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A. SO(5) Group

An element R in the orthogonal group O(5) is a real linear orthogonal transformation

in �ve dimension spae. Supposing X; Y are two vetors in �ve dimension spae, the salar

produt

XY = x

1

y

1

+ x

2

y

2

+ x

3

y

3

+ x

4

y

4

+ x

5

y

5

is invariant under the transformation X

0

= RX; Y

0

= RY . Therefore, the matrix R must

satisfy the following equation, R

�

= R,

~

RR = 1, det(R) = �1: SO(5) is a subgroup of O(5).

The elements in SO(5) satisfy det(R) = 1. det(R) = 1.

Any elements in SO(5) an be diagonalized by a unitary matrix U . The eigenvalue �

should satisfy j�j = 1; thus, �

�

is also an eigenvalue. Generally, the element R in SO(5) an

be written as

R = U�U

�1

= e

�iH

� is a diagonal matrix. Sine R

�

= R, the matrix H satis�es H

�

= �H; tr(H) = 0. H is

a traeless and pure matrix, that kind of matrix requires ten independent parameters . We

hoose ten basis matrixes L

ab

; a < b = 1; 2; 3; 4; 5, and (L

ab

)

d

= �i(Æ

a

Æ

bd

� Æ

ad

Æ

b

) and H

an be written as

H =

X

a<b

!

ab

L

ab

; a; b = 1; 2; 3; 4; 5;

where !

ab

are the real parameters.

The above ten matrixes zl

ab

are alled the generators of SO(5). The ommutation

relation between them de�nes the Lie algebra of SO(5),
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[T

ab

; T

d

℄ = �i(Æ

b

T

ad

+ Æ

ad

T

b

� Æ

a

T

bd

� Æ

bd

T

a

): (1)

The diagonal matrix � an be written as

� =

0

B

B

B

B

B

B

B

B

B
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B

B

�
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0 0 e
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2
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0 0 O 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

It is onvenient to onvert above matrix to real matrix, whih an be written as

V

�1

�V = A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�
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1

�sin'

1

0 0 0

sin'

1

os'

1

0 0 0

0 0 os'

2

�sin'

2

0

0 0 sin'

2
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2

0

0 0 O 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, where

V =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1

p

2

i

p

2

0 0 0

1

p

2

�i

p

2

0 0 0

0 0

1

p

2

i

p

2

0

0 0

1

p

2

�i

p

2

0

0 0 O 0 1
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C

C

C
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C

C
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:

It is easily to hek that the matrix UV is a real and unitary matrix. UV is an element

of SO(5). So the equation (UV )

�1

R(UV ) = A de�ne the lass of SO(5). The lass in SO(5)

an be desribed by two parameters '

1

, '

2

. The lass onepts is very useful in disussing

the representation of group.

B. The Sympleti Group SP (4)

The sympleti group SP (4) is the group of real linear transformation P in four dimen-

sional spae, whih leave skew � symmetri bilinear form de�ned as
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XY = x

1

y

1

� x
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1

y

0

1

+ x

2

y

2

� x

0

2

y

0

2

(2)

invariant. Here we hoose the omponents of a vetor X in four dimensional spae as

(x

1

; x

2

; x

0

1

; x

0

2

). Simply, the skew � symmetri bilinear form an be written as

XY = "

ij

x

i

y

j

;

where the " matrix is

" =

0

B

B

B

B

B

B

B

B

B

B

�

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

1

C

C

C

C

C

C

C

C

C

C

A

:

The invariane of above equation de�nes an sympleti transformation P whih satis�es

~

P"P = " (3)

The sympleti transformation P is unimodular, whih means det(P ) = 1. This property an

be easily derived from above equation. To derive the generators of SP (4), we onsider the

in�nitesimal sympleti transformation P = I � iA, where I is the idential transformation

and A is the in�nitesimal part. By using Eq.??, we immediately obtain that the in�nitesimal

matrix A has the following form

A =

0

B

B

�

A

1

A

3

A

2

�

~

A

1

1

C

C

A

;

and A

2

=

~

A

2

, A

3

=

~

A

3

, A

�

= A. Therefore, eah of matrixes A

2

and A

3

has three in-

dependent parameters, and the matrix A

1

has four. There are totally ten parameters for

A. The matrix A an be expressed by ten basis matrixes E

��

; �; � = �1;�2. Here we

hoose these ten independent matrixes as (E

��

)

�

= i(sign(�)Æ

�

Æ

��

� sign(�)Æ

��

Æ

���

),

and E

��

= E

����

. The ommutation relation between the generators is

[E

��

; E

�

℄ = i(sign(�)Æ

�

E

��

� sign(�)Æ

��

E

�

+ sign(�)Æ

���

E

��

� sign(�)Æ

��

E

���

): (4)

The above ommutator de�nes the Lie algebra for SP (4).
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C. The equivalene of SO(5) and SP (4)

One an hek that the Lie algebra of SO(5) is the same as that of SP (4) by omparing

the generators as shown in (table ??). Later we will see the Dynkin diagram for SP (4),C

2

and SO(5),B

2

are similarly related. Sine these two groups have the same Lie algebra

struture, their �nite irreduible representations (irreps) are also idential. In this paper,

we fous on the SO(5). However, sometimes it is more onvenient to use the notation of

SP (4). For example, we an obtain all of irreps of SP (4) by making use of the SO(4)

tensors, however, if we disuss SO(5), we need to disuss three di�erent kind representation:

tensor spinor and spinor tensor representations.

E(SP (4)) Root(SO(5)) Operator L(SO(5)) T (SO(4))
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TABLE I. Mapping of in�nitesimal operators between Sp(4) and SO(5). The third olumn

responds to the irreduible tensor operators of SO(4) (see Setion ??)
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I. REPRESENTATION OF SO(5)

In this Chapter, three di�erent methods with respet to the representation of SO(5) are

given. Readers who have di�erent favors an readily hoose one of them and follow it. All

onepts we use in this hapter are briey disussed. In setion (??), our disussion is based

on tensor and spinor. It is easily to be understood by those who are not familiar with the

general onepts in Lie Algebra. Readers are supposed to know some basi onepts of Young

Operator and Young Pattern. The seond setion is devoted to the general highest weight

representation of SO(5). We briey express the onepts and omit the mathematial proof.

The third setion is rather speial only for SO(5). The method an not be generalized

to all of other simple Lie Group. We deompose SO(5) to its subgroup SO(4), whih is

equal to SU(2) � SU(2). The states in the representation spae are naturally labeled by

representation in SU(2). For pratial appliation in physial model, this method may be

more onvenient.

A. Young pattern, Young tableaux and SO(5)(SP (4)) representation

In this setion, we disuss how to use the Young pattern and Young tableaux to label

the irreduible representations of SO(5) and SP (4). A brief summary about the irreduible

tensor representation of SU(N) is attahed in appendix ??. The representations of SO(5) is

a little more ompliated. They an be divided into three kinds of representations: tensor,

spinor, and spinor tensor representations. We will disuss those basi onepts. However,

instead of detailing the representations of SO(5), we will only fous on how to obtain the

irreduible representation of SP (4) by Young's tehnique in this setion, although it is

possible to study eah type of representations of SO(5), respetively. We will show how to

derive the the general formula of an irreps dimension of SP (4), a method to deompose a

given irreps of SU(4) into irrepses of SP (4), and a generalized Littlewood-Rihardson rule

on SP (4).
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Similar to SU(N), the n order tensor of SO(5) is de�ned as

O

R

T

a

1

a

2

:::a

n

= R

a

1

b

1

R

a

2

b

2

:::R

a

n

b

n

T

b

1

b

2

:::b

n

; a

i

; b

i

= 1; 2; 3; 4; 5: (5)

An essential di�erene here is that an onstant tensor Æ

ab

is unvariant tensor of SO(5), whih

mean

O

R

Æ

ab

= R

aa

0

R

bb

0

Æ

a

0

b

0

:

Therefore, given any tensor T

a

1

a

2

:::a

n

, the traing tensor on any two indexes,for example

P

a

T

aaa

3

:::a

n

by traing the �rst two indexes, is an invariant tensor spae of SO(5). If we

want to use Young pattern to desribe the invariant tensor spae of SO(5), we must �rst

separate the traing tensor spae. Then, we an use Young pattern to obtain the other

invariant spae for the tensor irreps of SO(5).

