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Explicit ~atrix. eleme~~s are foun~ !~~ the ,generators of the ~roup R(5) in an arbitrary irreducible 
representatIOn usmg the natural basIs m whIch th.e represen.tatIon of R(5) is fully reduced with respect 
to the.subg~oup R(4) = .SU(~) @ SU(2). ,!,he t~chnIque used IS based on the well-known Racah algebra. 
The dlmen.slOn formula ~s derIved and the mvarIants are found. A family of identities is established which 
relates varIOUS polynomIals of degree four in the generators and which holds in any representation of the 
group. 

INTRODUCTION 

Recently, interest has been revived in describing the 
collective states of certain even-even nuclei by means 
of a five-dimensional isotropic harmonic oscillator 
arising out of the quadrupole vibrations of the nuclear 
surface about a spherical equilibrium shape. This 
model predicts! that the second excited state should be 
a degenerate triplet of angular momenta (L" = 0+, 
2+, 4+) occurring at twice the excitation of the first 
excited state which has angular momentum and parity 
L" = 2+. As this prediction is not observed to hold 
in actual nuclei, the five-dimensional oscillator model 
is only an approximate description of the excited 
states of these nuclei. This description has nonetheless 
proved to be a convenient starting point in describing 
the coupling of the collective modes to the giant 
dipole oscillations resulting in the splitting of the 
giant dipole resonance.2.3 

For the five-dimensional oscillator, only the totally 
symmetric irreducible representations of SU(5) occur, 
and these may be considered to be fully reduced with 
respect to the subgroup R(5). For application to 
the above problem, it is then convenient to reduce the 
R(5) irreducible representations with'respect to the 
physical R(3). 

Of course, all the main properties of the classical 
groups are already well known and may be found by 
mining in such classic works as the books by Mur­
naghan, Weyl, and Littlewood.' For practical applica-

• Work was performed in the Ames Laboratory of the U.S. 
Atomic Energy Commission, Contribution No. 2163. 

1 A. Bohr, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 
26, No. 14. (1952). 

• J. Le Tourneux, Kgl. Danske Videnskab. Selskab, Mat.-Fys. 
Medd. 34, No. 11 (1965). 

3 M. G. Huber, H. J. Weber, and W. Greiner (to be published). 
• F. D. Murnaghan, The Theory of Group Representations (Johns 

Hopkins Press, Baltimore, 1938); H. Weyl, The Classical Groups 
(Princeton Univ. Press, Princeton, N.J., 1946); D. E. Littlewood, 
The Theory of Group Characters (Oxford Univ. Press, London, 1940). 

tions, however, it is necessary to realize the irreducible 
representation of the group in an explicit way. This 
introduces the problem of labeling the states within an 
irreducible representation in a manner whose physical 
meaning is transparent. For application to the physical 
problem in mind, we have already indicated that the 
R(S) representations should be explicitly reduced 
with respect to the physical R(3) subgroup; however, 
it is very hard to obtain suitable explicit representation 
matrices directly using such a fully reduced basis. 
Instead, we adopt the "natural" labeling in which an 
irreducible representation of R(S) is considered to be 
fully reduced with respect to its subgroup R(4) = 
SU(2) @ SU(2), and a state is labeled by the particular 
weight of the particular irreducible representation of 
R( 4) to which it belongs. The problem of relating the 
natural.labeling to that in which R(S) is reduced with 
respect to the physical R(3) subgroup will be the 
subject of our second paper. 

The main original results in the present work are the 
development of the explicit representation matrices 
in the natural basis,5 and the discussion of the well­
known dimension formula and Casimir-type operators 
by means of our algebraic approach. So far as we 
know, the fourth-order identities discussed in Sec. 5 
are completely new. They are analogous to those found 
by Pursey6 for SU(3). Much of this work was developed 
in embryonic form some years ago by two of us (N. K. 
and D. L. P.), but was not published at that time. The 
present treatment closely follows Pursey's treatment 
of SU(3) in its whole-hearted exploitation of Racah 
algebra. 

