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A. SO(5) Group

An element R in the orthogonal group O(5) is a real linear orthogonal transformation

in �ve dimension spa
e. Supposing X; Y are two ve
tors in �ve dimension spa
e, the s
alar

produ
t

XY = x
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is invariant under the transformation X

0

= RX; Y

0

= RY . Therefore, the matrix R must

satisfy the following equation, R

�

= R,

~

RR = 1, det(R) = �1: SO(5) is a subgroup of O(5).

The elements in SO(5) satisfy det(R) = 1. det(R) = 1.

Any elements in SO(5) 
an be diagonalized by a unitary matrix U . The eigenvalue �

should satisfy j�j = 1; thus, �

�

is also an eigenvalue. Generally, the element R in SO(5) 
an

be written as

R = U�U

�1

= e

�iH

� is a diagonal matrix. Sin
e R

�

= R, the matrix H satis�es H

�

= �H; tr(H) = 0. H is

a tra
eless and pure matrix, that kind of matrix requires ten independent parameters . We


hoose ten basis matrixes L

ab

; a < b = 1; 2; 3; 4; 5, and (L

ab

)


d

= �i(Æ

a


Æ

bd

� Æ

ad

Æ

b


) and H


an be written as

H =

X

a<b

!

ab

L

ab

; a; b = 1; 2; 3; 4; 5;

where !

ab

are the real parameters.

The above ten matrixes zl

ab

are 
alled the generators of SO(5). The 
ommutation

relation between them de�nes the Lie algebra of SO(5),
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The diagonal matrix � 
an be written as
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It is 
onvenient to 
onvert above matrix to real matrix, whi
h 
an be written as
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It is easily to 
he
k that the matrix UV is a real and unitary matrix. UV is an element

of SO(5). So the equation (UV )

�1

R(UV ) = A de�ne the 
lass of SO(5). The 
lass in SO(5)


an be des
ribed by two parameters '

1

, '

2

. The 
lass 
on
epts is very useful in dis
ussing

the representation of group.

B. The Symple
ti
 Group SP (4)

The symple
ti
 group SP (4) is the group of real linear transformation P in four dimen-

sional spa
e, whi
h leave skew � symmetri
 bilinear form de�ned as
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invariant. Here we 
hoose the 
omponents of a ve
tor X in four dimensional spa
e as

(x

1

; x

2

; x

0

1

; x

0

2

). Simply, the skew � symmetri
 bilinear form 
an be written as

XY = "

ij

x

i

y

j

;

where the " matrix is

" =

0
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:

The invarian
e of above equation de�nes an symple
ti
 transformation P whi
h satis�es

~

P"P = " (3)

The symple
ti
 transformation P is unimodular, whi
h means det(P ) = 1. This property 
an

be easily derived from above equation. To derive the generators of SP (4), we 
onsider the

in�nitesimal symple
ti
 transformation P = I � iA, where I is the identi
al transformation

and A is the in�nitesimal part. By using Eq.??, we immediately obtain that the in�nitesimal

matrix A has the following form

A =

0

B

B

�

A

1

A

3

A

2

�

~

A

1

1

C
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;

and A

2

=

~

A

2

, A

3

=

~

A

3

, A

�

= A. Therefore, ea
h of matrixes A

2

and A

3

has three in-

dependent parameters, and the matrix A

1

has four. There are totally ten parameters for

A. The matrix A 
an be expressed by ten basis matrixes E

��

; �; � = �1;�2. Here we


hoose these ten independent matrixes as (E

��

)


�

= i(sign(�)Æ

�


Æ

��

� sign(�)Æ

��


Æ

���

),

and E

��

= E

����

. The 
ommutation relation between the generators is

[E

��

; E


�

℄ = i(sign(�)Æ

�


E

��

� sign(�)Æ

��

E


�

+ sign(�)Æ

���

E

��


� sign(�)Æ

��


E

���

): (4)

The above 
ommutator de�nes the Lie algebra for SP (4).
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C. The equivalen
e of SO(5) and SP (4)

One 
an 
he
k that the Lie algebra of SO(5) is the same as that of SP (4) by 
omparing

the generators as shown in (table ??). Later we will see the Dynkin diagram for SP (4),C

2

and SO(5),B

2

are similarly related. Sin
e these two groups have the same Lie algebra

stru
ture, their �nite irredu
ible representations (irreps) are also identi
al. In this paper,

we fo
us on the SO(5). However, sometimes it is more 
onvenient to use the notation of

SP (4). For example, we 
an obtain all of irreps of SP (4) by making use of the SO(4)

tensors, however, if we dis
uss SO(5), we need to dis
uss three di�erent kind representation:

tensor spinor and spinor tensor representations.
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TABLE I. Mapping of in�nitesimal operators between Sp(4) and SO(5). The third 
olumn

responds to the irredu
ible tensor operators of SO(4) (see Se
tion ??)
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I. REPRESENTATION OF SO(5)

In this Chapter, three di�erent methods with respe
t to the representation of SO(5) are

given. Readers who have di�erent favors 
an readily 
hoose one of them and follow it. All


on
epts we use in this 
hapter are brie
y dis
ussed. In se
tion (??), our dis
ussion is based

on tensor and spinor. It is easily to be understood by those who are not familiar with the

general 
on
epts in Lie Algebra. Readers are supposed to know some basi
 
on
epts of Young

Operator and Young Pattern. The se
ond se
tion is devoted to the general highest weight

representation of SO(5). We brie
y express the 
on
epts and omit the mathemati
al proof.

