
/ij OxRj : (2.174)

We also remark

ŒXi;Xj� D 0: (2.175)

Œ ODi; ODj� D 2iBij ; Œ OCi; OCj� D �2iBij: (2.176)

Œ ODi;Xj� D Œ OCi;Xj� D ŒO@i;Xj� D ıij: (2.177)

Instead of the conventional Laplacian � D .�O@2i C �2/=2 we will consider the
generalized Laplacians

� D �� OD2i � Q� OC2i C
�2

2

D �.� C Q�/O@2i C .� � Q�/iBijfXj; O@ig � .� C Q�/.B2/ijXiXj C �2

2
: (2.178)

The case � D Q� corresponds to the Grosse-Wulkenhaar model [12–14], while the
model � D 1; Q� D 0 corresponds to Langmann-Szabo-Zarembo model considered
in [18].

Let us introduce the operators Z D X1 C iX2, NZ D ZC D X1 � iX2, O@ D O@1 � iO@2
and NO@ D �O@C D O@1 C iO@2. Also introduce the creation and annihilation operators
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(with �0 D �=2, � D �12)

Oa D 1

2
.
p
�0 O@C 1p

�0
NZ/ ; OaC D 1

2
.�

p
�0
NO@C 1p

�0
Z/: (2.179)

Ob D 1

2
.
p
�0
NO@C 1p

�0
Z/ ; ObC D 1

2
.�

p
�0 O@C 1p

�0
NZ/: (2.180)

We have

X1 D
p
�0

2
.OaC ObC C OaC C Ob/ ; X2 D i

p
�0

2
.OaC ObC � OaC � Ob/

O@1 D 1

2
p
�0
.Oa � ObC � OaC C Ob/ ; O@2 D i

2
p
�0
.Oa � ObC C OaC � Ob/: (2.181)

We compute by using ŒZ; NZ� D 0, ŒO@;Z� D Œ
NO@; NZ� D 2, ŒO@; NZ� D Œ

NO@;Z� D 0, and

ŒO@; NO@� D 0 the commutation relations

ŒOa; OaC� D 1 ; ŒOb; ObC� D 1: (2.182)

The rest are zero.
We consider, now, the rank-one Fock space operators

O�l;m D jl >< mj: (2.183)

We have immediately

O�C
l;m D O�m;l: (2.184)

O�l;m O�l0;m0 D ım;l0 O�l;m0 : (2.185)

TrH O�l;m D ıl;m: (2.186)

TrH O�C
l;m
O�l0 ;m0 D ıl;l0ım;m0 : (2.187)

We are, therefore, led to consider expanding the arbitrary scalar operators Ô , and
Ô C, in terms of O�l;m, as follows

Ô D
1X

l;mD1
Mlm O�l;m ; Ô C D

1X

l;mD1
M�

lm
O�C
l;m: (2.188)

The infinite dimensional matrix M should be thought of, as a compact operator,
acting on some separable Hilbert space H1 of Schwartz sequences, with sufficiently
rapid decrease [20]. This, in particular, will guarantee the convergence of the
expansions of the scalar operators Ô , and Ô C.
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Next, we compute

Ô Ô 0 D
1X

l;mD1
.MM0/lm O�l;m: (2.189)

The representation of this operator product, in terms of the star product of functions,
can be obtained as follows. In the operators O�l;m D jl >< mj, we can identify the
kets jl > with the states of the harmonic oscillator operators Oa, and OaC, whereas the
bras < mj can be identified with the states of the harmonic oscillator operators Ob,
and ObC. More precisely, the operators O�l;m are, in one-to-one correspondence, with
the wave functions �l;m.x/ D< xjl;m > known as Landau states [10, 17]. These
states will be constructed explicitly in Appendix A. Landau states are defined by

Oa O�l;m D
p
l� 1 O�l�1;m ; OaC O�l;m D

p
l O�lC1;m: (2.190)

Ob O�l;m D
p
m � 1 O�l;m�1 ; Ob O�l;m D

p
m O�l;mC1: (2.191)

These states, as we will show, satisfy, among other things, the following properties

��
l;m.x/ D �m;l.x/: (2.192)

�l1;m1 � �l2;m2 .x/ D
1p
4
�0

ım1;l2�l1;m2 .x/: (2.193)

Z

d2x �l;m.x/ D
p
4
�0 ıl;m: (2.194)

Z

d2x ��
l1;m1
� �l2;m2 .x/ D ıl1;l2 ım1;m2 : (2.195)

By comparing with (2.184)–(2.187)we conclude immediately that the field/operator
(Weyl) map is given by

p
2
� �l1;m1 $ O�l1;m1 : (2.196)

Z

d2x$ p
det.2
�/TrH: (2.197)

We are therefore led to consider scalar functions ˆ and ˆC corresponding to the
scalar operators Ô , Ô C given explicitly by

ˆ D
p
2
�

1X

l;mD1
Mlm�l;m ; ˆ

C D
p
2
�

1X

l;mD1
M�

lm�
�
l;m �! Ô ; Ô C: (2.198)
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Indeed the star product is given by

ˆ �ˆ0 D
p
2
�

1X

l;mD1
.MM0/lm�l;m: (2.199)

In other words, the star product is mapped to the operator product as it should be,
viz

ˆ �ˆ0 $ Ô Ô 0: (2.200)

The operator Xi Ô D 1
2
Oxi Ô C 1

2
Ô Oxi corresponds to the function 1

2
xi �ˆC 1

2
ˆ � xi D

xiˆ. As a consequence, the differential operators OD2i , and OC2i will be represented in
the star picture by the differential operators

Di D @i � iBijxj ; Ci D @i C iBijxj: (2.201)

The Landau states are actually eigenstates of the LaplaciansD2i , andC2i at the special
point

B2�20 �
B2�2

4
D 1: (2.202)

Indeed, we can compute (with ˛ D 1C B�0, ˇ D 1� B�0, and ˛ˇ D 1� B2�20 ) the
following

4�0 OD2i D �4˛2.OaC OaC 1

2
/� 4ˇ2.ObC ObC 1

2
/C 4˛ˇ.OaObC OaC ObC/: (2.203)

4�0 OC2i D �4ˇ2.OaC OaC 1

2
/� 4˛2.ObC ObC 1

2
/C 4˛ˇ.OaObC OaC ObC/: (2.204)

For ˇ D 0, we observe that D2i , and C2i depend only on the number operators OaC Oa,
and ObC Ob respectively. For ˛ D 0, the roles of D2i , and C2i , are reversed.

Next, we write down, the most general single-trace action with a phi-four
interaction in a non-commutativeRd

� under the effect of a magnetic field, as follows

S D p
det.2
�/TrH

�
Ô C

�

� � OD2i � Q� OC2i C
�2

2

�
Ô C 	

4Š
Ô C Ô Ô C Ô

C	
0

4Š
Ô C Ô C Ô Ô

�

: (2.205)
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By using the above results, as well as the results of the previous section, we can
rewrite this action in terms of the star product as follows

S D
Z

d2x

�

ˆC
�

� �D2i � Q�C2i C
�2

2

�

ˆC 	

4Š
ˆC �ˆ �ˆC �ˆ

C	
0

4Š
ˆC �ˆC �ˆ � ˆ

�

: (2.206)

In most of the following we will assume 	0 D 0.

2.3.4 Duality Transformations and Matrix Regularization

Duality Transformations The action, of interest, reads

S D p
det.2
�/TrH

�
Ô C

�

� � OD2i � Q� OC2i C
�2

2

�
Ô C 	

4Š
Ô C Ô Ô C Ô

�

D
Z

d2x

�

ˆC
�

� �D2i � Q�C2i C
�2

2

�

ˆC 	

4Š
ˆC �ˆ �ˆC � ˆ

�

: (2.207)

This action enjoys, a remarkable, symmetry under certain duality transformations
which exchange, among other things, positions and momenta. See [18–20] for
the original derivation. This property can be shown as follows. We start with the
quadratic action given by

S2Œˆ;B� D
Z

d2x

�

ˆC
�

� �D2i � Q�C2i C
�2

2

�

ˆ

�

: (2.208)

We define Qki D B�1
ij kj. The Fourier transform of ˆ.x/, and Diˆ.x/, are Q̂ .k/, and

� QDi Q̂ .k/, where

Q̂ .k/ D
Z

d2xˆ.x/ e�ikixi : (2.209)

� QDi Q̂ .k/ D
Z

d2xDiˆ.x/ e
�ikixi

D �. @
@Qki
� iBij Qkj/ Q̂ .k/: (2.210)

Then, we can immediately compute that

Z

d2x .Diˆ/
C.x/.Diˆ/.x/ D

Z

d2 Qk . QDi N̂ /C.Qk/. QDi N̂ /.Qk/: (2.211)
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The new field, N̂ , is defined by

N̂ .Qk/ D
r

jdet
B

2

j Q̂ .BQk/: (2.212)

A similar result holds for the other quadratic terms. By renaming the variable as
Qk D x, we can see that the resulting quadratic action has, therefore, the same form
as the original quadratic action, viz

S2Œˆ;B� D S2Œ N̂ ;B�: (2.213)

Next, we consider the interaction term

SintŒˆ;B� D
Z

d2xˆC �ˆ �ˆC �ˆ

D
Z

d2k1
.2
/2

: : :

Z
d2k1
.2
/2

Q̂ C.k1/ Q̂ .k2/ Q̂ C.k3/ Q̂ C.k4/ QV.k1; k2; k3; k4/:
(2.214)

The vertex in momentum space is given by

QV.k1; k2; k3; k4/ D .2
/2ı2.k1 � k2 C k3 � k4/e
�i���

�
k1�k2�Ck3�k4�

�

: (2.215)

By substituting, k D BQk, we obtain

SintŒˆ;B� D
Z

d2 Qk1 : : :
Z

d2 Qk4 N̂ C.Qk1/ N̂ .Qk2/ N̂ C.Qk3/ N̂ C.Qk4/ NV.Qk1; Qk2; Qk3; Qk4/:
(2.216)

The new vertex is given by

NV.Qk1; Qk2; Qk3; Qk4/ D detB

.2
/2
ı2.Qk1 � Qk2 C Qk3 � Qk4/ei.B�B/��

�Qk1�Qk2�CQk3�Qk4�
�

: (2.217)

The interaction term, can also, be rewritten as

SintŒˆ;B� D
Z

d2x1 : : :
Z

d2x4ˆ
C.x1/ˆ.x2/ˆC.x3/ˆC.x4/V.x1; x2; x3; x4/:

(2.218)
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The vertex in position space is given by

V.x1; x2; x3; x4/ D
Z

d2k1
.2
/2

: : :

Z
d2k4
.2
/2

QV.k1; k2; k3; k4/eik1x1�ik2x2Cik3x3�ik4x4

D 1

.2
/2jdet� jı
2.x1 � x2 C x3 � x4/e

�i.��1/��.x
�
1 x
�
2 Cx

�
3 x
�
4 /:

(2.219)

We can see immediately from comparing Eqs. (2.216) and (2.217), to Eqs. (2.218)
and (2.219), that the interaction term in momentum space, has the same form as
the interaction term in position space, provided that the new noncommutativity
parameter, and the new coupling constant, are given by

N� D �B�1��1B�1: (2.220)

	
detB

.2
/2
D

N	
.2
/2

1

det N� ,
N	 D 	

jdetB� j : (2.221)

In summary, the duality transformations under which the action retains the same
form, are given by

xi �! Qki D B�1
ij kj: (2.222)

ˆ.x/ �! N̂ .Qk/ D
r

jdet
B

2

j Q̂ .BQk/: (2.223)

� �! N� D �B�1��1B�1: (2.224)

	 �! N	 D 	

jdetB� j : (2.225)

Matrix Regularization Now, we want to express the above action, which is given
by Eq. (2.207), in terms of the compact operators M, and MC. First, we compute

TrHˆCˆ D TrH1M
CM: (2.226)

TrHˆC.abC aCbC/ˆ D TrH1
�
�CMC�M CMC�CM�

�
: (2.227)

TrHˆC.aCaC 1

2
/ˆ D TrH1M

CEM: (2.228)

TrHˆC.bCbC 1

2
/ˆ D TrH1MEMC: (2.229)

TrHˆCˆ ˆCˆ D TrH1M
CMMCM: (2.230)
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The infinite dimensional matrices � , and E are defined by

.�/lm D
p
m � 1ılm�1 ; .E/lm D .l � 1

2
/ılm: (2.231)

The action becomes

S D
p

det.2
�/

�0

�

� .� C Q�/˛ˇTrH1
�
�CMC�M CMC�CM�

�

C.�˛2 C Q�ˇ2/TrH1MCEM C .�ˇ2 C Q�˛2/TrH1MEMC C �2�0

2
TrH1M

CM

C	�0
4Š

TrH1M
CMMCM

�

: (2.232)

We regularize the theory by taking M to be an N � N matrix. The states �l;m.x/,
with l;m < N, where N is some large integer, correspond to a cut-off in position,
and momentum spaces [12]. The infrared cut-off is found to be proportional to R Dp
2�N, while the UV cut-off is found to be proportional to ƒ D p

8N=� . In [20],
a double scaling strong noncommutativity limit, in which N=� (and thusƒ) is kept
fixed, was considered.

2.3.5 The Grosse-Wulkenhaar Model

We will be mostly interested in the so-called Grosse-Wulkenhaar model. This
contains, compared with the usual case, a harmonic oscillator term in the Laplacian,
which modifies, and thus allows us, to control the IR behavior of the theory. This
model is perturbatively renormalizable, which makes it, the more interesting. The
Grosse-Wulkenhaar model, corresponds to the values � D Q� ¤ 0, so that the mixing
term, in (2.178), cancels. We consider, without any loss of generality, � D Q� D 1=4.
We obtain therefore the action

S D
p

det.2
�/TrH

�
Ô C

�

� 1
2
O@2i C

1

2
.BijXj/

2 C �2

2

�
Ô C 	

4Š
Ô C Ô Ô C Ô

�

D
Z

d2x

�

ˆC
�

� 1
2
@2i C

1

2
.Bijxj/

2 C �2

2

�

ˆC 	

4Š
ˆC �ˆ �ˆC �ˆ.x/

�

:

(2.233)

In two dimensions, we can show that .Bijxj/2 D �2Qx2i , where Qxi D 2.��1/ijxj, and
� is defined by

B� D 2�: (2.234)
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We get therefore the action

S Dp
det.2
�/TrH

�
Ô C

�

� 1
2
O@2i C

1

2
�2 QX2i C

�2

2

�
Ô C 	

4Š
Ô C Ô Ô C Ô

�

D
Z

d2x

�

ˆC
�

� 1
2
@2i C

1

2
�2 Qx2i C

�2

2

�

ˆC 	

4Š
ˆC �ˆ �ˆC �ˆ

�

:

(2.235)

Similarly, to Qxi D 2.��1/ijxj, we have defined QXi D 2.��1/ijXj. This action, is also
found, to be covariant under a duality transformation which exchanges, among other
things, positions and momenta as xi $ Qpi D B�1

ij pj. Let us note here, that because of
the properties of the star product, the phi-four interaction, is actually invariant under
this duality transformation. The value �2 D 1, gives an action which is invariant
under this duality transformation, i.e. the kinetic term becomes invariant under this
duality transformation for�2 D 1.

In the Landau basis, the above action, reads

S D �2

�

�

.�2 � 1/TrH
�
�CMC�M CMC�CM�

�

C .�2 C 1/TrH.MCEM CMEMC/C �2�

2
TrHM

CM C 	�

4Š
TrHM

CMMCM

�

:

(2.236)

This is a special case of (2.232). Equivalently

S D �2
X

m;n;k;l

�
1

2
.MC/mnGmn;klMkl C 	

4Š
.MC/mnMnk.M

C/klMlm

�

: (2.237)

Gmn;kl D
�
�2 C �21.mC n � 1/�ın;kım;l � �21

p
!.m � 1/.n � 1/ ın�1;kım�1;l

��21
p
!mn ınC1;kımC1;l: (2.238)

The parameters of the model are �2, 	, and

�2 D
p

det.2
�/ ; �21 D 2.�2 C 1/=� ; p! D .�2 � 1/=.�2 C 1/: (2.239)

There are, only, three independent coupling constants in this theory, which we can
take to be �2, 	, and �2.
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Generalization Generalization of the above results, to higher dimensions d D 2n,
assuming maximal noncommutativity for simplicity, is straightforward. The action
reads

S D p
det.2
�/TrH

�
Ô C

�

� � OD2i � Q� OC2i C
�2

2

�
Ô C 	

4Š
Ô C Ô Ô C Ô

�

D
Z

ddx

�

ˆC
�

� �D2i � Q� QC2i C
�2

2

�

ˆC 	

4Š
ˆC �ˆ � ˆC �ˆ

�

: (2.240)

In order to be able to proceed, we will assume that the noncommutativity tensor
� , and the magnetic tensor B, are simultaneously diagonalizable. In other words, �
and B, can be brought together, to the canonical form (2.138). For example, in four
dimension, we will have

� D

0

B
B
@

0 �12 0 0

��12 0 0 0

0 0 0 �34
0 0 ��34 0

1

C
C
A ; B D

0

B
B
@

0 B12 0 0

�B12 0 0 0

0 0 0 B34
0 0 �B34 0

1

C
C
A : (2.241)

The d-dimensional problem will, thus, split into a direct sum, of n independent, and
identical, two-dimensional problems.

The expansion of the scalar field operator is, now, given by

Ô D
1X

El;Em
MElEm O�El;Em ; El D .l1; : : : ; ln/ ; Em D .m1; : : : ;mn/: (2.242)

Obviously

O�El;Em D
nY

iD1
O�li;mi : (2.243)

And

O�El;Em $ det.2
�/1=4 �El;Em: (2.244)

The quantum numbers li, and mi correspond to the plane x2i�1�x2i. They correspond
to the operators Ox2i�1, Ox2i, O@2i�1, and O@2i, or equivalently, to the creation, and
annihilation operators Oa.i/, Oa.i/C, Ob.i/, Ob.i/C. Indeed, the full Hilbert space Hn, in
this case, is a direct sum of the individual Hilbert spaces H.i/

1 , associated, with the
individual planes.

The above action can be given, in terms of the compact operators M and MC, by
essentially Eq. (2.232). The explicit detail will be left as an exercise.
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The Grosse-Wulkenhaar model, in higher dimensions, corresponds, as before, to
the values � D Q� D 1=4. However, in higher dimensions, we need also to choose
the magnetic field B, such that

B� D 2�1: (2.245)

The action reduces, then, to

S D
p

det.2
�/TrH

�
Ô C

�

� 1
2
O@2i C

1

2
�2 QX2i C

�2

2

�
Ô C 	

4Š
Ô C Ô Ô C Ô

�

D
Z

ddx

�

ˆC
�

� 1
2
@2i C

1

2
�2 Qx2i C

�2

2

�

ˆC 	

4Š
ˆC �ˆ �ˆC �ˆ

�

:

(2.246)

Again this action will be given, in terms of the compact operators M and MC, by
essentially the same equations (2.236) and (2.237).

2.3.6 A Sphere Basis

Since we have two sets of creation and annihilation operators we can construct the
following SU.2/ algebra (we drop here the hats for ease of notation)

JC D J1 C iJ2 D aCb;J� D J1 � iJ2 D bCa ; J3 D 1

2
.aCa � bCb/:(2.247)

EJ 2 D J 2
1 C J 2

2 C J 2
3 D J .J C 1/ ; J D 1

2
.aCaC bCb/: (2.248)

We can check that

ŒJi;Jj� D i
ijkJk: (2.249)

Thus

2�D2i D �4.1C
B�

2
/2.aCaC 1

2
/� 4.1� B�

2
/2.bCbC 1

2
/

�4.B
2�2

4
� 1/.abC aCbC/: (2.250)

2�C2i D �4.1�
B�

2
/2.aCaC 1

2
/ � 4.1C B�

2
/2.bCbC 1

2
/

�4.B
2�2

4
� 1/.abC aCbC/: (2.251)
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We compute

2�D2i C 2�C2i D �8.1C
B2�2

4
/.2J C 1/C 8.1� B2�2

4
/.abC aCbC/:

(2.252)

Thus the Laplacian on the sphere can be given at the self-dual point by

EJ 2 D
�
�

16
.D2i C C2i /

�2
� 1
4
: (2.253)

2.4 Other Spaces

2.4.1 The Noncommutative/Fuzzy Torus

We assume in this section degenerate noncommutativity Rd
� D R2� � Rd�2. The

action of interest is therefore given by (with slight change of notation)

S D S0 C SI

D
Z

ddx

�

ˆ.�@2i � @2� C �2/ˆC
	

4Š
ˆ �ˆ �ˆ �ˆ .x/

�

D p
det.2
�/

Z

dd�2x TrH
�
Ô
�

� ŒO@i; ŒO@i; : : :�� � @2� C �2
�
Ô C 	

4Š
Ô 4

�

:

(2.254)

The goal next is to write down the corresponding matrix model, i.e. we want to
replace the infinite dimensional trace TrH with a finite N-dimensional trace. The
x�-dependent operators Ô will be replaced with x�-dependent N � N matrices. The
resulting theory for d D 2 is a scalar field theory on the noncommutative fuzzy torus
T2N . As it turns out this can also be obtained by putting the noncommutative scalar
field theory on R2� on a finite periodic N�N lattice. Generalization to d � 3 is trivial
since the extra directions are assumed to be commuting. The relation between the
matrix and lattice degrees of freedom will now be explained. See also [2, 3].

We start by defining the lattice theory and we only consider d D 2. First we
restrict the points to xi 2 aZ where a is the lattice spacing. The momentum in each
direction will be assumed to have the usual periodicity k1 �! k1 C 2


a , k2 �! k2
or k1 �! k1, k2 �! k2C 2


a . The periodicity over the Brillouin zone will then read

ei. piC
2

a ıij/Oxi D eipiOxi ; j D 1; 2: (2.255)
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This equation can be put into the form

ei
2

a Oxj ei 
a �ijpi D 1 ; j D 1; 2: (2.256)

We obtain the quantization condition

�ijpi 2 2aZ ; j D 1; 2: (2.257)

This condition is characteristic of noncommutativity. It is not present in the
commutative case � D 0. The above Eq. (2.256) becomes

ei
2

a Oxj D 1 ; j D 1; 2: (2.258)

In other words the eigenvalues of Oxi for a fixed i are on a one-dimensional lattice
with lattice spacing a. But since Ox1 and Ox2 do not commute the lattice sites are really
fuzzy. We can also immediately compute

evj
O@j e

2
i
a Oxi e�vj O@j D e

2
i
a .OxiCvi/ ; i D 1; 2: (2.259)

This relation means that vi must be like the eigenvalues of Oxi, i.e. vi 2 aZ. Thus the
derivatives will be given by the shift operators

ODi D ea
O@i ; i D 1; 2: (2.260)

By assuming that ŒO@i; O@j� D iBij we find

ODi ODj D eia
2Bij ODj ODi: (2.261)

The quantization condition (2.257) indicates that the two dimensional noncommu-
tative space must be compact. We consider the periodic boundary conditions

�.x1 C†11; x2 C†21/ D �.x1; x2/
�.x1 C†12; x2 C†22/ D �.x1; x2/: (2.262)

The periods †ij are integer multiples of the lattice spacing a. These last two
equations lead to the momentum quantization

ki†ij D 2
mj, ki D 2
.†/�1ji mj ; mj 2 Z: (2.263)

The momentum periodicity ki �! k0
i D ki C 2


a ıij, j D 1; 2 takes in terms of the
integers mj the form mj �! m0

j D mj C 1
a†ij, i D 1; 2. Since the momentum ki is
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restricted to be such that �ijki 2 2aZ we get a restriction on the integers mi given by




a
�ij†

�1
ki mk 2 Z: (2.264)

Thus there must exist a 2 � 2 integer-valued matrix M given by

MT D �

a
†�1�: (2.265)

The components of this matrix M must therefore satisfy

Mik†jk D 


a
�ij: (2.266)

Thus lattice regularization of noncommutativity requires compactness. The contin-
uum limit is a �! 0. Keeping M and � fixed we see that in the continuum limit
a �! 0 the period matrix † goes to infinity, i.e. the infrared cutoff disappears. In
the commutative limit � �! 0 and keeping a fixed the matrix M goes to zero. The
continuum limit does not commute with the commutative limit. This is the source
of the UV-IR mixing in the quantum theory.

Due to the periodicity condition �.xi C †ij/ D �.xi/ with j D 1; 2 we can use
instead of the coordinate operators Oxi, i D 1; 2 the coordinate operators

OZj D e2
 i†
�1
ji Oxi ; j D 1; 2: (2.267)

Indeed we compute

eikiOxi D ei2
†
�1
ji mjOxi D OZm1

1
OZm2
2 ei
‚12m1m2 : (2.268)

The noncommutativity parameter on the lattice is ‚. It is given by

‚ij D 2
†�1
ii1 �i1j1†

�1
jj1 : (2.269)

We can immediately compute

OZi OZj D OZj OZie�2
 i‚ij : (2.270)

Also we compute

ODi OZj ODC
i D ea

O@i OZje�aO@i D OZje2
 ia†�1
ji : (2.271)

From (2.266) we see that the noncommutativity parameter on the lattice must satisfy
the restriction

Mij D 1

2a
†ik‚kj: (2.272)
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Since the periods †ik are integer multiples of the lattice spacing a and M is a 2 � 2
integer-valued matrix the noncommutativity parameters‚ij must be rational-valued.

In summary we found that lattice regularization of noncommutative R2� yields
immediately the noncommutative torus. In the remainder we will consider the lattice
R2� /noncommutative torus given by the periods

†ij D Naıij: (2.273)

This is the case studied in Monte Carlo simulations [2, 7]. The periodic boundary
conditions become �.x1 C a; x2/ D �.x1; x2/, �.x1; x2 C a/ D �.x1; x2/. The
Heisenberg algebra becomes

OZi OZj D OZj OZie�2
 i‚ij ; ODi OZj ODC
i D OZje

2
i
N ıij : (2.274)

OZj D e
2
i
Na Oxj ; ODj D ea

O@j ; j D 1; 2: (2.275)

‚ij D 2


N2a2
�ij: (2.276)

The momentum quantization reads

Oki D kia D 2
mi

N
; i D 1; 2: (2.277)

Momentum periodicity Oki �! OkiC2
ıij yields then the valuesmi D 0; 1; : : : ;N�1.
Quantization of the noncommutativity parameters � and ‚ read

�ij D Na2Mij



; ‚ij D 2Mij

N
: (2.278)

In the following we will choose

Mij D 
ij: (2.279)

Thus

eikiOxi D ei2
†
�1
ji mjOxi D OZm1

1
OZm2
2 e

2i

N m1m2 : (2.280)

The Weyl map between fields and operators is given by

O�.x/ D 1

N2

N�1X

m1D0

N�1X

m2D0
OZm1
1
OZm2
2 e

2i

N m1m2 e� 2
i

aN mixi : (2.281)



2.4 Other Spaces 63

The point xi is on the lattice aZ with period aN. In other words xiD0; a; 2a; : : : ;
.N � 1/a. We compute for x1 ¤ 0 that

N�1X

m1D0
e
2
i
aN m1x1 D e

2
i
a x1 � 1

e
2
i
aN x1 � 1

D 0 ; e 2
ia x1 D 1: (2.282)

For x1 D 0 we clearly get
PN�1

m1D0 e
2
i
aN m1x1 D N. Thus we must have the identity

1

N2

N�1X

m1D0

N�1X

m2D0
e
2
i
aN m1x1e

2
i
aN m2x2 D ıx1;0ıx2;0: (2.283)

We consider the operators and lattice fields defined respectively by

O� D
N�1X

m1D0

N�1X

m2D0
Q�.m/ OZm1

1
OZm2
2 e

2i

N m1m2 : (2.284)

�.x/ D
N�1X

m1D0

N�1X

m2D0
Q�.m/ e 2
iaN mixi : (2.285)

Let us compute

Tr OZm1
1 D Tr e

2
im1
Na Ox1 : (2.286)

We diagonalize Ox1. Since the eigenvalues lie on a periodic one dimensional lattice
with lattice spacing a and period Na we get the eigenvalues an1 with n1 D 0,
a,. . . ,.N � 1/a. Thus

Tr OZm1
1 D

N�1X

n1D0
e
2
im1

N n1 D Nım1;0: (2.287)

Similarly

Tr OZm2
2 D

N�1X

n2D0
e
2
im2

N n2 D Nım2;0: (2.288)
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We also compute

OZ2 OZn
1 D OZn

1
OZ2 e 4
inN

OZ1 OZn
2 D OZn

2
OZ1 e� 4
in

N

OZm
2
OZn
1 D OZn

1
OZm
2 e

4
imn
N : (2.289)

Hence

OZm1
1
OZm2
2
OZn1
1
OZn2
2 D OZm1Cn1

1
OZm2Cn2
2 e

4
in1m2
N : (2.290)

Tr OZm1
1
OZm2
2
OZn1
1
OZn2
2 D N e

4
in1m2
N ım1;�n1ım2;�n2 : (2.291)

Tr OZm1
1
OZm2
2
O�.x/ D 1

N
e� 2
i

N m1m2 e
2
i
aN mixi : (2.292)

Therefore

Tr O� O�.x/ D 1

N
�.x/: (2.293)

Also we compute

X

x

e
2
i
aN .mi�ni/xi D

N�1X

r1D0

N�1X

r2D0
e
2
i
N .mi�ni/ri D N2ım;n: (2.294)

X

x

e
2
i
aN mixi O�.x/ D OZm1

1
OZm2
2 e

2
i
N m1m2 : (2.295)

X

x

�.x/ O�.x/ D O�: (2.296)

We define the star product on the lattice by

�1 � �2.x/ D NTr O�1 O�2 O�.x/
D N

X

y;z

�1.y/�2.z/Tr O�.x/ O�.y/ O�.z/: (2.297)

We compute

NTr OZm1Cn1
1

OZm2Cn2
2

O�.x/ D e� 2
i
N .m1Cn1/.m2Cn2/ e

2
i
aN

�
.m1Cn1/x1C.m2Cn2/x2

�

: (2.298)

NTr O�.x/ O�.y/ O�.z/ D 1

N4
X

m1;m2

X

n1;n2

e
2
i
N .n1m2�m1n2/ e

2
i
aN

�
mi.xi�yi/Cni.xi�zi/

�

: (2.299)
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We use the identities

X

n1

e
2
i
Na n1.am2Cx1�z1/ D Nıam2Cx1�z1 ;

X

n2

e
2
i
Na n2.�am1Cx2�z2/ D Nı�am1Cx2�z2 :

(2.300)

We thus get

NTr O�.x/ O�.y/ O�.z/ D 1

N2
exp

�
2
i

a2N

ij.xi � yi/.xj � zj/

�

: (2.301)

In other words

�1 � �2.x/ D 1

N2
X

y;z

exp

�
2
i

a2N

ij.xi � yi/.xj � zj/

�

�1.y/�2.z/

D 1

N2
X

y;z

exp

�

� 2i��1
ij .xi � yi/.xj � zj/

�

�1.y/�2.z/: (2.302)

It is not difficult to show that in the continuum limit this reduces to the star product
on Moyal-Weyl space. By using the fact that

P
x
O�.x/ D 1 we obtain

X

x

�1 � �2.x/ D NTr O�1 O�2: (2.303)

Next we compute

OD1 O� ODC
1 D

X

m1;m2

Q�.m/ OZm1
1
OZm2
2 e

2i

N m1.m2C1/: (2.304)

NTr OD1 O� ODC
1
O�.x/ D ea@1.�.x//: (2.305)

Similarly we compute

NTr OD2 O� ODC
2
O�.x/ D ea@2.�.x//: (2.306)

In other words

NTr

�
ODi O� ODC

i � O�
�
O�.x/ D

�

ea@i � 1
�

.�.x// ; i D 1; 2: (2.307)
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Thus if we take �i.x/ D
�

ea@i � 1
�

.�.x// the corresponding operator will be O�i D
ODi O� ODC

i � O�. We can immediately write the kinetic term

X

x

�i � �i.x/C a2�2
X

x

� � �.x/ D NTr

�
ODi O� ODC

i � O�
�2
C Na2�2Tr O�2:

(2.308)

This is the regularized version of the noncommutative kinetic action

Z

d2x �.�@2i C �2/� D
q

det.2
 Q�/TrH O�
�

� ŒO@i; ŒO@i; : : :��C �2
�
O�: (2.309)

We add the interaction

a2
	

4Š

X

x

� � � � � � �.x/ D Na2
	

4Š
Tr O�4: (2.310)

This is the regularized version of the noncommutative interaction

	

4Š

Z

d2x � � � � � � � .x/ D
q

det.2
 Q�/ 	
4Š
TrH O�4: (2.311)

Clearly we must have
q

det.2
 Q�/ D 2
 Q�12 � Na2. In other words Q� D �=2.

The noncommutative torus is given by the algebra ! OZ1 OZ2 D OZ2 OZ1, OD1 OZ1 ODC
1 Dp

! OZ1, OD2 OZ2 ODC
2 D

p
! OZ2, OD2 OZ1 ODC

2 D OZ1 and OD1 OZ2 ODC
1 D OZ2. The twist ! is given

in terms of the noncommutativity‚12 by

! D e2
 i‚12 D e
4
i
N : (2.312)

The algebra of the noncommutative torus admits a finite dimensional representation
when the noncommutativity parameter ‚12 is a rational number which is the case
here since N‚12 D 2. The dimension of this representation is exactly N. This is
the fuzzy torus. In this case the algebra of the noncommutative torus is Morita
equivalent to the algebra of smooth functions on the ordinary torus. More precisely
the algebra of the noncommutative torus is a twisted matrix bundle over the algebra
of smooth functions on the ordinary torus of topological charge N‚12 D 2 where
the fibers are the algebras of complex N � N matrices.
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To construct a finite dimensional representation of the algebra of the noncommu-
tative torus we introduce shift and clock matrices O�1 and O�1 given by

O�1 D

0

B
B
B
B
B
B
B
B
B
@

0 1

0 0 1

: :

: :

: :

0 1

1 : : : 0

1

C
C
C
C
C
C
C
C
C
A

; . O�1/ij D ıiC1;j ; . O�C
1 /ij D ıi�1;j ; O�1 O�C

1 D O�C
1
O�1 D 1:

(2.313)

O�2 D

0

B
B
B
B
B
B
B
B
B
@

1

!

!2

!3

:

:

:

1

C
C
C
C
C
C
C
C
C
A

; . O�2/ij D !i�1ıi;j ; . O�C
2 /ij D !1�iıi;j ;

O�2 O�C
2 D O�C

2
O�2 D 1: (2.314)

These are traceless matrices which satisfy O�N
1 D O�N

2 D 1. We compute the ’t Hooft-
Weyl algebra

O�1 O�2 D ! O�2 O�1: (2.315)

We can immediately define OZi by the matrices

OZ1 D O�2 ; OZ2 D O�1: (2.316)

By using the identities !
NC1
2 . O�C

1 /
NC1
2 O�2 D O�2. O�C

1 /
NC1
2 , . O�C

2 /
NC1
2 O�1 D

!
NC1
2 O�1. O�C

2 /
NC1
2 and !

NC1
2 D p! we can show that the algebra ODi OZj ODC

i D
e
2
i
N ıij OZj is satisfied provided we choose ODi such that

OD1 D O�
NC1
2

1 ; OD2 D . O�C
2 /

NC1
2 : (2.317)

We also compute

OD1 OD2 D !�. NC1
2 /2 OD2 OD1 D e� 
i.NC1/

N OD2 OD1: (2.318)

By comparing with Eq. (2.261) we get B12�12 D �.N C 1/.
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The matrices O�i generate the finite dimensional algebra of N � N complex
matrices. We introduce the generators

T.N/m D ! m1m2
2 OZm1

1
OZm2
2 : (2.319)

We have

O�.x/ D 1

N2
X

m

T.N/m e� 2
i
aN mixi : (2.320)

We compute

ŒT.N/m ;T.N/n � D 2 sin
2


N
.n1m2 �m1n2/T

.N/
mCn: (2.321)

Thus

Œ O�.x/; O�.y/� D 2

N4
X

m;n

sin
2


N
.n1m2 �m1n2/T

.N/
mCn e

� 2
i
aN .mixiCniyi/

D
X

z

K.x � z; y � z/ O�.z/: (2.322)

K.x � z; y � z/ D 2

N4
X

m;n

sin
2


N
.n1m2 � m1n2/ e

� 2
i
aN .mi.xi�zi/Cni.yi�zi//: (2.323)

We have used the identity

X

z

e� 2
i
aN .mi.xi�zi/Cni.yi�zi// O�.z/ D T.N/mCn e

� 2
i
aN .mixiCniyi/: (2.324)

The operators T.N/m generate the finite dimensional Lie algebra gl.N;C/ of dimen-
sion N2. Anti-Hermitian combinations of T.N/m in a unitary representation span the
Lie algebra su.N/.

2.4.2 The Fuzzy Disc of Lizzi-Vitale-Zampini

The original construction can be found in [21–24] with some related discussions
found in [4, 30].

The starting point is the algebra of functions on the noncommutative plane and
then implementing the constraint x2 C y2 � R2. Let the algebra of functions on
the noncommutative plane be denoted by A� D .F.R2/;�/ where � is the Voros
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star product . f � g/.Nz; z/ D< zjOf Ogjz >. This algebra is isomorphic to an algebra of
infinite dimensional matrices (operators). The algebra of functions on the disc A.N/

�

is defined by a projector P.N/� via the relation

A.N/
� D P.N/� �A� � P.N/� : (2.325)

OP.N/� D
NX

nD1
j n ><  nj ) P.N/� D e�r2=�

NX

nD0

r2n

nŠ�n
D �.N C 1; r2=�/

�.N C 1/ (2.326)

The algebra A.N/
� is isomorphic to the finite dimensional .N C 1/ � .N C 1/ matrix

algebra MatNC1. Functions on the fuzzy disc are defined explicitly by

f .N/� D P.N/� � f � P.N/� D e�jzj2=�
NX

m;nD0
fmn

Nzmznp
mŠnŠ�mCn

: (2.327)

Obviously, the function f on the noncommutative plane is given by the same
expansion (Berezin symbol) with N D 1.

The commutative limit of the continuum disc is defined by

N �!1 ; � �! 0 keeping R2 D �N D fixed: (2.328)

In this limit, the projector P.N/� goes to 1 for r2 < R2, to 1=2 for r2 D R2 and to 0
for r2 > R2 which is precisely the characteristic function of a disc on the plane.

The geometry of the fuzzy disc is fully encoded in the Laplacian. The Laplacian
on the Moyal-Weyl plane is given

r2f D 4

�2
< zjŒOa; ŒOf ; OaC��jz > : (2.329)

We can give the operator Of , corresponding to the function f , by the expression

Of D
1X

m;nD0
fmnj m ><  nj: (2.330)

On the fuzzy disc we define the Laplacian by the formula

r2N Of .N/ D
4

�2
OP.N/� ŒOa; Œ OP.N/�

Of OP.N/� ; OaC�� OP.N/� : (2.331)
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Clearly, the truncated operator Of .N/ is given by the expression

Of D
NX

m;nD0
fmnj m ><  nj: (2.332)

Explicitly the above Laplacian is given by Eq. .C:41/ of Lizzi et al. [25]. The
corresponding eigenvalues have been computed numerically and have been found
to converge to the spectrum of the standard Laplacian on the continuum disc with
Dirichlet boundary conditions.
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Chapter 3
The Fuzzy Sphere

Abstract In this chapter the quantization of the commutative sphere which yields
the noncommutative fuzzy sphere is discussed in great detail. We explicitly
construct coherent states, the star product, the flattening limit as well as noncom-
mutative scalar field theories on the fuzzy sphere. A brief introduction to fuzzy CP2

and to fuzzy fermions and Dirac operators on the fuzzy sphere is also presented.

3.1 Quantization of S2

3.1.1 The Algebra C1.S2/ and the Coadjoint Orbit
SU.2/=U.1/

We start by reformulating, some of the relevant aspects of the ordinary differential
geometry of the two-sphere S2, in algebraic terms. The sphere is a two-dimensional
compact manifold defined by the set of all points .x1; x2; x3/ of R3 which satisfy

x21 C x22 C x23 D R2: (3.1)

The algebra A D C1.S2/ of smooth, complex valued, and bounded functions on
the sphere, is of course, commutative with respect to the pointwise multiplication of
functions. A basis for this algebra, can be chosen to be provided, by the spherical
harmonics Ylm.�; �/, namely

f .x/ D f .�; �/ D
X

a1;:::;ak

fa1:::akxa1 : : : xak

D
X

lm

clmYlm.�; �/: (3.2)

The derivations on S2 will be given, by the generators of the rotation group La,
defined by

La D �i
abcxb@c: (3.3)

© Springer International Publishing AG 2017
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They satisfy

ŒLa;Lb� D i
abcLc: (3.4)

The Laplacian on the sphere S2 will be, obviously, given by

� D L2

D LaLa; eigenvaluesD l.lC 1/; l D 0; : : : ;1: (3.5)

According to [13, 14], all the geometry of the sphere, is encoded in the K-cycle,
or spectral triple, .A;H; �/. H is the infinite dimensional Hilbert space, of square
integrable functions, on which the functions of A are represented. Alternatively, H
can be thought of as the Hilbert space with basis provided by the standard infinite
dimensional set of kets fjEx >g, and thus the action of an element f of A on jEx >,
will give the value of this function at the point Ex.

In order to encode the geometry of the sphere, in the presence of spin structure,
we use instead the K-cycle .A;H;D; �/, where � , and D are the chirality, and the
Dirac operator on the sphere [11].

A manifestly SU.2/-invariant description of A can also be given following [18].
In this case, the algebra A is given by the quotient of the algebra C1.R3/ of all
smooth functions on R3, by its ideal I consisting of all functions of the form
h.x/.xaxa � R2/. Let f ; g2A, and f .x/,g.x/ are their representatives in C1.R3/
respectively, then a scalar product on A is given by

.f ; g/ D 1

2
R

Z

d3xı.xaxa � R2/f �.x/g.x/: (3.6)

We can also define the sphere by the Hopf fibration (with na D xa=R)


 W SU.2/ �! S2

g �! g�3g
�1 D En:E�: (3.7)

We can check, by squaring both sides of the equation g�3g�1 D En:E� , that
P3

iD1 n2a D
1. Clearly the structure group, U.1/, of the principal fiber bundle

U.1/�!SU.2/�!S2; (3.8)

leaves the base point En invariant, in the sense that, all the elements g exp.i�3�=2/ of
SU.2/, are projected onto the same point En on the base manifold S2. One can then,
identify the point En2S2, with the equivalence class Œg exp.i�3�=2/�2SU.2/=U.1/,
viz

En 2 S2  ! Œg exp.i�3�=2/�2SU.2/=U.1/: (3.9)



3.1 Quantization of S2 75

In other words, S2 is the orbit of SU.2/ through the Pauli matrix �3. It is the set
fg �3 g�1 W g 2 SU.2/g. The sphere is, therefore, the co-adjoint orbit SU.2/=U.1/.
In fact, SU.2/=U.1/, is also the complex projective space CP1. We have then

S2 D CP1 D SU.2/=U.1/: (3.10)

Let us say few more words about this important result [25]. Any element g 2 G D
SU.2/ can be parameterized by

g D
�
˛ ˇ

� Ň N̨
�

; j˛j2 C jˇj2 D 1: (3.11)

In other words, SU.2/ is topologically equivalent to the three-dimensional sphere
S3. This group contains the subgroup of diagonal matrices

H D
� �

˛ 0

0 N̨
� 	

: (3.12)

This is a U.1/ group. It is quite straightforward to see, that the quotient space
X D G=H, is isomorphic to the elements of G of the form

� �
˛ ˇ

� Ň ˛
� 	

; ˛2 C jˇj2 D 1: (3.13)

This must be the sphere S2. Indeed, by using g D ˛12 � iˇ1�2C iˇ2�1 in g�3g�1 D
na�a, we obtain n1 D 2˛ˇ1, n2 D 2˛ˇ2, and n3 D 2˛2 � 1, or equivalently

˛ D cos
�

2
; ˇ D sin

�

2
exp.i�/: (3.14)

3.1.2 The Symplectic Form d cos � ^ d�

The symplectic two-form on the sphere S2 is dcos� ^ d�. This can also be given by
the two-form �
ijknkdni^dnj=2. Thus, we have

! D ƒd cos �^d� D �ƒ
2

abcnadnb^dnc: (3.15)

The significance of the real number ƒ will be clarified shortly. We claim that this
symplectic two-form can be rewritten, in terms of the group element g 2 SU.2/, as

! D ƒid
�

Tr�3g
�1dg

�

: (3.16)
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This can be seen as follows. From d.g�3g�1/ D dna:�a, we get Œdg:g�1; na�a� D
dna�a, which indicates that dg:g�1 is in the Lie algebra, viz dg:g�1 D ra�a. From
Œra�a; na�a� D dna�a, we derive dnc D 2i
abcranb. We can express ra, in terms of na
and dna, as follows

ra � .ErEn/na D 1

2i

abcnbdnc: (3.17)

We can, then, show immediately that

! D �iƒTrg�3g�1:dgg�1 ^ dgg�1

D 2ƒ
abcnarbrc
D �ƒ

2

abcnadnb^dnc: (3.18)

It is not difficult to show that the two-form ! is gauge invariant, under the right
U.1/ gauge transformations g �! g exp.i��3=2/. This gauge invariance can also
be seen, from the fact, that we can express ! in terms of na. As a consequence, a
gauge invariant action SWZ, can be constructed out of the two-form!, as follows [4]

SWZ D
Z

!: (3.19)

This is the so-called Wess-Zumino action. The domain of the integration is clearly
two-dimensional, and also it must be closed, as we now explain.

Let us think of ni as the coordinates of a string, parameterized by � 2 Œ0; 1�,
moving on the sphere S2. Thus ni D ni.�; t/, where t is the time variable which goes,
say, from t1 to t2. Hence, g D g.�; t/. We will assume that g.0; t/ D g0, where g0 is
some fixed element of SU.2/, and we set g.1; t/ D g.t/. If one defines the triangle
� in the plane .t; �/, by its boundaries given by the three paths @�1 D .�; t1/ ,
@�2 D .�; t2/ and @�3 D .1; t/, then it is a trivial exercise to show that [4]

SWZ D
Z

�

!

D
Z t2

t1

LWZdtCƒi
Z 1

0

d�Tr�3

�

g.�; t1/
�1 @g
@�
.�; t1/ � g.�; t2/

�1 @g
@�
.�; t2/

�

:

(3.20)

The Wess-Zumino Lagrangian L is given by

LWZ D ƒiTr.�3g�1 Pg/: (3.21)

The equations of motion derived from the action (3.20), are precisely those, obtained
from the Wess-Zumino term given by (5.182). This is, because, the second term
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of (3.20), will not contribute to the equations of motion, since it involves the fixed
initial, and final times, where g is not varied.

The Lagrangian LWZ arises, generally, when one tries to avoid singularities of
the phase space. In other words, when one tries to find a smooth global system
of canonical coordinates for the phase space. In such cases, a global Lagrangian
can not be found by a simple Legendre transformation of the Hamiltonian, and
therefore, one needs to enlarge the configuration space. A global Lagrangian, over
this new extended configuration space, can then be shown, to exist, and it turns out
to contain (5.182) as a very central piece. Basically (5.182) reflects the constraints
imposed on the system.

Two examples, for which the above term plays a central role, are the cases of
a particle with a fixed spin, and the system of a charged particle in the field of a
magnetic monopole. These two problems were treated in great detail in [4].

3.1.3 Quantization of the Symplectic Form on S2

The fuzzification of the sphere S2 is the procedure of its discretisation by quanti-
zation. The starting point is the Wess-Zumino term (5.182). This same procedure,
as will show in due time, works for all co-adjoint orbits such as CPn. Spacetimes
and spatial slices, which are not co-adjoint orbits, require other procedures for their
fuzzification.

Let us now turn to the quantization of the Lagrangian (5.182). First, we
parametrize the group element g by the set of variables .�1; �2; �3/. The conjugate
momenta 
i are given by the equations


i D @LWZ

@ P� i D ƒiTr.�3g
�1 @g
@� i
/: (3.22)

�i and 
i will satisfy, as usual, the standard Poisson brackets f�i; �jg D f
i; 
jg D 0,
and f�i; 
jg D ıij.

A change in the local coordinates, ��!f .
/, which is defined by g.f .
// D
exp.i
i�i=2/g.�/, will lead to the identity

@g.�/

@�i
Nij.�/ D i

�j

2
g.�/; Nij.�/ D @fi.
/

@
j
j
D0: (3.23)

The modified conjugate momenta ti are given by

ti D �
jNji D ƒni: (3.24)
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They satisfy the interesting Poisson’s brackets

fti; gg D i
�i

2
g

fti; g�1g D �ig�1 �i
2

fti; tjg D 
ijktk: (3.25)

Putting Eq. (3.24), in the last equation of (3.25), one can derive the following result
fxi; xjg D R
ijkxk=ƒ, which is the first indication that we are going to get a fuzzy
sphere under quantization. The classical sphere would correspond to ƒ�!1.

However, a more precise treatment, would have to start by viewing Eq. (3.24), as
a set of constraints rather than a set of identities on the phase space .�i; ti/. In other
words, the functions Pi D ti � ƒni do not vanish identically on the phase space
f.�i; ti/g. However, their zeros will define the physical phase space as a submanifold
of f.�i; ti/g. To see that the Pi’s are not the zero functions on the phase space, one can
simply compute the Poisson brackets fPi;Pjg. The answer turns out to be fPi;Pjg D

ijk.Pk � ƒnk/, which clearly does not vanish on the surface Pi D 0, so the Pi’s
should only be set to zero after the evaluation of all Poisson brackets. This fact will
be denoted by setting Pi to be weakly zero, i.e.

Pi 	 0: (3.26)

Equation (3.26) provide the primary constraints of the system. The secondary
constraints of the system are obtained from the consistency conditions fPi;Hg 	 0,
whereH is the Hamiltonian of the system. Since H is given byH D viPi where vi are
Lagrange multipliers, the requirement fPi;Hg 	 0 will lead to no extra constraints
on the system. It will only put conditions on the v’s [4].

From Eq. (3.25), it is obvious that ti are generators of the left action of SU.2/. A
right action can also be defined by the generators

tRj D �tiRij.g/: (3.27)

Rij.g/ define the standard SU.2/ adjoint representation, viz Rij.g/�i D g�jg�1.
These right generators satisfy the following Poisson brackets

ftRi ; gg D �ig
�i

2

ftRi ; g�1g D i
�i

2
g�1

ftRi ; tRj g D 
ijkt
R
k : (3.28)

In terms of tRi the constraints (3.26) will, then, take the simpler form

tRi 	 �ƒı3i: (3.29)
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These constraints are divided into one independent first class constraint, and two
independent second class constraints. tR3 	 �ƒ is first class, because on the surface
defined by (3.29), one have ftR3 ; tRi g D 0, for all i. It corresponds to the fact
that the Lagrangian (5.182) is weakly invariant, under the gauge transformations
g�!g exp.i�3�=2/, namely LWZ�!LWZ � ƒ P� . The two remaining constraints,
tR1 	 0 and tR2 	 0, are second class. They can be converted to a set of first class
constraints by taking the complex combinations tR˙ D tR1˙itR2 	 0. We would, then,
have ftR3 ; tR˙g D 
itR˙, and therefore all the Poisson brackets ftR3 ; tR˙g vanish on the
surface (3.29).

Let us now construct the physical wave functions of the system described by
the Lagrangian (5.182). One starts with the space F of complex valued functions
on SU.2/, with a scalar product defined by . 1;  2/ D

R
SU.2/ d�.g/ 1.g/

� 2.g/,
where d� stands for the Haar measure on SU.2/. The physical wave functions
are elements of F which are also subjected to the constraints (3.29). They span a
subspace H of F. For ƒ < 0, one must then have

tR3 D �ƒ 
tRC D 0: (3.30)

In other words,  transforms as the highest weight state of the spin l D jƒj
representation of the SU.2/ group. Thus, jƒj is quantized to be either an integer
or a half integer number, viz

jƒj D l D N � 1
2

; N D 1; 2; : : : (3.31)

The physical wave functions are, then, linear combinations of the form

 .g/ D
lX

mD�l

Cm < lmjDl.g/jll > : (3.32)

The Dl.g/ is the spin l D .N � 1/=2 representation of the element g of SU.2/.
If ƒ was positive the second equation of (3.30) should be replaced by tR� D

0, and as a consequence,  would be the lowest weight state of the spin l D ƒ

representation of the SU.2/ group.
Clearly the left action of SU.2/ on g will rotate the index m in such a way that

< lmjDl.g/jll > transforms as a basis for the Hilbert space of the N-dimensional
irreducible representation l D .N � 1/=2 of SU.2/. Under the right action of SU.2/
on g, the matrix element < lmjDl.g/jll > will, however, transform as the highest
weight state l D jƒj, m D jƒj of SU.2/.

In the quantum theory, we associate with the modified conjugate momenta ti, the
operators Li satisfying

ŒLi;Lj� D i
ijkLk; L
2
i D l.lC 1/: (3.33)
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These are .2l C 1/ � .2l C 1/ matrices, which furnish, the spin l D .N � 1/=2
irreducible representation of SU.2/. In a sense, the Li’s provide the fuzzy coordinate
functions on the fuzzy sphere S2N . Fuzzy points are defined by the eigenvalues
of the operators Li, and the fact that these operators can not be diagonalized,
simultaneously, is a reflection of the fact that fuzzy points can not be localized.

Observables of the system will be functions of Li, i.e. f .Li/ � f .L1;L2;L3/.
These functions are the only objects which will have, by construction, weakly zero
Poisson brackets with the constraints (3.29). This is because, by definition, left and
right actions of SU.2/ commute. These observables are linear operators which act
on the left of  .g/ by left translations, namely

ŒiLi �Œg� D
h d

dt
 .e�i

�i
2 tg/

i

tD0 (3.34)

The operators f .Li/ can be represented by .2lC 1/�.2lC 1/ matrices of the form

f .Li/ D
X

i1;:::;ik

˛i1;:::;ik Li1 : : : Lik : (3.35)

The summations in this equation will clearly terminate because the dimension of the
space of all .2lC 1/�.2lC 1/ matrices is finite equal to .2lC 1/2.

The fuzzy sphere S2N is, essentially, the algebra A of all operators of the
form (3.35). This is the algebra of N � N Hermitian matrices MatN , viz A D MatN .
More precisely, the fuzzy sphere S2N is defined by the spectral triple .AL;HL; �L/,
where HL is the Hilbert space H spanned by the physical wave functions (3.32). We
leave the construction of the Laplacian operator�L to the next section.

3.2 Coherent States and Star Product on Fuzzy S2
N

The sphere is the complex projective space CP1, which is also a co-adjoint orbit.
The quantization of the symplectic form on S2 yields the fuzzy sphere S2N . In this
section, we will explain this result, one more time, by constructing the coherent
states, and star product on the fuzzy sphere S2N following [26] and [7]. We will also
construct the correct Laplacian on the fuzzy sphere.

Coherent States We start with classical S2 defined as the orbit of SU.2/ through
the Pauli matrix �3. This orbit can also be given by the projector

P D 1

2
.12 C na�a/: (3.36)

The requirement P2 D P will lead to the defining equation of S2, as embedded in
R3, given by

n2a D 1: (3.37)
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The fundamental representation 2 of SU.2/ is generated by the Lie algebra of Pauli
matrices ta D �a=2, a D 1; : : : ; 3. These matrices satisfy

Œta; tb� D i
abctc

2tatb D 1

2
ıab12 C i
abctc

Trtatbtc D i

4

abc; Trtatb D ıab

2
; Trta D 0: (3.38)

Let us specialize the projector (3.36) to the “north” pole of S2 given by the point
En0 D .0; 0; 1/. We have then the projector P0 D diag.1; 0/. So at the “north” pole,
P projects down onto the state j 0 >D .1; 0/ of the Hilbert space H.2/

1=2 D C2, on
which the defining representation of SU.2/ is acting.

A general point En2 S2 can be obtained from En0, by the action of an element
g2SU.2/, as En D R.g/En0. P will then project down onto the state j >D gj 0 > of
H.2/

1=2. One can show that

P D j ><  j D gj 0 ><  0jg�1 D gP0g
�1: (3.39)

Equivalently

gt3g
�1 D nata: (3.40)

It is obvious that U.1/ is the stability group of t3 and hence S2 D SU.2/=U.1/.
Thus, points En of S2, are equivalent classes Œg� D Œgh�, h2U.1/.

We will set j 0 >D jEn0; 1=2 > and j >D jEn; 1=2 >. By using the result (3.14),
we can now compute, very easily, that

jEn; 1
2
>< En; 1

2
j D P

D gP0g
�1

D
�

cos2 �
2

1
2

sin �
2
ei�

1
2

sin �
2
e�i� sin2 �

2

�

: (3.41)

And (with d� D sin �d�d� being the volume form on the sphere)

Z

S2

d�

4

jEn; 1
2
>< En; 1

2
j D 1

2
: (3.42)
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Also we compute

< En0

;
1

2
jEn; 1
2
> D < En0; 1

2
jgC.En0

/g.En/jEn0; 1
2
>

D ˛0

˛ C ˇ0 Ň

D cos
�

0

2
cos

�

2
C ei.�

0 ��/ sin
�

0

2
sin

�

2
: (3.43)

The fuzzy sphere S2N is the algebra of operators acting on the Hilbert space H.2/
l ,

which is the .2l C 1/-dimensional irreducible representation of SU.2/, with spin
l D .N � 1/=2. This representation can be obtained from the symmetric tensor
product of N � 1 D 2l fundamental representations 2 of SU.2/. Indeed, given any
element g2SU.2/, its l-representation matrix Ul.g/ can be obtained, in terms of the
spin 1=2 fundamental representation U.1=2/.g/ D g, as follows

U.l/.g/ D U.1=2/.g/˝s : : :˝sU
.1=2/.g/; .N � 1/� times: (3.44)

Clearly, the states j 0 > and j > of H.2/

1=2, will correspond in H.2/
l , to the two states

jEn0; l > and jEn; l > respectively. Furthermore the equation j >D gj 0 > becomes

jEn; l >D U.l/.g/jEn0; l > : (3.45)

This is the SU.2/ coherent state in the irreducible representation with spin l D
.N � 1/=2. The matrix elements of the operators U.l/.g/, in the basis jlm >, are
precisely the Wigner functions

< l;mjU.l/.g/jl;m0

>D Dl
mm0 .g/: (3.46)

The states jEn0; l > and jEn0; 1=2 >, can be identified, with the highest weight states
jl; l > and j1=2; 1=2 > respectively.

The analogue of (3.43) is, easily found to be, given by

< En0

; ljEn; l > D �
< En0

;
1

2
jEn; 1
2
>

�2l

D
�

cos
�

0

2
cos

�

2
C ei.�

0 ��/ sin
�

0

2
sin

�

2

�2l
: (3.47)

The projector P will be generalized to Pl, which is the symmetric tensor product of
2l copies of P, and hence, P D P1=2, and

Pl D P˝s : : :˝s P

D jEn; l >< En; lj: (3.48)
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This is also a rank one projector. The analogue of (3.43) must be of the form
Z

S2

d�

4

jEn; l >< En; lj D N : (3.49)

By taking, the expectation value of this operator identity in the state jEn0

; l >, we
obtain

Z

S2

d�

4

j < En0

; ljjEn; l > j2 D N : (3.50)

Equivalently

Z

S2

d�

4


�

cos2
�

0

2
cos2

�

2
C sin2

�
0

2
sin2

�

2
C 1

2
sin �

0

sin � cos.�
0 � �/

�2l
D N :

(3.51)

This is valid for any point En0

. We can use rotational invariance to choose En0

along
the z axis, and as a consequence, we have �

0 D 0. We get, then, the integral

Z

S2
d cos �.1C cos �/2l D �2NN : (3.52)

We get

N D 1

N
: (3.53)

Star Product To any operator OF on H.2/
l , we associate a “classical” function Fl.En/

on a classical S2 by

Fl.En/ D< En; lj OFjEn; l > : (3.54)

We check

TrPl OF D N
Z

S2

d�
0

4

< En0

; ljPl OFjEn0

; l >

D N
Z

S2

d�
0

4

< En0

; ljPljEn; l >< En; lj OFjEn0

; l >

D N
Z

S2

d�
0

4

< En; lj OFjEn0

; l >< En0

; ljPljEn; l >

D < En; lj OFjEn; l >
D Fl.En/: (3.55)



84 3 The Fuzzy Sphere

The product of two such operators OF and OG is mapped to the star product of the
corresponding two functions, viz

Fl � Gl.En/ D< En; lj OF OGjEn; l >D TrPl OF OG: (3.56)

From this equation follows the identity
Z

S2

d�

4

Fl � Gl.En/ D 1

N
Tr OF OG: (3.57)

We want, now, to compute this star product in a closed form. First, we will use the
result that any operator OF, on the Hilbert space H.2/

l , admits the expansion

OF D
Z

SU.2/
d�.h/ QF.h/U.l/.h/: (3.58)

U.l/.h/ are assumed to satisfy the normalization

TrU.l/.h/U.l/.h
0

/ D Nı.h�1 � h
0

/: (3.59)

Using the above two equations, one can derive, the value of the coefficient QF.h/ to
be

QF.h/ D 1

N
Tr OFU.l/.h�1/: (3.60)

Using the expansion (3.197), in (3.54), we get

Fl.En/ D
Z

SU.2/
d�.h/ QF.h/!.l/.En; h/; !.l/.En; h/ D < En; ljU.l/.h/jEn; l > : (3.61)

On the other hand, using the expansion (3.197), in (3.56), will give

Fl � Gl.En/ D
Z

SU.2/

Z

SU.2/
d�.h/d�.h

0

/ QF.h/ QG.h0

/!.l/.En; hh0

/: (3.62)

The computation of this star product boils down to the computation of !.l/.En; hh0

/.
We have

!.l/.En; h/ D < En; ljU.l/.h/jEn; l >

D
�

< En; 1
2
j˝s : : :˝s < En; 1

2
j
�

�

U.2/.h/˝s : : :˝sU
.2/.h/

��

jEn; 1
2
> ˝s : : :˝sjEn; 1

2
>

�

D Œ!.
1
2 /.En; h/�2l; (3.63)
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where

!.
1
2 /.En; h/ D <  jU.2/.h/j > : (3.64)

In the fundamental representation 2 of SU.2/, we have U.2/.h/ D exp.imata/
D c.m/12 C isa.m/ta, and therefore

!.
1
2 /.En; h/ D <  jc.m/1C isa.m/taj >D c.m/C isa.m/ <  jtaj > :

(3.65)

Further

!.
1
2 /.En; hh0

/ D <  jU.2/.hh
0

/j >

D <  j.c.m/1C isa.m/ta/.c.m
0

/1C isa.m
0

/ta/j >

D c.m/c.m
0

/C iŒc.m/sa.m
0

/C c.m
0

/sa.m/�

<  jtaj > �sa.m/sb.m0

/ <  jtatbj > :

(3.66)

Now it is not difficult to check that

<  jtaj > D TrtaP D 1

2
na

<  jtatbj > D TrtatbP D 1

4
ıab C i

4

abcnc: (3.67)

Hence, we obtain

!.
1
2 /.En; h/ D c.m/C i

2
sa.m/na: (3.68)

And

!.
1
2 /.En; hh0

/ D c.m/c.m
0

/ � 1
4
sa.m/sa.m

0

/C i

2

�

c.m/sa.m
0

/C c.m
0

/sa.m/

�

na

� i

4

abcncsa.m/sb.m

0

/: (3.69)

These two last equations can be combined to get the result

!.
1
2 /.En; hh0

/ � !. 12 /.En; h/!. 12 /.En; h0

/ D �1
4
Es.m/:Es.m0

/� i

4

abcncsa.m/sb.m

0

/

C1
4
nanbsa.m/sb.m

0

/: (3.70)
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Hence, in this last equation, we have got ridden of all reference to c’s. We would
like also to get ride of all reference to s’s. This can be achieved by using the formula

sa.m/ D 2

i

@

@na
!.