Because R(S) is compact, we know that all the 

5 Explicit representation matrices have been found for the gener­
ators of the rotation groups in arbitrarily many dimensions by I. M. 
Gel'fand and M. L. ZetIin, Dokl. Akad. Nauk. SSSR 71, 1017 
(1950). We believe our treatment is a simpler approach to the problem 
in the particular case of R(S). 

• D. L. Pursey, Proc. Roy. Soc. (London) A27S, 284 (1963). 
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FIVE-DIMENSIONAL ROTATION GROUP. I 1225 

irreducible representations may be taken to be unitary 
and are finite-dimensional. It will not be necessary to 
make use of this latter property, however, since the 
finite dimensionality of the unitary representations 
will emerge from the algebraic formalism. It is 
perhaps of interest to note that this approach will also 
provide, via the unitary trick, the finite nonunitary 
irreducible representations of the de Sitter group. 

1. CHOICE OF GENERATORS 

It is well known that the generators Mik of R(5) 
satisfy the commutation relations 

[Mik' M lm] 

= i(tJlIMkm + IJkmMi! - IJimMkz - IJkzMim), (1) 

where the indices run from 1 to 5. Mik is the generali­
zation to five dimensions of the angular-momentum 
tensor eikZJZ in three dimensions. In particular, if A I is 
a vector, then 

[Mik' AI] = i(IJizAk - IJkzA;). (2) 

It will be convenient to replace the ten linearly inde­
pendent generators of Eq. (1) by linear combinations 
which explicitly display the 8U(2) @ 8U(2) = R(4) 
subgroup of R(5). This may be done by defining 

jz" = te"ikM;k + tM,,4' (3a) 

1" = ie"ikM;k - tM,,4' (3b) 

where a,j, k = 1,2, 3 only, and we use the summation 
convention for repeated indices. Then we have the 
commutators 

[jza' h] = iea(JYjzy, (4a) 

[1a,1(J] = iea(Jy1y, (4b) 
and 

[jza,1(J] = o. (4c) 

The remaining four generators are then conveniently 
grouped to display their transformation properties 
under the 8U(2) @ 8U(2) subgroup generated by p and 
q. They form a bispinor T~r] with components 

[!h -! . 
TH = -2 (M15 + IM25), 

[H] -! . 
T _!_! = 2 (M15 - IM25), 

[H] -! . 
T!_! = 2 (Ma5 - ZM45), 

[H] -! . 
T -H = 2 (Ma5 + 1M45). 

(5a) 

(5b) 

(5c) 

(5d) 

It is also convenient to replace the Cartesian gener­
ators of the two 8U(2) subgroups by tensors irreduc­
ible with respect to the product group. Thus we use 

- T[10] 2-!( j, + 'j, ) PI = lO = - r1. Ir2' 

P = T[10] _ j, 
0- 00 -ra, 

- T[10] 2-!( j, 'j, ) P-1 = -10 = r1 - Ir2 , 

(6) 

FIG. 1. The root diagram corresponding to the choice of gener­
ators of R(5) given in the text. For simplicity the superscripts on the 
bispinor have been omitted and the ±! components denoted by 
± only. Similarly, the ± 1 components of p and q are denoted ±. 

and similarly, 

T [Ol] 2-!( +. ) q1 == 01 = - 11 112 , 

qo == T~l] = 13' (7) 
- T[Ol] 2-!( .) q-1 = 0-1 = 11 - 112 • 

This choice of generators is conveniently displayed on 
the root diagram of Fig. 1. The commutation prop­
erties of the p's, q's, and the bispinor are then given 
by7 

and 

[PJL, Pv] = 2-!C(111; Yft)PJL+vo 

[qJL' qv] = 2-!C(111; Yft)qJL+v, 

[PJL, qv] = 0, 

d!] _ 3! .1.1. [H] 
[PJL ' TaP] - 2 C(2 12' (tp)Ta+JL .p , 

(8) 