The third se
tion is rather spe
ial only for SO(5). The method 
an not be generalized

to all of other simple Lie Group. We de
ompose SO(5) to its subgroup SO(4), whi
h is

equal to SU(2) � SU(2). The states in the representation spa
e are naturally labeled by

representation in SU(2). For pra
ti
al appli
ation in physi
al model, this method may be

more 
onvenient.

A. Young pattern, Young tableaux and SO(5)(SP (4)) representation

In this se
tion, we dis
uss how to use the Young pattern and Young tableaux to label

the irredu
ible representations of SO(5) and SP (4). A brief summary about the irredu
ible

tensor representation of SU(N) is atta
hed in appendix ??. The representations of SO(5) is

a little more 
ompli
ated. They 
an be divided into three kinds of representations: tensor,

spinor, and spinor tensor representations. We will dis
uss those basi
 
on
epts. However,

instead of detailing the representations of SO(5), we will only fo
us on how to obtain the

irredu
ible representation of SP (4) by Young's te
hnique in this se
tion, although it is

possible to study ea
h type of representations of SO(5), respe
tively. We will show how to

derive the the general formula of an irreps dimension of SP (4), a method to de
ompose a

given irreps of SU(4) into irrepses of SP (4), and a generalized Littlewood-Ri
hardson rule

on SP (4).
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Similar to SU(N), the n order tensor of SO(5) is de�ned as

O

R

T

a

1

a

2

:::a

n

= R

a

1

b

1

R

a

2

b

2

:::R

a

n

b

n

T

b

1

b

2

:::b

n

; a

i

; b

i

= 1; 2; 3; 4; 5: (5)

An essential di�eren
e here is that an 
onstant tensor Æ

ab

is unvariant tensor of SO(5), whi
h

mean

O

R

Æ

ab

= R

aa

0

R

bb

0

Æ

a

0

b

0

:

Therefore, given any tensor T

a

1

a

2

:::a

n

, the tra
ing tensor on any two indexes,for example

P

a

T

aaa

3

:::a

n

by tra
ing the �rst two indexes, is an invariant tensor spa
e of SO(5). If we

want to use Young pattern to des
ribe the invariant tensor spa
e of SO(5), we must �rst

separate the tra
ing tensor spa
e. Then, we 
an use Young pattern to obtain the other

invariant spa
e for the tensor irreps of SO(5).

The irredu
ible tensor representations obtained above are not 
omplete . there exists

the other irredu
ible representations on SO(5). They are 
alled spinor and spinor tensor

representations. In Appendix (??), we summarize some basi
 
on
epts related to Cli�ord

algebra, whi
h is ne
essary in order to understand spinor and spinor tensor representation.

For SO(5), the Cli�ord algebra is given by the famous Dira
 matrixes(see Appendix

(??), 


1

; 


2

; 


3

; 


4

; 


5

,

f


a

; 


b

g = 2Æ

ab

:

The spinor representation of SO(5) is de�ned as

D(R)

�1




a

D(R) =

X

b

R

ab




b

; R 2 SO(5):

The spinor representation of SO(5) is 4 dimensional.

The spinor tensor is de�ned as

O

R

	

a

1

a

2

:::a

n

;�

== R

a

1

b

1

R

a

2

b

2

:::R

a

n

b

n

D(R)

��

	

b

1

b

2

:::b

n

;�

; a

i

; b

i

= 1; 2; 3; 4; 5;�; � = 1; 2; 3; 4:

The irredu
ible representation gotten from the spinor tensor spa
e is 
alled the spinor tensor

irreps. The tensor index in the invariant spinor tensor spa
e must also satisfy the tra
eless


ondition.
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So far, we give the basi
 
on
epts about the tensor, spinor and spinor tensor represen-

tation of SO(5). Although it is possible to study ea
h of these irrepses with Young pattern

and tableux more deeply, the easiest way to apply Young te
hnique is to dis
uss irrepses

of SP (4) . Sin
e the Lie algebras of SP (4) are exa
tly the same as SO(5), the irreps of

SP (4) are also the same as SO(5). The whole �nite irreps of SP (4) 
an be obtained from

its tensor invariant spa
es; thus, the tensor and spinor representations of SO(5) are auto-

mati
ally in
luded in the irrepses of SP (4). The following part of this se
tion is devoted to

the irredu
ible tensor representation of SP (4).