1
2 /.En; h/: (3.71)

We get then

!.
1
2 /.En; hh0

/� !. 12 /.En; h/!. 12 /.En; h0

/ D Kab
@

@na
!.

1
2 /.En; h/ @

@nb
!.

1
2 /.En; h0

/: (3.72)

The symmetric rank-two tensor K is given by

Kab D ıab � nanb C i
abcnc: (3.73)

Therefore, we obtain

Fl � Gl.En/ D
Z

SU.2/

Z

SU.2/
d�.h/d�.h

0

/ QF.h/ QG.h0

/Œ!.
1
2 /.En; h/�2l

D
2lX

kD0

.2l/Š

kŠ.2l � k/Š
Ka1b1 : : : :Kakbk

Z

SU.2/
d�.h/ QF.h/Œ!. 12 /.En; h/�2l�k @

@na1
!.

1
2 /.En; h/ : : : @

@nak
!.

1
2 /.En; h/

�
Z

SU.2/
d�.h

0

/ QG.h0

/Œ!.
1
2 /.En; h0

/�2l�k @

@nb1
!.

1
2 /.En; h0

/ : : :
@

@nbk
!.

1
2 /.En; h0

/:

(3.74)

We have also the formula

.2l� k/Š

.2l/Š

@

@na1
: : :

@

@nak
Fl.En/

D
Z

SU.2/
d�.h/ QF.h/Œ!. 12 /.En; h/�2l�k @

@na1
!.

1
2 /.En; h/ : : : @

@nak
!.

1
2 /.En; h/:

(3.75)

This allows us to obtain the final result [7]

Fl � Gl.En/ D
2lX

kD0

.2l � k/Š

kŠ.2l/Š
Ka1b1 : : : :Kakbk

@

@na1
: : :

@

@nak
Fl.En/ @

@nb1
: : :

@

@nbk
Gl.En/:

(3.76)
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Derivations and Laplacian The l-representation matrix U.l/.h/ can be given by
U.l/.h/ D exp.i�aLa/. Now if we take � to be small, then, one computes

< En; ljU.l/.h/jEn; l >D 1C i�a < En; ljLajEn; l > : (3.77)

On the other hand, we know that the representation U.l/.h/ is obtained by taking the
symmetric tensor product of 2l fundamental representations 2 of SU.2/, and hence

< En; ljU.l/.h/jEn; l >D .< En; 1
2
j1C i�atajEn; 1

2
>/2l D 1C .2l/i�a 1

2
na: (3.78)

In above we have used La D ta˝s : : : :˝sta, jEn; s >D jEn; 12 > ˝s : : :˝sjEn; 12 >, and
the first equation of (3.67). We get, thus, the important result

< En; ljLajEn; l >D lna: (3.79)

From this equation, we see explicitly that La=l are, indeed, the coordinate operators
on the fuzzy sphere S2N .

We define derivations by the adjoint action of the group. For example, derivations
on S2 are generated by the vector fields La D �i
abcnb@c which satisfy ŒLa;Lb� D
i
abcLc. The corresponding action on the Hilbert space H.2/

l , will be generated, by
the commutators ŒLa; : : :�. The proof goes as follows. We have

< En; ljU.l/.h�1/ OFU.l/.h/jEn; l > D < En; lj OFjEn; l > �i�a < En; ljŒLa; OF�jEn; l > :
(3.80)

Equivalently

< En; ljU.l/.h�1/ OFU.l/.h/jEn; l > D Fl � i�al.na � Fl � Fl � na/

D Fl � i

2
�a.Kab � Kba/@bFl

D Fl � i�aLaFl: (3.81)

Therefore, fuzzy derivations on the fuzzy sphere must, indeed, be given by the
commutators ŒLa; : : :�, since we have

.LaF/l.En/ � < En; ljŒLa; OF�jEn; l > : (3.82)

A natural choice of the Laplacian operator �L on the fuzzy sphere, is therefore,
given by the following Casimir operator

�L D L2a � ŒLa; ŒLa; ::��: (3.83)
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It is not difficult to show that this Laplacian has a cut-off spectrum of the form
k.kC 1/, where k D 0; 1; : : : ; 2l. This result will be discussed, much further, in due
course.

3.3 The Flattening Limit of R2
�

In this section, we will discuss a, seemingly, different star product on the fuzzy
sphere, which admits a straightforward flattening limit, to the star product on the
Moyal-Weyl plane. We will follow [1].

3.3.1 Fuzzy Stereographic Projection

We have established, in previous sections, that the coordinate operators Oxa on the
fuzzy sphere are proportional to the generators La, of the group SU.2/, in the
irreducible representation with spin l D .N � 1/=2. Since

P
a L

2
a D l.l C 1/, and

since we want
P

a Ox2a D R2, we define the coordinate operators on the fuzzy sphere
S2N by

Oxa D RLap
c2
; c2 D l.lC 1/ D N2 � 1

4
: (3.84)

This definition is slightly different from (3.79). Hence, the commutation relations
on the fuzzy sphere read

ŒOxa; Oxb� D iRp
c2

abc Oxc: (3.85)

We must also have

X

a

Ox2a D R2: (3.86)

We define the stereographic projections a and aC, in terms of the operators Oxa, as
follows

a D 1

2
.Ox1 � iOx2/b; aC D 1

2
b.Ox1 C iOx2/; (3.87)

where

b D 2

R � Ox3 : (3.88)
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We can compute immediately that Œa; b�1� D �˛a=2 and ŒaC; b�1� D ˛aC=2,
where ˛ D �2=R, and �2 D R2=

p
c2. Hence we conclude that b�1 commutes with

jaj2 D aaC. From the other hand, we can show by using Jacobi’s identity that b�1
commutes with Œa; aC�, and thus b must also commute with aCa. By using this fact,
and also x3 D R � 2b�1, as well as Œb; a� D �˛bab=2, we obtain the analogue of
the commutation relation ŒOx1; Ox2� D iROx3=pc2, which takes the simpler form

Œa; aC� D F.jaj2/; jaj2 D aaC: (3.89)

F.jaj2/ D ˛b
�

1C jaj2 � ˛
4
bjaj2 � R

2
b

�

; ˛ D �2

R
; �2 D R2p

c2
: (3.90)

The constraint
P

a Ox2a D R2 reads in terms of the new variables

˛

4
ˇb2 � .ˇ C ˛

2
/bC 1C jaj2 D 0; ˇ D RC ˛jaj2: (3.91)

This quadratic equation can be solved, and one finds the solution

b�b.jaj2/ D 2

˛
C 1

RC ˛jaj2
�

1 �
r

1C 4R2

˛2
C 4R

˛
jaj2

�

: (3.92)

We are interested in the limit ˛ �! 0. Since ˛ D R=
p
c2, the limit ˛ �! 0

corresponds to the commutative limit of the fuzzy sphere. As a consequence, we
have

1

ˇ
D 1

R
Œ1 � ˛ jaj

2

R
�CO.˛2/; (3.93)

and hence

˛

2
b D ˛

2R
.1C jaj2/; (3.94)

or equivalently

Œa; aC� D 1

2
p
c2
.1C jaj2/2 C O.˛2/: (3.95)

From the formula jaj2 D L�.
p
c2 � L3/�2LC, it is easy to find the spectrum of the

operator F.jaj2/. This is given by

F.jaj2/jl;m >D F.	l;m/jl;m >; l D N � 1
2

: (3.96)



90 3 The Fuzzy Sphere

	l;m D c2 �m.mC 1/
.
p
c2 �m � 1/2 D

n.N � n/

.
p
c2 C l � n/2

D 	n�1;

m D �l; : : : ;Cl; n D lC mC 1 D 1; : : : ;N: (3.97)

Now we introduce ordinary creation and annihilation operators a0 and aC
0 , which

are defined as usual by Œa0; a
C
0 � D 1, with the canonical basis jn > of the number

operator N0 D aC
0 a0. In other words, we have N0jn >D njn >, a0jn >D pnjn �

1 >, and aC
0 jn >D

p
nC 1jn C 1 >. Next we embed the N-dimensional Hilbert

space HN , generated by the eigenstates jl;m >, in the infinite dimensional Hilbert
space generated by the eigenstates jn >.

Next, we introduce the map fN � fN.N0 C 1/ between the usual harmonic
oscillator algebra generated by a0 and aC

0 , and the deformed harmonic oscillator
algebra generated by a and aC, by the equation

a D fN.N0 C 1/a0; aC D aC
0 fN.N0 C 1/: (3.98)

It is easy to check that .N0 C 1/f 2N.N0 C 1/ D jaj2, and hence

.N0 C 1/f 2N.N0 C 1/jn� 1 >D nf 2N.n/jn� 1 > : (3.99)

This should be compared with jaj2jl;m >D 	n�1jl;m >. In other words, we identify
the first N states jn >, in the infinite dimensional Hilbert space of the harmonic
oscillator, with the states jl;m > of HN , via

jl;m >$jn � 1 >; n D lC mC 1: (3.100)

We must also have the result

fN.n/ D
r
	n�1
n
: (3.101)

This clearly indicates that the above map (6.104) is well defined, as it should be, only
for states n�N. For example, aj0 >D fN.N0 C 1/a0j0 >D 0, because a0j0 >D 0,
but also because

aj0 >D 1

2
.Ox1 � iOx2/b.jaj2/jl;�l >D b.	l;�l/

R

2
p
c2
L�jl;�l >D 0: (3.102)

The above map also vanishes identically on jl; l >D jN�1 > since 	l;l D 	N�1 D 0.
The relation between F and fN is easily, from Eqs. (3.89) and (3.98), found to be
given by

F.	n/ D .nC 1/f 2N.nC 1/� nf 2N.n/: (3.103)
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3.3.2 Coherent States and Planar Limit

Coherent States The coherent states jzIN >, associated with the deformed
harmonic oscillator creation and annihilation operators a and aC in the limit
N �! 1, are constructed in [21]. For large but finite N, they are defined by the
equation [1]

jzIN > D 1
p
MN.x/

N�1X

nD0

znp
nŠŒfN.n/�Š

jn >; x D jzj2: (3.104)

In the above equation ŒfN.n/�Š D fN.0/fN.1/ : : : fN.n � 1/fN.n/. These states are
normalized, viz

< zINjzIN > D 1$ MN.x/ D
N�1X

nD0

xn

nŠ.ŒfN.n/�Š/2
: (3.105)

These states satisfy

ajzIN >D zjzIN > � 1
p
MN.x/

zN
p
.N � 1/ŠŒfN.N � 1/�Š

jN � 1 > : (3.106)

In the large N limit, we can check, see below, that MN.x/�!.N � 1/.1 C x/N�2
exp..x C 1/=4.N � 1//, and

p
.N � 1/ŠŒfN.N � 1/�Š�!p
 , and hence ajzIN >

�!zjzIN >, which means that jzIN > becomes exactly an a-eigenstate. Indeed, in
this limit we have

jzIN > D 1
p
MN.x/

exp.zf�1
N .N0/a

C
0 /f

�1
N .N0/j0 > : (3.107)

These are the states constructed in [21].
As it is the case with standard coherent states, the above states jzIN > are not

orthonormal, since

< z1INjz2IN >D MN.jz1j2/� 1
2MN.jz2j2/� 1

2MN.Nz1z2/: (3.108)

Using this result, as well as the completeness relation
R
d�N.z; Nz/jzIN >< zINj D

1, where d�N.z; Nz/ is the corresponding measure, we can deduce the identity

MN.1/ D
Z

d�N.z; Nz/MN.z/MN.Nz/
MN.jzj2/ : (3.109)
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This last equation allows us to determine that the measure d�.z; Nz/ is given by

d�N.z; Nz/ D iMN.jzj2/XN.jzj2/dz^dNz D 2MN.r
2/XN.r

2/rdrd�: (3.110)

In other words,

MN.1/ D
Z

dr2XN.r
2/

Z

d�MN.re
i� /MN.re

�i� /: (3.111)

Equivalently

N�1X

nD0

1

nŠ.ŒfN.n/�Š/2
D 2


N�1X

nD0

1
�
nŠ.ŒfN.n/�Š/2

�2

Z

dr2r2nXN.r
2/: (3.112)

The function XN must therefore satisfy the condition

Z 1

0

dx xs�1XN.x/ D �.s/.ŒfN.s � 1/�Š/2
2


: (3.113)

This is the definition of the Mellin transform of XN.x/. The inverse Mellin transform
is given by

XN.x/ D 1

2
i

Z C1

�1
�.s/.ŒfN.s� 1/�Š/2

2

x�sds: (3.114)

The solution of this equation was found in [1]. It is given by (see below)

2
XN.x/ D F1.� C N; � C NIN C 1I �x/; � D pc2 � N � 1
2

: (3.115)

For large N, where jzj2 << N, we have the behavior

XN.x/ D 1

2

.1C x/�N : (3.116)

The behavior of the measure d�N.z; Nz/ coincides, therefore, with the ordinary
measure on S2, viz

d�N.z; Nz/'N � 1
2


idz^dNz
.1C jzj2/2 : (3.117)

This shows explicitly that the coherent states jzIN > correspond, indeed, to the
coherent states on the fuzzy sphere, and that the limit N �! 1 corresponds to the
commutative limit of the fuzzy sphere.
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We can associate to every operator O a function ON.z; Nz/ by setting <

zINjOjzIN >D ON.z; Nz/. It is therefore clear that the trace of the operator O is
mapped to the integral of the function ON , i.e.

TrO D
Z

d�N.z; Nz/ON.z; Nz/: (3.118)

Given now two such operatorsO and P, their product is associated to the star product
of their corresponding functions, namely

ON � PN.z; Nz/ D < zINjOPjzIN >

D
Z

d�.�; N�/ON.�; Nz/ MN.Nz�/MN. N�z/
MN.jzj2/MN.j�j2/PN.z; N�/: (3.119)

The symbols are given by

ON.�; Nz/ D < zINjOj�IN >

< zINj�IN >
; PN.z; N�/ D < �INjPjzIN >

< �INjzIN >
: (3.120)

The large N limit of this star product is given by the Berezin star product on the
sphere [8], namely

ON � PN.z; Nz/ D N � 1
2


Z
id�^d N�

.1C j�j2/2ON.�; Nz/
�
.1C Nz�/.1C N�z/
.1C jzj2/.1C j�j2/

�N�2
PN.z; N�/:

(3.121)

The Planar Limit Finally we comment on the planar, or flattening, limit of the
above star product which is, in fact, the central point of our discussion here. We are
interested in the double scaling limit

N �!1; R �!1; �2 D R2p
c2
D fixed: (3.122)

In this limit, we also set Ox3 D �R, where the minus sign is due to our definition of
the stereographic coordinate b in (3.88). The stereographic coordinates b, a and aC
are scaled in this limit as

b D 1

R
; a D 1

2R
Oa; aC D 1

2R
OaC; Oa D Ox1 � iOx2; OaC D Ox1 C iOx2: (3.123)

This scaling means, in particular, that the coordinates z and Nz must scale as z D Oz=2R
and Nz D NOz=2R. From (3.95), which holds in the large N limit, we can immediately
conclude that ŒOa; OaC� D 2�2 in this limit, or equivalently

ŒOx1; Ox2� D �i�2: (3.124)
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Next, from the result MN.x/�!.N�1/.1C x/N�2, when N�!1, we can conclude
that, in the above double scaling limit, we must have

MN.jzj2/�!N e
1

2�2
jOzj2
: (3.125)

The measure d�N.z; Nz/ behaves in this limit as

d�N.z; Nz/ D i

4
�2
dOz^dNOz: (3.126)

Putting all these results together we obtain the Berezin star product on the plane [8],
namely

O � P.Oz; NOz/ D i

4
�2

Z

d O�^d NO�O. O�; NOz/ e� 1

2�2
.Oz�O�/.NOz�NO�/P.Oz; NO�/: (3.127)

3.3.3 Technical Digression

We want to compute the deformed factorial

.ŒfN.n/�Š/
2 D f 2N.0/f

2
N.1/ : : : :f

2
N.n/: (3.128)

By using f 2N.n/ D .N � n/=.a� n/2, with a D pc2 C l, and a2.a� 1/2 : : : .a� nC
1/2.a� n/2 D �2.aC 1/=�2.a � n/, we arrive at

.ŒfN.n/�Š/
2 D NŠ

.N � n � 1/Š
�2.a� n/

�2.aC 1/ : (3.129)

We substitute in MN.x/, we introduce � D pc2 � l D a C 1 � N, we change the
variable as n �! n

0 D N � 1 � n, we remember that �.k/ D .k � 1/Š, to obtain

MN.x/ D xN�1 �2.� C N/

�.1C N/

N�1X

nD0

x�n

�.N � n/

�.1C n/

�2.� C n/
: (3.130)

We use the identity

�.N C 1/
�.N � n/

D �.�1/n�.nC 1 � N/

�.�N/ : (3.131)
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We obtain

MN.x/ D � xN�1

�.�N/
�2.� C N/

�2.1C N/

N�1X

nD0
.�1/n x

�n

nŠ
�.nC 1 � N/

�2.1C n/

�2.� C n/
:

(3.132)

This should be compared with the hypergeometric function

3F2.1; 1; a3; �; �;�1
x
/ D �2.�/

�.a3/

1X

nD0
.�1/n x

�n

nŠ
�.a3 C n/

�2.1C n/

�2.� C n/
: (3.133)

For integer values of a3, such as a3 D �N C 1, the summation over n truncates
at n D N � 1, and as a consequence, the hypergeometric function becomes the
extended Laguerre polynomial. This is given by

3F2.1; 1;�N C 1; �; �;�1x / D
�2.�/

�.�N C 1/
1X

nD0
.�1/n x

�n

nŠ
�.n � N C 1/ �

2.1C n/

�2.� C n/
:

(3.134)

We can rewrite MN.x/ in terms of 3F2.1; 1;�N C 1; �; �;�1=x/ as

MN.x/ D xN�1 �2.� C N/

NŠ.N � 1/Š�2.�/ 3F2.1; 1;�N C 1; �; �;�
1

x
/: (3.135)

In the limit N �!1, we have � D 1=2, and [1]

MN.x/ D .N � 1/.1C x/N�2 �
2. 1
2
C N/

NŠ.N � 1/Š exp
xC 1

4.N � 1/ : (3.136)

We use the result that �.kC ˛/=�.k/ D k˛ , for large k. Then

MN.x/ D .N � 1/.1C x/N�2 exp
xC 1

4.N � 1/ : (3.137)

By comparing the first term of (3.135) with the last term of (3.105) we obtain

�2.� C N/

�.1C N/�2.�/
D 1

.fN.N � 1/Š/2 : (3.138)

In the large N limit we, thus, have

p
.N � 1/Š.fN.N � 1/Š/ D

p

: (3.139)

This is quite different from the result stated in [1].
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We are also interested in the inverse Mellin transform, of the function
�.s/.ŒfN.s� 1/�Š/2, given by

XN.x/ D 1

2
i

Z C1

�1
�.s/.ŒfN.s� 1/�Š/2

2

x�sds: (3.140)

By using (3.129) we get

2

�2.aC 1/
�.N C 1/ XN.x/ D 1

2
i

Z C1

�1
�.s/�2.� C N � s/

�.1C N � s/
x�sds: (3.141)

We integrate along a path in the complex plane such that the poles of �.�CN�s/ lie
to the right of the path. This function should be compared with the hypergeometric
function

�2.� C N/

�.1C N/ 2
F1.� C N; � C N; 1C N;�x/ D 1

2
i

Z C1

�1
�.s/�2.� C N � s/

�.1C N � s/
x�sds:

(3.142)

In other words,

XN.x/ D 1

2

2F1.� C N; � C N; 1C N;�x/: (3.143)

3.4 The Fuzzy Sphere: A Summary

The Commutative Sphere The round unit sphere can be defined as the 2-
dimensional surface embedded in flat 3-dimensional space with global coordinates
na satisfying the equation

P3
aD1 n2a D 1. The rotation generators La D �i
abcnb@c

define global derivations on the sphere.
The continuum sphere is the spectral triple .A;H; �/ where A D C1.S2/ is the

algebra of smooth bounded functions on the sphere, � D LaLa is the Laplacian on
the sphere, and H D L2.S2/ is the Hilbert space of square-integrable functions on
the sphere. The Laplacian is given explicitly by

� D LaLa

D 1

sin2 �

@2

@�2
C 1

sin �

@

@�
.sin �

@

@�
/: (3.144)
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The eigenfunctions of this Laplacian are the spherical harmonics Ylm.�; �/ with
l D 0; 1; 2; : : : and m D �l; : : : ;Cl, viz

�Ylm.�; �/ D l.lC 1/Ylm.�; �/; l D 0; 1; 2; : : : : (3.145)

L3Ylm.�; �/ D mYlm.�; �/; m D �l; : : : ;Cl: (3.146)

The spherical harmonics form a complete set of orthonormal functions. The
orthonormalization condition reads (with d� being the solid angle on the sphere)

Z

S2

d�

4

Y�
lm.�; �/Yl0m0 .�; �/ D ıll0 ımm0 : (3.147)

Thus, a smooth and bounded function on the sphere, i.e. a function where the set
of its values is bounded, can be expanded as a linear combination of the spherical
harmonics, namely

f .�; �/ D
1X

lD0

ClX

mD�l

clmYlm.�; �/: (3.148)

It is not difficult to show that

clm D
Z

S2

d�

4

Y�
lm.�; �/f .�; �/: (3.149)

The function f .�; �/ is in fact more than just bound, it is square-integrable, i.e. its
norm defined by

jjf jj2 D .f ; f / D
Z

S2

d�

4

jf .�; �/j2; (3.150)

is finite. In other words, f .�; �/ is square-integrable with respect to the standard
measure d� on the sphere. The Hilbert space H D L2.S2/, of square-integrable
functions on the sphere, is the space of all functions on the sphere with inner product

.f ; g/ D
Z

S2

d�

4

f �.�; �/g.�; �/: (3.151)

The Fuzzy Sphere The fuzzy sphere was originally conceived in [19, 20]. It can
be viewed as a particular deformation of the above triple which is based on the fact
that the sphere is the coadjoint orbit SU.2/=U.1/, viz

g�3g
�1 D na�a; g2SU.2/; En2S2; (3.152)
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and is therefore a symplectic manifold which can be quantized in a canonical fashion
by quantizing the volume form

! D sin �d�^d� D 1

2

abcnadnb^dnc: (3.153)

The result is the spectral triple .AL;HL; �L/ where AL D MatN , with N D LC 1, is
the algebra of N�N Hermitian matrices. MatN becomes the N2-dimensional Hilbert
space structure HL when supplied with the inner product

. OF; OG/ D 1

N
Tr. OFC OG/; OF; OG2MatN : (3.154)

The spin l D L=2 D .N � 1/=2 irreducible representation of SU.2/ has both a left
and a right action on the Hilbert space HL generated by La and LRa respectively. The
right generators are obviously defined by LRa OF D La OF, OF 2 MatN . These generators
satisfy

ŒLa;Lb� D i
abcLc; and
X

a

L2a D c2; c2 D l.lC 1/ D N2 � 1
4

: (3.155)

ŒLRa ;L
R
b � D �i
abcLRc ; and

X

a

.LRa /
2 D c2: (3.156)

It is obvious that elements of the matrix algebra MatN will play the role of functions
on the fuzzy sphere S2N , while derivations are inner and given by the generators of
the adjoint action of SU.2/ defined by

OLa OF D .La � LRa / OF D ŒLa; OF�: (3.157)

A natural choice of the Laplacian on the fuzzy sphere is therefore given by the
Casimir operator

�L D OLa OLa

D ŒLa; ŒLa; ::��: (3.158)

Thus, the algebra of matrices MatN decomposes under the action of SU.2/ as the
tensor product of two SU.2/ irreducible representations with spin l D L=2, viz

L

2
˝L

2
D 0˚1˚2˚::˚L: (3.159)

The first L=2 stands for the left action of SU.2/, i.e. it corresponds to La, while
the other L=2 stands for the right action, i.e. it corresponds to �LRa . Hence,
the eigenvalues of the Laplacian �L D .La � LRa /

2 are given by l.l C 1/
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where l D 0; 1; : : : ;L. This is identical with the spectrum of the commutative
Laplacian � D L2a up to the cut-off L. The corresponding eigenmatrices of
�L D .La � LRa /

2 are given by the canonical SU.2/ polarization tensors OYlm and
form a basis for HL.

We have then the following fundamental result: The Laplacian �L D .La �
LRa /

2 has a cut-off spectrum with eigenvalues l.l C 1/, where l D 0; 1; : : : ;L, and
eigenmatrices OYlm, i.e.

�L OYlm D l.lC 1/ OYlm; l D 0; 1; : : : ;L: (3.160)

The polarization tensors are defined by Varshalovich et al. [27]

ŒLa; ŒLa; OYlm�� D l.lC 1/ OYlm; (3.161)

ŒL˙; OYlm� D
p
.l
m/.l˙mC 1/ OYlm˙1; ŒL3; OYlm� D m OYlm: (3.162)

They satisfy

OY�lm D .�1/m OYl�m;
1

N
Tr OYC

l1m1
OYl2m2 D ıl1l2ım1;m2 : (3.163)

They satisfy also the completeness relation

N�1X

lD0

lX

mD�l

. OY�lm/AB. OYlm/CD D ıADıBC: (3.164)

The coordinates operators on the fuzzy sphere S2N are proportional, as in the
commutative theory, to the polarization tensors OY1� � L�, viz

Oxa D Lap
c2
: (3.165)

They satisfy

Ox21 C Ox22 C Ox23 D 1; ŒOxa; Oxb� D
ip
c2

abc Oxc: (3.166)

A general function on the fuzzy sphere is an element of the algebra MatN which can
be expanded in terms of polarization tensors as follows

OF D
LX

lD0

lX

mD�l

clm OYlm: (3.167)
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The coefficient clm are given by

clm D 1

N
Tr OYC

lm
OF: (3.168)

The commutative limit is given by N�!1. The polarization tensors tend, in this
limit, to the spherical harmonics. For example, the completeness relation (3.164)
becomes

1X

lD0

lX

mD�l

Y�lm.�1; �1/Ylm.�2; �2/ D ı.cos �1 � cos �2/ı.�1 � �2/: (3.169)

Therefore, the fuzzy sphere can be described as a sequence of triples .MatN ;HN ; OL2a/
with a well defined limit given by the triple .C1.S2/;H;L2/. The number of
degrees of freedom of the fuzzy sphere S2N is N2 and the noncommutativity
parameter is � D 1=pc2.
Coherent States and Star Product The fuzzy sphere as the spectral triple
.MatN ;HN ; �N/ is isomorphic to the spectral triple .C1.S2/;H;L2/� which cor-
responds to the algebra on the commutative sphere with the ordinary pointwise
multiplication of functions replaced by the star product on the fuzzy sphere. This
isomorphism, i.e. invertible map between matrices and functions, can be given in
terms of coherent states or equivalently the Weyl map.

Let H.2/
l D CN be the Hilbert space associated with the irreducible representation

of SU.2/ with spin l D L=2 D .N � 1/=2. We may make the identification H.2/
l D

HN . The representation of the group element g 2 SU.2/ is given by U.l/.g/. The
matrix elements of the operators U.l/.g/ are precisely the Wigner functions

< l;mjU.l/.g/jl;m0

>D Dl
mm0 .g/: (3.170)

We pick a fiducial state corresponding to the north pole En0 D .0; 0; 1/ to be the
highest weight state jl; l >, viz jEn0; l >D jl; l >. The coherent state corresponding
to the point En 2 S2 is defined by

jEn; l >D U.l/.g/jEn0; l > : (3.171)

These states are nonorthogonal and overcomplete, viz

< En0

; ljEn; l >D
�

cos
�

0

2
cos

�

2
C ei.�

0 ��/ sin
�

0

2
sin

�

2

�2l
: (3.172)

Z

S2

d�

4

jEn; l >< En; lj D 1

N
: (3.173)
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The projector Pl onto the coherent state jEn; l > is given by

Pl D jEn; l >< En; lj
D U.l/.g/P0lU

.l/.gC/: (3.174)

The projector P0l D jEn0; l >< En0; lj D jl; l >< l; lj is clearly given, in the basis
jlm >, by P0l D diag.1; 0; : : : ; 0/. Under g �! gh where h 2 U.1/, i.e. h D
exp.i� t3/, we have U.l/.g/ �! U.l/.g/U.l/.h/ where U.l/.h/ D exp.i�L3/. It is then
obvious that U.l/.h/P0lU.l/.hC/ D P0l which means that the coherent state jEn; l > is
associated with the equivalent class En D Œgh�.

By using the coherent states jEn; l >, we can associate to each matrix OF 2 MatN a
function Fl 2 C1.S2/ by the formula

Fl.En/ D TrPl OF
D < En; lj OFjEn; l > : (3.175)

For example, the operators La are mapped under this map to the coordinates lna, viz

< En; ljLajEn; l >D lna: (3.176)

Hence we can indeed identify Oxa D La=l with the coordinate operators on the
fuzzy sphere S2N . This relation can be generalized to a map between higher spherical
harmonics and higher polarization tensors given by

< En; lj OYlmjEn; l >D Ylm.En/: (3.177)

Thus we may think of the polarization tensors as fuzzy spherical harmonics. The
function Fl and the matrix OF can then be expanded as

Fl D
LX

lD0

lX

mD�l

clmYlm; OF D
LX

lD0

lX

mD�l

clm OYlm: (3.178)

From these results, we can now construct the appropriate Weyl map on the fuzzy
sphere. We find the map [24]

WL.En/ D
LX

lD0

lX

mD�l

Ylm.En/ OYC
lm D

LX

lD0

lX

mD�l

Y�
lm.En/ OYlm: (3.179)

Indeed, we can calculate

Fl D 1

N
TrWL.En/ OF; OF D

Z

S2

d�

4

WL.En/Fl.En/: (3.180)
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Another important application is the Weyl map of the derivations La D �i
abcnb@c
on the commutative sphere S2 given by the derivations OLa D La � LRa on the fuzzy
sphere S2N . Indeed we compute

.LaF/l.En/ � < En; ljŒLa; OF�jEn; l > : (3.181)

The product of two operators OF and OG is mapped to the star product of the
corresponding two functions, viz

Fl � Gl.En/ D< En; lj OF OGjEn; l >D TrPl OF OG: (3.182)

From this equation follows the identity

Z

S2

d�

4

Fl � Gl.En/ D 1

N
Tr OF OG: (3.183)

We can calculate the star product in a closed form. After a long calculation we get,
with Kab D ıab � nanb C i
abcnc, the result

Fl � Gl.En/ D
2lX

kD0

.2l � k/Š

kŠ.2l/Š
Ka1b1 : : : :Kakbk

@

@na1
: : :

@

@nak
Fl.En/ @

@nb1
: : :

@

@nbk
Gl.En/:
(3.184)

Limits of S2
N In many applications, we scale the coordinate operators on the fuzzy

sphere as Oxa �! ROxa, so that the fuzzy sphere becomes of radius R. The coordinate
operators on the fuzzy sphere S2N are then given by

Oxa D RLap
c2
: (3.185)

They satisfy

Ox21 C Ox22 C Ox23 D R2; ŒOxa; Oxb� D iRp
c2

abc Oxc: (3.186)

The fuzzy sphere admits several limits, commutative and non commutative, which
are shown on Table 3.1.

Table 3.1 Limits of the
fuzzy sphere S2N

N R � D R=
p
c2 Limit

Finite Finite Finite S2N
1 Finite 0 S2

1 1 0 R2

1 1 Finite R2�
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3.5 Fuzzy Fields and Actions

3.5.1 Scalar Action on S2
N

A real scalar field Ô on the fuzzy sphere is an element of the matrix algebra MatN .
The Laplacian on the fuzzy sphere provides a kinetic term for the scalar field Ô ,
while a mass term is obtained by squaring the matrix Ô , and the interaction is given
by a higher order polynomial in Ô . For example, the action of a ˆ4, which is the
most important case for us, is given explicitly by

SŒ Ô � D 1

N
Tr

�

� 1
2
ŒLa; Ô �2 C 1

2
m2 Ô 2 C g

4Š
Ô 4

�

(3.187)

In terms of the star product this action reads

SŒˆl� D
Z

S2

d�

4


�

� 1
2
.Laˆl/ � .Laˆl/C 1

2
m2ˆl � ˆl C g

4Š
ˆl �ˆl �ˆl � ˆl

�

(3.188)

This has the correct commutative limit, viz

SŒˆ� D
Z

S2

d�

4


�

� 1
2
.Laˆ/

2 C 1

2
m2ˆ2 C g

4Š
ˆ4

�

(3.189)

The path integral of this theory, in the presence of an N�N matrix source J, is given
by

ZŒJ� D
Z

d Ô exp

�

� SŒ Ô � � 1

N
TrJ Ô

�

: (3.190)

The measure is well defined given by ordinary integrals over the components Ô ab
of the matrix Ô . More explicitly, we have

dˆ D
NY

aD1
d Ô aa

NY

bDaC1
dRe Ô abdIm Ô ab: (3.191)

3.5.2 Extension to S2
N � S2

N

On the fuzzy 4-sphere S2N � S2N each of the spheres .
P

i x
.a/
i x.a/i D R.a/

2
; a D 1; 2/

is approximated by the algebra Mat2laC1 of .2la C 1/ � .2la C 1/ matrices. The
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quantization prescription is given as usual by

x.a/i ! Ox.a/i D
R.a/L.a/ip
la.la C 1/

: (3.192)

This prescription follows naturally from the canonical quantization of the symplec-
tic structure on the classical 4-sphere S2 � S2 by treating it as the co-adjoint orbit
SU.2/=U.1/ � SU.2/=U.1/. The L.a/i ’s above are the generators of the irreducible

representation la of SU.2/. Thus they satisfy ŒL.a/i ;L
.a/
j � D i
ijkL

.a/
k and

P3
iD1 L

.a/2
i D

la.la C 1/. Thus

ŒOx.a/i ; Ox.b/j � D
iR.a/

p
la.la C 1/

ıab
ijk Ox.a/k : (3.193)

Formally the fuzzy sphere S2N�S2N is the algebra A D Mat2l1C1˝Mat2l2C1 which is

generated by the identity 1˝1, the angular momenta operators L.1/i ˝1 and 1˝L.2/i ,
together with higher spherical harmonics (see below). This algebra A acts trivially
on the .2l1 C 1/.2l2 C 1/-dimensional Hilbert space H D H1˝H1 with an obvious
basis fjl1m1ijl2m2ig.

The fuzzy analogue of the continuum derivations L.a/i D �i
ijkn.a/j @
.a/
k are given

by the adjoint action. We make the replacement

L.a/i !K.a/i D L.a/Li � L.a/Ri : (3.194)

The L.a/Li ’s generate a left SO.4/ (more precisely SU.2/˝SU.2/) action on the

algebra A given by L.a/Li M D L.a/i M where M2A. Similarly, the L.a/Ri ’s generate

a right action on the algebra, namely L.a/Ri M D ML.a/i . Remark that K.a/i ’s annihilate
the identity 1˝1 of the algebra A as is required of a derivation.

In fact, it is enough to set la D lb D l and Ra D Rb D R as this corresponds
in the limit to a noncommutative R4 with an Euclidean metric R2�R2. The general
case simply corresponds to different deformation parameters in the two R2 factors
and the extension of all results is thus obvious.

In close analogy with the case of a single sphere, and by putting together the
above ingredients, the action on the fuzzy 4-sphere S2N � S2N is given by

SŒ Ô � D R4

.2lC 1/2 TrH
�
1

R2
Ô ŒL.1/i ; ŒL.1/i ; Ô ��C 1

R2
Ô ŒL.2/i ; ŒL.2/i ; Ô ��C �2 Ô 2 C V. Ô /

�

:

(3.195)



3.5 Fuzzy Fields and Actions 105

This action has the correct commutative (i.e. l!1;R fixed) limit:

SŒˆ� D R4
Z

S2

d�.1/

4


d�.2/

4


�
1

R2
ˆL.1/i L.1/i .ˆ/C 1

R2
L.2/i L.2/i .ˆ/C �2ˆ2 C V.ˆ/

�

:

(3.196)

We will mostly restrict ourselves to quartic interactions, viz V. Ô / D 	 Ô 4=4Š.
We have explicitly introduced factors of R wherever necessary to sharpen the
analogy with flat-space field theories. For example, the integrand R4d�1d�2 has
canonical dimension of (Length)4 like d4x, the field has dimension (Length).�1/, �
has (Length).�1/ and 	 is dimensionless.

Again by analogy with the case of a single sphere, the scalar field/matrix Ô can
be expanded in terms of polarization operators [27] as

Ô D .2lC 1/
2lX

k1D0

k1X

m1D�k1

2lX

p1D0

p1X

n1D�p1

�k1m1p1n1Tk1m1 .l/˝Tp1n1 .l/: (3.197)

Therefore the field Ô has a finite number of degrees of freedom totaling to .2l1 C
1/2.2l2 C 2/2. The Tkm.l/ are the polarization tensors which satisfy

K.a/˙ Tk1m1 .l/ D 

1p
2

p
k1.k1 C 1/� m1.m1˙1/Tk1m1˙1.l/;

K.a/3 Tk1m1 .l/ D m1Tk1m1 .l/;

.EK.a//2Tk1m1 .l/ D k1.k1 C 1/Tk1m1 .l/;

and the identities

TrHTk1m1 .l/Tp1n1 .l/ D .�1/m1ık1p1 ım1Cn1;0; TC
k1m1

.l/ D .�1/m1Tk1�m1 .l/:

Obviously

Tk1m1 .l/ D
1p
N
OYk1m1 : (3.198)

Our interest is restricted to hermitian fields since they are the analog of real fields in
the continuum. Imposing hermiticity, i.e. Ô C D Ô , we obtain the conditions

�
�k1m1p1n1

�� D .�1/m1Cn1�k1�m1p1�n1 : (3.199)

Since the field on a fuzzy space has only a finite number of degrees of freedom,
the simplest and most obvious route to quantization is via path integrals. We should
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then consider the partition function

ZŒJ� D
Z

d Ô exp

�

� SŒ Ô � � 1

N
TrJ Ô

�

: (3.200)

3.6 Introducing Fuzzy CP2

In this section we will give the K-cycle associated with the classical Kähler manifold
CP2 (which is also the co-adjoint orbit SU.3/=U.2/) as a limit of the K-cycle which
defines fuzzy (or quantized) CP2 when the noncommutativity parameter goes to 0.
We will follow the construction of Balachandran et al. [7].

Let Ta, a D 1; : : : ; 8 be the generators of SU.3/ in the symmetric irreducible
representation .n; 0/ of dimension N D 1

2
.nC 1/.nC 2/. They satisfy

ŒTa;Tb� D ifabcTc : (3.201)

T2a D
1

3
n.nC 3/ � jnj2; dabcTaTb D 2nC 3

6
Tc: (3.202)

Let ta D 	a=2 (where 	a are the usual Gell-Mann matrices) be the generators of
SU.3/ in the fundamental representation .1; 0/ of dimension N D 3. They satisfy

2tatb D 1

3
ıab C .dabc C ifabc/tc

tr3tatb D 1

2
ıab; tr3tatbtc D 1

4
.dabc C ifabc/: (3.203)

The N-dimensional generator Ta can be obtained by taking the symmetric product
of n copies of the fundamental 3-dimensional generator ta, viz

Ta D .ta˝1˝ : : :˝1C 1˝ta˝ : : :˝1C : : :C 1˝1˝ : : :˝ta/symmetric: (3.204)

In the continuum CP2 is the space of all unit vectors j > in C3 modulo the phase.
Thus ei� j >, for all �2Œ0; 2
Œ define the same point on CP2. It is obvious that all
these vectors ei� j > correspond to the same projector P D j ><  j. Hence CP2

is the space of all projection operators of rank one on C3. Let HN and H3 be the
Hilbert spaces of the SU.3/ representations .n; 0/ and .1; 0/ respectively. We will
define fuzzy CP2 through the canonical SU.3/ coherent states as follows. Let En be
a vector in R8, then we define the projector

P3 D 1

3
1C nata (3.205)
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The requirement P23 D P3 leads to the condition that En is a point on CP2 satisfying
the equations

Œna; nb� D 0; n2a D
4

3
; dabcnanb D 2

3
nc: (3.206)

We can write

P3 D jEn; 3 >< 3; Enj: (3.207)

We think of jEn; 3 > as the coherent state in H3 (level 3 � 3 matrices) which is
localized at the point En of CP2. Therefore the coherent state jEn;N > in HN (level
N � N matrices) which is localized around the point En of CP2 is defined by the
projector

PN D jEn;N >< N; Enj D .P3˝P3˝ : : :˝P3/symmetric: (3.208)

We compute that

tr3taP3 D< En; 3jtajEn; 3 >D 1

2
na; trNTaPN D< En;NjTajEn;N >D n

2
na: (3.209)

Hence it is natural to identify fuzzy CP2 at level N D 1
2
.nC 1/.nC 2/ (or CP2N) by

the coordinates operators

xa D 2

n
Ta: (3.210)

They satisfy

Œxa; xb� D 2i

n
fabcxc; x

2
a D

4

3
.1C 3

n
/; dabcxaxb D 2

3
.1C 3

2n
/xc: (3.211)

Therefore in the large N limit we can see that the algebra of xa reduces to the
continuum algebra of na. Hence xa�!na in the continuum limit N�!1.

The algebra of functions on fuzzy CP2N is identified with the algebra of N�N
matrices MatN generated by all polynomials in the coordinates operators xa. Recall
that N D 1

2
.n C 1/.n C 2/. The left action of SU.3/ on this algebra is generated

by .n; 0/ whereas the right action is generated by .0; n/. Thus the algebra MatN
decomposes under the action of SU.3/ as

.n; 0/˝.0; n/ D ˝n
pD0.p; p/: (3.212)
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A general function on fuzzy CP2N is therefore written as

F D
nX

pD0
F.p/
I2;I3;Y

T.p;p/
I2;I3;Y

: (3.213)

The T.p;p/
I2;I3;Y

are SU.3/ matrix polarization tensors in the irreducible representation

.p; p/. I2; I3 and Y are the square of the isospin, the third component of the isospin
and the hypercharge quantum numbers which characterize SU.3/ representations.

The derivations on fuzzy CP2N are defined by the commutators ŒTa; ::�. The
Laplacian is then obviously given by�N D ŒTa; ŒTa; : : :��. Fuzzy CP2N is completely
determined by the spectral triple CP2N D .MatN ; �N ;HN/. Now we can compute

trNFPN D< En;NjFjEn;N >D FN.En/ D
nX

pD0
F.p/
I2;I3;Y

Y.p;p/
I2;I3;Y

.En/: (3.214)

The Y.p;p/
I2;I3;Y

.En/ are the SU.3/ polarization tensors defined by

Y.p;p/
I2;I3;Y

.En/ D< En;NjT.p;p/
I2;I3;Y
jEn;N > : (3.215)

Furthermore we can compute

trN ŒTa;F�PN D< En;NjŒTa;F�jEn;N >D .LaFN/.En/; La D �ifabcnb@c: (3.216)

And

trNFGPN D< En;NjFGjEn;N >D FN � GN.En/: (3.217)

The star product on fuzzy CP2N is found to be given by (see below)

FN � GN.En/ D
nX

pD0

.n � p/Š

pŠnŠ
Ka1b1 : : :Kapbp@a1 : : : @apFN.En/@b1 : : : @bpGN.En/

Kab D 2

3
ıab � nanb C .dabc C ifabc/nc: (3.218)

3.7 Fuzzy Fermions

In this section we will follow the construction found in [2, 3, 5, 6].
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3.7.1 Continuum Dirac Operators

It is a known result that the Dirac operator in arbitrary coordinates on a manifold M
is given by Eguchi et al. [12]

D D i��.@� C 1

8
!�abŒ�

a; �b�/: (3.219)

The �� are the generators of the curved Clifford algebra, namely f��; ��g D 2g��

with ��2 D 1 and ��C D ��. The �a are the generators of the flat Clifford algebra
which are defined as follows. First one decomposes the metric g�� into tetrads, viz
g�� D �abea�e

b
� and �ab D g��ea�e

b
� where �ab is the flat metric ıab. The generators

�a of the flat Clifford algebra are then defined by �� D �aE�a where E�a is the
inverse of ea� given by E�a D �abg��eb� . This E�a satisfies therefore the following
equations E�a eb� D ıba and �abE�a E�b D g�� . Thus ea� is the matrix which transforms
the coordinate basis dx� of the cotangent bundle T�

x .M/ to the orthonormal basis
ea D ea�dx

� whereas E�a is the matrix transforming the basis @=@x� of the tangent

bundle Tx.M/ to the orthonormal basis Ea D E�a @
@x� . The above Dirac operator can

then be rewritten as

D D i�aE�a .@� C
1

8
!�abŒ�

a; �b�/: (3.220)

The !�ab in the above equations is the affine spin connection one-form. All the
differential geometry of the manifold M is completely coded in the two following
tensors. The curvature two-form tensor Ra

b and the torsion two form-tensor Ta. They
are given by Cartan’s structure equations

Ra
b D d!a

b C !a
c^!c

b�
1

2
Ra
bcde

c^ed

Ta D dea C !a
b^eb�

1

2
Ta
bce

b^ec: (3.221)

The !a
b means !a

b D !a
b�dx

�. The Levi-Civita connection or Christoffel symbol ��˛ˇ
on the manifold M is determined by the two following conditions. First, one must
require that the metric is covariantly constant, namely g��I˛ D @˛g�� � �	˛�g	� �
�	˛�g�	 D 0. Secondly, one requires that there is no torsion, i.e T�˛ˇ D 1

2
.�

�

˛ˇ �
�
�

ˇ˛/ D 0. The Levi-Civita connection is then uniquely determined to be ��˛ˇ D
1
2
g��.@˛g�ˇ C @ˇg�˛ � @�g˛ˇ/. In the same way the Levi-Civita spin connection is

obtained by restricting the affine spin connection !ab to satisfy the metricity and the
no-torsion conditions respectively

!ab C !ba D 0; dea C !a
b^eb D 0: (3.222)
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The Levi-Civita spin connection on S2 with metric ds2 D �2d�2 C �2sin2�d�2 is
given by

!21 D cos�d�: (3.223)

From the other hand, the Levi-Civita spin connection on R3 with metric ds2 D
dr2 C r2d�2 C r2sin2�d�2 is given by

!21 D cos�d�; !23 D sin�d�!13 D d�: (3.224)

Now we are in the position to calculate the Dirac operators on the sphere S2 and on
R3. On the sphere we obtain

D2 D i�aE�a .@� C
1

4
!�ab�

a�b/ D i
�1

R
.@� C 1

2
ctg�/C i

�2

R
sin�@�: (3.225)

From the other hand, we obtain on R3

D3 D i�aE�a .@� C
1

4
!�ab�

a�b/ D i
�1

r
.@� C 1

2
ctg�/C i

�2

r sin �
@� C i�3.@r C 1

r
/:

(3.226)

Thus D3 restricted on the sphere is related to D2 by the equation

D2 D D3jrDR �
i�3

R
: (3.227)

This equation will always be our guiding rule for finding the Dirac operator on S2

starting from the Dirac operator on R3. However, there is an infinite number of
Dirac operators on S2 which are all related by U.1/ rotations and therefore they are
all equivalent. The generator of these rotations is given by the chirality operator �
on the sphere which is defined by

� D E�:En D �CI �2 D 1I �D2� CD2�� D 0; En D Ex
R
: (3.228)

D2� is the Dirac operator on the sphere which is obtained from a reference Dirac
operator D2g by the transformation

D2� D exp.i��/D2gexp.�i��/
D .cos2�/D2g C i.sin2�/�D2g: (3.229)

Next we find algebraic global expressions of the Dirac operatorD2 with no reference
to any local coordinates on the sphere S2. There are two different methods to do this
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which lead to two Dirac operators on the sphere denoted by D2g and D2w. The
operator D2g stands for the Dirac operator due to [15–17], whereas D2w stands for
the Dirac operator due to [9, 10]. On the continuum sphere these two Dirac operators
are equivalent while on the fuzzy sphere these operators become different. We start
with the standard Dirac operator on R3, viz

D3 D i�i@i: (3.230)

The �i are the Pauli matrices. Now defining � D E�:Ex
r and the identity �2 D 1 we can

rewrite D3 as

D3 D �2D3 D . E�:Ex
r
/.
E�:Ex
r
/.i�i@i/ D i

�

r
.xi@i C i
kij�kxi@j/: (3.231)

Recalling that Lk D �i
kijxi@j one can finally find

D3 D i�.@r � E�:
EL

r
/: (3.232)

This operator is selfadjoint. On the sphere S2 the Dirac operator will be simply given
by

D2 D D3jrDR � i
�3

�
D �i�D2g: (3.233)

In above we have made the identification � D �3 and where D2g is the Dirac
operator given by

D2g D 1

R
.E�: ELC 1/: (3.234)

Another global expression for the Dirac operator D2 on the sphere can be found as
follows

D3 D i�i@i D iE�ŒEn.En:E@/� En�.En�E@/� D i�@r C 1

r2

ijk�ixjLk: (3.235)

Thus we get the operator

D2w D 1

R2

ijk�ixjLk � i

�

R
: (3.236)

By using the identity i�
R D � 1

R2

ijk�ixj

�k
2

one can rewrite Eq. (3.236) in the form

D2w D 1

R2

ijk�ixj.Lk C �k

2
/: (3.237)
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From the above construction it is obvious that D2w D �i�D2g and therefore
from Eq. (3.229) one can make the following identification D2w D D2� with
� D �


4
. A more general Dirac operator can be obtained from D2g by the general

transformation (3.229).
The two Dirac operators (3.234) and (3.237) are clearly equivalent because one

can show that both operators have the same spectrum. This can be seen from the fact
that D2

2g D D2
2w. The spectrum of D2g can be derived from the identity

D2g D 1

R


 EJ 2 � EL2 C 1

4

�
: (3.238)

The eigenvalues of EL2 are l.lC 1/ where l D 0; 1; 2; : : : whereas the eigenvalues of
EJ 2 are j. jC 1/ where j D l˙ 1

2
. Hence we get the spectrum

D2g D f˙ 1
R
. jC 1

2
/; j D 1

2
;
3

2
;
5

2
; : : :g: (3.239)

The Laplacian on the sphere is defined by

� D 1

R2
EL2 D D2

2g �
1

R
D2g: (3.240)

3.7.2 Fuzzy Dirac Operators

There is a major problem associated with conventional lattice approaches to the
nonperturbative formulation of chiral gauge theories with roots in topological
features. The Nielsen-Ninomiya theorem [22, 23] states that if we want to maintain
chiral symmetry then one cannot avoid the doubling of fermions in the usual lattice
formulations. We will show that this problem is absent on the fuzzy sphere and as
consequence it will also be absent on fuzzy S2 � S2. It does not arise on fuzzy CP2

as well.
We can show that in the continuum, the spinors  belong to the fiber H2 of the

spinor bundle E2 over the sphere. H2 is essentially a left A-module, in other words,
if f2A and 2H2 then f 2H2. Recall that A D C1.S2/. H2 can also be thought of
as the vector space H2 D A˝C2. The noncommutative analogue of the projective
module H2 is the projective module H2 D A˝C2 where A D MatLC1. This is
clearly an A-bimodule since there is a left action as well as a right action on the
space of spinors H2 by the elements of the algebra A. The left action is generated
by LLi D Li whereas the right action will be generated by LRi defined by LRi f D fLi
for any f 2 A. We also have ŒLLi ;L

L
j � D i
ijkLLk and ŒLRi ;L

R
j � D �i
ijkLRk . Derivations

on the fuzzy sphere are given by the commutators by Li D ŒLi; ::� D LLi � LRi .
The fuzzy Dirac operators and the fuzzy chirality operators must be defined

in such a way that they act on the Hilbert space H2. The Dirac operators must
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anticommute with the fuzzy chirality operators. They must be selfadjoint and
reproduce the continuum operators in the limit L�!1.

To get the discrete version of � D �ana one first simply replaces na by xa to get
�axa. We can check that this operator does not square to 1. Indeed, we can check
that

1

. L
2
C 1

2
/2

�E�:ELC 1

2

�2 D 1: (3.241)

In other words, the chirality operator in the discrete is given by

�L D 1
L
2
C 1

2

.E�:ELC 1

2
/: (3.242)

By construction this operator has the correct continuum limit and it squares to one.
However, by inspection �L does not commute with functions on S2L. The property
that the chirality operator must commute with the elements of the algebra is a
fundamental requirement of the K-cycle .A;H;D; �/ describing S2L. To overcome
this problem one simply replace EL by �ELR. Since these generators act on the right of
the algebra A, they will commute with anything which act on the left and therefore
the chirality operator will commute with the algebra elements as desired. The fuzzy
chirality operator is then given by the formula

�R D 1
L
2
C 1

2

.�E�:ELR C 1

2
/ (3.243)

The fuzzy version of Watamuras’s Dirac operator (3.237) is simply given by

D2w D 1

R
p
c2

ijk�iLj.Lk � LRk C

�k

2
/: (3.244)

By construction this Dirac operator has the correct continuum limit. It can also be
rewritten as

D2w D � 1
R2

ijk�ixjL

R
k : (3.245)

From this expression it is obvious that this Dirac operator is selfadjoint. Next, we
compute

D2w�
R D � 1

R. L
2
C 1

2
/
p
c2

Œ
ijk�l�iLjL
R
l L

R
k � i
ijk
klm�l�iLjL

R
m � 2
ijkLjLRk LRi C

1

2

ijk�iLjL

R
k �

�RD2w D � 1

R. L
2
C 1

2
/
p
c2
Œ�
ijk�l�iLjLRk LRl C

1

2

ijk�iLjL

R
k �: (3.246)
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Taking the sum one gets

D2w�
R C �RD2w D 0: (3.247)

The fuzzy version of the Grosse-Klimčík-Prešnajder Dirac operator defined by
Eq. (3.234) is simply given by

D2g D 1

R
.E�:EL � E�:ELR C 1/: (3.248)

This Dirac operator does not anticommute with the chirality operator (3.243) and
therefore it is no longer unitarily equivalent to D2w. Indeed, the two operators D2g

and D2w will not have the same spectrum.
Let us start first with D2w. To find the spectrum of D2w one simply rewrites the

square D2
2w in terms of the two SU.2/Casimirs EJ2 and EK2 where EJ and EL are defined

by

EJ D ELC E�
2
; EL D EL � ELR: (3.249)

A straightforward computation leads to the result

D2
2w D

1

R2L2a

�
EL2.ELR/2 C 1

2
ŒEL2 C .ELR/2 � EL2�Œ1 � . E�

2
/2 C EJ2 � 1

2
EL2 � 1

2
.ELR/2 � 1

2
EL2�

�

:

(3.250)

The eigenvalue j takes the two values j D l C 1
2

and j D l � 1
2

for each value of
l where l D 0; 1; : : : ;L. The eigenvalues of the above squared Dirac operator will
then read

D2
2w. j/ D

1

R2

�

. jC 1

2
/2 C Œl.lC 1/�2

4L2a
� l.lC 1/. jC 1

2
/2

2L2a

�

: (3.251)

We get the spectrum

D2w. j D l˙ 1

2
/ D ˙ 1

R
. jC 1

2
/

s

Œ1C 1 � . jC 1
2
/2

4L2a
�: (3.252)

The computation of the spectrum of the Dirac operator D2g is much easier. It turns
out that the spectrum of D2g is exactly equal to the spectrum of the continuum Dirac
operator up to the eigenvalue j D L � 1

2
. Thus D2g is a better approximation to

the continuum than D2w and there is no fermion doubling. This can be seen from
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the equation

D2g D 1

R


EJ2 � EL2 � 1
2
.
1

2
C 1/C 1�

D 1

R



j. jC 1/� l.lC 1/C 1

4

�
: (3.253)

Again for each fixed value of l the quantum number j can take only the two values
j D l C 1

2
and j D l � 1

2
. For j D l C 1

2
we get D2g. j/ D 1

R . j C 1
2
/ with j D

1=2; 3=2; : : : ;LC 1=2 whereas for j D l� 1
2

we get D2g. j/ D � 1
R . jC 1

2
/ with j D

1=2; 3=2; : : : ;L�1=2. The chirality operator �R is equalC1 for D2g. j/ D 1
R . jC 1

2
/

with j D 1=2; 3=2; : : : ;L C 1=2 and it is equal �1 for D2g. j/ D � 1
R . j C 1

2
/ with

j D 1=2; 3=2; : : : ;L� 1=2. Thus the top modes with j D LC 1=2 are not paired. In
summary we have the spectrum

D2g. j D l˙ 1

2
/ D ˙ 1

R
. jC 1

2
/; �R. j D l˙ 1

2
/ D ˙1; j D 1

2
;
3

2
; : : : ;L � 1

2

D2g. j D lC 1

2
/ D 1

R
. jC 1

2
/; �R. j D lC 1

2
/ D C1; j D LC 1

2
: (3.254)

By inspection one can immediately notice that there is a problem with the top modes
j D LC 1

2
. The top eigenvalues j D LC 1

2
in the spectrum of D2g are not paired to any

other eigenvalues which is the reason why D2g does not have a chirality operator.
Indeed D2g does not anticommute with �R. We find

D2g�
R C �RD2g D 2R

LC 1D
2
2g: (3.255)

This equation follows from the fact that

D2g D LC 1
2R

.�L C �R/: (3.256)

The Dirac operator D2w vanishes on the top modes j D L C 1
2

and therefore the
existence of these modes spoils the invertibility of the Dirac operator D2w. The
Dirac operator D2w has the extra disadvantage of having a very different spectrum
compared to the continuum. In other words D2g is a much better Dirac operator
than D2w if one can define for it a chirality operator. Towards this end we note the
following identity

ŒD2g; �
R� D 2 i

s

1 � 1

.LC 1/2 D2w: (3.257)
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This leads to the crucial observation that the two operators D2g and D2g anticom-
mute, viz

D2gD2w CD2wD2g D 0: (3.258)

If we restrict ourselves to the subspace with j�L � 1
2

then clearly D2g must have a
chirality operator. Let us then define the projector P by

PjLC 1

2
; j3 >D 0; Pjj; j3 >D jj; j3 >; for all j�L � 1

2
: (3.259)

Let us call V the space on which P projects down. The orthogonal space is W.
Our aim is to find the chirality operator of the Dirac operator PD2gP. To this end
one starts by making some observations concerning the continuum. From the basic
continuum result D2w D �i�D2g we can trivially prove the identity � D iF2gF2w
where F2g and F2w are the sign operators of the Dirac operators D2g and D2w

respectively defined by F2g D D2g

jD2gj and F2w D D2wjD2wj . The fuzzification of these
expressions is only possible if one confine ourselves to the vector space V since on
the fuzzy sphere the operator F2w will not exist on the whole space V˚W. Taking
all of these matters into considerations one ends up with the following chirality
operator

�R0 D iF2gF2w: (3.260)

F2g D D2g

jD2gj ; on V

D 0; on W: (3.261)

F2w D D2w

jD2wj ; on V

D 0; on W: (3.262)

By construction (3.260) has the correct continuum limit. If it is going to assume
the role of a chirality operator on the fuzzy sphere it must also square to one on
V , in other words one must have on the whole space V˚W: .�R0

/2 D P. It should
also be selfadjoint and should anticommute with the Dirac operator PD2gP. The key
requirement for all of these properties to hold is the identity fF2g;F2wg D 0. This
identity follows trivially from the result (3.258). It is an interesting fact that the three
operators F2g, F2w and �R0

constitute a Clifford algebra on V .
Thus, we have established that fermions can be defined on S2L with no fermion

doubling at least in the absence of fuzzy monopoles. It is however easy to include
them as well.
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Chapter 4
Quantum Noncommutative Phi-Four

Abstract In this chapter quantum noncommutative ˆ4 theories on Moyal-Weyl
spaces, the noncommutative fuzzy torus, and the fuzzy spheres S2N and S2N � S2N
are presented. This includes analytical results such as the UV-IR mixing, the stripe
phase, the exact solution of the self-dual theory, as well as Monte Carlo results
such as the phase structure on the fuzzy sphere, and the dispersion relation on
the noncommutative fuzzy torus. Other results such as quantum noncommutative
ˆ4 theory on fuzzy S2 � S2 and the Wilson renormalization group approach to
noncommutative ˆ4 in the Moyal-Weyl picture and in the matrix basis at the self-
dual point are also briefly discussed.