The irreduible tensor representations obtained above are not omplete . there exists

the other irreduible representations on SO(5). They are alled spinor and spinor tensor

representations. In Appendix (??), we summarize some basi onepts related to Cli�ord

algebra, whih is neessary in order to understand spinor and spinor tensor representation.

For SO(5), the Cli�ord algebra is given by the famous Dira matrixes(see Appendix

(??), 

1

; 

2

; 

3

; 

4

; 

5

,

f

a

; 

b

g = 2Æ

ab

:

The spinor representation of SO(5) is de�ned as

D(R)

�1



a

D(R) =

X

b

R

ab



b

; R 2 SO(5):

The spinor representation of SO(5) is 4 dimensional.

The spinor tensor is de�ned as

O

R

	

a

1

a

2

:::a

n

;�

== R

a

1

b

1

R

a

2

b

2

:::R

a

n

b

n

D(R)

��

	

b

1

b

2

:::b

n

;�

; a

i

; b

i

= 1; 2; 3; 4; 5;�; � = 1; 2; 3; 4:

The irreduible representation gotten from the spinor tensor spae is alled the spinor tensor

irreps. The tensor index in the invariant spinor tensor spae must also satisfy the traeless

ondition.
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So far, we give the basi onepts about the tensor, spinor and spinor tensor represen-

tation of SO(5). Although it is possible to study eah of these irrepses with Young pattern

and tableux more deeply, the easiest way to apply Young tehnique is to disuss irrepses

of SP (4) . Sine the Lie algebras of SP (4) are exatly the same as SO(5), the irreps of

SP (4) are also the same as SO(5). The whole �nite irreps of SP (4) an be obtained from

its tensor invariant spaes; thus, the tensor and spinor representations of SO(5) are auto-

matially inluded in the irrepses of SP (4). The following part of this setion is devoted to

the irreduible tensor representation of SP (4).

A tensor of SP (4) has the same de�nition as Eq.??. Considering the spae of tensors of

rank n, with omponents T

a

1

a

2

:::a

n

, we an onstrut the spei� trae in the SP (4) tensor

spaes by multiplying the matrix ",

(trT )

a

3

:::a

n

=

X

a

1

a

2

"

a

1

a

2

T

a

1

a

2

:::a

n

:

The trae operation gives a tensor of rank n � 2. The subspae of suh trae ontration

tensors beomes an invariant spae under the transformation in SP (4). There are n(n� 1)

traes for a n-th rank tensor. So we divide the spae of tensors of rank n into two subspaes,

one with all traeless tensors, the other with the trae ontration tensors. a general nth

rank tensor of SP (4) an be written as

T

a

1

a

2

:::a

n

= T

0

a

1

a

2

:::a

n

+ F

a

1

a

2

:::a

n

where T

0

a

1

a

2

:::a

n

is the traeless part and F

a

1

a

2

:::a

n

is the trae ontration part. Generally we

an use traeless ondition to get the formation of T

0

. The irreduible representation spaes

an be obtained by use of the Young pattern. However, the rows of the Young pattern to

mark the irreduible representations SP (4) should be not larger than two. The reason is

that a spae of nth traeless tensors is exatly equal to duality spae of (N � n)th traeless

tensors by use of anti-symmetry tensor � given in Appendix (??). Therefore, if the boxes of

a olumn in a Young pattern are three, we an use its duality olumn with boxes equal to

4� 3 = 1. The di�erene on SP (4) from that disussed on SU(N) is that sine the tensor
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is traeless, we an diretly ombine the duality olumn with the left part of origin Young

pattern together. The representations with respet to the origin and later Young pattern are

equivalent. Eah irreduible representation of SP (4) an be marked by Young pattern [p; q℄,

p; q = the boxes in �rst and seond rows. There is an easy way to alulate the dimension

of the irreduible representation of SP (4) with respet to that of SU(4),

D(p; q) = d(p; q)� d(p� 1; q � 1) (6)

where the d(p,q) is the dimension of irreps of SU(4) labeled by the same Young pattern [p; q℄

. The result ounts on the following reason: Sine the tensors in the representation spae for

SP (4) are traeless, we divide the representation tensor spae for SU(4) into two subspae,

one with trae ontration tensors and the other with traeless tensors. The later subspae

should be equal to the representation spae for SP (4). The dimension for the former spae

is exatly equal to the dimension of representation of SU(4) labeled by the Young pattern

[p� 1; q � 1℄. Utilizing the result for SU(4) given in Appendix (??), we obtain

D(p; q) =

1

6

(p+ 2)(q + 1)(p� q + 1)(p+ q + 3): (7)

It is very tedious and tiresome work to obtain the generator irreps matrix based on the

invariant traeless tensor spae. However, the Young pattern is rather helpful to disuss

other aspets.

The �rst issue an be readily handled here is to deompose an irreps of SU(4) into

irrepses of SP (4). The reason why an irreps of SU(4) an be deomposed into SP (4) is

the irreduible tensor spae for SU(4) an be divided into two subspaes as that disussed

above. The trae ontration tensors an be reonsidered as the lower rank tensors, and

an be divided suessively into traeless tensors and sub-trae ontration tensors again.

This division ultimately leads to deompose the original tensor spae for SU(4) into the

irreduible representation tensor spaes for SP (4). The hint to solve this problem has been

shown in (??). The result is straightforwardly derived , whih is

[p; q℄

SU(4)

= [p; q℄

SP (4)

M

[p� 1; q � 1℄

SP (4)

:::

M

[p� q; 0℄

SP (4)

: (8)
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However, this result is not omplete. The Young pattern labeling the irreps of SU(4) an

be more than two rows. In partiular in ase of SU(4), we need only to handle the Young

diagram having three rows. We developed a general way to deompose suh Young diagram.

The method inludes the following steps:

1. Re-write Young diagram more than two rows as the equivalent mixed sign [s℄

�

=[p; q℄

, as the way shown in Appendix (??).

2. Deompose [p; q℄ aording to Eq.(??).

3. Apply the Littlewood-Rihardson rule to deompose all of the produts of one deom-

posed omponent Young patterns, whih omes from [p; q℄, with [s℄

�

.

4. Disregard the Young patterns whih the total rows are more than two.

The deomposition result is the sum of all of the Young patterns whih satisfy above

ondition. There is an example to illustrate above proedure.

example: [3; 3; 2℄

SU(4)

(1). [3; 3; 2℄

SU(4)

' [2℄

�

=[1; 1℄

(2). [1; 1℄

SU(4)

' [1; 1℄ + [0℄

(3). [2℄
 ([1; 1℄ + [0℄) =) [3; 1℄ + [2; 1; 1℄ + [2℄

(4). Dropping o� [2, 1 ,1℄, the �nal result is:

[3; 3; 2℄

SU(4)

' [3; 1℄

SP (4)

+ [2℄

SP (4)

Dimension : 45 35 10

The seond easily solvable problem is to obtain all irrepses inluding an produt of two

irrepses of SP (4), whih means

[p

1

; q

1

℄

O

[p

2

; q

2

℄ =?

M

?:::

M

?:

An approah is developed in the following. It is also onneted with our above results.