A tensor of SP (4) has the same de�nition as Eq.??. Considering the spa
e of tensors of

rank n, with 
omponents T

a

1

a

2

:::a

n

, we 
an 
onstru
t the spe
i�
 tra
e in the SP (4) tensor

spa
es by multiplying the matrix ",

(trT )

a

3

:::a

n

=

X

a

1

a

2

"

a

1

a

2

T

a

1

a

2

:::a

n

:

The tra
e operation gives a tensor of rank n � 2. The subspa
e of su
h tra
e 
ontra
tion

tensors be
omes an invariant spa
e under the transformation in SP (4). There are n(n� 1)

tra
es for a n-th rank tensor. So we divide the spa
e of tensors of rank n into two subspa
es,

one with all tra
eless tensors, the other with the tra
e 
ontra
tion tensors. a general nth

rank tensor of SP (4) 
an be written as

T

a

1

a

2

:::a

n

= T

0

a

1

a

2

:::a

n

+ F

a

1

a

2

:::a

n

where T

0

a

1

a

2

:::a

n

is the tra
eless part and F

a

1

a

2

:::a

n

is the tra
e 
ontra
tion part. Generally we


an use tra
eless 
ondition to get the formation of T

0

. The irredu
ible representation spa
es


an be obtained by use of the Young pattern. However, the rows of the Young pattern to

mark the irredu
ible representations SP (4) should be not larger than two. The reason is

that a spa
e of nth tra
eless tensors is exa
tly equal to duality spa
e of (N � n)th tra
eless

tensors by use of anti-symmetry tensor � given in Appendix (??). Therefore, if the boxes of

a 
olumn in a Young pattern are three, we 
an use its duality 
olumn with boxes equal to

4� 3 = 1. The di�eren
e on SP (4) from that dis
ussed on SU(N) is that sin
e the tensor
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is tra
eless, we 
an dire
tly 
ombine the duality 
olumn with the left part of origin Young

pattern together. The representations with respe
t to the origin and later Young pattern are

equivalent. Ea
h irredu
ible representation of SP (4) 
an be marked by Young pattern [p; q℄,

p; q = the boxes in �rst and se
ond rows. There is an easy way to 
al
ulate the dimension

of the irredu
ible representation of SP (4) with respe
t to that of SU(4),

D(p; q) = d(p; q)� d(p� 1; q � 1) (6)

where the d(p,q) is the dimension of irreps of SU(4) labeled by the same Young pattern [p; q℄

. The result 
ounts on the following reason: Sin
e the tensors in the representation spa
e for

SP (4) are tra
eless, we divide the representation tensor spa
e for SU(4) into two subspa
e,

one with tra
e 
ontra
tion tensors and the other with tra
eless tensors. The later subspa
e

should be equal to the representation spa
e for SP (4). The dimension for the former spa
e

is exa
tly equal to the dimension of representation of SU(4) labeled by the Young pattern

[p� 1; q � 1℄. Utilizing the result for SU(4) given in Appendix (??), we obtain

D(p; q) =

1

6

(p+ 2)(q + 1)(p� q + 1)(p+ q + 3): (7)

It is very tedious and tiresome work to obtain the generator irreps matrix based on the

invariant tra
eless tensor spa
e. However, the Young pattern is rather helpful to dis
uss

other aspe
ts.

The �rst issue 
an be readily handled here is to de
ompose an irreps of SU(4) into

irrepses of SP (4). The reason why an irreps of SU(4) 
an be de
omposed into SP (4) is

the irredu
ible tensor spa
e for SU(4) 
an be divided into two subspa
es as that dis
ussed

above. The tra
e 
ontra
tion tensors 
an be re
onsidered as the lower rank tensors, and


an be divided su

essively into tra
eless tensors and sub-tra
e 
ontra
tion tensors again.

This division ultimately leads to de
ompose the original tensor spa
e for SU(4) into the

irredu
ible representation tensor spa
es for SP (4). The hint to solve this problem has been

shown in (??). The result is straightforwardly derived , whi
h is

[p; q℄

SU(4)

= [p; q℄

SP (4)

M

[p� 1; q � 1℄

SP (4)

:::

M

[p� q; 0℄

SP (4)

: (8)
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However, this result is not 
omplete. The Young pattern labeling the irreps of SU(4) 
an

be more than two rows. In parti
ular in 
ase of SU(4), we need only to handle the Young

diagram having three rows. We developed a general way to de
ompose su
h Young diagram.

The method in
ludes the following steps:

1. Re-write Young diagram more than two rows as the equivalent mixed sign [s℄

�

=[p; q℄

, as the way shown in Appendix (??).

2. De
ompose [p; q℄ a

ording to Eq.(??).

3. Apply the Littlewood-Ri
hardson rule to de
ompose all of the produ
ts of one de
om-

posed 
omponent Young patterns, whi
h 
omes from [p; q℄, with [s℄

�

.

4. Disregard the Young patterns whi
h the total rows are more than two.

The de
omposition result is the sum of all of the Young patterns whi
h satisfy above


ondition. There is an example to illustrate above pro
edure.

example: [3; 3; 2℄

SU(4)

(1). [3; 3; 2℄

SU(4)

' [2℄

�

=[1; 1℄

(2). [1; 1℄

SU(4)

' [1; 1℄ + [0℄

(3). [2℄
 ([1; 1℄ + [0℄) =) [3; 1℄ + [2; 1; 1℄ + [2℄

(4). Dropping o� [2, 1 ,1℄, the �nal result is:

[3; 3; 2℄

SU(4)

' [3; 1℄

SP (4)

+ [2℄

SP (4)

Dimension : 45 35 10

The se
ond easily solvable problem is to obtain all irrepses in
luding an produ
t of two

irrepses of SP (4), whi
h means

[p

1

; q

1

℄

O

[p

2

; q

2

℄ =?

