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sets of irreducible tensors. Recoupling leads to the 
identities 
T[i1;'I.iz;'2;J L] 

= ! [(2j1 + 1)(2A.1 + 1)(2j2 + 1)(2A2 + 1) 
h',;'I', 
i2',A2' 

X (2j{ + 1)(2)'{ + 1)(2j~ + 1)(2).2 + I)]! 

{

P1P2j1} {Q1Q2).1} 
X PaP4j2 QaQ4).2 T[i!';'I'';a';'z';JL], 

j{j~J A.1A~L 

(64) 

where { } is the usual 9j symbol. We are specifically 
interested in the tensor T[ll.ll;OO] formed from four 
bispinor components. From Eq. (64) we find 

T[ll,ll;OO] = ! [(2j + 1)(2), + 1)]!( _1)H;' 
;;' 

X W(BH; Ij)W(BH; lA)Tu;,.;;,;OO]. 
(65) 

When we use explicit forms for the Racah coefficients, 
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Eq. (65) becomes 

T[l1·11;OO] = 9T[oo.oo;OO] _ 3J3(T[10.1O;OO] + T[Ol.01;OO]). 

(66) 

Now, from Eq. (63) with all Ta.p == T~i!], we have 

and 

T[ll.ll;OO] = T4, 

rroo.oo;OO] = (T2)2, 
T[1O.10;OO] = _ p2, 

(67a) 
(67b) 
(67c) 

T[Ol.Ol;OO] = _q2. (67d) 

Equations (67) together with Eq. (66) provide the 
identity we seek, namely, 

T4 = 9(T2)2 + 3J3(P2 + q2). (68) 

Thus, the invariant of Eq. (60) can be written in 
terms of fourth-order quantities as 
M4 = 1204 + (P2 _ q2)2 + 2(P2 + q2)T2 

+ iJ3[T4 - 9(T2)2]. (69) 
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A systematic study is made of the relationship between the generators of R(S) expressed in the "natural 
basis," as discussed in I [J. Math. Phys. 9,1224 (1968)], and the same generators in the "physical basis" 
in which representations of R(5) are fully reduced with respect to the physical three-dimensional rotation 
group. In this paper, attention is confined to the traceless symmetric tensors of R(5) which are the 
representations appropriate to the discussion of quadrupole vibrations of the nuclear surface. For these 
representations, one quantum number in addition to the angular momentum and its projection is required 
to specify a state within a representation. The required extra label is found through the definition of 
"intrinsic states" in the natural basis, and a complete set of states in the physical basis is projected out 
of these intrinsic states by integrations over the physical rotation group manifold. Members of this set of 
physical states are not orthonormal; however, the overlap integrals are presented in two simple algebraic 
forms convenient for computer programming. The construction of the explicit representation matrices for 
the generators of R(5) is completed by giving the reduced matrix elements of the octopole generator be­
tween physical states in terms of the overlap integrals. 

INTRODUCTION 

In P the irreducible representations of R(5) were 
built up directly from the generator algebra in a 
manner closely analogous to that usually done for 
SU(2). For this purpose, the irreducible representa­
tions of R(5) were reduced with respect to the sub­
group R (4)= SU(2) ® SU(2). We shall call the state 

• Work was performed in the Ames Laboratory of the U.S. 
Atomic Energy Commission, Contribution No. 2187. 

1 N. Kemmer, D. L. Pursey, and S. A. Williams, J. Math. Phys. 9, 
1224 (1968) (preceding paper). 

labeling so developed the natural labeling. Unfor­
tunately, neither of these two SU(2) subgroups 
corresponds to the physical angular momentum. For 
physical application it is essential that the irreducible 
representations of R(S) be decomposed into irreduc­
ible representations of the physical R(3). 

The particular physical application we have in mind 
is the five-dimensional harmonic oscillator which has 
been used2 to describe quadrupole vibrations of the 

• A. Bohr, Kg!. Danske Videnskab. Selskab Mat.-Fys. Medd. 26. 
No. 14 (1952). 
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FIVE-DIMENSIONAL ROTATION GROUP. II 1231 

nuclear surface about a spherical equilibrium shape. 
Such a description is, of course, only very approxi­
mate, but it has proved to be a convenient starting 
point for describing the coupling of these nuclear 
surface oscillations to the oscillations of the giant 
dipole resonance.3 .4 The state functions for the five­
dimensional isotropic harmonic oscillator form the 
bases for the totally symmetric irreducible repre­
sentations of SUeS) and these may be considered to be 
fully reduced with respect to the subgroup R(S). In 
this paper, we shall therefore confine ourselves to the 
problem of the decomposition of the symmetric 
irreducible representations of R(S) with respect to 
R(3). 

The irreducible representations of R(3) contained 
in a given irreducible representation of R(S) may of 
course be obtained by the well-known methods of the 
reduction of product representations for both R(S) 
and R(3).5.6 This technique, while useful for some 
purposes, does not allow one to perform detailed 
calculations using the basis functions involved, since 
the method does not yield explicit representations 
matrices for all the generators. A further difficulty 
arises in that, within a given irreducible representation 
of R(S), a particular irreducible representation of 
R(3) may occur more than once. When we have 
specified the generators, it will become clear that no 
proper subgroup of R(S) [apart from the physical 
R(3) itself] contains the particular R(3) (the physical 
angular-momentum group) in which we are interested. 
Therefore, we must seek additional labels, which 
cannot be obtained by the aforementioned technique, 
to completely specify the basis functions. For the 
symmetric irreducible representations of R(S) we 
shall find that only one additional label is neces­
sary. 

This additional label is obtained in a manner 
closely analogous to that of Elliott? for SU(3). 
Specifically, the R(S)-R(3) basis functions will be 
projected from a small subset of the natural basis 
functions by Hill-WheelerS-type integrals. This will 
lead, as it did in Elliott's case, to R(S)-R(3) basis 
functions which are not orthogonal. The fact that the 
solution to the problem is simpler in terms of non­
orthogonal functions is not too surprising in view of 

3 J. Le Tourneux, Kg\. Danske Videnskab. Selskab, Mat.-Fys. 
Medd, 34, No. 11 (1965); Phys. Letters 13, 325 (1964). 

4 T. D. Urbas and W. Greiner, Z. Physik 196,44 (\966). 
• D. E. Littlewood, The Theory of Group Characters (Oxford 

University Press, London, 1940). 
• M. Hamermesh, Group Theory (Addison-Wesley Publishing Co., 

Reading, Mass., 1962). 
, J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958); A245, 

562 (1958). 
8 D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953). 