We shall not explicitly require the commutators 
of the elements of the bispinor among themselves. 
Rather we take linear combinations of these commu­
tators with vector coupling coefficients to construct, in 
spherical-tensor form, the vector scalar [T[H], 
T[H]]~~o]. Clearly one has 

[T[U] T [Hl][10] = Ap 
, JLO JL' (9) 

and in order to find A, we need merely consider one 
component, say ft = 1; this yields A = -2. Similarly, 

1 The vector coupling coefficients here are in the notation of 
M. E. Rose, Elementary Theory of Angular Momentum (John Wiley 
& Sons, Inc., New York, 1957). 
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1226 KEMMER, PURSEY, WILLIAMS 

one has 
[TrUl TrUl]rOll = -2q , Ov v· 

We then use 

[TrUl T[Ul][IOl = 2(T[U)T[Ul)[IO) 
, pO pO 

to find 
(T[H)T[Ul)~~O) = _ T~~O) 

and 
(T[U)T[Ul)[Ol) = _ T[Ol) 

0. 0 •• 

(10) 

(lla) 

(l1b) 

2. BASIS STATES AND REDUCED MATRIX 
ELEMENTS 

Each irreducible representation of R(5) is considered 
to be fully reduced with respect to the product 
subgroup SU(2) ® SU(2). Therefore the state vectors 
will bear the labels Ip').qfl), where pCp + 1), ')., q(q + 1), 
and fl are the eigenvalues of p2, Po , q2, and qo, respec­
tively. The basic problem then is to determine the 
ranges of p and q within a given irreducible representa­
tion of R(5). We do this by finding the reduced matrix 
elements of the bispinor for our choice of basis states. 
In the notation of Fano and Racah,8 the matrix 
element of T;:!!ol is given by the Wigner-Eckart 
theorem 

(p' J..' q'fl'1 TIl[!::') Ip').qfl) 

= [(2p' + 1)(2q' + 1)]-tC(pjlP'; ').0(1').') 

X C(Qj2Q'; fl0(2fl') (p' q'lI T[il/s) IIpq). (12) 

We have then from Eqs. (11) and (12), together with 
Fano and Racah's equation (15.15) and the reduced 
matrix elements of T[1O) and T[OI), 

L../3 W(pp'H; Ip")W(qq'U; Oq") 
p"q" 

X (p'q' II p"q")(p"q" " pq) 
= -bp'pbq'q[p(p + 1)(2p + 1)(2q + l)]t (13a) 

and 

L../3 W(pp'H; Op")W(qq'U; Iq") 
'/I"q" 

X (p'q'." p"q")(p"q" " pq) 

= -bp'pbq'q[q(q + 1)(2q + 1)(2p + 1)]t, (13b) 

where, in Eqs. (13), we have used Racah's notation9 

for the recoupling coefficients and have abbreviated 

(p'q'lI T[Hlll pq) by (p'q' II pq). 

In Eq. (13a), the left-hand side vanishes identically 
unlessp" =p ± t,p" =p' ± t,p' =p,p ± 1, and 
q" = q ± t. First of all, take p' = p ± 1, which 
requires that p" = p ± t = p' T t. Then Eq. (13a) 

• U. Fano and G. Racah, Irreducible Tensorial Sets (Academic 
Press Inc., New York, 1959). 