M

?:::

M

?:

An approa
h is developed in the following. It is also 
onne
ted with our above results.

1. Use Equation ?? to rewrite the produ
t into

[p

1

; q

1

℄

O

[p

2

; q

2

℄ ' f[p

1

; q

1

℄� [p

1

� 1; q

1

� 1℄g

O

f[p

2

; q

2

℄� [p

2

� 1; q

2

� 1℄g;

where the Young pattern in the right side of equation denotes the irreps of SU(4).

9



2. Apply Littlewood-Ri
hardson rule to revolve above produ
ts into the sum of the

irredu
ible representations of SU(4) on the right part of above equation and keep the sign.

3. Use the method shown above to de
ompose ea
h obtained irreps of SU(4) into irrepses

of SP (4).

The results is the sum of the total irrepses we obtained.

Two examples are illustrated in following by using above method:

(1) The produ
t of spinor irreps [1℄(dimension 4) with a general irreps [p; q℄, i.e. [1℄
[p; q℄:

[1℄
 [p; q℄ ' [p+ 1; q℄ + [p; q + 1℄ + [p; q � 1℄ + [p� 1; q℄ (9)

Results of several low dimension irreps produ
ts :

[1℄ 
 [1℄ ' [2℄ + [1; 1℄ + [0℄

Dimension : 4 � 4 = 10 + 5 + 1

[1℄ 
 [2℄ ' [3℄ + [2; 1℄ + [4℄

Dimension : 4 � 10 = 20 + 16 + 4

[1℄ 
 [2; 1℄ ' [3; 1℄ + [2; 2℄ + [2℄ + [1; 1℄

Dimension : 4 � 16 = 35 + 14 + 10 + 5

(2) The produ
t of symmetri
 tensor irreps [1; 1℄(dimension 5) with general irreps [p; q℄,

i.e. [1; 1℄
 [p; q℄:

[1; 1℄
 [p; q℄ '

8

>

>

<

>

>

:

[p + 1; q + 1℄ + [p; q℄ + [p+ 1; q � 1℄ + [p� 1; q + 1℄ + [p� 1; q � 1℄; p 6= q

[p + 1; q + 1℄ + [p+ 1; q � 1℄ + [p� 1; q � 1℄; p = q

(10)

Results of several low dimension irreps produ
ts:

10



[1; 1℄ 
 [1℄ ' [2; 1℄ + [1℄

Dimension : 5 � 4 = 16 + 4

[1; 1℄ 
 [1; 1℄ ' [2; 2℄ + [2℄ + [0℄

Dimension : 5 � 5 = 14 + 10 + 1

[1; 1℄ 
 [2; 0℄ ' [3; 1℄ + [2℄ + [1; 1℄

Dimension : 5 � 10 = 35 + 10 + 5

[1; 1℄ 
 [2; 2℄ ' [3; 3℄ + [3; 1℄ + [1; 1℄

Dimension : 5 � 14 = 30 + 35 + 5

B. Highest weight representation of SO(5)

The general method to 
onstru
t irreps of an semi-simple Lie Group is to analyze its Lie

algebra. The irreps is so-
alled highest weights representation. There are many 
on
epts

with respe
t to this general representation method. In this se
tion, we just simplify this

method to apply for SO(5). The detailed proof is omitted.

At �rst, we explain several 
on
epts with respe
t to semi-simple algebra.

1. Lie algebra,

[L

A

; L

B

℄ = iC

C

AB

L

C

;

where L

A

is in�nitesimal generators and C

C

AB

is 
alled stru
ture 
onstants.

2. Killing matrix:

K

AB

=

X

PQ

C

Q

AP

C

P

BQ

:

Lie algebra is semi-simple if detK 6= 0. With the generators of SO(5) shown as before, the

Killing matrix K for SO(5) is

K

AB

= �6Æ

AB

:

3. Cartan subalgebra:

if H is an element of Lie algebra and its eigenve
tor E is de�ned as

[H;E℄ = �E;

11



then the vanishing eigenvalue is the unique degenerate eigenvalue. The degenera
y l is


alled the rank of Lie algebra. All of the eigenve
tors with eigenvalue zero form an abelian

subalgebra 
alled Cartan subalgebra. In the 
ase of SO(5), the rank of Lie algebra is two.

We 
an 
hoose

H

1

= L

12

; H

2

= L

34

;

to form its Cartan subalgebra.

4. Root, simple root, and root diagram:

The left generators 
an 
onsist of the eigenve
tors of Cartan subalgebra with nonva-

nishing eigenvalue. Ea
h eigenvalue, we 
all root, 
an be 
onsidered as a \ve
tor" in a

l-dimensional spa
e. This spa
e is 
alled root spa
e. Th e graphi
al representation of the

root ve
tors in root spa
e is 
alled root diagram. it is easy to prove that if � is a nonvan-

ishing root, then �� is also a root and it is not degenerate. If the �rst 
omponent in the

root ve
tor is positive, we 
all this root is positive root. A positive root is a simple root if

it 
annot be de
omposed into the sum of two positive roots.