1. Use Equation ?? to rewrite the produt into

[p

1

; q

1

℄

O

[p

2

; q

2

℄ ' f[p

1

; q

1

℄� [p

1

� 1; q

1

� 1℄g

O

f[p

2

; q

2

℄� [p

2

� 1; q

2

� 1℄g;

where the Young pattern in the right side of equation denotes the irreps of SU(4).
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2. Apply Littlewood-Rihardson rule to revolve above produts into the sum of the

irreduible representations of SU(4) on the right part of above equation and keep the sign.

3. Use the method shown above to deompose eah obtained irreps of SU(4) into irrepses

of SP (4).

The results is the sum of the total irrepses we obtained.

Two examples are illustrated in following by using above method:

(1) The produt of spinor irreps [1℄(dimension 4) with a general irreps [p; q℄, i.e. [1℄
[p; q℄:

[1℄
 [p; q℄ ' [p+ 1; q℄ + [p; q + 1℄ + [p; q � 1℄ + [p� 1; q℄ (9)

Results of several low dimension irreps produts :

[1℄ 
 [1℄ ' [2℄ + [1; 1℄ + [0℄

Dimension : 4 � 4 = 10 + 5 + 1

[1℄ 
 [2℄ ' [3℄ + [2; 1℄ + [4℄

Dimension : 4 � 10 = 20 + 16 + 4

[1℄ 
 [2; 1℄ ' [3; 1℄ + [2; 2℄ + [2℄ + [1; 1℄

Dimension : 4 � 16 = 35 + 14 + 10 + 5

(2) The produt of symmetri tensor irreps [1; 1℄(dimension 5) with general irreps [p; q℄,

i.e. [1; 1℄
 [p; q℄:

[1; 1℄
 [p; q℄ '

8

>

>

<

>

>

:

[p + 1; q + 1℄ + [p; q℄ + [p+ 1; q � 1℄ + [p� 1; q + 1℄ + [p� 1; q � 1℄; p 6= q

[p + 1; q + 1℄ + [p+ 1; q � 1℄ + [p� 1; q � 1℄; p = q

(10)

Results of several low dimension irreps produts:
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[1; 1℄ 
 [1℄ ' [2; 1℄ + [1℄

Dimension : 5 � 4 = 16 + 4

[1; 1℄ 
 [1; 1℄ ' [2; 2℄ + [2℄ + [0℄

Dimension : 5 � 5 = 14 + 10 + 1

[1; 1℄ 
 [2; 0℄ ' [3; 1℄ + [2℄ + [1; 1℄

Dimension : 5 � 10 = 35 + 10 + 5

[1; 1℄ 
 [2; 2℄ ' [3; 3℄ + [3; 1℄ + [1; 1℄

Dimension : 5 � 14 = 30 + 35 + 5

B. Highest weight representation of SO(5)

The general method to onstrut irreps of an semi-simple Lie Group is to analyze its Lie

algebra. The irreps is so-alled highest weights representation. There are many onepts

with respet to this general representation method. In this setion, we just simplify this

method to apply for SO(5). The detailed proof is omitted.

At �rst, we explain several onepts with respet to semi-simple algebra.

1. Lie algebra,

[L

A

; L

B

℄ = iC

C

AB

L

C

;

where L

A

is in�nitesimal generators and C

C

AB

is alled struture onstants.

2. Killing matrix:

K

AB

=

X

PQ

C

Q

AP

C

P

BQ

:

Lie algebra is semi-simple if detK 6= 0. With the generators of SO(5) shown as before, the

Killing matrix K for SO(5) is

K

AB

= �6Æ

AB

:

3. Cartan subalgebra:

if H is an element of Lie algebra and its eigenvetor E is de�ned as

[H;E℄ = �E;
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then the vanishing eigenvalue is the unique degenerate eigenvalue. The degeneray l is

alled the rank of Lie algebra. All of the eigenvetors with eigenvalue zero form an abelian

subalgebra alled Cartan subalgebra. In the ase of SO(5), the rank of Lie algebra is two.

We an hoose

H

1

= L

12

; H

2

= L

34

;

to form its Cartan subalgebra.

4. Root, simple root, and root diagram:

The left generators an onsist of the eigenvetors of Cartan subalgebra with nonva-

nishing eigenvalue. Eah eigenvalue, we all root, an be onsidered as a \vetor" in a

l-dimensional spae. This spae is alled root spae. Th e graphial representation of the

root vetors in root spae is alled root diagram. it is easy to prove that if � is a nonvan-

ishing root, then �� is also a root and it is not degenerate. If the �rst omponent in the

root vetor is positive, we all this root is positive root. A positive root is a simple root if

it annot be deomposed into the sum of two positive roots.

In ase of SO(5), there are eight roots and the root spae is a two dimensional spae.:

[H

i

; E

�

℄ = �

i

E

�

; i = 1; 2; � = (�

1

; �

2

)

Based on the Cartan subalgebra and the eigenvetors, the Killing matrix hanges to be

K =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

g

��

1

��

1

��

1

��

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

where the matrix g

ij

= �6Æ

ij

; i; j = 1; 2 and �

1

is the �rst Pauli matrix, and the Lie algebra

of SO(5) is modi�ed to

[H

1

; H

2

℄ = 0

[H

i

; E

�

℄ = �

i

E

�

12



[E

�

; E

�

℄ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

N

��

E

�+�

� + � is a root

P

i

�

i

H

i

� = ��

0 other

(11)

where �

i

= �

P

j

g

ij

�

i

=

1

6

�

i

,

P

k

g

ik

g

kj

= Æ

ij

, and N

��

depends on our hoie of eigenvetors

and it satis�es

N

��

= �N

����

= N

����

:

The root vetors and roots in SO(5) are,

Eigenvalues Eigenvetor

�

1

= [1;�1℄ E

1

=

1

p

24

[L

13

+ L

24

+ i(L

23

� L

14

)℄

�

�1

= [�1; 1℄ E

�1

=

1

p

24

[L

13

+ L

24

� i(L

23

� L

14

)℄

�

2

= [0; 1℄ E

2

=

1

p

12

[L

35

+ iL

45

℄

�

�2

= [0;�1℄ E

�2

=

1

p

12

[L

35

� iL

45

℄

�

3

= [1; 1℄ E

3

=

1

p

24

[L

13

� L

24

+ i(L

23

+ L

14

)℄

�

31

= [�1;�1℄ E

�3

=

1

p

24

[L

13

� L

24

� i(L

23

+ L

14

)℄

�

4

= [1; 0℄ E

4

=

1

p

12

[L

25

� iL

15

℄

�

�4

= [�1; 0℄ E

�4

=

1

p

12

[L

25

+ iL

15

℄

There are four positive roots. The �rst two positive roots �

1

= [1;�1℄; �

2

= [0; 1℄ are the

simple roots. The root diagram of SO(5)is shown in Piture ??.

FIG. 1. Root diagram of SO(5)
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5. Dynkin diagram and Cardan matrix:

In Lie algebra theory, there is an alternative ingenious sheme to draw the root diagrams

for any rank Lie algebra. It is alled Dynkin diagram. It just tells the information of the

simple roots of Lie algebra. The lassi Lie group an be totally de�ned aording to it's

Dynkin diagram. In this de�nition, SO(5)is alled B

2

and SP (4) is alled C

2

. The Dynkin

diagrams of SO(5) and SP (4) are shown in Piture ?? where the empty hole represents the

longer amptitute simple root [1;�1℄, and �lled hole represents the shorter roots [0; 1℄ . The

two lines between two roots are orresponding to the angle between them is equal to

3�

4

.