Elliott's work and Racah's9 comments about the 
SU(3) problem. This lack of orthogonality presents 
no serious difficulties in general, and for convenience 
for machine coding, the set of linearly independent 
functions given could of course be orthogonalized. 

In Sec. 1, we shall give the connection between the 
natural generators and those which explicitly exhibit 
the R(3) subgroup. This is done in preparation for 
Sec. 2, in which we shall give a formula for the irre­
ducible representations of R(3) which occur in a given 
symmetric irreducible representation of R(S). This 
formula serves to introduce the additional quantum 
number in an empirical way. In Sec. 3, we shall relate 
this additional quantum number to the natural basis 
functions and show that only a small subset of the 
natural basis function are required for projecting out 
the nonorthonormaI R(S)-R(3) basis functions. In 
Sec. 4, we will explicitly determine the normalization 
and overlap integrals for the R(S)-R(3) basis functions. 
These quantities are used in Sec. 5, in which we shall 
give expressions for the matrix elements of the group 
generators expressed in the R(5)-R(3) basis. 

1. GENERATORS 

In I we utilized the natural generators of R(S), 

namely, PI"' q., and T~~!l. The PI" and qv are the 
generators of the two commuting SU(2) subgroups 
and the T~!!] are the remaining generators which are 
expressed as a bispinor under the product group 
SU(2) ® SU(2). These generators satisfy the com­
mutation rules: 

and 

[PI"' Pv] = -.J2 C(lll; ,uv)PI'+v, 

[ql" qvl = -.J2 C(111;,uv)ql'+V> 
[PI" q.] = 0, 

[ T [Hl] 1;-3 C(.lI.l· )T[Hl PI" "p = 2'-/ 2 2, 1X,u "+I'.P' 

[qv, TW1] = t.J3 c(il!; p'v)T~~tlv' 

(1) 

In Eqs. (1), the SU(2) Clebsch-Gordan coefficients 
are in the notation of Rose.1o 

The R(S) generators may also be grouped as the 
generators of R(3) together with a third-rank irreduc­
ible tensor under R(3). These we write as JI' and Q~3]. 
The latter is abbreviated as Qv' When expressed in 
spherical tensor form, these generators satisfy the 
commutation relationships: 

[JI' ,Jv] = -.J2" C(llI; ,uv)JI'+v, 

[JI" Qvl = -2.J3 C(133; ,uV)QI"+V1 (2) 
---

• G. Racah, "Lectures on Lie Groups," Group Theoretical 
Concepts and Methods in Elementary Particle Physics (Gordon and 
Breach, Science Publ., Inc., New York, 1964). 

10 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, New York, 1957). 
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1232 S. A. WILLIAMS AND D. L. PURSEY 

and 

[QI" Qv] 

= -2/7 C(331; 1t'll)JI'+V +.)6 C(333; Itv)QI'+Y' 

From the commutation algebra among the gener­
ators we may identify the natural basis generators in 
terms of the R(5)-R(3) basis generators. We findll 

and 

also 

and, finally, 

and 

PI = 10-tQ3' (3a) 

Po = 1O-1(3Jo - Qo), (3b) 

(3c) 

ql = 5-1(J1 + i6t Ql), (4a) 

qo = lO-l(Jo + 3Qo), (4b) 

q-1 = 5-1(J_1 + i6tQ_l); (4c) 

(5a) 

(5b) 

(5c) 

(5d) 

In Eqs. (5), the subscripts on the bispinor are, as 
usual, P, q ordered. From the second of Eqs. (3) and 
(4) we have the primary equation which relates the 
natural basis to the R(5)-R(3) basis; namely, 

(6) 

2. BASIS FUNCTIONS 

In I we showed that the irreducible representations 
of R(5) were characterized by two nonnegative 
numbers (/, k) which are either both integers or both 
half integers. For given (/, k), S E P + q ranges from 
k to / by steps of 1 and t E P - q from - k to k by 
steps of 1. The symmetric representations of R(5) are 
(/,0), in which case, since k = 0, P = q. Then, since 
S = 0, 1,2, ... ,I, we have that for the symmetric 
representations (/, 0) 

P = q = 0, i, 1, ..... , il. (7) 

In general, to completely specify a basis function 
for an irreducible representation of R(5) requires six 
labels. In the natural basis these are (I, k), p, q, A, It. 
The p and q label the two commuting SU(2) sub-

11 To obtain Eqs. (3)-(S) it is easiest first to convince oneself of the 
truth of Eq. (6). Apart from factors, this is sufficient to establish 
Eqs. (3a), (3c), (Sa), and (Sd). The form (3b) and the numerical 
factors in Eqs. (3) follow from the SU(2) commutation rules obeyed 
by PI" Equations (3b) and (6) then yield (4b). Equation (5b) is 
derived from Eqs. (Sa), (3c) and similarly Eq. (Sc) comes from Eqs. 
(5d) and (3a). The commutation properties of the bispinor fix the 
constants in Eqs. (5) and also yield Eqs. (4). 

groups, and A and It are the eigenvalues of Po and qo, 
respectively. The (I, k) are related to the eigenvalues 
of the two invariant operators constructed from the 
generators of R(5). These operators and their eigen­
values are 

A2 E _ [TrUJTrHl][OO] + p2 + q2 

= ,H/(/ + 3) + k(k + 1)] 
and 

M4 E 12[[pq][1l][rrHJTrUlilll][OOJ + (P2 _ q2)2 

+ 2(P2 + q2){ - [rrH1rrU]][OO] +,1} 

= (l + 1)(/ + 2)k(k + I). (8) 

For the symmetric representations, only the second­
order R(5) invariant is, in general, nonzero and its 
value from the first of Eq. (8) is t/(l + 3). We also 
require p, A, and It-four labels in all. Thus for the 
symmetric representations we may denote the natural 
basis functions as X (lpAIt)· 

In the R(5)-R(3) basis we shall also require four 
labels fo'r the symmetric-representation basis functions. 
Three of these are I, J, and M, which are the simul­
taneous eigenvalues of 

A2 = !l(l + 3), 

J2 = J(J + 1), 

Jo=M. 