4.1 The UV-IR Mixing

We consider here the action (with a real field ˆC D ˆ)

S D p
det.2
�/TrH

�

ˆ

�

� @2i C �2
�

ˆC 	

4Š
ˆ4

�

D
Z

ddx

�

ˆ

�

� @2i C �2
�

ˆC 	

4Š
ˆ �ˆ �ˆ �ˆ

�

: (4.1)

We will use elegant background field method to quantize this theory. We write ˆ D
ˆ0 C ˆ1 where ˆ0 is a background field which satisfy the classical equation of
motion and ˆ1 is a fluctuation. We compute

SŒˆ� D SŒˆ0�C
p

det.2
�/TrHˆ1

�

� @2i C �2 C 4
	

4Š
ˆ20

�

ˆ1

C2 	
4Š

p
det.2
�/TrHˆ1ˆ0ˆ1ˆ0 C O.ˆ31/: (4.2)
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The linear term vanished by the classical equation of motion. Integration ofˆ1 leads
to the effective action

SeffŒˆ0� D SŒˆ0�C 1

2
TR log �: (4.3)

� D �@2i C �2 C 4
	

4Š
ˆ20 C 2

	

4Š
ˆ0ˆ

R
0 : (4.4)

The matrix ˆR
0 acts on the right. The 2-point function is deduced from the quadratic

action

Squad
eff D

Z

ddx ˆ0

�

� @2i C �2
�

ˆ0

C 	
4Š

TR

�
2

�@2i C �2
ˆ20 C

1

�@2i C �2
ˆ0ˆ

R
0

�

: (4.5)

The fieldsˆ0 andˆR
0 are infinite dimensional matrices. We can also think of them as

operators acting on infinite dimensional matrices and as such they carry four indices
as follows

.ˆ0/AB;CD D .ˆ0/ACıDB ; .ˆR
0 /AB;CD D .ˆ0/DBıAC: (4.6)

The propagator is an operator defined by

�
1

�@2i C �2
�AB;CD

D
p

det.2
�/
Z

ddk

.2
/d
1

k2 C �2 .e
ikOx/AB.e�ikOx/DC: (4.7)

We have also

eikOxeipOx D ei.kCp/Ox e� i
2 �ijkipj : (4.8)

Squad
eff D

Z

ddx ˆ0

�

� @2i C �2
�

ˆ0

C 	
4Š

p
det.2
�/

Z
ddk

.2
/d
1

k2 C �2
�

2ˆ20 C eikOx ˆ0 e�ikOx ˆ0
�

AA

D
Z

ddx ˆ0

�

� @2i C �2
�

ˆ0

C 	
4Š

Z
ddk

.2
/d
1

k2 C �2
Z

ddx

�

2ˆ20 C eikx �ˆ0 � e�ikx �ˆ0
�
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Fig. 4.1 The one-loop planar
and non-planar contributions

k

p
k

p

D
Z

ddp

.2
/d
jˆ0. p/j2. p2 C �2/

C 	
4Š

Z
ddp

.2
/d
jˆ0. p/j2

Z
ddk

.2
/d
1

k2 C �2 .2C e�i�ijkipj/: (4.9)

The first term is the classical quadratic action. The second term comes from the
planar diagram while the last term comes from the non-planar diagram. See Fig. 4.1.
In other words,

†planar D 2 	
4Š

Z
ddk

.2
/d
1

k2 C �2

†non planar. p/ D 	

4Š

Z
ddk

.2
/d
1

k2 C �2 e�i�ijkipj : (4.10)

We need now to regularize and then renormalize these one-loop contributions. We
will use the Schwinger parametrization

1

k2 C �2 D
Z 1

0

d˛ e�˛.k2C�2/: (4.11)

We compute

I2. p/ D
Z

ddk

.2
/d
1

k2 C �2 e�i�ijkipj

D
Z 1

0

d˛

.2
/d

Z

ddk e�˛.kiC i�ijpj
2˛ /2 e� .�ijpj/

2

4˛ �˛�2

D
Z 1

0

d˛

.2
/d

Z

ddk e�˛k2 e� .�ijpj/
2

4˛ �˛�2 : (4.12)

In above we can use
R
ddk D R

kd�1dkd�d�1,
R
d�d�1 D 2


d
2

�. d2 /
and

2˛
d
2

R 1
0

kd�1dk e�˛k2 D R 1
0

x
d
2�1dx e�x D �. d

2
/. Thus we get

I2. p/ D 1

.4
/
d
2

Z 1

0

d˛

˛
d
2

e� .�ijpj/
2

4˛ �˛�2 : (4.13)
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In order to regulate the singular ˛ �! 0 behaviour we introduce a cut-off ƒ by

multiplying the integrand by e� 1

˛ƒ2 . We get

I2. p; ƒ/ D 1

.4
/
d
2

Z 1

0

d˛

˛
d
2

e� 1

˛ƒ2 e� .�ijpj/
2

4˛ �˛�2

D .2
/� d
2

2
�

d�2
2

� 4

ƒ2
eff

� 2�d
4

Z
dt

t
d
2

e� �
ƒeff

. 1t Ct/

D .2
/�
d
2 �

d�2
2

� 4

ƒ2
eff

� 2�d
4 Kd�2

2

� 2�

ƒeff

�
: (4.14)

The Kd�2
2

is the modified Bessel function. The cutoff is defined by the equation

4

ƒ2
eff

D 4

ƒ2
C .�ijpj/2: (4.15)

Hence the two-point function is given by

�.2/. p/ D p2 C �2 C 2 	
4Š
I2.0;ƒ/C 	

4Š
I2. p; ƒ/: (4.16)

4-Dimensions In this case

I2. p; ƒ/ D �

4
2
ƒeff

2
K1

� 2�

ƒeff

�
: (4.17)

We use the expansion

K1.z/ D 1

z
C z

2
ln

z

2
C : : : (4.18)

We obtain

I2. p; ƒ/ D 1

16
2

�

ƒ2
eff � �2 ln

ƒ2
eff

�2
C : : :

�

: (4.19)

In the limit ƒ �! 1 the non-planar one-loop contribution remains finite whereas
the planar one-loop contribution diverges quadratically as usual. Furthermore the
two-point function �.2/. p/ which can be made finite in the limit ƒ �!1 through
the introduction of the renormalized mass m2 D �2 C 2 	

4Š
I2.0; 	/ is singular in the

limit p �! 0 or � �! 0. This is because the effective cutoff ƒeff D 2=j�ijpjj
diverges as p �! 0 or � �! 0. This is the celebrated UV-IR mixing problem
discussed originally [26]. More results can be found there.
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2-Dimensions In this case

I2. p; ƒ/ D 1

2

K0

� 2�

ƒeff

�
: (4.20)

We use the expansion

K0.z/ D � ln
z

2
C : : : (4.21)

We obtain

I2. p; ƒ/ D 1

4

ln
ƒ2

eff

�2
C : : : (4.22)

The same comment applies.

4.2 The Stripe Phase

4.2.1 The Disordered Phase

After quantization we get the 2-point function

�.2/. p/ D p2 C �2 C 2 	
4Š

Z
ddk

.2
/d
1

k2 C �2
�
1C 1

2
e�i�ijkipj

�

D p2 C �2 C 2 	
4Š

Z
ddk

.2
/d
1

k2 C �2
�
1C 1

2
ei�ijkipj

�
: (4.23)

A self-consistent Hartree treatment means that we replace the free 2-point function
with the full 2-point function and thus it leads to the result

�.2/. p/ D p2 C �2 C 2 	
4Š

Z
ddk

.2
/d
1

�.2/.k/

�
1C 1

2
ei�ijkipj

�
: (4.24)

The dimensionless parameters of the model are

�2

ƒ2
;

	

ƒ4�d
; �ƒ2: (4.25)

Assuming a cutoff regularization the renormalized mass is defined as usual by
absorbing into �2 the divergence coming from the momentum integral. Since
the noncommutativity does not modify the large k behaviour we must still have



124 4 Quantum Noncommutative Phi-Four

�.2/.k/ � k2 for k2 �! 1 and therefore the momentum integral is proportional to
ƒd�2. The renormalized mass will be defined by

m2 D �2 C 2 	
4Š

Z

ƒ

ddk

.2
/d
1

�.2/.k/
: (4.26)

The parameter m2 remains finite in the limit ƒ �!1. Hence

�.2/. p/ D p2 Cm2 C 	

4Š

Z
ddk

.2
/d
1

�.2/.k/
ei�ijkipj

D p2 Cm2 C 	

4Š

Z

kd�1dk
1

�.2/.k/
Xd�1: (4.27)

Xd�1 D
Z

d�d�1
.2
/d

ei�ijkipj

D
Z

d�d�1
.2
/d

eikiqi : (4.28)

We remark that q2i D ��ji�ikpjpk D �2p2i where we have assumed maximal
noncommutativity with eigenvalues ˙� . By choosing the direction of the vector
qi along the direction of one of the axis we get

Xd�1 D
Z

d�d�1
.2
/d

ei�kp cos˛: (4.29)

In other words Xd�1 is a function of kq D �kp only. We write this function as

Xd�1 D 1

.2
/d
2


d
2

�. d
2
/
QXd�1.�kp/: (4.30)

Clearly QXd�1.0/ D 1. Furthermore it is clear from the integral (4.29) that only one
angle (namely ˛) among the d � 1 angles involved in d�d�1 will yield a non-trivial
integral.

For d D 2 we have

X1 D 1

2

J0.�kp/: (4.31)

QX1.�kp/ D J0.�kp/: (4.32)

Generalization of this result is given by Gubser and Sondhi [16]

QXd�1.�kp/ D 2
d
2�1�. d

2
/

.�kp/
d�2
2

J d�2
2
.�kp/: (4.33)
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Hence

Xd�1 D 1

.2
/
d
2

J d�2
2
.�kp/

.�kp/
d�2
2

: (4.34)

We get

�.2/. p/ D p2 C m2 C 	

4Š

1

.2
/
d
2

Z

kd�1dk
1

�.2/.k/

J d�2
2
.�kp/

.�kp/
d�2
2

: (4.35)

For d D 4 we obtain

�.2/. p/ D p2 C m2 C 	

4Š

1

.2
/2

Z

k3dk
1

�.2/.k/

J1.�kp/

�kp
: (4.36)

In summary, we have shown that

	

4Š

Z
d4k

.2
/4
1

�.2/.k/
ei�ijkipj D 	

4Š

1

.2
/2

Z

k3dk
1

�.2/.k/

J1.�kp/

�kp
: (4.37)

The first non-trivial order in 	 reads

	

4Š

Z
d4k

.2
/4
1

k2 C m2
ei�ijkipj D 	

4Š

1

.2
/2

Z

k3dk
1

k2 C m2
J1.�kp/

�kp
: (4.38)

However, from the previous section we know that

	

4Š

Z
d4k

.2
/4
1

k2 C m2
ei�ijkipj D 	

4Š

1

16
2

�

ƒ2
eff � m2 ln

ƒ2
eff

m2
C : : :

�

: (4.39)

The effective cutoff is ƒeff D 2=.�p/. Thus

�.2/. p/ D p2 C m2 C 	

4Š

1

16
2

�
4

�2p2
� m2 ln

4

m2�2p2
C : : :

�

: (4.40)

Immediately

d�.2/. p/

dp2
jpDpc D 1C

	

4Š

1

16
2

�

� 4

�2. p2c/
2
C m2

p2c
C : : :

�

D 0: (4.41)

There exists a solution pc which for � �! 1 is given by pc D 2=.m�/ �! 0. For
� large but finite we expect that pc to be small but¤ 0. Also �.2/. pc/ ¤ 0. Now by
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using the identity

d

dx

�
Jn.x/

xn

�

D �JnC1.x/
xn

; (4.42)

we find to all orders in 	 the result

d�.2/. p/

dp2
jpDpc D 1 �

	

4Š

1

.2
/2

Z

k3dk
1

�.2/.k/

J2.�kpc/

�kpc
D 0: (4.43)

The existence of a minimum pc in �.2/. p/ can be inferred from the behaviour at
p �! 0 and at p �!1 of �.2/. p/ given by

�.2/. p/ D p2 ; for p large: (4.44)

�.2/. p/ / 	

�2p2
; for p small: (4.45)

The first identity means that noncommutativity does not alter the large p behaviour.
The second identity means that the small momentum modes of the field ˆ can not
condense and as a consequence the ordered phase will break translational invariance.

Around the minimum pc we can write �.2/. p/ as

�.2/. p/ D �20 . p2 � p2c/
2 C r ; for p ' pc: (4.46)

From the other hand we have

�.2/. p/ D p2 C m2 C 	

4Š

1

.2
/2

Z

k3dk
1

�.2/.k/

J1.�kp/

�kp
: (4.47)

• We compute for �.2/.k/ D k2, p ' pc and large q the contribution

Z 1

q
k3dk

1

�.2/.k/

J1.�kp/

�kp
D 1

�p

Z 1

q
dkJ1.�kp/

D 1

. p�/2

Z 1

�pq
dxJ1.x/

D 1

. p�/2

Z 1

�pcq
dxJ1.x/

D 1

. p�/2

�

1 �
Z �pcq

0

dxJ1.x/

�

(4.48)
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The behaviour �.2/.k/ D k2 can be assumed to be starting from the minimum pc.
Thus we can make the approximation q D pc. Furthermore we have obtained for
� large (in unit of ƒ2) a small but non zero value of pc. The product �pc is of
order 1. Thus �p2c << 1 and as a consequence

Z 1

q
k3dk

1

�.2/.k/

J1.�kp/

�kp
D 1

. p�/2
: (4.49)

• We also compute for �.2/.k/ D �20 .k2 � p2c/
2 C r, p ' pc and 
1 and 
2 small the

contribution

Z pcC
2

pc�
1
k3dk

1

�.2/.k/

J1.�kp/

�kp
D p3c

J1.�p2c/

�p2c

Z pcC
2

pc�
1
dk

4�20p
2
c.k � pc/2 C r

:

(4.50)

For k �! 1 the integrand behaves as 1=k2 �! 0 and hence we can take the
upper limit of the integral to infinity without modifying very much the result. In
other words we can approximate this integral by

Z pcC
2

pc�
1
k3dk

1

�.2/.k/

J1.�kp/

�kp
D p3c

J1.�p2c/

�p2c

Z 1

pc�
1
dk

4�20p
2
c.k � pc/2 C r

D J1.�p2c/

2�0
p
r�

�


2
C arctan

2�0pcp
r

1

�

D p2c
4�0
p
r

�


2
C arctan

2�0pcp
r

1

�
: (4.51)

We remark that since pc is small we could have also taken the lower limit of
the integral to zero without changing very much the result. Thus in the above
equation we can make the approximation 
1 D pc. Since �0pc is of order 1 (see
below) we can see that the arctan function is of order 
1 D pc and hence this
whole term is of order p4c , i.e. subleading. We get

Z pcC
2

pc�
1
k3dk

1

�.2/.k/

J1.�kp/

�kp
D p2c
�1
p
r
; �1 D 8�0



: (4.52)

• We remark that the ratio J1.�kp/
�kp is of order 1=2 near k D 0 where �.2/.k/ behaves

as 1=k2. The contribution from small momenta is therefore negligible.

The final result is obtained by adding the contributions (4.49) and (4.52). We get
with the definition

g2 D 	

4Š

1

.2
/2
; (4.53)
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the result

�.2/. p/ D p2 Cm2 C g2
�

1

. p�/2
C p2c
�1
p
r

�

; p ' pc: (4.54)

Clearly

�.2/. pc/ D p2c C m2 C g2
�

1

. pc�/2
C p2c
�1
p
r

�

: (4.55)

But from Eq. (4.46) we have �.2/. pc/ D r. Thus

r D p2c C m2 C g2
�

1

. pc�/2
C p2c
�1
p
r

�

: (4.56)

We remark from the other hand that Eq. (4.46) can also be put in the form

�.2/. p/ D 4�20p2c. p � pc/
2 C r ; for p ' pc: (4.57)

We must have

4�20p
2
c D 1 ; pc D

1

2�0
: (4.58)

Thus

�.2/. p/ D p2 C p2c � 2ppcC r ; for p ' pc: (4.59)

By substituting the value of r given by Eq. (4.56) and then equating with Eq. (4.54)
we get

2pc
pC pc

D g2

�2
1

p2p2c
: (4.60)

In other words

pc D
r

g

�
: (4.61)

To summarize we have

pc D 1

2�0
D

r
g

�
; r D 2p2c C m2 C g2

p2c
�1
p
r
: (4.62)

Since pc� is of order 1 we conclude that g must go to zero as 1=� when � goes
to1.
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4.2.2 The Ordered Phase

We expand the scalar field as

ˆ D ˆ0 C �: (4.63)

The action

SŒˆ� D
Z

ddx

�

ˆ
� � @2i C �2

�
ˆC 	

4Š
ˆ �ˆ �ˆ � ˆ

�

; (4.64)

becomes

SŒˆ0 C �� D SŒˆ0�C SŒ��C 2
Z

ddxˆ0
� � @2i C �2

�
�

C4 	
4Š

Z

ddxˆ0 �ˆ0 �ˆ0 � �

C 	
4Š

Z

ddx

�

4ˆ0 �ˆ0 � � � � C 2ˆ0 � � �ˆ0 � �
�

C4 	
4Š

Z

ddx� � � � � �ˆ0:
(4.65)

The background in the ordered phase is assumed to be a stripe which breaks
translation invariance, i.e. a configuration of the form (with x D x1)

ˆ0 D A cos pcx: (4.66)

In general an ordered configuration is only expected to be a periodic function
of x with period T D 2
=pc. However, at small coupling the most important
configuration is the above stripe phase. In the above ansatz A is assumed to be small
so that perturbation theory is justified.

Now we quantize the field � by writing � D Q� C X where X is the fluctuation
field. The linear term in X is found to be

2

Z

ddx.ˆ0 C Q�/
� � @2i C �2

�
X C 4 	

4Š

Z

ddx

�

3ˆ0 �ˆ0 � Q� C 3ˆ0 � Q� � Q�

Cˆ0 �ˆ0 �ˆ0 C Q� � Q� � Q�
�

X: (4.67)
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This is made to vanish by choosing the background Q� appropriately. The quadratic
term in X is

Z

ddxX
�� @2iC�2

�
X C 	

4Š

Z

ddxX

�

4 Q� � Q� C 2 Q� � Q�R C 4ˆ0 �ˆ0C2ˆ0 �ˆR
0

C4 Q� �ˆ0 C 4ˆ0 � Q� C 4 Q� �ˆR
0

�

X: (4.68)

We neglect higher order terms in X. By integrating the fluctuation field X we get the
effective action at one-loop to be

SŒˆ0 C Q�� D SŒˆ0�C SŒ Q��C 2
Z

ddxˆ0
� � @2i C �2

� Q�

C4 	
4Š

Z

ddxˆ0 �ˆ0 �ˆ0 � Q�

C 	
4Š

Z

ddx

�

4ˆ0 �ˆ0 � Q� � Q� C 2ˆ0 � Q� �ˆ0 � Q�
�

C4 	
4Š

Z

ddx Q� � Q� � Q� �ˆ0

C1
2

TR log

�

� @2i C �2 C 4
	

4Š
Q� � Q� C 2 	

4Š
Q� � Q�R

C4 	
4Š
ˆ0 �ˆ0 C 2 	

4Š
ˆ0 �ˆR

0

C4 	
4Š
Q� �ˆ0 C 4 	

4Š
ˆ0 � Q� C 4 	

4Š
Q� �ˆR

0

�

: (4.69)

Tadpole Graphs The tadpole graphs (terms which are linear in Q�) at one-loop are

Tadople D 2
Z

ddx�0
� � @2i C �2

� Q� C 4 	
4Š

Z

ddx�0 � �0 � �0 � Q�

C2 	
4Š

TR
1

�@2i C �2
�
Q� � �0 C �0 � Q� C Q� � �R

0

�

D 2
Z

ddp

.2
/d
��
0 . p/

�

�.2/. p/� ı�.2/. p/
�
Q�. p/C 4 	

4Š

Z

ddx�30 Q�:

(4.70)

For the origin and computation of the term ı�.2/. p/ D 3A2	.1 C cos pc ^ p/=4Š
see below. Since ˆ0 D ˆ0.x/ D A cos pcx we have ˆ0. p/ D ˆ0. p1; p?/ D
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A.2
/dıd�1. p?/
�
ı. p1 � pc/C ı. p1 C pc/

�
=2 and ˆ30 D A2.3ˆ0.x/C ˆ0.3x//=4.

We get

Tadople D 2

Z
ddp

.2
/d
��
0 . p/

�

�.2/. p/� ı�.2/. p/
�
Q�. p/

CA2 	
4Š

Z
ddp

.2
/d
��
0 . p/

�

3 Q�. p/C Q�.3p/
�

D A

�

�.2/. p/� 6A2 	
4Š

�
Q�. pc/C 3A

3

2

	

4Š
Q�. pc/C A3

2

	

4Š
Q�.3pc/C h:c:

(4.71)

In above the momentum pc stands for pc D . pc; 0; : : : ; 0/. Since pc is of order 1=�
and � large, i.e. pc is small, we will make the approximation

Q�.3pc/ ' Q�. pc/: (4.72)

Also �.2/. pc/ D r. Thus we obtain

Tadople D 2A Q�. pc/
�
r � 4A2 	

4Š

�
: (4.73)

For a stable phase we need a vanishing tadpole, i.e. we must have either

A D 0 ; disordered phase (4.74)

or

r D 4A2 	
4Š
; ordered phase: (4.75)

Quadratic Action The one-loop contribution

1

2

	

4Š
TR

1

�@2i C �2
�

4 Q� � Q� C 2 Q� � Q�R C 4ˆ0 �ˆ0 C 2ˆ0 �ˆR
0

�

; (4.76)

corrects the quadratic part of the classical action SŒˆ0�C SŒ Q�� as before. To this we
add the first and second terms in the second line of Eq. (4.69). These are given by
(with the notation

R
ddp=.2
/d D R

p)

Z

ddx

�

4ˆ0 �ˆ0 � Q� � Q� C 2ˆ0 � Q� �ˆ0 � Q�
�

D 2
Z

p1;p2;p3

ˆ0. p1/ˆ0. p2/ Q�. p3/ Q��. p1 C p2 C p3/

�e� i
2 . p1^p2Cp1^p3Cp2^p3/.2C eip2^p3 /
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D 2A2
Z

p

Q�. p/ Q��. p/.1C 1

2
cos pc ^ p/

CA2
Z

p

�
Q�. p/ Q��. pC 2pc/.1

2
C e�ipc^p/C h:c

�

: (4.77)

Again we will make the approximation

Q�. pC 2pc/ ' Q�. p/: (4.78)

Thus

	

4Š

Z

ddx

�

4ˆ0 �ˆ0 � Q� � Q� C 2ˆ0 � Q� � ˆ0 � Q�
�

D 3A2 	
4Š

Z
ddp

.2
/d
Q�. p/ Q��. p/.1C cos pc ^ p/: (4.79)

We get then for p ' pc the result

�.2/. p/ D p2 C m2 C g2
�

1

. p�/2
C p2c
�1
p
r

�

C 3A2 	
4Š
.1C cos pc ^ p/

D p2 C m2 C g2
�

1

. p�/2
C p2c
�1
p
r

�

C 6A2 	
4Š

D p2 C m2 C g2
�

1

. p�/2
C p2c
�1
p
r
C 6A2.2
/2

�

: (4.80)

Higher Order Terms The last term in the second line of Eq. (4.69) is not important
for our case since it is cubic in the field Q�. Also the quartic term in SŒ Q�� is irrelevant
to our discussion.

4.2.3 The Phase Structure: A Lifshitz Triple Point

Free Energy By using the above results, it is not difficult to show that

pc D 1

2�0
D

r
g

�
; r D 2p2c C m2 C g2

p2c
�1
p
r
C 6g2A2.2
/2: (4.81)

In other words, the last term in r is the only difference with the case of the disordered
phase. We will also need the parameters

˛ D g2p2c
�1
D 


4

g
7
2

�
3
2

; � D 2p2c C m2: (4.82)
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The minimum is

r D � C 24
2g2A2 C ˛p
r
: (4.83)

The condition for an ordered phase is

r D 16
2g2A2: (4.84)

Thus we get that r D ro must be a solution of the equation

0 D ro C 2� C 2˛p
ro
: (4.85)

This equation can be put in the form (with s D r0 C 4�
3

, s D 2�p
3
x)

0 D s3 � 4
3
�2s� 16

27
�3 � 4˛2 ; 0 D x3 � x � 2p

27
.1C 27

4

˛2

�3
/: (4.86)

The discriminant is

� D �128˛2.�3 C 27

8
˛2/: (4.87)

This is positive definite for

� < �3
2
˛
2
3 : (4.88)

In this range there are three real solutions two of them ro1 and ro2 are positive.
For the disordered phase we have instead A D 0 and hence r D rd is a solution

of the equation

0 D rd � � � ˛p
rd
: (4.89)

This equation can be put in the form (with s D rd � 2�
3

, s D �p
3
x)

0 D s3 � 1
3
�2sC 2

27
�3 � ˛2 ; 0 D x3 � xC 2p

27
.1 � 27

2

˛2

�3
/: (4.90)

The discriminant is

� D 4˛2.�3 � 27
4
˛2/: (4.91)
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This is always negative and we have one single real root. We note the identity

2r2d C r2o D 2�.rd � ro/C 2˛.prd �pro/: (4.92)

The free energy difference between the two phases is calculated as

�F D
Z rd

ro

dr
dA

dr

dF

dA
: (4.93)

From the equation of the tadpole graphs (4.73) we have

d

d Q�c
Tadople D 2A

�
r � 16
2g2A2�: (4.94)

We will make the identification

dF

dA
D d

d Q�c
Tadople D 2A�

r � 16
2g2A2�: (4.95)

Also we remark that A can be given by the function

A D 1

4
g

r
2

3

r

r � � � ˛p
r
: (4.96)

This works in both phases. Then we compute

Fd � Fo D 1

32
2g2
r2o C

1

48
2g2

�

r2d � r2o C 2˛.
p
rd �pro/

�

D 1

96
2g2

�

r2o C 2r2d C 4˛.
p
rd �pro/

�

: (4.97)

This formula is slightly different from the result of [16] in which the authors, by
their own admission, were not careful with their factors. We check that the larger
value for ro (remember that we have two solutions ro1 and ro2) leads to a lower free
energy. The free energy difference can also be put into the form

Fd � Fo D 1

96
2g2

�

3r2o C 6r2d � 4�.rd � ro/

�

: (4.98)

Equivalently we can write

Fd � Fo D 1

48
2g2
.
p
rd �pro/

�

3˛ C �.prd Cpro/

�

: (4.99)
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The First-Order Behavior Let us summarize our main results so far. The problem
has a single parameter. We take


 D � 1p
3

�3

˛2
: (4.100)

We must have


 > 
�1 D
p
3
9

8
: (4.101)

The minimum in the ordered phase is a solution to the equation

x3o � xo � 2p
27
.1 � 9

p
3

4

/ D 0: (4.102)

ro D � 2�p
3
Ro ; Ro D �x0 C 2p

3
: (4.103)

The minimum in the disordered phase is a solution to the equation

x3d � xd C 2p
27
.1C 9

p
3

2

/ D 0: (4.104)

rd D � �p
3
Rd ; Rd D �xd � 2p

3
: (4.105)

The free energy difference is

Fd � Fo D 1

48
2g2
�2p
3

.
p
Rd �

p
2Ro/

�

3 �p
.pRd C
p
2Ro/

�

: (4.106)

The transition between the two phases is given by the condition

0 D 3 �p
.
p
Rd C

p
2Ro/: (4.107)

This is where the free energy difference changes sign. This is a first-order transition
(see below). We find the transition point


�2 D c
p
3
9

8
; c > 1: (4.108)
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The coefficient c can be determined from numerics. For negative m2 such that m2 <
�2g=� the parameter 
 is positive in the region 
�1 < 
 < 
�2 which corresponds
to the disordered phase, while for sufficiently negative m2, viz m2 << �2g=� , 
 is
sufficiently positive in the region 
 > 
�2 which corresponds to the ordered phase.

Equation (4.108) is equivalent to

m2�2 D �2
g

�
� 3
4

�

2c

2

� 1
3 g

7
3

�
: (4.109)

In a naive one-loop we will not get the term ˛=
p
r in �.2/. p/ and as a consequence

we find the minima r0 D �2� and rd D � . The transition point is therefore at �� D 0
or equivalently m2�2 D �2g=� . The vanishing of the renormalized mass r, i.e. the
divergence of the correlation length, at the transition point indicates a second-order
behavior. Correspondingly, �.2/. p/ becomes negative near p D pc D

p
g=� , since

�.2/. pc/ D r, which signals a second order transition to an ordered phase. However,
in our case the system avoids the second-order behaviour by an amount proportional
to g7=3. It is also very useful to compare the second-order behaviour m2�2 D �2g=�
with the critical point of real quartic matrix models (see latter). The phenomena of
a phase transition of an isotropic system to a nonuniform phase was in fact realized
a long time ago by Brazovkii [3].

Lifshitz Point At �ƒ2 D 1 only the planar graphs survive. This maximally
noncommuting theory has the same critical point �2� and the same transition as the
planar theory (which is defined as the sum over planar diagrams only). The planar
theory has the usual Ising symmetry ˆ �! �ˆ and the usual broken symmetry
phase which can be reached by traversing a continuous, i.e. a second-order phase
transition at �2�. The planar theory is also the N �! 1 of some hermitian matrix
model. From this point of view the second-order transition is seen to be different
from the standard Ising transition in d < 4, i.e. it lies in a different universality
class.

For �ƒ2 very large but finite we have instead a first-order phase transition since
we have found a non-zero latent heat. The calculation was done near the massless
Gaussian theory where both g and m2 scale to zero with powers of 1=� . For large g
more complicated patterns become favored over stripes.

For �ƒ2 sufficiently small we get the standard Ising critical point in d�4. Clearly
for �ƒ2 D 0 the minimum of �.2/. p/ is at p D 0. This remains the minimum for
sufficiently small �ƒ2. The transition is therefore second-order to the usual uniform
phase of the Ising model in d�4 in which the symmetry ˆ �! �ˆ will be broken.
There is a critical value .�ƒ2/� � 1=gwhere the minimum starts to move away from
p D 0. The second-order line will therefore meet with the first-order line which was
computed for large �ƒ2 at a triple point (Lifshitz point). The triple point is located
at �2 D �1 in our current self-consistent treatment of the one-loop theory. This
is however only an artifact of this approximation, i.e. a finite triple point is actually
more than expected and as a consequence a transition from the stripe phase to the
uniform phase exists. The phase diagram is displayed on Fig. 4.2.
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Fig. 4.2 The phase diagram of noncommutative ˆ4 in d D 4 at fixed 	 � g2

In 3 dimensions there is a transition to a stripe phase. In this case the transition
is made first order only by logarithmic divergences. The stripe phase in this case is
stable under infrared fluctuations.

In 2 dimensions it is claimed that the stipe phase is unstable (long range order
is impossible) due to infrared fluctuations. This is thought to be a consequence of
the Coleman-Mermin-Wagner theorem which states that a continuous symmetry (in
this case translation invariance) can not be spontaneously broken in 2 dimensions.
Indeed, if such a spontaneous symmetry breaking occurred then the corresponding
massless Goldstone bosons would have an infrared divergent 2-point correlation
function. As we will show this expectation is not correct as the Coleman-Mermin-
Wagner theorem does not really apply since the conditions on which it is based do
not generally hold in noncommutative field theory.

4.2.4 Stripes in 2 Dimension

Disordered Phase

The two-point function in the self-consistent Hartree approximation in this case is
given by

�.2/. p/ D p2 C m2 C 	

4Š

1

.2
/
d
2

Z

kd�1dk
1

�.2/.k/

J d�2
2
.�kp/

.�kp/
d�2
2

D p2 C m2 C 	

4Š

1

.2
/

Z

kdk
1

�.2/.k/
J0.�kp/: (4.110)
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We recall that m2 is the renormalized mass. We also recall that the non-planar
contribution is given by

…NP. p/ D 	

4Š

Z
ddk

.2
/d
1

k2 C m2
e�i�ijkipj

D 	

4Š

2

.4
/
d
2

.mƒeff/
d�2
2 Kd�2

2
.
2m

ƒeff
/: (4.111)

As before we have introduced a cutoffƒ and defined the effective cutoff

1

ƒ2
eff

D 1

ƒ2
C .�ijpj/2

4
: (4.112)

We fix d D 2. Taking the limit p �! 0 and/or � �! 0 first and then ƒ �! 1
second we obtain the UV divergence

…NP. p/ D 	

4Š

2

4

ln
ƒ

m
: (4.113)

Taking the limit ƒ �! 1 first and then p �! 0 and/or � �! 0 second we obtain
the IR divergence

…NP. p/ D � 	
4Š

2

4

lnm
j�ijpjj
2

: (4.114)

This is the UV-IR mixing problem. In summary we obtain the behaviour

�.2/. p/ D p2 ; p2 �!1

�.2/. p/ D � 	

4Š

2

4

ln

m�p

2
; p2 �! 0: (4.115)

In above we have assumed that �ij D �
ij and p D ppipi. We conclude that there
must be a minimum at p D pc ¤ 0 in the two-point function. In other words, around
p D pc we can write

�.2/. p/ D a. p2 � p2c/
2 C b: (4.116)

The minimum pc can be estimated as follows. The derivative of �.2/. p/with respect
to p2 is given by

d�.2/. p/

dp2
D 1C d…NP. p/

dp2

D 1 � 	

4Š

�2mƒeff

8

K1.

2m

ƒeff
/

D 1 � 	

4Š

1

4


1

p2
�
1C m2p2�2

4
ln

m2p2�2

4

�
: (4.117)
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In the third line we have assumed that � �! 0 and/or p �! 0. The minimum is
thus located at

p2c D
	

4Š

1

4

� g2

2
: (4.118)

We will consider the weak coupling limit 	 �! 0, i.e. pc �! 0. We are interested
in the evaluation of the integral

Z 1

0

kdk
1

�.2/.k/
J0.�kp/: (4.119)

We split this integral into three pieces. The piece associated with small k, the piece
associated with large k and the piece associated with the region around k D pc. For
small k the corresponding integral is

Z pc

0

kdk
1

�.2/.k/
J0.�kp/: (4.120)

This can be neglected since pc is very small for weak coupling and thus we
can approximate 1=�.2/.k/ with �1= ln k which goes to 0 when k �! 0 and
approximate J0.�kp/ with 1. For k around pc the integral of interest is

Z pcC
2

pc�
1
kdk

1

�.2/.k/
J0.�kp/ D

Z pcC
2

pc�
1
kdk

1

a.k2 � p2c/
2 C b

J0.�kp/

D J0.�pcp/
Z pcC
2

pc�
1
kdk

1

a.k2 � p2c/
2 C b

D J0.�pcp/

2
p
ab

�

arctan 2
2pc

r
a

b
� arctan 2
1pc

r
a

b

�

:

(4.121)

Clearly the value of the integral does not change significantly if we send 
2 to infinity
and 
1 to pc. We get

Z pcC


pc�

kdk

1

�.2/.k/
J0.�kp/ D J0.�pcp/

2
p
ab

�



2
� arctan 2p2c
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b

�

' 


4
p
ab
: (4.122)

For large momenta we have the integral (with q some large momentum)

Z 1

q
kdk

1

�.2/.k/
J0.�kp/ D

Z 1

q

dk

k
J0.�kp/: (4.123)



140 4 Quantum Noncommutative Phi-Four

We remark that

� d

d.�p/

Z 1

q
kdk

1

�.2/.k/
J0.�kp/ D

Z 1

q
J1.�kp/: (4.124)

This is essentially the 4-dimensional integral which we already know. The result is

� d

d.�p/

Z 1

q
kdk

1

�.2/.k/
J0.�kp/ D 1

�p
: (4.125)

We get thus the estimation

Z 1

q
kdk

1

�.2/.k/
J0.�kp/ D � ln

m�p

2
: (4.126)

Thus we get

Z

kdk
1

�.2/.k/
J0.�kp/ D 


4
p
ab
� ln

m�p

2
: (4.127)

Hence

�.2/. p/ D p2 C m2 C g2
�




4
p
ab
� ln

m�p

2

�

: (4.128)

Since �.2/. pc/ D b we conclude that

b D p2c C m2 C g2
�




4
p
ab
� ln

m�pc
2

�

: (4.129)

Furthermore �.2/. p/ around p D pc can be rewritten as

�.2/. p/ D 4ap2c. p � pc/
2 C b: (4.130)

In other words by comparing with (4.128) we get immediately

4ap2c D 1, a D 1

4p2c
D 1

2g2
: (4.131)

There remains

�.2/. p/ D p2 C p2c � 2ppc C b: (4.132)
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Now by comparing (4.128) and (4.132) we get

2pc. pc � p/ D �g2 ln
p

pc
: (4.133)

Hence

2pc. pc � p/ D g2
1

pc
. pc � p/, pc D gp

2
: (4.134)

Ordered Phase

In the ordered phase the calculation of the two-point function goes through the same
steps taken in the case of four dimensions. We end up with the result

�.2/. p/ D p2 C �2 C 2 	
4Š

Z
ddk

.2
/d
1

k2 C �2 C
	

4Š

Z
ddk

.2
/d
e�ik^p

k2 C �2

C3A2 	
4Š
.1C cos pc ^ p/:

(4.135)

The amplitude A of the stripe configuration is assumed to be small so that
perturbation theory is justified. In the disordered phase obviously A D 0 whereas in
the ordered phase we have

b D 8
g2A2: (4.136)

In the consistent Hartree-Fock approximation we obtain

�.2/. p/ D p2 C m2 C g2.



4
p
ab
� ln

m�p

2
/C 3A2 	

4Š
.1C cos pc ^ p/:

(4.137)

From �.2/. p/ D a. p2 � p2c/
2 C b we obtain

b D p2c C m2 C g2.



4
p
ab
� ln

m�pc
2

/C 6A2g2.2
/: (4.138)

From here on the steps we can take seem to be identical to those taken in four
dimensions. We introduce the parameters

˛ D g2


4
p
a
D g3
p

8
; � D p2c C m2 � g2 ln

m�pc
2

: (4.139)
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The problem has a single parameter. We take


 D � 1p
3

�3

˛2
: (4.140)

We must have


 > 
�1 D
p
3
9

8
: (4.141)

The minimum in the ordered phase is a solution to the equations

bo D � 2�p
3
Ro ; Ro D �x0 C 2p

3
; x3o � xo � 2p

27
.1 � 9

p
3

4

/ D 0:

(4.142)

The minimum in the disordered phase is a solution to the equations

bd D � �p
3
Rd ; Rd D �xd � 2p

3
; x3d � xd C 2p

27
.1C 9

p
3

2

/ D 0:

(4.143)

The free energy difference between the two phases is

Fd � Fo D 1

48
2g2
�2p
3

.
p
Rd �

p
2Ro/

�

3 �p
.
p
Rd C

p
2Ro/

�

:

(4.144)

The transition between the two phases is given by the condition

0 D 3 �p
.pRd C
p
2Ro/: (4.145)

This is where the free energy difference changes sign. There is therefore a transition
point given by


�2 D c
p
3
9

8
; c > 1: (4.146)

The region 
�1 < 
 < 
�2 corresponds to the disordered phase whereas 
 > 
�2
corresponds to the ordered phase.

Equation (4.146) is equivalent to

m2�
g2
� ln

m�
g
D ln

�g2

2
p
2
� 1
2
� 3
4



2
3 c

1
3 : (4.147)
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This equation can be rewritten as

r � ln r D ln
�2g4

c20
: (4.148)

r D 2m
2�

g2
; c0 D 4e 12C 3

4 .

2c/

1
3
: (4.149)

Since r � ln r > 0 we must have

�2g4

c20
> 1; (4.150)

otherwise there will be no solution and hence no transition to a stripe phase. Thus a
stripe phase can exist only for values of the coupling constant such that

g2 >
c0
�
: (4.151)

Since g2 is small we conclude that the weak coupling expansion will only make
sense for sufficiently large values of the noncommutativity. The stripe phase does
not exist for small � which is very reasonable and since it exists for large � we
suspect that this phase is related, or even is the same, as the matrix model transition
since in the limit � �!1 we obtain a matrix model from noncommutativeˆ4.

A More Systematic Approach

Near p D pc we have

�.2/. p/ D p2 Cm2 C g2
Z

kdk
1

�.2/.k/
J0.�kp/C 12
A2g2: (4.152)

Define

�.2/. p/ D p2 C m2 C 12
A2g2 C�. p/: (4.153)

Thus

�. p/ D g2
Z

kdk
1

k2 C m2 C 12
A2g2 C�.k/J0.�kp/: (4.154)
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Integrating both sides over p we get
Z

dp�. p/ D g2
Z

kdk
1

k2 C m2 C 12
A2g2 C�.k/
Z

dpJ0.�kp/

D g2

�

Z

dk
1

k2 C m2 C 12
A2g2 C�.k/
Z

dxJ0.x/

D g2

�

Z

dk
1

k2 C m2 C 12
A2g2 C�.k/ : (4.155)

Thus
Z

dk

�

�.k/� g2

�

1

k2 Cm2 C 12
A2g2 C�.k/
�

D 0: (4.156)

We conclude that

�.k/ � g2

�

1

k2 C m2 C 12
A2g2 C�.k/ D f .k/: (4.157)

The function f .k/ is such that
Z

dkf .k/ D 0: (4.158)

The above equation can also be put into the form

�.2/.k/ � k2 � m2 � 12
A2g2 � g2

�

1

�.2/.k/
D f .k/: (4.159)

The physical solution is

�.2/.k/ D
q

.k2 Cm2 C 12
A2g2 C f .k//2 C 4g2

�
C k2 Cm2 C 12
A2g2 C f .k/

2
:

(4.160)

The minimum is determined by the function f .k/. It is given by the equation

1C df .k/

dk2
jkc D 0: (4.161)

In perturbation theory we have the asymptotic behaviour

�.2/.k/ D k2 ; k2 �!1

�.2/.k/ D � g2 ln
m�k

2
; k2 �! 0: (4.162)
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Thus in one-loop perturbation theory we must have

f .k/ D 0 ; k2 �!1

f .k/ D � g2 ln
m�k

2
; k2 �! 0: (4.163)

A model is given by

F.x/ D �g2 ln x

.1C x/2
; x D m�k

2
; F.x/ D f .k/: (4.164)

Using dimensionless parameters Ok2 D �k2, �m2 D r, g2� D u, O�.2/ D ��.2/ and
Of D � f we have

O�.2/.Ok/ D
q

.Ok2 C rC 12
A2uC Of .Ok//2 C 4uC Ok2 C rC 12
A2uC Of .Ok/
2

:

(4.165)

The Limit � �! 0 The coupling constants u and r can be made small either by
making g2 and m2 small or � small. We will assume that � �! 0 keeping g2 and m2

fixed. In the limit � �! 0 the function f .k/ D F.x/ captures most of the relevant
physics of the problem. The minimum in this limit is located at

Ok2 D u

2
� u

2

�
m�k �O.�2/

� � u

2
k2

�m�

2k
� O.�2/

�
ln

m2�2k2

4
: (4.166)

Thus

Ok2c D
u

2
, kc D gp

2
C O.�/: (4.167)

We can also compute

Of jkDkc D �uC : : : (4.168)

Since u and r are small we have

O�.2/.Ok/ D
�
2
p
uC : : : �C Ok2 C rC 12
A2uC Of .Ok/

2
: (4.169)

In other words,

�b D
�
2
p
uC : : : �C Ok2c C rC 12
A2uC Of .Okc/

2

D
�
2
p
uC : : : � � u

2
C rC 12
A2u

2
: (4.170)
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Thus

�bd D
�
2
p
uC : : : � � u

2
C r

2
: (4.171)

And

�b0 D
�
2
p
uC : : : � � u

2
C rC 12
A2u

2

� 8
A2u$ �b0
4
D

�
2
p
uC : : : � � u

2
C r

2
: (4.172)

The transition occurs at

b0 D bd D 0: (4.173)

We get the critical point

r� D �2
p
uC u

2
: (4.174)

We find

A D 1p
6
u

s

�b � 2
p
u � u

2
C r

2
: (4.175)

Thus

1

�

dA

db
D 1

12
uA
: (4.176)

We compute the free energy difference between the two phases as

�F D
Z bd

bo

db
dA

db

dF

dA

D � 1

32
u�
.r � r�/2

D � 1

32
g2
.m2 �m2�/2: (4.177)

We immediately observe that �F D 0 at r D r�, i.e. there is no latent heat and the
transition is not first order.

The Limit � �! 1 The minimum is precisely located at

8

m2�2
.1C y/3 � g2y4Œ1C yC 2 ln y� D 0 ; y D 2

m�kc
: (4.178)
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In the limit � �!1 keeping g2 and m2 fixed the solution kc goes to 0 such that �kc
is kept fixed. In this limit we have

1C yC 2 ln y D 0: (4.179)

The solution is

y D 0:475 ' 1=2: (4.180)

We compute

f .kc/ D �g
2

2

y2.1C y/

1C y2
' �3g

2

20
: (4.181)

Define

LA D k2 Cm2 C 12
A2g2 C f .k/: (4.182)

�.2/.k/ D
q
L2A C 4g2

�
C LA

2

D LA C g2

�LA
� g4

�2L3A
C 2g6

�3L5A
C : : : (4.183)

In the disordered phase the renormalized mass is

bd D
q

L20 C 4g2

�
C L0

2

D L0 C g2

�L0
� g4

�2L30
C 2g6

�3L50
C : : : (4.184)

L0 D k2c C m2 C f .kc/ D 16

m2�2
Cm2 � 3g

2

20
' m2 � 3g

2

20
: (4.185)

It is crucial to note that for L0 � 0 the renormalized mass bd is always strictly
positive, i.e. bd > 0. It remains positive if L0 takes negative values up to a critical
point where it vanishes. Indeed we have

bd D 1

L30

�

L40 C
g2

�
L20 �

g4

�2

�

D 1

L30

�

L20 C
g2

2�
�
p
5g2

2�

��

L20 C
g2

2�
C
p
5g2

2�

�

: (4.186)
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For L0 < 0 this expression is positive for

L0 � �
sp

5 � 1
2

gp
�
, m2 � 3g2

20
�

sp
5 � 1
2

gp
�
: (4.187)

Below this value we are in the ordered phase. In this phase we have

bo D LA C g2

�LA
� g4

�2L3A
C : : :

D L0 C 12
A2g2 C g2

�.L0 C 12
A2g2/ �
g4

�2.L0 C 12
A2g2/3 C : : :

D L0 C 12
A2g2 C g2

�L0
� g4

�2L30
C : : : (4.188)

But we know that

bo D 8
A2g2: (4.189)

Thus

bo D �2bd: (4.190)

We have then

A D 1
p
8
g2

s
2

3

�

b � .L0 C g2

�L0
� g4

�2L30
C : : :/

�

: (4.191)

dA

db
D 1

24
g2
1

A
: (4.192)

We compute the free energy difference between the two phases as

�F D
Z bd

bo

db
dA

db

dF

dA

D 1

48
g2
.bd � bo/

2: (4.193)

Again we can show that �F D 0 at the critical point and thus there is no latent heat
and the transition is not first order.
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4.3 The Self-Dual Noncommutative Phi-Four

4.3.1 Integrability and Exact Solution

The self-dual noncommutative phi-four is obtained by setting �2 D 1 or equiva-
lently B�0 D B�=2 D 1 and thus ˛ D 2 and ˇ D 0 in (2.232). We get immediately

S D 4

�

4�TrH1M
CEM C 4 Q�TrH1MEMC C �2�0

2
TrH1M

CMC	�0
4Š

TrH1 .M
CM/2

�

:

(4.194)

The matrix E is defined by

Eln D .l � 1
2
/ıln: (4.195)

A regularized theory is obtained by restricting the Landau quantum numbers l; n to
l; n D 1; 2; ::N. We also introduce the cutoff

ƒ2 D N

2
�
: (4.196)

Let us remark that ƒ2 is essentially the energy of the Nth Landau level. Indeed
�1�N;n D 2.8
ƒ2 � 2=�/�N;n where �1 D � OD2i D 4B.OaC OaC 1=2/. This energy
remains constant equal to 16
ƒ2 in the limit N; � �! 1 while keeping ƒ2

constant.
We are thus led to the following N � N matrix model

ZN ŒE� D
Z

ŒdM�ŒdMC�e
�NTr

�

MC.�ELCQ�ERCm2/MC g
2 .M

CM/2

�

: (4.197)

El;n D 16


N
El;n D 16


N
.l � 1

2
/ıl;n ; m

2 D �2

2ƒ2
; g D 2	

4Šƒ2
: (4.198)

We use now the Hubbard-Stratonovich transformation given by

e� Ng
2 Tr.MCM/2 D

Z

ŒdX�e
�NTr

�
1
2g X

2CiXMCM

�

: (4.199)

The auxiliary field X is a hermitian N � N matrix. The partition function ZN ŒE�
becomes

ZN ŒE� D
Z

ŒdM�ŒdMC�ŒdX�e� N
2g TrX

2

e�NTrMC
�
�ELCQ�ERCm2CiXR

�
M: (4.200)
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The notation XR/XL means that the matrix X acts on the right/left of M, viz XRM D
MX, XLM D XM. Integrating over M and MC yields now the partition function of
the Penner model given by

ZN ŒE� D
Z

ŒdX�e� N
2Qg TrX

2

e�TR log
�
�E˝1CQ�1˝ECm2Ci1˝X

�

: (4.201)

The trace TR is N2-dimensional, i.e. acting in the adjoint representation, as opposed
to the trace Tr which is N-dimensional. This is due to the fact that we have left
action (given by QE) and right action (given by XR) on M. In the remainder we will
concentrate on the model of [19] given by the values

� D 1 ; Q� D 0: (4.202)

We have then the partition function

ZN ŒE� D
Z

ŒdX�e� N
2g TrX

2

e�TR log
�
E˝1Cm2Ci1˝X

�

: (4.203)

In [19] it was shown that this model is integrable, i.e. it can be solved at finite N for
general external matrix E. We will follow [19] closely to derive the exact solution
at large N which is relevant to our original noncommutative phi-four.

Before we continue with this model we comment on a related problem of great
interest. For hermitian fields ˆC D ˆ we get hermitian matrices MC D M. By
going through the same steps we get in this case the partition function

ZN ŒE� D
Z

ŒdX�e� N
2g TrX

2

e� 1
2 TR log

�
.�CQ�/E˝1Cm2Ci1˝X

�

: (4.204)

This is valid for all values of � and Q� . The only difference with the previous case is
the factor of 1=2 multiplying the determinant contribution.

We go back now to our problem and start by diagonalizing the hermitian N � N
matrix X by writing the polar decomposition X D U�X0U, X0 D diag.x1; : : : :; xN/,
for unitary N � N matrices U. The measure becomes

ŒdX� D ŒdU�
NY

lD1
dxl�N.x/

2: (4.205)

In above ŒdU� is the Haar measure on the group U.N/ whereas �N.x/ is the
Vandermonde determinant defined by

�N.x/ D
Y

1�l<n�N

.xl � xn/: (4.206)
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The unitary matrix U commutes with the external field E because U acts on the right
whereas E acts on the left. Thus the integration over U decouples. Also recall that E
is diagonal. We will write .E C m2/ln D elıln where

el D 16


N
.l � 1

2
/C m2: (4.207)

As a consequence we obtain the partition function

ZN ŒE� � ZN Œe1; : : : ; eN � D
Z NY

lD1
dxle

�NSeffŒe1;:::;eN Ixl�

SeffŒe1; : : : ; eN I xn� D 1

2g

NX

lD1
x2lC

1

N

X

l;n

log.el C ixn/� 1

2N

X

n¤l

log.xl � xn/
2:

(4.208)

The saddle point equation is given by

dSeff

dxl
D xl

g
C 1

N

NX

nD1

1

xl � ien
� 2

N

X

n¤l

1

xl � xn
D 0: (4.209)

We rewrite this equation in a different way in terms of the resolvent function defined
by

†.z/ D 1

N

NX

lD1

1

xl � z
: (4.210)

Then we can compute

1C z†.z/ D 1

N

NX

lD1

1

xl � z

�
xl

�
: (4.211)

†.z/2 � 1

N
†0.z/ D 1

N

NX

lD1

1

xl � z

�
2

N

X

n¤l

1

xn � xl

�

: (4.212)

1

N

NX

nD1

†.z/ �†.ien/
z � ien

D 1

N

NX

lD1

1

xl � z

�
1

N

NX

nD1

1

xl � ien

�

: (4.213)



152 4 Quantum Noncommutative Phi-Four

Hence Eq. (4.209) can be put in the form

1

g
.1C z†.z//C†.z/2 � 1

N
†0.z/C 1

N

NX

nD1

†.z/ �†.ien/
z� ien

D 0: (4.214)

Clearly the term 1
N†

0.z/ becomes subleading in the limit N �!1. In this limit we
can also introduce a density of eigenvalues �.e/ defined by

�.e/ D 1

N
Trı.e � E/ D 1

N

NX

lD1
ı.e � el/: (4.215)

In the limit N �! 1 the eigenvalues el are of order 1 and hence �.e/ becomes a
continuous function satisfying �.e/�0 and

R b
a de �.e/ D 1. The real interval Œa; b�

for some a and b is the support of this function.
Thus the saddle point Eq. (4.214) becomes in the limit N �! 1 the following

so-called loop equation

1

g
.1C z†.z//C†.z/2 C

Z b

a
de �.e/

†.z/�†.ie/
z� ie

D 0: (4.216)

The resolvent †.z/ which is related to the two-point function as follows. We
compute

< ˆC.x/ˆ.y/ > D 2
�
X

lm

X

l0m0

< .MC/l;mMl0;m0 > �l;m.x/�l0;m0.y/

< .MC/l;mMl0 ;m0 > D � 1
N

@ lnZN ŒE�

@elm;l0m0

; elm;l0m0 D ım;l0ım0;lem: (4.217)

We can further convince ourselves that [19]

< .MC/l;mMl0 ;m0 >D � 1
N
ım;l0ım0;lW.em/ ; W.em/ D 1

N

@ ln ZN ŒE�

@em
:

(4.218)

The extra factor of 1=N can be verified by computing < TrMCM >. We can also
compute with respect to the partition function (4.208) that

W.em/ D< i

N

NX

lD1

1

xl � iem
> : (4.219)
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This suggests the identification W.z/ D i†.iz/ and as a consequence the loop
equation (4.216) becomes

1

g
.1C zW.z// �W.z/2 �

Z b

a
de �.e/

W.z/ �W.e/

z � e
D 0: (4.220)

Obviously, the resolvent of the density of the eigenvalues �.e/ of the background
matrix E is given by the function

!.z/ D
Z a2

a1

de
�.e/

z� e
: (4.221)

Let also us note that W.z/ is essentially the resolvent function of the matrix X,
because of the identification W.z/ D i†.iz/, and thus it can be rewritten in a similar
way in terms of another density of eigenvalues O�.x/. Correspondingly, we can use
W.z/ D i†.iz/ to show the perturbative behaviour

W.z/ �! �1
z
; z �!1: (4.222)

Next we can see that Eq. (4.220) can be solved for the following function �.z/
defined by

�.z/ D
Z

de
�.e/

z� e
W.e/: (4.223)

Indeed, Eq. (4.220) can be rewritten as

�.z/ D W2.z/ � . z
g
� !.z//W.z/ � 1

g
; z 2 C: (4.224)

The goal is to find W.z/. �.z/ is determined in terms of W.z/ while !.z/, or
equivalently the density of eigenvalues �, is known. From Eqs. (4.221) and (4.223)
we can immediately compute

Z a2

a1

de �.e/ D � 1

2
i

I

dz !.z/ ;

Z a2

a1

de �.e/W.e/ D � 1

2
i

I

dz�.z/: (4.225)

The contour is a large circle which encloses the interval Œa1; a2�. In terms of !.e/
and�.e/ we get (with a contour which is very close to Œa; b�)

�.e/ D � 1

2
i
.!.eC i0/� !.e � i0// � � 1


i
!�.e/

�.e/W.e/ D � 1

2
i
.�.eC i0/��.e � i0// D � 1


i
��.e/: (4.226)



154 4 Quantum Noncommutative Phi-Four

The functions!�.z/ and��.z/ are the singular parts of the functions!.z/ and�.z/
respectively. They are related as

��.z/ D !�.z/W.z/ ; z 2 Œa1; a2�: (4.227)

The functions !.z/ and�.z/ are analytic everywhere away from their branch cut on
Œa1; a2� and hence we can extend the domain of the above constraint to the full real
line, viz

��.z/ D !�.z/W.z/ ; z 2 R: (4.228)

The continuous part of the functions !.z/ and �.z/ are defined by

!C.e/ � 1

2
.!.eC i0/C !.e � i0// ; �C.e/ � 1

2
.�.eC i0/C�.e � i0//:

(4.229)

From Eqs. (4.224) and (4.228) we can derive that �C must satisfy

�C.z/ D W2.z/� . z
g
� !C.z//W.z/ � 1

g
; z 2 R: (4.230)

This can be rewritten in the form

�C.z/ D W2C.z/CW2�.z/ � .
z

g
� !C.z//WC.z/ � 1

g

CW�.2WC � z

g
C !C/ ; z 2 R: (4.231)

However, from Eq. (4.224) we can read the continuous part of �.z/ as follows

�C.z/ D W2
C.z/CW2

�.z/ � .
z

g
� !C.z//WC.z/C !�.z/W�.z/ � 1

g
; z 2 Œa1; a2�:

(4.232)

The continuous and singular parts of the function W are WC and W� respectively
whereas the continuous and singular parts of the function W2 are W2C C W2� and
2WCW� respectively. Similarly, the continuous part across the interval Œa1; a2� of
!.z/W.z/ is !C.z/WC.z/C!�.z/W�.z/ whereas the singular part is !C.z/W�.z/C
!�.z/WC.z/. Since �C is continuous we must conclude from (4.231) and (4.232)
the constraints

W�.2WC � z

g
C !C/ D 0 ; z 2 R

W� D 0 ; z 2 Œa1; a2�: (4.233)
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This means in particular that W� can only be non-zero on an interval Œb1; b2� such
that Œb1; b2� \ Œa1; a2� D �. On this interval we must clearly have !� D 0 because
! is analytic away from Œa1; a2� and hence we must have

WC D z

2g
� !.z/

2
; z 2 Œb1; b2�: (4.234)

Let us say that the singular part of �.z/ from (4.224) is given by

��.z/ D 2WC.z/W�.z/ � . z
g
� !C.z//W�.z/C !�.z/WC.z/ ; z 2 Œa1; a2�:

(4.235)

This gives nothing new.
Let us now consider the function 1=

p
.z � b1/.z � b2/ over the interval Œb1; b2�.

By choosing a contour which is a large circle which encloses the interval Œb1; b2�
we can show that the continuous part of 1=

p
.z � b1/.z � b2/ is 0 while the singular

part is given by 1=i
p
.z � b1/.z � b2/. The square root

p
z� b2 changes sign when

we go around b2 with a full circle. Hence we can immediately write (4.235) as a
Riemann-Hilbert equation

�
W.z/

p
.z � b1/.z� b2/

�

�
D

z
2g � !.z/

2

i
p
.z� b1/.b2 � z/

; z 2 Œb1; b2�: (4.236)

It is almost obvious (use for example (4.226)) that this discontinuity equation leads
to the solution (with a contour which encloses Œb1; b2�)

W.z/ D �
I

dz0

2
i

z0

2g � !.z0/
2

z0 � z

p
.z� b1/.z� b2/

p
.z0 � b1/.z0 � b2/

: (4.237)

We substitute the function !.z/ given by Eq. (4.221). We compute the integral

I1 D 1

2g

I
dz0

2
i

z0

z0 � z

p
.z� b1/.z� b2/

p
.z0 � b1/.z0 � b2/

D z

2g

I
dz0

2
i

1

z0 � z

p
.z� b1/.z� b2/

p
.z0 � b1/.z0 � b2/

C 1

2g

I
dz0

2
i

p
.z � b1/.z � b2/

p
.z0 � b1/.z0 � b2/

D � z

2g
C

p
.z � b1/.z � b2/

2g

I
dz0

2
i

1
p
.z0 � b1/.z0 � b2/

: (4.238)
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The last integral is equal 1 (just set z0 D Rei� with R �! 1 in the integral). Also
we can compute the integral

I2 D 1

2

I
dz0

2
i

!.z0/
z0 � z

p
.z � b1/.z � b2/

p
.z0 � b1/.z0 � b2/

D 1

2

Z a2

a1

de
�.e/

z� e

� I
dz0

2
i

1

z0 � z

p
.z� b1/.z � b2/

p
.z0 � b1/.z0 � b2/

�
I

dz0

2
i

1

z0 � e

p
.z � b1/.z � b2/

p
.z0 � b1/.z0 � b2/

�

D �1
2

Z a2

a1

de
�.e/

z� e

�

1 �
p
.z� b1/.z� b2/

p
.e � b1/.e � b2/

�

: (4.239)

We get then

W.z/ D z

2g
�

p
.z� b1/.z � b2/

2g
� 1
2

Z a2

a1

de
�.e/

z� e

�

1 �
p
.z � b1/.z � b2/

p
.e � b1/.e � b2/

�

:

(4.240)

In the limit z �!1 we get

W.z/ D b1 C b2
4g

C .b1 � b2/2

16gz
� 1

2z
C 1

2

Z a2

a1

de
�.e/

p
.e � b1/.e � b2/

�b1 C b2
4z

Z a2

a1

de
�.e/

p
.e � b1/.e � b2/

C 1

2z

Z a2

a1

de e
�.e/

p
.e � b1/.e � b2/

C O.
1

z2
/: (4.241)

By comparing with (4.222) we get

b1 C b2 D �2g
Z a2

a1

de
�.e/

p
.e � b1/.e � b2/

: (4.242)

Using this equation together with (4.222) we get the extra condition

.b1 � b2/
2 C 8gC 2.b1 C b2/

2 D �8g
Z a2

a1

de e
�.e/

p
.e � b1/.e � b2/

:

(4.243)
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Recall that Œa1; a2� is the support of the external density of eigenvalues and therefore
it is known whereas Œb1; b2� is the support of the quantum density of eigenvalues
which we seek.

Two examples/applications are now in order:

The Pure QuarticMatrixModel In this case we have e D m21 and thus we obtain

b1 C b2 D �2gd
2

1
p
.e � b1/.e � b2/

: (4.244)

.b1 � b2/
2 C 8gC 2.b1 C b2/

2 D �8g d

2
e

1
p
.e � b1/.e � b2/

: (4.245)

In above e D m2 and d D 2 since the density of eigenvalues is a delta function. We
write bi D exi, 	 D gd=e2 and � D .8g/=e2 then

x1 C x2 D � 	
p
.1 � x1/.1 � x2/

.x1 � x2/
2 C 2.x1 C x2/

2 C � D � 4	
p
.1 � x1/.1 � x2/

: (4.246)

Define x1 C x2 D y1 and x1 � x2 D y2 then

y1 D � 2	
q
.2 � y1/2 � y22

y22 C 2y21 C � D �
8	

q
.2 � y1/2 � y22

: (4.247)

From these two equations we get the quadratic equation

2y21 � 4y1 C y22 C � D 0 (4.248)

For 1 � �=2�0, or equivalently m4�4g, this leads to the solution

y22 D �2.y1 � 1 �
r

1 � �
2
/.y1 � 1C

r

1 � �
2
/: (4.249)

In other words, we must have

1 �
r

1 � �
2
�y1�1C

r

1 � �
2
: (4.250)
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The other equation we need to solve is

y1 D � 2	
q
.2 � y1/2 � y22

: (4.251)

This can be put in the form

y22 D
1

y21
.y21 � 2y1 � 2	/.y21 � 2y1 C 2	/: (4.252)

We have

� 1˙ 2	�y21 � 2y1 ˙ 2	��
�

2
˙ 2	: (4.253)

Either we must have y21 � 2y1 ˙ 2	�0 which can not be satisfied or y21 � 2y1 ˙
2	�0. The condition y21 � 2y1 � 2	�0 trivially holds. There remains the condition
y21 � 2y1 C 2	�0. This leads to the two requirements

��
2
C 2	�0

�1C 2	�0: (4.254)

The first equation is equivalent to d � 2 whereas the second equation is equivalent
to m4�2dg. These together with m4�4g we conclude that we must have

d�2 ; m4�4g: (4.255)

Since in this case the density of eigenvalues is a delta function we have d D 2 and
hence the first constraint trivially holds.