FIG. 2. Dynkin diagrams of SO(5)and SP (4)

There is also a matrix, alled Cartan matrix to label the simple roots of Lie algebras. It

is de�ned as

A

ij

=

2(�

i

; �

j

)

�

i

; �

i

;

where (�

i

; �

j

) denote the salar produt, and �

i

; �

j

are simple roots. Cortan matrix of

SO(5) is

A =

0

B

B

�

2 �2

�1 2

1

C

C

A

:

6. weight, weight diagram and highest weight representation

Sine Cartan algebra is an abelian algebra, we an hoose the spae generated by the

ommon eigenvetors of the elements H

i

as the representation spaes. These kinds of spaes

an be divided into the irreps spaes. In ase of SO(5)we denote an eigenvetors of its

Cartan subalgebra as jm

1

; m

2

>,

H

i

jm

1

; m

2

>= m

i

jm

1

; m

2

>; i = 1; 2:

The two dimensional vetor M = [m

1

; m

2

℄ is alled weight and the 2-dimensional vetor

spae extended by the set of weights is alled weight spae. If the �rst nonvanishing ompo-

nent of a weight is positive, this weight is alled positive weight. A weight [m

1

; m

2

℄ is said

14



to be higher than [w

1

; w

2

℄ if [m

1

� w

1

; m

2

� w

2

℄ is positive. In an irreduible representation

spae, a weight is said to be simple if it belongs to only one eigenvetor.

Sine the Lie algebra is totally determined by its simple roots, we an guess the irreduible

representations of Lie algebra must depend on simple roots. A set of weights M

1

;M

2

, alled

fundamental weights, is de�ned as

2(M

i

; �

i

) = (�

i

; �

i

)Æ

ij

; i; j = 1; 2

where �

i

is a simple root. The fundamental weights of SO(5) are

M

1

= [1; 0℄;M

2

= [

1

2

;

1

2

℄:

There is an obvious geometrial relation between simples roots and fundamental weights:

if the simple roots are a group of basi vetors in root lattie spae, the fundamental

weights are just the basi vetors in the reverse lattie spae.

The irreduible representations of Lie group are established by the following important

theorem:

Theorem: The irreduible representation is uniquely determined by its highest weight

M

�

, the highest weight is a simple weight and an be written as an linear ombination of

fundamental weights, M

�

=

P

i

�

i

M

i

; �

i

; i = 1; 2; is non-negative integer.

A highest weight of SO(5)an be written as

M

�

= [�

1

+

�

2

2

;

�

2

2

℄: (12)

Similar to the roots diagram, A weight diagram an be drawn to represent an irreps in

weight spae.

The other powerful theorem is very useful:

Theorem : For any weight M and root �, the quantity

2(M;�)

(�;�)

is an integer, and the

weight M

0

=M �

2(M;�)

(�;�)

� is also a weight and has the same degeneray as M .

The geometrial meaning of above Theorem is very obvious in the weight spae . M

0

is

orresponding to the vetor reeting M through a hyperplane perpendiular to the root �.

15



Therefore, generally we an de�ne an group S whih inludes the total reetion operations

related to the planes perpendiular to the roots and the operation produts.

The group S for SO(5) inludes eight elements. An weight [m

1

; m

2

℄ by operating trans-

formations in S an be hanged to [�m

1

;�m

2

℄and[�m

2

;�m

1

℄. Weyl has derived the general

formula to alulate the dimension of any irreps of any semi-simple Lie algebra. Given the

highest weight M

�

, the dimension of the irreps is

d(M

�

) =

Y

�

[1 +

M

�

_�

R _�

℄;

where R =

1

2

P

�

� and the sum here is over all positive roots.

In ase of SO(5), R = [

3

2

;

1

2

℄, and for a given highest weight M

�

. above dimension

equation beomes (see Eq.(??))

d(M

�

) = (1 + u

1

)(1 + u

2

)(1 +

u

1

2

+

u

2

2

)(1 +

2u

1

3

+

U

2

3

);

Spei�ally, it is tensor irreps when u

2

is an even integer, spinor irreps when u

2

= 1; u

1

= 0,

and spinor tensor irreps in the other situations.

7. details in spinor irreps (d=4) and vetor irreps (d=5) of SO(5)

(1) spinor irreps M

�

= [

1

2

;

1

2

℄:

H

1

=

1

2

(j1 >< 1j+ j2 >< 2j � j3 >< 3j � j4 >< 4j)

H

2

=

1

2

(j1 >< 1j � j2 >< 2j � j3 >< 3j+ j4 >< 4j)

E

1

=

1

p

6

j2 >< 4j

E

2

=

1

p

12

(j1 >< 2j+ j4 >< 3j)

E

3

= �

1

p

6

j1 >< 3j

E

4

=

1

p

12

(�j1 >< 4j+ j2 >< 3j)
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FIG. 3. weight diagram of spinor irreduible representation of SO(5)

(2) vetor irreps M

�

= [1; 0℄:

H

1

= j1 >< 1j � j4 >< 4j

H

2

= j5 >< 5j � j2 >< 2j

E

1

=

1

p

6

(j1 >< 5j+ j2 >< 4j)

E

2

=

1

p

6

(j3 >< 2j+ j5 >< 3j)

E

3

=

1

p

6

(j1 >< 2j+ j5 >< 4j)

E

4

=

1

p

6

(�j2 >< 4j+ j1 >< 3j)

FIG. 4. weight diagram of vetor irreduible representation of SO(5)

8. The seond order Casimir operator

Casimir operators are invariant operators in arrier spaes of an irrepses. We only disuss

the seond order Casimir operator here, whih is de�ned as

C =

X

a<b

L

2

ab

: (13)
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In the ase of SO(5), we an easily alulate it for a given irreps. By using of Cartan

subalgba and eigenvetors de�ned before, Casimir operator beomes,

C = H

2

1

+H

2

2

+ 6

X

�;positive root

E

�

E

1�

:

The value of Casimir operator ating on the state in the arrier spaes of a given irreps

[m

1

= u

1

+

u

2

2

; m

2

=

u

2

2

℄ is

C = m

2

1

+m

2

2

+ 3m

1

+m

2

(14)

= u

2

1

+

u

2

2

2

+ u

1

u

2

+ 3u

1

+ 2u

2

: (15)

C. Irreduible representation of SO(5) based on SO(4)

For pratial appliation, it is onvenient and neessary to realize irreps in an expliit

way. In quantum mehanis, we label a state with quantum numbers. In an irreps of spei�

group, we an also o�er the weights with ertain physial meaning. In ase of SO(5), there

is a natural way to identify the vetors of weights: indiating the irreps of SO(5)with respet

to SO(4)

�

=

SO(3)�SO(3). There are ten generators in SO(5). Six of them an be used to

onstrut those of the subgroup SO(4). We make use of the following six generators to set

up the Lie algebra of SO(4):

J

1

=

1

2

(L

14

+ L

23

); J

2

=

1

2

(L

24

+ L

31

); J

3

=

1

2

(L

12

+ L

34

)

;K

1

=

1

2

(L

23

� L

14

); K

2

=

1

2

(L

31

� L

24

); K

3

=

1

2

(L

12

� L

34

):

The remaining four generators, L

15

; L

25

; L

35

; L

45

, an be onsidered to onstrut irre-

duible tensor operators of SO(4). We use the following de�nition :

T

1

2

;

1

2

1

2

;

1

2

=

1

p

2

(L

25

� iL

15

); T

1

2

;

1

2

�

1

2

;�

1

2

=

1

p

2

(L

25

+ iL

15

)

T

1

2

;

1

2

�

1

2

;

1

2

=

1

p

2

(L

45

+ iL

35

); T

1

2

;

1

2

1

2

;�

1

2

=

�1

p

2

(L

45

� iL

35

)

T

1

2

;

