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We study the properties of the nearest-neighbor SU(N) antiferromagnet on a square lattice 
as a function of N and the number of rows (m) and columns (n,.) in the Young tableau of the 
SU(N) representation on the A sublattice; the sites of the B sublattice have the conjugate 
representation (the familiar Heisenberg antiferromagnet has N = 2, m = 1 and n c = 2S). We 
study the global phase diagram in the (N, m, no) space using 1/N expansions; in particular: (i) for 
N large with m proportional to N and n~ arbitrary, we find spin-Peierls (dimerized) ground states 
with short-range spin correlations; (ii) with m = 1, the model is shown to be equivalent, at order 
1/N,  to a generalized quantum dimer model. We discuss the relationship of these results to the 
SU(N) generalization of recent arguments by Haldane on the effect of "hedgehog" point 
singularities in the space-time spin configuration. As an intermediate step in our calculation, we 
present a simple new derivation of the coherent state path integral representation of SU(N) spin 
models. 

1. Introduction 

The recent discovery of high-temperature superconductivi ty in a class of cuprate 

c o m p o u n d s  [1] has led to resurgence of interest in the properties of the SU(2) 

Heisenberg  ant i ferromagnet  on a square lattice [2]. By a judicious choice of 

exchange constants ,  it may be possible for this model to have a ground state without 

long-range N~el order. A complete unders tand ing  of the nature  of these possible 

spin-disordered states is lacking, and reliable results on closely related, bu t  tractable 

models  will be useful. In  this paper we discuss the na ture  of the global phase 

d iagram of the S U ( N )  generalization of the Heisenberg antiferromagnet .  We will 

suppor t  our  arguments  by exact calculations in the N ~ oc limit. We will also draw 

a connec t ion  between our results and a recent topological analysis of a semiclassical 

Heisenberg  model  by Haldane  [3]. 

We will consider  models obta ined by generalizing the SU(2) symmetry group of 

the Heisenberg  ant i ferromagnet  to SU(N) .  This generalization can be viewed as an 

al ternat ive to using, for example, non-neares t -ne ighbor  interactions to move away 

from the Nre l  phase. This procedure yields a small n u m b e r  of well-defined parame- 
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Fig. 1. Young tableau of the SU(N) representations by which the states on sites belonging to sublattice 
A and B transform. 

ters which control the phases of the antiferromagnet. We shall study the hamilto- 
nian 

J 
H = - ~  ~.~ ES~(i)S~(j), (1.1) 

(i, j )  etfl 

where the Sff are the generators of SU(N),  the Greek letters a, fl = 1 . . . . .  N are the 
S U ( N )  indices and the sum over (i, j )  extends over all near-neighbor pairs (referred 
to as " l inks" in this paper). Closely related hamiltonians have been examined earlier 
by Affleck [4], Affleck and Marston [5] and Arovas and Auerback [6]. Our model is 
based upon the bipartite nature of the square lattice; at sites on sublattice A, say, we 
place a "sp in"  transforming as a representation of SU(N)  represented by the Young 
tableau in fig. 1, which has 0 < m < N rows and n¢ columns. On sites on sublattice 
B we place the conjugate representation which has N - m rows. For m = N / 2 ,  the 
representations are self-conjugate and the model has greater translational symmetry. 
The choice of a rectangular Young tableau is for convenience; the choice of 
alternating conjugate representations is motivated by the fact that, among other 
things, the semiclassical limit is describable by a non-linear sigma (NLo)  model 
(refs. [7, 8] and sect. 2). We emphasize that the properties of  H are completely 

determined once the representations of SU(N)  have been specified. In particular the 
physics will be independent of whether we represent the generators by fermionic or 
bosonic operators. For the familiar Heisenberg antiferromagnet, N = 2, m = 1 and 
n c = 2S, where S is the spin. For general N we find that n c continues to play the 
role of twice the spin; the value of nc will play a central role in determining the 
properties of the non-N~el-ordered states that we find. 

The phase diagram determined in this paper is shown in fig. 2 as a function of N 
and n¢; the properties of the system are relatively insensitive to the value of m. 
There is a finite region in this plane where the N6el ground state is stable and the 
quantum fluctuations can be described semiclassically. A line of second-order 
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Fig. 2. A constant-m cross section of the phase diagram of the square lattice SU(N) antiferromagnet. 
The dashed line represents a second-order transition from the N~el phase to a spin-disordered state, 
which is described by a (2 + 1)-dimensional non-linear sigma (NLa) model. The position of this line is 
insensitive to the value of m. The arrow labelled AA represents the region in which Auerbach and Arovas 

[6] analyzed the bosonic representation of the SU(N) generators for the case m = 1. 

transit ions separates the N6el phase from spin-disordered states; for sufficiently 
large n¢ or N, this line is shown in sect. 2.2 to obey the equation n~ = KN, where 

is a constant  of order unity (this last result can also be obtained from the results of  
ref. [6] after proper  identification of the S U ( N )  representation). 

The disordering effects of quantum fluctuations of the N6el order parameter  were 

first given a field-theoretic description by Haldane [7] for the case N = 2. The 
low-energy, long-wavelength dynamics of  the system in or near a N6el phase on a 
d-dimensional  (hyper-)cubic lattice can be described in the SU(2) case by a (d  + 1)- 

d imensional  U(2) / [U(1)  × U(1)] [or 0(3)] N L a  model [7, 8]. This model is known to 
possess a critical coupling constant  g = gc (g  depends upon S and the ratios of  the 
various exchange constants [9]) above which spin correlations decay exponentially; 

gc > 0 for spatial dimension d > 1 while gc = 0 in d - -  1. The action for the spin 
system contains a Berry phase term, which arises f rom the quantum nature of the 
spins; it gives rise in (1 + 1) dimensions to a topological term in the sigma model 

act ion which changes completely the low-energy behavior of the system when the 

under lying spin at a site is half an odd integer [7, 8]. In (2 + 1) dimensions, on the 
other  hand,  the effect of  the Berry phase term appears to be innocuous. Several 
investigators [3,10] have noted that in this case the Berry phase term vanishes for 
any  spin configurat ion in space and time in which the N6el order parameter  is 
smooth  on the scale of the lattice spacing. However, the recent work of Haldane [3] 
goes beyond  this limitation by examining the effect of  the Berry phase term 
evaluated on "hedgehog"  point  singularities in the (2 + 1)-dimensional spin configu- 
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ration. While the N~el phase was unaffected, the quantum interference between 
various hedgehog configurations led Haldane to predict that the properties of the 
disordered phase of the NLa  model depended crucially upon the value of 2S 
(mod 4). His results can be used to argue that all low-lying states in the disordered 
phase have a degeneracy of at least 1, 4, 2, and 4 for values of 2S (mod4) of 0, 1, 2, 
and 3, respectively. This is reminiscent of the result of Lieb-Schultz-Matt is  [11] 
theorem for the d = 1 models, which states that a degeneracy of at least 1, 2 exists 
for 2S ( m o d 2 ) =  0,1, respectively. 

In this paper we shall examine in (2 + 1) dimensions for general N,  n c and m (i) 
the nature of the transition from the N6el phase to the disordered phase and (ii) the 
structure of the disordered phase. The main results we shall establish are 

1. For large n c (n c ~ ~ with N, m fixed) the SU(N)  antiferromagnets behave 
semiclassically and are described by a U ( N ) / [ U ( m ) x  U ( N -  m)] NLo model [8]. 
Below a critical value of n c -  xN, the NLo model is in a disordered phase. The 
arguments of Haldane [3] on "hedgehog" singularities have a simple generalization 
to these models and lead to the conjecture that the a// low-lying states in the 
disordered phase of the SU(N)  antiferromagnets have a degeneracy of at least 1, 4, 

2, and 4 for values of n c (mod4) of 0, 1, 2, and 3, respectively. 
2. We determine the nature of the disordered phase in two different large-N 

limits. The first type of 1 / N  expansion is defined by taking N ~ ~ with rn of order 
N and nc fixed. We find various "ground" states, which are either stable, global 
minima or metastable minima; all the states have short-range spin correlations, and 
broken translational symmetry (with the exception of a metastable state for 
n~ ( m o d 4 ) =  0). All of the states have a degeneracy which is consistent with the 
lower limit determined in the semiclassical NLo  model, i.e., all states have a 
degeneracy greater than 1, 4, 2, and 4 for n c (mod 4) = 0, 1, 2, and 3, respectively. 
The global ground states have a degeneracy of 4 for all values of n~. Among the 
metastable states is a sequence which saturates the lower bound on the degeneracy, 
i.e., these states have a degeneracy of exactly 1, 4, 2, and 4 for n~ (mod4) = 0, 1, 2, 
and 3, respectively. 