I See, for example, M. E. Rose, Elementary Theory of Angular 
Momenta (John Wiley & Sons, Inc., New York, 1957). 

yields 

(p ± 1, q "p ± t, q + t)(P ± t, q + t "pq) 

= (p ± 1, q "p ± t, q - t)(P ± t, q - lllpq)· 

(14) 
Let us now define 

s = p + q, t = P - q, (15) 

so that Eq. (14) becomes 

(s ± 1, t ± 1 " s ± 1, t)(s ± 1, t "s, t) 

= (s ± 1, t ± 1 " s, t ± 1)(s, t ± 1 " s, t). (16) 

Similarly, in Eq. (13b) we take q' = q ± 1 and thus 
q" = q ± ! = q' ± t to yield 

(s ± 1, tTl" s ± 1, t)(s ± 1, t" s, t) 

= (s ± 1, tTl" s, t T 1)(s, I TIl/ S/). (17) 

In Eq. (I7) with the upper sign, we replace t by 
t + 1 and multiply the resulting equation into Eq. 
(16) also with the upper sign. Then one has, after 
some cancellations, 

(s + 1, t + 1 " s + 1, t)(s + 1, t " s + 1, t + 1) 

= (s, t + 1 " s, t) (s, t II s, t + 1). (18) 

Since we seek unitary representations, we have so 
defined our generators that 

T[U)t = (_I)Il+/lT[U) (19) 
Il/l -Il-/l' 

and thus it follows from Eq. (12) that 

(p'q' "pq)* = (_I)'P+fl-p'-q' (pq II p'q'), (20a) 

or, in terms of sand t, 

(s't'" st)* = (-I)8-0'(st" s't'). (20b) 

Upon using Eqs. (20b) and (18), we find 

I(s + 1, t + 1 " s + I, t)1
2 

= I(s, t + 1 " s, t)1
2 = get), 

(21) 
which is clearly independent of s. 

By a similar procedure, using opposite signs in 
Eqs. (16) and (17), we obtain 

I(s + 1, t + 1 II s, t + 1)12 

= I(s + 1, t II s, 1)1 2 =f(s). (22) 

Finally, we use Eqs. (13) with p' = p, q' = q to 
obtain the induction equations for f(s) and get). 
From Eq. (13a), we have 

(s + t)[f(s) + get)] - (s + t + 2) 

x [f(s - 1) + get - 1)] 

= -(s + t)(s + t + 1)(s + t + 2) 

x (s - t + 1), (23) 
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while Eq. (13b) yields 

(s - t)[f(s) + get - 1)] - (s - t + 2) 

x [f(s - 1) + get)] 

= -(s - t)(s - t + 1)(s - t + 2) 

x (s + t + 1). (24) 

3. SOLUTION OF THE INDUCTION EQUATIONS 

We may note in passing that from Eqs. (23) and 
(24) it is obvious that get) = g( -t - 1), but it will be 
unnecessary to use this symmetry property to solve 
these induction equations. Similarly, while it is very 
straightforward to use the compactness of R(S) and 
therefore the knowledge that all unitary representa­
tions are finite, it is necessary only to use the fact that 
all irreducible representations may be taken as un­
itary. The finite dimensionality of the representations 
arises in a very natural way from the solution to 
the induction equations which themselves have come 
from the group algebra. 

Equation (23) is rewritten as 

f(s) + get) f(s - 1) + get - 1) 

(s + t + 2)(s - t + 1) (s + t)(s - t + 1) 

= -(s + t + 1) 

= -H(s + t + 2)2 - (s + t?]. 

Therefore, noting that on both sides the second term 
is obtained from the first by replacing s by s - I and t 
by t - 1, we must have 

f(s) + get) = -Hs + t + 2)(s - t + 1) 

x [(s + t + 2)2 + !X(s - t)], (2S) 

where !X is a function of s - t as yet ~o be determined. 
Equation (24) is then rewritten as 

f(s) + get - 1) f(s - 1) + get) 

(s - t + 2)(s + t + 1) (s - t)(s + t + 1) 

(26), we find 

f(s) + get) = -Hs + t + 2)(s - t + 1) 

Therefore, 

x [(s + t + 2)2 + (s - t + 1)2 + 2y] 

= -t[(s + 1-)2 - (t + i)2] 

X [(s + 1-)2 + (t + W + y]. 

and 
f(s) = -t{(s + 1-)2[(S + 1-)2 + y] + b} (28a) 

get) = +H(t + W[(t + t)2 + y] + b}. (28b) 