1

2

�;�

; �; � = �

1

2

; denote the rank of irreduible tensor of SO(4) (also see Table.(??). The

ommutation relations between J

i

; K

i

; T

1

2

;

1

2

�;�

are
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[J

i

; J

j

℄ = i�

ijk

J

k

; [K

i

; K

j

℄ = i�

ijk

K

k

; [J

i

; K

j

℄ = 0;

[T

1

2

;

1

2

�

1

2

;�

; J

�

℄ = 0; [T

1

2

;

1

2

�

1

2

;�

; J

�

℄ = T

1

2

;

1

2

�

1

2

;�

[T

1

2

;

1

2

�;�

1

2

; K

�

℄ = 0; [T

1

2

;

1

2

�;�

1

2

; K

�

℄ = T

1

2

;

1

2

�;�

1

2

[T

1

2

;

1

2

�;�

; J

3

℄ = �T

1

2

;

1

2

�;�

; [T

1

2

;

1

2

�;�

; K

3

℄ = �T

1

2

;

1

2

�;�

(16)

We have �ve operators: C (Casimir operator), J , J

3

, K and K

3

, whih are Her-

mitian and mutually ommute eah other. The states in an irreps an be labeled by

above quantum numbers. Therefore, for a given irreps labeled by the highest weight

M

�

= [m

1

= u

1

+

u

2

2

; m

2

=

u

2

2

), We denote an ommon eigenstate of above �ve opera-

tors as jJ

M

K

M

; JJ

m

KK

m

>, where

J

M

=

1

2

(m

1

+m

2

) =

1

2

(u

1

+ u

2

); K

M

=

1

2

u

1

:

One of onvenient treatment in this representation is to obtain the irreps matrixes of

the in�nitesimal operators [?℄. The matrix elements follow from the expliit expression

for the states jJ

M

K

M

; JJ

m

; KK

m

>. The matrix elements of J

i

; K

i

are the general angular

momentummatrix elements. To alulate matrix elements of the remaining four in�nitesimal

operators, we slightly repeat the method given in Ref. [?℄ in the following.

Heht Ref. [?℄ introdued two operators, O�+ and O

��

, whih are de�ned as

O

�+

= �

p

2[(J

�

T

1

2

;

1

2

1

2

;

1

2

+ T

�

1

2

;

1

2

1

2

;

1

2

(2J

3

+ 1)℄

O

��

= �K

�

O

�+

+

p

2[�J

�

T

1

2

;�

1

2

1

2

;

1

2

+ T

�

1

2

;�

1

2

1

2

;

1

2

(2J

3

)℄(2K

3

+ 1): (17)

These two operators have the following important properties,

O

�+

jJ

M

K

M

; JJ;KK > = jJ

M

K

M

; J �

1

2

J �

1

2

; K +

1

2

K +

1

2

>;

O

��

jJ

M

K

M

; JJ;KK > = 

0

jJ

M

K

M

; J �

1

2

J �

1

2

; K �

1

2

K �

1

2

> : (18)

where  and 

0

are onstants. Moreover, these two operators ommute with eah other, i.e.

[O

�+

; O

��

℄ = 0. This property allows us to obtain the general states inluded in an irreps

disregard of the order of operation. The general state jJ

M

K

M

; JJ

m

KK

m

> an be written

as
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jJ

M

K

M

; JJ

m

KK

m

>= N(J

M

; K

M

; n;m; x; y)J

x

�

K

y

O

m

��

O

n

�+

jJ

M

K

M

; J

M

J

M

K

M

K

M

> : (19)

with

J = J

M

�

1

2

n�

1

2

m; 0 � n � 2(J

M

�K

M

);

K = K

M

+

1

2

n�

1

2

m; 0 � n � 2K

M

;

J

m

= J � x; 0 � x � 2J;

K

m

= K � y; 0 � x � 2K;

where N is normalization onstant and an be written as N = f(n;m)g(J; x)g(K; y),

with

f(n;m) = (n!)

�2

(m!)

�4

(C

n

m+n

C

n

2J

M

+1

C

m

2J

M

+1

C

n+m

2J

M

+1

C

n

2J

M

�2K

M

C

m

2J

M

+2K

M

+2

C

m

2K

M

C

m

2K

M

+n+1

)

�

1

2

;

and

g(z

1

; z

2

) = (z

2

!)

�1

(C

z

2

2z

1

)

�

1

2

;

where C

n

2

n

1

=

n

1

!

(n

1

�n

2

)!n

2

!

.

From above results, we an also get the dimension of irreps [J

M

; K

M

℄, whih is exatly

idential to that derived (Eg.??) in previous setion.

The matrix elements of operators T

1

2

;

1

2

�;�

an be obtained diretly by operating on the

state jJ

M

K

M

; Jj;Kk >. However, we need not to respetively alulate matrix elements for

eah operator beause of the well known Wigner-Ekart theorem. Sine operators T

1

2

;

1

2

�;�

are

irreduible tensors of SO(4), the Wigner-Ekart gives us the following result,

< J

M

K

M

; J

0

j

0

; K

0

k

0

jT

1

2

;

1

2

�;�

jJ

M

K

M

; Jj;Kk >= C

J

0

j

0

Jj;

1

2

�

C

K

0

k

0

Kk;

1

2

�

< J

M

K

M

; J

0

K

0

jjT

1

2

1

2

jjjJ

M

K

M

; JK >;

(20)

where C is the C-G oeÆients of SO(3) and < J

M

K

M

; J

0

K

0

jjT

1

2

1

2

jjjJ

M

K

M

; JK > is

independent of �, �, j, and k. The C-G oeÆents are shown in Table(??). For a given state

jJ

M

K

M

; Jj;Kk >, there are four nonvanishing matrix elements. The results are

< J

M

K

M

; J �

1

2

K �

1

2

jjT

1

2

1

2

jjjJ

M

K

M

; JK > =

1

2

[

f(J +K)

2JK

℄

1

2

;
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< J

M

K

M

; J +

1

2

K +

1

2

jjT

1

2

1

2

jjjJ

M

K

M

; JK > = �

1

2

[

f(J +K + 1)

2(J + 1)(K + 1)

℄

1

2

;

< J

M

K

M

; J �

1

2

K +

1

2

jjT

1

2

1

2

jjjJ

M

K

M

; JK > = �

1

2

[

g(J �K)

2J(K + 1)

℄

1

2

;

< J

M

K

M

; J +

1

2

K �

1

2

jjT

1

2

1

2

jjjJ

M

K

M

; JK > = �

1

2

[

g(J �K � 1)

2K(J + 1)

℄

1

2

; (21)

(22)

where

g(t) = (J

M

�K

M

+ t)(J

M

�K

M

� t+ 1)(J

M

+K

M

+ t + 1)(J

M

+K

M

� t + 2)

f(s) = (J

M

+K

M

+ s+ 2)(J

M

�K

M

+ s+ 1)(J

M

+K

M

� s + 1)(K

M

� J

M

+ s):

s =

1

2

s = �

1

2

J

2

= J

1

+

1

2

(

J

1

+j+1

2J

1

+1

)

1

2

(

J

1

�j+1

2J

1

+1

)

1

2

J

2

= J

1

�

1

2

�(

J

1

�j

2J

1

+1

)

1

2

(

J

1

+j

2J

1

+1

)

1

2

TABLE II. C-G oeÆients C

J

2

j+s

J

1

j;

1

2

s
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II. HARMONICS AND MONOPOLE HARMONICS OF SO(5)

In many physial problem, we deal with funtions over the homogeneous or symmetri

spaes, in partiular, on group spaes. These funtions an be deomposed over a set of

eigenfuntions of Casimir operators. Suh deomposition is extremely useful and has a lear

physial interpretation. For example, in ase of SO(3), Casimir operator is total angular

momentum and eigenfunitons are spherial harmonis Y

j

m

(�; �).