(9) 

From Eqs. (2), it is clear that no proper subgroup of 
R( 5) contains R(3) as a proper subgroup. Further, 
although Q2 commutes with A2, J2, and Jo, J2 + Q2 
is essentially A2, and hence Q2 does not provide a 
new label. We shall label the R(5)-R(3) basis functions 
as 1jJ(I'llJM) where the additional label v is as yet 
unspecified. 

We may determine the possible values of J within 
a representation by a method similar to the well­
known derivation of the Clebsh-Gordan series for 
R(3). The procedure is illustrated in Fig. 1 for the 
representations (1,0) and (6,0). A grid of points 
(A, It), where A and It are the eigenvalues of Po and qo, 
respectively, is set up, and at each point of the grid 
we write the degeneracy of the corresponding pair 
(A, It) of eigenvalues. We next draw the lines 3A + It = 
const = M and label each line by [M, d(M)], where 
d(M) is the total degeneracy of the eigenvalue M of 
Jo• The possible values of J, together with their 
degeneracies, are then found by a simple counting 
procedure:. the angular momentum J occurs d(J) -
d(J + 1) times. 

From Fig. 1 it is clear that the extra quantum 
number v is indeed necessary to distinguish between 
the two occurrences of J = 6 in the irreducible 
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,
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1 2 3\\3\\2 1 ",\ 
, \ \ 1 I \ \ I , I 

-1-2--3-4"">"""':" 3"""';--T2~1---r--),. 

1

\ ., \ I \ \ ' , 'I (10, 2 ) 
1 2 3 \3\\2\"

" \ I \, I I \ , 
1 2 3 3\ 3\\21\1' 

I \.\ \ 1 \ \ \ ' , (9,3) 
2 2 2\\2\\1\\ 

\ \ \ \ \ , ' , I 
2 2 2 \2 \2 '1 

I 
\ \ \ '. I I ' (8,4) 

1 1 \ , 1 , \ 1 1 I 
\ \ I ,\ \ 
CD' ,(1)\ \m, 

\ '. \ \ \ \ '\ ' (7,5) 

~ m~cn:oo:r::~ 
£ =~~!.~~ 

(b) J' 0,3,4,62,7,8,9,10,12 

FIG, I. Degeneracy diagrams for the (a) (1,0) and (b) (6,0) 
irreducible representations of R(5), The figure is discussed in the 
main text. 

representation (6,0). Here we shall introduce a 
suitable extra label and state the general rule for the 
range of possible J values associated with the label v 
in the irreducible representation (/,0). The proof of 
the rule will be postponed until the next section. 

We define intrinsic states X(/, v) by 

X(/, v) == x(/, ii, il - v, -iI), (10) 
where 

v = 0, 1, 2, ... , [//3] (11) 

and [//3] is the integral part of 1/3. The points corre­
sponding to intrinsic states are circled in Fig. 1. We 
next introduce the numbers 

K = /- 31', (12) 

which are the values of M for the intrinsic states. K 
takes on the values I, I - 3, 1- 6, ... ,0 or 1 or 2. 
Then, corresponding to any v or, equivalently, any K, 
the possible values of J are 

J = 2K, 2K - 2, 2K - 3, ... , K; (13) 

that is, J can take on all values from K through 2K 
except for 2K - 1. Furthermore, use of the label v 
is sufficient to resolve the degeneracy in J. 

We are now faced not only with the problem of 
proving this general result, but also with that of 
constructing from thp. intrinsic states X(/, v) a complete 

(but not necessarily orthonormal) set of states 
1Jl(/vJM). We shall discuss these problems in the next 
section, and content ourselves here with noting that, 
as proved in Appendix A, our general rule repro­
duces the dimension formula 

d(/,O) = 11(/ + 1)(1 + 2)(21 + 3) (14) 

found in I. 
3. MAIN THEOREM 

In this section, we shall prove the general result 
expressed in Eqs. (11) and (13). To do so, we shall 
define the states 

where 

and 

1Jl(lvJM) = f DkK(O)Xn(l, v) dO, (15) 

v = 0, 1,2,"', [//3], 

K = 1- 31', 

J = 2K, 2K - 2, 2K - 3, ... , K; 

x(/, v) == x(l, iI, il - v, -if) and DiI,K(O) is an 
ordinary rotation matrix; finally, the integral is the 
invariant integral over the group manifold of R(3). 
Thus Eq. (15) defines 1Jl(l1'JM) as the state of angular 
momentum J, z component of angular momentum M, 
projected out of the intrinsic state X(/, v) by the HilI­
Wheeler8 technique. We now state our main theorem: 

Theorem: The functions 1Jl(/1'JM) , defined by Eq. 
(15), span the representation space of the irreducible 
representation (I, 0) of R(S). 

Before we start on the proof, we note that the 
results in the previous section on the possible values 
of J follow as a trivial corollary. 

We first prove the following: 

Lemma: Any angular momentum J which is not 
represented by at least one of the functions 1Jl(l1'JM) 
defined by Eq. (15) is entirely absent from the irreduc­
ible representation (/, 0) of R(S). 

This lemma is of course much weaker than the 
result asserted in the last section and implied by the 
main theorem and is consequently easier to prove. 
To establish the lemma, we must determine which 
values of J are absent according to Eqs. (12) and (13), 
and then verify that these J values are indeed missing 
from the irreducible representation (/, 0) of R(5). 
Two cases arise: 

(a) I = 3n: The missing values of J are J = 1,2, 5, 
21 - I, and J > 2/. 
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(b) 1 ¢ 3n: The missing values of J are J = 0,1,3, 
21 - 1, and J > 2/. 

From the degeneracy diagrams introduced in the 
previous section, it is clear that J > 21 and J = 21 - 1 
are indeed absent from the irreducible representation 
(I, 0). It remains to show that J = 1, 2, S are missing 
if 1 = 3n and J = 0, 1, 3 are missing if 1 ¥= 3n. We 
notice that, to conclude that a particular value of J is 
missing, it is sufficient to show that d(J) = d(J + 1) 
in the notation of the previous section. A detailed 
formal proof of the lemma would be tedious and not 
particularly illuminating; instead we shall sketch the 
bare bones of a proof, making full use of insights 
gained from the degeneracy diagrams. 