The case of �1 D � OD2
i In this case the external eigenvalues are given by

elıl;n D .E Cm2/ln ; Eln D 16


N
El;n D 16


N
.l � 1

2
/ıl;n: (4.256)

The eigenvalues l D 1; : : : ;N correspond to the interval e D 16
l=N C m2 2
Œm2; 16
 C m2�. Thus a D a1 D m2, b D a2 D m2 C 16
 . Their distribution is
uniform given by

�.e/ D 1

N

dl

de
D 1

16

: (4.257)
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Then we compute

b1 C b2 D � g

8


Z 16


0

de
1

p
.eCm2 � b1/.eCm2 � b2/

: (4.258)

This leads to (with b0
1 D b1 � m2, b0

2 D b2 � m2)

b0
1 C b0

2 C 2m2 D �
g

8


Z 16


0

de
1

p
.b0
1 � e/.b0

2 � e/

D g

4


Z pb0
1�16


p
b0
1

dz
1

p
b0
2 � b0

1 C z2

D g

4

ln

�

zC
q
b0
2 � b0

1 C z2
�

j
p

b0
1�16
p
b0
1

D g

4

ln j

p
b0
1 �

p
b0
2p

b0
1 � 16
 �

p
b0
2 � 16


j: (4.259)

The second equation can be simplified as follows. We have

.b0
1 � b0

2/
2 C 8gC 2.b0

1 C b0
2 C 2m2/2 D �

g

2


Z 16


0

de
eC m2

p
.b0
1 � e/.b0

2 � e/

D g




Z pb0
1�16


p
b0
1

dz
b0
1 � z2 C m2

p
b0
2 � b0

1 C z2

D 4.b0
1 C m2/.b0

1 C b0
2 C 2m2/

� g




Z pb0
1�16


p
b0
1

dz
z2

p
b0
2 � b0

1 C z2

D 4.b0
1 C m2/.b0

1 C b0
2 C 2m2/

� g




�
1

2
z
q
b0
2 � b0

1 C z2 � 1
2
.b0
2 � b0

1/

ln
�

zC
q
b0
2 � b0

1 C z2
��

j
p

b0
1�16
p
b0
1

D 4.b0
1 C m2/.b0

1 C b0
2 C 2m2/

C g

2


�q
b0
1b

0
2 �

q
.b0
1 � 16
/.b0

2 � 16
/
�

C2.b0
2 � b0

1/.b
0
1 C b0

2 C 2m2/:
(4.260)
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After some cancellation we get

.b0
1 � b0

2/
2 D g

2


�q
b0
1b

0
2 �

q
.b0
1 � 16
/.b0

2 � 16
/
�

� 8g: (4.261)

This is slightly different from the result obtained in [19].
Next we will need to calculate the solution W.	/ from Eq. (4.240). We have

immediately

W.	0/ D 	0 C m2

2g
�

p
.	0 � b0

1/.	
0 � b0

2/

2g

� 1

32


Z 16


0

de

	0 � e

�

1 �
p
.	0 � b0

1/.	
0 � b0

2/p
.b0
1 � e/.b0

2 � e/

�

D 	0 C m2

2g
�

p
.	0 � b0

1/.	
0 � b0

2/

2g

� 1

32


Z pb0
1�16


p
b0
1

�2zdz
	0 � b0

1 C z2

�

1 �
p
.	0 � b0

1/.	
0 � b0

2/

z
p
b0
2 � b0

1 C z2

�

D 	0 C m2

2g
�

p
.	0 � b0

1/.	
0 � b0

2/

2g

�
p
.	0 � b0

1/.	
0 � b0

2/

16


Z pb0
1�16


p
b0
1

dz

	0 � b0
1 C z2

1
p
b0
2 � b0

1 C z2

C 1

32

ln.1 � 16


	0 /:

(4.262)

The final integral in the 3rd term can be done using Eq. 2:284 of [13]. We get after
some more algebra the result

W.	0/ D 	0 C m2

2g
�

p
.	0 � b0

1/.	
0 � b0

2/

2g

� 1

32

ln

�p
	0 � b0

1

p
b0
2 � b0

1 C z2 Cp
	0 � b0

2zp
	0 � b0

1

p
b0
2 � b0

1 C z2 �p
	0 � b0

2z

�

j
p

b0
1�16
p
b0
1

C 1

32

ln.1 � 16


	0 /
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D 	0 C m2

2g
�

p
.	0 � b0

1/.	
0 � b0

2/

2g

C 1

16

ln

ˇ
ˇ
ˇ
ˇ

p
	0 � b0

1

p
b0
2 � 16
 �

p
	0 � b0

2

p
b0
1 � 16
p

	0 � b0
1

p
b0
2 �

p
	0 � b0

2

p
b0
1

ˇ
ˇ
ˇ
ˇ:

(4.263)

4.3.2 Nonperturbative UV-IR Mixing

By plugging equation (4.218) into Eq. (4.217) we obtain the following two-point
function

< ˆC.x/ˆ.y/ >D � 1
N

NX

kD1
W.ek/�k.x; y/ ; �k.x; y/ D 2
�

NX

lD1
�l;k.x/�k;l.y/:

(4.264)

We want to compute this two-point function in the limit N �! 1, k �! 1
with k=N 2 Œ0; 1� kept fixed. In this limit the function W.ek/, which should be
identified with the derivative of the free energy with respect to the eigenvalue
	k D ek D 16
k=N C m2, is given precisely by Eq. (4.263). The sum over the
Landau wavefunctions �k.x; y/ can be computed using the techniques developed in
Appendix A. In the large k limit we can evaluate the integral involved in �k.x; y/
using the saddle-point approximation to find the result [19]

�k.x; y/ D 4J0.ƒ
q
	0
kjx � yj/: (4.265)

In aboveƒ D N=4
� and 	0
k D 16
k=N. We have then

< ˆC.x/ˆ.y/ > D �
Z 16


0

d	

4

W.	Cm2/J0.ƒ

p
	jx � yj/

D �
Z 4

p

ƒ

0

pdp

2
ƒ2
W. p2=ƒ2 C m2/J0. pjx� yj/:

(4.266)

Thus the momenta of the scalar field are identified as the square root of the
eigenvalues of the scalar matrix, i.e. p D ƒp	. By using the result (4.34) we have

X1 D
Z

d�1

.2
/2
exp.i�ijkipj/ D 1

2

J0.�kp/: (4.267)
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Thus we obtain

< ˆC.x/ˆ.y/ > D � 1

ƒ2

Z

jpj�4p
ƒ

d2p

.2
/2
W. p2=ƒ2 Cm2/e�ip.x�y/:

(4.268)

Thus the large � limit defined as above gives a rotationally and translationally
invariant quantum noncommutative field theory. The Fourier transform of the exact
propagator of the quantum noncommutative field theory is essentially given by the
exact solution W of the matrix model Schwinger-Dyson equation, viz

QG. p/ D � 1

ƒ2
W. p2=ƒ2 C m2/: (4.269)

Now we take the limit ƒ �! 1. Towards this end, we will compute the loop
expansion of the above equation. We start by writing

W.z/ D
1X

kD0
gkW.k/.z/: (4.270)

The Schwinger-Dyson equation (4.220) gives the iteration system of equations

W.0/.	/ D � 1
	
: (4.271)

W.k/.	/ D
k�1X

lD0

W.l/.	/W.k�l�1/.	/
	

C
Z b

a

d	0

	

�.	0/
	 � 	0 .W

.k�1/.	/�W.k�1/.	0//:

(4.272)

The free propagator is then given by

QG.0/. p/ D � 1

ƒ2
W.0/. p2=ƒ2 C m2/ D 1

p2 CM2
: (4.273)

We note that from the action (2.208) the actual mass of the scalar field is given
by M2 D �2=2. The one-loop correction (planar+non-planar) is given by (with
Og D gƒ2)

QG.1/. p/ D � g

ƒ2
W.1/. p2=ƒ2 C m2/

D � g

ƒ2

�
W.0/.	/W.0/.	/

	
C 1

16
	

Z m2C16


m2

d	0

	� 	0

�
W.0/.	/ �W.0/.	0/

�
�
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D � g

ƒ2

�
W.0/.	/W.0/.	/

	
C 1

16
	2

Z m2C16


m2

d	0

	0

�

D � Og ln
�
16
ƒ2=M2

�

16
. p2 CM2/2
� Ogƒ2
. p2 CM2/3

: (4.274)

The first term is due to the one-loop planar tadpole diagram which is logarithmically
divergent in two dimensions whereas the second term is due to the one-loop non-
planar diagram which is quadratically divergent in two dimensions. The two-loop
correction as well as higher order loop corrections can be computed in the same
way by means of Eq. (4.272). It will be seen, in particular, that divergences become
worse as we increase the loop order together with the appearance of some additional
divergences in ƒ not found in the ordinary scalar field and which can be traced to
divergences in the summations over Landau levels in the matrix model.

4.4 Noncommutative Phi-Four on the Fuzzy Sphere

4.4.1 Action and Limits

A real scalar field ˆ on the fuzzy sphere is an N � N hermitian matrix where N D
LC 1. The action of a 	ˆ4 model is given by

S D 1

N
Tr

�

ˆŒLa; ŒLa; ˆ��C m2ˆ2 C 	ˆ4
�

: (4.275)

It has the correct continuum large N limit, viz

S D
Z

d�

4


�

ˆL2aˆC m2ˆ2 C 	ˆ4
�

: (4.276)

Quantum field theories on the fuzzy sphere were proposed originally in [14, 15].
In perturbation theory of the matrix model (4.275) only the tadpole diagram can
diverge in the limit N �! 1 [5, 36]. See also [37, 38]. On the fuzzy sphere the
planar and non-planar tadpole graphs are different and their difference is finite in the
limit. This is the UV-IR mixing. This problem can be removed by standard normal
ordering of the interaction [7].

Another remarkable limit of the matrix action (4.275) is the limit of the noncom-
mutative Moyal-Weyl plane. This planar limit is defined by N �! 1, R �! 1
(the radius of the sphere) keeping the ratio R2=

p
c2 D �2 fixed. The parameter �

is the noncommutativity parameter and c2 is the Casimir c2 D .N2 � 1=/4. The
coordinates on the fuzzy sphere are xa D RLa=

p
c2 with commutation relations

Œxa; xb� D i�2
abcxc=R. In the above planar limit restricting also to the north pole on
the sphere we have x3 D R and the commutation relations become Œxi; xj� D i�2
ij.
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These are the commutation relations on the plane. In this planer limit the matrix
action becomes therefore

S D �2

2
Tr�

�
1

�4
ˆŒxi; Œxi; ˆ��C m2�ˆ

2 C 	�ˆ4
�

: (4.277)

In the above equation we have also made the replacement R2Tr=N D �2Tr=2 with
�2Tr� =2 where Tr� is an infinite dimensional trace and ˆ is an infinite dimensional
matrix (operator) on the corresponding Hilbert space. We have also the identification
m2� D m2=R2 and 	� D 	=R2.

4.4.2 The Effective Action and The 2-Point Function

We write the above action as

S D 1

N
Tr

�

ˆ�ˆC m2ˆ2 C 	ˆ4
�

; � D L2a: (4.278)

To quantize this model we write ˆ D ˆ0 C ˆ1 where ˆ0 is a background field
which satisfy the classical equation of motion and ˆ1 is a fluctuation. We compute

SŒˆ� D SŒˆ0�C Trˆ1

�

�C m2 C 4	ˆ20
�

ˆ1 C 2	Trˆ1ˆ0ˆ1ˆ0 C O.ˆ31/:

(4.279)

The linear term vanished by the classical equation of motion. Integration ofˆ1 leads
to the effective action

SeffŒˆ0� D SŒˆ0�C 1

2
TR log �: (4.280)

The Laplacian� is given by

�BA;CD D .�/BA;CD Cm2ıBCıAD C 4	.ˆ20/BCıAD C 2	.�0/BC.�0/DA: (4.281)

Formally we write

� D �C m2 C 4	ˆ20 C 2	ˆ0ˆR
0 : (4.282)

The matrix ˆR
0 acts on the right. The 2-point function is deduced from

Squad
eff D

1

N
Trˆ0

�

�C m2
�

ˆ0 C 	TR
�

2

�C m2
ˆ20 C

1

�C m2
ˆ0ˆ

R
0

�

: (4.283)
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Let us insist that the trace TR is not the same as the trace Tr. To see this explicitly
let us introduce the propagator

�
1

�C m2

�AB;CD

D
X

k;k3

1

�.k/Cm2
TAB
kk3.T

C
kk3
/DC: (4.284)

The eigenbasis fTkk3g is such �Tkk3 D �.k/Tkk3 where �.k/ D k.k C 1/. The
matrices Tkk3 are the polarization tensors where k D 0; 1; 2; ::;N � 1 and �k�k3�k,
viz Tkk3 D OYkk3=

p
N. Thus while the trace Tr is N dimensional the trace TR is

actually N2 dimensional. We will also need the resolution of the N2-dimensional
identity matrix

ıACıBD D
X

k;k3

TAB
kk3 .T

C
kk3
/DC: (4.285)

For any matrix ML acting on the left and any matrix MR acting on the right we have
the following matrix components

.ML/AB;CD D MACıBD ; .M
R/AB;CD D ıACMDB: (4.286)

The planar contribution is thus given by

TR
2

�C m2
ˆ20 D 2

X

k;k3

1

�.k/C m2
TrTC

kk3
ˆ20Tkk3

D 2
X

p;p3

X

q;q3

�. pp3/�.qq3/
X

k;k3

1

�.k/Cm2
TrTC

kk3
Tpp3Tqq3Tkk3 :

(4.287)

Similarly, the non-planar contribution is given by

TR
1

�Cm2
ˆ0ˆ

R
0 D

X

k;k3

1

�.k/C m2
TrTC

kk3
ˆ0Tkk3ˆ0

D
X

p;p3

X

q;q3

�. pp3/�.qq3/
X

k;k3

1

�.k/C m2
TrTC

kk3
Tpp3Tkk3Tqq3 :

(4.288)

In above we have clearly expanded the matrix ˆ0 as ˆ0 D P
kk3
�.kk3/Tkk3 . Since

ˆ0 is a matrix we can not move it across the polarization tensors and hence the
contributions are different. These contributions are finite by construction. Formally
they become equal in the continuum limit. However, by doing the sums first then
taking the limit we see immediately that they are different even in the continuum
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limit. This is the source of the so-called UV-IR mixing. We show this point next.
We have the identities

X

k3

TrTC
kk3

Tpp3Tqq3Tkk3 D
1

N
.2kC 1/ıp;qıp3;�q3 .�1/p3 : (4.289)

X

k3

TrTC
kk3
Tpp3Tkk3Tqq3 D .2kC 1/ıp;qıp3;�q3 .�1/pCp3CkC2s

�
p s s
k s s

	

:

(4.290)

In above s is the spin of the SU.2/ IRR, viz s D N�1
2

. Thus we obtain

TR
2

�C m2
ˆ20 D 2

X

p;p3

j�. pp3/j2…P ; …P D 1

N

X

k

2kC 1
k.kC 1/Cm2

:

(4.291)

TR
1

�C m2
ˆ0ˆ

R
0 D

X

p;p3

j�. pp3/j2…N�P. p/ ; …N�P. p/

D
X

k

2kC 1
k.kC 1/C m2

.�1/pCkC2s
�
p s s
k s s

	

: (4.292)

The UV-IR mixing is measured by the difference

…N�P �…P D 1

N

X

k

2kC 1
k.kC 1/C m

�

N.�1/pCkC2s
�
p s s
k s s

	

� 1
�

:

(4.293)

When the external momentum p is small compared to 2s D N � 1, one can use the
following approximation for the 6j symbols [39]

�
p s s
k s s

	

	 .�1/
pCkC2s

N
Pp.1 � 2k

2

N2
/; s!1; p << 2s; 0�k�2s: (4.294)

Since Pp.1/ D 1 for all p, only k >> 1 contribute in the above sum, and therefore
it can be approximated by an integral as follows

…N�P �…P D 1

N

X

k

2kC 1
k.kC 1/Cm2

�

Pp.1 � 2k
2

N2
/ � 1

�

D 1

N
hp ; hp D

Z C1

�1
dx

1 � xC 2m2

N2

�

Pp.x/� 1
�

: (4.295)
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Clearly, we can drop the mass for large N. We have the generating function

1X

pD0
Pp.x/t

p D 1p
1 � 2txC t2

: (4.296)

We can immediately compute

1X

pD0
hpt

p D 2

1 � t
ln.1 � t/: (4.297)

In other words h0 D 0 and hp>0 D �2Pp
nD1

1
n . We obtain the following UV-IR

mixing on the sphere

…N�P �…P D � 2
N

pX

nD1

1

n
: (4.298)

This is non-zero in the continuum limit. It has also the correct planar limit on the
Moyal-Weyl plane. We will show this explicitly for S2�S2. The planar contribution
…P is given explicitly by 1

N log N2

m2
(if we replace the sum in (4.291) by an integral).

Thus the total quadratic effective action is given by

Squad
eff D

1

N
Trˆ0

�

�C m2 C 3	 log
N2

m2
� 2	Q

�

ˆ0: (4.299)

The operator Q D Q.L2/ is defined by its eigenvalues Q. p/ given by

Q OYpm D Q. p/ OYpm ; Q. p/ D
pX

nD1

1

n
: (4.300)

4.4.3 The 4-Point Function and Normal Ordering

The quartic effective action is obtained from (4.280) as follows. First we rewrite the
Laplacian� in the form

� D �C m2 C 2	ˆ20 C 2	.�R
0 /
2 C 2	ˆ0ˆR

0 : (4.301)
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This is symmetric between left and right. The quartic effective action is then given
by

Squart
eff D

	

N
Trˆ40 � 	2TR

�

2

�
1

�C m2
ˆ20

�2
C 2

�
1

�C m2
ˆ20

��
1

�C m2
.ˆR

0 /
2

�

C
�

1

�C m2
ˆ0ˆ

R
0

�2
C 4

�
1

�C m2
ˆ20

��
1

�C m2
ˆ0ˆ

R
0

��

D 	

N
Trˆ40 � 	2

X

jj3

X

ll3

X

qq3

X

tt3

�.jj3/�.ll3/�.qq3/�.tt3/

�

2VP;P C 2 NVP;P

CVN�P;N�P C 4VP;N�P

�

: (4.302)

We use the notation Ek D .kk3/ and introduce the interaction vertex v.Ek;Ej; Ep; Eq/ D
TrTC

kk3
Tjj3Tpp3Tqq3 . The two planar-planar contributions are given by

VP;P.Ej;El; Eq;Et/ D
X

kk3

X

pp3

v.Ek;Ej;El; Ep/
k.kC 1/C m2

v.Ep; Eq;Et; Ek/
p. pC 1/C m2

NVP;P.Ej;El; Eq;Et/ D
X

kk3

X

pp3

v.Ek;Ej;El; Ep/
k.kC 1/C m2

v.Ep; Ek; Eq;Et/
p. pC 1/C m2

: (4.303)

The non-planar-non-planar contribution is given by

VN�P;N�P.Ej;El; Eq;Et/ D
X

kk3

X

pp3

v.Ek;Ej; Ep;El/
k.kC 1/C m2

v.Ep; Eq; Ek;Et/
p. pC 1/C m2

: (4.304)

The planar-non-planar contribution is given by

VP;N�P.Ej;El; Eq; Eq;Et/ D
X

kk3

X

pp3

v.Ek;Ej;El; Ep/
k.kC 1/C m2

v.Ep; Eq; Ek;Et/
p. pC 1/C m2

: (4.305)

In the continuum limit the planar-planar contribution VP;P remains finite and
tends to the commutative result. Thus with the continuum vertex w.Ek;Ej; Ep; Eq/ DR

d�
4


YC
kk3
Yjj3Ypp3Yqq3 the VP;P in the large N limit takes the form

VP;P.Ej;El; Eq;Et/ D 1

N

X

kk3

X

pp3

w.Ek;Ej;El; Ep/
k.kC 1/C m2

w.Ep; Eq;Et; Ek/
p. pC 1/C m2

: (4.306)

We can check explicitly that this is indeed the commutative answer. It is finite.
Furthermore it is shown in [7] that all other contributions become equal in the
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continuum large N limit to the above commutative result. Hence there is no
difference between planar and non-planar graphs and the UV-IR mixing is absent
in this case.

Hence to remove the UV-IR mixing from this model a standard prescription of
normal ordering which amounts to the substraction of tadpole contributions will be
sufficient. We consider therefore the action

S D 1

N
Tr

�

ˆ

�

�C m2 � 3N	…P C 2	Q
�

ˆC 	ˆ4
�

: (4.307)

In above Q D Q.L2a/ is given for any N by the expression

Q OYpp3 D Q. p/ OYpp3 ; Q. p/ D �
1

2

X

k

2kC 1
k.kC 1/C m

�

N.�1/pCkC2s
�
p s s
k s s

	

� 1
�

:

(4.308)

The first substraction is the usual tadpole substraction which renders the limiting
commutative theory finite. The second substraction is to cancel the UV-IR mixing.
Although this action does not have the correct continuum limit (due to the non-local
substraction) the corresponding quantum theory is standardˆ4 in 2 dimensions.

4.4.4 The Phase Structure and Effective Potential

The phase structure of 	ˆ4 theory on the fuzzy sphere can already be understood
by an analysis of the classical potential

V D 1

N
Tr

�

m2ˆ2 C 	ˆ4
�

: (4.309)

The minima (solutions of the equation of motion ˆ.m2 C 2	ˆ2/ D 0) are given by
the following configurations

ˆ D 0 ; disordered phase: (4.310)

ˆ D
r

�m
2

2	
� ; ordered/matrix phase: (4.311)

In above� is any Grassmannian element of the form�D.1; 1; 1 : : : ;�1;�1; ::;�1/.
The first k elements of the diagonal matrix � isC1 and the remainingN�k elements
are �1. The first configuration (4.310) is rotationally invariant, hence the name
disordered, whereas the second configuration (4.311) is not rotationally invariant
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for all � ¤ 1. We have therefore spontaneous symmetry breaking of rotational
invariance besides the usual breaking of the Z2 symmetry ˆ �! �ˆ.

In the commutative theory the matrix � can only be the identity function. In this
case we will have an ordered phase characterized by

ˆ D
r

�m
2

2	
; ordered phase: (4.312)

This is rotationally invariant and only the discrete Z2 symmetry ˆ �! �ˆ can be
broken in the commutative theory. In the noncommutative theory this phase also
exists and is renamed uniform ordered phase, but there is also the possibility that
� ¤ 1 and hence we have a different phase from the usual uniform ordered phase
called the non-uniform ordered phase or matrix phase.

The existence of the uniform ordered (uniform) and matrix (non-uniform)
solutions means in particular that the parameterm2 must be negative. The disordered
phase appears generally for negative values of the mass parameter such that m2 �
m2� whereas the ordered/matrix phase appears for m2 � m2�. The critical value m2�,
for large values of 	, agrees with the prediction of the pure potential term (4.309)
which has in the quantum theory a third order phase transition which occurs for
negative m2 at m2� D �2N

p
	.

Strictly speaking the uniform ordered phase is not stable in the matrix
model (4.309) and the inclusion of the kinetic term is essential for its generation.
However, the above picture is still expected to hold for the full model (4.275) which
is indeed confirmed in Monte Carlo simulation of the model as we will see.

Let us define the following order parameters. The total power P and the power in
the zero modes P0 given by

P D< 1

N3=2
Trˆ2 > ; P0 D< 1p

N
.Tr Ô /2 > : (4.313)

It is not difficult to see that classically the power P becomes a straight line for
negative values of m2 given essentially by the following theoretical prediction

P D 0 ; for m2�m2� ; disordered phase:

P D �m2
2
p
N	

; for m2�m2� ; ordered/matrix phase: (4.314)

The situation with P0 is more involved since it will also depend on k. From the above
potential we have

P0 D 0 ; for m2�m2� ; disordered phase:

P0 D � m2

2
p
N	

.2k � N/2 for m2�m2� ; ordered/matrix phase: (4.315)
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We can use this type of reasoning to predict the following theoretical behaviour of
the action

V D 0 ; disordered phase:

V D �m
4

4	
; ordered/matrix phase: (4.316)

The quantum effective potential of this model is derived from (4.280) with
backgroundˆ0 D ˙�1. We get the effective potential

Veff.�/ D m2�2 C 	�4 C 1

2
TR log.�C m2 C 6	�2/: (4.317)

Since we want to take m2 very large we work instead with the rescaled couplings
m2 D N2 Qm2 and 	 D N2 Qm4 Q	. We get

Veff.�/

N2
D Qm2�2 C Qm4 Q	�4 C 1

2N2
TR log

�

�2 C 1

6 Qm2 Q	 C
�

6N2 Qm4 Q	
�

C1
2

log.6N2 Qm4 Q	/: (4.318)

Thus we get the potential

Veff.�/

N2
D Qm2�2 C Qm4 Q	�4 C log�: (4.319)

The ground state is given by

�2 D 1˙
p
1 � 4 Q	

4.� Qm2/ Q	 : (4.320)

This makes sense for Qm2 < 0 and for all Q	 such that

Q	 D N2	

m4
�1
4
: (4.321)

This gives the correct critical value

m4�m4� D 4N2	: (4.322)

The solution (4.320) corresponds to the uniform ordered phase with cut centered
aroundˆ0 D C�1 or ˆ0 D ��1.
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4.4.5 Fuzzy S2 � S2 and Planar Limit: First Look

By analogy with (4.275) the scalar theory with quartic self-interaction on the fuzzy
4-sphere S2 � S2 is

S0 D 1

N2
TrTr

�

ˆ�ˆC m2ˆ2 C 	ˆ4
�

; � D .L.1/a /
2 C .L.2/a /

2: (4.323)

The Laplacians .L.1;2a /2 clearly correspond to the two different spheres.ˆ is now an
.N C 1/2 � .N C 1/2 hermitian matrix. It can be expanded in terms of polarization
operators as follows

ˆ D N
N�1X

kD0

kX

k3D�k

N�1X

pD0

pX

p3D�p

ˆkk3pp3Tkk3Tpp3 : (4.324)

The effective action of this model is still given by Eq. (4.280) with Laplacian � D
.L.1/a /

2 C .L.2/a /
2, viz

S0
effŒˆ0� D S0Œˆ0�C 1

2
TR log �

� D �Cm2 C 4	ˆ20 C 2	ˆ0ˆR
0 : (4.325)

The 2-point function may now be deduced from

S0quad
eff D 1

N2
Trˆ0

�

�Cm2
�

ˆ0 C 	TR
�

2

�C m2
ˆ20 C

1

�C m2
ˆ0ˆ

R
0

�

:

(4.326)

The Euclidean 4-momentum in this setting is given by .k; k3; p; p3/ with square
�.k; p/ D k.kC 1/C p. pC 1/. The propagator is given by

�
1

�C m2

�AB;CD

D
X

k;k3;p;p3

1

�.k; p/Cm2
.Tkk3Tpp3 /

AB..Tkk3Tpp3 /
C/DC:

(4.327)

The one-loop correction to the 2-point function is

m2.k; p/ D m2 C 	
�

2…P C…N�P.k; p/

�

: (4.328)

The planar contribution is given by

…P D 2
2sX

aD0

2sX

bD0
A.a; b/ ; A.a; b/ D .2aC 1/.2bC 1/

a.aC 1/C b.bC 1/C m2
: (4.329)
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The non-planar contribution is given by

…N�P.k; p/ D 2
2sX

aD0

2sX

bD0
A.a; b/.�1/kCpCaCbBkp.a; b/;

Bab.c; d/ D N2f a s s
c s s
gf b s s
d s s
g: (4.330)

As one can immediately see from these expressions both planar and non-planar
graphs are finite and well defined for all finite values of N. A measure for the
fuzzy UV-IR mixing is again given by the difference between planar and non-planar
contributions which can be defined by the equation

…N�P.k; p/ �…P D 2

sX

aD0

sX

bD0
A.a; b/

�

.�1/kCpCaCbBkp.a; b/� 1
�

:

(4.331)

The fact that this difference is not zero in the continuum limit is what is meant by
UV-IR mixing on fuzzy S2�S2. Equation (4.331) can also be taken as the regularized
form of the UV-IR mixing on R4. Removing the UV cut-off N�!1 one can show
that this difference diverges as N2, viz

�.k; p/ �! N2
Z 1

�1

Z 1

�1
dtxdty

2 � tx � ty

�

Pk.tx/Pp.ty/� 1
�

: (4.332)

We have assumed that m2 << N. This is worse than what happens in the two-
dimensional case. In here not only that the difference survives the limit but also it
diverges.

We can now state with some detail the continuum limit in which the fuzzy spheres
approach (in a precise sense) the noncommutative planes. We are interested in the
canonical large stereographic projection of the spheres onto planes. A planar limit
can be defined as follows

�2 D R2p
c2
D fixed as N;R!1: (4.333)

We are now in a position to study what happens to the scalar field theory in this
limit. First we match the spectrum of the Laplacian operator on each sphere with
the spectrum of the Laplacian operator on the limiting noncommutative plane as
follows

a.aC 1/ D R2Ea2: (4.334)
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The vector Ea is the two dimensional momentum on the noncommutative plane which
corresponds to the integer a. However, since the range of a’s is from 0 to N � 1 the
range of Ea2 will be from 0 to 2Nƒ2 where ƒ D 1=� . It is not difficult to show that
the free action scales as

X

a;b

X

ma ;mb

�

a.aC1/Cb.bC1/Cm2
�

j�amabmb j2 D
Z 2Nƒ2

0

d2Ead2Eb

2

�

Ea2CEb2CM2

�

j�jEaj˛ajEbj˛b j2:
(4.335)

The scalar field is assumed to have the scaling property �jEaj�ajEbj�b D R3�amabmb

which gives it the correct mass dimension of�3. The ˛a and ˛b above are the angles
of the two momenta Ea and Eb respectively. They are defined by ˛a D 
ma=a and
˛b D 
mb=b and hence they are in the range Œ�
; 
�. The mass parameter M of the
planar theory is defined by M2 D m2=R2.

With these ingredients, it is not then difficult to see that the flattening limit of the
planar 2-point function (4.329) is given by

…P

R2
D 2


2

Z 2Nƒ2

0

Z 2Nƒ2

0

d2Ead2Eb
Ea2 C Eb2 CM2

: (4.336)

This is the 2-point function on noncommutative R4 with the Euclidean metric R2 �
R2. By rotational invariance it may be rewritten as

…P

R2
D 2


2

Z 2Nƒ2

0

d4k

k2 CM2
: (4.337)

We do now the same exercise for the non-planar 2-point function (4.330). Since the
external momenta k and p are generally very small compared to N, one can use the
following approximation for the 6j-symbols

�
a s s
b s s

	

	 .�1/
aCb

N
Pa.1 � 2b

2

N2
/: N!1; a << s; 0�b�2s: (4.338)

By using all the ingredients of the planar limit we obtain the result

…N�P.k; p/

R2
D 2


2
.2
/2

Z 2Nƒ2

0

Z 2Nƒ2

0

.jEajdjEaj/.jEbjdjEbj/
Ea2 C Eb2 CM2

Pk.1��
4Ea2
2R2

/Pp.1��
4Eb2
2R2

/:

(4.339)

Although the quantum numbers k and p in this limit are very small compared to s,
they are large themselves i.e. 1 << k; p << s. On the other hand, the angles �a
defined by cos �a D 1 � �4Ea2

2R2
can be considered for all practical purposes small, i.e.
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�a D �2jEaj
R because of the large R factor, and hence we can use the formula (see for

e.g. [21], page 72)

Pn.cos �a/ D J0.�/C sin2
�a

2

�
J1.�/

2�
� J2.�/C �

6
J3.�/

�

CO.sin4
�a

2
/;

(4.340)

for n >> 1 and small angles �a, with � D .2nC 1/ sin �a
2

. To leading order we then
have

Pk.1 � �
4Ea2
2R2

/ D J0.�
2jEkjjEaj/ D 1

2


Z 2


0

d˛ae
i�2 cos˛ajEkjEaj: (4.341)

This result becomes exact in the strict limit of N;R!1 where all fuzzy quantum
numbers diverge with R. We get then

…N�P.k; p/

R2
D 2


2

Z 2Nƒ2

0

Z 2Nƒ2

0

d2Ead2Eb
Ea2 C Eb2 CM2

ei�
2jEkj.jEajcos˛a/ei�2jEpj.jEbj cos˛b/:

(4.342)

By rotational invariance we can set �2B��k�a� D �2jEkj.jEaj cos˛a/, where B12 D
�1. In other words, we can always choose the two-dimensional momentum k� to lie
in the y-direction, thus making ˛a the angle between a� and the x-axis. The same
is also true for the other exponential. We thus obtain the canonical non-planar 2-
point function on the noncommutative R4 (with Euclidean metric R2 � R2). Again
by rotational invariance, this non-planar contribution to the 2-point function may be
put in the compact form

…N�P.k; p/

R2
D 2


2

Z 2Nƒ2

0

d4k

k2 CM2
ei�

2pBk: (4.343)

W can read immediately from the above calculation that the planar contribution is
quadratically divergent as it should be, i.e.

1

32
2
…P

R2
D

Z 2Nƒ2

0

d4k

.2
/4
1

k2 CM2
D 1

8
2
N

�2
: (4.344)

The non-planar contribution remains finite in this limit, viz

1

32
2
…N�P.k; p/

R2
D

Z 2Nƒ2

0

d4k

.2
/4
1

k2 CM2
ei�

2pBk

D 1

8
2

�
2

E2�4
CM2 ln.�2EM/

�

; E� D B��p�:

(4.345)
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This is the answer of [26]. This is singular at p D 0 as well as at � D 0.

4.4.6 More Scalar Actions on Moyal-Weyl Plane and Fuzzy
Sphere

We have already considered, in previous sections, the scalar actions on the Moyal-
Weyl plane given by

S� D Tr

�

ˆC��ˆC V.ˆC; ˆ/
�

; � D 0; 1; 2: (4.346)

The Laplacians�� are given by

�0 D �@2i
�1 D � OD2i jself-dual D 4B.OaC OaC 1

2
/ D 4B

�

J C J3 C 1

2

�

�2 D �. OD2i C OC2i /jself-dual D 4B.OaC OaC ObC ObC 1/ D 4B
�

2J C 1
�

:

(4.347)

The action S0 is what we want at the end. The action S1 is the Langmann-Szabo-
Zarembo action, which is exactly solvable, and S2 is the Grosse-Wulkenhaar action
which is renormalizable and free from UV-IR mixing. These two last actions should
be compared with the action on the fuzzy sphere given by

S D TrN

�

ˆC�ˆC V.ˆC; ˆ/
�

; �D4BJ 2 D 4BJ .J C 1/: (4.348)

The trace Tr on the noncommutative plane is infinite dimensional whereas TrN is
finite dimensional. In a sense if we cut the trace Tr at some finite value the resulting

action S2 is also defining scalar fields on the sphere with the Laplacian 4B
q
J 2 C 1

4

instead of the usual Laplacian 4BJ 2. This can not be said for S1 since the term J3
in �1 breaks the SU.2/ symmetry.

The Action S2 is UV-IR Free Let us show explicitly that the action S2, regularized
by the fuzzy sphere, is free from UV-IR mixing. We consider real phi-four models
given by

S�Œˆ� D Tr

�

ˆ��ˆC mˆ2 C 	ˆ4
�

; ˆC D ˆ: (4.349)
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We write ˆ D ˆ0 Cˆ1 where ˆ0 is a background field which satisfy the classical
equation of motion and ˆ1 is a fluctuation. We compute

S�Œˆ� D S�Œˆ0�C Trˆ1

�

�� C mC 4	ˆ20
�

ˆ1 C 2	Trˆ1ˆ0ˆ1ˆ0 CO.ˆ31/:

(4.350)

The linear term vanished by the classical equation of motion. Integration ofˆ1 leads
to the effective action

S�;effŒˆ0� D SŒˆ0�C 1

2
TR log � (4.351)

where

�BA;CD D .��/BA;CD C mıBCıAD C 4	.ˆ20/BCıAD C 2	.�0/BC.�0/DA:
(4.352)

Formally we write

� D �� C mC 4	ˆ20 C 2	ˆ0ˆR
0 : (4.353)

The matrix ˆR
0 acts on the right. The 2-point function is deduced from

Squad
�;eff D Trˆ0

�

�� C m

�

ˆ0 C 	TR
�

2

�� C m
ˆ20 C

1

�� C m
ˆ0ˆ

R
0

�

:

(4.354)

Let us introduce the propagator

�
1

�� C m

�AB;CD

D
X

k;k3

1

��.k/C m
TAB
kk3 .T

C
kk3
/DC: (4.355)

The eigenbasis fTkk3g is such ��Tkk3 D ��.k/Tkk3 . In above we have assumed for
the action S�, � D 1; 2 the obvious regularization of the fuzzy sphere. The trace Tr
is thus N dimensional and Tkk3 are the polarization tensors where k D 0; 1; 2; ::;N�1
and �k�k3�k. The action S0 is more subtle and needs to be treated independently.

The planar contribution is thus given by

TR
2

�� Cm
ˆ20 D 2

X

k;k3

1

��.k/C m
TrTC

kk3
ˆ20Tkk3

D 2
X

p;p3

X

q;q3

�. pp3/�.qq3/
X

k;k3

1

��.k/C m
TrTC

kk3
Tpp3Tqq3Tkk3

(4.356)
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Similarly, the non-planar contribution is given by

TR
1

�� C m
ˆ0ˆ

R
0 D

X

k;k3

1

��.k/C m
TrTC

kk3
ˆ0Tkk3ˆ0

D
X

p;p3

X

q;q3

�. pp3/�.qq3/
X

k;k3

1

��.k/C m
TrTC

kk3
Tpp3Tkk3Tqq3 :

(4.357)

In above we have made the expansion ˆ0 D P
kk3
�.kk3/Tkk3 . Next we will only

consider the action S2. We can show the identities

X

k3

TrTC
kk3

Tpp3Tqq3Tkk3 D
1

N
.2kC 1/ıp;qıp3;�q3 .�1/p3 : (4.358)

X

k3

TrTC
kk3
Tpp3Tkk3Tqq3 D .2kC 1/ıp;qıp3;�q3 .�1/pCp3CkC2s

�
p s s
k s s

	

: (4.359)

In above s is the spin of the SU.2/ IRR, viz s D N�1
2

. Thus we obtain

TR
2

�� C m
ˆ20 D 2

X

p;p3

j�. pp3/j2…P ; …P D 1

N

X

k

2kC 1
��.k/C m

: (4.360)

TR
1

�� C m
ˆ0ˆ

R
0 D

X

p;p3

j�. pp3/j2…N�P. p/ ;

…N�P. p/ D
X

k

2kC 1
��.k/C m

.�1/pCkC2s
�
p s s
k s s

	

:

(4.361)

The UV-IR mixing is measured by the difference

…N�P �…P D 1

N

X

k

2kC 1
��.k/C m

�

N.�1/pCkC2s
�
p s s
k s s

	

� 1
�

: (4.362)

For m D 0 we obtain using identity .2/ on page 305 of [39] the result

…N�P �…P D � N

2B
C N

2B
ıp0 � 1

2B

1

N

X

k

.2k/

�

N.�1/pCkC2s
�
p s s
k s s

	

� 1
�

:

(4.363)
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We also have in this case

…P D 1

2B
: (4.364)

When the external momentum p is small compared to 2s D N � 1, one can use the
following approximation for the 6j symbols

�
p s s
k s s

	

	 .�1/
pCkC2s

N
Pp.1 � 2k

2

N2
/; s!1; p << 2s; 0�k�2s: (4.365)

Since Pp.1/ D 1 for all p, only k >> 1 contribute in the above sum, and therefore
it can be approximated by an integral as follows

…N�P �…P D � N

2B
C N

2B
ıp0 � N

4B

Z C1

�1
dx

�

Pp.x/� 1
�

D N

2B
ıp0 � N

4B
Ip ;

Ip D
Z C1

�1
dxPp.x/: (4.366)

We have the generating function

1X

pD0
Pp.x/t

p D 1p
1 � 2txC t2

: (4.367)

Thus we can compute

1X

pD0
Ipt

p D 2: (4.368)

In other words I0 D 2 and Ip>0 D 0 and as a consequence

…N�P �…P D 0: (4.369)

There is no UV-IR mixing, Indeed.

Exactly Solvable Actions on The Fuzzy Sphere: Let us now consider the action

SŒˆ;ˆC� D
Z

d2x

�

r2ˆC�ˆC m2ˆCˆC g

2
.ˆC �ˆ/2

�

: (4.370)
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We take the Laplacian

� D �2
1 D 16B2

�

aCaC 1

2

�2

D 16B2
�

J .J C 1/C J 2
3 C

1

4
C JJ3 C J3J C J3

�

: (4.371)

For hermitian matrices (ˆC D ˆ) we can drop from the Laplacian all linear terms
in J3 since they will lead to vanishing contributions in the action. We thus obtain
(with r D 1=4B)

SŒˆ� D
Z

d2x

�

ˆ

�
EJ 2
a C J 2

3 C
1

4
C m2

�

ˆC g

2
ˆ4

�

: (4.372)

By rewriting this noncommutative ˆ4 scalar field theory in terms of the infinite
dimensional trace of the noncommutative plane and then regularizing the trace we
obtain a ˆ4 scalar field theory on the fuzzy sphere with a distorted metric (since we
have EJ 2

a C J 3
3 instead of simply EJ 2

a ), viz

SŒˆ� D 4
�Tr
�

ˆ

�
EJ 2
a C J 2

3 C
1

4
C m2

�

ˆC g

2
ˆ4

�

: (4.373)

The point we want to make is that the regularization of this noncommutative real
scalar filed theory can be thought of in a very precise sense as a real scalar field
theory on the fuzzy sphere. This is basically our motivation for studying this model.
Furthermore this action is exactly solvable. Indeed, the corresponding partition
function can be reduced to (4.203) with E given by

El;n D 2
�

N
.l� 1

2
/2ıl;n: (4.374)

Let us consider now the general action

SŒˆ;ˆC� D
Z

d2x

�

ˆCF.�1/ˆC m2ˆCˆC g

2
.ˆC �ˆ/2

�

: (4.375)

F.�1/ is some function of the Laplacian �1. A similar calculation leads to the
external matrix

El;n D 1

ƒ2
F

�
16
ƒ2

N
.l� 1

2
/

�

ıl;n: (4.376)

We can immediately use the solution developed in a previous section. In this case
the external eigenvalues are given by

elıl;n D .E C m2/l;n ) e D 1

ƒ2
F

�
16
ƒ2

N
.l � 1

2
/

�

C m2: (4.377)
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The eigenvalues l D 1; : : : ;N correspond now to the interval Œa1; a2� such that
a1 D m2 C 1

ƒ2
F.0/ and a2 D m2 C 1

ƒ2
F.16
ƒ2/. Their distribution is now more

complicated given by

�.e/ D 1

N

dl

de
D 1

16


1

F0 : (4.378)

Let us choose F such that 1=F0 D e, i.e. we get the linear distribution

�.e/ D 1

N

dl

de
D 1

16

e: (4.379)

We get the solution

1

ƒ2
F.x/ D

r

m4 C 2

ƒ2
x �m2: (4.380)

This corresponds to the action

SŒˆ;ˆC� D
Z

d2x

�

ˆC
�

m4 C 2ƒ2�1

� 1
2

ˆC g

2
.ˆC �ˆ/2

�

: (4.381)

It seems that in a ƒ2=m4 expansion we will get a kinetic term which is the sum
of a �1 and a �2

1 contributions. The corresponding interval is Œa1 D m2; a2 Dp
m4 C 32
�.
The analytical continuation of the solutions (4.242) and (4.243) is defined as

follows. The original model contained the resolvent

†.ien/ D 1

N

NX

lD1

1

xl � ien
: (4.382)

Hence, we are interested in †.z/ D �iW.�iz/ and not W.z/. We remark that when
z �!1 we get†.z/ �! �1=z. By making the substitutions z �! �iz, e �! �ie,
bi �! �ibi and ai �! �iai in (4.240) we get

†.z/ D � z

2g
C

p
.z � b1/.z� b2/

2g
� 1
2

Z a2

a1

de
�.e/

z� e

�

1�
p
.z� b1/.z� b2/

p
.e � b1/.e � b2/

�

:

(4.383)

This is essentially an analytic continuation of the solution (4.240). Remark that the
density of eigenvalues changes as �.�ie/ D i�.e/ by definition. Since †.z/ �!
�1=z we get as before the boundary conditions (4.242) and (4.243) with g � 0.
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We can now compute

b1 C b2 D g

8


�

.b1 C b2/ log

p

b1 � eC
p
b2 � e

� �
p
.b1 � e/.b2 � e/

�a2

a1

:

(4.384)

Also we can compute

.b1 � b2/
2 C 8gC 2.b1 C b2/

2 D g

8


�

.3b21 C 3b22 C 2b1b2/ log

p

b1 � eC
p
b2 � e

�

�.3b1 C 3b2 C 2e/
p
.b1 � e/.b2 � e/

�a2

a1

:

(4.385)

These two equations can be put in the equivalent form

.b1 C b2/ı D �2
p
.b1 � a2/.b2 � a2/C 2

p
.b1 � a1/.b2 � a1/: (4.386)

b1b2ı � 32
 D a2
p
.b1 � a2/.b2 � a2/ � a1

p
.b1 � a1/.b2 � a1/: (4.387)

ı D 16


g
� log

b1 C b2 � 2a2 C 2
p
.b1 � a2/.b2 � a2/

b1 C b2 � 2a1 C 2
p
.b1 � a1/.b2 � a1/

: (4.388)

We consider the ansatz

p
.b1 � a2/.b2 � a2/ �

p
.b1 � a1/.b2 � a1/ D a2 � a1, ı D 16


g
: (4.389)

This leads to the two equations

b2 C b1 D � g

8

.a2 � a1/: (4.390)

b2b1 � 2g D g

16

.a2 � a1/.a1 C

p
.b1 � a2/.b2 � a2//

D g

16

.a2 � a1/.a2 C

p
.b1 � a1/.b2 � a1//: (4.391)

Let us solve these last three equations (including the ansatz) in the large m2 limit. It
is useful to define

bi D m2 Qbi ; g D m4 Qg: (4.392)
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The ansatz takes the form

r

.Qb1 � a2
a1
/.Qb2 � a2

a1
/ �

q

.Qb1 � 1/.Qb2 � 1/ D a2
a1
� 1: (4.393)

We compute

.a2 � a1/a1 D 16
 � 128

2

m4
C O.

1

m8
/: (4.394)

Then

Qb2 D �Qb1 � 2Qg
�

1 � 8

m4
C O.

1

m8
/

�

: (4.395)

The second equation is much more complicated. It gives

� Qb21 � 2QgQb1 � 2QgC
16
 Qg
m4
Qb1 D Qg

�

1C
q

.1 � Qb1/.1C 2QgC Qb1/

�8
 Qg
m4

s
1 � Qb1

1C 2QgC Qb1
C 8


m4

�8

m4

q

.1� Qb1/.1C 2QgC Qb1/
�

C O.
1

m8
/:

(4.396)

To leading order we have

� Qb21 � 2QgQb1 � 3Qg D Qg
q

.1 � Qb1/.1C 2QgC Qb1/C O.
1

m4
/: (4.397)

To this leading order we also have a2
a1
D 1C O. 1

m4
/ and hence the ansatz (4.393) is

trivially satisfied. We also get

Qb2 D �Qb1 � 2QgC O.
1

m4
/: (4.398)

The first requirement we get from (4.397) is that we must have �2Qg � 1�Qb1�1 or
1�Qb1� � 2Qg � 1. Recall that Qg is negative given by g D m4 Qg. Let us introduce
x D �Qb21 � 2QgQb1. The above equation becomes

x � 3Qg D Qgp
xC 1C 2Qg, x2 � .Qg2 C 6Qg/xC 8Qg2 � 2Qg3 D 0: (4.399)
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; The equation x D �Qb21 � 2QgQb1 can be solved to give

Qb1 D �Qg˙
p
Qg2 � x: (4.400)

These last two equations require that one must have x�3Qg and x�Qg2. The explicit
solution satisfies these conditions. We get

x D 1

2
Qg2 C 3QgC 1

2
Qg
p
Qg2 C 20QgC 4: (4.401)

We can now find Qb2 from (4.398) and (4.400). This reads

Qb2 D �Qg

p
Qg2 � x (4.402)

We choose always the solution with b2 > b1. Let us also say that the above solution
makes sense iff

Qg2 C 20QgC 4�0: (4.403)

Therefore the coupling constant Qg must be such that either Qg�QgC D �10C 4
p
6 or

equivalently

m4� g

QgC
D �.5

2
Cp6/g: (4.404)

Or it must be such that Qg�Qg� D �10 � 4
p
6 or equivalently

m4� g

Qg�
D �.5

2
�p6/g: (4.405)

Since m2 is large, it is the first region we must consider, and thus one must have
Qg�QgC always. In other words, �2Qg � 1� � 2QgC � 1<0. Now going back to the
requirements �2Qg � 1�Qb1�1 or 1�Qb1� � 2Qg � 1 we can see that we must have in
fact�2Qg�1�Qb1�1 or equivalently

pQg2 � x�1C Qg. Using the solution for x we can
check that this inequality indeed holds.

Furthermore, Eqs. (4.242) and (4.243) were obtained with the crucial condition
that Œb1; b2� \ Œa1; a2� D �. In other words, we must always have Qb2�1 or
equivalently

� 2Qg
p
Qg2 C 20QgC 4�2Qg2 C 20QgC 4: (4.406)

Both sides of this inequality are positive numbers and the inequality always holds
as we can check by direct calculation.

This solution, which was found for the model with the kinetic term F.�1/,
corresponds to the region where we have two disjoint supports. The background
support Œa1; a2�, which consists in the limit of large m2 of just one point, and the
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quantum support Œb1; b2�. This solution is expected to be generic for all models
where the kinetic term depends only on �1. Among these models, we find the
Moyal-Weyl plane with the Laplacian �1, and the fuzzy sphere with the Laplacian
�2
1. It is clear that subleading corrections in powers of 1=m4 of this solution can be

computed using the above method.

4.5 Monte Carlo Simulations

4.5.1 Fuzzy Sphere: Algorithms and Phase Diagram

The phase diagram of noncommutative phi-four on the fuzzy sphere is shown
on Fig. 4.3. The usual phases of commutative phi-four theory are the disordered
(rotationally invariant) phase (< Trˆ >D 0) and the uniform ordered phase (
< Trˆ >D ˙Np�m2=2	). The phase diagram is found to contain an extra phase
(the matrix phase or the non-uniform ordered phase) which lies between the two
usual phases of the scalar model. In this novel “matrix phase” we have instead
< Trˆ >D ˙.N � 2k/p�2m2=	 where k is some integer. The transition from
disordered to matrix is third order with continuous action and specific heat.

Hence, fuzzy scalar phi-four theory enjoys three stable phases: (1) disordered
(symmetric, one-cut, disk) phase, (2) uniform ordered (Ising, broken, asymmetric
one-cut) phase and (3) non-uniform ordered (matrix, stripe, two-cut, annulus) phase.
The three phases meet at a triple point. The non-uniform ordered phase [3] is a full
blown nonperturbative manifestation of the perturbative UV-IR mixing effect [26]
which is due to the underlying highly non-local matrix degrees of freedom of the
noncommutative scalar field.

The problem of the phase structure of fuzzy phi-four was also studied by means
of the Monte Carlo method in [6, 10, 11, 22, 23, 30, 41]. The analytic derivation of
the phase diagram of noncommutative phi-four on the fuzzy sphere was attempted
in [27, 29, 31–35, 42].

Both graphs on Fig. 4.3 were generated using the Metropolis algorithm on the
fuzzy sphere. In the first graph coupling of the scalar fieldˆ to a U.1/ gauge field on
the fuzzy sphere is included, and as a consequence, we can employ the U.N/ gauge
symmetry to reduce the scalar sector to only its eigenvalues. In the second graph an
approximate Metropolis algorithm, i.e. it does not satisfy detailed balanced, is used.

Another powerful method which allows us to reduce noncommutative scalar phi-
four theory to only its eigenvalues, without the additional dynamical gauge field, is
the multitrace approach [27, 29, 31–35, 42]. See next chapter. The phase diagrams
of various multitrace models of noncommutative phi-four on the fuzzy sphere are
reported in [46, 47]. They are shown on Fig. 4.4.
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Fig. 4.3 The phase diagram of phi-four theory on the fuzzy sphere. In the first figure the fits
are reproduced from actual Monte Carlo data [41]. Second figure reproduced from [11] with the
gracious permission of D. O’Connor
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Fig. 4.4 The phase diagrams of the multitrace models of [29] (Model I) and [42] (Model II)
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These phase diagrams were obtained by means of various algorithms which we
will now discuss in some more detail. We have:

• The algorithm used in [11] to compute the phase diagram is based on, a very
complex variation, of the Metropolis algorithm, which does not preserve detailed
balance. In the region of the disordered phase, their algorithm behaves essentially
as the usual Metropolis algorithm, with a processing time per configuration, with
respect to the matrix size, proportional to N4. The new Metropolis algorithm,
described in [11], behaves better and better, as we go farther and farther, from
the origin, i.e. towards the regions of the uniform and non-uniform phases. The
processing time per configuration, with respect to the matrix size, is claimed to
be proportional to N3, for the values of N between 4 and 64. See graph 9:12 of
F.G Flores’ doctoral thesis,1 where we can fit this region of N with a straight
line. Also, it is worth noting, that this new algorithm involves, besides the
usual optimizable parameters found in the Metropolis algorithm, such as the
acceptance rate, a new optimizable parameter p, which controls the compromise
between the speed and the accuracy of the algorithm. For p D 0 we have a fast
process with considerable relative systematic error, while for p D 1 we have a
slow process but a very small relative error. This error is, precisely, due to the
lack of detailed balance. Typically we fix this parameter around p D 0:55 � 0:7.

The algorithm of [11] is the only known method, until [41, 46, 47], which is
successful in mapping the complete phase diagram of noncommutative phi-four
on the fuzzy sphere. However we had found it, from our experience, very hard to
reproduce this work.

• An alternative method which is, (1) conceptually as simple as the usual Metropo-
lis method, and (2) without systematic errors, and (3) can map the whole phase
diagram is constructed in [41]. In this method the phase diagram of fuzzy phi-
four theory is computed by Monte Carlo sampling of the eigenvalues 	i of the
scalar field ˆ. This was possible by coupling the scalar field ˆ to a U.1/ gauge
field Xa on the fuzzy sphere which then allowed us, by employing the U.N/ gauge
symmetry, to reduce scalar phi-four theory to only its eigenvalues, viz

S D 2a�N2 � 1
4

X

i

	2i �
X

i;j

.Xa/ij.Xa/ji	i	j
�C b

X

i

	2i C c
X

i

	4i

Cpure gauge term: (4.407)

The pure gauge term is such that the gauge field Xa is fluctuating around Xa D
La, b and c are essentially the parameters m2 and 	 respectively, while a is the
parameter in front of the kinetic term which we have not set equal to one here.

The processing time per configuration, with respect to the matrix size, in this
algorithm, is proportional to N4, which is comparable to the usual Metropolis

1Not available on the ArXiv.
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algorithm, but with the virtue that we can access the non-uniform phase. There is
no systematic errors in this algorithm, and hence no analogue of the parameter p
mention above.

• As mentioned above, another powerful method which allows us to reduce
noncommutative scalar phi-four theory to only its eigenvalues, without the
additional dynamical gauge field, is the multitrace approach. The multitrace
expansion is the analogue of the Hopping parameter expansion on the lattice
in the sense that we perform a small kinetic term expansion while treating the
potential exactly. This should be contrasted with the small interaction expansion
of the usual perturbation theory. The effective action obtained in the multitrace
approach is a multitrace matrix model, depending on various moments mn D
TrMn of an N � N matrix M, which to the lowest non-trivial order is of the form

V D BTrM2 C CTrM4 C D

�

TrM2

�2

CB0.TrM/2 C C0TrMTrM3 C D0.TrM/4 C A0TrM2.TrM/2 C : : : :
(4.408)

The parameters B and C are shifted values of b and c. The primed parameters
depend on a. The second line includes terms which depend on the odd moments
m1 and m3. By diagonalization we obtain therefore the N eigenvalues of M as our
independent set of dynamical degrees of freedom with an effective action of the
form

Seff D
X

i

.b	2i C c	4i / �
1

2

X

i¤j

ln.	i � 	j/2

C
�
r2

8
v2;1

X

i¤j

.	i � 	j/2 C r4

48
v4;1

X

i¤j

.	i � 	j/4

� r4

24N2
v2;2

2

4
X

i¤j

.	i � 	j/2
3

5

2

C : : :
�

:

(4.409)

Since these models depend only on N independent eigenvalues their Monte Carlo
sampling by means of the Metropolis algorithm does not suffer from any ergodic
problem and thus what we get in the simulations is really what should exist in the
model non-perturbatively. The processing time per configuration, with respect
to the matrix size, in this algorithm, is proportional to N2, which is very fast
compared to previous algorithms.

• We also mention for completeness the algorithm of [30] which is based on a
combination of the Metropolis algorithm and annealing. A systematic study of
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the behavior of the eigenvalues distributions of the scalar field across the various
transition lines was conducted using this method in [30].

4.5.2 Fuzzy Torus: Dispersion Relations

The related problem of Monte Carlo simulation of noncommutative phi-four on the
fuzzy torus, and the fuzzy disc was considered in [1, 2, 20] respectively. For a recent
study see [24].

As an example the phase diagram and the dispersion relation of noncommutative
phi-four on the fuzzy torus in d D 3 is discussed in [2]. The phase diagram,
with exactly the same qualitative features conjectured by Gubser and Sondhi, is
shown on Fig. 5 of [2]. Three phases which meet at a triple point are identified. The
Ising (disordered-to-uniform) transition exists for small � whereas transitions to the
stripe phase (disordered-to-stripe and uniform-to-stripe) are favored at large � . The
collapsed parameters in this case are found to be given by

N2m2 ; N2	: (4.410)

On the other hand, the dispersion relations are computed as usual from the
exponential decay of the correlation function

1

T

X

t

< Q̂ �.Ep; t/ Q̂ .Ep; tC �/ (4.411)

This behaves as exp.�E.Ep/�/ for large � and thus we can extract the energy E.Ep/ by
computing the above correlator as a function of � . In the disordered phase, i.e. small
	 near the uniform phase, we find the usual linear behavior E.Ep/ D aEp2 and thus in
this region the model looks like its commutative counterpart. As we increase 	 we
observe that the rest energy E0 � E.E0/ increases, followed by a sharp dip at some
small value of the momentum Ep2, then the energy rises again with Ep2 and approaches
asymptotically the linear behavior E.Ep/ D aEp2 for Ep2 �! 1. An example of a
dispersion relation near the stripe phase, for m2 D �15, 	 D 50, is shown on
Fig. 14 of [2] with a fit given by

E2.Ep/ D c0Ep2 C m2 C c1
pEp2 C Nm2 exp.�c2

q

Ep2 C Nm2/: (4.412)

The parameters ci and Nm2 are given by Eq. .6:2/ of [2]. The minimum in this case
occurs around the cases k D NjEpj=2
 D p2; 2;p5 so this corresponds actually to
a multi-stripe pattern.

The above behavior of the dispersion relations stabilizes in the continuum limit
defined by the double scaling limit N �! 1 (planar limit), a �! 0 (m2 �!
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m2c D �15:01.8/) keeping 	 and � D Na2=
 fixed. In this limit the rest energy
E0 is found to be divergent, linearly with

p
N / 1=a, in full agreement with the

UV-IR mixing. The shifting of the energy minimum to a finite non-vanishing value
of the momentum in this limit indicates the formation of a stable stripe phase in
the continuum noncommutative theory. The existence of a continuum limit is also a
strong indication that the theory is non-perturbatively renormalizable.

4.6 Initiation to the Wilson Renormalization Group

4.6.1 The Wilson-Fisher Fixed Point in NC ˆ4

In this section we will apply the renormalization group recursion formula of Wilson
[40] as applied, with great success, in [8, 17, 28] to ordinary vector models and to
hermitian matrix models in the large N limit. Their method can be summarized as
follows:

1: We will split the field into a background and a fluctuation and then integrate the
fluctuation obtaining therefore an effective action for the background field alone.

2: We will keep, following Wilson, only induced corrections to the terms that are
already present in the classical action. Thus we will only need to calculate
quantum corrections to the 2- and 4-point functions.

3: We perform the so-called Wilson contraction which consists in estimating
momentum loop integrals using the following three approximations or rules:

– Rule 1: All external momenta which are wedged with internal momenta will
be set to zero.

– Rule 2: We approximate every internal propagator�.k/ by �.	/ where 	 is
a typical momentum in the range �ƒ � 	 � ƒ.

– Rule 3: We replace every internal momentum loop integral
R
k by a typical

volume.

The two last approximations are equivalent to the reduction of all loop integrals
to their zero dimensional counterparts. These two approximations are quite
natural in the limit � �! 1.

As it turns out we do not need to use the first approximation in estimating
the 2-point function. In fact rule 1 was proposed first in the context of a non-
commutative ˆ4 theory in [4] in order to simply the calculation of the 4-point
function. In some sense the first approximation is equivalent to taking the limit
N� D �ƒ2 �! 0.

4: The last step in the renormalization group program of Wilson consists in
rescaling the momenta so that the cutoff is restored to its original value. We
can then obtain renormalization group recursion equations which relate the new
values of the coupling constants to the old values.
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This strategy was applied to the noncommutativeˆ4 in [4] and to a noncommutative
O.N/ sigma mode in [44]. In the context of the O.N/ sigma model, discussed in the
next section, we can take into account, in the large N limit, all leading Feynman
diagrams and not only the one-loop diagrams and thus the result is non perturbative.
In this section we will apply the above Wilson renormalization group program to
noncommutative ˆ4 model, i.e. to a noncommutative O.1/ sigma model, to derive
the Wilson-Fisher fixed in this case. We will follow [4].