In 
ase of SO(5), there are eight roots and the root spa
e is a two dimensional spa
e.:

[H

i

; E

�

℄ = �

i

E

�

; i = 1; 2; � = (�

1

; �

2

)

Based on the Cartan subalgebra and the eigenve
tors, the Killing matrix 
hanges to be

K =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

g

��

1

��

1

��

1

��

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

where the matrix g

ij

= �6Æ

ij

; i; j = 1; 2 and �

1

is the �rst Pauli matrix, and the Lie algebra

of SO(5) is modi�ed to

[H

1

; H

2

℄ = 0

[H

i

; E

�

℄ = �

i

E

�

12



[E

�

; E

�

℄ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

N

��

E

�+�

� + � is a root

P

i

�

i

H

i

� = ��

0 other

(11)

where �

i

= �

P

j

g

ij

�

i

=

1

6

�

i

,

P

k

g

ik

g

kj

= Æ

ij

, and N

��

depends on our 
hoi
e of eigenve
tors

and it satis�es

N

��

= �N

����

= N

����

:

The root ve
tors and roots in SO(5) are,

Eigenvalues Eigenve
tor

�

1

= [1;�1℄ E

1

=

1

p

24

[L

13

+ L

24

+ i(L

23

� L

14

)℄

�

�1

= [�1; 1℄ E

�1

=

1

p

24

[L

13

+ L

24

� i(L

23

� L

14

)℄

�

2

= [0; 1℄ E

2

=

1

p

12

[L

35

+ iL

45

℄

�

�2

= [0;�1℄ E

�2

=

1

p

12

[L

35

� iL

45

℄

�

3

= [1; 1℄ E

3

=

1

p

24

[L

13

� L

24

+ i(L

23

+ L

14

)℄

�

31

= [�1;�1℄ E

�3

=

1

p

24

[L

13

� L

24

� i(L

23

+ L

14

)℄

�

4

= [1; 0℄ E

4

=

1

p

12

[L

25

� iL

15

℄

�

�4

= [�1; 0℄ E

�4

=

1

p

12

[L

25

+ iL

15

℄

There are four positive roots. The �rst two positive roots �

1

= [1;�1℄; �

2

= [0; 1℄ are the

simple roots. The root diagram of SO(5)is shown in Pi
ture ??.

FIG. 1. Root diagram of SO(5)
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5. Dynkin diagram and Cardan matrix:

In Lie algebra theory, there is an alternative ingenious s
heme to draw the root diagrams

for any rank Lie algebra. It is 
alled Dynkin diagram. It just tells the information of the

simple roots of Lie algebra. The 
lassi
 Lie group 
an be totally de�ned a

ording to it's

Dynkin diagram. In this de�nition, SO(5)is 
alled B

2

and SP (4) is 
alled C

2

. The Dynkin

diagrams of SO(5) and SP (4) are shown in Pi
ture ?? where the empty hole represents the

longer amptitute simple root [1;�1℄, and �lled hole represents the shorter roots [0; 1℄ . The

two lines between two roots are 
orresponding to the angle between them is equal to

3�

4

.

FIG. 2. Dynkin diagrams of SO(5)and SP (4)

There is also a matrix, 
alled Cartan matrix to label the simple roots of Lie algebras. It

is de�ned as

A

ij

=

2(�

i

; �

j

)

�

i

; �

i

;

where (�

i

; �

j

) denote the s
alar produ
t, and �

i

; �

j

are simple roots. Cortan matrix of

SO(5) is

A =

0

B

B

�

2 �2

�1 2

1

C

C

A

:

6. weight, weight diagram and highest weight representation

Sin
e Cartan algebra is an abelian algebra, we 
an 
hoose the spa
e generated by the


ommon eigenve
tors of the elements H

i

as the representation spa
es. These kinds of spa
es


an be divided into the irreps spa
es. In 
ase of SO(5)we denote an eigenve
tors of its

Cartan subalgebra as jm

1

; m

2

>,

H

i

jm

1

; m

2

>= m

i

jm

1

; m

2

>; i = 1; 2:

The two dimensional ve
tor M = [m

1

; m

2

℄ is 
alled weight and the 2-dimensional ve
tor

spa
e extended by the set of weights is 
alled weight spa
e. If the �rst nonvanishing 
ompo-

nent of a weight is positive, this weight is 
alled positive weight. A weight [m

1

; m

2

℄ is said

14



to be higher than [w

1

; w

2

℄ if [m

1

� w

1

; m

2

� w

2

℄ is positive. In an irredu
ible representation

spa
e, a weight is said to be simple if it belongs to only one eigenve
tor.

Sin
e the Lie algebra is totally determined by its simple roots, we 
an guess the irredu
ible

representations of Lie algebra must depend on simple roots. A set of weights M

1

;M

2

, 
alled

fundamental weights, is de�ned as

2(M

i

; �

i

) = (�

i

; �

i

)Æ

ij

; i; j = 1; 2

where �

i

is a simple root. The fundamental weights of SO(5) are

M

1

= [1; 0℄;M

2

= [

1

2

;

1

2

℄:

There is an obvious geometri
al relation between simples roots and fundamental weights:

if the simple roots are a group of basi
 ve
tors in root latti
e spa
e, the fundamental

weights are just the basi
 ve
tors in the reverse latti
e spa
e.