3. The second 1 / N  expansion takes N ~ ~ with m = 1 and n~ fixed. The model 
is shown at order 1 / N  to be exactly equivalent to a generalized quantum dimer 
model. Preliminary numerical results indicate that this particular dimer model 
possesses crystalline ground states which do not violate the degeneracy bound 
suggested by the NLo  model. On the other hand, Rokhsar and Kivelson [12] have 
conjectured for the case n~ = 1 that the dimer model has a resonating valence bond 
liquid phase. Such a phase may still have a degeneracy consistent with the bound 
[13] even though the ground state is translationally invariant. 

4. As an intermediate step towards establishing (1), we will present a simple new 
derivation of the coherent state path integral for SU(N)  spin models. 

In the remainder of this section we establish the formalism which will be used 
throughout and outline the techniques by which the various results are obtained. 
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The 1 /N  expansions we shall consider are most conveniently generated by using the 

following fermionic representation of the generators of SU(N):  

Sff(i) = Y'.c],~(i)c~'(i) - 3~nc/2 (1.2) 
¢1 

in terms of the "electron" destruction operators Ga- In addition to the SU(N)  

index, the electrons also carry an additional color index represented by the Latin 

letters a, b = 1 , . . . ,  n c, where n c is the number of colors. The S operators are not 
traceless; the reason for the particular trace chosen will become clear in sect. 2. The 
electron states are restricted to be color singlets upon each site by the constraint 

E "~ ab__ CaaC --  
e~ 

8~m on sublattice A, 
(1.3) 

3 ~ ( N -  m) on sublattice B. 

There are thus a total of mn c [(N - m)nc] electrons on sublattice A (B). It is easy to 

show that the representation (1.2) and the constraint (1.3) restrict the Hilbert space 
on each site to the representations of SU(N) represented by the Young tableau of 

fig. 1, i.e. m rows and n c columns on sublattice A and N - rn rows and nc columns 
on sublattice B. For the special case of SU(2) these representations are both 

equivalent to spin S = n c~2. 
We emphasize that we could equally well have represented the generators of 

S U ( N )  in terms of boson creation and destruction operators for all values of m, N 
and n c. In this case the representation for the A sublattice is Sff = b~pb I~p, where the 

b*~p operators are boson creation operators carrying the SU(N)  index a and 

the "color" index p, which extends over the range 1 . . . . .  m. When combined with 
the constraint Y~ btapb aq = ~qn e we obtain the SU(N) representation with n c columns 

and m rows. On the B sublattice the bosons transform as the conjugate representa- 

tion of SU(N),  but the constraints are otherwise unaltered. These representations 

are useful in taking the alternative large-N limit, N --+ oo with n c cc N and m fixed 

as in ref. [6]; this is denoted by the arrow labelled AA in fig. 2. 

Two different methods are used to generate a 1/N expansion of the disordered 
phase of the SU(N)  antiferromagnet. These methods will be illustrated by examin- 
ing the values (a) m = N/2 and (b) m = 1. For case (a) a functional integral 
decoupling method is most convenient while for case (b) each successive order of 
ordinary Rayleigh-SchriSdinger perturbation theory generates a higher power of 
1/N. We now briefly describe our results for these models. 

(a) m = N/2. 
We use the functional integral decoupling method used by a number of investiga- 

tors for the Kondo problem [14] and antiferromagnets [5]. At leading order 
(N = oe), a very large set of degenerate ground states was found for no = 1 [5] and 
we find a similar situation for all n~. These states are "dimerized", i.e., they consist 
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n c ~ o d 4 )  = 1 n e ~ o d 4 )  =2  
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Fig. 3. Metastable states of the hamiltonian (1.1) for filling factor m = N/2  as a function of n~ (mod 4). 
The states chosen have the minimum possible degeneracy for their n,. value. Each line represents m 
singlet bonds between SU(N) fermions on neighboring sites. There are n c such bonds emerging from 
each site. (Only the last n c (mod4) bonds are shown; the remaining form copies of the translationally 

invariant n c (rood4) = 0 state.) 

of a covering of the lattice with SU(N)  singlet bonds, n c bonds ending at each 
lattice site. To split the degeneracy, we calculate the 1 / N  correction; these generate 
bond configuration dependent terms in the energy of these states, which pick out a 
definite arrangement of bonds in each case. We find that the lowest energy for all n c 
occurs when the nc bonds ending at a site coincide, and these sets of nc bonds are 
arranged in columns (fig. 3a). Thus these states are four-fold degenerate for all n~. 
However, there are other metastable states (figs. 3b-d)  which exist for particular 
values of n~ (mod 4) and which give lower degeneracy. In particular, we may spread 
the bonds as uniformly as possible, by placing p bonds on every link, and arranging 
the remaining k bonds (for n~ = 4p + k, 0 ~< k < 4) as in figs. 3a-d.  These metastable 
states saturate the conjectured lower bound on the degeneracy of 1, 4, 2, 4 for n~ 
(mod 4) = 0,1, 2, 3, respectively. No low-lying states which violate this lower bound 
are found. 

(b) m = 1. 
The case m = 1 for one-dimensional chains has been considered previously by 

Affleck [4]. The Rayleigh-SchrSdinger perturbation expansion used there can be 
easily applied to the square lattice in the limit m << N. There are, however, some 
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minor errors in the structure of the perturbation expansion presented by Affleck 
(the correction of these errors leaves the physics of the model considered by Affleck 
unchanged). It will be important to correct these errors for the case of the square 
lattice. We show that at order 1 / N  the system can be described by an effective 
generalized dimer model. For n c = 1 this dimer model is a special case of the 
quantum dimer model considered by Rokhsar and Kivelson [12]; however, unlike 
ref. [12] our class of models are applicable to all n c and we are able to determine 
exactly the values of the parameters in the effective hamiltonian in terms of J. We 
have determined the ground state of our dimer hamiltonian [see eq. (4.10)] for 
n~ = 1 upon a 6 × 6 lattice with periodic boundary conditions by the Lanczos 
method; these finite-size calculations show a clear indication of a crystalline ground 
state with the symmetry of fig. 3a. 

The outline of the remainder of the paper is as follows. In sect. 2 we will present a 
simple new derivation of a coherent state path integral representation of SU(N)  
spin models. This representation is used in the large-n~ limit to derive a NLo model 
representation of SU(N)  antiferromagnets. The coherent state representation also 
yields a Berry phase term in the action; we then generalize Haldane's [3] arguments 
for SU(2) to show that this Berry phase term is non-zero only for the SU(N)  
generalization of "hedgehog" point singularities; the phases associated with the 
hedgehogs suggest a degeneracy of all low-lying states of at least 1, 4, 2, or 4 
depending upon whether n c ( m o d 4 ) =  0, 1, 2, or 3. Some details of this argument 
are relegated to the appendix. Sects. 3 and 4 move away from the semiclassical limit 
(n~>> 1) to the extreme quantum limit (N>>nc) .  Sect. 3 discusses the case 
m = N / 2 ,  while sect. 4 discusses m = 1. We conclude in sect. 5 with a discussion of 
the implication of our results for the SU(2) Heisenberg antiferromagnet. 

2. Semiclassical theory 

In this section we shall extend the results obtained by Haldane [3] in the 
large-spin limit of SU(2) antiferromagnets to SU(N). The antiferromagnets behave 
semiclassically when n c is large, and the quantum fluctuations are described by a 
U ( N ) / [ U ( m )  × U(N - m)] NLo model. We shall begin, in sect. 2.1, with an exact 
path integral representation of the partition function of SU(N)  quantum spins. The 
semiclassical limit of this path integral will be used to derive the NLa  model and 
associated Berry phase terms in sect. 2.2. 

2.1. PATH INTEGRAL REPRESENTATION OF SU(N) SPINS 

The standard method for deriving the path integral representation of a quantum 
problem proceeds by deriving the coherent state representation of the Hilbert space 
[15]; we will follow this method here. We first define the Cartan subalgebra (Ha} of 
S U ( N )  by choosing the operators 

H,~ ~ Z.,c,~, = v "  , c,~U_nc/2" (2.1) 
a 
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Notice that we have dropped the site index i. For the time being we consider sites 
on sublattice A only; the modification for sublattice B will be given at the end of the 
subsection. The remaining Sff operators with ~ ~ fl are the "raising" and "lowering" 
operators, which complete the canonical Cartan basis for the Lie algebra. The 
coherent state basis is obtained by unitary transformations upon the heighest-weight 
state J g'o) defined as follows: 

ab... t t [(cd... 
pc~pd . . . .  (2.2) 

where there are nc electron creation operators within each square bracket, and the 
square-bracketed terms appear m times; C is a normalization constant. The indices 
X, O . . . .  run through all values between 1 and m. The weight of this state is given by 

H~lq, o)={(nc/2)tg'o) i f a ~  [1, m] ,  (2.3) 
- (nc/2)l  g'0) i i ae[m+l ,N] .  