By comparing the degeneracies of the pairs of 
eigenvalues (Po, qo) and (Po + 1, qo) it is clear that, for 
sufficiently small M, 

d(M) - d(M + 3) = [MI2] + 1, (16) 

where, as before, [MI2] is the integral part of M12. 
In particular, 

d(O) - d(3) = 1, 

d(1) - d(4) = 1, 

d(2) - deS) = 2, 

d(3) - d(6) = 2. 

From this it follows that one, but only one, of the 
J values 0, 1, 2 occurs and that this J value is non­
degenerate. The same conclusion applies to the 
possible values 1, 2, and 3 of J. Of the set of values 
2, 3, and 4, either only one occurs with degeneracy 2 
or else two distinct values occur; a similar conclusion 
applies to the values 3, 4, and S. 

Now, either J = 0 occurs in the representation 
(I, 0) or it does not. If J = 0 does occur, then J = 1 
or 2 must be absent. Hence, J = 3 must occur 
nondegenerately and therefore 4 must also occur. 
Consequently, J = S must be absent. Thus if J = 0 
occurs in (/, 0), then J = 1, 2, S must be missing. 
On the other hand, if J = 0 does not occur in (/,0), 
then either J = 1 is present or J = 1 is missing. If 
J = 1 is missing, one concludes that J = 3 is also 
missing and J = 2,4, S each occur without degeneracy. 

These results are sufficient to prove the lemma as 
soon as we have seen that J = 0 occurs for 1 = 3n 
and not otherwise, and that J = 1 never occurs. It is 
easy to convince oneself of these special results by 
consideration of degeneracy diagrams. 

We are now in a position to prove the main 
theorem. The method of proof is an adaptation of that 
used by ElliotF in considering the SU(3)-R(3) 
reduction problem and proceeds by reductio ad 
absurdum. 

We suppose that the set of functions "P(/vJM) does 
not span the representation space for the irreducible 
representation (I, 0). It follows that there must exist 
a function rp(J', M') in the representation space of 
(/,0) which is orthogonal to all the 1p(lvJM). Of 
course, this would be automatically true if J' were 
ditTerent from any of the J values represented among 
the functions 1p(/vJM), but this possibility is excluded 
by the lemma. Hence we conclude that there exists a 
function rp(JM) such that the Hilbert space scalar 
product 

(rp(JM), 1p(lvJ'M'» = 0 

for all v, J', M', and the result is nontrivial only when 
J'=J,M'=M. 

Hence our hypothesis shows that 

f dD.D'J:KCD.)(rp(JM), D.X(/v» 

= f dO. D'J:KCo.)(D.-1 rp(JM), x(l, v» 

= L fdD.Di:K(o.) DitM.(D.)(rp(JM'), X(lv» 
M' 

= (2J + lrl(rp(J, K), x(l, v» = 0 (17) 

for a suitable choice of the volume element dO. in the 
R(3) parameter space. Hence, since Jox(l, v) = 
KX(/, v), we must have 

[rp(J, M), X(/, v)] = 0 (18) 

for all intrinsic states x(l, v) and all values of M, not 
necessarily equal to K. 

We now proceed to show that Eq. (18) implies 

[rp(J, M), OX(/, v)] = 0, (19) 

where 0 is an arbitrary element of R(S) acting on the 
intrinsic state x(l, v). We note that 0 can be expressed 
as a power series in the generators of the group, and 
that the generators in any particular term may be 
ordered in any desired manner provided we included 
a compensating term of lower degree derived from the 
commutation rules. We divide the generators appro­
priate to the natural basis into two sets 

A: P±l, Po' q-l, qo, T~f.~! 
and 

When a generator of the set A acts on an intrinsic 
state, the result is either an intrinsic state (if the 
generator is one of P±1, Po, qo) or zero (for q-l, 
T~t~_!, and if v = 0, PH)' Generators of set B do not 
reproduce intrinsic states but are equivalent in their 
effect to the operators J±l acting on intrinsic states. 
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To see this, we note from Eqs. (3)-(5) that 

r [H] 
J1 = 2ql - v 3 Ti._! 

and 
;- [H] 

J_1 = 2q_l + v 3 T_U· (20) 

From these, together with the fact that Tt~~} and 
q-l annihilate intrinsic states, it follows that 

(21) 
and 

T~!~lx(l, y) = r!J_1x(l, v). (22) 

The operator Tn!] is more tricky to deal with, and 
success depends on the fact that for intrinsic states 
P = q = t/, i.e., p attains its maximum value. From 
the explicit matrix elements of T~t! which were 
found in I, specialized to intrinsic states, we find 

TW1X(l, v) = T~l~lx(l, v-I) = r!J -IX(l, v-I), 

(23) 

where the first step utilizes p = il = Pmax and the 
second step follows from Eq. (22). 

We now see that 

(fP(J, M), ()x(l, v»~ = ! (fP(J, M), 7TB r 7TArX(l, y», 

r (24) 

where 7T Ar' 7TB
r 

are products of generators of sets A 
and B, respectively. Each factor 7T Ar merely reproduces 
an intrinsic state [in general, different from X(/, v)], 
while the factor 7TB

r 
is then equivalent to a product of 

R(3) generators operating on an intrinsic state. 
However, the R(3) generators may be taken to act on 
fP(J, M), in which case only the M value can be 
changed. Thus we obtain, finally, 

(fP(J, M), ()x(l, v» 

= ! (fP(J, M), 7TB r 7TArX(l, v»~ 
r 

= ! C(r, M', y')(fP(J, M'), x(l, v'» = 0 (25) 
rM'v' 

by Eq. (19). 
We are now in a position to complete the reductio 

ad absurdum proof of the theorem. By our hypothesis 
that the theorem is false, we have found that there 
exist functions fP(J, M) belonging to the representation 
space for the irreducible representation (/, 0) of R(5) 
which are orthogonal to all the intrinsic states X(/, v). 
Then, by Eq. (25), we see that the fP(J, M) are orthog­
onal to all states of the form ()x(l, v), where () is an 
arbitrary element of the group R(5). However, from 
the irreducibility of the representation (I, 0), which 
implies by definition that the representation space 
possesses no proper subspace invariant under the 

group, it follows that from the set of states ()X(/, v) 
we can find a subset which spans the complete 
representation space. Hence, fPCJ, M) is orthogonal to 
all states in the representation space of (/, 0), which 
contradicts the hypothesis that fP(J, M) belongs to 
this space. This contradiction is sufficient to prove the 
theorem. 