Cumulant Expansion

The action we will study is given by

S D
Z

ddx

�

ˆ.�@2i C �2/ˆC
	

4Š
ˆ4�

�

: (4.413)

Recall that the star product is defined by

f � g.x/ D e
i
2 �ij

@
@�i

@
@�j f .xC �/g.xC �/j�D�D0: (4.414)

Œxi; xj� D i�ij: (4.415)

We compute
Z

ddx ˆ4� D
Z

p1

: : :

Z

p4

.2
/dı. p1 C : : :C p4/�. p1/ : : : �. p4/u. p1; : : : ; p4/:

(4.416)

u. p1; : : : ; p4/ D 1

3

�

cos
p1 ^ p2
2

cos
p3 ^ p4
2
C cos

p1 ^ p3
2

cos
p2 ^ p4
2

C cos
p1 ^ p4
2

cos
p2 ^ p3
2

�

: (4.417)

p ^ k D �ijpikj: (4.418)

We introduce the field �.k/ in momentum space by

ˆ.x/ D
Z

k
�.k/ eikx: (4.419)
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We start from the free action

S0Œˆ; �� D
Z

ddxˆ.�@2i C �2/ˆ D
Z

k
.k2 C �2/j�.k/j2: (4.420)

We introduce a cut-off, viz

S0Œˆ; �;ƒ� D
Z

k�ƒ
.k2 C �2/j�.k/j2: (4.421)

Let 0 � b � 1. We introduce the modes with low and high momenta given by

�.k/ D �L.k/ ; k � bƒ: (4.422)

�.k/ D �H.k/ ; bƒ � k � ƒ: (4.423)

We compute

S0Œ�; �;ƒ� D
Z

k�bƒ
.k2 C �2/j�L.k/j2 C

Z

bƒ�k�ƒ
.k2 C �2/j�H.k/j2 (4.424)

In the path integral we can integrate over the modesˆH.k/. We will be left with the
effective action (using the same symbol)

S0Œ�; �;ƒ� D
Z

k�bƒ
.k2 C �2/j�L.k/j2 � S0Œ�L; �; bƒ�: (4.425)

We introduce the renormalization group transformations

k �! k0 D k

b

�L.k/ �! �0.k0/ D b
d
2C1�L.k/: (4.426)

Then we find

S0Œ�; �;ƒ� D S0Œ�
0; �0; ƒ�: (4.427)

The �0 can be rewritten as � in the path integral. The mass parameter �02 is given
by

�02 D �2

b2
: (4.428)

Thus only the massless theory, i.e. the point � D �0 D 0 is a fixed point of the
renormalization group transformations (4.426).
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From the tree level action S4Œ�L� we find that the renormalization group
transformation of the interaction vertex 	u. p1; : : : ; p4/ is given by

.	u. p1; : : : :; p4//
0 D b�4Cd	u.bp1; : : : ; bp4/: (4.429)

In the limit � �! 0 we find the usual renormalization group transformation of 	,
viz

	0 D b�4Cd	: (4.430)

But we also find in this limit that the noncommutativity parameter � is an irrelevant
operator with a renormalization group transformation given by

� 0 D b2�: (4.431)

In this limit we are always near the Wilson-Fisher fixed point.
Let us consider the path integral

Z D
Z

d� e�S0Œ���S4Œ�� D
Z

d�L d�H e�S0Œ�L��S0Œ�H ��S4Œ�L;�H �

D
Z

d�L e
�S0Œ�L� e�S0

4Œ�L�: (4.432)

The effective interaction S0
4Œ�L� is defined through

e�S0
4Œ�L� D

Z

d�H e�S0Œ�H ��S4Œ�L;�H �

D constant � < e�S4Œ�L;�H � >0H : (4.433)

The expectation value< : : : >0H is taken with respect to the probability distribution
e�S0Œ�H �. We verify the identity

e�S0
4Œ�L� D constant � < e�S4Œ�L;�H � >0H

D constant � e
�<S4Œ�L;�H �>0HC 1

2

�

<S24Œ�L;�H �>0H�<S4Œ�L;�H �>20H
�

D constant � e
�S4Œ�L��<ıSŒ�L ;�H �>0HC 1

2

�

<ıS2Œ�L;�H �>0H�<ıSŒ�L;�H �>20H
�

:

(4.434)
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This is known as the cumulant expansion. The action ıS is defined by

ıSŒ�L; �H� D 4

Z

L1L2L3H4

�L. p1/�L. p2/�L. p3/�H. p4/

C6
Z

L1L2H3H4

�L. p1/�L. p2/�H. p3/�H. p4/

C4
Z

L1H2H3H4

�L. p1/�H. p2/�H. p3/�H. p4/

C
Z

H1H2H3H4

�H. p1/�H. p2/�H. p3/�H. p4/: (4.435)

The integral sign includes the delta function and the interaction vertex 	
4Š
u. We will

write

ıSŒ�L; �H� D ıS1 C ıS2 C ıS3 C ıS4: (4.436)

The 2-Point Function

We compute

< ıSŒ�L; �H� >0H D 1

Z0H

Z

d�H e�S0Œ�H � ıSŒ�H; �L� D constant

C6 	
4Š

Z

p1�bƒ

Z

p2�bƒ

Z

bƒ�p3�ƒ

Z

bƒ�p4�ƒ
.2
/4ı4. p1

C : : :C p4/u. p1 C : : :C p4/

��L. p1/�L. p2/ < �H. p3/�H. p4/ >0H :
(4.437)

The constant comes from the quartic terms in ˆH whereas S4Œ�L� comes from the
zeroth order term in ˆH . The cubic and the linear terms in ˆH vanish because the
path integral is even under the Z2 symmetry �H �! ��H . The coefficient 6 comes
from the fact that we have six contractions and u is fully symmetric. The two point
function is given by

< �H. p3/�H. p4/ >0H D 1

2
.2
/dıd. p3 C p4/

1

p23 C �2
: (4.438)

< ıSŒ�L; �H� >0H D constantC
Z

p�bƒ
�L. p/�L.�p/��2. p/: (4.439)



196 4 Quantum Noncommutative Phi-Four

��2. p/ D 	

4Š

Z

bƒ�k�ƒ
ddk

.2
/d
1

k2 C �2 .2C cos p ^ k/:

(4.440)

We define the integral

I. p; �/ D
Z 1

0

d˛ V.b; ƒ/ e�˛�2� .�ijpj/
2

4˛ ; (4.441)

where

V.b; ƒ/ D
Z ƒ

bƒ

ddk

.2
/d
e�˛k2

D
OSd
2

1

˛
d
2

Z ˛ƒ2

˛b2ƒ2
dx x

d
2�1 e�x: (4.442)

In above OSd D Sd=.2
/d D Kd, Sd D 2
 d
2 =�. d

2
/. We make the approximation

V.b; ƒ/ D
OSd
2

1

˛
d
2

e�˛ƒ2
Z ˛ƒ2

˛b2ƒ2
dx x

d
2�1

D
OSd
d
ƒd.1 � bd/ e�˛ƒ2 : (4.443)

Thus we compute

I. p; 0/ D OSd
d
ƒd.1 � bd/

1

ƒ2 C �2 : (4.444)

We also compute

V1.b; ƒ/ D
Z ƒ

bƒ

ddk

.2
/d
D
OSd
d
ƒd.1 � bd/: (4.445)

I1. p; 0/ D
Z 1

0

d˛ V1.b; ƒ/ e
�˛�2 D

OSd
d
ƒd.1 � bd/

1

�2
: (4.446)

Alternatively, we can use (with n D d�2
2

)

��2. p/ D 2
	

4Š

Z

bƒ�k�ƒ
ddk

.2
/d
1

k2 C �2 .1C
1

2
e�i�ijkipj/

D 2
	

4Š

1

.2
/
d
2

Z

bƒ�k�ƒ
kd�1dk

1

k2 C �2
�
1

2nnŠ
C 1

2

Jn.�kp/

.�kp/n

�

: (4.447)
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The above integral can be approximated as follows

��2. p/ D 2
	

4Š

1

.2
/
d
2

1

ƒ2 C �2
�
1

2nnŠ
C 1

2

Jn.�ƒp/

.�ƒp/n

� Z

bƒ�k�ƒ
kd�1dk

D gKdƒ
2

12.1C r/
.1 � b/

�

1C 2n�1nŠ
Jn.�ƒp/

.�ƒp/n

�

: (4.448)

We have used Kd D Sd=.2
/d, g D 	ƒd�4, �2 D rƒ2. We get the result

r0 D r

b2
� gKd

12
.1 � r/

ln b

b2

�

1C 2n�1nŠ
Jn.b�ƒp/

.b�ƒp/n

�

pD0
: (4.449)

In the above equation the external momentum p was also rescaled so that it lies in
the range Œ0;ƒ�. We may use the expansion

Jn.x/

xn
D 1

2nnŠ
� x2

2nC2.nC 1/Š C
1

2Š

x4

.nC 2/Š2nC4 C : : : (4.450)

Wave Function Renormalization

The wave function renormalization is contained in the p-dependent part of the
quadratic term given by

�
1C gKd.�ƒ

2/2

192
ln b

�
Z

p�bƒ
�L. p/�L.�p/p2: (4.451)

Remember that ln b is negative and thus we have obtained a negative wave function
renormalization which signals a possible instability in the theory. Indeed, this term
can be rewritten as

Z

p0�ƒ
�0
L. p

0/�0
L.�p0/p02: (4.452)

�0
L. p

0/ D b
dC2��

2 �L. p/: (4.453)

The anomalous dimension � is given explicitly by

� D �gKd.�ƒ
2/2

192
< 0: (4.454)
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This is also �-dependent. This result also implies a novel behavior for the 2-point
function which must behave as

< �.x/�.0/ >� 1

jxjd�2C� : (4.455)

This should vanish for large distances as it should be as long as d�2C� > 0. Thus
for large values of � we get an instability because d� 2C � becomes negative. The
critical value of � is precisely given by

d � 2C �c D 0) .�cƒ
2/2 D 196.d � 2/

gKd
: (4.456)

This behavior is certainly consistent above D D 4 where it is expected that the
Gaussian fixed point will control the IR fixed with the usual mean field theory
critical exponents.

The 4-Point Function

Next we compute the 4-point function. We compute

ıS2 D ıS21 C ıS22 C ıS23 C ıS24 C 2ıS1ıS3 C 2ıS2ıS4 C : : : (4.457)

The first term yields a correction of the 6-point function. The third and the last terms
give 2-loop mass corrections. The fourth gives a constant. The fifth is a reducible
correction to the 4-point function. We get using Wick’s theorem

< ıS2 > D < ıS22 >

D 36

Z

L1L2H3H4

Z

L5L6H7H8

�L. p1/�L. p2/�L. p5/�L. p6/

< �H. p3/�H. p4/�H. p7/�H. p8/ >

D 36

Z

L1L2H3H4

Z

L5L6H7H8

�L. p1/�L. p2/�L. p5/�L. p6/

< �H. p3/�H. p4/ >< �H. p7/�H. p8/ >

C72
Z

L1L2H3H4

Z

L5L6H7H8

�L. p1/�L. p2/�L. p5/�L. p6/

< �H. p3/�H. p7/ >< �H. p4/�H. p8/ > : (4.458)
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The first contribution corresponds to a disconnected graph. We thus have

1

2
.< ıS2 > � < ıS >2/ D 9

�
	

4Š

�2 Z

1256

.2
/dıd. p1 C p2 C p5 C p6/

�L. p1/�L. p2/�L. p5/�L. p6/

�
Z

34

u. p1; p2; p3; p4/

p23 C �2
u. p5; p6;�p3;�p4/

p24 C �2
.2
/dıd. p5 C p6 � p3 � p4/: (4.459)

We compute using the symmetry under the exchanges 3 $ 4 and 5 $ 6 the
following result

u. p1; p2; p3; p4/u. p5; p6;�p3;�p4/ D 2

9
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p1 ^ p2
2

cos
p5 ^ p3
2

cos
p6 ^ p4
2

cos
p3 ^ p4
2

C2

9
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p5 ^ p6
2
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2

cos
p2 ^ p4
2

cos
p3 ^ p4
2

C4

9
cos

p1 ^ p3
2

cos
p2 ^ p4
2

cos
p5 ^ p3
2

cos
p6 ^ p4
2

C 1

18
P1: (4.460)

The P1 is given by

P1 D cos
p1 ^ p2
2

cos
p5 ^ p6
2

�

1C cos p3 ^ p4

�

: (4.461)

Again by using the symmetry under the exchanges 3 $ 4, 1 $ 2 and 5 $ 6 and
conservation of momenta we get

2

9
cos

p1 ^ p2
2

cos
p5 ^ p3
2

cos
p6 ^ p4
2

cos
p3 ^ p4
2

D 1

18
P1 C 1

18
P2; (4.462)

2

9
cos

p5 ^ p6
2

cos
p1 ^ p3
2

cos
p2 ^ p4
2

cos
p3 ^ p4
2

D 1

18
P1 C 1

18
P3; (4.463)

where

P2 D cos
p1 ^ p2
2

�

cos

�
p5 ^ p6
2
C p4 ^ p5

�

C cos

�
p5 ^ p6
2
� p4 ^ p6

��

:

(4.464)
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P3 D cos
p5 ^ p6
2

�

cos

�
p1 ^ p2
2
C p4 ^ p2

�

C cos

�
p1 ^ p2
2
� p4 ^ p1

��

:

(4.465)

Also we compute

4

9
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p1 ^ p3
2

cos
p2 ^ p4
2

cos
p5 ^ p3
2

cos
p6 ^ p4
2

D 1

18
P4 C�P4; (4.466)

where

P4 D 2 cos

�
p1 ^ p2
2
C p3 ^ p4

2
� p4 ^ p1
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�
p5 ^ p6
2
C p3 ^ p4

2
C p4 ^ p5
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D cos
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p1 ^ p2
2
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2
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�
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2
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2
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�

; (4.467)

and

�P4 D 1
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2
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2
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�
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D 1

18
P1 C 1
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P2 C 1
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P3: (4.468)

The final result is [25]

u. p1; p2; p3; p4/u. p5; p6;�p3;�p4/ D 2
�
1

9
P1 C 1

18
P2 C 1

18
P3 C 1

36
P4

�

:

(4.469)

We get the effective coupling constant (with p3 D b. p5 C p6/ � p4)

.gu. p1; p2; p5; p6//
0 D bd�4.gu.bp1; bp2; bp5; bp6//

�bd�4 g2

48ƒd�4

Z ƒ

bƒ

ddp4
.2
/d

1

. p23 C �2/. p24 C �2/
.4P1 C 2P2 C 2P3 C P4/:

(4.470)



4.6 Initiation to the Wilson Renormalization Group 201

In above we have rescaled the external momenta such that they lie in the range
Œ0;ƒ�. We make the approximation that any internal momenta when wedged with
an external momenta yields 0. In other words

P1 D P2 D P3 D P4 D 2 cos b2
p1 ^ p2
2

cos b2
p5 ^ p6
2

: (4.471)

We then get, after resymmetrization of the external momenta, the result

.gu. p1; p2; p5; p6//
0 D bd�4.gu.bp1; bp2; bp5; bp6//

�bd�4 18g2u.bp1; bp2; bp5; bp6/
48ƒd�4

Z ƒ

bƒ

ddp4
.2
/d

1

. p23 C �2/. p24 C �2/
: (4.472)

By assuming that the external momenta are very small compared to the cutoff we
obtain

.gu. p1; p2; p5; p6//
0 D bd�4

�

gC g2
18Kd

48.1C r/2
ln b

�

u.bp1; bp2; bp5; bp6/:

(4.473)

Equivalently

g0 D bd�4
�

gC g2
3Kd

8.1C r/2
ln b

�

: (4.474)

In other words

� 0 D b2�: (4.475)

RG Equations

In summary we have obtained

r0 D r0
0 �

gKd

8
.1 � r/

ln b

b2
D r

b2
� gKd

8
.1 � r/

ln b

b2
: (4.476)

g0 D bd�4
�

gC g2
3Kd

8
.1 � 2r/ ln b

�

: (4.477)
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We compute the flow equations (with b near 1 and r near 0)

b
dr0
0

db
D .�2C g0Kd

8
/r0
0 �

g0Kd

8
: (4.478)

b
dg0

db
D .d � 4/g0 C 3g02Kd

8
: (4.479)

The fixed points are then given by the equation

0 D .�2C g�Kd

8
/r� � g�Kd

8
: (4.480)

0 D .d � 4/g� C 3g2�Kd

8
: (4.481)

We get immediately the two solutions

r� D g� D 0 ; trivial (Gaussian) fixed point; (4.482)

and the usual Wilson-Fisher fixed point in dimension d < 4 with small 
 D 4 � d
given by

r� D �

6
; g� D 64
2


3
; Wilson-Fisher fixed point: (4.483)

The critical exponent � is given by the usual value whereas the critical exponent �
is now �-dependent given by

� D � j� D �g�Kd.�ƒ
2/2

384
D � .�ƒ

2/2


72
: (4.484)

This is proportional to 
 (and not 
2) and is negative. The behavior of the 2-point
function is now given by

< �.x/�.0/ >� 1

jxj2�
.1C.�ƒ2/2=72/ : (4.485)

We obtain now the critical point

�cƒ
2 D 12p



: (4.486)

The noncommutative Wilson-Fisher fixed point is only stable for � < �c.
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The above negative anomalous dimension, which is due to the non-locality of the
theory, leads immediately to the existence of a first order transition to a modulated
phase via the Lifshitz scenario [18]. Indeed, we can show that below the critical
value �c the coefficient of k2 is positive whereas above �c the coefficient of k2

becomes negative and thus one requires, to maintain stability, the inclusion of the
term proportional to k4 which turns out to have a positive coefficient as opposed
to the commutative theory. We can show explicitly that at � D �c the dispersion
relation changes from k2 to k4. Thus the effective action is necessarily of the form
(with positive a and b)

Z
ddk

.2
/d
�.k/�.�k/
.1 � ag�ƒ2/k2 C bk4

�C interaction: (4.487)

The Lifshitz point is a tri-critical point in the phase diagram where the coefficient
of k2 vanishes exactly and that of k4 is positive. In this case, this point is given
precisely by the value � D �c, and the transition is a first order transition because
it is not related to a change of symmetry. In this transition the system develops a
soft mode associated with the minimum of the kinetic energy and as a consequence
the ordering above �c is given by a modulating order parameter. A more thorough
discussion of this point can be found in [4].

4.6.2 The Noncommutative O.N/ Wilson-Fisher Fixed Point

A non perturbative study of the Ising universality class fixed point in noncom-
mutative O.N/ model can be carried out along the above lines [44, 45]. In this
case the analysis is exact in 1=N. It is found that the Wilson-Fisher fixed point
makes good sense only for sufficiently small values of � up to a certain maximal
noncommutativity. This fixed point describes the transition from the disordered
phase to the uniform ordered phase. Another fixed point termed the noncommutative
Wilson-Fisher fixed point is identified in this case. It interpolates between the
commutative Wilson-Fisher fixed point of the Ising universality class which is found
to lie at zero value of the critical coupling constant a� of the zero dimensional
reduction of the theory and a novel strongly interacting fixed point which lies at
infinite value of a� corresponding to maximal noncommutativity. This is identified
with the transition between non-uniform and uniform orders.

4.6.3 The Matrix Fixed Point

As discussed above, in the Wilson recursion formula we perform the usual
truncation but also we perform a reduction to zero dimension which allows explicit
calculation, or more precisely estimation, of Feynman diagrams. This method was
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also applied to noncommutative scalar �4 field theory at the self-dual point on a
degenerate noncommutative spacetime with two strongly noncommuting directions
[43, 45]. In the matrix basis this theory becomes, after appropriate non-perturbative
definition, an N � N matrix model where N is a regulator in the noncommutative
directions, i.e. N here has direct connection with noncommutativity itself. More
precisely, in order to solve the theory we propose to employ, following [8, 9, 28], a
combination of

• 1: the Wilson approximate renormalization group recursion formula
and

• 2: the solution to the zero dimensional large N counting problem given in this
case by the Penner matrix model which can be turned into a multitrace matrix
model for large values of � .

As discussed neatly in [9] the virtue and power of combining these two methods
lies in the crucial fact that all leading Feynman diagrams in 1=N will be counted
correctly in this scheme including the so-called “setting sun” diagrams. The analysis
in this case is also exact in 1=� . In the same way that the noncommutative Wilson-
Fisher fixed point describes transition from the disordered phase to the uniform
ordered phase the matrix model fixed point, obtained in this model, describes the
transition from the one-cut (disordered) phase to the two-cut (non-uniform ordered,
stripe) phase.

Thus the analysis of phi-four theory on noncommutative spaces using a com-
bination of the Wilson renormalization group recursion formula and the solution
to the zero dimensional vector/matrix models at large N suggests the existence
of three fixed points. The matrix model � D 1 fixed point which describes
the disordered-to-non-uniform-ordered transition. The Wilson-Fisher fixed point
at � D 0 which describes the disordered-to-uniform-ordered transition, and a
noncommutative Wilson-Fisher fixed point at a maximum value of � which is
associated with the transition between non-uniform-orderand uniform-order phases.
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Chapter 5
The Multitrace Approach

Abstract In this chapter we apply the powerful multitrace approach to noncom-
mutative ˆ4 theory on the Moyal-Weyl plane R2�;� and on the fuzzy sphere S2N and
employ random matrix theory to solve for the phase structure of the theory. Then a
discussion of the planar theory is given in some detail.

5.1 Phase Structure of Fuzzy and Noncommutative ˆ4

A scalar phi-four theory on a non-degenerate noncommutative Euclidean spacetime
is a matrix model of the form

S D TrH
�
aˆ�ˆC bˆ2 C cˆ4

�
: (5.1)

The Laplacian� defines the underlying geometry, i.e. the metric, of the noncommu-
tative Euclidean spacetime in the sense of [6, 13]. This is a three-parameter model
with the following three known phases:

• The usual second order Ising phase transition between disordered < ˆ >D 0

and uniform ordered < ˆ >� 1 phases. This appears for small values of c.
This is the only transition observed in commutative phi-four, and thus it can be
accessed in a small noncommutativity parameter expansion, using conventional
Wilson renormalization group equation ([44]; the Wilson recursion formula was
reconsidered more carefully in [17]). See [47] for an analysis along this line
applied to the O.N/ version of the phi-four theory.

• A matrix transition between disordered < ˆ >D 0 and non-uniform ordered
< ˆ >� � phases with �2 D 1H. For a finite dimensional Hilbert space H,
this transition coincides, for very large values of c, with the third order transition
of the real quartic matrix model, i.e. the model with a D 0, which occurs at
b D �2pNc. In terms of Qb D bN�3=2 and Qc D cN�2 we have

Qb D �2pQc: (5.2)

This is therefore a transition from a one-cut (disc) phase to a two-cut (annulus)
phase [5, 39].
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• A transition between uniform ordered < ˆ >� 1H and non-uniform ordered
< ˆ >� � phases. The non-uniform phase, in which translational/rotational
invariance is spontaneously broken, is absent in the commutative theory. The
non-uniform phase is essentially the stripe phase observed originally on Moyal-
Weyl spaces in [1, 23].

Let us discuss a little further the phase structure of the pure potential model
V D TrH.bˆ2 C cˆ4/, in the case when the Hilbert space H is N-dimensional, in
some more detail. The ground state configurations are given by the matrices

ˆ0 D 0: (5.3)

ˆ� D
r

� b

2c
U�UC ; �2 D 1N ; UUC D UCU D 1N : (5.4)

We compute VŒˆ0� D 0 and VŒˆ� � D �b2=4c. The first configuration corresponds
to the disordered phase characterized by < ˆ >D 0. The second solution makes
sense only for b < 0, and it corresponds to the ordered phase characterized by <
ˆ >¤ 0. As mentioned above, there is a non-perturbative transition between the two
phases which occurs quantum mechanically, not at b D 0, but at b D b� D �2

p
Nc,

which is known as the one-cut to two-cut transition. The idempotent � can always
be chosen such that � D �k D diag.1k;�1N�k/. The orbit of �k is the Grassmannian
manifold U.N/=.U.k/�U.N�k// which is dk-dimensional where dk D 2kN�2k2.
It is not difficult to show that this dimension is maximum at k D N=2, assuming that
N is even, and hence from entropy argument, the most important two-cut solution
is the so-called stripe configuration given by � D diag.1N=2;�1N=2/. In this real
quartic matrix model, we have therefore three possible phases characterized by the
following order parameters:

< ˆ >D 0 disordered phase: (5.5)

< ˆ >D ˙
r

� b

2c
1N Ising .uniform/ phase: (5.6)

< ˆ >D ˙
r

� b

2c
� matrix .nonuniform or stripe/ phase: (5.7)

The above picture is expected to hold for noncommutative/fuzzy phi-four theory
in any dimension, and the three phases are expected to meet at a triple point. This
structure was confirmed in two dimensions by means of Monte Carlo simulations on
the fuzzy sphere in [15, 16]. The phase diagram looks like those shown on Fig. 4.3.
Both figures were generated using the Metropolis algorithm on the fuzzy sphere.
In the first figure coupling of the scalar field ˆ to a U(1) gauge field on the fuzzy
sphere is included, and as a consequence, we can employ the U(N) gauge symmetry
to reduce the scalar sector to only its eigenvalues.
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The problem of the phase structure of fuzzy scalar phi-four was also studied in
[10, 30, 31, 36]. The analytic derivation of the phase diagram of noncommutative
phi-four on the fuzzy sphere was attempted in [35, 37, 38, 43]. The related problem
of Monte Carlo simulation of noncommutative phi-four on the fuzzy torus, and the
fuzzy disc was considered in [1, 4], and [28] respectively. For a recent study see [32].

5.2 Noncommutative Phi-Four Revisited

5.2.1 The Moyal-Weyl Plane R2
�;�

We start by considering a phi-four theory on a generic noncommutative Moyal-
Weyl space Rd

� with d D 2. We introduce non-commutativity in momentum space
by introducing a minimal coupling to a constant background magnetic field Bij, as
was done originally by Langmann et al. in [26, 27]. The most general action with a
quartic potential takes, in the operator basis, the form

S D
p

det.2
�/TrH

�
Ô C

�

� � OD2i � Q� OC2i C
m2

2

�
Ô C 	

4Š
Ô C Ô Ô C Ô

C 	0

4Š
Ô C Ô C Ô Ô

�

: (5.8)

In this equation ODi D O@i � iBijXj and OCi D O@i C iBijXj, where Xi D .Oxi C OxRi /=2. In
the original Langmann-Szabo model, we choose � D 1, Q� D 0 and 	0 D 0 which,
as it turns out, leads to a trivial model [25].

The famous Grosse-Wulkenhaar model corresponds to � D Q� and 	0 D 0. We
choose without any loss of generality � D Q� D 1=4. The Grosse-Wulkenhaar model
corresponds to the addition of a harmonic oscillator potential to the kinetic action
which modifies, and thus allows us, to control the IR behavior of the theory. A
particular version of this theory was shown to be renormalizable by Grosse and
Wulkenhaar in [20–22]. The action of interest, in terms of the star product, is given
by

S D
Z

ddx

�

ˆC
�

� 1
2
@2i C

1

2
�2Qx2i C

m2

2

�

ˆC 	

4Š
ˆC �ˆ �ˆC �ˆ

�

: (5.9)

The harmonic oscillator coupling constant � is defined by �2 D B2�2=4 whereas
the coordinate Qxi is defined by Qxi D 2.��1/ijxj. It was shown in [25] that this action
is covariant under a duality transformation which exchanges among other things
positions and momenta as xi $ Qki D B�1

ij kj. The value �2 D 1 in particular gives
an action which is invariant under this duality transformation. The theory at�2 D 1
is essentially the original Langmann-Szabo model.
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Under the field/operator Weyl map we can rewrite the above action as

S D �dTrH
�
Ô C

�

� 1
2
O@2i C

1

2
�2 QX2i C

m2

2

�
Ô C 	

4Š
Ô C Ô Ô C Ô

�

: (5.10)

The Planck volume �d is defined by �d D
p

det.2
�/. We can expand the scalar
fields in the Landau basis f O�m;ng as

Ô D 1p
�d

1X

m;nD1
Mmn O�m;n ; Ô C D 1p

�d

1X

m;nD1
M�

mn
O�C
m;n: (5.11)

The Landau basis is constructed for example in [18]. The infinite dimensional matrix
M should be thought of as a compact operator acting on some separable Hilbert
space H. In the Landau basis the action becomes

S D TrH

�
1

2
r2
p
!.�CMC�M CMC�CM�/C 1

2
r2EfM;MCg

C bMCM C c.MCM/2
�

: (5.12)

The coupling constants b, c, r2 and
p
! are defined by

b D 1

2
m2 ; c D 	

4Š

1

�d
; r2 D 4
.�2 C 1/

�d
;
p
! D �2 � 1

�2 C 1: (5.13)

The matrices � and E are given by

.�/lm D
p
m � 1ılm�1 ; .E/lm D .l � 1

2
/ılm: (5.14)

We can regularize the theory by taking M to be an N � N matrix. The states �l;m.x/
with l;m < N, where N is some large integer, correspond to a cut-off in position
and momentum spaces [22]. The infrared cut-off is found to be proportional to R Dp
2�N, while the UV cut-off is found to be proportional to ƒN D

p
8N=� .

The regularized action for a real scalar field Ô D Ô C, or equivalently M D MC,
is then given by (the trace TrH is replaced by the ordinary Tr with Tr1 D N)

S D Tr

�

r2
p
!�CM�M C r2EM2 C bM2 C cM4

�

: (5.15)

A more rigorous regularization of noncommutative ˆ4-theory with a harmonic
oscillator term in two dimensions follows.
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5.2.2 The Fuzzy Sphere S2
N;�

The fuzzy sphere [24, 29] is the spectral triple .MatN ;HN ; �N/, where MatN is the
algebra of N � N hermitian matrices, HN is the Hilbert space associated with the
irreducible representation of SU.2/ with spin .N � 1/=2, and �N D OLa OLa is the
Laplacian on the fuzzy sphere where OLa are inner derivations given by OLa D ŒLa; : : :�
with La being the generators of SU.2/. The fuzzy sphere is an elegant regulator
which preserves symmetry, supersymmetry and topology. For more detail see for
example [2].

A real scalar field Ô on the fuzzy sphere is an element of the matrix algebra
MatN . The action of a ˆ4-theory is given explicitly by

S D 4
R2

N C 1Tr
�

� 1

2R2
ŒLa; Ô �2 C 1

2
m2 Ô 2 C 	

4Š
Ô 4

�

: (5.16)

The radius of the sphere is R whereas the noncommutativity parameter is � D
R2=
p
c2. We expand the scalar field Ô as (with m D i� l�1 and Ô m1m2 � Mij=

p
�2)

Ô D
ClX

m1D�l

ClX

m2D�l

Ô m1m2 jm1 >< m2j D 1p
�2

NX

iD1

NX

jD1
Mijji >< jj: (5.17)

The action takes then the form

S D 4
R2

N C 1Tr
�
N C 1
R2�2

EM2 � 1

R2�2
M�3M�3 � N C 1

R2�2
�CM�M

C 1

2

m2

�2
M2 C 	

4Š

1

�22
M4

�

: (5.18)

The matrices � , �3 and E are given by

.�3/lm D lılm ; .�/lm D
r

.m � 1/.1 � m

N C 1/ılm�1 ; .E/lm D .l � 1
2
/ılm:

(5.19)

A harmonic oscillator term on the fuzzy sphere was constructed in [45]. It
corresponds to the modified Laplacian

�N;� D ŒLa; ŒLa; : : :��C�2ŒL3; ŒL3; : : :��C�2fLi; fLi; : : :gg: (5.20)

The analogue of (5.10) with Ô C D Ô on the fuzzy sphere is therefore given by

S D 4
R2

N C 1Tr
�
1

2R2
Ô�N;� Ô C 1

2
m2 Ô 2 C 	

4Š
Ô 4

�

: (5.21)
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In terms of M this reads

S D Tr

�

r2
p
!�CM�M � r2

p
!3�3M�3M C r2EM2 C bM2 C cM4

�

: (5.22)

The parameters b, c, r2 and
p
! are defined

b D 1

2
m2

r
N � 1
N C 1 ; c D

	

4Š

1

�d

r
N � 1
N C 1 ; r

2 D 4
.�2 C 1/
�d

;
p
! D �2 � 1

�2 C 1 :
(5.23)

These are essentially the same parameters appearing in the action (5.15) on the
noncommutative plane R2�;� [see (5.13)]. Only the second term in (5.22), which is
subleading in 1=N, is absent in (5.15). Indeed, the parameter

p
!3 is defined by

p
!3 D 1

N C 1: (5.24)

We rewrite (5.14) and (5.19) collectively as

.�3/lm D lılm ; .�/lm D
r

.m � 1/.1 � 
 m

N C 1/ılm�1 ; .E/lm D .l � 1
2
/ılm:

(5.25)

For consistency we redefine the parameter !3 as

p
!3 D 


N C 1: (5.26)

The parameter 
 takes one of two possible values corresponding to


 D 1 ; sphere


 D 0 ; plane: (5.27)

We will also need the kinetic matrix which is defined, on the regularized
noncommutative plane, by

KAB D 2r2
p
!TrN�

CtA�tB C 2r2
p
!TrN�

CtB�tA � 4r2p!3TrN�3tA�3tB
C2r2TrNEftA; tBg: (5.28)

We note that the parameter r2, on the noncommutative plane, does not scale in the
large N limit. On the other hand, it scales as N on the fuzzy sphere, and the correct
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definition of the kinetic matrix is given by

OKAB D TrN ŒLa; tA�ŒLa; tB�C�2TrN ŒL3; tA�ŒL3; tB� ��2TrNfLi; tAgfLi; tBg

D .N C 1/
�

�p!TrN�CtA�tB �
p
!TrN�

CtB�tA C 2p!3TrN�3tA�3tB

�TrNEftA; tBg
�

(5.29)

In other words,

KAB D � 2r2

N C 1
OKAB: (5.30)

This coincides with the convention of O’Connor and Saemann [35, 38]. Indeed, they
used in O’Connor and Saemann [35] the parameter Or2 defined by

Or2 D r2

N C 1 D
�2 C 1
R2

r
N � 1
N C 1: (5.31)

5.3 Multitrace Approach on the Fuzzy Sphere

We start from the action and the path integral1

S D 4
R2

N C 1Tr
�
1

2R2
Ô ŒLi; ŒLi; Ô �C 1

2
m2 Ô 2 C 	

4Š
Ô 4

�

D Tr

�

� aŒLi; Ô �2 C b Ô 2 C c Ô 4
�

: (5.32)

Z D
Z

d Ô exp
� � S

�
: (5.33)

First, we will diagonalize the scalar matrix as

Ô D UƒU�1: (5.34)

We compute

ı Ô D U

�

ıƒC ŒU�1ıU; ƒ�
�

U�1: (5.35)

1In this article we make the identification TrN � Tr.
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Thus (with U�1ıU D iıV being an element of the Lie algebra of SU(N))

Tr.ı Ô /2 D Tr.ıƒ/2 C TrŒU�1ıU; ƒ�2

D
X

i

.ı	i/
2 C

X

i¤j

.	i � 	j/2ıVijıV
�
ij : (5.36)

We count N2 real degrees of freedom as there should be. The measure is therefore
given by

d Ô D
Y

i

d	i
Y

i¤j

dVijdV
�
ij

p
det.metric/

D
Y

i

d	i
Y

i¤j

dVijdV
�
ij

sY

i¤j

.	i � 	j/2: (5.37)

We write this as

d Ô D dƒdU�2.ƒ/: (5.38)

The dU is the usual Haar measure over the group SU(N) which is normalized such
that

R
dU D 1, whereas the Jacobian�2.ƒ/ is precisely the so-called Vandermonde

determinant defined by

�2.ƒ/ D
Y

i>j

.	i � 	j/2: (5.39)

The path integral becomes

Z D
Z

dƒ �2.ƒ/ exp

�

� Tr
�
bƒ2 C cƒ4

�
� Z

dU exp

�

aTrŒU�1LiU; ƒ�2
�

:

(5.40)

The fundamental question we want to answer is: can we integrate the unitary group
completely?

The answer, which is the straightforward and obvious one, is to expand the
kinetic term in powers of a, perform the integral over U, then resume the sum back
into an exponential to obtain an effective potential. This is very reminiscent of the
hopping parameter expansion on the lattice.
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Towards this end, we will expand the scalar field Ô in the basis formed from by
the Gell-Mann matrices ta,2 viz

Ô D
X

a

�ata ; �
a D 2Tr Ô ta D 2TrUƒU�1ta: (5.41)

We introduce the kinetic matrix

Kab D TrŒLi; ta�ŒLi; tb�: (5.42)

We will use the SU(N) orthogonality relation (in any irreducible representation �)

Z

dU�.U/ij�.U
�1/kl D 1

dim.�/
ıilıjk: (5.43)

We have then
Z

dU exp
�

aTrŒU�1LaU; ƒ�
2

�

D
Z

dU exp
�

aKab�
a�b

�

D
Z

dU exp
�

4aKab.TrUƒU
�1ta/.TrUƒU

�1tb/

�

:

(5.44)

By following the steps:

• expanding up to the second order in a,3

• using .TrA/.TrB/ D TrN2 .A˝ B/ and .A˝ C/.B˝ D/ D AB˝ CD,
• decomposing the N2-dimensional and the N4-dimensional Hilbert spaces, under

the SU(N) action, into the direct sums of subspaces corresponding to the
irreducible representations � contained in N˝N and N˝N˝N˝N respectively,

• and using the orthogonality relation (5.43),

we obtain (see [35, 38], the next section and Appendix for a detailed discussion)

Z

dU exp

�

aTrŒU�1LaU; ƒ�2
�

D 1C 4aKab

X

�

1

dim.�/
Tr�ƒ˝ƒ:Tr�ta ˝ tb

C 1
2Š
.4a/2KabKcd

X

�

1

dim.�/
Tr�ƒ

˝ƒ:Tr� ta ˝ : : :˝ td C : : : (5.45)

2In this case, the kinetic term is independent of the identity mode in the scalar field Ô .
3This can be expanded to any order in an obvious way which will be discussed in the next section.
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The tensor products of interest are [14]

A ˝ B D A B ˚ A
B
: (5.46)

A ˝ B ˝ C ˝ D D A B C D ˚
A
B
C
D

˚ A B C
D

˚ A B D
C

˚ A C D
B

˚
A D
B
C

˚
A C
B
D

˚
A B
C
D

˚ A B
C D

˚ A C
B D

: (5.47)

The dimensions of the various irreducible representations, appearing in the above
equations, are given by Eqs. (5.100)–(5.106), whereas the relevant SU(N) characters
are given by Eqs. (5.102), and (5.107)–(5.111).By employing these results we arrive
at the formula

Z

dU exp

�

aTrŒU�1LaU; ƒ�2
�

D 1C 2a
�

.s1;2 C s2;1/.TrNƒ/
2 C .s1;2 � s2;1/TrNƒ

2

�

C8a2
�
1

4
.s1;4 � s4;1 � s2;3 C s3;2/TrNƒ

4

C1
3
.s1;4 C s4;1 � s2;2/TrNƒTrNƒ

3

C1
8
.s1;4 C s4;1 � s2;3 � s3;2 C 2s2;2/.TrNƒ2/2

C1
4
.s1;4 � s4;1 C s2;3 � s3;2/TrNƒ

2.TrNƒ/
2

C 1

24
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2/.TrNƒ/4

�

C : : : : (5.48)

There remains the explicit calculation of the coefficients s which are defined in
Eqs. (5.104) and (5.113)–(5.117). By using the results of Appendix we have

s1;2 D 1

2N.N C 1/Kaa ; s2;1 D � 1

2N.N � 1/Kaa: (5.49)
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s1;4 D 1

2N.N C 1/.N C 2/.N C 3/
�

X2 C N C 2
2N

X1

�

;

s4;1 D 1

2N.N � 1/.N � 2/.N � 3/
�

� X2 C N � 2
2N

X1

�

: (5.50)

s2;3 D 1

2N.N2 � 1/.N C 2/
�

� X2 � N C 2
2N

X1

�

;

s3;2 D 1

2N.N2 � 1/.N � 2/
�

X2 � N � 2
2N

X1

�

: (5.51)

s2;2 D 1

2N2.N2 � 1/X1: (5.52)

The operators X1 and X2 are given by

X1 D 2K2ab C K2aa: (5.53)

X2 D KabKcd.
1

2
dabkdcdk C dadkdbck/: (5.54)

We then compute (with ti D TrNƒi)

1

4
.s1;4 � s4;1 � s2;3 C s3;2/t4

D � t4
2N.N2 � 1/.N2 � 9/X1 C

.N2 C 1/t4
2.N2 � 1/.N2 � 4/.N2 � 9/X2: (5.55)

1

3
.s1;4 C s4;1 � s2;2/t1t3

D 2t1t3
N2.N2 � 1/.N2 � 9/X1 �

2.N2 C 1/t1t3
N.N2 � 1/.N2 � 4/.N2 � 9/X2: (5.56)

1

8
.s1;4 C s4;1 � s2;3 � s3;2 C 2s2;2/t22

D .N2 � 6/t22
4N2.N2 � 1/.N2 � 9/X1 �

.2N2 � 3/t22
2N.N2 � 1/.N2 � 4/.N2 � 9/X2: (5.57)

1

4
.s1;4 � s4;1 C s2;3 � s3;2/t2t

2
1

D � t2t21
2N.N2 � 1/.N2 � 9/X1 C

5t2t21
.N2 � 1/.N2 � 4/.N2 � 9/X2: (5.58)
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1

24
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2/t41

D t41
4N2.N2 � 1/.N2 � 9/X1 �

5t41
2N.N2 � 1/.N2 � 4/.N2 � 9/X2: (5.59)

By using these results we get the path integral

Z

dU exp

�

aTrŒU�1LaU; ƒ�2
�

D 1 � 2a: t21 � Nt2
N.N2 � 1/Kaa

C8a2: t
4
1 C 8t1t3 � 2Nt2t21 � 2Nt4 C .N2 � 6/t22

4N2.N2 � 1/.N2 � 9/ X1

C8a2:�5t
4
1 � 4.N2 C 1/t1t3 � .2N2 � 3/t22 C 10Nt2t21 C N.N2 C 1/t4

2N.N2 � 1/.N2 � 4/.N2 � 9/ X2

C : : : : (5.60)

Since the trace part of the scalar field drops from the kinetic action, the above path
integral can be rewritten solely in terms of the differences 	i�	j of the eigenvalues.
Furthermore, this path integral must also be invariant under any permutation of the
eigenvalues, as well as under the parity 	i �! �	i, and hence it can only depend
on the following two functions [35]

T4 D Nt4 � 4t1t3 C 3t22
D 1

2

X

i¤j

.	i � 	j/4: (5.61)

T22 D
1

4

� X

i¤j

.	i � 	j/2
�2

D t41 � 2Nt21t2 C N2t22: (5.62)
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Indeed we can show
Z

dU exp

�

aTrŒU�1LaU; ƒ�2
�

D 1C 2a: T2
N.N2 � 1/Kaa

C8a2: T22 � 2T4
4N2.N2 � 1/.N2 � 9/X1

C8a2: �5T22 C .N2 C 1/T4
2N.N2 � 1/.N2 � 4/.N2 � 9/X2

C : : : : (5.63)

We observe that the quadratic contribution can be expressed in terms of the function

T2 D Nt2 � t21

D 1

2

X

i¤j

.	i � 	j/2: (5.64)

Now a technical digression, in which we will compute X1 and X2, is in order. First
we compute

Kab D �N
2 � 1
4

ıab C 2TrLitaLitb ) Kaa D �N
2.N2 � 1/
4

: (5.65)

Also

K2ab D
.N2 � 1/.N4 � 1/

16
C 4TrLitaLitbTrLjtaLjtb

D .N2 � 1/.N4 � 1/
16

C .TrLiLj/2 � .N
2 � 1/2
16

D N2.N2 � 1/2
16

C 1

2
.TrLCL�/2 C .TrL23/2

D N2.N2 � 1/2
16

C 1

2

N2.N2 � 1/2
36

C N2.N2 � 1/2
144

D N2.N2 � 1/2
12

: (5.66)

Thus

X1 D N4.N2 � 1/2
16

C N2.N2 � 1/2
6

: (5.67)
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We may also write

Kab D 2.ta/�	.tb/��K��;	� ; K��;	� D �N
2 � 1
4

ı��ı	� C .Li/��.Li/	� : (5.68)

A central property of this kinetic matrix is

K��;�� D K��;	� D 0: (5.69)

Another important property is the symmetry under the exchange � $ 	, � $ � .
We then compute

X2 D � 1
N
X1 C 8KabKcdTrtatbtctd C 4KabKcdTrtatctbtd

D � 1
N
X1 C 8:1

2
KcdK��;	� .tctd/�	 C 4:1

2
KcdK��;	� .tc/��.td/�	

D � 1
N
X1 C 8:

� � N
N2 � 1
16

Kaa
�C 4:�1

4
K��;�	K��;	�

�

D � 1
N
X1 C N3.N2 � 1/2

8
C �

TrLiLjLiLj � N.N2 � 1/2
16

�

D � 1
N
X1 C N3.N2 � 1/2

8
� N.N2 � 1/

4

D N3.N2 � 1/2
16

� N.N2 � 1/2
6

� N.N2 � 1/
4

: (5.70)

By using all these results in the path integral we get

Z

dU exp

�

aTrŒU�1LaU; ƒ�2
�

D 1 � aN

2
T2 C a2

24
.T22 � 2T4/

N2 � 1
N2 � 9.3N

2 C 8/

C a2

12
.�5T22 C .N2 C 1/T4/

3N2 C 1
N2 � 9 C : : : :

(5.71)

This result can be verified explicitly for N D 2. By expanding around N �!1 we
get

Z

dU exp

�

aTrŒU�1LaU; ƒ�2
�

D 1 � aN

2
T2 C a2

�N2

8
C 1

12
C : : : �T22

� a2

12
T4 C : : : (5.72)
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By re-exponentiating this series we get

Z

dU exp

�

aTrŒU�1LaU; ƒ�2
�

D exp
�
�V

�
: (5.73)

�V D �aN
2
T2 C a2

� 1

12
C : : : �T22 �

a2

12
T4 C : : : (5.74)

The first two terms in the above series are of order N2, as they should be, since a D
2
=.NC1/ and T2 scales a N2. We note that the second term was not reproduced in
the calculation of O’Connor and Saemann [35]. Furthermore, the third term in the
above series is subleading in N which is also a different result from the one obtained
in [35]. The complete effective potential, up to the quadratic order in a, is given by

V D
X

i

.b	2i C c	4i /�
1

2

X

i¤j

ln.	i � 	j/2 C aN

4

X

i¤j

.	i � 	j/2

�� a2

48
C : : : �


X

i¤j

.	i � 	j/2
�2 C a2

24

X

i¤j

.	i � 	j/4 C : : : (5.75)

5.4 The Real Quartic Multitrace Matrix Model on R2
�;�

and S2
N;�

5.4.1 Setup

We will consider in this section the following path integral

Z D
Z

dM exp

�

� TrN

�

r2
p
!�CM�M � r2

p
!3�3M�3M C r2EM2

CbM2 C cM4

��

: (5.76)

We will diagonalize the matrix M as

M D UƒU�1: (5.77)

The measure becomes

dM D �2.ƒ/dƒdU (5.78)
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The matrix ƒ is diagonal with entries given by the eigenvalues 	i of M. dU is the
usual Haar measure over the group SU(N). It is normalized such that

R
dU D 1.

The Jacobian�2.ƒ/ is the so-called Vandermonde determinant defined by

�2.ƒ/ D
Y

i>j

.	i � 	j/2: (5.79)

The U(N) generators are given by tA D .t0 D 1N=
p
2N; ta/ where ta, a D

1; : : : ;N2 � 1, are the Gell-Mann matrices. The canonical commutation relations
are

ŒtA; tB� D ifABCtC: (5.80)

They satisfy the Fierz identity

.tA/jk.tA/li D ıjiıkl: (5.81)

See Appendix for more detail on our conventions. We will expand M in the basis
formed from by the Gell-Mann matrices ta and the identity t0, viz

M D
X

A

MAtA ; M
A D 2TrNMtA D 2TrNUƒU�1tA: (5.82)

The kinetic part of the action is given by

Kinetic D TrN

�

r2
p
!�CM�M � r2

p
!3�3M�3M C r2EM2

�

D 1

4
KABM

AMB; (5.83)

where the symmetric matrix K is given by

KAB D 2r2
p
!TrN�

CtA�tB C 2r2
p
!TrN�

CtB�tA � 4r2p!3TrN�3tA�3tB
C2r2TrNEftA; tBg: (5.84)

Equivalently

Kinetic D KAB.TrNUƒU
�1tA/.TrNUƒU�1tB/

D KAB.tA/li.tB/qnƒjkƒmp:Uij.U
�1/klUnm.U

�1/pq: (5.85)
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The path integral reads explicitly

Z D
Z

dƒ�2.ƒ/ exp
� � TrN



bƒ2 C cƒ4

��
Z

dU exp
� � KAB.TrNUƒU

�1tA/

�.TrNUƒU�1tB/
�
: (5.86)

In ordinary perturbation theory, we usually assume that the potential, or more
precisely the interaction term, is sufficiently small so that we can expand around the
free theory given by the quadratic part of the action, i.e. kinetic+mass terms. The
idea behind the multitrace approach is exactly the reverse. In other words, we will
treat exactly the potential term, i.e. interaction+mass terms, while we will treat the
kinetic term perturbatively. Technically, this is motivated by the fact that the only
place where the unitary matrix U appears is the kinetic term, and it is obviously
very interesting to carry out explicitly the corresponding path integral over it. This
approximation will clearly work if, for whatever reason, the kinetic term is indeed
small compared to the potential term which, as it turns out, is true in the matrix
phase of noncommutative phi-four theory. We note that the multitrace approach
is analogous to the hopping parameter expansion on the lattice. See for example
[33, 40].

By expanding around the pure potential model, we obtain immediately the
following path integral

Z D
Z

dƒ�2.ƒ/ exp
� � TrN



bƒ2 C cƒ4

��

�
Z

dU exp
� � KAB.TrNUƒU

�1tA/.TrNUƒU�1tB/
�

D
Z

dƒ�2.ƒ/ exp
� � TrN



bƒ2 C cƒ4

��
�

1 � �
KAB.tA/li.tB/qnƒjkƒmp

�
I1

C1
2

�
KAB.tA/l1 i1 .tB/q1n1ƒj1k1ƒm1p1

��
KCD.tC/l2i2 .tD/q2n2ƒj2k2ƒm2p2

�
I2 C : : :

�

:

(5.87)

The U(N) integrals I1 and I2 are given explicitly by

I1 D
Z

dUUijU
�1
kl UnmU

�1
pq : (5.88)

I2 D
Z

dUUi1j1U
�1
k1l1Un1m1U

�1
p1q1Ui2j2U

�1
k2l2Un2m2U

�1
p2q2 : (5.89)

In expanding the kinetic term we have only retained up to quartic powers inƒ in the
spirit of Wilson truncation in the renormalization group which limits the expansion
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of the effective action to only those terms which are already present in the bare
action [44].

At 0th order the above path integral is precisely equivalent to a pure real quartic
matrix model, viz

Z D
Z

dƒ�2.ƒ/ exp
� � TrN



bƒ2 C cƒ4

��
: (5.90)

At first order we need to calculate the group integral I1. We can use for example
the diagrammatic method developed in [3, 7, 8] to evaluate this integral. However,
this method becomes very tedious already at the next higher order when we evaluate
I2. Fortunately, the group theoretic method developed in [35, 38], for precisely non-
commutative and fuzzy models, is very elegant and transparent, and furthermore, it
is very effective in evaluating SU.N/ integrals such as I1 and I2.

We want to compute

1st order D KAB

Z

dU TrNUƒU
�1tA:TrNUƒU�1tB

D �
KAB.tA/li.tB/qnƒjkƒmp

�
I1 (5.91)

We will use TrN2 .A ˝ B/ D .TrNA/.TrNB/ and .A ˝ C/.B ˝ D/ D AB ˝ CD.
In other words, the original N-dimensional Hilbert space corresponding to the
fundamental representation N of SU(N) is replaced with the N2-dimensional Hilbert
space corresponding to the tensor product N ˝ N. We have then

1st order D KAB

Z

dU TrN2 .UƒU
�1tA/˝ .UƒU�1tB/

D KAB

Z

dU TrN2 .U ˝ U/.ƒ˝ƒ/.U�1 ˝ U�1/.tA ˝ tB/: (5.92)

Under the action of SU.N/ the N2-dimensional Hilbert space is the direct sum of the
subspaces corresponding to the irreducible representations � contained in N ˝ N.
The trace TrN2 reduces, therefore, to the sum of the traces Tr� in the irreducible
representations �, viz

1st order D KAB

X

�

�.ƒ˝ƒ/jk�.tA ˝ tB/li

Z

dU �.U ˝U/ij�.U
�1 ˝U�1/kl:

(5.93)

We use now the SU(N) (or equivalently U(N)) orthogonality relation

Z

dU�.U/ij�.U
�1/kl D 1

dim.�/
ıilıjk: (5.94)
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We get

1st order D KAB

X

�

1

dim.�/
Tr�ƒ˝ƒ:Tr�tA ˝ tB: (5.95)

In above ��;2.ƒ/ D Tr�ƒ˝ƒ is the character of ƒ in the representation �.
At the second order we need to compute effectively the SU(N) group integral I2.

We have

2nd order D 1

2

Z

dU
�
KABTrNUƒU

�1tA:TrNUƒU�1tB
�

��
KCDTrNUƒU

�1tC:TrNUƒU�1tD
�

D 1

2

�
KAB.tA/l1i1 .tB/q1n1ƒj1k1ƒm1p1

��
KCD.tC/l2i2 .tD/q2n2ƒj2k2ƒm2p2

�
I2:

(5.96)

We follow the same steps as before, viz

2nd order D 1

2
KABKCD

Z

dU TrN4 .UƒU
�1tA/˝ .UƒU�1tB/

˝.UƒU�1tC/˝ .UƒU�1tD/

D 1

2
KABKCD

Z

dU TrN4 .U ˝ ::˝ U/.ƒ˝ : : :˝ƒ/

�.U�1 ˝ ::˝ U�1/.tA ˝ tB ˝ tC ˝ tD/

D 1

2
KABKCD

X

�

�.ƒ˝ ::˝ƒ/jk�.tA ˝ tB ˝ tC ˝ tD/li

�
Z

dU .U ˝ ::˝ U/ij.U
�1 ˝ ::˝ U�1/kl

D 1

2
KABKCD

X

�

1

dim.�/
Tr�ƒ˝ƒ˝ƒ˝ƒ:Tr�tA ˝ tB ˝ tC ˝ tD:

(5.97)

Thus, the calculation of the first and second order corrections reduce to the
calculation of the traces Tr�tA ˝ tB and Tr�tA ˝ tB ˝ tC ˝ tD respectively. This
is a lengthy calculation included in Appendix. It is obvious, at this stage, that
generalization to higher order corrections will involve the traces Tr�tA1 ˝ : : :˝ tAn
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and Tr�ƒ˝ : : :˝ƒ. Explicitly the nth order correction should read

nth order D 1

nŠ
KA1A2 : : :KA2n�1A2n

X

�

1

dim.�/
Tr�ƒ˝ : : :˝ƒ:Tr�tA1 ˝ tA2

˝ : : :˝ tA2n�1 ˝ tA2n : (5.98)

5.4.2 The Effective Matrix Action

Quadratic and Quartic Correction

Quadratic Correction Now, we need to know the set of irreducible representations
of SU(N) contained in N ˝ N and their dimensions. Clearly, an object carrying two
fundamental indices i and j can be symmetrized or antisymmetrized. The symmetric
representation �S D m.1;2/ contains dim.�S/ D .N2 C N/=2 components, whereas
the antisymmetric representation m.2;1/ D �A contains dim.�A/ D .N2 � N/=2
components. The Young tableau showing the decomposition of N ˝ N into its
irreducible parts (where the boxes are also labeled by the vector indices A of the
Gell-Mann matrices tA) is

A ˝ B D A B ˚ A
B
: (5.99)

In terms of dimensions we write

N ˝ N D N2 C N

2
˚ N2 � N

2
: (5.100)

Thus we have

1st order D KAB

�
1

dim.�S/
�S.ƒ/Tr�S tA ˝ tB C 1

dim.�A/
�A.ƒ/Tr�A tA ˝ tB

�

:

(5.101)

The expressions for the SU(N) characters �S;A.ƒ/ and for TrS;AtA ˝ tB are derived
in Appendix. The result for the characters is

�S.ƒ/ D TrSƒ˝ƒ D 1

2
.TrNƒ/

2 C 1

2
TrNƒ

2 ; �A.ƒ/ D TrAƒ˝ƒ

D 1

2
.TrNƒ/

2 � 1
2
TrNƒ

2: (5.102)
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We get then

1st order D 1

2
.s1;2 C s2;1/.TrNƒ/

2 C 1

2
.s1;2 � s2;1/TrNƒ

2; (5.103)

where

s1;2 D 1

dim.1; 2/
KABTr.1;2/tA ˝ tB ; s2;1 D 1

dim.2; 1/
KABTr.2;1/tA ˝ tB: (5.104)

Quartic Correction The tensor product of interest in this case is

A ˝ B ˝ C ˝ D D A B C D ˚
A
B
C
D

˚ A B C
D

˚ A B D
C

˚ A C D
B

˚
A D
B
C

˚
A C
B
D

˚
A B
C
D

˚ A B
C D

˚ A C
B D

: (5.105)

In terms of dimensions we have

N ˝ N ˝ N ˝ N D N4 C 6N3 C 11N2 C 6N
24

˚ N4 � 6N3 C 11N2 � 6N
24

˚3:N
4 C 2N3 � N2 � 2N

8

˚3:N
4 � 2N3 � N2 C 2N

8
˚ 2:N

4 � N2

12
: (5.106)

The SU(N) characters of interest to us at this order are given by Eqs. (B.46), (B.57),
(B.64), (B.75) and (B.86) found in Appendix. These are given explicitly by

Tr.1;4/ƒ˝ƒ˝ƒ˝ƒ

D 1

4Š

�

6TrNƒ
4 C 8TrNƒ3TrNƒC 3.TrNƒ2/2 C 6TrNƒ2.TrNƒ/

2 C .TrNƒ/4
�

:

(5.107)

Tr.4;1/ƒ˝ƒ˝ƒ˝ƒ

D 1

4Š

�

� 6TrNƒ4 C 8TrNƒ3TrNƒC 3.TrNƒ2/2 � 6TrNƒ2.TrNƒ/
2 C .TrNƒ/4

�

:

(5.108)
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Tr.2;3/ƒ˝ƒ˝ƒ˝ƒ

D 1

8

�

� 2TrNƒ4 � .TrNƒ2/2 C 2TrNƒ2.TrNƒ/
2 C .TrNƒ/4

�

: (5.109)

Tr.3;2/ƒ˝ƒ˝ƒ˝ƒ

D 1

8

�

2TrNƒ
4 � .TrNƒ2/2 � 2TrNƒ2.TrNƒ/

2 C .TrNƒ/4
�

: (5.110)

Tr.2;2/ƒ˝ƒ˝ƒ˝ƒ

D 1

12

�

� 4TrNƒTrNƒ3 C 3.TrNƒ2/2 C .TrNƒ/4
�

: (5.111)

By employing these results we get

2nd order D 1

2
KABKCD

Z

dU TrNUƒU
�1tA:TrNUƒU

�1tB:TrNUƒU
�1tC:TrNUƒU

�1tD

D 1

8
.s1;4 � s4;1 � s2;3 C s3;2/TrNƒ

4 C 1

6
.s1;4 C s4;1 � s2;2/TrNƒTrNƒ

3

C 1

16
.s1;4 C s4;1 � s2;3 � s3;2 C 2s2;2/.TrNƒ2/2

C 1

8
.s1;4 � s4;1 C s2;3 � s3;2/TrNƒ

2.TrNƒ/
2

C 1

48
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2/.TrNƒ/4: (5.112)

In the above equation the coefficients s1;4, s4;1, s2;3, s3;2 and s2;2 are given
respectively by the formulas

s1;4 D 1

dim.1; 4/
KABKCDTr.1;4/tA ˝ tB ˝ tC ˝ tD: (5.113)

s4;1 D 1

dim.4; 1/
KABKCDTr.4;1/tA ˝ tB ˝ tC ˝ tD: (5.114)

s2;3 D 1

dim.2; 3/
.2KABKCD C KADKBC/Tr.2;3/tA ˝ tB ˝ tC ˝ tD: (5.115)

s3;2 D 1

dim.3; 2/
.KABKCD C 2KACKBD/Tr.3;2/tA ˝ tB ˝ tC ˝ tD: (5.116)

s2;2 D 1

dim.2; 2/
.KABKCD C KACKBD/Tr.2;2/tA ˝ tB ˝ tC ˝ tD: (5.117)
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Calculation of the Coefficients s1;2, s2;1, s1;4, s4;1, s2;3, s3;2 and s2;2

By adding all the above contributions and re-exponentiating we obtain an effective
path integral with an effective potential TrN.bƒ2 C cƒ4/C�V , viz

Z D
Z

dƒ�2.ƒ/ exp
� � TrN



bƒ2 C cƒ4

��
exp

� ��V
�
: (5.118)

The potential�V is given by

�V D 1

2
.s1;2 C s2;1/t

2
1 C

1

2
.s1;2 � s2;1/t2

�1
8
.s1;4 � s4;1 � s2;3 C s3;2/t4 � 1

6
.s1;4 C s4;1 � s2;2/t1t3

� 1
16
.s1;4 C s4;1 � s2;3 � s3;2 C 2s2;2 � 2.s1;2 � s2;1/

2/t22

�1
8
.s1;4 � s4;1 C s2;3 � s3;2 � 2.s21;2 � s22;1//t2t

2
1

� 1
48
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2 � 6.s1;2 C s2;1/

2/t41: (5.119)

The traces ti are of order N and they are defined by

ti D TrNƒ
i: (5.120)

The remaining task, which is again very lengthy and tedious, is to compute explicitly
the coefficients s. Let us sketch, for example, the calculation of s1;2, s2;1. By using
the identities (B.29), and the properties of the Gell-Mann matrices tA, we have

s1;2 C s2;1 D N

N2 � 1K00 �
1

N.N2 � 1/KAA: (5.121)

s1;2 � s2;1 D � 1

N2 � 1K00 C
1

N2 � 1KAA: (5.122)

The first order correction is then given by

1st order D 1

2.N2 � 1/.NK00 �
KAA

N
/

�

t21 � Nt2

�

C 1

2
K00t2: (5.123)

Since the first term in the above contribution does involve Kaa, which does not
depend on the trace part of the scalar field, we must be able to rewrite this term
in terms of the differences 	i � 	j of the eigenvalues. Indeed, this term does only
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depend on the function T0 defined by

T0 D t21 � Nt2

D �1
2

X

i¤j

.	i � 	j/2: (5.124)

We have then

1st order D � 1

4.N2 � 1/.NK00 �
KAA

N
/
X

i¤j

.	i � 	j/2 C 1

2
K00

X

i

	2i : (5.125)

Next we have

K00 D 1

2N
Kij;ji ; KAA D 1

2
Kii;jj: (5.126)

The kinetic matrix Kij;kl is related to the kinetic matrix KAB by

KAB D .tA/jk.tB/liKij;kl: (5.127)

In other words,

Kij;kl D 2r2
p
!