To derive the SO(5)harmonis funtions, we onsider a S

4

sphere, and hoose a spei�

oordinate system, so-alled biharmoni oordinate system, whih will lead us to express

SO(5)harmonis solely in terms of SO(3) well known d

j

m;n

(�)-funtions.

x

5

= os�

2

;

x

4

= sin�

2

os�

1

sin�

1

;

x

3

= sin�

2

os�

1

on�

1

;

x

2

= sin�

2

sin�

1

sin�

2

;

x

1

= sin�

2

sin�

1

on�

2

; (23)

where �

1

2 [0; �=2), �

2

2 [0; �), �

1

2 [0; 2�), and �

2

2 [0; 2�).

The metri tensor g

��

matrix in S

4

sphere in terms of above oordinate hoies is

g =

0

B

B

B

B

B

B

B

B

B

B

�

sin

2

�

1

sin

2

�

2

0 0 0

0 os

2

�

1

sin

2

�

2

0 0

0 0 sin

2

�

2

0

0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

A

; (24)

with the Joobii term is J = jdet(g)j

1

2

= jsin�

1

os�

1

sin�

3

2

j.

Lapalae operator (Casimir operator) is

�

^

C = J

�1

�

�

g

��

J�

�

= sin

�3

�

2

�

��

2

sin

3

�

2

�

��

2

+ sin

�2

�

2

^

P (�

1

; �

1

; �

2

); (25)
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where

^

P = sin

�1

�

1

os

�1

�

1

�

��

1

(sin�

1

os�

1

)

�

��

1

+ os

�2

�

1

�

2

��

2

1

+ sin

�2

�

1

�

2

��

2

2

: (26)

The integral measure of S

4

in biharmoni oordinate system is

d� = Jd�

1

d�

2

d�

1

d�

2

= sin�

1

os�

1

sin

3

�

2

d�

1

d�

2

d�

1

d�

2

: (27)

To solve above eigenvalue equation of Lapalae operator, we separate variables i.e. the

eigenvetor funtion 	

l

1

l

2

m

1

m

2

(�

1

; �

2

; �

1

; �

2

) =  

l

1

l

2

(�

2

)'

l

1

m

1

m

2

(�

1

)exp(im

1

�

1

+ im

2

�

2

) and obtain

the following seond-order ordinary di�erential equation (the eigenvalues of this Lapalae

operator are l

2

(l

2

+ 3), whih an be derived after having solved the equations),

^

C 

l

1

l

2

= l

2

(l

2

+ 3) 

l

1

l

2

; (28)

^

P'

l

1

m

1

m

2

= �l

1

(l

1

+ 2)'

l

1

m

1

m

2

: (29)

The general solutions of above two equations are

 

l

1

l

2

(�

2

) = tan

l

2

�

2

os

l

2

�

2

F

1

[

1

2

(l

1

� l

2

);

1

2

(l

1

� l

2

+ 1); l

1

+ 2;�tan

2

�

2

℄ (30)

'

l

1

m

1

m

2

(�

1

) = tan

m

2

�

1

os

l

1

�

1

F

1

[

1

2

(m

1

+m

2

� l

1

);

1

2

(jm

2

j �m

1

+ l

1

); m

2

+ 1;�tan

2

�

1

℄; (31)

where F

1

is the standard hypergeometri funtion. The restrition relations among the

eigenvalues m

1

; m

2

; l

1

and l

2

are

jl

1

j = l

2

� n; l

2

� 0; n = 0; 1; :::; l

2

: (32)

jm

1

j+ jm

2

j = l

1

� 2k; k = 0; 1; :::; [

1

2

l

1

℄; (33)

Above solutions an be written in terms of d

J

m;m

0

- funtions of the ordinary rotation

group SO(3). The result is

	

l

1

l

2

m

1

m

2

(�

1

; �

2

; �

1

; �

2

) = N

�

1

2

sin

�1

�

2

d

l

2

+1

l

1

+1;0

(�

2

)d

1

2

l

1

1

2

(m

1

+m

2

);

1

2

(m

1

�m

2

)

(2�

1

)exp(im

1

�

1

+ im

2

�

2

);

(34)

where the normalizations onstant N = 4�

2

(2l

2

+ 3)

�1

(l

1

+ 1)

�1

, and the orthogonality

relation is
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Z

�

0

sin

3

�

2

d�

2

Z
�

2

0

sin�

1

os�

1

d�

1

Z

2�

0

d�

1

Z

2�

0

d�

2

�

	

l

0

1

l

0

2

m

0

1

m

0

2

	

l

1

l

2

m

1

m

2

= Æ

l

1

l

0

1

Æ

l

2

l

0

2

Æ

m

1

m

0

1

Æ

m

2

m

0

2

: (35)

These harmonis only give the basis for the symmetri tensor irreps of SO(5). In the

next setion, we will extend them to monopole harmonis, whih inludes the basis for spinor

and spinor tensor representations. However, it is still neessary to express the in�nitesimal

generators in above biharmoni oordinate system. Moreover, it appears there are apparent

onnetions between the eigenvalues haraterizing the harmonis and the angular momen-

tum disussed in Se.(??). The following equations gives the detailed representations of the

operators de�ned in Se.(??):

J

3

= �

i

2

�

��

J

; K

3

=

i

2

�

��

K

;

J

+

= J

1

+ iJ

2

=

i

2

(tan

�1

2�

1

�

��

J

� sin

�1

2�

1

�

��

K

� i

�

��

1

);

J

�

= J

1

� iJ

2

=

i

2

(tan

�1

2�

1

�

��

J

� sin

�1

2�

1

�

��

K

+ i

�

��

1

);

K

+

= J

1

+ iJ

2

=

i

2

(sin

�1

2�

1

�

��

J

� tan

�1

2�

1

�

��

K

� i

�

��

1

);

K

�

= J

1

� iJ

2

=

i

2

(sin

�1

2�

1

�

��

J

� tan

�1

2�

1

�

��

K

+ i

�

��

1

);

T

�

1

2

�

1

2

1

2

1

2

=

�1

p

2

e

�i(�

J

��

K

)

[os�

1

tan

�1

�

2

�

��

1

�

i

2

sin

�1

�

1

tan

�1

�

2

(

�

��

J

�

�

��

K

) + sin�

1

�

��

2

℄;

T

1

2

1

2

1

2

1

2

=

1

p

2

e

i(�

J

��

K

)

[os�

1

tan

�1

�

2

�

��

1

+

i

2

sin

�1

�

1

tan

�1

�

2

(

�

��

J

�

�

��

K

) + sin�

1

�

��

2

℄;

T

�

1

2

1

2

1

2

1

2

=

1

p

2

e

�i(�

J

+�

K

)

[sin�

1

tan

�1

�

2

�

��

1

+

i

2

sin

�1

�

1

tan

�1

�

2

(

�

��

J

+

�

��

K

)� os�

1

�

��

2

℄;

T

�

1

2

1

2

1

2

1

2

=

1

p

2

e

i(�

J

+�

K

)

[sin�

1

tan

�1

�

2

�

��

1

�

i

2

sin

�1

�

1

tan

�1

�

2

(

�

��

J

+

�

��

K

)� os�

1

�

��

2

℄; (36)

where �

J

=

1

2

(�

1

+ �

2

) and �

J

=

1

2

(�

1

� �

2

). Two total angular momentum operators,

^

J

2

and

^

K

2

, are idential operators in the symmetri tensor irreps. They an be expressed with

related to the above operator

^

P , by

^

J

2

=

^

K

2

= �

^

P

4

; (37)

and the eigenvalues on the harmonis are

^

J

2

	

l

1

l

2

m

1

m

2

=

^

K

2

	

l

1

l

2

m

1

m

2

=

l

1

2

(

l

1

2

+ 1)	

l

1

l

2

m

1

m

2

; (38)
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^

J

3

	

l

1

l

2

m

1

m

2

=

1

2

(m

1

+m

2

)	

l

1

l

2

m

1

m

2

;