4. NORMALIZATION AND OVERLAP 
INTEGRALS 

The functions 1j1(/vJM) defined by Eq. (15) have 
been shown to be the basis functions for the irreduc­
ible representation (I, 0) of R(5) fully reduced specif­
ically with respect to the physical R(3). However, if 
two of these basis functions differ only in the value of 
y, they are not orthogonal, nor are any normalized. 
We shall define the Hilbert-space integral 

A~(y', y) == (1j1(lv'JM), 1j1(lyJM». (26) 

When y' = y, A~(Y, v) is the square of the normaliza­
tion constant and we adopt the convention of taking 
the positive square root. For y' ¥= v, Eq. (26) is the 
overlap integral for states of common J but different v 
belonging to the irreducible representation (/, 0). 

Before we proceed to compute Aj(y', v), let us 
indicate specifically which J's are involved in the 
overlap integrals. We shall consider y' Z y or, equiv­
alently, K 2 K'. From Eq. (12) it follows that 
1j1(IY'JM) and 1j1(/yJM) have common values of J only 
for 

K' = K - 3n. (27) 

The maximum common J value is 2K' and the mini­
mum is K. Therefore, 

2K'ZK, 

which implies that the A~(y', y) are zero unless 

K' = K - 3n, 

n = 0, 1,2, ... , [K/6]. (28) 

The common values of J are the set 

J = 2K', 2K' - 2, 2K' - 3,··· , K; (29) 

that is, J runs from K to 2K' in steps of 1 excluding 
2K' - 1. 

In passing, we also note that these considerations 
will yield an explicit formula for the number of times 
N(J) that J occurs in the irreducible representation 
(/, 0). Again, with v ~ v', which implies K 2 K', J 
occurs for both values of y provided 

K~J~ 2K' 
or 

I - 3v ~ J ~ 21 - 6y'. 
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This gives 
v;;:: H/- J) 

and 
v' < 1(2/- J) _6 , 

or, since v and v' are integers, 

(HI - J + 2)] ~ v S v' S (H21 - J)]. 

Hence, the number of v values associated with J 
cannot exceed (i(2/- J)] - [i-(l- J + 2)] + 1. This 
will be N(J) provided we interpret the [ ] as being 
zero whenever its argument is negative, and unless 
21 - J - I is 6n, where n is an integer, in which case 
N(J) will be smaller by 1. Hence we conclude that 

N(J) = (30) 

(

[H2/- J)] - [H/- J + 2)] + 1, 

21- J - 1 ¢ 6n, 

[H21 - j)] - [HI - J + 2)], 

2/- J - 1 = 6n, 

where n is an integer. Equation (30) is the solution to 
the induction equations given by Weber et al.12 

From Eq. (26) together with Eq. (15) we have 

A~(v', v) 

= J dO DitK.(O)(X(lv'), 0-11p(lvJM» 

= I JdODit-K.(O)(X(lv'), 1p(lvJM'»DiJM'(O) 
M' 

= (2J + 1)-I(x(lv'), 1p(lvJK'». (31) 

Again, we use Eq. (15) and find 

A~(v', v) = (2J + 1)-lf dOD'f.:~K(O)(X(l'JI'),Ox(lv». 
(32) 

The problem then is finding [X(/v'), OX(lv)]. To obtain 
the required matrix elements, we may conl!truct states 
with the same transformation properties as X(/v) in 
any manner we like. Now x(lv) is a state in the 
R(4) = SU(2) @ SU(2) space corresponding to 

(
1 1 1 1) 

(p, q, Po, qo) = 2' 2' 2 - v, - 2 . 
As is well known, the state constructed from functions 
X:I:' corresponding to (p, q, po, qo) = (t, t, ±t, -t), 
by 

has the same transformation properties as X(/v) and is 
normalized provided 

(X: , X;) = (l .. //(laba !. 
But X:I: may be taken as suitable states of the vector 
representation of R(S), which we know contains only 
the J = 2 representation of R(3). In particular, since 

12 H. J. Weber, M. G. Haker, and W. Greiner, Z. Physik 190, 2S 
1 966). 

M = 3po + qo, we can identify x+ with J = 2, M = 1 
and X- with J = 2, M = - 2. Similarly, the other 
states of the vector representation are identified. 
Clearly OX(lv) is the same function of OX+ and OX_ 
as X(lv) is of X+ and X-. But OX+ and 0X- may be 
written as linear combinations of X+, x-, and the other 
states of the vector representation with appropriate 
matrix elements of the representation D2 of R(3) as 
coefficients. Only the X+ and x- coefficients need 
concern us because of the Hilbert-space integral in 
Eq. (32). Thus, if v' Z v, we obtain 

(X(lv'), OX(lv» 
= ((1- v)! v! (I - v')! v'!]! 

( D2 )1-V-v'+//CD2 )v'-P(D2 )v-P(D2 )// 
X I 11 -2.1 1,-2 -2,-2, 

fJ (l - v - v' + p)! (v' - p)! (v - p)! p! 
v' ;;:: v. (33) 

There are several ways to evaluate the integral in 
Eq. (32) using Eq. (33). Here we merely quote two 
equivalent forms for A~(v', v) and relegate the deriva­
tions to Appendix B. The first form, suitable for 
machine computation when one has already available 
a fast program for Clebsch-Gordan coefficients is 

A~(v', v) = (2J + 1)-2[(1- v)! (1- v')! v! v'!]! 

where 

and 

1 
x pfrJ" (I - v - v' + p)! (v' - {3)! 

C(I - v - v' + p, J')K(v' - {3)K(v - {3) 
X 

(v - p)! p! 