Letusnowintroduce x = (s + 1-)2 andy = (t + i)2. 
Since x > 0, y 2 0, and It I ~ lsi, we have 

o ~ y < x. (29) 

Furthermore, since f(s) and get) are intrinsically 
positive, we have 

-ix2 
- tyx - tb 2 0 (30a) 

and 

ty2 + tyy + tb 2 O. (30b) 

From Eq. (30a) it follows that x must lie between the 
roots of x2 + yx + (j = 0 and, from Eq. (30b), y 
must lie outside the roots. Thus we have 

o ~ y ~ - ty - (iy2 - (j)! 

~ x ~ -ty + (iy2 - b)!. (31) 

It therefore follows that y .~ 0 and 0 ~ (j ~ (yf2)2. 
It is clear that the bispinor has the ladder property 

for sand t, in that it steps either s or t up or down by 
1. Hence y must reach its upper bound, for only then 
will get) vanish and terminate the ladder. Similarly, 
x must attain its upper bound. Thus 

(32a) 
and 

(32b) 

Let us denote the upper bounds of sand t by I and k, 
respectively. Then we have 

(l + !)2 = -ty + (ty2 - b)! (33a) 
= -(s - t + 1) and 

= -HCs - t + 2)2 - (s - t)2], 

from which we find in a similar way that 

(s) + get - 1) = -Hs - t + 2)(s + t + 1 ) 

x [(s - t + 2)2 + P(s + t)]. (26) 

In Eq. (26) we replace t by t + 1 and compare the 
result with Eq. (2S). This gives 

P(s + t) = (s + t + 1)2 + 2y, 

!X(s - t) = (s - t + 1)2 + 2y. (27) 

On substituting these results into Eq. (2S) or Eq. 

from which it follows that 

y = - (l + 1-)2 - (k + t)2 
and 

b = (l + !)2(k + t)2. 

(33b) 

(34) 

(3S) 

Using Eqs. (34) and (3S) with Eqs. (28), we find 

f(s) = HI - s)(l + s + 3)(s - k + 1)(s + k + 2) 

(36) 
and 

get) = HI - t + 1)(1 + t + 2)(k - t)(k + t + 1). 

(37) 
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1228 KEMMER. PURSEY. WILLIAMS 

To recapitulate we have 

f(s) = I(s + 1. til TlUl lis. t)1 2 

= I(p + t. q + til T[11lIlpq)1 2
• 

get) = I(s, t + 111 Tll!l lis, t)1 2 (38) 

= I(p + t, q - til TlUl IIpq)1 2
, 

s = P + q, t = P - q, 

and the solution to the induction equations is com­
pleted once we adopt the phase convention that the 
reduced matrix elements are the positive square roots 
of f(s) and get). 

4. CHARACTERIZATION OF THE IRREDucmLE 
REPRESENTATIONS AND THE DIMENSION 

• FORMULA 

We have solved the induction equations in terms of 
the maximum values I and k of sand t in the repre­
sentation. We must still determine the permissible 
values of I and K. We have made use of the essential 
nonnegative character of f(s) and g(t), which implies 
that the induction equation shall not lead to values of 
x greater than (I + -1)2 nor less than (k + t)2 nor to 
values of y greater than (k + t)2. From the definitions 
of I and k, it is clear that I;;:: k ;;:: O. From the 
necessary symmetry of the irreducible representations 
under interchange of p and q, it is clear that -k ~ 
t S k so that k must be an integer or half-integer; and 
since I - k must be an integer, I is correspondingly an 
integer or half integer. 

Thus we conclude that an irreducible representation 
of R(S) is characterized by two nonnegative numbers 
(/, k) such that both are either integers or half-integers 
and I;;:: k. For given (I, k), s ranges from k to I by steps 
of 1, and t from -k to k by steps of 1. 