�
.�C/ij�kl C .�C/kl�ij

� � 4r2p!3.�3/ij.�3/kl C 2r2
�
Eijıkl C Eklıij

�
:

(5.128)

We then compute immediately

Kii;jj D r2N2.N.2 � 
/ � 
//: (5.129)

Kij;ji D 2r2

3
N

�
N.3 � 2
/ � 
�C 2r2

p
!

3
N.N � 1/.3 � 2
/: (5.130)

The large N behavior can then be extracted. We get

1st order D r2

8

�
2 � 
 � 2

3
.
p
! C 1/.3� 2
/�

X

i¤j

.	i � 	j/2

CNr2

6
.
p
! C 1/.3� 2
/

X

i

	2i : (5.131)
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The quadratic part of the effective action is therefore given by

�Vjquadratic D r2

8

�
2 � 
 � 2

3
.
p
! C 1/.3� 2
/�

X

i¤j

.	i � 	j/2

CNr2

6
.
p
! C 1/.3 � 2
/

X

i

	2i : (5.132)

The calculation of the other coefficients s1;4, s4;1, s2;3, s3;2 and s2;2 goes along the
same lines. It is, however, very lengthy and tedious. This calculation is found in
Appendix. Here, we will only sketch the formalism and the crucial steps of the
calculation, while we will leave the mostly technical detail to Appendix.

We have five coefficients to compute but only four are independent. Indeed, from
the result (5.112) we obtain, by substituting ƒ D 1, the constraint between the
coefficients given by

1

4
K200 D

1

4N
.s1;4 � s4;1 � s2;3 C s3;2/C 1

3
.s1;4 C s4;1 � s2;2/

C1
8
.s1;4 C s4;1 � s2;3 � s3;2 C 2s2;2/C N

4
.s1;4 � s4;1 C s2;3 � s3;2/

CN2

24
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2/: (5.133)

Obviously the appearance of K00, on the left hand side, depends only on the
trace part of the scalar field which drops, from the kinetic part of the action, if
the harmonic oscillator term is set to zero. We expect therefore that this term be
proportional to

p
! C 1 in the large N limit. Effectively we compute

1

4
K200 D

1

16N2
K2ij;ji

D r4N2

4
.
p
! C 1/2.1 � 
 8

9
/C : : : : (5.134)

By using Eqs. (5.121) and (5.122) we arrive at the nice result

N

2
.s21;2 � s22;1/C

N2

4
.s1;2 C s2;1/

2 C 1

4
.s1;2 � s2;1/

2 D 1

4
K200: (5.135)

Thus the coefficients, appearing in the quartic part of the action (5.119), sum up to
zero in the sense that the constraint (5.133) can be rewritten as

1

4N
.s1;4 � s4;1 � s2;3 C s3;2/C 1

3
.s1;4 C s4;1 � s2;2/

C1
8
.s1;4 C s4;1 � s2;3 � s3;2 C 2s2;2 � 2.s1;2 � s2;1/

2/
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CN

4
.s1;4 � s4;1 C s2;3 � s3;2 � 2.s21;2 � s22;1//

CN2

24
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2 � 6.s1;2 C s2;1/

2/ D 0:
(5.136)

This tells us that only four among the five coefficients are really independent. By
using the above constraint in the quartic part of the action (5.119) we obtain

2N2�Vjquartic D 1

4N
.s1;4 � s4;1 � s2;3 C s3;2/.t

4
1 � N3t4/

C1
3
.s1;4 C s4;1 � s2;2/.t

4
1 � N2t1t3/

C1
8
.s1;4 C s4;1 � s2;3 � s3;2 C 2s2;2 � 2.s1;2 � s2;1/

2/.t41 � N2t22/

CN

4
.s1;4 � s4;1 C s2;3 � s3;2 � 2.s21;2 � s22;1//.t

4
1 � Nt2t

2
1/:

(5.137)

The coefficients s will depend on the operators:

1

4
X1 D 1

2
K2AB C

1

4
K2AA

D 1

8
Kij;klKji;lk C 1

16
K2ii;jj: (5.138)

1

2
X2 D 1

2
KABKCD.

1

2
dABKdCDK C dADKdBCK/

D 1

2
Kii;klKjj;lk C 1

4
Kij;klKli;jk: (5.139)

Y1 D N

2
.KAAK00 C 2K2A0/

D 1

8
Kii;jjKkl;lk C 1

4
Kij;kiKlk;jl: (5.140)

Y2 D
p
2NK0BKCDdBCD

D 1

2
Kij;jlKkk;li: (5.141)

Y3 D N2

4
K200

D 1

16
K2ij;ji: (5.142)
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These operators scale at most as N6. The operators Ys, in particular, are due to the
trace part of the scalar field.

We know that, in the limit �2 �! 0 (
p
! �! �1), the trace part of the scalar

field drops from the kinetic action, and as a consequence, the action (5.119) can be
rewritten solely in terms of the differences 	i � 	j of the eigenvalues. Furthermore,
in this limit, the action (5.119) must also be invariant under any permutation of the
eigenvalues, as well as under the parity 	i �! �	i, and hence it can only depend
on the following two functions [35]

T4 D Nt4 � 4t1t3 C 3t22
D 1

2

X

i¤j

.	i � 	j/4: (5.143)

T22 D
1

4

� X

i¤j

.	i � 	j/2
�2

D t41 � 2Nt21t2 C N2t22: (5.144)

We observe that the quadratic contribution (5.132) can be expressed, modulo a term
which vanishes as

p
! C 1 in the limit

p
! �! �1, in terms of the function

T2 D Nt2 � t21

D 1

2

X

i¤j

.	i � 	j/2: (5.145)

In general, it is expected that for generic values of
p
!, away from the zero harmonic

oscillator case
p
! D �1, the effective action will contain terms proportional top

! C 1 which can not be expressed solely in terms of the functions T2, T4, etc.
By using the functions T2 and T4 in (5.137) we get

2N2�Vjquartic D �N
2

4
.s1;4 � s4;1 � s2;3 C s3;2/t4 � N2

3
.s1;4 C s4;1 � s2;2/t1t3

CN2
�
1

4N
.s1;4 � s4;1 � s2;3 C s3;2/C 1

3
.s1;4 C s4;1 � s2;2/

�

t22

C
�
1

4N
.s1;4 � s4;1 � s2;3 C s3;2/C 1

3
.s1;4 C s4;1 � s2;2/

�

.T22 � 2Nt2T2/

C1
8
.s1;4 C s4;1 � s2;3 � s3;2 C 2s2;2 � 2.s1;2 � s2;1/

2/.T22 � 2Nt2T2/

CN

4
.s1;4 � s4;1 C s2;3 � s3;2 � 2.s21;2 � s22;1//.T

2
2 � Nt2T2/: (5.146)
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Equivalently

�Vjquartic D �1
8
.s1;4 � s4;1 � s2;3 C s3;2/t4 � 1

6
.s1;4 C s4;1 � s2;2/t1t3

C
�
1

8N
.s1;4 � s4;1 � s2;3 C s3;2/C 1

6
.s1;4 C s4;1 � s2;2/

�

t22

� 1
48
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2 � 6.s1;2 C s2;1/

2/T22

C
�
N

24
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2 � 6.s1;2 C s2;1/

2/

C1
8
.s1;4 � s4;1 C s2;3 � s3;2 � 2.s21;2 � s22;1//

�

t2T2: (5.147)

The sum of the first three terms gives rise to the function T4 modulo terms which
vanish as

p
! C 1. Indeed, we find, in the large N limit, the results

1

8N
.s1;4 � s4;1 � s2;3 C s3;2/ D 1

8N5
Kii;klKjj;lk � 1

8N6
K2ii;jj

D r4

24
.1 � 
/: (5.148)

1

6
.s1;4 C s4;1 � s2;2/ D 1

4N4
Kij;jlKkk;li � 1

N5

�
1

2
Kii;klKjj;lk C 1

4
Kii;jjKkl;lk

�

C 1

2N6
K2ii;jj

D � r
4

6
.1 � 
/C r4

6
.
p
! C 1/.1 � 
/: (5.149)

Thus the action (5.147) becomes

�Vjquartic D � r4

24
.1 � 
/T4 � r4

6
.
p
! C 1/.1� 
/.t1t3 � t22/C vT22 C wt2T2:

(5.150)

The definition of the coefficients v and w is obvious. Clearly, the coefficient w
vanishes as

p
! C 1 in the limit

p
! �! �1, since this term can not be rewritten

solely in terms of the functions T2 and T4, whereas the coefficient v is found to
be non zero as opposed to the result of O’Connor and Saemann [35]. We discuss
now the explicit calculation of the last two coefficients v and w appearing in the
action (5.150).

The operators T22 and t2T2 are of order N4 and N3 respectively, whereas the
effective action is expected to be of order N2, and hence, we only need to look
for terms of order 1=N2 and 1=N in the coefficients v and w respectively. As it turns
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out, the leading contributions, in the large N limit, in the coefficients w and v are
precisely of order 1=N and 1=N2 respectively given explicitly by

w D N

24
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2 � 6.s1;2 C s2;1/
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: (5.151)

v D � 1
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(5.152)

As promised the coefficient w vanishes as
p
!C1 in the limit

p
! �! �1, whereas

the extra contribution in the coefficient v (the last term) is non zero in this limit.
The main result of this section is the potential�V given explicitly by the sum of

the quadratic part (5.132) and the quartic part (5.150), viz

�V D r2

4

�
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3
.
p
! C 1/.3� 2
/�T2 C Nr2
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.
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/T4 � r4

6
.
p
! C 1/.1� 
/.t1t3 � t22/C vT22 C wt2T2:

(5.153)
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This reduces to (5.75) if we set 
 D 1 and
p
! D �1. For later purposes, we write

this result in the form

�V D r2
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v2;1T2 C 2N

3
w1t2
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C r4

24

�

v4;1T4 � 4
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2
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C 4
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C O.r6/: (5.154)

The coefficients v and w are given by

v2;1 D 2 � 
 � 2
3
.
p
! C 1/.3 � 2
/: (5.155)

v4;1 D �.1 � 
/: (5.156)

v2;2 D w3 C .
p
! C 1/.1 � 
/C 1
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8
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/: (5.157)

w1 D .
p
! C 1/.3� 2
/: (5.158)

w2 D �.
p
! C 1/.1� 
/: (5.159)

w3 D .
p
! C 1/.1� 
/ � 1

15
.
p
! C 1/2.15� 14
/: (5.160)

5.5 Matrix Model Solution

5.5.1 Scaling

The original action, on the fuzzy sphere, is given by (5.21), with the substitution
Ô DM=

p
�2, with parameters a D 1=.2R2/ D 1=.N�/, b, c and d D a�2, i.e.

S D Tr

�

aM�N;�MC bM2 C cM4

�

: (5.161)

Equivalently this action can be given by (5.21), with parameters r2 D a.�2 C 1/N,p
! D .�2 � 1/=.�2 C 1/ and b, c, viz

S D Tr

�

r2
�p

!�CM�M � 1

N C 1�3M�3M C EM2

�

C bM2 C cM4

�

:

(5.162)

From the Monte Carlo results of Flores et al. [15, 16], we know that the scaling
behavior of the parameters a, b and c appearing in the above action on the fuzzy
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sphere is given by

Na D a

Nıa
; Nb D bN2ı	

aN3=2
; Nc D cN4ı	

a2N2
: (5.163)

In the above equation we have also included a possible scaling of the field/matrix
M, which is not included in [15, 16], given by ı	. The scaling of the parameter a
encodes the scaling of the radius R2 or equivalently the noncommutativity parameter
� . There is of course an extra parameter in the above action given by d D a�2, or
equivalently

p
! D .�2 � 1/=.�2 C 1/, which comes with another scaling ıd not

discussed altogether in Monte Carlo simulations.
Let us go back now and write down the complete effective action in terms of the

eigenvalues. This is the sum of the classical potential, the Vandermonde determinant
and the effective potential (5.153). This reads explicitly
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(5.164)

The saddle point equation is given by
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where
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The moments mq depend on the eigenvalues 	i and are defined by the usual formula

mq D 1

N

X

i

	
q
i (5.167)

We will assume now that the four parameters b, c, r2 and
p
! of the matrix

model (5.22) scale as

Qb D b

Nıb
; Qc D c

Nıc
; Qr2 D r2

Nır
;
p Q! D

p
!

Nı!
: (5.168)

Obviously ır D ıa C 1. Further, we will assume a scaling ı	 of the eigenvalues 	,
viz

Q	 D 	

Nı	
: (5.169)

Hence, in order for the effective action to come out of order N2, we must have the
following values

ıb D 1 � 2ı	 ; ıc D 1 � 4ı	 ; ır D �2ı	 ; ı! D 0: (5.170)

By substituting in (5.163) we obtain the collapsed exponents

ı	 D �1
4
; ıa D �1

2
; ıb D 3

2
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2
; ır D 1

2
: (5.171)

In simulations, it is found that the scaling behavior of the mass parameter b and the
quartic coupling c is precisely given by 3=2 and 2 respectively. We will assume, for
simplicity, the same scaling on the Moyal-Weyl plane.

The derivative of the effective action takes then the form
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: (5.172)

The definition of the scaled moments Qmq is obvious, whereas Q! D ! since ı! D 0.
This problem is therefore a generalization of the quartic Hermitian matrix potential
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model, which is labeled by the parameters r2 and
p
!, and with derivative of the

generalized potential given by
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The corresponding saddle point takes the form

1

N

@Seff
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Q	n � Q	i
D 0: (5.174)

In the following, we will often denote the eigenvalues without the tilde for ease of
notation, i.e. we will set Q	i D 	i.

5.5.2 Saddle Point Equation

The above saddle point equation (5.174) can be solved using the approach outlined
in Eynard [11]. See also next section for more detail.

In the large N limit all statistical properties of the spectrum of M are encoded in
the resolvent W.z/, i.e. the one-point function, defined by

W.z/ D 1

N
Tr

1

z �M
D 1
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NX

iD1

1

z � 	i : (5.175)

From this definition we can immediately remark that W.z/ is singular when z
approaches the spectrum of M. In general, the eigenvalues of M are real numbers in
some range Œa; b�. In the large N limit we can also introduce a density of eigenvalues
�.	/ which is positive definite and normalized to one, viz

�.	/�0 ;
Z b

a
�.	/d	 D 1: (5.176)
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Thus, the sum will be replaced by an integral such that

1

N
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Z b

a
�.	/d	; (5.177)

and hence
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We can immediately compute
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a
�.	/	kd	 D � 1
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W.z/zkdz: (5.179)

The contour is a large circle which encloses the interval Œa; b�. In terms of the
resolvent, the density of eigenvalues is therefore obtained, with a contour which
is very close to Œa; b�, by the formula

�.	/ D � 1

2
i
.W.	C i0/�W.	 � i0//: (5.180)

In other words, knowing W.z/ will give �.	/. In terms of the resolvent W.z/, the
saddle point equation (5.174) is rewritten as
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The solution of this quadratic equation is immediately given by

W.z/ D 1

2

�
V 0
r2;�.z/ �

q
V 02
r2;�

.z/ � 4P.z/�: (5.182)

This is much simpler than the original saddle point equation. It remains only to
determine the coefficients of P.z/, which is a much smaller number of unknown, in
order to determine W.z/. Knowing W.z/ solves the whole problem since it will give
�.	/. This W.z/ can have many cuts with endpoints located where the polynomial
under the square-root vanishes. The number of cuts is equal, at most, to the degree
of V 0

r2;�
so in our case it is equal, at most, to 3.
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The derivative of the generalized potential V 0
r2;�

is given in this case explicitly
by the following equation
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The next assumption is to suppose a symmetric support of the eigenvalues distribu-
tions, and as a consequence, all odd moments vanish identically. This is motivated
by the fact that the expansion of the effective action employed in the current paper,
i.e. the multitrace technique, is expected to probe, very well, the transition between
the disordered phase and the non-uniform ordered phase. The uniform ordered
phase, and as a consequence the other two transition lines, of the original model
S must also be embedded in the matrix model Vr2;� because these two models, S
and Vr2;�, are exactly identical.

We will, therefore, assume that across the transition line between disordered
phase and non-uniform ordered phase, the matrix M remains massless, and the
eigenvalues distribution �. Q	/ is always symmetric, and hence all odd moments Qmq

vanish identically, viz

Qmq D
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a
d Q	�. Q	/ Q	q D 0 ; q D odd: (5.184)

The derivative of the generalized potential V 0
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becomes
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(5.185)

The corresponding matrix model potential and effective action are given respec-
tively by
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Seff D NVr2;� �
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The coefficient � is defined by
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These can be derived from the matrix model given by
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This matrix model was studied originally in [9] within the context of c > 1 string
theories. The dependence of this result on the harmonic oscillator potential is fully
encoded in the parameter � which is the strength of the double trace term. For�2 D
0, or equivalently

p
! D �1, and 
 D 1 this model should be compared with the

result of O’Connor and Saemann [35], where a discrepancy between the numerical
coefficients should be noted.

For later purposes we rewrite the derivative of the generalized potential V 0
r2;�

in
the suggestive form

V 0
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Q	/ D 2� Q	C 4g Q	3: (5.190)
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5.6 The Real Quartic Matrix Model

In this section, we will follow the pedagogical presentation of Eynard [11] in
deriving the various eigenvalues distributions of the real quartic matrix model. First,
we will pretend that the parameters � and g are just shifted values with respect to
the original parameters Qb D N3=2b and Qc D N2c, then, in the next section, we will
take into account the fact that � depends on the second moment Qm2, which is itself
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computed in terms of the eigenvalues distribution, and thus a deformation of the
critical line is entailed.

5.6.1 Free Theory

For g D 0, we find the famous Wigner semi-circle law, viz

�.	/ D 1



�
p
ı2 � 	2 ; ı2 D 2

�
: (5.192)

The derivation of this law is straightforward.

5.6.2 The Symmetric One-Cut (Disordered) Phase

The classical minimum of the potential V is given by the condition V 0.z/ D
2z.� C 2gz2/ D 0. In other words, V can have only one minimum at z D 0 for
positive values of � and g. Therefore, we can safely assume that the support of
�.	/ will consist, in this case, of one connected region Œı1; ı2� which means that
all eigenvalues of M lie at the bottom of the well around M D 0. In this case the
resolvent W.z/ has one cut in the complex plane along Œı1; ı2� with branch points at
z D ı1 and z D ı2. Thus, the polynomial V 02.z/� 4P.z/, which is under the square-
root, must have two single roots corresponding to the branch points while all other
roots are double roots.

The above argument works when both � and g are positive. For the more
interesting case when either� or g is negative4 the potential can have two equivalent
minima but the rest of the analysis will still be valid around one of the minima of the
model. We will only consider here the possibility of � negative for obvious stability
reasons. We get therefore the ansatz

V 02.z/� 4P.z/ D M2.z/.z� ı1/.z � ı2/: (5.194)

4The possibility of g negative is more relevant to quantum gravity in two dimensions. Indeed, a
second order phase transition occurs at the value g D ��2=12. This is the pure gravity critical
point. The corresponding density of eigenvalues �.	/ is given by

�.	/ D 2g



.	2 � ı2/

2
3 : (5.193)
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We compute

P.z/ D 2�C 4gz2 C 4g
Z

d	�.	/	2 C 4gz
Z

d	�.	/	: (5.195)

In above we can use the fact that since the potential V is even, we must have ı2 D
�ı1 � �ı, and hence we must have the identity

R
d	�.	/	 D 0, i.e.

P.z/ D 2�C 4gm2 C 4gz2: (5.196)

Let us note that in the large z region the resolvent behaves as 1=z. Hence in this
region we have, from Eq. (5.182), the behavior

1

z
� 1

2

�
V 0.z/ �M.z/

p
z2 � ı2�; (5.197)

or equivalently

M.z/ D Pol
V 0.z/p
z2 � ı2 ; (5.198)

where Pol stands for the polynomial part of the ratio. Now, from the behavior
V 0.z/ � 4gz3 when z �! 1, M.z/ must behave, from (5.197), as 4gz2 when
z �! 1. However, M.z/ must be at most quadratic from the fact that P.z/ is
quadratic together with Eq. (5.194). We must then have

M.z/ D 4gz2 C e: (5.199)

Indeed, we can compute directly from (5.198) that

M.z/ D Pol
2z.�C 2gz2/p

z2 � ı2 D 4gz2 C 2.�C gı2/: (5.200)

In other words, e D 2.�C gı2/. Putting all these things together we obtain

W.z/ D �zC 2gz3 � .2gz2 C �C gı2/
p
z2 � ı2: (5.201)
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This function must still satisfy the condition W � 1=z for large z. This gives an
extra equation5 which must be solved for ı. We have then

W.z/p
z2 � ı2 D

�zC 2gz3p
z2 � ı2 � .2gz

2 C �C gı2/

D �ı2

2z2
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C O.

1

z4
/: (5.202)

In other words, ı must satisfy the quadratic equation

1 D �

2
ı2 C 3g

4
ı4: (5.203)

The solution is

ı2 D 1

3g
.��C

p
�2 C 12g/: (5.204)

Finally from (5.180), we derive the density of eigenvalues

�.	/ D 1



.2g	2 C �C gı2/

p
ı2 � 	2: (5.205)

It is not difficult to check that the above density of eigenvalues is positive definite
for positive values of �. For negative values of �, we must have, in order for � to be
positive definite on the interval Œ�ı; ı�, the condition

�C gı2 � 0: (5.206)

This leads, by using (5.204), to the requirement

�2 � 4g, � D �2pg: (5.207)

At �2 D 4g we must have a third order phase transition6 from the phase with a
density of eigenvalues given by (5.205), with a support given by one cut which is the
interval Œ�ı; ı�, to a different phase where the support of the density of eigenvalues
consists of two cuts symmetric around 	 D 0.7

5This is equivalent, from Eq. (5.179), to the requirement that the eigenvalues density �.	/ must be
normalized to one.
6This can be seen by computing the specific heat and observing that its derivative is discontinuous
at this point.
7Again, this is because the potential is even under M �! �M.
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5.6.3 The Two-Cut (Non-uniform-Ordered) Phase

We observe that the eigenvalues distribution (5.205) at � D �2pg, or equivalently
� D �gı2, becomes given by

�.	/ D 2g	2




p
ı2 � 	2: (5.208)

This vanishes at 	 D 0, and thus effectively the support of the eigenvalues
distribution at � D �2pg consists of two cuts Œ0; ı� and Œ�ı; 0�. For more negative
values of the mass parameter �, beyond � D �2pg, the support of the eigenvalues
distribution will split into two disconnected cuts Œ�ı2;�ı1� and Œı1; ı2�with ı2 � ı1.
We start therefore from the ansatz

V 02.z/ � 4P.z/ D M2.z/.z2 � ı21/.z2 � ı22/: (5.209)

Again we have

P.z/ D 2�C 4gm2 C 4gz2: (5.210)

Now the behavior of the resolvent as 1=z in the large z region gives

M.z/ D Pol
V 0.z/

q
.z2 � ı21/.z2 � ı22/

: (5.211)

From the behavior V 0.z/ � 4gz3 when z �! 1, M.z/ must behave as 4gz when
z �!1. We write then

M.z/ D 4gzC e: (5.212)

It is not difficult to verify that e D 0 in this case. We obtain then

W.z/ D �zC 2gz3 � 2gz
q
.z2 � ı21/.z2 � ı22/: (5.213)

This function must also satisfy the condition W � 1=z for large z. This gives the
extra equation
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D �C g.ı21 C ı22/
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In other words, ıi must satisfy the two equations

�C g.ı21 C ı22/ D 0: (5.215)

3g.ı21 C ı22/2 � 4gı21ı22 C 2�.ı21 C ı22/ D 4: (5.216)

We find immediately the solutions

ı21 D
1

2g
.�� � 2pg/ ; ı22 D

1

2g
.��C 2pg/: (5.217)

Obviously, ı21 makes sense only in the regime

� � �2pg: (5.218)

Finally from (5.180), we derive the density of eigenvalues

�.	/ D 2g



j	j

q
.	2 � ı21/.ı22 � 	2/: (5.219)

At � D �2pg, we observe that this eigenvalues density becomes precisely
the critical density of eigenvalues (5.208). This is the sense in which this phase
transition is termed critical although it is actually third order.

Alternative Derivation In deriving the two-cut solution, we may follow the more
compact formalism of Filev and O’Connor [12]. We rewrite the saddle point
equation (5.174), together with (5.289) and introducing a symmetric density of
eigenvalues �. Q	/, as

�C 2gx2 D 2
Z ı

0

dx0�.x0/
1

x2 � x02 : (5.220)

In the case of a two-cut solution, we should write the above equation as

�C 2gx2 D 2
Z ı2

ı1

dx0�.x0/
1

x2 � x02 : (5.221)

The two cuts are given by the two intervals Œ�ı2;�ı1� and Œı1; ı2�. Obviously, for
the one-cut solution we must set ı1 D 0 and ı2 D ı. We introduce now the
reparametrization

z D �C 2gx2 ; y.z/ D �.x.z//

x.z/
: (5.222)
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We obtain then the Cauchy problem

z D
Z c2

c1

dz0y.z0/
1

z � z0 : (5.223)

c1 D �C 2gı21 ; c2 D �C 2gı22: (5.224)

A two-cut solution which is symmetric around z D 0 must have c1 D �z0, c2 D
Cz0, i.e.

ı21 D
1

2g
.�� � z0/ ; ı

2
1 D

1

2g
.��C z0/: (5.225)

The solution to (5.223), in the two-cut phase, is given by

y.z/ D 1




q
z20 � z2: (5.226)

This can be checked as follows. By using the result 2:282 of Gradshteyn and Ryzhik
[19], page 108, then introducing z0 D z0 sin ˛, we obtain

1




Z

dz0

q
z20 � z02

z � z0 D 1




Z

dz0 z0
q
z20 � z02

C z




Z

dz0 1
q
z20 � z02

� z
2
0 � z2




Z

dz0 1

.z0 � z/
q
z20 � z02

D 0C zC z20 � z2




Z 
=2

�
=2
d˛

1

z � z0 sin˛
: (5.227)

The last integral is zero by the result 2:551:3 of Gradshteyn and Ryzhik [19] on
page 179. Hence (5.226) is a solution to (5.223) as anticipated. The corresponding
eigenvalues distribution is immediately obtained to be given by

�.	/ D 2g



jxj

q
.x2 � ı21/.ı22 � x2/: (5.228)

This is precisely (5.219).
The one-cut solution to (5.223) corresponds to an unbounded function y.z/, at

c1 D �, given explicitly by Filev and O’Connor [12]

y.z/ D 1

2


.2zC c2 � c1/
p
c2 � zp

z � c1
: (5.229)

This reduces to (5.226) if we set c2 D �c1 D z0.
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A final remark is to note that the one-cut solution is sometimes called the disk
phase and the two-cut solution is sometimes called the annulus phase for obvious
reason.

5.6.4 The Asymmetric One-Cut (Uniform-Ordered) Phase

The real quartic matrix model admits also a solution with TrM ¤ 0 corresponding to
a possible uniform-ordered (Ising) phase. This U.N/-like solution can appear only
for negative values of the mass parameter �, and it is constructed, for example, in
[39]. It is, however, well known that this solution can not yield to a stable phase
without the addition of the kinetic term to the real quartic matrix model.

We will consider then a one-cut solution centered around � in the interval Œ� �
�; � C ��. In this case, we start from the ansatz

V 02.z/ � 4P.z/ D M2.z/.z � .� C �//.z � .� � �//: (5.230)

The polynomialP contains now the effect of the first moment which does not vanish
in this phase, viz

P.z/ D 2�C 4gm2 C 4gz2 C 4gzm1: (5.231)

Again, we must have for large z the behavior

1

z
� 1

2

�
V 0.z/ �M.z/

p
.z � .� C �//.z � .� � �//�: (5.232)

In other words,

M.z/ D Pol
V 0.z/

p
.z � .� C �//.z � .� � �// : (5.233)

This yields to the expression

M.z/ D 4gz2 C fzC e: (5.234)

We get immediately the values

e D 2�C 2g.2�2 C �2/ ; f D 4�g: (5.235)

Thus, we obtain

W.z/ D �zC 2gz3 � .2gz2 C 2�gzC �C 2g�2 C g�2/

�
p
.z � .� C �//.z � .� � �//: (5.236)
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The requirement that W � 1=z for large z gives the condition

W.z/
p
.z � .� C �//.z � .� � �//

D �� C 2g�3 C 3g��2
z

C 2�.2�2 C �2/C g
�
3.�2 � �2/2 � 30�2.�2 � �2/C 35�4�

4z2
C O.

1

z3
/:

(5.237)

In other words,

�� C 2g�3 C 3g��2 D 0: (5.238)

2�.2�2 C �2/C g
�
3.�2 � �2/2 � 30�2.�2 � �2/C 35�4� D 4: (5.239)

The solution is

�2 D 1

10g
.�3�C 2

p
�2 � 15g/ ; �2 D 1

15g
.�2�� 2

p
�2 � 15g/: (5.240)

The density of eigenvalues in this case is given by

�.z/ D 1



.2gz2 C 2�gzC �C 2g�2 C g�2/

p
..� C �/ � z/.z � .� � �//:

(5.241)

This makes sense only for �2 � 15g.

5.7 Multicut Solutions of the Multitrace Matrix Model

5.7.1 The One-Cut Phase

The derivation of the eigenvalues distribution (5.205) is still valid when we
consider the case of the multitrace matrix model (5.189), with the normalization
condition

R ı
�ı d	�.	/ D 1 still given by the condition (5.203), only with the

substitution (5.191). We have then the eigenvalues distribution

�.	/ D 1



.2g0	

2 C �0 � Qr
4

3
� Qm2 C g0ı

2/
p
ı2 � 	2: (5.242)
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The parameters �0 and g0 are obviously given by

�0 D QbC Qr
2

4
.2 � 
/ ; g0 D Qc � Qr

4

24
.1 � 
/: (5.243)

For stability purposes, we will assume, for simplicity, that g0 is positive definite.
Thus, the domain of definition of the quartic coupling constant Qc is restricted slightly
above zero on the Moyal-Weyl plane.

The normalization condition
R ı

�ı d	�.	/ D 1 is now given by

1 D 1

2

�

�0 � Qr
4

3
� Qm2

�

ı2 C 3

4
g0ı

4: (5.244)

This gives the second moment

Qm2 D �12C 6�0ı
2 C 9g0ı4

2Qr4�ı2 : (5.245)

On the other hand, the second moment must also be given by (with � D �0 �
Qr4� Qm2=3, g D g0)

Qm2 D
Z Cı

�ı
d	�.	/	2

D �ı4 C 2gı6
8

D 1

3
ı2 � �

24
ı4: (5.246)

In the last equation we have used the normalization condition (5.203). In other
words, we have another expression for the second moment given by

Qm2 D 24ı2 � 3�0ı4
72 � Qr4�ı4 : (5.247)

This formula reduces to the original expression, i.e. to Qm2 D ı2=3��0ı4=24, if we
set � D 0. By comparing (5.245) and (5.247) we obtain the condition on ı2 D x as
the solution of a depressed quartic equation given by

Qr4�g0x4 � 72.g0 � Qr
4

18
�/x2 � 48�0xC 96 D 0: (5.248)
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This condition reduces to the condition (5.203), with � D �0 and g D g0, if we
set � D 0 for which the multitrace matrix model (5.189) reduces to an ordinary real
quartic matrix model.8

The eigenvalues distribution (5.242) must always be positive definite, i.e. �.	/ �
0 for all 	 2 Œ�ı; ı�, and thus we need to require that �.0/ � 0. We obtain, using
also (5.245), the analogue of the condition (5.206) given in this case by the equation

�0 � Qr
4

3
� Qm2 C g0ı

2 � 0, x2 � x2� D
4

g0
: (5.249)

Actually, the condition (5.206) itself is rewritten in terms of x D ı2 as x2 �
x2�. Obviously, x� must also be a solution of the quartic equation (5.248). By
substitution, we get the quadratic equation

� 3.g0 � Qr
4

9
�/x2� � 2�0�x� C 4 D 0: (5.250)

We solve this equation for �0� in terms of g0, and Qr4 and �, to obtain

�0� D �2pg0 C �Qr4
3
p
g0
: (5.251)

As expected this is a deformation of the real quartic matrix model critical line�0� D
�2pg0. In terms of the original parameters, we have

Qb� D �Qr
2

4
.2� 
/ � 2

r

Qc � Qr
4

24
.1 � 
/C �Qr4

3

q
Qc � Qr4

24
.1 � 
/

: (5.252)

Several remarks are in order:

• The above critical value �0� is negative for

g0 � �Qr4
6
: (5.253)

• The range of the solution (5.242) is

�0 � �0�: (5.254)

8The case � D 0 can occur, with a non-zero kinetic term, for particular values of
p
! which can

be determined in an obvious way.
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This can be seen as follows. By assuming that � is positive,9 we can start from
Qr4�g0x4 C 4Qr4�x2 � Qr4�g0x4� C 4Qr4�x2�, and use the quartic equation (5.248), to
arrive at the inequality 2.�0x � �0�x�/ � 3g0.x2� � x2/. Since x� � x, we get
immediately (5.254).

• The second moment Qm2 given by Eq. (5.247) is positive definite, for negative
values of �0, if x2 � 72=Qr4�. This is always satisfied for the range (5.249)
provided g0 is restricted as in (5.253).

• The second moment Qm2 given by Eq. (5.245) can be written in the form

Qm2 D 9g0
2Qr4�x .x � xC/.x � x�/: (5.255)

x˙ D 1

3g0
.��0 ˙

q
�20 C 12g0/: (5.256)

Obviously xC > 0 and x� < 0. Thus Qm2 > 0 if x > xC. We know that x D xC for
� D 0. For small �, we can then write x D xC C ��C O.�2/. A straightforward
calculation, using the quartic equation (5.248), gives

� D Qr
4x2C.g0x2C C 4/
72g0.xC � x�/

> 0: (5.257)

Explicit Solution For � ¤ 0, which is equivalent to g0 ¤ 0 or more importantly to
Qr2 ¤ 0, we can define the reduced parameters

˛ D �72.g0 �
Qr4
18
�/

Qr4�g0 ; ˇ D �48�0Qr4�g0 ; � D 96

Qr4�g0 : (5.258)

The above quartic equation (5.248) takes then the form

x4 C ˛x2 C ˇxC � D 0: (5.259)

The four possible solutions are given by

x D
˙1

q
t � 2˛

3
˙2

r

��
tC 4˛

3
˙1 2ˇp

t� 2˛
3

�

2
; (5.260)

where t is a solution of the following cubic equation

t3 � �˛2

3
C 4��

t � �2˛3

27
� 8˛�

3
C ˇ2� D 0: (5.261)

This can be solved numerically. See Appendix.

9The range of
p
! for which � is positive can be determined quite easily.
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5.7.2 The Two-Cut Phase

The eigenvalues distribution, in this case, is still given by (5.219) written now in the
form

�.	/ D 2g0


j	j

q
.	2 � ı21/.ı22 � 	2/: (5.262)

The normalization condition
R ı

�ı d	�.	/ D 1 reads in this case

.ı22 � ı21/2 D
4

g0
: (5.263)

This equation is solved by the solution (5.217) which follows from the requirement
that the resolvent must behave as 1=z in the large z regime. This behavior is still a
requirement in our case and hence (5.217) is still the desired solution in our case.
We write this solution in the form

ı21 D
1

2g0
.��0 C Qr

4

3
� Qm2 � 2pg0/ ; ı

2
2 D

1

2g0
.��0 C Qr

4

3
� Qm2 C 2pg0/:

(5.264)

The second moment is given by

Qm2 D 2
Z ı2

ı1

d	�.	/	2

D g0
8
.ı22 � ı21/2.ı22 C ı21/

D 1

2g0
.��0 C Qr

4

3
� Qm2/: (5.265)

In other words,

Qm2 D �3�0
6g0 � Qr4� : (5.266)

By substituting in the solution (5.264) we get

ı21 D
3

6g0 � Qr4� .��0 � 2
p
g0 C Qr4�

3
p
g0
/ ;

ı22 D
3

6g0 � Qr4� .��0 C 2
p
g0 � Qr4�

3
p
g0
/: (5.267)
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We have ı1 � 0 iff

g0 � Qr
4�

6
: (5.268)

�0 � �0�: (5.269)

�0� D �2pg0 C �Qr4
3
p
g0
: (5.270)

By construction then ı2 � ı1. The above regime (5.268) and critical value (5.270)
agree with the regime and critical value (5.253) and (5.251). The range of � (5.269)
meshes exactly with the range of � of the previous phase given in (5.254).

5.7.3 The Triple Point

Let us summarize some of the most important results so far.
The ˆ4 theory, on the fuzzy sphere S2N;� and on the regularized Moyal-Weyl

plane R2�;�, can be rewritten coherently as the following matrix model

SŒM� D r2KŒM�C Tr


bM2 C cM4

�
: (5.271)

KŒM� D Tr

�p
!�CM�M � 


N C 1�3M�3M C EM2

�

: (5.272)

The first term is precisely the kinetic term. The parameter 
 takes one of two possible
values corresponding to the topology/metric of the underlying geometry, viz 
 D
1 on sphere, and 
 D 0 on plane. The parameters b, c, r2 and

p
! are related

to the mass parameter m2, the quartic coupling constant 	, the noncommutativity
parameter � and the harmonic oscillator parameter�, of the original model, by the
equations

b D 1

2
m2 ; c D 	

4Š

1

2
�
; r2 D 2.�2 C 1/

�
;
p
! D �2 � 1

�2 C 1: (5.273)

Let us discuss the connection between the actions (5.1) and (5.271). We note first
that the original action (5.1) on the fuzzy sphere, with a non zero harmonic oscillator
term, is defined by the Laplacian [45]

� D ŒLa; ŒLa; : : :��C�2ŒL3; ŒL3; : : :��C�2fLi; fLi; : : :gg: (5.274)
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Explicitly we have

S D 4
R2

N C 1Tr
�
1

2R2
ˆ�N;�ˆC 1

2
m2ˆ2 C 	

4Š
ˆ4

�

: (5.275)

Equivalently this action with the substitution ˆ D M=
p
2
� , where M DPN

i;jD1Mijji >< jj, reads

S D Tr

�

aM�N;�MC bM2 C cM4

�

: (5.276)

This is identical to (5.271). The relationship between the parameters a D 1=.2R2/
and r2 is given by r2 D 2a.�2 C 1/N.

The computed effective potential up to the second order in the kinetic parameter
a, or equivalently r2, is given by

�V D r2

4

�

v2;1T2 C 2N

3
w1t2

�

C r4

24

�

v4;1T4 � 4

N2
v2;2T

2
2 C 4w2.t1t3 � t22/

C 4
N
w3t2T2

�

C O.r6/: (5.277)

The complete effective action in terms of the eigenvalues is the sum of the classical
potential, the Vandermonde determinant and the above effective potential. The
coefficients v and w are given by

v2;1 D 2 � 
 � 2
3
.
p
! C 1/.3 � 2
/: (5.278)

v4;1 D �.1 � 
/: (5.279)

v2;2 D w3 C .
p
! C 1/.1 � 
/C 1

12
.! � 1/.9 � 8
/ � 1

8
.2 � 3
/: (5.280)

w1 D .
p
! C 1/.3� 2
/: (5.281)

w2 D �.
p
! C 1/.1� 
/: (5.282)

w3 D .
p
! C 1/.1� 
/ � 1

15
.
p
! C 1/2.15� 14
/: (5.283)

From the Monte Carlo results of Flores et al. [15, 16] on the fuzzy sphere with
�2 D 0, we know that the scaling behavior of the parameters a, b and c appearing
in the action (5.276) is given by

Na D a

Nıa
; Nb D bN2ı	

aN3=2
; Nc D cN4ı	

a2N2
: (5.284)
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We will assume, for now, that the four parameters b, c, r2 and
p
! scale as

Qb D b

Nıb
; Qc D c

Nıc
; Qr2 D r2

Nır
;
p Q! D

p
!

Nı!
: (5.285)

Obviously ır D ıa C 1. Further, we will assume a scaling ı	 of the eigenvalues 	.
Hence, in order for the effective action to come out of order N2, we must have the
following values

ıb D 1 � 2ı	 ; ıc D 1 � 4ı	 ; ır D �2ı	 ; ı! D 0: (5.286)

By substituting in (5.284) we obtain the collapsed exponents

ı	 D �1
4
; ıa D �1

2
; ıb D 3

2
; ıc D 2 ; ıd D �1

2
; ır D 1

2
: (5.287)

As pointed out earlier, it is found in simulations that the scaling behavior of the mass
parameter b and the quartic coupling c is precisely given by 3=2 and 2 respectively.

The saddle point equation corresponding to the sum Vr2;� of the classical
potential and the effective potential (5.277), which also includes the appropriate
scaling and assuming a symmetric support, takes the form

1

N
S0

eff D V 0
r2;� �

2

N

X

i

1

	 � 	i D 0: (5.288)

V 0
r2;�.	/ D 2�	C 4g	3: (5.289)

� D �0 � Qr
4

3
�m2 ; g D g0: (5.290)

This can be derived from the matrix model [9]

Vr2;� D �0TrM2 C g0TrM
4 � Qr

4

6N
�

�

TrM2

�2
: (5.291)

The coefficient � is defined by

� D v2;2 � 3
4
v4;1 C w2 � 1

2
w3

D 1

8
.4 � 3
/ � 1

6
.
p
! C 1/.6 � 5
/C 1

20
.
p
! C 1/2.5 � 4
/: (5.292)

The above saddle point equation (5.288) can be solved using the approach
outlined in [11] for the real single trace quartic matrix model. We only need to
account here for the fact that the mass parameter � depends on the eigenvalues
through the second moment m2. In other words, besides the normalization condition
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which the eigenvalues distribution must satisfy, we must also satisfy the requirement
that the computed second moment m2, using this eigenvalues density, will depend
on the mass parameter � which itself is a function of the second moment m2.

For a concise description of the phase structure of the real quartic matrix model
see [39]. The real quartic multitrace matrix model (5.291) admits the same set of
stable phases. These are given by:

The Disordered Phase The one-cut (disk) solution is given by the equation

�.	/ D 1



.2g0	

2 C 2

ı2
� g0ı2

2
/
p
ı2 � 	2: (5.293)

The radius ı2 D x is the solution of a depressed quartic equation given by

Qr4�g0x4 � 72.g0 � Qr
4

18
�/x2 � 48�0xC 96 D 0: (5.294)

This eigenvalues distribution is always positive definite for

x2 � x2� D
4

g0
: (5.295)

Obviously, x� must also be a solution of the quartic equation (5.294). By substitu-
tion, we get the solution

�0� D �2pg0 C �Qr4
3
p
g0
: (5.296)

This critical value �0� is negative for g0 � �Qr4=6. As expected this line is a
deformation of the real quartic matrix model critical line �0� D �2pg0. By
assuming that the parameter � is positive, the range of this solution is found to
be �0 � �0�.

The Non-Uniform Ordered Phase The two-cut (annulus) solution is given by

�.	/ D 2g0


j	j

q
.	2 � ı21/.ı22 � 	2/: (5.297)

The radii ı1 and ı2 are given by

ı21 D
3

6g0 � Qr4�.��0 � 2
p
g0 C Qr4�

3
p
g0
/ ;

ı22 D
3

6g0 � Qr4�.��0 C 2
p
g0 � Qr4�

3
p
g0
/: (5.298)
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We have ı21 � 0, and by construction then ı22 � ı21 , iff

g0 � Qr
4�

6
; �0 � �0�: (5.299)

The critical value �0� is still given by (5.296), i.e. the range of � of this phase
meshes exactly with the range of � of the previous phase.

Triple Point In the case of the fuzzy sphere,10 i.e. 
 D 1, we have the following
critical line

Qb� D �Qr
2

4
� 2pQcC �Qr4

3
pQc : (5.300)

We recall that r2 D 2a.�2 C 1/N or equivalently Qr2 D 2Qa.�2 C 1/. The above
critical line in terms of the scaled parameters (5.284) reads then

Nb� D ��
2 C 1
2

� 2pNcC 4�.�2 C 1/2
3
pNc : (5.301)

This should be compared with (5.2). The range g0 � Qr4�=6 of this critical line reads
now

Nc � 2�.�2 C 1/2
3

: (5.302)

The termination point of this line provides a lower estimate of the triple point and it
is located at

.Nb; Nc/T D
�

� �
2 C 1
2

;
2�.�2 C 1/2

3

�

: (5.303)

For zero harmonic oscillator, i.e. for the ordinary noncommutative phi-four theory
on the fuzzy sphere with �2 D 0 and

p
! D �1, we have the results

Nb� D �1
2
� 2pNcC 1

6
pNc : (5.304)

Nc � 1

12
: (5.305)

This line is shown on Fig. 5.1. The limit for large Nc is essentially given by (5.2).
As discussed above, the termination point of this line, which is located at .Nb; Nc/T D
.�1=2; 1=12/, yields a lower estimation of the triple point.

10The case of the Moyal-Weyl is similar.
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Fig. 5.1 The disordered-to-non-uniform-ordered (matrix) transition of phi-four theory on the
fuzzy sphere

5.8 The Planar Theory

5.8.1 The Wigner Semicircle Law

A noncommutative phi-four on a d-dimensional noncommutative Euclidean space-
time Rd

� reads in position representation

S D
Z

ddx
�1

2
@iˆ@iˆC 1

2
m2ˆ2 C 	

4
ˆ4�

�
: (5.306)

The first step is to regularize this theory in terms of a finite N -dimensional
matrix ˆ and rewrite the theory in matrix representation. Then we diagonalize
the matrix ˆ. The measure becomes

R Q
i dˆi�

2.ˆ/
R
dU where ˆi are the

eigenvalues, �2.ˆ/ D Q
i<j.ˆi � ˆj/

2 is the Vandermonde determinant and dU is
the Haar measure. The effective probability distribution of the eigenvaluesˆi can be
determined uniquely from the behavior of the expectation values<

R
ddxˆ2n� .x/ >.

In the free theory 	 D 0 we can use Wicks theorem with a sharp UV cutoff ƒ
and a regularized volume V of Rd

� to compute [41]

<

Z

ddxˆ2.x/ >D c.m; ƒ/Vƒd�2: (5.307)
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The most important cases are d D 2 and d D 4 where we have

c.m; ƒ/ D 1

16
2

�
1 � m2

ƒ2
ln.1C ƒ2

m2
/
�
; d D 4: (5.308)

c.m; ƒ/ D 1

4

ln.1C ƒ2

m2
/ ; d D 2: (5.309)

This calculation will involve in general planar and non-planar diagrams. However,
the non-planar contribution is always subleading because it is finite with the
exception of possible divergences arising in the limit p �! 0 due to the UV-IR
mixing. From a technical point of view non-planar diagrams always involve rapidly
oscillating exponential and thus are finite and subleading in the large ƒ limit. For
example we compute

<

Z

ddxˆ4�.x/ > D <
Z

ddxˆ4�.x/ >pla C <
Z

ddxˆ4�.x/ >non�pla

D <
Z

ddxˆ4�.x/ >pla

D 2c.m; ƒ/2Vƒ2.d�2/: (5.310)

Hence, we have the ratio

< 1
V

R
ddxˆ4�.x/ >

< 1
V

R
ddxˆ2.x/ >2

D 2C : : : (5.311)

This is generalized as

< 1
V

R
ddxˆ2n� .x/ >

< 1
V

R
ddxˆ2.x/ >n

D Npla.2n/C : : : (5.312)

Npla.2n/ is the number of planar contractions of a vertex with 2n legs. In the
commutative theory Npla.2n/will be replaced by the total number of contractions of
a vertex with 2n legs, since we have the same contributions from planar and non-
planar diagrams, which is given by 2nnŠ >> Npla.2n/.

We must also have in the large ƒ limit the cluster property. In other words,
expectation values of products <

R
ddxˆ2n1� .x/ : : :

R
ddxˆ2nk� .x/ > will factorize

in the limit ƒ �!1 as follows

< 1
V

R
ddxˆ2n1� .x/ : : : 1V

R
ddxˆ2nk� .x/ >

< 1
V

R
ddxˆ2.x/ >n1 : : : < 1

V

R
ddxˆ2.x/ >nk

D Npla.2n1/ : : :Npla.2nk/C : : :

(5.313)
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In the matrix representation of the noncommutative theory the integral is replaced
by a regularized and normalized trace in an N -dimensional Hilbert space as follows

1

V

Z

ddxf .x/ D 1

N Trf : (5.314)

f is the operator representation of the function f .x/. Hence, the observables

1

V

Z

ddxˆ2n1� .x/ : : :
1

V

Z

ddxˆ2nk� .x/ (5.315)

get replaced by

1

N Trˆ2n1 : : : Trˆ2nk : (5.316)

These clearly depend only on the eigenvaluesˆi of the matrixˆ. The corresponding
expectation values are then given in terms of an effective eigenvalues distribution
�.ˆ1; : : : ; ˆN / by the formula

<
1

N Trˆ2n1 : : :
1

N Trˆ2nk > D
Z

dˆ1 : : : dˆN�.ˆ1; : : : ; ˆN /

1

N
X

ˆ
2n1
i : : :

1

N
X

ˆ
2nk
i : (5.317)

For example,

<
1

N Trˆ2 > D
Z

dˆ1 : : : dˆN�.ˆ1; : : : ; ˆN /
1

N
X

ˆ2i

D c.m; ƒ/ƒd�2 � 1

4
˛20.m/: (5.318)

We redefine the field as

ˆ D ˛0': (5.319)

The above expectation value becomes

<
1

N Tr'2 >D 1

4
: (5.320)

In fact, with this normalization all expectation values become finite in the limit
N �!1. In this limit N �!1 the eigenvalue 'i becomes a function '.s/ where
s D i=N 2 Œ0; 1� and hence

P
i f .'i/=N D

R 1
0
dsf .'/. The measure �.'1; : : : ; 'N /

becomes then a measure �Œ'.s/� on the space of functions ' W Œ0; 1� �! R.
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A density of eigenvalues � can be introduced by

�.'/ D ds

d'
;

Z

dt�.t/ D 1: (5.321)

The cluster property implies that the measure �.'1; : : : ; 'N / is localized, namely

< f .'i/ >D f . N'.s//; (5.322)

where N'.s/ is a sharp and dominant saddle point of �Œ'.s/�. This saddle point
corresponds to the desired eigenvalues distribution

�. N'/ D ds

d N' ;
Z

dt�.t/ D 1: (5.323)

The various expectation values can then be computed by the formula

<
1

N Trf .'/ >D
Z 1

0

dsf . N'.s// D
Z

dt�.t/f .t/: (5.324)

By using this last equation in the result (5.312) we obtain

Z 1

0

ds N'2n.s/ D Npla.2n/

� Z 1

0

ds N'2.s/
�n

D Npla.2n/.
1

4
/n: (5.325)

In other words,

Z

dt�.t/t2n D Npla.2n/.
1

4
/n: (5.326)

A solution is given by the famous Wigner semi-circle law given by

�.t/ D 2




p
1 � t2 ; � 1 � t � C1: (5.327)

Indeed, we can check that

2




Z

dt
p
1 � t2t2n D �.nC 1=2/

�.nC 2/

D Npla.2n/.
1

4
/n: (5.328)

Hence the eigenvalues ˆi are distributed in the interval Œ�˛0;C˛0�, i.e. ˛0 is
the largest eigenvalue of ˆ. Furthermore, it is well established that the Wigner
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semi-circle law can be obtained in the large N limit of the matrix model

S D 2N
˛20

Trˆ2: (5.329)

Now we include weak interactions which do not disturb the Wigner semi-circle law.
First, we compute

<

Z

ddxˆ2n� .x/ >	 D
<

R
ddxˆ2n� .x/ exp.�	

4

R
ddxˆ4�/ >

< exp.�	
4

R
ddxˆ4�/ >

: (5.330)

By assuming the applicability of the various laws established previously, in particu-
lar the cluster property, we obtain immediately

<

Z

ddxˆ2n� .x/ >	 D <
Z

ddxˆ2n� .x/ > : (5.331)

The eigenvalues sector of the original theory (5.306) can then be replaced with the
matrix model

S D 2N
˛20

Trˆ2 C 	

4

V

N Trˆ4: (5.332)

This model can be used following [41] to discuss renormalizability and critical
behavior of the original theory (5.306). This discussion requires an explicit defi-
nition of the regulator used. There are two main regulators which we can use to
define non perturbatively the Moyal-Weyl spaces R2n� and their noncommutative
field theories. These are fuzzy projective spaces and fuzzy tori which we will discuss
next.

5.8.2 Introducing Fuzzy Projective Spaces

CPn are adjoint orbits of SU.n C 1/ which are compact symplectic spaces. The
sphere is precisely the first projective space CP1. The space of CPn harmonics is
given by

C1.CPn/ D ˚pD1
pD0 Vp;0;:::;0;p: (5.333)

Fuzzy CPn are finite matrix algebras Hom.VN/ where VN are some representations
of su.nC 1/. We can show that VN D V.N; 0; : : : ; 0/ and as a consequence

Hom.VN/ D VN ˝ V�
N

D ˚pDN
pD0 Vp;0;:::;0;p

D CPn
N : (5.334)
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Obviously

CPn
N D Mat.N ;C/ ; N D .N C n/Š

NŠnŠ
' Nn

nŠ
: (5.335)

The coordinate functions xa, a D 1;N2 C 2N, on fuzzy CPn are proportional to the
generators of su.nC 1/, and thus satisfy in the normalization of Steinacker [41] the
equations

Œxa; xb� D iƒNfabcxc ; xaxa D R2 ; dabcxaxb D .n � 1/. N

nC 1 C
1

2
/ƒNxc:

(5.336)

In the above equations ƒN D R=
p
nN2=2.nC 1/C nN=2. The noncommutativity

parameter is defined by

R2 D N�
n

nC 1: (5.337)

The noncommutative Moyal-Weyl space R2n� is obtained in the limit R;N �! 1
keeping � fixed near the north pole.

The Laplacian on fuzzy CPn is given in terms of the rotation generators Ja of
SU.nC 1/ by the formula

� D c

R2
ŒJa; ŒJa; ::�� ; c D 2n

nC 1: (5.338)

The corresponding eigenvalues, eigenvectors and multiplicities are given by

�fk D c

R2
k.kC 1/fk ; fk 2 Vk;0;::::;0;k: (5.339)

dimVk;0;::::;0;k D 2kC n

n

� .kC n � 1/Š
kŠ.n � 1/Š

�2 ' 2

.n � 1/Š2nk
2n�1: (5.340)

We can now compute on fuzzy CPn the observable

<

Z

CPn
N

ddxˆ2.x/ >D V

22n�1
n.n � 1/Š
Z ƒ

0

dx
x2n�1

x2 C m2
: (5.341)

The variable x is related to the quantum number k by x D pck=R and thus the cutoff
ƒ is given by

ƒ D pc
N

R
D

r
2N

�
: (5.342)
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The volume of CPn is given by

V D .2.nC 1/
n

/n

n

nŠ
R2n: (5.343)

From these results we obtain immediately

Z

CPn
N

D V

N Tr D .2
�/nTr; (5.344)

which is precisely what we need if fuzzy CPn is to be a regularization of R2n� . We
also remark that the result (5.341) agrees precisely with (5.307) and thus (5.308)
and (5.309) can be used on fuzzy CPn with the above definition of V and ƒ.

5.8.3 Fuzzy Tori Revisited

We consider a toroidal lattice with lattice spacing a and N sites in every dimensions.
The lattice size is then L D Na. We consider the unitary operators

Zi D exp.i
2


L
xi/ ; Z

N
i D 1: (5.345)

The second condition simply restricts the points to xi 2 aZ. We have immediately
the commutation relations

Œxi; xj� D i�ij , ZiZj D exp.�2
i‚ij/ZjZi ; ‚ D 2


L2
�: (5.346)

We consider the case �ij D �Qij in two and four dimensions where

Q D
�
0 1

�1 0
�

; Q D

0

B
B
@

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

1

C
C
A : (5.347)

The momentum in each direction will be assumed to have the usual periodicity, viz

ki D 2
mi

aN
: (5.348)

The period of mi is exactly N. The range of mi is Œ0;N � 1� or equivalently Œ�.N �
1/=2;C.N�1/=2� and hence we obtain in the large lattice limit L �!1 the cutoff

ƒ D 


a
: (5.349)



5.8 The Planar Theory 267

The quantization of the noncommutativity parameters � and ‚ are given by

� D Na2



; ‚ D 2

N
: (5.350)

In other words, we have rational noncommutativity‚, for N > 2, and hence a finite
dimensional representation of the algebra of the noncommutative torus exists. In
general we require N to be odd for ‚ to come out rational and thus be guaranteed
the existence of the fuzzy torus. The cutoff in this case becomes

ƒ D
r

N


�
: (5.351)

This is consistent with the result of the fuzzy CPn.
The full Heisenberg algebra of the noncommutative torus includes also the fuzzy

derivative operators

Dj D exp.a@j/ ; DjZiD
C
j D exp.

2
iıij
N

/Zi: (5.352)

In two dimensions a finite dimensional N �N representation is given in terms of the
clock and shift operators (with ! D exp.2
i‚/)

�1 D

0

B
B
B
B
B
B
B
B
B
@

0 1

0 0 1

: :

: :

: :

0 1

1 : : : 0

1

C
C
C
C
C
C
C
C
C
A

; �2 D

0

B
B
B
B
B
B
B
B
B
@

1

!

!2

!3

:

:

:

1

C
C
C
C
C
C
C
C
C
A

; (5.353)

by

Z1 D �2 ; Z2 D �1 ; D1 D .�1/ NC1
2 ; D2 D .�C

2 /
NC1
2 : (5.354)

The solution in four dimensions is obtained by taking tensor products of these. Thus
a real scalar fieldˆ on the fuzzy torus is a hermitianN�N matrix whereN D Nd=2,
i.e. the space of functions on the fuzzy torus is Mat.N ;C/. Furthermore, the integral
is defined by the usual formula

Z

fuzzy torus
D .2
�/d=2Tr: (5.355)
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A basis of Mat.N ;C/ is given by the plane waves on the fuzzy torus defined by

�Em D
1

Nd=4

dY

iD1
Zmi
i

Y

i<j

exp.
2
i

N
Qijmimj/ � 1

Nd=4
exp.ikixi/: (5.356)

They satisfy

�C
Em D ��Em ; Tr�C

Em �Em0 D ıEmEm0 : (5.357)

A noncommutativeˆ4 theory on the fuzzy torus is given by

S D .2
�/d=2Tr
�
1

2a2
X

i

.DiˆD
C
i �ˆ/2 C

m2

2
ˆ2 C 	

4
ˆ4

�

: (5.358)

We expand the scalar field ˆ in the plane waves �Em as

ˆ D
X

Em
ˆEm�Em: (5.359)

We compute immediately

DiˆD
C
i D

X

Em
ˆEmDi�EmDC

i

D
X

Em
ˆEm�Em exp.

2
imi

N
/: (5.360)

Hence

Tr.DiˆD
C
i /

2 D
X

Em
ˆEmˆC

Em

D Trˆ2: (5.361)

Thus the action can be rewritten as

S D .2Na2/d=2Tr
�
1

a2
X

i

.ˆ2 � DiˆD
C
i ˆ/C

m2

2
ˆ2 C 	

4
ˆ4

�

: (5.362)

We compute the kinetic term and the propagator given respectively by

1

2

X

Em
ˆEmˆC

Em

�
2

a2
X

i

.1 � cos aki/C m2
�

: (5.363)
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< ˆEmˆC
Em0 >D

ıEkıEk0

2
a2

P
i.1 � cos aki/Cm2

: (5.364)

Thus the behavior of the propagator for large momenta is different and as a
consequence the calculation of ˛20 on fuzzy tori will be different from the result
obtained using a sharp cutoff. We get [41]

<

Z

fuzzy torus
d2xˆ2.x/ >D V

Z 


0

d2r

.2
/2
1

P
i.1 � cos ri/C m2a2=2

; d D 2:
(5.365)

<

Z

fuzzy torus
d4xˆ2.x/ >D Vƒ2




Z 


0

d4r

.2
/4
1

P
i.1 � cos ri/Cm2a2=2

; d D 4:
(5.366)

5.9 The Non-perturbative Effective Potential Approach

This is due to Nair-Polychronakos-Tekel [34, 37, 42, 43]. Let us start with the action

S D Tr
�1

2
rM2 C gM4

� D
X

i

�1

2
rx2i C gx4i

�
: (5.367)

We define the moments mn by

mn D TrMn D
X

i

xni : (5.368)

By assuming that K.1/ D 0 and that odd moments are zero we get immediately

Z

dU exp
� � 1

2
TrMKM

� D exp.�Seff.t2n// ; t2n D Tr
�
M � 1

N
TrM

�2n
:(5.369)

Let us first consider the free theory g D 0 following [34]. In the limit N �! 1
we know that planar diagrams dominates and thus the eigenvalues distribution of M,
obtained via the calculation of TrMn, is a Wigner semicircle law

�.x/ D 2N


R2W

q
R2W � x2; (5.370)
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with radius given by

R2W D
4f .r/

N
; f .r/ D

N�1X

lD0

2lC 1
K.l/C r

: (5.371)

Now the equation of motion of the eigenvalue xi arising from the effective action
Seff contains a linear term in xi plus the Vandermonde contribution plus higher order
terms. Explicitly, we have

X

n

@Seff

@t2n
2nx2n�1

i D 2
X

i¤j

1

xi � xj
: (5.372)

We consider now g ¤ 0 following [37]. The semicircle distribution is a solution
for g ¤ 0 since it is a solution for g D 0. The term n D 1 alone will give the
semicircle law. Thus the terms n > 1 are cubic and higher order terms which cause
the deformation of the semicircle law. These terms must vanish when evaluated
on the semicircle distribution in order to guarantee that the semicircle distribution
remains a solution. We rewrite the action Seff as the following power series in the
eigenvalues

Seff D a2t2 C .a4t4 C a22t
2
2/C .a6t6 C a42t4t2 C a222t

3
2/

C.a8 C a62t6t2 C a422a4t
2
2 C a2222t

4
2/C : : : (5.373)

We impose then the condition

@Seff

@t2n
jWigner D 0 ; n > 1: (5.374)

We use the fact that the moments in the Wigner distribution satisfy

t2n D Cnt
n ; Cn D .2n/Š

nŠ.nC 1/Š : (5.375)

We get immediately the conditions

a4 D 0 ; a6 D a42 D 0 ; a8 D a62 D 0 ; 4a44 C a422 D 0 ; : : : : (5.376)

By plugging these values back into the effective action we obtain the form

Seff D 1

2
F.t2/C .b1 C b2t2/.t4 � 2t22/2 C c.t6 � 5t32/.t4 � 3t22/C : : : (5.377)

Thus the effective action is still an arbitrary function F.t2/ of t2 but it is fully fixed
in the higher moments t4, t6,. . . . The action up to 6 order in the eigenvalues depends
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therefore only on t2, viz

Seff D 1

2
F.t2/C : : : (5.378)

We note that the extra terms vanish for the Wigner semicircle law. The full effective
action is therefore

Seff D 1

2
F.t2/C Tr

�1

2
rM2 C gM4

�C : : :

D 1

2
F.0/C Tr

�1

2
.rC F0.0//M2 C gM4

�C 1

4
F00.0/.TrM2/2 C : : :

(5.379)

The equations of motion of the eigenvalues for g D 0 read now explicitly

X

n

@Seff

@t2n
2nx2n�1

i D @Seff

@t2
2xi

D .F0.t2/C r/xi

D 2
X

i¤j

1

xi � xj
: (5.380)

The radius of the semicircle distribution is immediately obtained by

R2W D
4N

F0.t2/C r
: (5.381)

By comparing (5.371) and (5.381) we obtain the self-consistency equation

4f .r/

N
D 4N

F0.t2/C r
: (5.382)

Another self-consistency condition is the fact that t2 computed using the effective
action Seff for g D 0, i.e. using the Wigner distribution, should give the same value,
viz

t2 D TrM2

D
Z RW

�RW

dxx2�.x/

D N

4
R2W

D N2

F0.t2/C r
: (5.383)
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We have then the two conditions

F0.t2/C r D N2

t2
; t2 D f .r/: (5.384)

The solution is given by

F.t2/ D N2
Z

dt2.
1

t2
� 1

N2
g.t2//: (5.385)

g.t2/ is the inverse function of f .r/, viz f .g.t2// D t2.
For the case of the fuzzy sphere with a kinetic term K.l/ D l.lC 1/ we have the

result

f .r/ D ln
�
1C N2

r

�
: (5.386)

Thus the corresponding solution is explicitly given by

F.t2/ D N2 ln
t2

1 � exp.�t2/ : (5.387)

The full effective action on the sphere is then

Seff D N2

2
ln

t2
1 � exp.�t2/ C Tr

�1

2
rM2 C gM4

�C : : :

D N2

2

�
t2
2
� ln

exp.t=2/� exp.�t=2/
t

�

C Tr
�1

2
rM2 C gM4

�C : : :

D N2

2

�
t2
2
� 1

24
t22 C

1

2880
t42 C : : :

�

C Tr
�1

2
rM2 C gM4

�C : : : (5.388)

This should be compared with the result of Ydri [46] with action given by
aTrMKM C bTrM2 C cTrM4 and effective action given by their Eq. .3:12/ or
equivalently

V0 C�V0 D
�
aN2

2
TrM2 � a2N2

12
.TrM2/2 C : : :

�

C Tr
�
bM2 C cM4

�C : : :

(5.389)

It is very strange that the author of [37] notes that their result (5.388) is in agreement
with the result of O’Connor and Saemann [35], given by equation .4:5/, which
involves the term T4 D P

i¤j.xi � xj/4=2. It is very clear that T4 is not present in
the above Eq. (5.388) which depends instead on the term T22 where T2 DP

i¤j.xi �
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xj/2=2. The work [38] contains the correct calculation which agrees with both the
results of [37] and [46].