The irredu
ible representations of Lie group are established by the following important

theorem:

Theorem: The irredu
ible representation is uniquely determined by its highest weight

M

�

, the highest weight is a simple weight and 
an be written as an linear 
ombination of

fundamental weights, M

�

=

P

i

�

i

M

i

; �

i

; i = 1; 2; is non-negative integer.

A highest weight of SO(5)
an be written as

M

�

= [�

1

+

�

2

2

;

�

2

2

℄: (12)

Similar to the roots diagram, A weight diagram 
an be drawn to represent an irreps in

weight spa
e.

The other powerful theorem is very useful:

Theorem : For any weight M and root �, the quantity

2(M;�)

(�;�)

is an integer, and the

weight M

0

=M �

2(M;�)

(�;�)

� is also a weight and has the same degenera
y as M .

The geometri
al meaning of above Theorem is very obvious in the weight spa
e . M

0

is


orresponding to the ve
tor re
e
ting M through a hyperplane perpendi
ular to the root �.

15



Therefore, generally we 
an de�ne an group S whi
h in
ludes the total re
e
tion operations

related to the planes perpendi
ular to the roots and the operation produ
ts.

The group S for SO(5) in
ludes eight elements. An weight [m

1

; m

2

℄ by operating trans-

formations in S 
an be 
hanged to [�m

1

;�m

2

℄and[�m

2

;�m

1

℄. Weyl has derived the general

formula to 
al
ulate the dimension of any irreps of any semi-simple Lie algebra. Given the

highest weight M

�

, the dimension of the irreps is

d(M

�

) =

Y

�

[1 +

M

�

_�

R _�

℄;

where R =

1

2

P

�

� and the sum here is over all positive roots.

In 
ase of SO(5), R = [

3

2

;

1

2

℄, and for a given highest weight M

�

. above dimension

equation be
omes (see Eq.(??))

d(M

�

) = (1 + u

1

)(1 + u

2

)(1 +

u

1

2

+

u

2

2

)(1 +

2u

1

3

+

U

2

3

);

Spe
i�
ally, it is tensor irreps when u

2

is an even integer, spinor irreps when u

2

= 1; u

1

= 0,

and spinor tensor irreps in the other situations.

7. details in spinor irreps (d=4) and ve
tor irreps (d=5) of SO(5)

(1) spinor irreps M

�

= [

1

2

;

1

2

℄:

H

1

=

1

2

(j1 >< 1j+ j2 >< 2j � j3 >< 3j � j4 >< 4j)

H

2

=

1

2

(j1 >< 1j � j2 >< 2j � j3 >< 3j+ j4 >< 4j)

E

1

=

1

p

6

j2 >< 4j

E

2

=

1

p

12

(j1 >< 2j+ j4 >< 3j)

E

3

= �

1

p

6

j1 >< 3j

E

4

=

1

p

12

(�j1 >< 4j+ j2 >< 3j)
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FIG. 3. weight diagram of spinor irredu
ible representation of SO(5)

(2) ve
tor irreps M

�

= [1; 0℄:

H

1

= j1 >< 1j � j4 >< 4j

H

2

= j5 >< 5j � j2 >< 2j

E

1

=

1

p

6

(j1 >< 5j+ j2 >< 4j)

E

2

=

1

p

6

(j3 >< 2j+ j5 >< 3j)

E

3

=

1

p

6

(j1 >< 2j+ j5 >< 4j)

E

4

=

1

p

6

(�j2 >< 4j+ j1 >< 3j)

FIG. 4. weight diagram of ve
tor irredu
ible representation of SO(5)

8. The se
ond order Casimir operator

Casimir operators are invariant operators in 
arrier spa
es of an irrepses. We only dis
uss

the se
ond order Casimir operator here, whi
h is de�ned as

C =

X

a<b

L

2

ab

: (13)
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In the 
ase of SO(5), we 
an easily 
al
ulate it for a given irreps. By using of Cartan

subalgba and eigenve
tors de�ned before, Casimir operator be
omes,

C = H

2

1

+H

2

2

+ 6

X

�;positive root

E

�

E

1�

:

The value of Casimir operator a
ting on the state in the 
arrier spa
es of a given irreps

[m

1

= u

1

+

u

2

2

; m

2

=

u

2

2

℄ is

C = m

2

1

+m

2

2

+ 3m

1

+m

2

(14)

= u

2

1

+

u

2

2

2

+ u

1

u

2

+ 3u

1

+ 2u

2

: (15)

C. Irredu
ible representation of SO(5) based on SO(4)

For pra
ti
al appli
ation, it is 
onvenient and ne
essary to realize irreps in an expli
it

way. In quantum me
hani
s, we label a state with quantum numbers. In an irreps of spe
i�


group, we 
an also o�er the weights with 
ertain physi
al meaning. In 
ase of SO(5), there

is a natural way to identify the ve
tors of weights: indi
ating the irreps of SO(5)with respe
t

to SO(4)

�

=

SO(3)�SO(3). There are ten generators in SO(5). Six of them 
an be used to


onstru
t those of the subgroup SO(4). We make use of the following six generators to set

up the Lie algebra of SO(4):