We may express these results in terms of p and q as 
follows: In an irreducible representation (I, k) of R(S), 
p and q range from 0 by steps of t to t(k + I). For a 
fixed value of q, p ranges from Ik - ql by steps of 1 
to the minimum of [/ - q, k + q]; For afixed value of 
p, q ranges from I k - pi by steps of 1 to the minimum of 

[/ - p, k + pl. 
The dimension of an' irreducible representation 

(/, k) may be easily computed by summing (2p + 1) 
(2q + 1) over the possible simultaneous values of p 
and q. Alternatively, we may sum (s + t + 1) 
(s - t + 1) over the permissible values of sand t to 
obtain 

del. k) = i(2k + 1)(21 + 3)(1 + k + 2)(1- k + 1). 
(39) 

The irreducible representations of R(S) may also be 
characterized using the well-known isomorphism with 

Sp(4)10 for which the irreducible representations are 
put into one to one correspondence with the two­
rowed Young tableaux labeled by 0'1 and O'a. which are 
the numbers of boxes in the first and second rows, 
respectively. This corresponds to classifying tensors 
under Sp(4) according to the symmetry properties of 
their indices. The vector representation of Sp(4) is the 
spinor representation of R(S) and the connection 
between the characterizations is 

0'1 = 1+ k, O'a = 1- k. (40) 

The substitution of Eqs. (40) into Eq. (39) gives 
Weyl's result. ll 

In yet another characterization, based on weight 
diagrams, Speiserla labels the irreducible representa­
tions by (Ll' L2), which are related to 0'1' 0'2' I, and k 
by 

Ll = O'a = 1- k, L2 = 0'1 - 0'2 = 2k. (41) 
I 

Finally, we make connection with the characteriza­
tion given by Hecht13 and by Parikh,14 in which the 
labels are (Pm' qm) which are the values of A. and p, for 
the state of maximum weight. The relationships are 

Pm = HI + k), qm = HI - k) (42) 
or 

Pm + qm = smax = I, Pm - qm = tmax = k. (43) 

5. INVARIANTS 

The most direct approach to finding the invariants 
is undoubtedly to directly construct operators which 
comm~te with all the group generators. The matrix 
elements of these operators must then be expressible 
as a function of only I and k. Since there are but two 
numbers required to characterize a representation, 
there exist only two independent invariants. For the 
group R(S) there will be a second-order and a fourth­
order invariant since the third-order invariant 
MijMjkMki obviously vanishes. Thus, we could con­
struct MijMji and MijMikMk,Mu directly. However, 
this is not the most convenient way to proceed. 

We shall find it most convenient to define the oper­
ator 

(44) 

Then, since this obviously commutes with p2 and q2, 
we need consider only its diagonal reduced matrix 

10 G. Racah, "Lectures on Lie Groups," Group Theoretic Concepts 
and Methods in Elementary Particle Physics, F. Giirsey, Ed. (Gordon 
and Breach, Science Publishers, Inc., New York, 1964). 

11 H. Weyl, The Classical Groups (Princeton Univ. Press, Princeton, 
N.J., 1946). 

12 D. Speiser, "Theory of Compact Lie Groups and Some 
Applications to Elementary Particle Physics," Group Theoretic 
Concepts and Methods in Elementary Particle Physics, F. Giirsey, 
Ed. (Gordon and Breach Science Publishers, Inc., New York, 1964). 

13 K. T. Hecht, Nucl. Phys. 63. 177 (1965). 
14 J. C. Parikh, Nucl. Phys. 63, 214 (1965). 
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elements, which are given by 

«(lk)pq\\ T2 \\(lk)pq) 

= - z W(ppH; OP')W(qqU; Oq') 
2>'q' 

(45) 

To reduce this it is convenient to note that we may 
write 

get) = Hb(l, k) - 2t(t + I)a(l, k) 

+ (t - l)t(t + 1)(t + 2)} (57a) 
X (pq II p' q')(p' q' II pq). 

and 
From this, together with Eqs. (20a) , (21), and (22), 
we obtain f(s) = -Hb(l, k) - 2(s + I)(s + 2)a(l, k) 

«(lk)pq\1 PII(lk)pq) = H(2p + I)(2q + 1)]-! 