The coherent states for the rectangular m × n c Young tableau are defined as follows 

[161: 
~, ^X Iq) =exp( qXuS~- q, S/, )l'Po), (2.4) 

where as above, the index X runs through the values [1, m], and /~ runs through 
[m + 1, N]; these limits on X and /~ will be implicitly assumed in the rest of this 
section. The q X are re(N-m) independent complex numbers. The states Iq) are 
normalized to unity and obey the following important identity: 

(qlgfflq) = (nJ2)Q~, (2.5) 

where the matrix Q is defined by the relationship 

Q-- UAU*. (2.6) 

The unitary matrix U represents the action of the unitary transformation in eq. (2.4) 
upon the fundamental representation and is given by 

E(o :i1 ,27, U = exp _ q* 

x The constant matrix A is given where q is a m × (N - m) matrix with elements q,.  
by 

A =  1,. 0 t (2.8) 
0 - 1  N ~]  ' 
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where 1 r is a r x r unit matrix. The matrix Q therefore satisfies Q2 = 1 and extends 
over the manifold U ( N ) / [ U ( m  ) × U(N  - m)]. 

The standard method of coherent state quantization [15] may now be used to 
obtain the following representation for the partition function: 

8r 
(2.9) 

where H(Q) is obtained by replacing every occurrence of Sff in the hamiltonian 
by (nc/2)Q~, Q ( 0 ) = Q ( r ) ,  and N Q ( r )  is the invariant measure over the 
U(N)/[U(m) x U ( N -  m)] manifold. It now remains to evaluate the first term in 
the action, SB, the Berry phase term. Using eq. (2.4) and the following identity for 
the derivative of the exponential of any operator M [17]: 

d e M = f o l d u e u ( x  u )dMeM. .  (2.10) 
dx dx 

we may easily show that 

x,^x ( OqX ̂  aq2* ) 
sB= fo'drfoldu(q'o{exp[-u(qXS~-q, S~)] ~-r S~- Or ~2 

xexp[u(qX.S~-q2*#)]lq'o). (2.11) 

Using the fundamental property of the coherent states in eq. (2.5) the above 
expression reduces immediately to 

Oq " ) 
= 2 o o ~ - .  Q~(~' ") - - - g - O ~ ( r , . ) ,  

(2.12) 

where we have now introduced a u and r dependent matrix Q which is defined as in 
eq. (2.6) in terms of the unitary matrix U(r, u), 

_ 0 q(j)  U=exp[u(qt(r) ) ] .  (2.13) 

As a function of u, Q therefore satisfies Q ( r , 0 ) =  A and Q( , , I ) -=  Q(r) .  We may 
now integrate eq. (2.12) by parts and obtain the simple expression 

S B = -  Bdr l d u T r  - q * ( r )  0 (2.14) 
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Using the easily established identity 

( - q t (  r ) O  q ( j ) ) = - ½ Q ( r ' u ) O Q ( r ' U ) o u  ' (2.15) 

we obtain our final result for the action of the path integral, 

fo fo [nc ( aQ('r'u) OQ( t 'u ) ) ]  fo~dTH(Q('r)) (2"16) S =  Bdr l du  ~-Tr  Q(r ,u )  au Or - 

A similar result has been quoted recently by Wiegmann [18]. 
The derivation above uses a very specific dependence of Q upon u in eq. (2.13). 

This form satisfies the boundary conditions 

Q( r , 0 )  = Q( r ' , 0 )  for all r , r ' ,  (2.17) 

Q(~ , I )  = Q(~'), (2.18) 

Q(O, u) = Q(/3, u), (2.19) 

which means that the rectangle 0~<r~</3, 0~<u~<l over which Q varies can 
be regarded as a disc with u = 1 as the boundary, on which Q = Q(r) .  Thus 
the parametrization in (2.13) is just a specific way of filling in the closed curve 
{Q(r) :  0 ~< r ~</3} to form a disc in G(m, N) = U(N)/[U(m)  × U(N - m)]. We 
now show that any other surface with this boundary gives the same value of S B up 
to addition of a term 2vrncki for some integer k. This result uses crucially the fact 
that ~rz(G(m, N ) ) =  Z, the group of integers, and that this is also equal to the 
second cohomology group H 2= Z (by the Hurewicz isomorphism theorem); the 
integrand of S B when integrated over a sphere is the integral invariant associated 
with both of these groups. We use the representation 

s .  = f d2~ " l~pq Tr( Q apQ aqQ), (2.20) 

where p, q take the values 1, 2, ~'a = r and ~2 = U, and the integral is over a rectangle 
in (r ,  u) space. We parametrize 

Q(T, u) = U( r, u)AUt( r, u), (2.21) 

where U is a smooth function on the rectangle and can be taken to obey the 
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boundary  conditions (2.17)-(2.19). Using Stokes' theorem, we obtain 

619 

Su = Tnc~ d~pTr(AUtOpU)= T d r T r ( A U t ( r )  O,U(r)) (2.22) 

where U(r)= U(r, 1). Now we may leave Q(~') unchanged by right-multiplying U 
by a unitary matrix U 0 also satisfying the conditions (2.17)-(2.19) and for u = 1 
satisfying UoAUo* = A. The change in the Berry phase due to U o is seen to be 

AS B = ncfo/~d'rA~., (2.23) 

where we have introduced the abelian gauge field A, = ½Tr(AU0* 0,Uo), which is a 
pure gauge when u = 1. The constraint on U 0 for u = 1 restricts U o to U(m)  × U ( N  
- m) and implies 

0) 
0 Uo e for u = 1, (2.24) 

where Uo~ (Uob) is a m × m [(N - m) × (N - m)] unitary matrix. We now find 

1 0 

fo/~dr (ln det Uo~ - In det Uob ) a s B  = nc (2.25) 

With the periodic boundary condition Uo(0 ) = Uo(/3) this integral is easily seen to be 
an integer multiple of ~rnci. However, since U and hence U o is supposed to be 
defined over the disc (rectangle) 0 ~< r ~</3, 0 ~< u ~< 1, det U is smooth and vanishes 
nowhere. Then on the boundary u = 1, the phase of det U cannot wind by 2~r since 
this would force det U to vanish somewhere in the interior by continuity. Then 
det U o cannot wind either, which implies that 

fo d r - ~ r  ( lndet  Uo~ + lndet Uoh ) = O. (2.26) 

Using this constraint, AS B is now seen to be an integer multiple of 2~rnci. Thus the 
exponential of S B is unaffected by the change in parametrization of U. Incidentally 
this shows that the parameter n c must be integer valued; this is in direct analogy to 
the quantization of flux for a monopole, which implies the quantization 2S = integer 
in the SU(2) case [19]. Indeed, the form (2.22) has precisely the form of a line 
integral of a vector potential, so that the Berry phase is the integral of a "f lux" over 
a surface spanned by the curve Q( r ) ;  in earlier derivations [7, 10] for SU(2) this 
vector potential was introduced explicitly. This makes clear the connection with H 2 
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also, since the "magnetic field" is a rank 2 antisymmetric tensor on G(m,  N )  of 
non-zero cohomology class. 

On sublattice B, we have the conjugate representation, so in eq. (2.2) we have 
instead ( N -  m) square brackets. It is convenient for describing the classical Ndel 
state to take the highest-weight state to have the indices X, O . . . .  running between 
m + 1 and N in this case, so that 

= / - ( n ° / 2 ) l q ' ° )  i f a c [ 1 ,  m] ,  
Holq'o) 

(nc/2)lg 'o) if a ~ [m + 1, N ] .  

Then use of the same matrix q X as before gives 

(qIS~tq)  = - ( nJ2 )Q~ , ,  

(2.27) 

(2.28) 

and S B has the opposite sign as before. Thus in a classical N4el state, Q is the N4el 
order parameter, which is uniform in space. In the next subsection, we derive the 
N Lo  model describing long-wavelength excitations in this representation, together 
with "hedgehogs". 

2.2. NON-LINEAR SIGMA MODEL REPRESENTATION 

In the large-n c limit, the antiferromagnet behaves semiclassically, and we may 
decompose the Q field fluctuations into staggered and uniform components, 

Q ( i )  ~- ~2A/1 - a2L~ + ~iaLi, (2.29) 

where */i equal + 1 on sublattice A and - 1 on sublattice B, a is the lattice spacing, 
~2~ = 1, and L i is small and satisfies Li~2 i + ~2iL i = 0. Substituting this into eq. 
(2.16), dropping total time derivatives and taking the continuum limit following refs. 
[3] and [8] we obtain 

where 

S=Sj+Ifo~d.fd2xTr(yn2 2 -Ud(v.n) + 2Jn2c L2 - -  nc ] 
U ~a L~20~2 ] ' (2.30) 

S~ = i n c E ~ j %  (2.31) 

is defined in terms of the spatial field %, 

1 
o~j= ~i~ fo B drfol  du Tr(~~j Ou~'~ j O..r~j). (2.32) 



N. Read, S. Sachdev / SU(N) antiferromagnet 621 

We may now integrate out the L fluctuations and obtain the action of a (2 + 1)- 
dimensional N L a  model with a residual Berry phase term, 

Ps 2 l foBd~.f d2x:Tr((Wx~2) 1 2 s =  + + 7(o,sa) ), (2.33) 

where we have introduced the spin wave stiffness 0s = Jn~/2N and the spin wave 
velocity c = ~/8Jnca/N. (For the case of SU(2) we may make the substitutions 

~2 = n,p ~, N = 2 and n c = 2S, where n~ is a unit three-vector and % are the Pauli 
matrices; the action then reduces to the 0(3) N L a  model with the spin wave 
stiffness and velocity having their standard values.) 