^

K

3

	

l

1

l

2

m

1

m

2

=

1

2

(m

2

�m

1

)	

l

1

l

2

m

1

m

2

: (39)

The detailed formations of SO(5)harmonis with l

2

= 0; 1; and,2 are listed in the follow-

ing:

1. l

2

= 0(d = 1):

	

00

00

= (

4�

2

3

)

�

1

2

tan

�1

�

2

2. l

2

= 1(d = 5):

	

01

00

= (

8�

2

15

)

�

1

2

os�

2

;

	

11

�10

= (

16�

2

15

)

�

1

2

sin�

2

os�

1

exp(�i�

1

);

	

11

0�1

= �(

16�

2

15

)

�

1

2

sin�

2

sin�

1

exp(�i�

2

)

3. l

2

= 2(d = 14):

	

02

00

= (

64�

2

21

)

�

1

2

(1� 5os

2

�

2

);

	

12

�10

= (

64�

2

105

)

�

1

2

sin2�

2

sin�

1

exp(�i�

1

);

	

12

0�1

= �(

64�

2

105

)

�

1

2

sin2�

2

sin�

1

exp(�i�

2

);

	

22

00

= (

64�

2

105

)

�

1

2

sin

2

�

2

	

22

�20

= �(

64�

2

105

)

�

1

2

sin

2

�

2

os

2

�

1

exp(�i�

1

);

	

22

0�2

= �(

64�

2

105

)

�

1

2

sin

2

�

2

sin

2

�

1

exp(�i�

2

);

	

22

��

= ��(

128�

2

105

)

�

1

2

sin

2

�

2

sin2�

1

exp[i(��

1

+ ��

2

)℄; �; � = �1:

The onept of monopole harmonis was originally introdued by T.T. Wu and C.N.Yang

[?℄ in 1970's. They derived the monopole harmonis in three dimension spae and later

C.N.Yang [?℄ generalized the idea and extended it to �ve dimension spae whih SO(5) is

onerned. Monopole harmonis, also alled Dira harmonis, are everywhere analyti and

form a omplete orthonormal set as the basis of expansion of any wave funtion around the

monopole. In the 3-D spae ase, we an imagine it is a real physial model with a magneti

monopole and derive the monopole harmonis by solving the eigenvalue equation of total

angular momentum. We briey summarize the major results of monopole harmonis in 3-d

spae in the following:
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1. Using spherial oordinates with a monopole of strength g at the origin , the vetor

potential an be hosen to be

^

A

r

1

=

^

A

�

1

= 0;

^

A

�

1

=

g

sin�

(1� os�); 0 � � <

�

2

+ Æ;

^

A

r

2

=

^

A

�

2

= 0;

^

A

�

2

=

�g

sin�

(1 + os�); 0 � � <

�

2

� Æ; (40)

2. With a partile with harge Ze in this monopole model, the gauge transformation

phase fator from A

1

to A

2

in the overlap area of above two hosen region is

S = exp(2iq�): (41)

where q =

1

2

DZ; D = 2eg, and  = h = 1. The transition an be written as

^

A

i

1

=

^

A

i

2

+

i

Ze

S

�S

�1

�x

i

; (42)

where x

i

; i = 1; 2; 3 are the three loal orthogonal oordinates.

3. The total angular momentum operator in above system an be written as

^

L = r̂ � (

^

P � Ze

^

A)� q

r̂

r

: (43)

4. The monopole harmonis is de�ned as

^

L

2

Y

q

l;m

= l(l + 1)Y

q

l;m

;

^

L

3

Y

q

l;m

= mY

q

l;m

; (44)

with l = jqj; jq + 1j; et:, and

R

�

0

sin�d�

R

2�

0

jY

q

l;m

j

2

d� = 1.

5. The expliit evaluation of the above equation is

[�sin�

�1

�

��

sin�

�

��

+ sin

�2

�(�i

�

��

� q + qos�)

2

+ q

2

℄Y

q

l;m

= l(l + 1)Y

q

l;m

(45)

with the sign � related to the two hosen region 1; 2. The expliit expression of Y

q

l;m

is

(Y

q

l;m

)

1

= N(1� os�)

�=2

(1 + os�)

�=2

P

�;�

n

(os�)exp[i(m + q)�℄; (46)

(Y

q

l;m

)

2

= (Y

q

l;m

)

1

exp(2iq�); (47)

where � = �q �m; � = q �m; n = l +m,

N = 2

m

[

(2l + 1)(l �m)!(l +m)!

4�(l � q)!(l + q)!

1

2

;
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and P

�;�

n

(os�) are the Jaobi polynomials,

P

�;�

n

(x) =

(�1)

n

2

n

n!

(1� x)

��

(1 + x)

��

d

n

dx

n

[(1� x)

�+n

(1 + x)

�+n

℄:

The onstrution of monopole harmonis in 5-d spae ( we all it SO(5) monopole har-

monis) is slightly ompliated. The basi idea to realize the onstrution is to extend the

above vetor potential to a nonabelian SU(2) gauge �eld. Sine in this paper, we only fo-

us on the monopole harmonis. Hene, we will onstrut the expliit expression of SO(5)

in�nitesimal operators with a non-abelian SU(2) gauge �eld in the biharmoni oordinate

system , instead of repeating the abstrat mathematial onepts and derivation in Ref. [?℄.

The basi idea is to express the generators of one of the subgroup SO(3),

^

J

i

or

^

K

i

, by adding

the additional generators of SU(2) gauge �eld, i.e,

^

J

i

=

^

J

0

i

+

^

Y

i

;

^

K

i

=

^

K

0

i

(48)

or

^

K

i

=

^

K

0

i

+

^

Y

i

;

^

J

i

=

^

J

0

i

: (49)

Similar to SO(3) monopole, the di�erene of above two hoies results where the singu-

larity loates when the gauge �eld is onstruted. The results in the harmonis di�ers from a

gauge transformation phase. We will make use of the �rst onstrution expression. The left

job is to obtain the expliit expression of the remaining four

^

T operators. By means of the

ommutators between the SO(5) in�nitesimal generators, the

^

T operators an be written as

T

1

2

1

2

1

2

1

2

= T

1

2

1

2

(0)

1

2

1

2

+

p

2tan

�1

�

2

os�

1

exp(�i�

1

)Y

+

�

p

2tan

�1

�

2

sin�

1

exp(i�

2

)Y

3

(50)

T

1

2

1

2

1

2

�

1

2

= T

1

2

1

2

(0)

1

2

�

1

2

+

p

2tan

�1

�

2

sin�

1

exp(�i�

2

)Y

+

+

p

2tan

�1

�

2

on�

1

exp(i�

1

)Y

3

(51)

T

1

2

1

2

�

1

2

�

1

2

= T

1
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�
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: (53)

The Casimir operator an be alulated and be written as

^

C = �sin

�3

�

2

�

��

2

sin

3

�

2

�
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2

+

4J
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�

2

+

2(1� os�

2

)
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2

�
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[

^

J

2

�

^

K

2

℄ +

^

Y

2

: (54)
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The SO(5) monopole harmonis an be written as

	

J

M

K

M

jm

j

;km

k

= Nsin
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�

2

F

J

M

K

M

jk

(�

2

)G

jm

j

;km

k

(�

1

; �

1

; �

2

); (55)

where

^

J

2

G

jm

j

;km

k

(�

1

; �

1

; �

2

) = j(j + 1)G

jm

j

;km

k

(�

1

; �

1

; �

2

);