X {f(s) + f(s - 1) + get) 

+ get - I)}. (46) 

Then, using Eqs. (36) and (37), we find after some 
simplification 

«(lk)pqll T211(lk)pq) = [(2p + 1)(2q + I)]! 

X {a(l, k) - pcp + I) - q(q + I)}, (47) 

in which a(l, k) is defined by 

2a(l, k) = /(l + 3) + k(k + 1). (48) 

Therefore, we obtain an invariant A2 defined by 

A2 = P + p2 + q2, (49) 

whose value in the representation (/, k) is 

A2 = a(/,.k). (50) 

This is essentially the second-order Casimir operator. 
To obtain the fourth-order invariant we construct 

+ s(s + 1)(s + 2)(s + 3)}, (57b) 

in which 

b(/, k) = (I + 1)(/ + 2)k(k + I). (58) 

Using Eqs. (57), after some simplification one has 

«kl)pqll B411(kl)pq) 

= -h[(2p + 1)(2q + I)]!{b(i, k) - 2a(l, k)[p(P + 1) 

+ q(q + 1)] + p2(P + 1)2 + q2(q + 1)2 

- 2p(p + 1) - 2q(q + 1) + 6p(p + I)q(q + I)}. 

(59) 

Therefore, the operator 

is invariant and in the representation (I, k) has the 
value 

M4 = b(l, k) = (/ + 1)(1 + 2)k(k + 1). (61) 

two bilinear operators 

7[11] == (T[IO] T[Ol])[11l, 

or 

At first sight, the invariant of Eqs. (60) and (61) 
(5Ia) seems curious in that the usual way of forming the 

second invariant operator would' have it symmetric 
(5Ib) in all the Cartesian generators and of fourth order. 

and 
(52) 

Then we consider the reduced matrix elements of 

(53) 
Since 

«(lk)p' q'll 7"[11] 11(lk)pq) 

= o2>p,Oqq'[P(p + I)(2p + I)q(q + I)(2q + 1)]!, (54) 

we need only consider the diagonal elements of T[ll], 

which are 

«(lk)pqll T[11] 1I(lk)pq) 

= -up(p + 1)(2p + l)q(q + 1)(2q + lW! 

X ~[p(p + 1) - p'(p' + 1) + !] 
2>'q' 

X [q(q + 1) - q'(q' + 1) + !] I(p'q' II pq)12. (55) 

Then we find 

«kl)pqll B4 11(kl)pq) = t[(2p + 1)(2q + I)]! 

X {P(q + I)g(t) + q(p + l)g(t - 1) 

- pqf(s) - (p + 1)(q + 1)f(s - I)}. (56) 

M4 contains second-order terms and does not involve 

(62) 

One would therefore expect that there exists an 
identity relating T4 to p2, q2, and possibly other 
quantities. This indeed is the case as may be readily 
demonstrated by considering 

where the TadJ; of Eq. (63) are indicated without 
superscripts and may be anyone of the irreducible 
tensor generators of the group. From this tensor, 
which is clearly symmetric on its second and third 
pairs of indices, we may form irreducible tensors. 
For example, we may couple the first two pairs to 
fh, AI] and the second two pairs to fh, A2] and then 
couple the result to [JL]. We may also couple the 
first and third pairs to [j~A~], the second and fourth 
pairs to fj~, A;] and then couple to [JL]. Because of 
the explicit symmetry between the second and third 
pairs of indices, the two couplings produce the same 
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1230 KEMMER, PURS'EY, WILLIAMS 

sets of irreducible tensors. Recoupling leads to the 
identities 
T[i1;'I.iz;'2;J L] 

= ! [(2j1 + 1)(2A.1 + 1)(2j2 + 1)(2A2 + 1) 
h',;'I', 
i2',A2' 

X (2j{ + 1)(2)'{ + 1)(2j~ + 1)(2).2 + I)]! 