Before discussing topological effects of the residual Berry phase we present results 
on the stability of the N~el phase. Following the analysis of refs. [9] and [20] we 
introduce the coupling constant g = (c/&)k M = 4v/2kMa/nc, where k M is an upper 
cutoff  in momentum space, and derive the following one-loop renormalization 
group equation in a ( d -  1) expansion: 

dg  

dl  
- ( d -  1 ) g  + (2.34) 

where d - - 2  is the spatial dimensionality, e / is the length rescaling factor, and 
Ka= 1/[2a-l~a/2F(d/2)] is a numerical constant. This equation predicts that the 

N6el phase will be stable provided g < 4/(NKd) or 

n c >  (Kav/2WkMa)N. (2.35) 

This determines a line of second-order transitions in the (N, n c) plane across which 
the N6el phase transforms into a phase with exponentially decaying spin correla- 
tions. This transition is represented by the dashed line in fig. 2. Note that, at 
one-loop order, the position of the line is independent of m. 

As an alternative to the ( d -  1) expansion we may examine the NLo  model field 
theory in the large-N limit. Taking the limit with m and Ng fixed (implying 
n c - N )  the renormalization group equation (2.34) is in fact exact. For sufficiently 
large N therefore the statements of the previous paragraph have a validity beyond a 
( d - 1 )  expansion. Alternatively, as explained in sect. 1, one can use the bosonic 
representation of the generators Sff in the hamiltonian (1.1) and perform a 1/N 
expansion directly on the quantum spin system. This was done in ref. [6] for the case 
m - - 1  where, indeed, a transition to a disordered state at T = 0 was found at a 
critical value of nc/N -- 0.2. Thus there is a close connection between the results of 
refs. [9] and [6]. 

We now turn to a discussion of the effects of the Berry phase term S~ on this 
transition. The residual Berry phase has been shown to vanish [10] for any order 
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parameter configuration which is smooth on the scale of the lattice spacing. 
Following ref. [3], it is therefore necessary to consider space-time singularities in 
the order parameter. The order parameter configuration for each constant time slice 
can be characterized by a "skyrmion" number associated with ~ r z ( U ( N ) / [ U ( m  ) × 

U ( N -  m)]) [21]. Non-trivial contributions to SA arise only from tunneling events 
which change the number of skyrmions; these tunneling events must necessarily be 
associated with space-time point singularities in the order parameter field ~2(x, r). 
We show in the appendix that the singularity, associated with a tunneling event 
which changes the skyrmion number by An~, is a vortex of magnitude 2~An in the 
spatial field c0j. The remaining arguments are unchanged from the SU(2) case [3]. 
The cuts accompanying the vortex in the field c0j yield the phase factor 

(~j) ,,o a,, (2.36) 

in the action for the tunneling event which changes the skyrmion number by An; 
here ~j is + 1, - 1, + i, or - i depending upon whether the vortex is centered on a 
plaquette with (even, even), (odd, odd), (even, odd) or (odd, even) coordinates. For n c 
(mod 4) = 1 or 3, the phase factor ~j will lead to destructive interference between 
tunneling events except those involving a change in the skyrmion number A n which 
is a multiple of 4. This suggests that the Hilbert space of the system splits up into 
four separate sectors characterized by the number of skyrmions modulo 4, with 
vanishing tunneling matrix elements between the sectors. In the N&I phase there is 
a finite energy gap towards the creation of skyrmions, and therefore this argument 
only affects some high-lying states. In the massive phase, however, the skyrmions 
proliferate, and this argument suggests a m i n i m u m  degenercy of all low-lying states 

of 4. In a similar manner we can argue that, in the spin-disordered phase for n c 
(mod 4) = 2, all low-lying states have a degeneracy of at least 2. The degeneracy can 
be arbitrarily small for n c (mod 4) = 0. 

We conclude this section with a reiteration of the main results established. We 
have shown that in the semiclassical (large-n~) limit, the SU(N)  spin model is 
described by a NLo  model. At a value of n c = xN (where ~ is a constant of order 1) 
the N6el phase undergoes a second-order phase transition to a state with exponen- 
tially decaying spin correlations. This massive phase was argued to have a degener- 
acy of all low-lying states of at least 1, 4, 2, or 4 as n~ (mod 4) took the values 0, 1, 
2, or 3. 

3. Functional integral method 

This section will analyze the properties of the hamiltonian (1.1) for the case 
m = N / 2 ,  n c arbitrary but small, in the large-N limit. This is most conveniently 
done by using the fermion representation in eq. (1.2). The resulting interacting 
fermion theory can be analyzed by the functional integral method developed for the 
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heavy fermion problem [14] and used in the context of the SU(N) antiferromagnets 
by Affleck and Marston [5]. While the method can in principle be used for any m of 
order N, the m = N / 2  case has a particle-hole symmetry which simplifies the 
calculation. Attempts by Marston and Affleck [22] to use the functional integral 
method for the case m = 1 have apparently not led to a consistent 1 / N  expansion. 
This case will be addressed in sect. 4 by different methods. 

Generalizing the procedure of ref. [5] to n~ colors, the fermion interaction can be 
decoupled by introducing a n~ × n~ matrix field x~(ij) on every link (i, j ) ;  a, b are 
color indices. It is easy to show that the partition function for hamiltonian H in eq. 
(1.1) can be expressed as follows (after subtracting a constant energy of - j n 2 / 2  per 
site): 

Z [,~/,dX"h(i) f~c~c,~xexp(_fo, d.r2,(~)) (3.1) 

where the lagrangian H' is given by 

z :=  
Oc'~'(i) 

O'r 

N 
+ iX~(i)[ct~.(i)c'~h(i) - 8b~N/2] + -)-]X~(O')12 

b "" t +cL(i):b(j)x (0 ) + x.(j,)c°b(j):°(i),  (3.2) 

with all repeated indices summed over. The normalization Z 0 is given by 

Zo=ZFf'xexp(-foB d.lx,(.) i'). (3.3) 

where Z F is a free fermion determinant. 
The structure of the theory is straightforward in the large-N limit. After integrat- 

ing out the fermions, the effective action for the X and ?~ fields acquires a factor of 
N in front. The functional integral can therefore be approximated by the stationary 
phase point of the action. By particle-hole symmetry the expectation value of the X 
fields is zero at the stationary phase point. In addition it can easily be shown the 
fluctuations of the X fields make no contribution to the ground state energy; the ?~ 
field will therefore be omitted in the subsequent discussion. The effective action for 
the X fields after integrating out the fermions is given by 

[ (. )1 ] 
SafN - foBd~ - T r l n  --0~.~o"~,9+X~,(/j) + j Y~. ~lX~,(tj)  12 , (3.4) 

(!/) ah 

with X~(ff) = [x~(ji)] *. 
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I I 

I I 
Fig. 4. An  example  of the "p l aque t t e "  states, which are degenera te  wi th  the " b o n d "  states  in the N ~ oc 

limit.  

A class of time independent stationary phase solutions of Ser  f a re  those with X 
color-diagonal. The colors then decouple from each other and the subsequent 
minimization becomes identical to the one-color calculation carried out by Affleck 
and Marston. The global minima found by Affleck and Marston correspond to the 
" b o n d "  solutions: for each color, a, the field X~(/J) has a mean field value of either 

or 0 on every link (~ = J / 2  at this order); every site has exactly one link with 
X]  = J / 2  (a "bond")  for all values of the color a. The relative positions of bonds 
with different colors is, however, arbitrary. The ground state energy E o is given by 

E G = N s N n c J / 8  , (3.5) 

where N S is the number of sites on the square lattice. 
There is an additional continuous family of solutions to the mean field equations 

which was not considered by Affleck and Marston and which is degenerate with the 
" b o n d "  states in the N ~ 0o limit. This family is illustrated in fig. 4 for the color a. 
The lattice splits into disjoint plaquettes, with the mean field values of X~ non-zero 
only along the links surrounding the plaquette. The constraints satisfied by the 
values of X~ on a plaquette of sites numbered 1, 2, 3, 4 (fig. 4) are 

Ix~(12) I = Ix~(34) [, 1x3(41) I = IxZ(23) I, ]xg(12)12+lxZ(23)le=j2/4, 

a a 2 a 12 " X.(12)Xa(23)X~(34)X~(41) = -[x,~(12) ] ]Xa(23) (3.6) 

A special case of this mean field solution was found in ref. [23]. Note that by 
choosing X~(41)= X~(23)= 0, the "plaquette" states reduce to a subset of the 
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" b o n d "  states. We will show in the next subsection that the 1/N corrections pick 

out a particular bond configuration as the lowest energy state. 
Going beyond the assumption of color-diagonal solutions, we have carried out an 

extensive computer search for additional time independent X configurations which 
minimize Seff with up to three colors. We examined all periodic configurations with 

a unit cell of four sites. No additional color-gauge inequivalent solutions with a 
lower energy were found for any n c studied, and we believe that none exist for any 

n c - 

3.1. 1 / N  C O R R E C T I O N S  F O R  n c = 1 

To break the degeneracy in the ground state it is necessary to consider the 1/N 
corrections to the ground state energy. The analysis is simplest for the one-color 
case, which will be considered first. We will refer to the color by the index a, and 
will therefore focus on the fluctuations of X~(0")- We will present details of the 
calculation for the "bond"  states. The calculations for the "plaquette" states can be 

carried out in a similar manner. 