The one-cut-to-two-cut phase transition derived from the effective action Seff will
be appropriately shifted. The equation determining the critical point is still given,
as before, by the condition that the eigenvalues distribution becomes negative. We
get [37]

r D �5pg � 1

1 � exp.1=
p
g/
: (5.390)

For large g we obtain

r D �1
2
� 4pgC 1

12
p
g
C : : : : (5.391)

This is precisely the result obtained in [46] with the identification a D 1, b D r and
c D 4g.

The above discussion can be generalized in a straightforward way to all CPn.
See for example [43]. The effective action and the properties of the one-cut-to-
two-cut transition can be calculated to any order in t2 as a perturbative power
series. The result obtained in [43] agrees with the previous result found in [38].
However, the elegant non-perturbative method of Tekel [43] is more transparent
and compact and thus possible errors in the coefficients of the effective action can
be easily spotted and cross checked. The only drawback is that this method does
not allow the calculation of the odd contributions, i.e. terms in the effective action
which depend on odd moments, which are crucial, in our opinion, to the existence
of the uniform ordered phase. These terms can still be calculated with the method
developed in [38].
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Chapter 6
Noncommutative Gauge Theory

Abstract In this chapter we present a reasonably detailed introduction to noncom-
mutative gauge theory on the Moyal-Weyl spaces Rd

� and on the noncommutative
tori Td

� . An initiation to noncommutative gauge theory on the fuzzy sphere is also
included.

6.1 Gauge Theory on Moyal-Weyl Spaces

The basic noncommutative gauge theory action of interest to us in this article can
be obtained from a matrix model of the form (see [14] and references therein)

S D
p
�ddet.
B/

2g2
TrH OF2ij D

p
�ddet.
B/

2g2
TrH

�

iŒ ODi; ODj� � 1
�
B�1
ij

�2

: (6.1)

Here i; j D 1; : : : ; d with d even and � has dimension of length squared so that the
connection operators ODi have dimension of .length/�1. The coupling constant g is
of dimension .mass/2� d

2 and B�1 is an invertible tensor which in 2 dimensions is
given by B�1

ij D 
�1
ij D �
ij while in higher dimensions is given by

B�1
ij D

0

B
B
@

�
ij
:

:

�
ij

1

C
C
A : (6.2)

The operators OAi belong to an algebra A. The trace is taken over some infinite
dimensional Hilbert space H and hence TrHŒ ODi; ODj� is¤0 in general, i.e. TrHŒ ODi; ODj�

is in fact a topological term [11]. Furthermore we will assume Euclidean signature
throughout.

Minima of the model (6.1) are connection operators ODi D OBi satisfying

iŒ OBi; OBj� D 1

�
B�1
ij : (6.3)
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We view the algebra A as A D Matn.C/ ˝ An. The trace TrH takes the form
TrH D TrnTrHn where Hn is the Hilbert space associated with the elements of An.
The configurations ODi D OBi which solve Eq. (6.3) can be written as

OBi D � 1
�
B�1
ij Oxj ˝ 1n: (6.4)

The operators Oxi which are elements of An can be identified with the coordinate
operators on the noncommutative Moyal-Weyl space Rd

� with the usual commuta-
tion relation

ŒOxi; Oxj� D i�Bij: (6.5)

Derivations on Rd
� are defined by

O@i D i OBi: (6.6)

Indeed we compute

Œ O@i; Oxj� D ıij: (6.7)

The sector of this matrix theory which corresponds to a noncommutativeU.n/ gauge
field on Rd

� is therefore obtained by expanding ODi around OBi ˝ 1n. We write the
configurations

ODi D � 1
�
B�1
ij Oxj˝1n C OAi; OAC

i D OAi: (6.8)

The operators OAi are identified with the components of the dynamical U.n/
noncommutative gauge field. The correspondingU.n/ gauge transformations which
leave the action (6.1) invariant are implemented by unitary operators U D
exp.iƒ/ ; UUC D UCU D 1 ; ƒC D ƒ which act on the Hilbert space H D
Hn˚: : :˚Hn as ODi�!U ODiUC, i.e. OAi�!U OAiUC�iUŒO@i;UC� and OFij�!U OFijUC.
In other words U.n/ in this setting must be identified with U.Hn ˚ : : :˚Hn/. The
action (6.1) can be put into the form

S D
p
�ddet.
B/

4g2
TrHn.

OFC
ij /
2: (6.9)

The curvature OFC
ij where C is a U.n/ index which runs from 1 to n2 is given by

OFC
ij D ŒO@i; OAC

j � � ŒO@j; OAC
i � �

1

2
fABCf OAA

i ;
OAB
j g C

i

2
dABCŒ OAA

i ;
OAB
j �: (6.10)
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In calculating OFC
ij we used ŒTA;TB� D ifABCTC, fTA;TBg D dABCTc and TrTATB D

ıAB
2

. More explicitly we have defined Ta D 	a
2

for the SU.n/ part and T0 D 1p
2n
1n

for the U.1/ part. The symbols dABC are defined such that dabc are the usual SU.n/

symmetric symbols while dab0 D da0b D d0ab D
q

2
nıab, da00 D 0 and d000 D

q
2
n .

Finally it is not difficult to show using the Weyl map, viz the map between oper-
ators and fields, that the matrix action (6.9) is precisely the usual noncommutative
U.n/ gauge action onRd

� with a star product� defined by the parameter �Bij [14, 29].
In particular the trace TrHn on the Hilbert space Hn can be shown to be equal to the
integral over spacetime. We get

S D 1

4g2

Z

ddx .FC
ij /
2 ; FC

ij D @iAC
j � @jAC

i �
1

2
fABCfAA

i ;A
B
j g� C

i

2
dABCŒA

A
i ;A

B
j ��:

(6.11)

Let us note that although the dimensions dimH and dimHn of the Hilbert spaces
H and Hn are infinite the ratio dimH=dimHn is finite equal n. The number of
independent unitary transformations which leave the configuration (6.4) invariant is
equal to dimH� dimHn� n2. This is clearly less than dimH for any n � 2. In other
words from entropy counting the U.1/ gauge group (i.e. n D 1) is more stable than
all higher gauge groups. The U.1/ gauge group is in fact energetically favorable
in most of the finite N matrix models which are proposed as non-perturbative
regularizations of (6.1). Stabilizing U.n/ gauge groups requires adding potential
terms to the action. In the rest of this section we will thus consider only the U.1/
case for simplicity.

6.2 Renormalized Perturbation Theory

6.2.1 The Effective Action and Feynman Rules

The equations of motion are given by

ıS� D � i

g2

Z

ddxtr


ıA� � ŒD�;F����

�H)ŒD�;F���� D 0: (6.12)

We recall that D� D �i@� C A� and ŒD�; f �� D �i@�f C ŒA�; f ��. Let us now write

A� D A.0/� C A.1/� : (6.13)

The background field A.0/� satisfies the classical equations of motion, viz

ŒD.0/� ;F
.0/
�� �� D 0 and A.1/� is a quantum fluctuation. Using the fact that one can

always translate back to the operator formalism where
R
ddxtr behaves exactly like



280 6 Noncommutative Gauge Theory

a trace we can compute

Z

ddxtrŒD.0/� ;A
.1/
� �� � ŒD.0/� ;A.1/� �� D

Z

ddxtr

�

ŒD.0/� ;A
.1/
� �� � ŒD.0/� ;A.1/� ��

�ŒA.1/� ;A.1/� �� � ŒD.0/� ;D.0/� ��
�

D
Z

ddxtr

�

ŒD.0/� ;A
.1/
� �� � ŒD.0/� ;A.1/� ��

�iF.0/�� ŒA.1/� ;A.1/� ��
�

: (6.14)

Hence, we compute up to quadratic terms in the fluctuation the action

S� ŒA� D S� ŒA
.0/�

C 1

2g2

Z

ddxtr

�

ŒD.0/� ;A
.1/
� �� � ŒD.0/� ;A.1/� �� � ŒD.0/� ;A.1/� �� � ŒD.0/� ;A.1/� ��

C2iF.0/�� � ŒA.1/� ;A.1/� ��
�

: (6.15)

The linear term vanishes by the equations of motion. The gauge symmetry A0
� D

U � A� � UC � iU � @�UC reads in terms of the background and the fluctuation
fields as follows

A.0/� �!A.0/�

A.1/� �!U � A.1/� � UC C U � ŒD.0/� ;UC��: (6.16)

This is in fact a symmetry of the full action S� ŒA� and not a symmetry of the
truncated version written above. This also means that we have to fix a gauge
which must be covariant with respect to the background gauge field. We choose
the Feynamn-’t Hooft gauge given by the actions

Sgf D 1

2g2

Z

ddxtrŒD.0/� ;A
.1/
� �� � ŒD.0/� ;A.1/� ��

Sgh D � 1
g2

Z

ddxtr

�

Nc � D.0/� D.0/� cC Nc � ŒA.1/� ; ŒD.0/� ; c����
�

: (6.17)

The partition function is therefore given by

ZŒA.0/� D e�S� ŒA.0/�
Z

DA.1/DcDNc e� 1

2g2
.SdiamCSpara/

: (6.18)
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In above the actions Sdiam and Spara are given by

Sdiam D
Z

ddxtr

�

ŒD.0/� ;A
.1/
� �� � ŒD.0/� ;A.1/� �� � 2Nc � .D.0/� /2c

�

Spara D 2

Z

ddxtr


F.0/�� � A.1/	 � .S��/	�A.1/�

�
: (6.19)

.S��/	� D i.ı�	ı�� � ı��ı�	/ can be interpreted as the generators of the Lorentz
group in the spin one representation after Wick rotating back to Minkowski
signature.

The one-loop effective action can be easily obtained from the above partition
function. We find the result

�� D S� ŒA
.0/� � 1

2
TrdTRLog

�

.D.0//2ıij C 2iF .0/
ij

�

C TRLog.D.0//2: (6.20)

The operators .D.0//2 D D.0/
i D.0/

i , D.0/
i and F .0/

ij are defined through a star-
commutator and hence even in the U.1/ case the action of these operators is not
trivial. For example D.0/

i .A
.1/
j /�ŒD.0/i ;A

.1/
j �� D �i@iA.1/j C ŒA.0/i ;A

.1/
j ��. The trace

Trd is the trace associated with the spacetime index i and TR corresponds to the
trace of the different operators on the Hilbert space.

We find now Feynman rules for the noncommutativeU.1/ gauge theory. We start
with the diamagnetic part Sdiam of the action. This part of the action describes in a
sense the motion of the d � 2 physical degrees of freedom of the fluctuation field
A.1/� in the background field A.0/� which is very much like Landau diamagnetism.
This can also be seen from the partition function

Z

DA.1/DcDNc e� 1

2g2
Sdiam D 


det.D.0/� /
2
��D�2

2 : (6.21)

The paramagnetic part Spara of the action describes the coupling of the spin one
noncommutative current A.1/	 � .S��/�	A.1/� to the background field A.0/� . This term is
very much like Pauli paramagnetism.

We write the diamagnetic action as follows

Sdiam D
Z

ddx

�

A.1/� @
2A.1/� � 2i@�A.1/� ŒA.0/� ;A.1/� ��

CŒA.0/� ;A.1/� �2� C 2Nc@2cC 2iNc@�
�
ŒA.0/� ; c��

�

C2iNcŒA.0/� ; @�c�� � 2NcŒA.0/� ; ŒA.0/� ; c����
�

: (6.22)
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In momentum space we introduce the Fourier expansions

A.0/� D
Z

k
B�.k/e

ikx ; A.1/� D
Z

k
Q�.k/e

ikx ; c D
Z

k
C.k/eikx ; Nc

D
Z

k

NC.k/eikx ;
Z

k
�

Z
ddk

.2
/d
: (6.23)

We also use the identities

eikx � eipx D e� i
2 �

2k^pei.kCp/x ; Œeikx; eipx��

D �2i sin
��2

2
k^p�

ei.kCp/x ; k^p D ���k�p�:
(6.24)

We compute now the following propagators

� 1

2g2

Z

ddxA.1/� @
2A.1/� D �

1

2

Z

k
Q�.k/

� � 1

g2
k2

�
Q�.�k/H)� g2

ı��

k2

� 1

2g2

Z

ddx 2Nc@2c D �
Z

k

NC.k/� � k2

g2
�
C.�k/H)� g2

k2
: (6.25)

The vertex V.BQQ/ is defined by

� 1

2g2

Z

ddx

�

� 2i@�A.1/� ŒA.0/� ;A.1/� ��
�

D
Z

k;p;q
ık;p;qV�	�.BQQ/

1

2
Q�.k/Q	.q/B�.p/

V�	�.BQQ/ D � 2ig2 .k � q/�ı�	 sin
��2

2
k^q�

: (6.26)

We have used the notation ık1;k2;:::;kn D .2
/dıd.k1 C k2 C : : : C kn/. The vertex
V.QQBB/ is defined by

� 1

2g2

Z

ddxŒA.0/� ;A
.1/
� �

2� D
Z

k;p;q;l
ık;p;q;lV�	��.QQBB/

1

4
B�.k/B	.q/Q�.p/Q�.l/

V�	��.QQBB/ D 4

g2
ı�	ı��

�

sin
��2

2
k^p�

sin
��2

2
q^l�

Csin
��2

2
q^p�

sin
��2

2
k^l�

�

: (6.27)
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The vertex V.CCB/ is given by

� 1

2g2

Z

ddx2iNc
�

@�ŒA
.0/
� ; c�� C ŒA.0/� ; @�c��

�

D
Z

k;p;l
ık;p;lV�.CCB/ NC.k/B�.p/C.l/

V�.CCB/ D � 2i
g2
.l � k/�sin

� �2

2
p^l�:

(6.28)

The vertex V.CCBB/ is given by

1

2g2

Z

ddx 2NcŒA.0/� ; ŒA.0/� ; c���� D
Z

k;p;q;l
ık;p;q;lV��.CCBB/

1

2
B�.l/B�.p/ NC.k/C.q/

V��.CCBB/ D 4

g2
ı��

�

sin
��2

2
l^k�sin

��2

2
p^q�

Csin
��2

2
p^k�sin

��2

2
l^q�

�

: (6.29)

To calculate the paramagnetic vertex we write

F.0/�� D
Z

k
F��.k/e

ikx: (6.30)

Then

� 1

2g2
Spara D � 1

g2

Z

ddx F�� � A.1/	 � .S��/	�A.1/�

D
Z

k;p;q
ık;p;qV��	�.FQQ/

1

2
F��.k/Q	.p/Q�.q/

V��	�.FQQ/ D � 2
g2
.ı��ı�	 � ı�	ı��/sin

��2

2
k^q�

: (6.31)

6.2.2 Vacuum Polarization

The contribution of the diamagnetic vertices to the vacuum polarization tensor is
given by four different diagrams. The graph with two BQQ vertices is equal to

…��.p/.BQQ/ D .1
2
/.4d/

Z

k
sin2

��2

2
k^p� .2k � p/�.2k � p/�

k2.p � k/2
: (6.32)
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The graph with one BBQQ vertex is equal to

…��.p/.BBQQ/ D .1
2
/.�8dı��/

Z

k
sin2

��2

2
k^p� 1

k2
: (6.33)

The graph with two BCC vertices is equal to

…��.p/.BCC/ D .�1/.4/
Z

k
sin2

��2

2
k^p� .2k � p/�.2k � p/�

k2.p � k/2
: (6.34)

The graph with one BBCC vertex is equal to

…��.p/.BBCC/ D .�1/.�8ı��/
Z

k
sin2

��2

2
k^p� 1

k2
: (6.35)

These contributions add to the diamagnetic polarization tensor

…diam
�� .p/ D 2.d � 2/

Z

k
sin2

��2

2
k^p�

�
.p � 2k/�.p � 2k/�

k2.p � k/2
� 2

k2
ı��

�

:

(6.36)

Using the identity 4sin2˛ D 2 � e2i˛ � e�2i˛ we can rewrite this result as a
sum of planar and non-planar contributions corresponding to planar and non-planar
diagrams respectively. We have then

…diam
�� .p/ D …diam;P

�� .p/C…diam;NP
�� .p/

…diam;P
�� .p/ D .d � 2/

Z

k

�
.p � 2k/�.p � 2k/�

k2.p � k/2
� 2

k2
ı��

�

…diam;NP
�� .p/ D �.d � 2/

Z

k
cos

�
�2k^p�

�
.p � 2k/�.p � 2k/�

k2.p� k/2
� 2

k2
ı��

�

:

(6.37)

We write now

1

k2.p � k/2
D

Z 1

0

dx
1

.P2 ��/2 ; P D k � px ; � D x.x � 1/p2: (6.38)

Then we compute

…diam;P
�� .p/ D �.d � 2/.p2ı�� � p�p�/

Z 1

0

dx.1 � 2x/2
Z

P

1

.P2 ��/2

C.d � 2/
Z 1

0

dx
Z

P

1

.P2 ��/2


4P�P� � 2.P2 ��/ı��

�
:

(6.39)
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…diam;NP
�� .p/ D .d � 2/.p2ı�� � p�p�/

Z 1

0

dx.1� 2x/2
Z

P

ei�
2P^p

.P2 ��/2

�.d � 2/
Z 1

0

dx
Z

P

ei�
2P^p

.P2 ��/2


4P�P� � 2.P2 ��/ı��

�
:

(6.40)

In above we have used the fact that
R 1
0 dx.�1 C 2x/ 1

.P2��/2 D 0. Introducing also
the Laplace transforms

1

P2 �� D
Z 1

0

e�P2te�tdt ;
1

.P2 ��/2 D
Z 1

0

e�P2tte�tdt: (6.41)

We get immediately that
Z

P

1

.P2 ��/2 D
1

.4
/d=2

Z 1

0

dt t1�
d
2 e�x.1�x/p2t: (6.42)

ei�
2P^p

.P2 ��/2 D
Z 1

0

e�t.P� iQp
2t /

2

te�x.1�x/p2te� Qp2

4t dt

Z

P

ei�
2P^p

.P2 ��/2 D
1

.4
/d=2

Z 1

0

dtt1�
d
2 e�x.1�x/p2te� Qp2

4t ; Qp� D �2���p�:

(6.43)

Hence

…diam;P
�� .p/ D � .d � 2/

.4
/d=2
.p2ı�� � p�p�/

Z 1

0

dx.1� 2x/2
Z 1

0

dt t1�
d
2 e�x.1�x/p2t:

(6.44)

…diam;NP
�� .p/ D .d � 2/

.4
/
d
2

.p2ı�� � p�p�/
Z 1

0

dx.1 � 2x/2
Z

dt t1� d
2 e�x.1�x/p2te� Qp2

4t

C .d � 2/
.4
/

d
2

Qp� Qp�
Z 1

0

dx
Z

dt t�1�
d
2 e�x.1�x/p2te� Qp2

4t : (6.45)
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The contribution of the paramagnetic vertex to the vacuum polarization is given by
one graph with two FQQ vertices. This is equal to

< F��.p/F	�.�p/ >D .1
2
/.8/

Z

k

�
ı�	ı�� � ı��ı�	

� sin2
�
�2

2
k^p�

k2.p � k/2
: (6.46)

The polarization tensor corresponding to this loop is given by the identity

1

2

Z

p
< F��.p/F	�.�p/ > F��.p/F	�.�p/ D 1

2

Z

p
…para
�� .p/B�.p/B�.�p/:(6.47)

…para
�� .p/ D 16.p2ı�� � p�p�/

Z

k

sin2
�
�2

2
k^p�

k2.p� k/2
: (6.48)

In above we have clearly used the fact that F��.p/ D ip�B�.p/ � ip�B�.p/ C : : :.
Going through the same steps as before we rewrite this result as a sum of planar and
non-planar contributions as follows

…para
�� .p/ D …para;P

�� .p/C…para;NP
�� : (6.49)

…para;P
�� .p/ D 8.p2ı�� � p�p�/

Z

k

1

k2.p � k/2

D 8

.4
/
d
2

.p2ı�� � p�p�/
Z 1

0

dx
Z 1

0

dt t1�
d
2 e�x.1�x/p2t: (6.50)

…para;NP
�� .p/ D �8.p2ı�� � p�p�/

Z

k

cos
�
�2k^p�

k2.p � k/2

D � 8

.4
/
d
2

.p2ı�� � p�p�/
Z 1

0

dx
Z 1

0

dt t1� d
2 e�x.1�x/p2te� Qp2

4t :

(6.51)

6.2.3 The UV-IR Mixing and The Beta Function

Let us first start by computing the tree level vacuum polarization tensor. we have

e�S� ŒA.0/� D e
� 1

4g2

R
ddxF

.0/2
�� D e

� 1

4g2

R
p F��.p/F��.�p/�e� 1

2g2

R
p.p

2ı���p�p�/B�.p/B�.�p/C:::
:

(6.52)
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From this we conclude that

…tree�level
�� D 1

g2
.p2ı�� � p�p�/: (6.53)

As we have seen there are planar as well as non-planar corrections to the vacuum
polarization tensor at one-loop. Non-planar functions are generally UV finite
because of the noncommutativity of spacetime whereas planar functions are UV
divergent as in the commutative theory and thus requires a renormalization. Indeed,
for t�!0 which corresponds to integrating over arbitrarily high momenta in the
internal loops we see that planar amplitudes diverge while non-planar amplitudes

are regularized by the exponential exp.� Qp2
4t / as long as the external momenta Qp does

not vanish.
Planar functions at one-loop are given from the above analysis by the expressions

(also by suppressing the tensor structure p2ı�� � p�p� for simplicity and including
an arbitrary mass scale �)

…diam;P.p/ D 1

.4
/
d
2

Z 1

0

1

.�2/2� d
2

dx.1� 2x/2
Œx.1 � x/ p

2

�2
�2� d

2

.2 � d/�.2� d

2
/

…para;P.p/ D 8

.4
/
d
2

Z 1

0

1

.�2/2� d
2

dx

Œx.1 � x/ p
2

�2
�2� d

2

�.2 � d

2
/: (6.54)

In above we have also used the integrals (in Minkowski signature)
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P
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.P2 ��/2 D
d

2

.�1/i
.4
/

d
2
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Z
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1
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2
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2

;

Z

P
e�tP2P2 D d

2

1

.4
/
d
2

1

t
d
2C1 ;

Z

P
e�tP2P�P� D 1

2
ı��

1

.4
/
d
2

1

t
d
2C1

�.2 � d

2
/ D �d � 2

2
�.1 � d

2
/: (6.55)

In d D 4C 2
 we obtain

…diam;P.p/ D 1

16
2

�
1

3
.
2



C 2� C 2/C 2

3
ln

p2

�2
C 2

Z 1

0

dx .1� 2x/2 ln x.1 � x/

�

…para;P D 8

16
2

�

� 1


� ln

p2

�2
� � �

Z 1

0

dx ln x.1 � x/

�

: (6.56)
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Let us also define adiam D 1
16
2

. 2
3
/ and apara D 1

16
2
.�8/. Obviously, in the limit


�!0 these planar amplitudes diverge, i.e their singular high energy behaviour is
logarithmically divergent. These divergent contributions needs therefore a renor-
malization. Towards this end it is enough as it turns out to add the following counter
term to the bare action

ıS� D �1
4

� � adiam C apara




�
Z

ddxF.0/2�� : (6.57)

The claim of [22, 23] is that this counter term will also substract the UV divergences
in the 3- and 4-point functions of the theory at one-loop. The vacuum polarization
tensor at one-loop is therefore given by

…one�loop
�� D .p2ı�� � p�p�/

1

g2r .�/
C…diam;NP

�� C…para;NP
�� : (6.58)

1

g2r .�/
D …bar C…counter�term C…diam;P C…para;P

D 1

g2
C .adiam C apara/ ln

p2

�2
� 11

24
2
� C 1

24
2

C 1

8
2

Z

dx


.1 � 2x/2 � 4� ln x.1 � x/: (6.59)

It is obvious that …bar D 1
g2

while …counter�term D � adiamCapara



. A straightforward

calculation gives then the beta function [22, 23]

ˇ.gr/ D �dgr.�/

d�
D .adiam C apara/g3r .�/� D

1

8
2
.�11

3
/g3r .�/: (6.60)

This is equal to the beta function of ordinary pure SU.2/ gauge theory. Non-planar

functions are finite in the UV because of the exponential e� Qp2

4t . However, it is clear
that this exponential regularizes the behaviour at t�!0 only when the external
momentum Qp is¤0. Indeed, non-planar functions are given by the following Hankel
functions

I1 D
Z

dt t1� d
2 e�x.1�x/p2te� Qp2

4t jdD4 D 1

2



i
H.1/0 .2i

p
ab/C h:c

�

I3 D
Z

dt t�1� d
2 e�x.1�x/p2te� Qp2

4t jdD4 D 


4

a3=2

b1=2


H.1/1 .2i

p
ab/C H.1/3 .2i

p
ab/C h:c

�
:
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Where a D x.1� x/p2 and b D Qp2
4

. These integrals are always finite when Qp¤0 and
diverge only for ��!0 and/or p�!0 as follows

I1 D � ln

�

x.1 � x/Qp2p2
�

I3 D 16

.Qp/2
�

1� x.1 � x/p2 Qp2
8

�

: (6.61)

In the limit of small noncommutativity or small momenta we have therefore the
infrared singular behaviour

…diam;NP
�� D �adiam.p2ı�� � p�p�/ ln p2 Qp2 C 2


2
Qp� Qp�
.Qp/2

…para;NP
�� D �apara.p2ı�� � p�p�/ ln p2 Qp2: (6.62)

This also means that the renormalized vacuum polarization tensor diverges in the
infrared limit Qp�!0 which we take as the definition of the UV-IR mixing in this
theory.

6.3 Quantum Stability

6.3.1 Effective Potential

Quantization of the matrix model (6.1) consists usually in quantizing the
model (6.11). As we will argue shortly this makes sense only for small values
of the coupling constant g2 which are less than a critical value g2�. Above g2� the
configuration OBi given by (6.4) ceases to exist, i.e. it ceases to be the true minimum
of the theory and as a consequence the expansion (6.8) does not make sense.

In order to compute this transition we use the one-loop effective action obtained
in the Feynamn-’t Hooft background field gauge. We have the result

� D SC 1

2
TrdTrad ln

�

D2ıij � 2iFij

�

� Trad lnD2: (6.63)

The operators D2 D DiDi , Di and Fij act by commutators, viz D2.::/ D
Œ ODi; Œ ODi; ::��, Di.::/ D Œ ODi; ::� and Fij.::/ D Œ OFij; ::�. Next we compute the effective
potential in the configuration ODi D ��B�1

ij Oxj. The curvature OFij in this configuration

is given by � OFij D .�2�2�1/B�1
ij . The trace over the Hilbert space H is regularized
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such that TrH1 D N is a very large but finite natural number. We will also needP
i;j B

�1
ij B�1

ij D d. The effective potential for d ¤ 2 is given by

V

.d � 2/N2 D ˛.�
2�2 � 1/2 C ln�: (6.64)

The coupling constant ˛ is given by

˛ D d

d � 2



d
2

2

1

	2N
; 	 D �1� d

4 g: (6.65)

We take the limit N �! 1 keeping 	2N fixed. It is not difficult to show that the
minimum of the above potential is then given by

.��/2 D
1C

q
1 � 1

˛

2
: (6.66)

The critical values are therefore given by

˛� D 1, 	2�N D
d

d � 2



d
2

2
: (6.67)

Thus the configuration ODi D ��B�1
ij Oxj exists only for values of the coupling

constant 	 which are less than 	�. Above 	� true minima of the model are given by
commuting operators,i.e.

iŒ OBi; OBj� D 0: (6.68)

By comparing with (6.3) we see that this phase corresponds to � D 1. The limit
� �! 1 is the planar theory (only planar graphs survive) [15] which is intimately
related to large N limits of hermitian matrix models [16].

This transition from the noncommutative Moyal-Weyl space (6.3) to the commut-
ing operators (6.68) is believed to be intimately related to the perturbative UV-IR
mixing [24]. Indeed this is true in two dimensions using our formalism here.

In two dimensions we can see that the logarithmic correction to the potential is
absent and as a consequence the transition to commuting operators will be absent.
The perturbative UV-IR mixing is, on the other hand, absent in two dimensions.
Indeed, in two dimensions the first nonzero correction to the classical action S in the
effective action (6.63) is given by

� D S � Trad
1

D2
Fij

1

D2
Fij C : : :

D SC .�
/2
Z

k

1

k2

Z

p

1

p2
TrHFijŒe

ipOx; e�ikOx� TrHFijŒe
ikOx; e�ipOx�

D SC 2
Z

p
Trj QFij.p/j2

Z

k

1

k2
1

.p � k/2
.1 � cos �ijpikj/j: (6.69)
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By including a small mass m2 and using Feynman parameters the planar and non-
planar contributions are given respectively by

…P D
Z

k

1

k2 C m2
1

.p � k/2 Cm2
D .�ijpi/2

4


Z 1

0

dx

z2
: (6.70)

…NP D
Z

k

1

k2 C m2
1

.p � k/2 C m2
cos �ijpikj D .�ijpi/2

4


Z 1

0

dx

z2
zK1.z/:

(6.71)

In above z is defined by z2 D .�ijpi/2.m2 C x.1 � x/p2/ and K1.z/ is the modified
Bessel function given by

zK1.z/ D
Z 1

0

dt e�t e� z2
4t D 1C z2

2
ln

zec

2
C : : : : (6.72)

We observe that in two dimensions both the planar and non-planar functions are UV
finite, i.e. renormalization of the vacuum polarization is not required. The infrared
divergence seen when m2 �! 0 cancel in the difference …P �…NP. Furthermore
…P�…NP vanishes identically in the limit � �! 0 or p �! 0. In other words, there
is no UV-IR mixing in the vacuum polarization in two dimensions.

6.3.2 Impact of Supersymmetry

The situation in four dimensions is more involved [22, 23]. Explicitly, we have
found that the planar contribution to the vacuum polarization is UV divergent as
in the commutative theory, i.e. it is logarithmically divergent and thus it requires
a renormalization. Furthermore, it is found that the UV divergences in the 2-, 3-
and 4-point functions at one-loop can be subtracted by a single counter term and
hence the theory is renormalizable at this order. The beta function of the theory
at one-loop is identical to the beta function of the ordinary pure SU.2/ gauge
theory. The non-planar contribution to the vacuum polarization at one-loop is UV
finite because of the noncommutativity and only it becomes singular in the limit of
vanishing noncommutativity and/or vanishing external momentum. This also means
that the renormalized vacuum polarization diverges in the infrared limit p�!0
and/or � �! 0 which is the definition of the UV-IR mixing.

We expect that supersymmetry will make the Moyal-Weyl geometry and as a
consequence the noncommutative gauge theory more stable. In order to see this
effect let 	a, a D 1; : : : ;M be M massless Majorana fermions in the adjoint
representation of the gauge group U.H/. We consider the modification of the
action (6.1) given by

S �! S0 D SC
p
�ddet.
B/

4g2

MX

aD1
TrH N	a�iŒ ODi; 	a�: (6.73)
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The irreducible representation of the Clifford algebra in d dimensions is s D 2
d
2

dimensional. Let us remark that in the limit � �! 0 the modified action S0 has the
same limit as the original action S. By integrating over 	a in the path integral we

obtain the Pfaffian
�
pf.�iDi/

�M
. We will assume that pf.�iDi/ D

�
det.�iDi/

� 1
2 . The

modification of the effective action (6.63) is given by

� �! � 0 D � � M

4
TrsTrad ln

�

D2 � i

2
�i�jFij

�

: (6.74)

It is not very difficult to check that the coefficient of the logarithmic term in the
effective potential is positive definite for all M such that Ms < 2d � 4. For Ms D
2d � 4 the logarithmic term vanishes identically and thus the background (6.4) is
completely stable at one-loop order. In this case the noncommutative gauge theory
(i.e. the star product representation) makes sense at least at one-loop order for all
values of the gauge coupling constant g. The case Ms D 2d�4 in d D 4 (i.e. M D 1)
corresponds to noncommutative N D 1 supersymmetric U.1/ gauge theory. In this
case the effective action is given by

� 0 D SC 1

2
TrdTrad ln

�

ıij � 2i 1D2
Fij

�

� M

4
TrsTrad ln

�

1 � i

2
�i�j

1

D2
Fij

�

:

(6.75)

This is manifestly gauge invariant. In 4 dimensions we use the identity Trs�i�j�k�l D
s
�
ıijıkl � ıikıjl C ıilıjk

�
and the first nonzero correction to the classical action S is

given by the equation

� 0 D SC �d � 2
8
� 1�Trad

1

D2
Fij

1

D2
Fij C : : :

D SC 2�1 � d � 2
8

�
Z

p
Trj QFij.p/j2

Z

k

1

k2
1

.p � k/2
.1 � cos �ijpikj/j:

(6.76)

This correction is the only one-loop contribution which contains a quadratic term in
the gauge field. The planar and non-planar corrections to the vacuum polarization
are given in this case by

…P D
Z

k

1

k2
1

.p � k/2
D 1

.4
/
d
2

Z 1

0

dx
Z 1

0
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t
d
2�1 e�x.1�x/p2t: (6.77)
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Z
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1
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cos �ijpikj D 1

.4
/
d
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Z 1
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dx
Z 1

0
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t
d
2�1 e�x.1�x/p2t� .�ijpi/

2

4t :

(6.78)
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The planar correction is UV divergent coming from the limit t �! 0. Indeed we
compute (including also an arbitrary mass scale � and defining 
 D 2 � d

2
)

…P D 1

.4
/
d
2

Z 1

0

dx .�2/
d
2�2.x.1 � x/

p2

�2
/
d
2�2 �.2� d

2
/

D .�2/�


.4
/
d
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�
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Z 1

0

dx ln x.1 � x/
p2

�2
C O.
/

�

: (6.79)

The singular high energy behaviour is thus logarithmically divergent. The planar
correction needs therefore a renormalization. We add the counter term

ıS D �2.1� d � 2
8

/
.�2/�


.4
/
d
2

1




Z

ddxF2ij D �2.1�
d � 2
8

/
.�2/�


.4
/
d
2
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Z

p
j QFij.p/j2:

(6.80)

The effective action at one-loop is obtained by adding (6.76) and the counter
term (6.80). We get

� 0
ren D

Z

p

1

2g2.�/
j QFij.p/j2: (6.81)

1

2g2.�/
D 1

2g2
C 2.1 � d � 2

8
/.…P �…NP/ � 2.1� d � 2

8
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D 1

2g2
C 3

2

1

.4
/2

�
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Z 1

0

dx ln x.1 � x/
p2

�2

�

� 3
2
…NP: (6.82)

This equation means that the gauge coupling constant runs with the renormalization
scale. The beta function is non-zero given by

ˇ.g.�// D �dg.�/

d�
D � 3

16
2
g3.�/: (6.83)

The non-planar correction is UV finite. Indeed we compute the closed expression

…NP D 2

.4
/2

Z 1

0

dxK0.z/ ; z
2 D .�ijpi/2x.1 � x/p2: (6.84)

In the limit � �! 0 and/or p �! 0 we can use K0.z/ D � ln z
2

and obtain the IR
singular behaviour

…NP D � 1

.4
/2

Z 1

0

dx ln
.�ijpi/2x.1 � x/p2

4
: (6.85)
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In summary, although the Moyal-Weyl geometry is made stable at one-loop order
by the introduction of supersymmetry we still have a UV-IR mixing in the quantum
gauge theory. The picture that supersymmetry stabilizes the geometry is a recurrent
theme and can be confirmed non-perturbatively, whereas the precise connection to
the UV-IR mixing remains unclear.

6.4 Initiation to Noncommutative Gauge Theory on the
Fuzzy Sphere

Noncommutative gauge theory on the fuzzy sphere was introduced in [9, 20]. As we
have already mentioned it was derived as the low energy dynamics of open strings
moving in a background magnetic field with S3 metric in [1, 2, 17]. This theory
consists of the Yang-Mills term YM which can be obtained from the reduction to
zero dimensions of ordinary U.N/ Yang-Mills theory in 3 dimensions and a Chern-
Simons term CS due to Myers effect [25]. Thus the model contains three N � N
hermitian matrices X1, X2 and X3 with an action given by

S D YMC CS D �1
4
TrŒXa;Xb�

2 C 2i˛

3

abcTrXaXbXc: (6.86)

This model contains beside the usual two dimensional gauge field a scalar fluctua-
tion normal to the sphere which can be given by [21]

ˆ D X2a � ˛2c2
2
p
c2

: (6.87)

The model was studied perturbatively in [10] and in [6, 19]. In particular in [10]
the effective action for a non-zero gauge fluctuation was computed at one-loop and
shown to contain a gauge invariant UV-IR mixing in the large N limit. Indeed, the
effective action in the commutative limit was found to be given by the expression

� D 1

4g2

Z
d�

4

Fab.1C 2g2�3/Fab

� 1

4g2

abc

Z
d�

4

Fab.1C 2g2�3/Ac C 2

p
N2 � 1

Z
d�

4

ˆ

Cnon local quadratic terms: (6.88)

The 1 in 1C2g2�3 corresponds to the classical action whereas 2g2�3 is the quantum
correction. This provides a non-local renormalization of the inverse coupling
constant 1=g2. The last terms in (6.88) are new non-local quadratic terms which
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have no counterpart in the classical action. The eigenvalues of the operator �3 are
given by

�3.p/ D
X

l1;l2

2l1 C 1
l1.l1 C 1/

2l2 C 1
l2.l2 C 1/.1 � .�1/

l1Cl2Cp/

�
p l1 l2
L
2

L
2

L
2

	 2
l2.l2 C 1/
p2.pC 1/2

��
l2.l2 C 1/� l1.l1 C 1/

�
/ �! �h.p/C 2

p.pC 1/ ; h.p/ D �2
pX

lD1

1

l
:

(6.89)

In above LC1 D N. The 1 in 1� .�1/l1Cl2Cp corresponds to the planar contribution
whereas .�1/l1Cl2Cp corresponds to the non-planar contribution where p is the
external momentum. The fact that �3 ¤ 0 in the limit N �! 0 means that we
have a UV-IR mixing problem.

The model YM C CS was solved for N D 2 and N D 3 in [30]. It was studied
nonperturbatively in [5] where the geometry in transition was first observed.

In [26] a generalized model was proposed and studied in which the normal scalar
field was suppressed by giving it a quartic potential V with very large mass. This
potential on its own is an O.3/ random matrix model given by

V D N

�
m2

2c2
Tr.X2a/

2 � ˛2�Tr.X2a/
�

: (6.90)

The parameter � is fixed such that � D m2. The model S C V was studied in [13]
and [12] where the instability of the sphere was interpreted along the lines of an
emergent geometry phenomena. For vanishing potential m2; � �! 0 the transition
from/to the fuzzy sphere phase was found to have a discontinuity in the internal
energy, i.e. a latent heat (Fig. 6.1) and a discontinuity in the order parameter which
is identified with the radius of the sphere, viz

1

r
D 1

Nc2
TrD2a ; Xa D ˛Da: (6.91)

This indicates that the transition is first order. From the other hand, the specific heat
was found to diverge at the transition point from the sphere side while it remains
constant from the matrix side (Fig. 6.2). This indicates a second order behaviour
with critical fluctuations only from one side of the transition. The scaling of the
coupling constant ˛ in the large N limit is found to be given by Q̨ D ˛

p
N. We get

the critical value Q̨s D 2:1. The different phases of the model are characterized by
For m ¤ 0 and/or � ¤ 0 the critical point is replaced by a critical line in the Q̌ � t
plane where Q̌4 D Q̨4=.1 C m2/3 and t D �.1 C m2/. In other words for generic
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Fig. 6.1 The observable <S>
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Fig. 6.2 The specific heat for m2 D 0 as a function of the coupling constant for N D 16; 24; 32,48.
The curve corresponds with the theoretical prediction for m2 D 0
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Fuzzy sphere ( Q̨ > Q̨� ) Matrix phase ( Q̨ < Q̨�)

r D 1 r D 0

Cv D 1 Cv D 0:75

values of the parameters the matrix phase persists. The effective potential in these
cases was computed in [10]. We find

Veff D Q̨ 4

1

4
�4 � 1

3
�3 C m2

4
�4 � �

2
�2

�C ln �: (6.92)

The extrema of the classical potential occur at

� D 1

1C m2

(

0; �˙ D 1˙p1C 4t
2

)

: (6.93)

For � positive the global minimum is �C. The 0 is a local maximum and �� is a
local minimum. In particular for � D m2 we obtain the global minimum �C D 1.
For � negative the global minimum is still �C but 0 becomes a local minimum and
�� a local maximum. If � is sent more negative then the global minimum �C D 1

becomes degenerate with � D 0 at t D � 2
9

and the maximum height of the barrier

is given by V� D Q̌4=324 which occurs at �� D 1
3
. The model has a first order

transition at t D �2=9 where the classical ground states switches from �C for
t > �2=9 to 0 for t < 2=9.

Let us now consider the effect of quantum fluctuations. The condition V 0
eff D 0

gives us extrema of the model. For large enough Q̨ and large enough m and � it
admits two positive solutions. The largest solution can be identified with the ground
state of the system. It will determine the radius of the sphere. The second solution
is the local maximum of Veff and will determine the height of the barrier. As the
coupling is decreased these two solutions merge and the barrier disappears. This is
the critical point of the model. For smaller couplings than the critical value Q̨� the
fuzzy sphere solution Da D �La no longer exists. Therefore, the classical transition
described above is significantly affected by quantum fluctuations.

The condition when the barrier disappears is V 00
eff D 0. At this point the local

minimum merges with the local maximum. Solving the two equations V 0
eff D V 00

eff D
0 yield the critical value

g2� D
1

Q̨ 4�
D �2�.�� C 2�/

8
; (6.94)

where

�� D 3

8.1C m2/

�

1C
r

1C 32�.1C m2/

9

�

: (6.95)
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If we take � negative we see that g� goes to zero at �.1 C m2/ D �1=4 and the
critical coupling Q̨� is sent to infinity and therefore for �.1C m2/ < � 1

4
the model

has no fuzzy sphere phase. However in the region � 1
4
< �.1 C m2/ < � 2

9
the

action SCV is completely positive. It is therefore not sufficient to consider only the
configuration Da D �La but rather all SU.2/ representations must be considered.
Furthermore for large Q̨ the ground state will be dominated by those representations
with the smallest Casimir. This means that there is no fuzzy sphere solution for
�.1C m2/ < � 2

9
.

The limit of interest is the limit � D m2�!1. In this case

�� D 1p
2
; Q̨4� D

8

m2
: (6.96)

This means that the phase transition is located at a smaller value of the coupling
constant Q̨ as m is increased. In other words the region where the fuzzy sphere is
stable is extended to lower values of the coupling. The phase diagram is shown on
Fig. 6.3.

We note that a simplified version of our model with V quartic in the matrices, i.e.
m2 D 0 and � ¤ 0 was studied in [7, 31]. In [27] an elegant pure matrix model was
shown to be equivalent to a gauge theory on the fuzzy sphere with a very particular
form of the potential which in the large N limit leads naturally, at least classically,
to a decoupled normal scalar fluctuation. In [33, 34] and [28] an alternative model
of gauge theory on the fuzzy sphere was proposed in which field configurations live
in the Grassmannian manifold U.2N/=.U.N C 1/ � U.N � 1//. In [28] this model
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was shown to possess the same partition function as commutative gauge theory on
the ordinary sphere via the application of the powerful localization techniques.

The matrix phase which is also called the Yang-Mills phase is dominated by
commuting matrices. It is found that the eigenvalues of the three matrices X1, X2
and X3 are uniformly distributed inside a solid ball in 3 dimensions. This was also
observed in higher dimensions in [18]. The eigenvalues distribution of a single
matrix say X3 can then be derived by assuming that the joint eigenvalues distribution
of the three commuting matrices X1, X2 and X3 is uniform. We obtain

�.x/ D 3

4R3
.R2 � x2/: (6.97)

The parameter R is the radius of the solid ball. We find the value R D 2. A
one-loop calculation around the background of commuting matrices gives a value
in agreement with this prediction. These eigenvalues may be interpreted as the
positions of D0-branes in spacetime following Witten [32]. In [8] there was an
attempt to give this phase a geometrical content along these lines.

In summary, we find for pure gauge models with global SO.3/ symmetry an
exotic line of discontinuous transitions with a jump in the entropy, characteristic
of a first order transition, yet with divergent critical fluctuations and a divergent
specific heat with critical exponent ˛ D 1=2. The low temperature phase (small
values of the gauge coupling constant) is a geometrical one with gauge fields
fluctuating on a round sphere. As the temperature increased the sphere evaporates in
a transition to a pure matrix phase with no background geometrical structure. These
models present an appealing picture of a geometrical phase emerging as the system
cools and suggests a scenario for the emergence of geometry in the early universe.
Impact of supersymmetry is to stabilize the geometry further against quantum
fluctuations [4].

6.5 Gauge Theory on The Noncommutative Torus

In our discussion of noncommutative gauge theory on the noncommutative torus we
will mainly follow the study [3].

6.5.1 The Noncommutative Torus Td
�
Revisited

The noncommutative (NC) plane Rd
� is obtained by replacing the commutative

coordinates xi by hermitian unbounded operators Oxi which satisfy the commutation
relations

ŒOxi; Oxj� D i�ij: (6.98)
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Thus Rd
� is the algebra of functions which is generated by the operators Oxi. The

algebra of functions on the NC torus Td
� is the proper subalgebra of Rd

� which is
generated by the operators

Oza D exp.2
i.†�1/ai Oxi/: (6.99)

In terms of Oza the commutation relations (6.98) read

OzbOza D OzaOzbexp.2
i‚ab/ ; ‚ab D 2
.†�1/ai �ij.†�1/bj : (6.100)

†i
a is the d � d period matrix of Td

� which satisfies †i
a†

j
a D ıij. The indices i; j D

1; : : : ; d denote spacetime directions whereas a; b D 1; : : : ; d denote directions of
the frame bundle of Td

� . The two points x and xC†a
i
Oi on the noncommutative torus

are identified ( where the summation over i is understood and the index a is fixed ).
For the square torus †a

i is proportional to ıai .
Let us recall that a general function on the commutative torus is given by

f .x/ D
X

Em2Zd
fEme2
 i.†

�1/ai maxi : (6.101)

The corresponding operator on the noncommutative torus is given by

Of D
X

Em2Zd
e2
 i.†

�1/ai ma Oxi fEm (6.102)

or equivalently

Of D
X

Em2Zd

Yd

aD1.Oz
a/mae
 i

P
a<b ma‚abmb fEm: (6.103)

It is not difficult to show that

Of D
Z

ddxf .x/˝ O�.x/: (6.104)

The product˝ is the tensor product between the coordinate and operator represen-
tations. The operator O�.x/ is periodic in x given by

O�.x/ D 1

jdet†j
X

Em2Zd

Yd

aD1.Oza/
ma

Y

a<b
ei
ma‚abmbe�2
 i.†�1/ai maxi (6.105)

or

O�.x/ D 1

jdet†j
X

Em2Zd
e2
 i.†

�1/ai ma Oxie�2
 i.†�1/ai maxi : (6.106)
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The star product � on the noncommutative torus can be introduced by means of the
map O�.x/. Indeed it is the star product f1 � f2.x/ of the two functions f1 and f2 ( and
not their ordinary product f1.x/f2.x/ ) which corresponds to the Weyl operator Of1Of2
given by

Of1Of2 D
Z

ddxf1 � f2.x/˝ O�.x/: (6.107)

Equivalently we have

TrOf1 Of2 O�.x/ D f1 � f2.x/: (6.108)

Let us also recall that derivations on the noncommutative torus are anti-hermitian
linear operators O@i defined by the commutation relations ŒO@i; Oxj� D ıij or equivalently

ŒO@i; Oza� D 2
i.†�1/ai Oza (6.109)

and ŒO@i; O@j� D icij where cij are some real-valued c-numbers. In particular we have
the result

ŒO@i; Of � D
Z

ddx@if .x/˝ O�.x/: (6.110)

6.5.2 U.N/ Gauge Theory on Td
�

The basic NC action we will study is given by [3]

SYM D � 1

4g2

Z

ddxtrN.Fij � fij/
2�: (6.111)

The curvature Fij is defined by Fij D @iAj�@jAiC iŒAi;Aj�� where � is the canonical
star product on the NC plane Rd

� . Ai is a U.N/ gauge field on the NC plane Rd
� while

fij is some given constant curvature and g is the gauge coupling constant. Local
gauge transformations are defined as usual by

AU
i D U � Ai � UC.x/� iU � @iUC ; FU

ij D U � Fij � UC.x/: (6.112)

U.x/ are N�N star-unitary matrices, in other words U.x/ is an element of U.N/
which satisfies U � UC.x/ D UC � U.x/ D 1N .

Classically the action (6.111) is minimized by gauge fields of non-zero topolog-
ical charge which on compact spaces are given by multi-valued functions. We need
therefore to define these gauge configurations of non-zero topological charge on the
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corresponding covering spaces. Gauge field on the NC torus Td
� is thus the gauge

field Ai on the NC space Rd
� with the twisted boundary conditions

Ai.xC†j
a
Oj/ D �a.x/ � Ai.x/ ��C

a .x/ � i�a.x/ � @i�a.x/
C: (6.113)

If we try writing the N � N star-unitary transition functions �a, a D 1; : : : ; d,
in the infinitesimal form �a.x/ D 1 C iƒa.x/ we can show that �iŒAi; ƒa�� �
@iƒa C O.ƒ2/ D 0 (since the two points x and x C †j

a
Oj are identified we have

Ai.xC †j
a
Oj/ D Ai.x/). We can immediately conclude that the functions ƒa do not

exist and hence (6.113) are called global large gauge transformations. Furthermore,
by computing Ai.xC†j

a
OjC†j

b
Oj/ in the following two different ways

Ai.xC†j
a
OjC†j

b
Oj/ D �b.xC†j

a
Oj/ � Ai.xC†j

a
Oj/ ��C

b .xC†j
a
Oj/

�i�b.xC†j
a
Oj/ � @i�b.xC†j

a
Oj/C (6.114)

and

Ai.xC†j
a
OjC†j

b
Oj/ D �a.xC†j

b
Oj/ � Ai.xC†j

b
Oj/ ��C

a .xC†j
b
Oj/

�i�a.xC†j
b
Oj/ � @i�a.xC†j

b
Oj/CI (6.115)

we get the consistency conditions

�b.xC†j
a
Oj/ ��a.x/ D �a.xC†j

b
Oj/ ��b.x/: (6.116)

6.5.3 The Weyl-’t Hooft Solution

We will choose the gauge in which the N � N star-unitary transition functions �a

take the form

�a.x/ D ei˛aix
i ˝ �a (6.117)

where �a are constant SU.N/ matrices while ˛ai is a d � d real matrix which
represents the U.1/ factor of the U.N/ group. We will also assume that ˛ai is chosen
such that .˛†/T D �˛†. The corresponding background gauge field is introduced
by

ai D �1
2
Fijx

j ˝ 1N : (6.118)
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By using (6.117) and (6.118) it is a trivial exercise to show that (6.113) takes the
form

1

2
Fij.x

j C†j
a/˝ 1N D 1

2
Fij

�

ei˛aix
i � xj � e�i˛aixi

�

˝ �a�
C
a C ˛ai ˝ 1N : (6.119)

By using the identity ei˛aix
i � xj � e�i˛aixi D xjC� jk˛ak and the star-unitary condition

�a�
C
a D 1 we reach the equation

1

2
Fij†

j
a D

1

2
Fij�

jk˛ak C ˛ai: (6.120)

The two solutions for ˛ in terms of F and for F in terms of ˛ are given respectively
by

˛ D �†TF
1

�FC 2 ; F D 2˛
T 1

† � �˛T : (6.121)

Now by putting (6.117) in the consistency conditions (6.116) we obtain the d-
dimensional Weyl-’t Hooft algebra

�a�b D e
2

N iQab�b�a (6.122)

whereQab D N
2


�
˛ai�

ij˛bjC˛bi†i
a�˛ai†i

b

�
are the components of the antisymmetric

matrix Q of the non-abelian SU.N/ ’t Hooft fluxes across the different non-
contractible 2-cycles of the noncommutative torus. Equivalently Q is given by

Q D N

2


�
˛�˛T � 2˛†�

: (6.123)

By construction Qab, for a fixed a and b, is quantized, i.e Qab 2 Z. This can
be seen for example by taking the determinant of the two sides of the Weyl-’t
Hooft algebra (6.122). This quantization condition is a generic property of fluxes
on compact spaces with non-contractible 2-cycles.

Now let us write the full gauge field Ai as the sum of the non-trivial gauge
solution ai and a fluctuation gauge field Ai, viz Ai D aiCAi. It is a straightforward
exercise to check that the fluctuation field Ai transforms in the adjoint representation
of the gauge group. In particular under global large gauge transformations we have

Ai.xC†j
a
Oj/ D �a.x/ �Ai.x/ ��C

a .x/: (6.124)

We can then compute Fij D Fij C f �
ij where the curvature of the fluctuation field Ai

is given by Fij D DiAj � DjAi C iŒAi;Aj�� with the covariant derivative defined by
DiAj D @iAj C iŒai;Aj��. The curvature of the background gauge field ai is given
by f �

ij D @iaj � @jai C iŒai; aj�� D Fij C 1
4
Fik�

klFlj. By requiring that the curvature
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f �
ij of the background gauge field ai to be equal to the constant curvature fij so that

we have

Fij C 1

4
Fik�

klFlj D fij (6.125)

we can immediately see that the action (6.111) becomes

SYM D � 1

4g2

Z

ddxtrN.Fij.x//
2�: (6.126)

This means in particular that the classical solutions of the model in terms of the
fluctuation field Ai are given by the condition of vanishing curvature, i.e Fij D 0.
Hence the requirement f �

ij D fij is equivalent to the statement that the vacuum
solution of the action is given by Ai D 0. The fluctuation gauge field Ai has
vanishing flux and as a consequence is a single-valued function on the torus.

Finally let us note that the identity (6.120) can be put in the matrix form 1
2
F.†�

�˛T/ D ˛T or equivalently

1

1 � �˛T†�1 D 1C
1

2
�F: (6.127)

By squaring we can derive the identity

�
1

1 � �˛T†�1

�2
D 1C � f �: (6.128)

Furthermore by using the two identities f D .1C 1
4
F�/F and F.† � �˛T / D 2˛T

together with the two facts †T D †�1 and .˛†/T D �˛† we can show that the
antisymmetric matrix Q of the non-abelian SU.N/ ’t Hooft fluxes given by (6.123)
can be rewritten as

Q D N

2

†�1f .1 � �˛T†�1/2†: (6.129)

By using the identity (6.135) and ‚ D 2
†�1� † it is a straightforward matter to
derive the relationship between the curvature fij of the vacuum gauge configuration
ai on Td

� and the SU.N/ ’t Hooft magnetic fluxes Qab. This is given by

†�1f† D 2
 1

N � Q‚
Q: (6.130)
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6.5.4 SL.d;Z/ Symmetry

We assume that d is an even number. We may use the modular group SL.d;Z/ of the
torus Td to transform the flux matrix Q into Q0 whereQ D ƒTQ0ƒ.ƒ is an arbitrary
discrete SL.d;Z/ symmetry which can be chosen such that Q0 is skew-diagonal, i.e

Q0 D

0

B
B
B
B
B
B
B
@

0 q1
�q1 0

0 q d
2

�q d
2
0

1

C
C
C
C
C
C
C
A

: (6.131)

Under this SL.d;Z/ transformation the d-dimensional Weyl-’t Hooft algebra (6.122)
becomes

�0a�
0
b D e

2

N iQ0ab�0b�

0
a : (6.132)

The transformed twist eating solutions �0a are given in terms of the old twist eaters
�a by the formula

�a D
Yd

bD1
�
�0b

�ƒba
: (6.133)

In order to verify these relations explicitly it is enough to restrict ourselves to two
dimensions, i.e d D 2. Extension to higher dimensions is straightforward. In two
dimensions we have

�1 D
�
�01

�ƒ11�
�02

�ƒ21
; �2 D

�
�01

�ƒ12�
�02

�ƒ22
: (6.134)

We note ( from (6.132) ) the identity

�0Jaa �
0Jb
b D e

2

N iJaQ

0
abJb�

0Jb
b �0Jaa : (6.135)

We can immediately show that

�1�2 D e
2

N i

�

ƒ21Q
0
21ƒ12Cƒ11Q012ƒ22

�

�2�1

D e
2

N i

�
ƒTQ0ƒ

�
12�2�1: (6.136)

But ƒTQ0ƒ D Q which is precisely what we want.
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Let us introduce, given the rank N of the SU.N/ gauge group and the fluxes
qi 2 Z (i D 1; : : : ; d

2
), the following integers

xi D gcd.qi;N/ ; li D N

xi
; mi D qi

xi
: (6.137)

Since li and mi, for every fixed value of i, are relatively prime there exists two
integers ai and bi such that ailiCbimi D 1. Let us introduce the following 4matrices

L0 D

0

B
B
B
B
B
B
B
@

l1
l1

l d
2

l d
2

1

C
C
C
C
C
C
C
A

; M0 D

0

B
B
B
B
B
B
B
@

0 m1
�m1 0

0 md
2

�md
2
0

1

C
C
C
C
C
C
C
A

A0 D

0

B
B
B
B
B
B
B
@

a1
a1

a d
2

a d
2

1

C
C
C
C
C
C
C
A

; B0 D

0

B
B
B
B
B
B
B
@

0 �b1
b1 0

0 �b d
2

b d
2
0

1

C
C
C
C
C
C
C
A

: (6.138)

We can then easily verify that Q0 D NM0L0�1 and A0L0 C B0M0 D 1. If we
rotate back to a general basis where Q D ƒTQ0ƒ, L D ƒ�1L0ƒ0, M D ƒTM0ƒ0,
A D ƒ0�1A0ƒ and B D ƒ0�1B0.ƒT/�1 then we obtain

Q D NML�1 ; ALC BM D 1: (6.139)

Let us recall that ƒ is the SL.d;Z/ transformation which represents the automor-
phism symmetry group of the NC torus Td

� . As it turns out the extra SL.d;Z/
transformationƒ0 will represent the automorphism symmetry group of the dual NC
torus Td

� 0 .
It is a known result that a necessary and sufficient condition for the existence

of d independent matrices �0a which solve the Weyl-’t Hooft algebra (6.132) is the
requirement that the product l1 : : : l d

2
divides the rank N of the gauge group, viz

N D N0l1 : : : l d
2
: (6.140)

The integer N=N0 is identified as the dimension of the irreducible representation of
the Weyl-’t Hooft algebra. As we will see shortly the integer N0 is the rank of the
group of matrices which commute with the twist eating solutions�0a . More explicitly
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the matrices �0a can be taken in the subgroup SU.N0/˝ SU.l1/˝ : : : ˝ SU.l d
2
/ of

SU.N/ as follows ( i D 1; : : : ; d
2

)

�02i�1 D 1N0 ˝ 1l1 ˝ : : :˝ Vli ˝ : : :˝ 1l d
2

�02i D 1N0 ˝ 1l1 ˝ : : :˝
�
Wli

�mi ˝ : : :˝ 1l d
2

: (6.141)

Vli and Wli are the usual SU.li/ clock and shift matrices which satisfy VliWli D
exp. 2
 ili

/WliVli . They are given respectively by the explicit expressions

Vli D

0

B
B
B
B
B
B
B
@

0 1

0 0 1

0 0 0 1

0 0 0 0 :

0 1

1 0

1

C
C
C
C
C
C
C
A

; Wli D

0

B
B
B
B
B
B
B
B
@

1

e
2
i
li

e
4

li

:

e
2
.li�1/

li

1

C
C
C
C
C
C
C
C
A

:

(6.142)

Let us remark that .Wli/
mili D 1li and Vli

li
D 1li and hence .�02i�1/li D .�02i/

li D 1N .
In general we have ( for each b D 1; : : : ; d)

.�1/
L1b.�2/

L2b : : : .�d/
Ldb D 1N : (6.143)

6.5.5 Morita Equivalence

The fluctuation gauge field Ai corresponds to a Weyl operator OAi given by the
map (6.104), viz OAi D

R
ddxAi.x/ ˝ O�.x/. Similarly the global large gauge

transformation �a corresponds to the Weyl operator O�a D
R
ddx�a.x/ ˝ O�.x/.