{

P1P2j1} {Q1Q2).1} 
X PaP4j2 QaQ4).2 T[i!';'I'';a';'z';JL], 

j{j~J A.1A~L 

(64) 

where { } is the usual 9j symbol. We are specifically 
interested in the tensor T[ll.ll;OO] formed from four 
bispinor components. From Eq. (64) we find 

T[ll,ll;OO] = ! [(2j + 1)(2), + 1)]!( _1)H;' 
;;' 

X W(BH; Ij)W(BH; lA)Tu;,.;;,;OO]. 
(65) 

When we use explicit forms for the Racah coefficients, 

JOURNAL OF MATHEMATICAL PHYSICS 

Eq. (65) becomes 

T[l1·11;OO] = 9T[oo.oo;OO] _ 3J3(T[10.1O;OO] + T[Ol.01;OO]). 

(66) 

Now, from Eq. (63) with all Ta.p == T~i!], we have 

and 

T[ll.ll;OO] = T4, 

rroo.oo;OO] = (T2)2, 
T[1O.10;OO] = _ p2, 

(67a) 
(67b) 
(67c) 

T[Ol.Ol;OO] = _q2. (67d) 

Equations (67) together with Eq. (66) provide the 
identity we seek, namely, 

T4 = 9(T2)2 + 3J3(P2 + q2). (68) 

Thus, the invariant of Eq. (60) can be written in 
terms of fourth-order quantities as 
M4 = 1204 + (P2 _ q2)2 + 2(P2 + q2)T2 

+ iJ3[T4 - 9(T2)2]. (69) 
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A systematic study is made of the relationship between the generators of R(S) expressed in the "natural 
basis," as discussed in I [J. Math. Phys. 9,1224 (1968)], and the same generators in the "physical basis" 
in which representations of R(5) are fully reduced with respect to the physical three-dimensional rotation 
group. In this paper, attention is confined to the traceless symmetric tensors of R(5) which are the 
representations appropriate to the discussion of quadrupole vibrations of the nuclear surface. For these 
representations, one quantum number in addition to the angular momentum and its projection is required 
to specify a state within a representation. The required extra label is found through the definition of 
"intrinsic states" in the natural basis, and a complete set of states in the physical basis is projected out 
of these intrinsic states by integrations over the physical rotation group manifold. Members of this set of 
physical states are not orthonormal; however, the overlap integrals are presented in two simple algebraic 
forms convenient for computer programming. The construction of the explicit representation matrices for 
the generators of R(5) is completed by giving the reduced matrix elements of the octopole generator be­
tween physical states in terms of the overlap integrals. 

INTRODUCTION 

In P the irreducible representations of R(5) were 
built up directly from the generator algebra in a 
manner closely analogous to that usually done for 
SU(2). For this purpose, the irreducible representa­
tions of R(5) were reduced with respect to the sub­
group R (4)= SU(2) ® SU(2). We shall call the state 

• Work was performed in the Ames Laboratory of the U.S. 
Atomic Energy Commission, Contribution No. 2187. 

1 N. Kemmer, D. L. Pursey, and S. A. Williams, J. Math. Phys. 9, 
1224 (1968) (preceding paper). 

labeling so developed the natural labeling. Unfor­
tunately, neither of these two SU(2) subgroups 
corresponds to the physical angular momentum. For 
physical application it is essential that the irreducible 
representations of R(S) be decomposed into irreduc­
ible representations of the physical R(3). 

The particular physical application we have in mind 
is the five-dimensional harmonic oscillator which has 
been used2 to describe quadrupole vibrations of the 

• A. Bohr, Kg!. Danske Videnskab. Selskab Mat.-Fys. Medd. 26. 
No. 14 (1952). 
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