The contributions to the effective action can be divided into two classes: the 

link-diagonal and off-diagonal terms. Consider first the link-diagonal terms. Let B u 
be the set of links in a given mean-field configuration which has a bond of color a 

on it. The set B" is the complement of B a. The link-diagonal contributions to Seff 
can be shown to equal 

AIs~f¢[ = E -~ E x a ( i j ;  OOn)Xa(ji; --Oan) j ¢")n 2 ~ 4 ~ 2  
(i,j) n 

N 

(i,j)EB~ 

2/2 
+ x ~ ( J i ; ~ ° . ) x ~ ( J i ; - o o . ) ]  2 (3.7) ~o,, + 4~ 2 ' 

a i ' "  where we have introduced the Fourier transformed variables Xb( ~J, %) as a function 
of the Matsubara frequency ~n = 2~rn/fl for integer n, and the first summation 
extends over all the sites of the square lattice. 

As the fermion fluctuations are localized upon the bonds, it is easy to see that 
there is only one type of local bond configuration which leads to an off-diagonal 
coupling, this configuration is shown in fig. 5. There is a bond of color a on link 
(1, 2) and also on link (3, 4); the fermion fluctuations will lead to coupling between 

X~(13) and X~(24). Such terms lead to the following additional terms in the 
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Fig. 5. Bond configuration which leads to an off-diagonal coupling between X,](13) and X~(24). 

effective action: 

N 

(i,j)~B,,;(k,I)~B, 

2 
+ x ~ ( i k ; % ) x ; ( l j ; - o ~ , ) ]  2 + 4 2 2 ,  (3 .8)  

0.~ n 

where, naturally,  (i, k )  and ( j ,  l)  have to be links of the square lattice. 
The  funct ional  integral over the X](0") variables can now be carried out as the 

act ion is quadrat ic .  The structure of the resulting determinant  is sufficiently local 
that  it can be evaluated for any r andom bond  configuration.  After  determining the 
correct ion to the value of X, we obtain the following ground state energy at order 
1 /N:  

J J J 
AEc,(n c = 1) = - N ~ -  - U,~- - N r ~ ( 2  - V~-). (3.9) 

The  first te rm arises f rom the links with a bond on them; N a is the number  of  links 
in B a. The  second term arises f rom parallel bond  pairs like the ones shown in fig. 5; 

NIL is the n u m b e r  of  links in B" belonging to such configurations.  The  third term is 
cont r ibu t ion  of the remaining N r links. We therefore have the constraint  Na + Nil + 
N r = 2 N  s. Examining  eq. (3.9), we see that  parallel pairs of bonds  lower the ground 
state energy because the absolute value of the coefficient of Nil is larger than that  of 
N r. This  picks out four-fold degenerate " co lumn"  states (shown in fig. 3a), which 
maximize  the number  of parallel bonds,  as the lowest energy " b o n d "  state [A E G = 

- U s J ( 5  - V ~ - ) / 4 ] .  

We also need the 1 / N  corrections for the energy of "p laque t t e "  states. These can 
be evaluated using methods similar to the ones presented in this subsection. The 
results obviously  depend upon the mean  field values of  X~ on the plaquettes,  which 
can now vary  cont inuously between 0 and J /2 .  We have verified that  at order  1 / N  

the " c o l u m n "  state has the lowest energy among  this entire class of solutions. For  
example ,  the correction to the energy of the state shown in fig. 4 with ]X~] = J(2~/~) 
on all the links on the plaquettes is A E  G = -NsJ(5  - ~/3)/4.  The column state is 
therefore  identified as the true ground state of H for n c = 1. Note,  however,  that  the 
co lumn state can be t ransformed continuously to a "p laque t t e "  state, indicating the 
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presence of gapless singlet excitations. There is clearly a gap towards excitations 

transforming as higher representations of SU(N)  because it is necessary to destroy a 

singlet bond to create them. 

3.2. 1 / N  CORRECT IONS  FOR n¢ >~ 2 

The fluctuation corrections to the ground state energy for all n c > 2 can be 
performed using a method similar to that of the previous section. The color-diagonal 
fluctuations X~(0') do not mix with each other and lead to a simple sum of nc 
contributions of the one-color result. The color off-diagonal fields X ],(0') couple just 
the two colors a and b; we therefore obtain n~(n~- 1)/2  similar contributions of 
two-color fluctuations. We will only consider the "bond"  states in this section as the 
color-diagonal fluctuations have lowered their energy below the "plaquet te"  states. 

It is clear, therefore, that all that remains to be calculated are the contributions 
due to the fluctuations of the field x~(ij), with a ~ b being two fixed colors. We 
now enumerate the various contributions to the action for the colors a and b. 

(i) There is one link-diagonal term which occurs on all links of the lattice, 

N 
Al~at,=~err E -~ E[Xa6(iJ; eon)Xba(ff i, -°~.) 

(i,j) n 

622 ~--4~ 2 . ( 3 .10 )  

(ii) A second link-diagonal term occurs on links which have bonds of both colors 
a and b (fig. 6a), 

A2•ab _ _  

"Jeff -- 

N 

( i , j )eB~,; ( i , j )eB h fi 

+x~(ji; h m " " X " (3"11) °)n)Xa(Jl,-°2,,)] 2 4;_ 4 ~ 2  
o.) n 

I----0 

O---lP-.~ 
| m . W  m ! "  

(o) (b) (c) 
Fig. 6. Local bond configurations which lead to off-diagonal couplings in the X~(~J) field. We represent 

bonds of color a by the thick line, and bonds of color b by the dashcd line. 
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(iii) One off-diagonal term occurs when a bond of color a and a bond of color b 
have just one site in common (fig. 6b), 

= 

N 
a i"  b E - [xb( J, ,0,)xo(kj; 

( i, j ) ~  B~; ( j ,  k )E B b 

+Xbo(J i; ¢°.)X~(jk; -¢%)]  2 ~ (3.12) w, + 4~. 2 " 

(iv) The other off-diagonal term occurs when a bond of color a is parallel to a 
bond of color b (fig. 6c), 

A4S~ = E N 
- x o ( O ,  

• . o l 2 ( 3 . 1 3 )  + x ~ ( k t , % ) X ~ ( J ; - % ) ]  2 + 4 ~  2, 
0a n 

where (i, k)  and ( j ,  l) must be links of the square lattice. 
The action for n c colors can now be constructed from the expressions above. The 

functional integral and the resulting determinant can easily be evaluated for an 
arbitrary configuration of bonds by a simple extension of the one-color results. We 
will omit the intermediate steps and simply present the results for the energy of the 
lowest metastable states and ground states for small no. 

(a) One dimension 
We begin the discussion by considering first the one-dimensional chain. For 

n~ = 2, there are only two possible ground states: one in which the two colors 
alternate from link to link, and the other in which they overlap. These configura- 
tions are shown in fig 7. The energy of the "alternating" state is -NsJ[N/4  + 
( 5 -  v ~ ) / 2 ]  while that of the "overlapping" state is -N , J [N /4  + ( 6 -  2~ - ) /2 ] .  
The ground state is therefore the non-degenerate alternating state, which bears a 
close resemblance to the states considered by Affleck [4] for m = 1. Interchanging 
the position of the color in the alternating state produces a state which is color-gauge 
equivalent to the original state; the alternating state is therefore non-degenerate. 
The ground state for arbitrary n~ is now clear: for even n~ we have a unique ground 
state in which the colors split into two groups which alternate with each other; for 
odd n c we have a two-fold degenerate ground state with the even links having one 
bond less or more than the odd links. 