J

1

=

1

2

(L

14

+ L

23

); J

2

=

1

2

(L

24

+ L

31

); J

3

=

1

2

(L

12

+ L

34

)

;K

1

=

1

2

(L

23

� L

14

); K

2

=

1

2

(L

31

� L

24

); K

3

=

1

2

(L

12

� L

34

):

The remaining four generators, L

15

; L

25

; L

35

; L

45

, 
an be 
onsidered to 
onstru
t irre-

du
ible tensor operators of SO(4). We use the following de�nition :

T

1

2

;

1

2

1

2

;

1

2

=

1

p

2

(L

25

� iL

15

); T

1

2

;

1

2

�

1

2

;�

1

2

=

1

p

2

(L

25

+ iL

15

)

T

1

2

;

1

2

�

1

2

;

1

2

=

1

p

2

(L

45

+ iL

35

); T

1

2

;

1

2

1

2

;�

1

2

=

�1

p

2

(L

45

� iL

35

)

T

1

2

;

1

2

�;�

; �; � = �

1

2

; denote the rank of irredu
ible tensor of SO(4) (also see Table.(??). The


ommutation relations between J

i

; K

i

; T

1

2

;

1

2

�;�

are
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[J

i

; J

j

℄ = i�

ijk

J

k

; [K

i

; K

j

℄ = i�

ijk

K

k

; [J

i

; K

j

℄ = 0;

[T

1

2

;

1

2

�

1

2

;�

; J

�

℄ = 0; [T

1

2

;

1

2

�

1

2

;�

; J

�

℄ = T

1

2

;

1

2

�

1

2

;�

[T

1

2

;

1

2

�;�

1

2

; K

�

℄ = 0; [T

1

2

;

1

2

�;�

1

2

; K

�

℄ = T

1

2

;

1

2

�;�

1

2

[T

1

2

;

1

2

�;�

; J

3

℄ = �T

1

2

;

1

2

�;�

; [T

1

2

;

1

2

�;�

; K

3

℄ = �T

1

2

;

1

2

�;�

(16)

We have �ve operators: C (Casimir operator), J , J

3

, K and K

3

, whi
h are Her-

mitian and mutually 
ommute ea
h other. The states in an irreps 
an be labeled by

above quantum numbers. Therefore, for a given irreps labeled by the highest weight

M

�

= [m

1

= u

1

+

u

2

2

; m

2

=

u

2

2

), We denote an 
ommon eigenstate of above �ve opera-

tors as jJ

M

K

M

; JJ

m

KK

m

>, where

J

M

=

1

2

(m

1

+m

2

) =

1

2

(u

1

+ u

2

); K

M

=

1

2

u

1

:

One of 
onvenient treatment in this representation is to obtain the irreps matrixes of

the in�nitesimal operators [?℄. The matrix elements follow from the expli
it expression

for the states jJ

M

K

M

; JJ

m

; KK

m

>. The matrix elements of J

i

; K

i

are the general angular

momentummatrix elements. To 
al
ulate matrix elements of the remaining four in�nitesimal

operators, we slightly repeat the method given in Ref. [?℄ in the following.

He
ht Ref. [?℄ introdu
ed two operators, O�+ and O

��

, whi
h are de�ned as

O

�+

= �

p

2[(J

�

T

1

2

;

1

2

1

2

;

1

2

+ T

�

1

2

;

1

2

1

2

;

1

2

(2J

3

+ 1)℄

O

��

= �K

�

O

�+

+

p

2[�J

�

T

1

2

;�

1

2

1

2

;

1

2

+ T

�

1

2

;�

1

2

1

2

;

1

2

(2J

3

)℄(2K

3

+ 1): (17)

These two operators have the following important properties,

O

�+

jJ

M

K

M

; JJ;KK > = 
jJ

M

K

M

; J �

1

2

J �

1

2

; K +

1

2

K +

1

2

>;

O

��

jJ

M

K

M

; JJ;KK > = 


0

jJ

M

K

M

; J �

1

2

J �

1

2

; K �

1

2

K �

1

2

> : (18)

where 
 and 


0

are 
onstants. Moreover, these two operators 
ommute with ea
h other, i.e.

[O

�+

; O

��

℄ = 0. This property allows us to obtain the general states in
luded in an irreps

disregard of the order of operation. The general state jJ

M

K

M

; JJ

m

KK

m

> 
an be written

as

19



jJ

M

K

M

; JJ

m

KK

m

>= N(J

M

; K

M

; n;m; x; y)J

x

�

K

y

O

m

��

O

n

�+

jJ

M

K

M

; J

M

J

M

K

M

K

M

> : (19)

with

J = J

M

�

1

2

n�

1

2

m; 0 � n � 2(J

M

�K

M

);

K = K

M

+

1

2

n�

1

2

m; 0 � n � 2K

M

;

J

m

= J � x; 0 � x � 2J;

K

m

= K � y; 0 � x � 2K;

where N is normalization 
onstant and 
an be written as N = f(n;m)g(J; x)g(K; y),

with

f(n;m) = (n!)

�2

(m!)

�4

(C

n

m+n

C

n

2J

M

+1

C

m

2J

M

+1

C

n+m

2J

M

+1

C

n

2J

M

�2K

M

C

m

2J

M

+2K

M

+2

C

m

2K

M

C

m

2K

M

+n+1

)

�

1

2

;

and

g(z

1

; z

2

) = (z

2

!)