^

J

3

G

jm

j

;km

k

(�

1

; �

1

; �

2

) = m

j

G

jm

j

;km

k

(�

1

; �

1

; �

2

)

^

K

2

G

jm

j

;km

k

(�

1

; �

1

; �

2

) = k(k + 1)G

jm

j

;km

k

(�

1

; �

1

; �

2

);

^
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G
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)

and the N is the normalized onstant. J

M

and K

M

label the given irreps (see eq.??). For a

given irreps (J

M

; K

M

), the eigenvalue of Casimir operator ,

^

C 

J

M

K

M
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j

;km

k

=  

J

M

K

M
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j
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k

= 2(J

2

M

+K

2

M

+ 2J

M
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M

) 
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K

M
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j

;km

k

:

Substituting the expliit expression of

^

C into above equation, we obtain
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M
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(�

2
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(56)

where � = 2k + 1 and � = �2j � 1. The above equation has the similar expression as

Eq.(??). Thus we an get the allowable value of Y in order to obtain the allowable solution

of above equation. Compared with Eq.(??), the value of Y should be not greater than

J

M

�K

M

. However, sine the angular momentum operator

^

J is the sum of

^

K and

^

Y , the

value of Y should be not less than jJ

M

�K

M

j. Therefore, the value of Y an only be equal

to J

M

� K

M

for a given irreps (J

M

; K

M

) and the right side of above equation beomes to

be (J

M

+K

M

+ 1)(J

M

+K

M

+ 2)℄F

J

M

K

M

jk

(�

2

). The expliit expression of funtion F an be

written as

F
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2

) = (1� os�

2

)

�=2

(1 + os�

2

)

�=2
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n

(os�
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); (57)

where n = J

M

+K

M

+ j � k + 1.

We an onstrut the expliit expression of G

jm

j

;km

k

by means of C-G oeÆients as

G
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where
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m
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; Y m
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(2�

1

)exp[2i(m

k

�

k

+m

0

k

�

j

)℄jYm

Y

> : (59)

The renormalized onstant N is

N = 2

j�k

[

(j + k +

3

2

)(2k + 1)!(2j + 1)!

(2j + 2k + 2)!

℄

1

2

: (60)

The monopole harmonis have the same orthogonality relation as that in Eq.(??). The

expliit forms of SO(5) monopole harmonis of the spinor irreps(d=4), and adjoint repre-

sentation are given in the following :

(1). spinor irreps, d = 4, (J

M

=

1

2

; K

M

= 0), and  = 2:5:
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(2) adjoint irreps, d = 10, (J

M

= 1; K

M

= 0), and  = 6:
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APPENDIX A: SUMMARY OF TENSOR REPRESENTATION OF SU(N)

1. The n rank tensor T of SU(N) is de�ned as:

O

u

T

a

1

a

2

:::a

n

= u

a

1

b

1

u

a

2

b

2

:::u

a

n

b

n

T

b

1

b

2

:::b

n

; a

i

; b

i

= 1; 2; 3:::N;

where, u is an element of SU(N). Considering the linear spae generated by all of ompo-

nents of tensor, we an get a representation of SU(N). However, this representation is not

irreduible. It is easy to see that the permutation symmetry in the index of tensor is kept
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under SU(N). This means that set of the omponents of tensor with ertain permutation

symmetry is an invariable subspae under SU(N). The mathematial tehnique to deom-

pose a tensor spae to its invariable subspae is developed by introduing Young Operator

and Young Pattern with respet to S(N) group ( Readers who are not familiar with these

onepts an �nd this related material in some standard books.)

2. The irreduible tensor representation of SU(N) is labeled by a Young pattern [Y =

(y

1

; y

2

; :::; y

N

)℄, whose raw is not greater thanN . The dimension of irreduible representation

given by a ertain Young pattern is equal to the number of Young standard tableaux, whih

is de�ned in following: We label eah box in Young pattern with a positive integer not

greater than N . A labeled Young pattern is alled Young standard tableux if in a raw, the

number in a box is not greater than the number in its left boxes, and in a olumn, the

number in a box is smaller than the number in the boxes below it ( the numbers in the same

olumn must be di�erent).

3. We an also introdue nth rank tensor, whih is de�ned as:
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n
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i
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Moreover, we an de�ne general (m;n) rank mixed tensor,
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= 1; 2; 3:::N; :

The irreduible representation of SU(N) an also be derived from tensor or mixed tensor

invariant spaes labeled by Young patterns. We mark [Y ℄

�

with respet to the Young pattern

related to invariant tensor spae and [Y ℄

�

=[W ℄ with respet to the young patterns related

to invariant mixed tensor spae . The invariant mixed tensor spae should be satis�ed with

an additional traeless ondition similar to what we disuss in SP (4).

4. De�ning a Nth rank antisymmetrial tensor,

�

a

1

a

2

:::a

N

=

8
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>

>

>

>

>

<

>

>

>

>

>

>

:

1; even permutation

�1; odd permutation

0; others

(A1)
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we an hange an mth rank antisymmetrial tensor( tensor) to (N �m)th antisymmetrial

tensor(tensor) by

T

a

1

a

2

:::a

N�m

=

1

m!

X

b

�
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1

a

2

:::b

1
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T
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b

2

:::b

m

: (A2)

This relation leads to a general result about the equivalene of irreduible representations

between invariant tensor and tensor spae:

[y

1

; y

2

:::y

N

℄

�

=

[y

1

; y

1

� y

N�1

; ::y

1

� y

2

℄

�

:

5. Littlewood-Rihardson rule:

Littlewood-Rihardson rule determines what irreps [Y ℄ are inluded in the produt of

two irreps [Y

1

℄ and [Y

2

℄.

(1). Draw the Young diagrams of [Y

1

℄ and [Y

2

℄.

(2). Choose the simpler one between these two Young diagrams and �ll up eah of boxes

with the line number it loates.

(3). Append eah of boxes to the more ompliated Young diagram with starting from

the boxes �lled with the lowest number in all possible ways subjet to the rules(needed to

be satis�ed after adding eah box):

I.resultant diagram are always regular. II. they are no two boxes �lled with the same

number are appeared in the same olumn III. the number of appended boxes �lled with

larger number ounting from right to left and from top to bottom should not be greater

than that of appended boxes �lled with smaller number ounting in the same way. (4).

Disregard the Young diagrams [Y ℄ of more than N rows and delete the olumns of length

N in any diagram [Y ℄

6. Hook rule to alulate the dimension of irreps of SU(N):

The formula to alulate the dimension of irreps of SU(N) is:

d

[Y ℄

=

Y

1�i�j�N

Y

i

� Y

j

� i + j

j � i

: (A3)

There is a simple Hook rule related to above formula:

d

[Y ℄

=

d

0

[Y ℄

H

[Y ℄

;
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where the numerator d

0

[Y ℄

is a produt of integers �lled in the boxes of Young diagram [Y ℄

as the following rule: �lling all the diagonal boxes in the Young diagram with integer N ,

the subsequent boxes in the same rows with N +1, N +2 ..., and that in the same olumns

with N � 1, N � 2 et,

and the denominator is the produt of hooklength assoiated with eah boxes in Young

diagram. hooklength of a given box in a given Young diagram is de�ned as: the number of

boxes in a hook whih onsists of the given box, those on its left side at the same row and

below it at the same olumn.

7. Examples for SU(4):

d

[p;q℄

=

1

12

(p + 2)(p+ 3)(q + 1)(q + 2)(p� q + 1);

and the Hook rule is shown in the Pi.??.

FIG. 5. Hook rule to alulate the dimension of irreps of SO(4) with Yang pattern [p,q℄
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