X C(2v - 2P, 2P, 2v'; v - p, -2P) 

X C(2v' - 2P, 2v, J"; -2v' + 2P, v - 3{3) 
X C(2v' - 2{3, 2v, J"; v' - p, -2v) 

X C(J'J"J; 1 - v - v' + {3, v - 2v' - {3) 
X C(J'J"J; I - v - v' + {3, v' - 2v - P), 

v' ;;:: v, (34) 

K(x) = 2:e[(3X)! X!]! (35) 
(4x)! ' 

C(I J) = 4
J

-
l
l! (J + 1)! 

, (21 - J)!(2J)! 

X 2F1(J - 21, J - I + 1; 2J + 2; 4). (36) 

Alternatively, the C(l, J) may be given by the re­
cursion relationship 

C(I, J) = I C(l - 1, J')[C(J'2J; I - 1,1)]2 
J' 

with 
C(o,J) = (lJ,o' (37) 

The J. values belonging to C(l, J) are those values of 
J in the (1,0) representation with K = I [Eq. (13»). 
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Our second form for A ~(v' , v) is 

Al v' V = 2v'-v [(1- v)! (1- v')! v! v'! (J - K)! (J - K,)!]l 
A ,) (2J + 1) (J + K)! (J + K')! 

X L 4a(-l)'%+Y(J + K + y)! 

apy(l - v' - IX)! (IX - (J)! (v' - v + (J)! {J! (v - (J)! 

(21 - 2v' - 2{J)! (3v' - 3v + 2{J + IX + y)! , > 
X ,v v. (38) 

(J - K - y)! (K - K' + y)! (21 + v' - 3v + IX + y + 1)! -

At first sight, this would appear to be no simpler 
than Eq. (34). However, when it is remembered that 
the C(/, J) and each Clebsch-Gordan coefficient in 
Eq. (34) is itself a sum, Eq. (38) then appears to be a 
considerable simplification. If v' is smaller than v, 
Eqs. (34) and (38) still apply, but with v' +-H and 
an additional factor (_1)V-v'. This is equivalent to the 
symmetry rule 

A~(v', v) = (-ly-v'A~(v, v'). (39) 

5. REDUCED MATRIX ELEMENTS OF R(5) 
GENERATORS IN THE PHYSICAL BASIS 

So far, we have managed to define a complete set 
of states 1p(/vJM) , where J is the physical angular 
momentum. It remains to obtain explicit matrix 
elements between such states for all generators of 
R(5). This is trivial for those generators, which are 
also the generators of R(3). We have 

(1p(lv'JM')1 J;.ltp(lvJM» 

= A~(v', v)[J(J + 1)]lC(J1J; MAM'). (40) 

The remaining generators are components Q13] of 
a third rank tensor with respect to R(3), and their 
matrix elements may be written 

(1p( lv' J' M') I Q13] I tp( lvJ M» 

= C(J3J'; MAM') ([Y'J'II Q IllvJ), (41) 

where the sole remaining problem is the evaluation of 
the reduced matrix element (/v'J'11 Q Il/vJ), which we 
obtain by considering the particular component Q~3] 
or, more briefly, Qo. Then 

Qotp(1vJM) = f D"J:K(o.)QoXn(l, v) dO.. (42) 

We make use of the explicit properties of the Q~3] 
under R(3) and rewrite Eq. (42) as 

Qo1p(1vJM) = ~ f D"J:K(o.)D~;(o.)Qp(o.)Xn(1, v) dO. 

= LC(J3J'; MO)C(J3J'; Kp) 
pJ' 

This has reduced the problem to finding the effect of 
Q/o.) upon Xo(/, v) or, what amounts to the same 
thing, the effect of Qp upon X(/, v). The Qp may be 
expressed in terms of the natural basis generators, 
using Eqs. (3)-(5), as 

Q±3 = 101 PH , 
1 [Hl 

Q±2 = ±5 T±l.±l, 
1 1 [Hl (44) 

Q±l = 6 q±l ± 2 T ±l.'fh 
and 

Then, operating upon the intrinsic states and using 
the results of!, we find 

Q3X(/, v) = - [5v(/- v + 1)]lX(/, v-I), 

Q-3X(/, v) = [5(/ - v)(v + 1)]!X(/, v + 1), 

Q-2X(/, v) = 0, 

QoX(/, v) = - (21 - v)X(I, v). 

For the remaining components, we have 

Q2X(/, v) = [!]lJ_1X(/, v-I), 

(45) 

QIX(/, v) = t61J1X(/, v), (46) 

Q-IX(/, v) = -[i]!J_1X(I, v). 

Now, from Eq. (15), 

x(1, v) = L (21 + 1)1p(1vJ K) 
J 

follows as a trivial corollary. We shall use this to 
evaluate 

J± == f D:r;.~K,(o.)J±l(o.)Xn(l, v) dO.. (47) 

Then from Eq. (15) we have 

J±l(o.)Xn(l, v) 

= L (2J + 1)JH (o.)tpn(lvJK) 
J 

= L (21 + 1)[J(J + 1)iC(J1J; K, ±1)tpn(lvJK ± 1) 
J 

= L (21 + 1)[J(J + 1)]1C(J1J; K, ±1)Dt,K±1(o.) 
Jp 

X 1p(1vJ p). (48) 
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Thus, 

J:!: = [J'(J' + 1)]lC(J'lJ'; K' T 1, ±1, K}lp(lvJ'M). 

(49) 
Finally then, we find 

Qo1p(1vJM) . 