We emphasize that, for the first time in a fermionic functional integral large-N 
expansion, we have obtained for n c even (S integral for N = 2) a unique ground 
state separated by a gap (the Haldane [7] gap) from the low-lying spin excitations, 
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(o) 

(b) 
Fig. 7. The two lowest configurations of bonds of colors a and b for a one-dimensional chain: (a) the 

"overlapping" state and (b) the "alternating" state (also the ground state). 

which will be in the adjoint or singlet representations of SU(N). We will now argue 

that our result for no odd (half-integer S for N = 2) of a pair of degenerate ground 
states, which break translational symmetry and have a gap for (soliton-like, funda- 

mental representation) excitations, is usually the physically correct result. This is in 
contrast to the discussion of Arovas and Auerbach [6], who studied the n c = 1 case 

and found a spatially uniform saddle point solution, which gives gapless, Fermi- 
liquid-like excitations. Their result is attractive because for N = 2, S = 1 /2  it agrees 
with the correct physics known since Bethe's solution [25]. There are nonetheless 
difficulties with this point of view, the first of which is that the saddle point is 

unstable; the energy can be continuously lowered [26] until the dimerized state is 
reached, due to a Peierls instability of the Fermi "surface". Further, using the 

analogue of this state for arbitrary no, one apparently obtains a (gapless) con- 

strained Fermi system that corresponds to the Wess-Zumino-Wit ten (WZW) 
model with k = n c [8]. 

The WZW model has different properties for the cases N = 2 and N > 2: (a) 

N = 2: The correct result for this model is believed [27] to be that nc even leads to 
ground states with a gap, and n c odd leads to an SU(2) WZW model with k = 1, i.e. 
the same exponents as n c = 1. The crossover from k = nc to k = 1 (for n~ odd) 
apparently occurs because the conformal SU(2) WZW field theory with k > 1 

possesses relevant operators which generically have non-zero coefficients (say for 
the Heisenberg model), causing a runaway from k = n~ [27]. (b) N > 2: The WZW 
model has relevant operators for all k >/1 and a gapless Fermi phase is expected 
only at isolated (multicritical) points in the hamiltonian parameter space, which 
presumably do not coincide with the model here studied. Hence one expects that for 
n~ even the ground state is translationally invariant and has a gap, and for n~ odd 
[28] translational symmetry is broken, i.e. a spin-Peierls phase. It is quite satisfying 
that the large-N theory agrees with this. 
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As noted above, for N = 2 there should be gapless behavior similar to the known 
exact result for n o =  1 [25] for all odd nc>~ 1. To obtain such behavior in a 

funct ional  integral type of approach at least involves, for n~ = 1, somehow stabiliz- 
ing the uni form solution, and for larger n~, finding a crossover away from the 
k = n~ saddle point  behavior to an effective k = 1. 

(b) Two Dimensions 

We now return to our discussion of the square lattice. We first restrict our 
at tent ion to n c = 2. The three lowest gauge inequivalent metastable states can be 
shown to be the ones in fig. 8; we shall refer to these states as the four-fold 

degenerate "over lapping" state (fig. 8a), the two-fold degenerate " l ine"  state (fig. 
8b), and the four-fold degenerate "square"  state (fig. 8c). (Note  that the line state in 

fig. 8b is an alternative representation of the state in fig. 3b of the introduction.) 
Because of  the enhanced interference between the two colors, the "overlapping" 
state turns out  to have the lowest energy, - N + J ( N / 4  + 5 - f£ ) .  The "square"  state 

and the " l ine"  state turn out to have the same energy, - N J [ N / 4  + (11 - 3v~-)/2]; 

we, however, do not expect these states to be degenerate when higher-order terms in 
1 / N  are included. The "square"  state and the " l ine"  state are also metastable 
towards  deformat ion to the "overlapping" state: performing local bond  rearrange- 
ments  to t ransform between the states always creates higher-energy intermediate 

states. Thus  for n~ = 2 we have found a four-fold degenerate ground state (the 
over lapping state of  fig. 8a), and the two lowest metastable states - the two-fold 
degenerate line state (fig. 8b) and the four-fold degenerate square state (fig. 8c). All 

three states have a degeneracy greater than the lower bound  suggested by the N L o  

model  in sect. 2.2, with the degeneracy of the line state being the lowest allowed 
value of  2. 

There is now a straightforward prescription for generating the lowest metastable 
states for a n y  n c. (i) Arrange all the bonds  of a given color into column states; the 
relative orientat ion of the column states of different colors can be arbitrary. The 
cont r ibut ion  of  the fluctuations of  the color-diagonal field X~(/J) to the energy will 
be simply n c times the one-color contribution of  sect. 3.1. (ii) Take all n c ( n  ~ - 1) /2  
possible combinat ions  of  two color pairs. The two colors chosen (a  and b say) will 

L L 

. . . . . . . . .  : : - 2 = - - = =  [ [ [ [ T [ i  
L £ L L I L  

(a) (b) (c) 

Fig. 8. The three lowest configurations of bonds for n c = 2 and m = N / 2 .  The thick and dashed lines 
represent the two colors. Note that in all three states, the two colors are arranged in separate column 

states. The states are referred to as (a) the overlapping state, (b) the line state and (c) the square state. 
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necessarily form either the overlapping state, the square state or the line state and 
the fluctuations of the X~(/j) field will give the corresponding contribution to the 
energy. It is now easy to show that all such states have a degeneracy (after 
excluding color gauge equivalent states) of at least 1, 4, 2, 4 for n c (mod 4) = 0,1, 2, 3, 
respectively. This is one of the central results of this paper. Thus, for example, it is 
impossible to obtain a state with a degeneracy smaller than 4 for n c = 5. The states 
which have the smallest possible degeneracy for all nc were displayed in fig. 3. The 
global ground state for all n~ is formed when all of the colors overlap in the same 
column state; this state is therefore the n~ > 2 generalization of fig. 8a and is 
four-fold degenerate. 

We have therefore determined the ground states and the lowest metastable states 
for all n c of the m = N / 2  models. None of the states obtained violate the lower 
bound on the ground state degeneracy of 1,4, 2, 4 for n c (mod 4 ) =  0,1, 2, 3, respec- 
tively, which was suggested by the semiclassical NLo model (sect. 2.2). 

4. Mapping to a generalized dimer model 

In this section we will consider properties of the hamiltonian in eq. (1.1) for the 
case m = 1. Using the fermion representation of eq. (1.2) for the SU(N)  generators 
we now find that there are n c electrons per site on the A sublattice and ( N -  1)n c 
electrons per site on the B sublattice. We will show that for m = 1, at order l / N ,  the 
antiferromagnet  is exactly equivalent to a generalized quantum dimer hamiltonian. 
The m = 1 antiferromagnet has in fact already been considered by Affleck [4] in one 
dimension, where the dimer hamiltonian is trivially solvable. While the overall phase 
diagram obtained by Affleck is correct, there are some minor errors in the structure 
of his perturbation theory; it will be important to correct these errors to understand 
the physics in two dimensions. 

We begin by describing the model with no=  2, but we shall use a general 
formalism which will allow a straightforward generalization to arbitrary n c. It is 
convenient to make a particle-hole transformation on the B sublattice by introduc- 
ing the hole operators ~ a  = c]~; on this sublattice we also use conjugate SU(N)  
generators 

~ f f ( i )  = Z e l ~ * ( i ) ~ , , a ( i )  - 6~no /2 ,  (4.1) 
a 

which are ( - 1 )  times the usual generators. The vacuum state is now redefined to 
have no electrons on the A sublattice and no holes on the B sublattice; all physical 
states will have n¢ electrons per site on the A sublattice and no holes per site on the 
B sublattice. We also introduce the symmetric tensor operators T~,  

T~l~ ( i ) = %bC~ ( i ) ct~h ( i ) , (4.2) 
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on every site on the A sublattice. On the B sublattice, the 7~#( j )  operators are 
defined identically, with the e "t operators replacing the ¢* operators. The Hilbert 
space is spanned by the action of the T operators upon the vacuum state on every 
site of the square lattice. (For arbitrary n c > 2 we generalize these operators to 
symmetric tensor operators T~#r .... with n c free SU(N)  indices, by using a nth rank 
Levi-Civita antisymmetric tensor Cab .... in color space.) 

In the N ~ oo limit the ground states of H can be easily deduced from the 
arguments of Affleck [4]. The ground state has a degeneracy of order exp(cN) for 
some constant c. Each ground state can be described as follows: contract the 
S U ( N )  indices of the Tea on neighboring sites in an arbitrary manner until there are 
no free indices left. All of the states so obtained are manifestly S U ( N )  singlets and 
can be labeled by a set of non-negative integers, (n t ) ,  where 0~< nt<~n ~ is the 
number  of contractions ("bonds")  on the link l of the square lattice. For example, 
the state 

[ . . .  n ( i , j ) , . . . ,  F/(p.q),/'/(q,r), /'/(r,s), / ' /(s,p),''')  

= C'( ,~,,,, ...T~(i)i'~B(j)... T,8(p)~(q)T~o(r)~°'(s)... )10), (4.3) 

where C is a normalization constant, (i, j ) ,  (p ,  q), (q, r), (r, s) and (s, p )  are links 

of the square lattice, has r t ( i , j  ) = 2,  and n ( p , q ) =  n(q ,r  ) = rl(r,s ) = r / ( s , p ) =  1. The set 
of integers ( n t )  must also satisfy the constraint 

II (i,i+ ~ ) -F II ( i , i_  ~ ) + / /( i , i+)3) "]- n ( i , i _  f,) = r / c ,  (4.4) 

because there are n c SU(N)  indices emerging from each site (the sum in the 
equation above extends over the four links ending at the site i). 