Hence, by using the identity evi O@i O�.x/e�vi O@i D O�.x � v/ for v 2 Rd we can rewrite
the constraints (6.124) as follows

e†
i
a
O@i OAie

�†i
a
O@i D O�a OAi O�C

a : (6.144)

To be more precise the operator e†
i
a
O@i means here 1 ˝ e†

i
a
O@i where ˝ stands for

the tensor product between the coordinate and operator representations. The Weyl
operator OAi can be expanded in an SU.N0/˝SU.l1 : : : l d

2
/ invariant way. Recall
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that N0 is the rank of the group of matrices which commute with the twist eating
solutions �0a . Thus we may write

OAi D
Z

ddk eikiOxi˝
X

Ej mod L

dY

aD1

�
�a

�ja˝ai.k;Ej/: (6.145)

The matrices �a are given in terms of the twist eaters �0a by the formula (6.133).
ai.k;Ej/ is an N0 � N0 matrix-valued function which is periodic in Ej so that we
have ai.k; ja/ D ai.k; ja C Lab/ for each b D 1; : : : ; d. Therefore we have
.j1; j2; : : : ; jd/ � .j1 C L1b; j2 C L2b; : : : ; jd C Ldb/ for each b D 1; : : : ; d. For
example in two dimensions we can see ( by using (6.143) ) that we have the result
.�1/

j1CL1b.�2/
j2CL2b D .�1/j1 .�2/j2 and hence .j1; j2/ � .j1 C L1b; j2 C L2b/.

By putting (6.117) and (6.145) in the constraint (6.144) we obtain

Z

ddk eiki
�

OxiC†i
a

�

˝
X

Ej mod L

dY

aD1

�
�a

�ja˝ai.k;Ej/

D
Z

ddk eikiOxi e�i˛ai�ijkj˝
X

Ej mod L

�a

dY

bD1

�
�b

�jb
�C
a ˝ai.k;Ej/: (6.146)

We work in the special basis where Q D Q0 and �a D �0a and then use covariance
of the torus under SL.d;Z/ symmetry to extend the result to a general basis. In this
special basis where Q D Q0 and �a D �0a and for a given value of the index a

(say a D 1) the matrix �0a will commute with all factors in the product
Qd

bD1
�
�b

�jb

except one which we will call �0b (for example for a D 1 we will have b D 2).

It is then trivial to verify from the identity (6.135) that �0a
Qd

bD1
�
�0b

�jb
�0Ca D

e
2
i
N Q0abjb

Qd
bD1

�
�0b

�jb . By rotating back to a general basis we obtain the formula

�a

dY

bD1

�
�b

�jb
�C
a D e

2
i
N Qabjb

dY

bD1

�
�b

�jb
: (6.147)

The constraint (6.146) becomes

Z

ddk eiki
�

OxiC†i
a

��

1 � e2
 i
�
�aC 1

N Qabjb
��

˝
X

Ej mod L

dY

aD1

�
�a

�ja˝ai.k;Ej/ D 0:

(6.148)

The vector �a is defined by

�a D � ki
2


�
†i

a � �ij˛aj
� D � ki

2


�
† � �˛T�

ia
: (6.149)
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The above equation is solved by ai.k;Ej/ D 0 and if ai.k;Ej/ does not vanish we must
have instead

�a C 1

N
Qabjb D na 2 Z: (6.150)

By using Q D NML�1 and QT D �Q we can rewrite this constraint as

�a D mcL
�1
ca where mc D nbLbc C jbMbc: (6.151)

Recalling the identity ALC BM D 1 we can immediately see that this last equation
is solved by the integers nb D maAab and jb D maBab. In terms of the momentum Ek
the solution �a D mcL�1

ca reads ki D 2
maˇai with

ˇ D � 1
�
† � �˛T�

L
: (6.152)

Hence, the solution of Eq. (6.148)-or equivalently of the constraint(6.144)- when
ai.k;Ej/ does not vanish is given by the Weyl operator (6.145) such that

ki D 2
maˇai ; ja D mbBba 8 ma2Z: (6.153)

For every fixed set of d integers ma the solution for ki and ja is unique modulo L and
thus the Weyl operator OAi becomes (with ai.Em/ � ai.2
maˇai;mbBba/)

OAi D
X

Em2Zd
e2
 imaˇaiOxi

dY

aD1

�
�a

�mbBba˝ai.Em/: (6.154)

In the special basis (6.131) we can show the following

dY

aD1

� dY

bD1

�
�0b

�B0ab
�ma

D
dY

aD1

�
�
�01

�B0a1��2
�B0a2 : : :

�ma

D �
�02

�m1B012��01
�m2B021 : : :

D e
2
i
N m1

�
B012Q

0
21B

0
21

�
m2

�
�01

�m2B021��02
�m1B012 : : :

(6.155)

and

dY

aD1

�
�0a

�mbBba D �
�01

�m2B021��02
�m1B012 : : : (6.156)
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Thus in general we must have the identity

dY

aD1

�
�a

�mbBba D
dY

aD1

� dY

bD1

�
�b

�Bab

�ma Y

a<b

e� 2
i
N ma.BQBT/abmb : (6.157)

Next it is straightforward to show the identity

e2
 i
P

a;i maˇaiOxi D
dY

aD1

�

e2
 i
P

i ˇaiOxi
�ma Y

a<b

e
 ima‚
1
abmb

‚1
ab D 2
ˇai�ijˇbj: (6.158)

Thus the gauge field becomes

OAi D
X

Em2Zd

dY

aD1

�Oz0
a

�ma e
 i
P

a<b ma‚
0
abmb˝ai.Em/ (6.159)

where

Oz0
a D e2
 iˇaiOxi ˝

dY

bD1

�
�b

�Bab

‚0
ab D ‚1

ab �
2

N
.BQBT/ab: (6.160)

By using Q D NML�1 and AL C BM D 1 we obtain ‚0 D 2
ˇ�ˇT � 2L�1BT C
2ABT . Next, by using ˇ D � 1

2
L�1†�1.�F C 2/, †�1 D †T , ‚ D 2
†�1�† and

1C � f D .1C 1
2
�F/2 we can compute that 2
ˇ�ˇT D L�1†�1.1C � f /†‚.L�1/T .

Furthermore, from the identity Q D NML�1 D N
2

†�1f .1C � f /�1† we can show

that 1C � f D †L.L �‚M/�1†�1 and hence 2
ˇ�ˇT D �.L �‚M/�1.L�1‚/T .
Finally, by using AL C BM D 1 or equivalently A‚ C BML�1‚ D L�1‚ and the
fact that .BML�1‚/T D BT C .‚M � L/L�1BT we conclude that

‚1 D 2
ˇ�ˇT D � 1

L �‚M
.A‚C B/T C L�1BT : (6.161)

Hence

‚0 D � 1

L �‚M
.A‚C B/T � L�1BT C 2ABT (6.162)
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Since ABT is an integral matrix we have immediately e2i
ma.ABT/abmb D 1. Similarly,
we can show that e�i
ma.L�1BT /abmb D e�i
�aja D e�i
naja D ˙1, thus

‚0 D � 1

L �‚M
.A‚C B/T : (6.163)

The commutation relations satisfied by the operators Oz0
a can be computed (first in the

special basis (6.131) then rotating back to a general basis) to be given by

Oz0
bOz0

a D Oz0
aOz0

be
2
 i

�
2
ˇ�ˇT� 1

N BQBT
�
ab ; (6.164)

and thus

Oz0
bOz0

a D Oz0
aOz0

bexp.2
i‚
0
ab/ ; ‚

0
ab D 2
.†0�1/ai � 0

ij.†
0�1/bj : (6.165)

The covariant derivative in the Weyl-t’Hooft solution was found to be given by
ODi D O@i � i

2
Fij Oxj. We compute

Œ ODi; Oz0
a� D 2
i.†0�1/ai Oz0

a; (6.166)

where

.†0�1/ai D ˇak
�
1C 1

2
�F

�
ki
; (6.167)

or equivalently

†0 D †�
‚M � L

�
: (6.168)

By comparing the expansion (6.159) to the expansion (6.103) and the commutation
relations (6.165) and (6.166) to the commutation relations (6.100) and (6.109) we
can immediately conclude that the original NC torus Td

� is replaced with a dual NC
torus Td

� 0 where � 0 D .†0‚0†0�1/=2
 . Indeed, we have obtained the replacements

Oza�!Oz0
a, O@i�! ODi,‚�!‚0 and†�!†0. By analogy with (6.105) we can therefore

define on Td
� 0 a mapping O�0.x0/ of fields into operators as follows

O�0.x0/ D 1

jdet†0j
X

Em2Zd

Yd

aD1.Oz
0
a/

ma
Y

a<b
ei
ma‚

0
abmbe�2
 i.†0�1/ai max0i

: (6.169)

The expansion (6.159) thus becomes

OAi D
Z

ddx0 O�0.x0/˝A0
i.x

0/ (6.170)
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where

A0
i.x

0/ D
X

Em2Zd
e2
 i.†

0�1/ai max0i
ai.Em/: (6.171)

This is a single-valued U.N0/ gauge field on the NC torus Td
� 0 of volume jdet†0j.

The new operator trace Tr0 is related to Tr by

Tr0 trN0 D
N0
N

jdet†0j
jdet†j Tr trN : (6.172)

Finally it is a trivial exercise to check that the action (6.126) becomes on the dual
torus Td

� 0 given by

SYM D � 1

4g02

Z

ddx0trN0 .F 0
ij.x

0//2� (6.173)

where

g02 D g2
N0
N

jdet†0j
jdet†j D

g2

N0Nd�1 jdet
�
‚Q � N

�j: (6.174)
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Appendix A
The Landau States

In the position basis, we can replace the operators Xi, O@i, Z D X1 C iX2, NZ D ZC,
O@ D O@1 � iO@2, NO@ D �O@C, Oa, OaC, Ob, ObC, by the operators xi, @i, z D x1 C ix2, Nz D zC,
@ D @1 � i@2, N@ D �@C, a, aC, b, bC where

a D 1

2
.
p
�0@C 1p

�0
Nz/ ; aC D 1

2
.�

p
�0 N@C 1p

�0
z/: (A.1)

b D 1

2
.
p
�0 N@C 1p

�0
z/ ; bC D 1

2
.�

p
�0@C 1p

�0
Nz/: (A.2)

We thus have the quantum mechanical commutation relations

Œa; aC� D 1 ; Œb; bC� D 1: (A.3)

The Landau states are given by �l;m.x/ D< xjl;m >, where

jl;m >D .aC/l�1
p
.l� 1/Š

.bC/m�1
p
.m � 1/Š j0 > : (A.4)

We define

js; t >D
1X

l;mD1

sl�1
p
.l � 1/Š

tm�1
p
.m � 1/Š jl;m > : (A.5)
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We compute

js; t > D esa
CCtbC j0 >

D esa
CCtbC

esbCtaj0 >
D e�ste

szCtNzp
�0 j0 > : (A.6)

We define the generating function

Ps;t.x/ D< xjs; t > D e�ste
szCtNzp
�0 < z; Nzj0 >

D e�ste
szCtNzp
�0 �1;1.x/: (A.7)

Since aj1; 1 >D bj1; 1 >D 0 we must have

@�1;1 D � Nz
�0
�1;1 ; N@�1;1 D � z

�0
�1;1: (A.8)

A normalized solution is given by

�1;1.x/ D 1p

�0

e� Nzz
2�0 : (A.9)

Thus

Ps;t.x/ D 1p

�0

e�ste
szCtNzp
�0 e� Nzz

2�0 : (A.10)

The Landau eigenstates can be obtained as follows

�l;m.x/ D 1
p
.l� 1/Š.m � 1/Š

@l�1

@sl�1
@m�1

@tm�1Ps;t.x/jsDtD0: (A.11)

From P�
s;t D Pt;s, we obtain the first result

��
l;m D �m;l: (A.12)

The Fourier transform of the generating function Ps;t.x/ is

QPs;t.k/ D
Z

d2x e�ikxPs;t.x/

D
p
4
�0 e

ste�i
p
�0.sKCt NK/e� �0K NK

2 : (A.13)

In the above equation K D k1 C ik2.
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The star product (2.163) can be put in the form

f � g.x/ D
Z

d2k

.2
/2

Z
d2p

.2
/2
Qf .k/Qg.p/ e i

2 k�p ei.kCp/x: (A.14)

Hence

Ps1;t1 � Ps2;t2 .x/ D
Z

d2k

.2
/2

Z
d2p

.2
/2
QPs1;t1 .k/ QPs2;t2 .p/ e

i
2 k�p ei.kCp/x

D 4
�0
Z

d2k

.2
/2

Z
d2p

.2
/2
es1t1Cs2t2 e�i

p
�0

�
s1KCt1 NKCs2PCt2 NP

�

e� �0
2

� NKKCNPP
�

� e
i�
2 .k1p2�k2p1/ ei.kCp/x (A.15)

Integrating over p1 and p2 yields

Ps1;t1 � Ps2;t2 .x/ D 2

Z
d2k

.2
/2
es1t1Cs2t2 e�i

p
�0

�
s1KCt1 NK

�

e� �0
2

� NKK
�

eikx

� e� 1
2�0

�
R21CR22C �2

4 .k
2
1Ck22/C�.k1R2�k2R1/

�

: (A.16)

In above R1 D x1 �
p
�0.s2 C t2/, and R2 D x2 � i

p
�0.s2 � t2/. Integrating over k1

and k2 yields

Ps1;t1 � Ps2;t2 .x/ D
1


�
es1t1Cs2t2 e� 1

�

�
R21CR22

�

e� 1
2�

�
Q21CQ22

�

: (A.17)

Now Q1 D iR2 C x1 �
p
�0.s1 C t1/, and Q2 D �iR1 C x2 � i

p
�0.s1 � t1/. We

compute

Q21 C Q22 D �R21 � R22 C NzzC 2
p
�0.s2z � t2Nz/

C2�s1t1 � 4
p
�0s1z � 2�.s2t1 � s1t2/: (A.18)

Thus we get

R21CR22C
1

2
.Q21 C Q22/ D Nzz� 2

p
�0.s1zC t2Nz/C �.s1t1 C s2t2/� �.s2t1 � s1t2/:

(A.19)
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Hence

Ps1;t1 � Ps2;t2 .x/ D
1

2
�0
es2t1 e�s1t2e

s1zCt2Nz
p
�0 e� Nzz

2�0

D 1p
4
�0

es2t1Ps1;t2 .x/: (A.20)

Now, the definition (A.5), is equivalent to

Ps;t.x/ D
1X

l;mD1

sl�1
p
.l � 1/Š

tm�1
p
.m � 1/Š�l;m.x/: (A.21)

This leads to

Ps1;t1 � Ps2;t2 .x/ D
1X

l1;m1;l2;m2D1

sl1�11p
.l1 � 1/Š

tm1�11p
.m1 � 1/Š

sl2�12p
.l2 � 1/Š

tm2�12p
.m2 � 1/Š

�l1;m1 � �l2;m2 .x/:
(A.22)

From the other hand,

1p
4
�0

es2t1Ps1;t2 .x/ D
1p
4
�0

1X

l1;m1;l2;m2D1

sl1�11p
.l1 � 1/Š

tm1�11p
.m1 � 1/Š

sl2�12p
.l2 � 1/Š

tm2�12p
.m2 � 1/Š

� ım1;l2�l1;m2 .x/: (A.23)

Hence, we obtain

�l1;m1 � �l2;m2 .x/ D
1p
4
�0

ım1;l2�l1;m2 .x/: (A.24)

This is the second important result.
Next, from the fact

QPs;t.0/ D
Z

d2x Ps;t.x/ D
p
4
�0 e

st: (A.25)

We obtain

1X

l;mD1

sl�1
p
.l� 1/Š

tm�1
p
.m � 1/Š

Z

d2x �l;m.x/ D
p
4
�0 e

st: (A.26)



A The Landau States 319

In other words
Z

d2x �l;m.x/ D
p
4
�0 ıl;m: (A.27)

This is the third result.
Finally we calculate, quite easily, using the second and third results (A.24)

and (A.27), the fourth result

Z

d2x ��
l1;m1 � �l2;m2 .x/ D ıl1;l2 ım1;m2 : (A.28)

The results of this section are (A.12), (A.24), (A.27), and (A.28).



Appendix B
The Traces Tr�tA ˝ tB and Tr�tA ˝ tB ˝ tC ˝ tD

B.1 U(N) Lie Algebra and SU(N) Characters

U(N) Lie Algebra The fundamental representation N of SU(N) is generated by the
Lie algebra of Gell-Mann matrices ta D 	a=2; a D 1; : : : ;N2 � 1. The canonical
commutation relations are

Œta; tb� D ifabctc: (B.1)

These matrices also satisfy

2tatb D 1

N
ıab1C .dabc C ifabc/tc: (B.2)

We also have

Trtatbtc D 1

4
.dabc C ifabc/ ; Trtatb D ıab

2
; Trta D 0: (B.3)

We have the Fierz identity

.ta/jk.ta/li D 1

2
ıjiıkl � 1

2N
ıjkıli: (B.4)

We will define

t0 D 1p
2N

1N : (B.5)

The U(N) generators tA D .t0; ta/ satisfy then

2tAtB D .dABC C ifABC/tC: (B.6)
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The U(N) structure constants fABC and symmetric coefficients dABC are given by

dab0 D da0b D d0ab D
r
2

N
ıab; da00 D d0a0 D d00a D 0; d000 D

r
2

N
;

fab0 D fa0b D f0ab D fa00 D f0a0 D f00a D f000 D 0: (B.7)

We have then

TrtAtBtC D 1

4
.dABC C ifABC/ ; TrtAtB D ıAB

2
; TrtA D

r
N

2
ıA0: (B.8)

We will also note the identity

TrNtAtBtCtD D 1

8
.dABK C ifABK/.dCDK C ifCDK/: (B.9)

In this case the Fierz identity reads

.tA/jk.tA/li D 1

2
ıjiıkl: (B.10)

SU(N) Characters The SU(N) characters in the representation � of the group are
given by the following traces

��;n.ƒ/ D Tr�ƒ˝ : : :˝ƒ ; n factors: (B.11)

These are calculated for example in [1]. In this appendix, we will compute explicitly
the two traces Tr�tA ˝ tB and Tr�tA ˝ tB ˝ tC ˝ tD, and then deduce from them, the
characters Tr�ƒ˝ƒ and Tr�ƒ˝ƒ˝ƒ˝ƒ respectively.

The full trace TrtA1 ˝ tA2 : : :˝ tAn , n factors, is defined by

TrtA1 ˝ tA2 : : : :˝ tA3 D .tA1 /˛1ˇ1.tA2 /˛2ˇ2 : : : .tAn/
˛nˇnı˛1ˇ1ı˛2ˇ2 : : : ı˛nˇn : (B.12)

The trace in the irreducible representation � is defined by means of a projector P.s;t/n

as follows

Tr�tA1 ˝ tA2 : : : :˝ tA3 D .tA1 /˛1ˇ1.tA2 /˛2ˇ2 : : : .tAn/
˛nˇnP.s;t/n ı˛1ˇ1ı˛2ˇ2 : : : ı˛nˇn :

(B.13)

The computation of this trace, and as a consequence of the trace Tr�ƒ˝ƒ˝ : : :˝
ƒ, requires the computation of the projector P.s;t/n associated with the irreducible
representation � or equivalently .s; t/. This calculation clearly involves the n-fold
tensor product of the fundamental representation. Thus, we consider all possible



B The Traces Tr� tA ˝ tB and Tr� tA ˝ tB ˝ tC ˝ tD 323

partitions fmg of n into positive integers mi, where i D 1; ::s and m1 � m2:: � ms >

0, i.e.

n D m1 C : : :C ms: (B.14)

We call this partition a Young frame which consists of s rows with mi boxes in the
ith row. Obviously s � n which corresponds to the complete anti-symmetrization
of the columns. In order to get a Young diagram we fill out the boxes with numbers
ˇ1, . . . ,ˇn, where ˇi D 1; : : : ; n, such that entries are increasing along rows and
columns. Let P be the subset of the symmetric group Sn which permutes only the
indices i of ˇi of each row among themselves. Let Q be the subset of the symmetric
group Sn which permutes only the indices i of ˇi of each column among themselves.
We define the so-called Young symmetrizer by

c.n/fmg D
X

q2Q
sgn.q/Oq

X

p2P
Op: (B.15)

The action of Oq, which anti-symmetrizes the columns ˇi, and Op, which symmetrizes
the rows ˛i, are typically of the form

Oqg˛1ˇ1 : : : g˛nˇn D g˛1ˇq.1/ : : : g˛nˇq.n/ : (B.16)

Opg˛1ˇ1 : : : g˛nˇ2 D g˛p.1/ˇ1 : : : g˛p.n/ˇn : (B.17)

An irreducible representation � corresponds to a Young tableau with s rows and t
columns which we denote m.s;t/ or .s; t/ for short. Note that t D m1. The projector
P.s;t/n is the projector onto the Hilbert subspace associated with the irreducible
representation �. This projector is proportional to the above Young symmetrizer
[2]. We write

P.s;t/n D 1

˛.s;t/
c.n/fmg: (B.18)

The constant ˛ is determined from the requirement P2 D P.

B.2 The Trace Tr�tA ˝ tB

The full trace TrN2 tA ˝ tB is defined by

TrN2 tA ˝ tB D .tA/˛1ˇ1.tB/˛2ˇ2ı˛1ˇ1ı˛2ˇ2 : (B.19)
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The relevant tensor decomposition in this case is

A ˝ B D A B ˚ A
B
: (B.20)

Equivalently

N ˝ N D N2 C N

2
˚ N2 � N

2
: (B.21)

In other words, we have an n-fold tensor product of the fundamental representation
with n D 2. We consider all possible partitions fmg of n D 2 into positive integers
mi as explained above. The symmetric irreducible representation corresponds to
m.1;2/, while the antisymmetric irreducible representation corresponds to m.2;1/.
The symmetric representation m.1;2/ D .N ˝ N/S corresponds to the partition
m1 D 2, while the antisymmetric representation m.2;1/ D .N ˝ N/A corresponds
to m1 D m2 D 1. The trace in the irreducible representation � is defined by means
of a projector P.s;t/2 as follows

Tr�tA ˝ tB D .tA/˛1ˇ1 .tB/˛2ˇ2P.s;t/2 ı˛1ˇ1ı˛2ˇ2 : (B.22)

This projector is proportional to the Young symmetrizer c.2/fmg, viz

P.s;t/2 D 1

˛.s;t/
c.2/fmg: (B.23)

For example (here the projectors P.s;t/2 can be taken to act solely on the indices ˇ1
and ˇ2)

P.1;2/2 ı˛1ˇ1ı˛2ˇ2 D
1

˛.1;2/

X

q2Q
sgn.q/Oq

X

p2P
Opı˛1ˇ1ı˛2ˇ2

D 1

˛.1;2/

X

q2Q
sgn.q/Oq.ı˛1ˇ1ı˛2ˇ2 C ı˛1ˇ2ı˛2ˇ1/

D 1

˛.1;2/
.ı˛1ˇ1ı˛2ˇ2 C ı˛1ˇ2ı˛2ˇ1 /: (B.24)
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In this case P D S2 and the action of Oq is trivial since we have in every column one
box. We also compute

P.2;1/2 ı˛1ˇ1ı˛2ˇ2 D
1

˛.2;1/

X

q2Q
sgn.q/Oq

X

p2P
Opı˛1ˇ1ı˛2ˇ2

D 1

˛.2;1/

X

q2Q
sgn.q/Oqı˛1ˇ1ı˛2ˇ2

D 1

˛.2;1/
.ı˛1ˇ1ı˛2ˇ2 � ı˛2ˇ1ı˛1ˇ2 /: (B.25)

In this case the action of Op is trivial since every row contains one box and Q D S2.
Acting one more time we obtain

.P.1;2/2 /2ı˛1ˇ1ı˛2ˇ2 D
2

.˛.1;2//2
.ı˛1ˇ1ı˛2ˇ2 C ı˛1ˇ2ı˛2ˇ1/: (B.26)

.P.2;1/2 /2ı˛1ˇ1ı˛2ˇ2 D
2

.˛.2;1//2
.ı˛1ˇ1ı˛2ˇ2 � ı˛2ˇ1ı˛1ˇ2/: (B.27)

We conclude that

˛.1;2/ D ˛.2;1/ D 2: (B.28)

Thus

TrStA ˝ tB D 1

2
TrNtATrNtB C 1

2
TrNtAtB ; TrAtA ˝ tB D 1

2
TrNtATrtB � 1

2
TrNtAtB:

(B.29)

The formulae for the SU(N) characters TrSƒ˝ƒ and TrAƒ˝ƒ follow in a rather
trivial way.

B.3 The Trace Tr�tA ˝ tB ˝ tC ˝ tD

Next we study the tensor product of four copies of the fundamental representation
of SU(N). We have

N ˝ N ˝ N ˝ N D m.1;4/ ˚ m.2;3/ ˚ m.2;3/ ˚ m.2;3/ ˚ m.3;2/ ˚m.3;2/

˚m.3;2/ ˚ m.2;2/ ˚ m.2;2/ ˚ m.4;1/: (B.30)
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In terms of the highest weight .a1; a2; : : : ; aN�1/ (usually this is written as
.	1; 	2; : : : ; 	N/ with ai D 	i � 	iC1 and 	N D 0) we have

m.2;3/ D .a1 D 2; a2 D 1/ ; m.3;2/ D .a1 D a3 D 1/
m.1;4/ D .a1 D 4/ ; m.4;1/ D .a4 D 1/
m.2;2/ D .a2 D 2/: (B.31)

We compute the respective dimensions using the formula [2]

dim.a1; a2; : : : ; aN�1/ D
Y

1�i<j�N

.ai C : : :C aj�1/C j� i

j � i
: (B.32)

We find

dim.m.1;4// D N4 C 6N3 C 11N2 C 6N
24

: (B.33)

dim.m.4;1// D N4 � 6N3 C 11N2 � 6N
24

: (B.34)

dim.m.2;3// D N4 C 2N3 � N2 � 2N
8

: (B.35)

dim.m.3;2// D N4 � 2N3 � N2 C 2N
8

: (B.36)

dim.m.2;2// D N4 � N2

12
: (B.37)

The full trace TrN4 tA ˝ tB ˝ tC ˝ tD is defined by

TrN4 tA ˝ tB ˝ tC ˝ tD D .tA/˛1ˇ1 .tB/˛2ˇ2 .tC/˛3ˇ3.tD/˛4ˇ4ı˛1ˇ1ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4 :
(B.38)

The trace of tA˝tB˝tC˝tD, restricted to a given irreducible representation � D m.s;t/

of SU(N), will be given in terms of a projector P.s;t/4 by

Tr�tA ˝ tB ˝ tC ˝ tD D .tA/˛1ˇ1 .tB/˛2ˇ2 .tC/˛3ˇ3.tD/˛4ˇ4P.s;t/4 ı˛1ˇ1ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4 :

(B.39)

The Young symmetrizer in this case is given by

c.4/fmg D
X

q2Q
sgn.q/Oq

X

p2P
Op: (B.40)
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Recall that P is the subset of the symmetric group Sn (here n D 4) which
permutes only the indices of each row among themselves, while Q is the subset
of the symmetric group Sn which permutes only the indices of each column among
themselves. We have to deal with 5 cases separately which are: m.1;4/, m.4;1/, m.2;3/,
m.3;2/ and m.2;2/.

The case m.1;4/ Explicitly

m.1;4/ D A B C D : (B.41)

In this case Oq acts trivially while P D S4. The projector P.1;4/4 onto the irreducible
representation m.1;4/ is given by

P.1;4/4 D 1

4Š
c.4/.1;4/ D

1

4Š

X

p2P
Op: (B.42)

The projector P.1;4/4 can be taken to act on the indices ˇi. Explicitly we have

P.1;4/4 ı˛1ˇ1ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4 D
1

4Š
ı˛1ˇ1.ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4 C 5 permutations/

C 1
4Š
ı˛1ˇ4.ı˛2ˇ1ı˛3ˇ2ı˛4ˇ3 C 5 permutations/

C 1
4Š
ı˛1ˇ3.ı˛2ˇ4ı˛3ˇ1ı˛4ˇ2 C 5 permutations/

C 1
4Š
ı˛1ˇ2.ı˛2ˇ3ı˛3ˇ4ı˛4ˇ1 C 5 permutations/:

(B.43)

We find after some calculation

Tr.1;4/tA ˝ tB ˝ tC ˝ tD D 1

4Š
TrN.tAtBftC; tDg C tAtCftB; tDg C tAtDftC; tBg/

C 1
4Š

�

TrNtATrNtBftC; tDg C TrNtBTrNtAftC; tDg

CTrNtCTrNtAftB; tDg C TrNtDTrNtAftC; tBg
�

C 1
4Š

�

TrNtAtBTrNtCtD C TrNtAtCTrNtBtD C TrNtAtDTrNtBtC

�

C 1
4Š

�

TrNtAtBTrNtCTrNtD C TrNtAtCTrNtBTrNtD

CTrNtAtDTrNtBTrNtC C TrNtBtCTrNtATrNtD
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CTrNtBtDTrNtATrNtC C TrNtCtDTrNtATrNtB

�

C 1
4Š
TrNtATrNtBTrNtCTrNtD: (B.44)

We may use the notation [3]

Tr.1;4/tA ˝ tB ˝ tC ˝ tD D f.ABCD/g C f.A/.BCD/g C f.AB/.CD/g
Cf.AB/.C/.D/g C f.A/.B/.C/.D/g: (B.45)

From this result we obtain the character

Tr.1;4/ƒ˝ƒ˝ƒ˝ƒ D 1

4Š

�

6TrNƒ
4 C 8TrNƒ3TrNƒC 3.TrNƒ2/2

C6TrNƒ2.TrNƒ/
2 C .TrNƒ/4

�

: (B.46)

Next we compute

KABKCDTrN.tAtBftC; tDg C tAtCftB; tDg C tAtDftC; tBg/

D 1

2
KABKCD.

1

2
dABKdCDK C dADKdBCK/: (B.47)

KABKCD

�

TrNtATrNtBftC; tDg C TrNtBTrNtAftC; tDg C TrNtCTrN tAftB; tDg

CTrNtDTrNtAftC; tBg
�

D 4KABKCDTrNtATrNtBftC; tDg: (B.48)

This term would be 0 for SU(N), i.e. if A runs only over SU(N) indices. We obtain
instead

KABKCD

�

TrNtATrNtBftC; tDg C TrNtBTrNtAftC; tDg C TrNtCTrN tAftB; tDg

CTrNtDTrNtAftC; tBg
�

D p2NK0BKCDdBCD: (B.49)

Also we have

KABKCD

�

TrNtAtBTrNtCtDCTrNtAtCTrNtBtDCTrNtAtDTrNtBtC
�

D 1

4
.2K2AB C K2AA/:

(B.50)
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KABKCD

�

TrNtAtBTrN tCTrNtD C TrNtAtCTrNtBTrNtD C TrNtAtDTrNtBTrNtC

CTrNtBtCTrN tATrN tD C TrNtBtDTrN tATrN tC C TrNtCtDTrNtATrNtB

�

D N

2
.KAAK00 C 2K2A0/: (B.51)

Thus

KABKCDTr.1;4/tA ˝ tB ˝ tC ˝ tD D 1

4Š

�
1

2
KABKCD.

1

2
dABKdCDK C dADKdBCK/

Cp2NK0BKCDdBCD C 1

4
.2K2AB C K2AA/

CN

2
.KAAK00 C 2K2A0/C

N2

4
K200

�

: (B.52)

The case m.4;1/ Explicitly

m.4;1/ D
A
B
C
D

: (B.53)

In this case Op acts trivially while Q D S4. The projector P.4;1/4 onto the irreducible
representation m.4;1/ is given explicitly by

P.4;1/4 ı˛1ˇ1ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4 D
1

4Š

X

q2Q
sgn.q/Oqı˛1ˇ1ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4

D 1

4Š
ı˛1ˇ1.ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4 C 2 cyclic permutations� 3 odd permutations/

� 1
4Š
ı˛1ˇ4.ı˛2ˇ1ı˛3ˇ2ı˛4ˇ3 C 2 cyclic permutations� 3 odd permutations/

C 1
4Š
ı˛1ˇ3.ı˛2ˇ4ı˛3ˇ1ı˛4ˇ2 C 2 cyclic permutations� 3 odd permutations/

� 1
4Š
ı˛1ˇ2 .ı˛2ˇ3ı˛3ˇ4ı˛4ˇ1 C 2 cyclic permutations� 3 odd permutations/:

(B.54)
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We get immediately the result

Tr.4;1/tA ˝ tB ˝ tC ˝ tD D � 1
4Š
TrN.tAtBftC; tDg C tAtCftB; tDg C tAtDftC; tBg/

C 1
4Š

�

TrNtATrN tBftC; tDg C TrNtBTrN tAftC; tDg C TrNtCTrNtAftB; tDg

CTrNtDTrN tAftC; tBg
�

C 1
4Š

�

TrNtAtBTrN tCtD C TrNtAtCTrNtBtD C TrNtAtDTrN tBtC

�

� 1
4Š

�

TrNtAtBTrNtCTrN tD C TrNtAtCTrNtBTrNtD C TrNtAtDTrNtBTrNtC

CTrNtBtCTrN tATrN tD C TrNtBtDTrN tATrN tC C TrNtCtDTrNtATrNtB

�

C 1
4Š
TrNtATrN tBTrN tCTrNtD: (B.55)

Equivalently

Tr.4;1/tA ˝ tB ˝ tC ˝ tD D 1

4Š

�

� f.ABCD/g C f.A/.BCD/g C f.AB/.CD/g

�f.AB/.C/.D/g C f.A/.B/.C/.D/g
�

: (B.56)

From this result we obtain the character

Tr.4;1/ƒ˝ƒ˝ƒ˝ƒ D 1

4Š

�

� 6TrNƒ4 C 8TrNƒ3TrNƒC 3.TrNƒ2/2

�6TrNƒ2.TrNƒ/
2 C .TrNƒ/4

�

: (B.57)

Similarly to the previous case we can also compute

KABKCDTr.4;1/tA ˝ tB ˝ tC ˝ tD D 1

4Š

�

� 1
2
KABKCD.

1

2
dABKdCDK C dADKdBCK/

Cp2NK0BKCDdBCD C 1

4
.2K2AB C K2AA/

�N
2
.KAAK00 C 2K2A0/C

N2

4
K200

�

: (B.58)
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The case m.2 ;3/ Explicitly

m.2;3/ D A B C
D

: (B.59)

In this case P D S3 and Q D S2. Now we have to be careful and symmetrize
over rows (the indices ˛i in the Kronecker delta symbols) and antisymmetrize over
columns (the indices ˇi in the Kronecker delta symbols).1 Explicitly we have

c.4/.2;3/ı˛1ˇ1ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4 D .ı˛2ˇ2ı˛3ˇ3 C ı˛2ˇ3ı˛3ˇ2/.ı˛1ˇ1ı˛4ˇ4 � ı˛1ˇ4ı˛4ˇ1/
C.ı˛1ˇ2ı˛2ˇ3 C ı˛2ˇ2ı˛1ˇ3/.ı˛3ˇ1ı˛4ˇ4 � ı˛3ˇ4ı˛4ˇ1 /
C.ı˛3ˇ2ı˛1ˇ3 C ı˛1ˇ2ı˛3ˇ3/.ı˛2ˇ1ı˛4ˇ4 � ı˛2ˇ4ı˛4ˇ1 /:

(B.60)

We can show that .c.4/.2;3//
2ı˛1ˇ1ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4 D 8ı˛1ˇ1ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4 . This can

also be deduced from the result that .c.4/.2;3//
2 must be proportional to c.4/.2;3/ with a

proportionality factor equal to the product of hook lengths of the Young diagram.
Thus the corresponding projector must be defined by

P.2;3/4 D 1

8
c.4/.2;3/: (B.61)

We compute immediately the desired trace

Tr.2;3/tA ˝ tB ˝ tC ˝ tD D 1

8

�

� TrNtAtDftB; tCg C TrNtAftB; tCgTrNtD
�TrNtAtDtBTrNtC � TrNtAtDtCTrNtB � TrNtAtDTrN tBtC

CTrNtAtBTrNtCTrNtD C TrNtAtCTrNtBTrNtD

CTrNtBtCTrNtATrNtD � TrNtAtDTrN tBTrN tC

CTrNtATrN tBTrN tCTrNtD
�

: (B.62)

In our notation this reads

Tr.2;3/tA ˝ tB ˝ tC ˝ tD D 1

8

�

� .ADfBCg/C .AfBCg/.D/� .ADfB/.Cg/

�.AD/.BC/C f.AB/.C/g.D/

�.AD/.B/.C/C .A/.B/.C/.D/
�

: (B.63)

1This did not matter in the previous cases.
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We obtain the character

Tr.2;3/ƒ˝ƒ˝ƒ˝ƒ D 1

8

�

� 2TrNƒ4 � .TrNƒ2/2

C2TrNƒ2.TrNƒ/
2 C .TrNƒ/4

�

: (B.64)

By using the fact that KAB is symmetric under the exchange A $ B and the fact
that dABC is completely symmetric in its indices we can show that

.2KABKCD C KADKBC/
�

TrNtAftB; tCgTrNtD � TrNtAtDtBTrNtC � TrNtAtDtCTrNtB

�

D 0: (B.65)

Next we calculate

.2KABKCD C KADKBC/TrNtAtDftB; tCg D .2KABKCD C KADKBC/

1

4
.dADK C ifADK/dBCK: (B.66)

By inspection the term involving f vanishes and thus we get

.2KABKCD C KADKBC/TrNtAtDftB; tCg D 1

2
KABKCD.

1

2
dABKdCDK C dADKdBCK/:

(B.67)

The remaining terms are easy. We have

.2KABKCD C KADKBC/TrNtAtDTrNtBtC D 1

4
.2K2AB C K2AA/: (B.68)

.2KABKCD C KADKBC/TrNtATrN tBTrN tCTrNtD D 3N2

4
K200: (B.69)

.2KABKCD C KADKBC/

�

TrNtAtBTrN tCTrNtD C TrNtAtCTrNtBTrNtD

CTrNtBtCTrNtATrNtD � TrNtAtDTrN tBTrN tC

�

D N

2
.KAAK00 C 2K2A0/:

(B.70)
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By putting these elements together we get

.2KABKCD C KADKBC/Tr.2;3/tA ˝ tB ˝ tC ˝ tD D 1

8

�

� 1
2
KABKCD

.
1

2
dABKdCDK C dADKdBCK/� 1

4
.2K2AB C K2AA/C

N

2
.KAAK00 C 2K2A0/

C3N
2

4
K200

�

: (B.71)

The case m.3;2/ Explicitly

m.3;2/ D
A B
C
D

: (B.72)

This is very similar to the above case. We only quote the results

Tr.3;2/tA ˝ tB ˝ tC ˝ tD D 1

8

�

TrNtAtBftC; tDg C TrNtAftC; tDgTrNtB
�TrNtAtBtCTrNtD � TrNtAtBtDTrN tC � TrNtAtBTrNtCtD

�TrNtCtDTrNtATrNtB � TrNtAtCTrNtDTrNtB

�TrNtAtDTrNtCTrNtB C TrNtAtBTrNtCTrN tD

CTrNtATrN tBTrN tCTrNtD
�

: (B.73)

Tr.3;2/tA ˝ tB ˝ tC ˝ tD

D 1

8

�

.ABfCDg/C .AfCDg/.B/� .ABfC/.Dg/� .AB/.CD/

�f.A/.CD/g.B/C .AB/.C/.D/C .A/.B/.C/.D/
�

: (B.74)

Tr.3;2/ƒ˝ƒ˝ƒ˝ƒ

D 1

8

�

2TrNƒ
4 � .TrNƒ2/2 � 2TrNƒ2.TrNƒ/

2 C .TrNƒ/4
�

: (B.75)

As before we calculate

.KABKCD C 2KACKBD/TrNtAtBftC; tDg D 1

2
KABKCD.

1

2
dABKdCDK C dADKdBCK/:

(B.76)
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.KABKCD C 2KACKBD/
�

TrNtAftC; tDgTrNtB � TrNtAtBtCTrNtD � TrNtAtBtDTrNtC

�

D 0: (B.77)

.KABKCD C 2KACKBD/TrNtAtBTrNtCtD D 1

4
.2K2AB C K2AA/: (B.78)

.KABKCD C 2KACKBD/

�

TrNtCtDTrNtATrNtB C TrNtAtCTrNtDTrNtB

CTrNtAtDTrNtCTrN tB � TrNtAtBTrN tCTrNtD

�

D N

2
.KAAK00 C 2K2A0/: (B.79)

Thus

.KABKCD C 2KACKBD/Tr.3;2/tA ˝ tB ˝ tC ˝ tD D 1

8

�
1

2
KABKCD.

1

2
dABKdCDK

CdADKdBCK/� 1
4
.2K2AB C K2AA/�

N

2
.KAAK00 C 2K2A0/C

3N2

4
K200

�

: (B.80)

The case m.2 ;2/ Explicitly

m.2;2/ D A B
C D

: (B.81)

We have

c.4/.2;2/ı˛1ˇ1ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4

D
X

q2Q
sgn.q/Oq

X

p2P
Opı˛1ˇ1ı˛2ˇ2ı˛3ˇ3ı˛4ˇ4

D
X

q2Q
sgn.q/Oq.ı˛1ˇ1ı˛2ˇ2 C ı˛2ˇ1ı˛1ˇ2/.ı˛3ˇ3ı˛4ˇ4 C ı˛4ˇ3ı˛3ˇ4/

D .ı˛1ˇ1ı˛3ˇ3 � ı˛1ˇ3ı˛3ˇ1/.ı˛2ˇ2ı˛4ˇ4 � ı˛2ˇ4ı˛4ˇ2 /
C.ı˛1ˇ1ı˛4ˇ3 � ı˛1ˇ3ı˛4ˇ1/.ı˛2ˇ2ı˛3ˇ4 � ı˛2ˇ4ı˛3ˇ2 /
C.ı˛2ˇ1ı˛3ˇ3 � ı˛2ˇ3ı˛3ˇ1/.ı˛1ˇ2ı˛4ˇ4 � ı˛1ˇ4ı˛4ˇ2 /
C.ı˛2ˇ1ı˛4ˇ3 � ı˛2ˇ3ı˛4ˇ1/.ı˛1ˇ2ı˛3ˇ4 � ı˛1ˇ4ı˛3ˇ2 /: (B.82)
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As before we know that .c.4/.2;2//
2 must be proportional to c.4/.2;2/ with a proportionality

factor equal to the product of hooks lengths of the Young diagram.2 In this case we
can trivially check that the hooks lengths are

3 2
2 1

; (B.83)

and as a consequence the product of is 12. Thus the corresponding projector must
be defined by

P.2;2/4 D 1

12
c.4/.2;2/: (B.84)

We compute then the trace

Tr.2;2/tA ˝ tB ˝ tC ˝ tD D 1

12

�

TrNtAtCtBtD C TrNtAtDtBtC � TrNtAtBtCtD � TrNtAtDtCtB

�TrNtATrNtBtCtD � TrNtBTrNtAtDtC � TrNtCTrNtAtBtD

�TrNtDTrNtAtCtB C TrtAtBTrNtCtD

CTrNtAtCTrNtBtD C TrNtAtDTrNtCtB

CTrNtAtBTrNtCTrNtD C TrNtCtDTrNtATrNtB

�TrNtAtCTrNtBTrNtD � TrNtBtDTrNtATrNtC

CTrNtATrNtBTrNtCTrNtD
�

: (B.85)

The last SU(N) character of interest is therefore

Tr.2;2/ƒ˝ƒ˝ƒ˝ƒ D 1

12

�

� 4TrNƒTrNƒ3 C 3.TrNƒ2/2 C .TrNƒ/4
�

:

(B.86)

We can now immediately observe that

.KABKCD C KACKBD/
�

TrNtAtCtBtD C TrNtAtDtBtC � TrNtAtBtCtD � TrNtAtDtCtB

�

D 0:

(B.87)

2This is given by the number of boxes that are in the same row to the right plus the number of
boxes that are in the same column below plus one for the box itself.
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.KABKCD C KACKBD/

�

� TrNtATrNtBtCtD � TrNtBTrNtAtDtC � TrNtCTrNtAtBtD

�TrNtDTrN tAtCtB
�

D �4KABKCDTrNtA:TrNtCftD; tBg:

(B.88)

This would have been 0 if A runs only over SU(N) generators. We get instead

.KABKCD C KACKBD/

�

� TrNtATrNtBtCtD � TrNtBTrNtAtDtC � TrNtCTrNtAtBtD

�TrNtDTrN tAtCtB
�

D �p2NdBCDK0BKCD:

(B.89)

We also have

.KABKCD C KACKBD/

�

TrtAtBTrNtCtD C TrNtAtCTrNtBtD C TrNtAtDTrNtCtB

�

D 1

2
.2K2AB C K2AA/: (B.90)

.KABKCD C KACKBD/

�

TrNtAtBTrNtCTrNtD C TrNtCtDTrNtATrNtB � TrNtAtCTrNtBTrNtD

�TrNtBtDTrNtATrNtC
�

D 0: (B.91)

Hence

.KABKCD C KACKBD/Tr.2;2/tA ˝ tB ˝ tC ˝ tD D 1

12

�

�p2NdBCDK0BKCD

C1
2
.2K2AB C K2AA/C

N2

2
K200

�

:

(B.92)

B.4 Calculation of the Coefficients s1;4, s4;1, s2;3, s3;2 and s2;2

Set Up We start by summarizing our results so far. We have

dim.1; 4/s1;4 D KABKCDTr.1;4/tA ˝ tB ˝ tC ˝ tD

D 1

4Š

�
1

2
KABKCD.

1

2
dABKdCDK C dADKdBCK/C

p
2NK0BKCDdBCD
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C1
4
.2K2AB C K2AA/

CN

2
.KAAK00 C 2K2A0/C

N2

4
K200

�

: (B.93)

dim.4; 1/s4;1 D KABKCDTr.4;1/tA ˝ tB ˝ tC ˝ tD

D 1

4Š

�

� 1
2
KABKCD.

1

2
dABKdCDK C dADKdBCK/C

p
2NK0BKCDdBCD

C1
4
.2K2AB C K2AA/�

N

2
.KAAK00 C 2K2A0/C

N2

4
K200

�

: (B.94)

dim.2; 3/s2;3 D .2KABKCD C KADKBC/Tr.2;3/tA ˝ tB ˝ tC ˝ tD

D 1

8

�

� 1
2
KABKCD.

1

2
dABKdCDK C dADKdBCK/� 1

4
.2K2AB C K2AA/

CN

2
.KAAK00 C 2K2A0/C

3N2

4
K200

�

: (B.95)

dim.3; 2/s3;2 D .KABKCD C 2KACKBD/Tr.3;2/tA ˝ tB ˝ tC ˝ tD

D 1

8

�
1

2
KABKCD.

1

2
dABKdCDK C dADKdBCK/ � 1

4
.2K2AB C K2AA/

�N
2
.KAAK00 C 2K2A0/C

3N2

4
K200

�

: (B.96)

dim.2; 2/s2;2 D .KABKCD C KACKBD/Tr.2;2/tA ˝ tB ˝ tC ˝ tD

D 1

12

�

�p2NdBCDK0BKCD C 1

2
.2K2AB C K2AA/C

N2

2
K200

�

:

(B.97)

Let us now note that

1

2
KABKCD.

1

2
dABKdCDK C dADKdBCK/ D KABKCDTrN

�

8tAtBtCtD C 4tAtDtBtC
�

:

(B.98)

We will use the notation

KAB D .tA/jk.tB/liKij;kl: (B.99)
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Kij;kl D 2r2
p
!

�
.�C/ij�kl C .�C/kl�ij

� � 4r2p!3.�3/ij.�3/kl C 2r2
�
Eijıkl C Eklıij

�
:

(B.100)

We compute, by using the Fierz identity, the result

1

2
KABKCD.

1

2
dABKdCDK C dADKdBCK/ D 4KABKCDTrtAtBtCtD C 2KABKCDTrtAtCtBtD

D 1

2

�1

2
Kii;klKjj;lk C 1

4
Kij;klKli;jk

�
:

(B.101)

Also we compute

KABKAB D 1

4
Kij;klKji;lk: (B.102)

KAA D 1

2
Kii;jj: (B.103)

K2A0 D
1

4N
Kmj;kmKnk;jn: (B.104)

K00 D 1

2N
Kij;ji: (B.105)

p
2NK0BKCDdBCD D 1

2
Kij;jlKkk;li: (B.106)

We will derive, in the next section, the large N behavior

Kii;klKjj;lk � N5

(B.107)

Kij;klKli;jk � N3

(B.108)

Kij;jlKkk;li � N4

(B.109)

Kij;klKji;lk � N4

(B.110)

K2ii;jj � N6

(B.111)

Kii;jjKkl;lk � N5

(B.112)
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Kmj;kmKnk;jn � N3

(B.113)

K2ij;ji � N4

(B.114)

Explicit Calculation We will now introduce the notation

1

4
X1 D 1

2
K2AB C

1

4
K2AA: (B.115)

1

2
X2 D 1

2
KABKCD.

1

2
dABKdCDK C dADKdBCK/: (B.116)

Y1 D N

2
.KAAK00 C 2K2A0/: (B.117)

Y2 D
p
2NK0BKCDdBCD: (B.118)

Y3 D N2

4
K200: (B.119)

The operators Ys are due to the trace part of the scalar field. We have then

N4 Qd1;4s1;4 D 1

4
X1 C 1

2
X2 C Y1 C Y2 C Y3: (B.120)

N4 Qd4;1s4;1 D 1

4
X1 � 1

2
X2 � Y1 C Y2 C Y3: (B.121)

N4 Qd2;3s2;3 D �1
4
X1 � 1

2
X2 C Y1 C 3Y3: (B.122)

N4 Qd3;2s3;2 D �1
4
X1 C 1

2
X2 � Y1 C 3Y3: (B.123)

N4 Qd2;2s2;2 D 1

2
X1 � Y2 C 2Y3: (B.124)

We compute

s1;4 C s4;1 D 2

.N2 � 1/.N2 � 4/.N2 � 9/
�

.N2 C 11/
�
1

4
X1 C Y2 C Y3

�

�6N
2 C 1
N

�
1

2
X2 C Y1

��

:

(B.125)
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s1;4 � s4;1 D 2

.N2 � 1/.N2 � 4/.N2 � 9/
�

� 6N
2 C 1
N

�
1

4
X1 C Y2 C Y3

�

C.N2 C 11/
�
1

2
X2 C Y1

��

:

(B.126)

s2;3 C s3;2 D 2

.N2 � 1/.N2 � 4/
��

� 1
4
X1 C 3Y3

�

� 2

N

�

� 1
2
X2 C Y1

��

:

(B.127)

s2;3 � s3;2 D 2

.N2 � 1/.N2 � 4/
�

� 2

N

�

� 1
4
X1 C 3Y3

�

C
�

� 1
2
X2 C Y1

��

:

(B.128)

s2;2 D 1

N2.N2 � 1/
�
1

2
X1 � Y2 C 2Y3

�

: (B.129)

We then further compute

1

48
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2/ D N2 C 6

8N2.N2 � 1/.N2 � 4/.N2 � 9/X1

� 5

4N.N2 � 1/.N2 � 4/.N2 � 9/X2

� 1

2N.N2 � 1/.N2 � 9/Y1

C 2N2 � 3
2N2.N2 � 1/.N2 � 4/.N2 � 9/Y2

C N4 � 8N2 C 6
2N2.N2 � 1/.N2 � 4/.N2 � 9/Y3:

(B.130)

1

8
.s1;4 � s4;1 C s2;3 � s3;2/ D � N2 C 6

4N.N2 � 1/.N2 � 4/.N2 � 9/X1

C 5

2.N2 � 1/.N2 � 4/.N2 � 9/X2

C N2 C 1
2.N2 � 1/.N2 � 4/.N2 � 9/Y1
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� 3.N2 C 1/
2N.N2 � 1/.N2 � 4/.N2 � 9/Y2

� 3

N.N2 � 1/.N2 � 9/Y3: (B.131)

1

16
.s1;4 C s4;1 � s2;3 � s3;2 C 2s2;2/ D N4 � 6N2 C 18

8N2.N2 � 1/.N2 � 4/.N2 � 9/X1

� 2N2 � 3
4N.N2 � 1/.N2 � 4/.N2 � 9/X2

� N2 C 6
2N.N2 � 1/.N2 � 4/.N2 � 9/Y1

C 3.2N2 � 3/
2N2.N2 � 1/.N2 � 4/.N2 � 9/Y2

C 3.N2 C 6/
2N2.N2 � 1/.N2 � 4/.N2 � 9/Y3:

(B.132)

1

6
.s1;4 C s4;1 � s2;2/ D 2N2 � 3

N2.N2 � 1/.N2 � 4/.N2 � 9/X1

� N2 C 1
N.N2 � 1/.N2 � 4/.N2 � 9/X2

� 2.N2 C 1/
N.N2 � 1/.N2 � 4/.N2 � 9/Y1

C N4 C 3N2 C 12
2N2.N2 � 1/.N2 � 4/.N2 � 9/Y2

C 4.2N2 � 3/
N2.N2 � 1/.N2 � 4/.N2 � 9/Y3: (B.133)

1

8
.s1;4 � s4;1 � s2;3 C s3;2/ D � 2N2 � 3

4N.N2 � 1/.N2 � 4/.N2 � 9/X1

C N2 C 1
4.N2 � 1/.N2 � 4/.N2 � 9/X2

C 5

.N2 � 1/.N2 � 4/.N2 � 9/Y1
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� 3.N2 C 1/
2N.N2 � 1/.N2 � 4/.N2 � 9/Y2

� 15

N.N2 � 1/.N2 � 4/.N2 � 9/Y3: (B.134)

From this last Eq. (B.134), we obtain the important result

(B.134)

N
D 1

8N6
.�2 � 25

N2
C O4/Kij;klKji;lk C 1

16N6
.�2 � 25

N2
C O4/K

2
ii;jj

C 1

8N5
.1C 15

N2
C O4/Kii;klKjj;lk C 1

16N5
.1C 15

N2
CO4/Kij;klKli;jk

C 5

8N7
.1C 14

N2
C O4/Kii;jjKkl;lk C 5

4N7
.1C 14

N2
C O4/Kij;kiKlk;jl

� 3

4N6
.1C 15

N2
CO4/Kij;jlKkk;li � 15

16N8
.1C 14

N2
C O4/K

2
ij;ji:

(B.135)

In the large N limit, we get the leading behavior

1

8N
.s1;4 � s4;1 � s2;3 C s3;2/ D 1

16N6
.�2 � 25

N2
C O4/K

2
ii;jj

C 1

8N5
.1C 15

N2
C O4/Kii;klKjj;lk:

(B.136)

Similarly, Eq. (B.133) leads to the second important result

(B.133) D 1

2N6
.2C 25

N2
CO4/Kij;klKji;lk C 1

4N6
.2C 25

N2
C O4/K

2
ii;jj

� 1

2N5
.1C 15

N2
C O4/Kii;klKjj;lk � 1

4N5
.1C 15

N2
CO4/Kij;klKli;jk

� 1

4N5
.1C 15

N2
C O4/Kii;jjKkl;lk � 1

2N5
.1C 15

N2
C O4/Kij;kiKlk;jl

C 1

4N4
.1C 17

N2
C O4/Kij;jlKkk;li C 1

4N6
.2C 25

N2
C O4/K

2
ij;ji:

(B.137)
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The leading N behavior is given by

1

6
.s1;4 C s4;1 � s2;2/ D 1

4N6
.2C 25

N2
C O4/K

2
ii;jj �

1

2N5
.1C 15

N2
C O4/Kii;klKjj;lk

� 1

4N5
.1C 15

N2
C O4/Kii;jjKkl;lk

C 1

4N4
.1C 17

N2
C O4/Kij;jlKkk;li:

(B.138)

Let us now focus on the combination (B.131). This appears in the action added to
the combination

� 1
4
.s21;2 � s22;1/ D

1

8N.N2 � 1/2
�
1

2
K2ij;ji �

N2 C 1
2N

Kii;jjKkl;lk C 1

2
K2ii;jj

�

:

(B.139)

We compute immediately the expansion

(B.131)C (B.139)

N
D 1

8N
.s1;4 � s4;1 C s2;3 � s3;2 � 2.s21;2 � s22;1//

D 1

8N6
.�1 � 20

N2
CO4/Kij;klKji;lk C 1

16N6
.� 18

N2
CO4/K

2
ii;jj

C 5

4N7
.1C 14

N2
CO4/Kii;klKjj;lk C 5

8N7
.1C 14

N2
CO4/Kij;klKli;jk

C 1

16N5
.
12

N2
CO4/Kii;jjKkl;lk C 1

8N5
.1C 15

N2
CO4/Kij;kiKlk;jl

� 3

4N6
.1C 15

N2
CO4/Kij;jlKkk;li C 1

8N6
.�1 � 14

N2
CO4/K

2
ij;ji:

(B.140)

In the large N limit we get the leading behavior

1

8N
.s1;4 � s4;1 C s2;3 � s3;2 � 2.s21;2 � s22;1// D

1

8N6
.�1C O2/Kij;klKji;lk

C 1

16N6
.� 18

N2
C O4/K

2
ii;jj

C 5

4N7
.1C O2/Kii;klKjj;lk

C 1

16N5
.
12

N2
C O4/Kii;jjKkl;lk
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C 1

8N5
.1C O2/Kij;kiKlk;jl

� 3

4N6
.1C O2/Kij;jlKkk;li

C 1

8N6
.�1C O2/K

2
ij;ji: (B.141)

On the other hand, the combination (B.132) appears in the action added to the
combination

� 1
8
.s1;2 � s2;1/

2 D � 1

8.N2 � 1/2
�
1

4N2
K2ij;ji �

1

2N
Kii;jjKkl;lk C 1

4
K2ii;jj

�

: (B.142)

We compute now the expansion

(B.132)C (B.142)

N2
D 1

16N2
.s1;4 C s4;1 � s2;3 � s3;2 C 2s2;2 � 2.s1;2 � s2;1/

2/

D 1

16N6
.1C 8

N2
C O4/Kij;klKji;lk C 1

32N6
.
6

N2
C O4/K

2
ii;jj

� 1

8N7
.2C 25

N2
CO4/Kii;klKjj;lk � 1

16N7
.2C 25

N2
C O4/Kij;klKli;jk

C 1

16N7
.� 18

N2
CO4/Kii;jjKkl;lk � 1

8N7
.1C 20

N2
CO4/Kij;kiKlk;jl

C 3

4N8
.2C 25

N2
CO4/Kij;jlKkk;li C 1

16N8
.1C 29

N2
CO4/K

2
ij;ji:

(B.143)

The large N limit behavior is given by

1

16N2
.s1;4Cs4;1 � s2;3 � s3;2C2s2;2 � 2.s1;2 � s2;1/

2/ D 1

16N6
.1C O2/Kij;klKji;lk

C 1

32N6
.
6

N2
C O4/K

2
ii;jj

� 1

8N7
.2CO2/Kii;klKjj;lk:

(B.144)

Lastly, the combination (B.130) appears in the action added to the combination

� 1
8
.s1;2 C s2;1/

2 D � 1

8.N2 � 1/2
�
1

4
K2ij;ji �

1

2N
Kii;jjKkl;lk C 1

4N2
K2ii;jj

�

:

(B.145)
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We get now

(B.130)C (B.145) D 1

48
.s1;4 C s4;1 C 3s2;3 C 3s3;2 C 2s2;2 � 6.s1;2 C s2;1/
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16N6
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N2
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32N6
.
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N2
C O4/K

2
ii;jj

� 5

8N7
.1C 14

N2
CO4/Kii;klKjj;lk � 5

16N7
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N2
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16N5
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4
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2
ij;ji:

(B.146)

The large N limit behavior is given by

1

48
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2/
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C 1

32N6
.
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N2
C O4/K

2
ii;jj �

5

8N7
.1C O2/Kii;klKjj;lk

C 1

16N5
.� 8
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8N5
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C 1

4N6
.2C O2/Kij;jlKkk;li C 1

32N4
.
4
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C O4/K

2
ij;ji:

(B.147)

B.5 Large N Behavior

In the remainder we extract the precise leading N behavior.
First we reduce as follows (using the results tr� D 0, tr�2 D 0, tr�3� D 0 and

with Ii DP
l l
i)

Kii;klKjj;lk D 4r4
�

3N.trE/2 C N2trE2 � 4p!3.tr�3/2trE

�4Np!3tr�3trE�3 C 4!3.tr�3/2tr�23
�
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D 4r4
�

3NI21 C N2I2 � 4N2I1 C N3 � 4p!3

�
I31 C NI1I2 � NI21

�

C4!3
I21 I2
�
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�
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K2ii;jj D 16r4
�
NtrE �p!3.tr�3/2
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In the above we have also used the results

trE D I1 � N

2
: (B.156)

tr�3 D 
I1 ; tr�23 D 
I2 ; tr�33 D 
I3 ; tr�43 D 
I4: (B.157)
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2
I1 ; trE�

2
3 D I3 � 1

2
I2: (B.158)

trE2 D I2 � I1 C N

4
: (B.159)

tr�43 D 
I4: (B.160)

trE�23 D 
.I3 �
1

2
I2/: (B.161)

tr.�C/2.�/2 D I2 � 3I1 C 2N � 
p!3
�
2I3 � 7I2 C 7I1 � 2N

�

C
!3
�
I4 � 4I3 C 5I2 � 2I1

�
:

(B.162)

trf�C; �g2 D 2
�

2I2 � 5I1 C 3N � 
p!3
�
4I3 � 11I2 C 9I1 � 2N

�

C
!3
�
2I4 � 6I3 C 6I2 � 2I1

�
�

:

(B.163)

trEf�C; �g D 2
�

I2 � 2I1 C N � 
p!3.I3 � 2I2 C I1/

�

: (B.164)
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Next we may use, in the large N limit, the behavior

Ik D 1

kC 1N
kC1 C 1

2
Nk C : : : : (B.169)

We find then the leading N behavior given by
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