= 1 C(J3J'; M, O){ -C(J3J'; K, 3)[5v(1- v + 1)]1 
J' 

x 1p(1, v-I, J', M) + C(J3J'; K,2) 

x [V'(J + 1)]tC(J'IJ'; K + 3, -1) 

x 1p(1, v-I, J', M) + C(J3J'; K, 1) 

x [U'(J' + 1)}1C(J'IJ'; K, 1) 1p(I,v, J', M) 

- (21- v)C(J3J'; K, 0)1p(l, v, J', M) 

- [iJ'(J' + 1)]lC(J3J'; K, -1)C(J'lJ'; K, -1) 

x 1p(l, v, J', M) + [5(1 -v)(v + 1)]1 

x C(J3J'; K, -3)1p(1, v + 1, J', M)}. (50) 

In interpreting Eq. (50), we note that if v = [1/3], 
then X(/, v + 1) is not an intrinsic state as we have 
previously defined it. In this case we continue to 
define 1p(/, v + 1, J, M) by the projection equation 
(15) from X(/, v + 1) and note that the evaluation of 
the overlap integrals in Appendix B remains valid. 
From Eqs. (50) and (41) we now see that 

(Iv'J'11 Q Il/vJ) 

= {- [5v(1 - v + 1)]tC(J3J'; K, 3) 

+ [tJ'(J' + 1)]tC(J'lJ'; K + 3, -1)C(J3J'; K,2)} 

x A~,(v', v-I) 

+ [5(1- v)(v + 1)]tC(J3J'; K, -3)A~,(v', v + 1) 

+ ([!l'(J' + 1)]lC(J'IJ'; K, 1)C(J3J'; K, 1) 

- [iJ'(J' + 1)]lC(J'IJ'; K, -1)C(J3J'; K, -1) 

- (2/- v)C(J3J'; K, O)}A~.(v', v). (51) 

APPENDIX A 

In this appendix we want to show that the rules 
given by Eqs. (11)-(13) produce the dimension 
formula 

d(/) = tel + 1)(/ + 2)(21 + 3). (AI) 

Now, according to Eq. (13) for given K, the total 

number of states is 
2K 

dK = 1'(2J + 1), (A2) 
J=K 

where we have specifically indicated by the prime that 
the value 2K - 1 is excluded from the sum. Therefore, 

2K-2 
dK = (4K + 1) + 1 (2J + 1) 

J=K 

= 4K + 1 + (3K - 1)(K - 1) 

= 3K2 + 2. (A3) 

This is clearly valid so long as K ~ O. For K = 0 we 
have do = 1. Thus for all K we have 

dK = 3K2 + 2 - bK,c' (A4) 

Now let us write 

I = 3n + m, n = 0, 1, 2 ... , 

m=0,1,2. (AS) 

Then with K = I - 3v we have v = 0, 1, 2, ... , n. 
Thus, in terms of v 

d v = 3(1 - 3V)2 + 2 - bm.obv,n. (A6) 

The dimension of (/, 0) is therefore given by 
n 

d(1) = 1dv = (312 + 2)(n + 1) - bm.o 
v=o 

- 91n(n + 1) + fn(n + 1)(2n + 1). (A7) 

We use n = (/ - m)/3 and after some rearrangement 
find 

del) = t{(l + 1)(/ + 2)(21 + 3) 

- (m - 1)(m - 2)(2m - 3) - 6bm,0}' (A8) 

But since m = 0, 1, or 2 only, we find the desired 
result. 

APPENDIX B 

We want to evaluate the quantity given in Eq. (32) 
for v' ~ v: 

A~(v', v) 

= (2J + 1)-1 f dODk~K(O)(X(1, v'), OX(1, v», (Bl) 

where 

1 [D2 (O)]'-V-v'+P[D2 (O)]v·-p[D2 (O)]V-P[D2 (O)]p 
(X(/,v'), OX(1, v» = [(1- v)!v!(l- v')! v'!]"2" 1 11 -2.1, 1.-2 -2,-2. (B2) 

P (1 - v - v' + (3)! (v - (3)! (v - (3)! (3! 

Now, 
[Dfl(O)]" == ! C(ex, J')D;~(O), (B3) 

J' 

where the J' values in the sum are those from ex to 
2ex in steps of 1 with the exception of 2ex - 1, i.e., 

those in (ex, 0) with K = ex. Also 

[D~2,1(n)]p == K«(3)D~p.p(n), 
and then clearly, 

[D~._2(n)y = K(y)D~~_2/0); 

(B4) 
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finally, 

Then we have 

(X(/, v'), QX(/v» 

= [(1- v)! v! (1- v')! v'!]! 

2 C(I - v - v' + f3, J')K(v' - f3)K(v - f3) 

\J'(l- v - v' + f3)! (v' - f3)! (v - f3)! f3! 
J' (n.)D2(v'-P) (n.) 

X DI-V-V'+P,I-v-v'+P U -2(v'-P),v'-I1;!.~ 

(BS) 

X De!.."fJ-:-~~(v_I1)(Q)D~I1,-2P(Q). (B6) 

In Eq. (B6), we couple the last two rotation matrices 
to 2v, couple the result with D2(v'-P)(Q), and, finally, 
couple the result to DJ'(Q). We find 

(X(/v'), QX(lv» 

= [(1- v)! v! (1- v')! v'!]! 

2 C(1 - v - v' + f3, J')K(v' - f3)K(v - f3) 

X PJ'J"J"' (1- V - v' + f3)! (v' - f3)! (v - f3)! f3! 

X C(2(v - f3)2f32v; v - f3, - 2f3) 

X C(2(v' - f3)2v1"; -2v' + 2f3, v - 3f3) 

X C(2(v' - j3)2v1"; v' - f3, -2v) 

X C(J'1"JIII; I - v - v' + f3, v - 2v' - f3) 

X C(J'1"JIII; I - v - v' + f3, v' - 2v - f3) 

X D'f".K(Q). (B7) 

When Eq. (B7) is inserted into Eq. (BI) and the re-

tion of R(3) it follows that 

C(ex, J) = (2J + 1) J dQD:a*cQ)(D;l(Q))". (BI0) 

We use 

where the 0i are Euler angles, and then we rewrite Eq. 
(BIO) as 

C(ex, J) = 2J + 1 ("sin 0 dO d~(O)(d~l(O»"'. (Bll) 
2 Jo 

The d;",(O) are given bylO 

dJ (0) _ 1 [(J - fJ)! (J + ex)!]! 
",P - (ex - f3)! (J - ex)! (J + f3)! 