A word is in order here about our phase convention for the states. We will always 
write the T~.. .  ( i)  operators by using a f i xed ,  but arbitrary, ordering of the sites i of 
the square lattice. This convention now uniquely determines the state ]{ n t }) once 
the values of the link variables n / are known. We show in fig. 9 sample ground 
states in N ~ ~ limit for a few n c values. The integers on the links specify the 
number  of S U ( N )  bonds between the two sites at the ends of the links. 

4.1. O R D E R  1 / N  

We now show that at order 1 / N ,  there are matrix elements which mix the states 
in the ground state manifold; this mixing can be described by an effective hamilto- 
nian which is a generalization of the quantum dimer hamiltonians considered by 
Rokhsar  and Kivelson [12]. 
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n c = 4 n c = 6 

(o) (b) 
e 2 e  l e 2 e 3 e 0 e  

e 2 e 0 e 2 e 0 e 2 e  1 2 4 1 3 2 
2 2 2 2 2 2 e l e 2 e  l e 0 e 4 o  
e2o0o2o0o2o 1 2 0 5 0 1 
0 0 0 0 0 0 • l o 4 o l e  1 e 3 o  
e 2 e O e 2 e O e 2 e  1 0 2 0 3 1 
2 2 2 2 2 2 e 6 e O e 5 e O e 2 e  
e 2 e O e 2 e O e 2 e  0 1 0 2 2 1 
0 0 0 0 0 0 e l e 3 e 4 e l e 2 e  
e 2 e O e 2 e O e 2 e  

n c = 4 n e = 7 

(:) (<J) 
Fig. 9. C a n d i d a t e  g round  states in the N--", oe l imi t  for the case m = 1 for a var ie ty  of n c values. The 
n u m b e r s  on  the l inks  specify the n u m b e r  of bonds  be tween the two sites. Note  that  the sum of the 

numbers  on the four l inks end ing  at any  site is a lways  equal  to n c. 

The results follow from the repeated use of the following commutation relation: 

= r o82 + (4 .5)  

and its obvious generalization to arbitrary n c. A similar result holds on sublattice B. 
The site index has been suppressed in the above two equations. To evaluate the 
energy of the bonds between the sites i and j we will need the following 
commutator: 

^ 

[S; (,)S~ ( j ) ,  ro~(i)TVa(j)] 

= ~o ~ ( i )  ~.~(y) + ~o L~(i) ~.~(j ) + 8~L.(i) f.~(j ) 

+ ~ L A ; ) ~ . ( j  ) 

+ T~B(i)T"~(j)S~(i) + T~B(i)T~(j)S~(i)}. (14.6) 
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e . . . . . , . , ~  2 

H i 2  

Fig. 10. Fluctuat ions caused by the action of 912 upon a candidate ground state for n c = 1. This 
fluctuation changes the energy at order  1/N 2. 

This result can be used to commute  the hamiltonian H in eq. (1.1) through the T 
operators,  and so determine the diagonal energies and the off-diagonal mixing terms 

between the states [{ n l}). The terms in the curly brackets in eq. (4.6) annihilate the 
g round  state and can be ignored in the subsequent discussion. The remaining terms 

in eq. (4.6) have three different types of effects: 
(i) They contr ibute a diagonal term to the energy of the state [{n/} ). The 

contr ibut ion of  a ncfold  bond on a link, En,, to the ground state energy can easily 

be computed  to be 

J 
E, ,=  - ~ n , (  N -  1 + 2n c -  n , ) .  (4.7) 

In  eq. (4.7), and in the remainder of this section, we have omitted a constant  energy 
per site of  - ( j n 2 / 2 ) .  

(ii) They generate states which have a bond  between the sites which are not 
nearest  neighbors.  An  example of  this process is illustrated in fig. 10 for the case 

nc = 1. It is easy to show that such processes contribute to the energy of  states 

[{ n l }) in second-order  perturbat ion theory. They shift the energy of the states by an 

amoun t  propor t ional  to 

J [ m Z ( N -  m ) Z / N 2 ( N -  1)2]. (4.8) 

For  m = 1, this contribution is proport ional  to 1 / N  2, and can therefore be ne- 
glected. For  m of order N, however, these terms are of the same order as the 

first-order per turbat ion theory result. This makes clear why the calculations of this 
section do not  define a consistent perturbat ion theory for m = N / 2 ,  and the 

functional  integral method of  sect. 3 is the appropriate  way to proceed. 
(iii) They lead to mixing between the states [ (n l )  ), as shown in fig. 11. The 

act ion of  the hamil tonian leads to a local rearrangement in the values of  the n~ field 

a round  a plaquette.  A plaquette with //1, n2 - 1, n 3, n 4 - 1 bonds on the four links 

a round  it can be transformed to a configuration with n I - 1, n 2, n 3 - 1, n 4 bonds on 
the links. The matrix element for the process requires determination of the normal-  
ization constant  C',  and use of eq. (4.6); it can be shown to equal 

( . . . .  F/l '  / / Z - -  1 ,  n 3 ,  / / 4 - -  1 . . . .  ]H I . . . .  n 1 - 1, / / 2 '  n3  --  1,  n 4 . . . .  ) 

= - ( 2 J / N ) ~ / n l n 2 n 3 n 4 .  (4.9) 
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Fig. 11. The off-diagonal term in Hef t which changes the local n / values on the links around a plaquette. 

We are now in a position to express the 1 / N  corrections in terms of  an effective 
hamil tonian  He~f acting upon the Hilbert space of  the [{ n / } } states. The non-or tho-  

gonal i ty  of  the different [{n~}) states can be shown to affect H~ff only at order 
1 / N  2. Using the results in eq. (4.4), (4.7), and (4.9) we can show 

J / N -  E t { n , } )  n 2 ( { n , } [ -  
{,,,} 

[ . . . .  nh, n t 2 - 1 ,  n13, n14-1  . . . .  ) 
Ii , 12,13, l 4 C [] 

X2(nllnz2nz nl, ( . . . .  n h - 1, nt2 , n13 - 1, nl , , . . .  1, (4.10) 

where the second sum extends over all plaquettes on the lattice. Eq. (4.10) defines 
the effective hamil tonian of the generalized dimer model. Notice that while the full 
hami l tonian  was not invariant under  translation by one lattice spacing, the "re-  

duced"  dimer  hamiltonian (4.10) does have this property. For  n c = 1, it reduces to a 
special case of the quantum dimer model of ref. [12]. In one dimension, the 

off-diagonal  term vanishes and Her f is trivially soluble. The ground states, as noted 
by  Affleck [4], for even n c are non-degenerate and have n l = n J 2  on every link of  

the chain. (For  N = 2 these states are identical to the exact ground states of the 
models  in t roduced in ref. [24].) For  odd nc, the ground states have a two-fold 

degeneracy and we have n t = (n~ + 1 ) /2  on even links and n l = (n~ - 1 ) /2  on odd 
links or vice versa. Her f differentiates the candidate states obtained from the N --+ ~v 

limit at order  l / N ,  whereas Affleck incorrectly found a difference only at order 
1 / N  2. 

The physics of  Heff is not  so transparent in two dimensions. The first term in eq. 
(4.10) is clearly minimized if the n / values on all the links are as equal as possible, 

subject to the constraint  in eq. (4.4). Thus for n~ ( m o d 4 ) =  0, the first term is 
minimized by  the translationally invariant state with n l = n J 4  on all the links; this 
will be equivalent to the state shown in fig. 3d. However, there is the possibility that 
the off-diagonal  terms do not pick out a state with broken translational symmetry  as 
the g round  state. For  other values of  nc (mod4)v~ 0, one clearly can construct  
crystalline states similar to the ones in figs. 3a, 3b, and 3c, but  it is not  a priori 

obvious  that  they will have a lower energy than a state in which the dimers have 
melted into a translationally invariant fluid state. We note, however, as shown by 

Read  and Chakrabor ty  [13], that translationally invariant fluid states can also have 
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a non-trivial ground state degeneracy. In any case, the d =  2 version of the 
Lieb-Schul tz-Matt is  theorem [11], which applies to a translationally invariant 
hamiltonian (which for us means only if either m = N/2 or N = 2) on a lattice with 
an odd number of rows, demands that the ground state have either gapless 
excitations or at least a two-fold degeneracy if n c is odd. 

We have carried out preliminary numerical calculations of Her f for the case 
n c = 1. Using the Lanczos method, we were able to determine the exact ground state 
of Her f on a 6 x 6 lattice with periodic boundary conditions. The bond correlation 
functions in these small lattices show a clear signal of a crystalline ground state with 
the symmetry of the state in fig. 3a (the correlation functions appear to reach their 
asymptotic values within two lattice spacings, indicating that finite-size effects are 
small). Further details on the numerical calculations will be published in a separate 
paper. 

5. Conclusion 

The N L o  model representation of the Heisenberg antiferromagnet (ignoring 
momentarily the effect of Berry phase terms) predicts two classes of ground states 
for d >  1 for fairly general spin hamiltonians [9]: (i) a Goldstone phase with 
long-range N6el order and spin wave fluctuations and (ii) some sort of massive 
phase with exponentially decaying spin correlations. Power law spin correlations are 
only allowed at special critical points separating the phases. However, the underly- 
ing quantum spin hamiltonian can introduce a Berry phase term in the action, which 
can potentially change the nature of the massive phase. In one dimension, no 
ordered phase can exist, and here the effect of such a residual Berry phase term (the 
0 term [7, 8]) is dramatic: as noted first by Haldane [7], in the SU(2) case for 
half-integer spins, gapless excitations carrying spin-½ appear and give power law 
spin correlations, in contrast to the integer spin case, where the only excitations are 
massive and carry integer spin. The exact solution for the spin-~ antiferromagnetic 
chain [25] helped motivate these results, which are also supported by numerical 
studies [29] and can be given a field-theoretic interpretation [8, 27]. (The somewhat 
different situation for N > 2 was discussed in sect. 3.) Thus the combination of 
arguments based on the NLo model representation (obtained in the semiclassical 
large-S limit) with other results appears to predict the correct physics down to S - 
in one spatial dimension. 

The effect of the Berry phase term on the NLa  model in two spatial dimensions, 
however, appears to be innocuous [3]. It does not affect the low-energy dynamics of 
the N~el phase, changing only the structure of some high-energy excitations. In the 
massive phase, Haldane [3] has suggested that it leads to additional degeneracies in 
low-lying states, which depend on 2S (mod4). We have obtained, in this paper, 
results in the extreme quantum limit (N---, ~ )  of a nearest-neighbor SU(N)  spin 
model which support the correctness of this conjecture. For the case when the 
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of rows, m, in the Young tableau of the SU(N)  representation satisfies m = N/2, 
we find massive ground states which break translational symmetry. The degeneracy 
of all of the low-lying states is always 4, exceeding the conjectured lower bound of 
degeneracy 1, 4, 2, or 4 for n c ( rood4)=  0, 1, 2, or 3, respectively (here n c is the 
number of columns in the Young tableau of the SU(N)  representation under 
consideration). Our results lead us to conjecture that the ground state anywhere in 
the disordered region of the phase diagram, fig. 2, is a dimerized (spin-Peierls) state 
similar to one of those in fig. 3, and satisfies the conjectured lower bound on the 
ground state degeneracy (we regard a non-degenerate state like fig. 3d as a 
spin-Peierls state also). This region may contain other phase boundaries which are 
transitions among spin-Peierls states of different degeneracies, and it is amusing to 
speculate that Haldane's lower bound is saturated adjacent to the transition to N6el 
order, but that the degeneracy and hence the degree of breakdown of translational 
invariance tends to increase as we move away from this region, until the extreme 
region (N large, n c fixed) studied in this paper is reached. Thus we expect that, 
once again, the semiclassical picture leads to qualitatively correct results even for 
small values of no. However, we emphasize that our results are for the unfrustrated 
nearest-neighbor model and that the introduction of large amounts of frustration or 
of mobile holes may lead to quite different disordered phases. 

The authors benefited greatly from discussions with R. Shankar. We would like to 
thank A. Manohar for useful comments. We are grateful to the Aspen Center for 
Physics and IBM Thomas J. Watson Research Center for hospitality while this work 
was being performed. S.S. was supported in part by the Presidential Young 
Investigators program of the National Science Foundation. 

Note added in proof 

In recent work [30] using the bosonic representation of the SU(N)  operators (sect. 
1), we have obtained strong evidence in support of the conjecture above. We have 
shown that for large N the ground state in the disordered phase close to the 
transition to the N~el phase (fig 2.) has spin-Peierls or valence bond crystal order 
with the symmetry of figs. 3a-d. 

Appendix 

This appendix fills in some missing steps in the arguments of sect. 2.2 on the NLo  
model representation of the SU(N)  model. We shall show that a tunneling event 
which changes the skyrmion number by p leads to a vortex of magnitude 27rp in the 
spatial field ~oj which was defined in eq. (2.32). For simplicity we will restrict our 
attention to the U(N) / [U(1)  x U(N - 1)] models, also known as the CP N-1 rood- 
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Z 2 

Z 3 

Z 4 

Fig. 12. Four points surrounding the center of the skyrmion number changing tunneling event which 
occurs at the origin. The light lines represent the x and y coordinate axis. 

els. Our results can easily be generalized to the U ( N ) / [ ( U ( m )  × U ( N  - m)] models 
by the methods of MacFarlane [31]. We begin with the following representation of 
the matrix field ~2j: 

(12j) ~ = 8~fl - 2 Z * ( j ) Z / ~ ( j ) ,  (A.1) 

where Z t ( j )  are N complex fields (c~=1 . . . . .  N)  satisfying the constraint 
E~ L Z ,  12 = 1. Inserting this equation into eq. (2.32) we can show easily 

oat= - i f  B d r Y ~ . Z * ( j )  dZ~(j~) (A.2) 
o ~ d'r 

We will describe the evolution of the Z~ variables during a skyrmion number 
changing tunneling event which is centered at the origin. We will focus on the four 
points, zl_ 4 shown in fig. 12, at the vertices of the plaquette where the tunneling 
occurs; here zj = xj  + iyj are the complex coordinates of the points. Let us begin at 
time ~- = 0 with a skyrmion centered at the origin. The order parameter field for this 
can be written in the form [32] 

0. + fo(z/X) 
z.(j)= ¢l+(Izjl/x) 2 p  ' 

(A.3) 

where X is a length, much larger than the lattice spacing a, specifying the scale of 
the skyrmion, and 0,  and 12 are orthogonal unit vectors in the N-dimensional order 
parameter  space. It is convenient to break up the subsequent time evolution of the 
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Z~ fields into four steps: 
(i) Step 1 : 0  < r < rl. The tunneling occurs in this step, reducing the skyrmion 

number  to 0. The order parameter has the following time dependence: 

0o + ;,o/( 
= , ( a . 4 )  Z ~ ( j ,  "r) ~1 + f 2( "r ) ( [z j l /~  )2P 

where f(~-) is a real function of time satisfying f(0)  = 1 and f(~'l) = -Y'; /~ is a large 
constant which satisfies X / F  << a. At z = % the scale of the skyrmion is X/F ,  
which is much smaller than the lattice spacing; consequently the skyrmion number 
has been reduced to 0. By inserting eq. (A.4) into eq. (A.2) we can easily see that the 
contribution of this step to wj is zero at all sites. 

(ii) Step 2:~'1 < ¢ < % To satisfy periodic boundary conditions, we now have to 
return the order parameter configuration at the points Zl_ 4 to their ~- = 0 values in a 
locally smooth manner; this will be achieved in steps 2 and 3. We first rotate the 
order parameter  configurations at Zl_ 4 to a common value, 

^ p 
O, + V ~ g j ( ' r ) F ( z j / X )  (A.5) 

Z,~(j, 'r) = - ]1  + Igj(~)12r2(151/x) 2p ' 

where gj(r~) = 1, and gj('r2) = ( z f ' )P / l z j [  p. Since the absolute values Izjl are equal 
at the four points under consideration, at ~- = ~'2 the order parameters are also equal. 
This step involves a non-trivial Berry phase factor; we may show by inserting eq. 
(A.5) into eq. (A.2) that 

%=_ifT2d.r F2( I z / I /X )  2p 1 (  d g / ( r )  ) (A.6) 

T1 l + l g j ( T ) 1 2 F 2 ( l z j l / x )  2p ~- gT(~')  d r  c . c . .  

In the limit X / F  << a, the integral can be easily evaluated and we obtain ~0 a = 0, 
~o 2 = p~r/2,  ,o 3 = pTr, and (io 4 ~ "  3per/2. 

(iii) Steps 3 and 4: r z < z < ft. These steps are the reverse of steps 1 and 2. Step 
3 undoes the scale contraction in step 1 and gives no additional contribution to o~j. 
Step 4 is the reverse of the rotation carried out in step 2; it is easy to check that, 
because z/<< X, there is no additional contribution to ~oj. 

All of the Berry phase contribution in the tunneling event therefore arose in step 
2. It  is clear from the values of ~0j quoted above that a vortex of magnitude 2~'p was 
generated at the origin. We have therefore established the required result. 
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