X (cos Oj2)2J+P-"'( -sin Oj2)"'-fJ 

X 2Fl(ex - J, -fJ - J; ex - fJ + 1; -tan2 (12), 

ex ;;::: fJ. (B12) 

We use Eq. (BI2) in Eq. (BII) after changing the 
variable to z = HI - cos 0) and using the trans­
formation of the 2Fl function 

2Fl(a, b; c; x) = (1 - X)-a 2Fl (a, C - b; c; _X_) 
x-I 

(B13) 
to find 

C(ex, J) = (2J + 1) f(1 -Z)2"'(1 - 4z)'" 

X 2Fl(ex - J,ex + J + 1; l;z)dz. (BI4) 
sulting integration performed, we find the result given Now 

in Eq. (34). 2FtCex - J, ex + J + 1; 1; z) 
Now, the quantity K(f3) is defined by Eq. (B4). 1 dJ-'" 

Thus we see that K(O) = 1. From = (1 - Z)-2'" - [zJ-"'(1 _ z)J+ot] 
(J - ex)! dJ -'" 

(D~2.1(Q»fJ = (D':2.l(Q»P-lD~2,1(Q) 

it follows that 

K(f3) = K(f3 - 1)C(2(fJ - 1),2, 2f3; f3 - 1, 1) 

= K(fJ - 1)[ (3f3 - 2)(3fJ - 1)(3f3) J!. 
(4fJ - 3)(4fJ - 2)(4fJ - 1) 

(B8) 

This induction equation can clearly be iterated to 
yield 

K(f3) = 2"'[ (3f3)! [4(f3 - x)]!f3! J! K(f3 - x) 
[3(fJ - x)] !(4fJ) ! (fJ - x)! 

(B9) 

and, upon setting x = fJ in Eq. (B9), we find the 
result given in Eq. (3S). 

The quantities C(ex, J) are defined by Eq. (B3). 
From the orthogonality of the irreducible representa-

so we may do J - ex partial integrations in Eq. (BI4) 
and the integrated parts vanish. Thus 

C(ex, J) = (2J + 1) 4J-", ex! 
(J - ex)! (2ex - J)! 

X f(1 -4Z)2",-J zJ-"'(1 - z)J+", dz. (B1S) 

The integral in Eq. (B1S) is a standard integral repre­
sentationl3 for a hypergeometric 2Fl function and so 
we have the result quoted in Eq. (36). We note that 
C(ex, J) is specifically zero for J < ex, J> 2oc, or 
J = 2ex - 1. The recursion relationship for e(ex, J) 
follows trivially from the definition Eq. (B3). 

We shall now derive the second form for A~(v', v). 
Again we use Eq. (B2) in Eq. (BI), but now we 

13 M. Abramowitz and I. A. Stegum, Handbook of Mathematical 
Functions (National Bureau of Standards, AMS. 55, 1964). 
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specifically perform the azimuthal angle integrations 
to find 

A~(p' p)= 1 [(l-p)!(l-v')!v!v,!]i 
, 2(2J + 1) 

X! 1 (-1)v-P 

P (1- p - p' + P)! (v' - P)! (v - P)! P! 

X fSin () d()d'f'K«()[dfl«()]'-V-v'+P 

X [d~2.1«()]V'+V-2P[d':'2._2«())JP. (BI6) 

Again, we use Eq. (B12), wherein we must take care 
that the left subscript is the larger; if it is not, we 
must use 

d,/p«() = dfa( - (). 

At the same time we shall also use Eq. (B13) and 
change the variable to z = HI - cos (). Then we 
find 

A~(v', p) 

=------
(2J+ 1)(K - K')! 

X [(1- 'JI)!(I- 'JI')!p! v'!(J - K')!(J + K)!]i 
(J + K')! (J - K)! 

(-4Y-P 
X ! ------'----<------­

P (I-v - 'JI' + P)!(v'-P)! ('JI-P)! {J! 

X L1
dZ(1 _ Z)20-V-V'+P)Z3(v'-P)(1 _ 4zY-v-v'+P 

X 2Fl(K - J, K + J + 1; K - K' + 1; z). 

(BI7) 

We expand (1 - 4z)!-V-v'+P in the integral and find 

A~('JI', p) 

=------
(2J + 1)(K - K')! 

x [(1- v)!(1- v')! p! p'! (J - K')! (J + K)!]i 
(J + K')! (J - K)! 

x! (-4Y-P+" 
ap (l- P - v' + P-IX)! ('1"- P)! ('JI- P)! (3! IX! 

x 2Fl(K - J, K + J +. 1; K - K' + 1; z). 

(B18) 

But, from Eqs. B5.5.2(6) and B5.6(1) of the Bate-
manu papers, it follows that 

L1
1-1(1 - yy-b-l pFq(al" .. , ap; Cl , ••• , cq ; xy) 

r(b)r(c - b) 
= r(c) 1l+1Fq+l(a1 ," ',ap,b; Cl"",Cq,c;x), 

(B19) 

provided q < p + 1, larg xl < 1T, Re c > Re b > O. 
Thus we find 

A~('JI',-'JI) 

=------
(21 + l)(K - K')! 

x [(1- v)! (1- 'JI')! v! p'! (J - X')! (J + K)!]i 
(J + K')! (J - K)! 

x ! (-4Y-P+«(3'J1' - 3(3 + IX)! 

ap (1- p - v' + P - IX)!(P' - P)!('JI- (3)! 

X _--=(,--2/_-_2_p _-_2_p_' -'.+_2--,-(3-"-) _! __ 

(3LIX! (21 + p' - 2'1' - (3 + IX + I)! 

X 3F2(K - J, K + J + 1, 3p' - 3(3 + IX + 1; 

K - K' + 1,21 + p' - 2'1' - P + IX + 2; 1). (B20) 

Unfortunately, the 3F2 is neither well poised nor 
Saalschiitzian, so the final result is a triple sum: 

A' p' p = 2v'-. - [(1- p)! (1- p')! p'!v'!(J - K)! (J - K')!] 
J(,) (2J+l) (J+K)!(J+K')! 

X I 4"(_1)HY(J + K + y)! (21- 2p' - 2{J)! 

a(Jy(/- v' - IX)! (IX - (J)! (v' - v + (J)! P! (v - P)! 

(3'1" - 3'1' + 2(3 + IX + y)! 
X -------~----~---~---------

(J - K - y)! (K - K' + y)! (21 + v' - 3'1' + IX + y + I)! 
(B21) 

U A. Erdelyi et al., Bateman Manuscript Project, Higher Transcendental Functions (McGraw-Hill Book Co., Inc., New York, 1953), 
Vol. I. We shall <lenote equations of this reference by section number, e.g., B5.6 and equation number therein, e.g., (I). 
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