�1

(C

z

2

2z

1

)

�

1

2

;

where C

n

2

n

1

=

n

1

!

(n

1

�n

2

)!n

2

!

.

From above results, we 
an also get the dimension of irreps [J

M

; K

M

℄, whi
h is exa
tly

identi
al to that derived (Eg.??) in previous se
tion.

The matrix elements of operators T

1

2

;

1

2

�;�


an be obtained dire
tly by operating on the

state jJ

M

K

M

; Jj;Kk >. However, we need not to respe
tively 
al
ulate matrix elements for

ea
h operator be
ause of the well known Wigner-E
kart theorem. Sin
e operators T

1

2

;

1

2

�;�

are

irredu
ible tensors of SO(4), the Wigner-E
kart gives us the following result,

< J

M

K

M

; J

0

j

0

; K

0

k

0

jT

1

2

;

1

2

�;�

jJ

M

K

M

; Jj;Kk >= C

J

0

j

0

Jj;

1

2

�

C

K

0

k

0

Kk;

1

2

�

< J

M

K

M

; J

0

K

0

jjT

1

2

1

2

jjjJ

M

K

M

; JK >;

(20)

where C is the C-G 
oeÆ
ients of SO(3) and < J

M

K

M

; J

0

K

0

jjT

1

2

1

2

jjjJ

M

K

M

; JK > is

independent of �, �, j, and k. The C-G 
oeÆents are shown in Table(??). For a given state

jJ

M

K

M

; Jj;Kk >, there are four nonvanishing matrix elements. The results are

< J

M

K

M

; J �

1

2

K �

1

2

jjT

1

2

1

2

jjjJ

M

K

M

; JK > =

1

2

[

f(J +K)

2JK

℄

1

2

;
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< J

M

K

M

; J +

1

2

K +

1

2

jjT

1

2

1

2

jjjJ

M

K

M

; JK > = �

1

2

[

f(J +K + 1)

2(J + 1)(K + 1)

℄

1

2

;

< J

M

K

M

; J �

1

2

K +

1

2

jjT

1

2

1

2

jjjJ

M

K

M

; JK > = �

1

2

[

g(J �K)

2J(K + 1)

℄

1

2

;

< J

M

K

M

; J +

1

2

K �

1

2

jjT

1

2

1

2

jjjJ

M

K

M

; JK > = �

1

2

[

g(J �K � 1)

2K(J + 1)

℄

1

2

; (21)

(22)

where

g(t) = (J

M

�K

M

+ t)(J

M

�K

M

� t+ 1)(J

M

+K

M

+ t + 1)(J

M

+K

M

� t + 2)

f(s) = (J

M

+K

M

+ s+ 2)(J

M

�K

M

+ s+ 1)(J

M

+K

M

� s + 1)(K

M

� J

M

+ s):

s =

1

2

s = �

1

2

J

2

= J

1

+

1

2

(

J

1

+j+1

2J

1

+1

)

1

2

(

J

1

�j+1

2J

1

+1

)

1

2

J

2

= J

1

�

1

2

�(

J

1

�j

2J

1

+1

)

1

2

(

J

1

+j

2J

1

+1

)

1

2

TABLE II. C-G 
oeÆ
ients C

J

2

j+s

J

1

j;

1

2

s
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II. HARMONICS AND MONOPOLE HARMONICS OF SO(5)

In many physi
al problem, we deal with fun
tions over the homogeneous or symmetri


spa
es, in parti
ular, on group spa
es. These fun
tions 
an be de
omposed over a set of

eigenfun
tions of Casimir operators. Su
h de
omposition is extremely useful and has a 
lear

physi
al interpretation. For example, in 
ase of SO(3), Casimir operator is total angular

momentum and eigenfun
itons are spheri
al harmoni
s Y

j

m

(�; �).

To derive the SO(5)harmoni
s fun
tions, we 
onsider a S

4

sphere, and 
hoose a spe
i�



oordinate system, so-
alled biharmoni
 
oordinate system, whi
h will lead us to express

SO(5)harmoni
s solely in terms of SO(3) well known d

j

m;n

(�)-fun
tions.

x

5

= 
os�

2

;

x

4

= sin�

2


os�

1

sin�

1

;

x

3

= sin�

2


os�

1


on�

1

;

x

2

= sin�

2

sin�

1

sin�

2

;

x

1

= sin�

2

sin�

1


on�

2

; (23)

where �

1

2 [0; �=2), �

2

2 [0; �), �

1

2 [0; 2�), and �

2

2 [0; 2�).

The metri
 tensor g

��

matrix in S

4

sphere in terms of above 
oordinate 
hoi
es is

g =

0

B

B

B

B

B

B

B

B

B

B

�

sin

2

�

1

sin

2

�

2

0 0 0

0 
os

2

�

1

sin

2

�

2

0 0

0 0 sin

2

�

2

0

0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

A

; (24)

with the Jo
obii term is J = jdet(g)j

1

2

= jsin�

1


os�

1

sin�

3

2

j.

Lapala
e operator (Casimir operator) is

�

^

C = J

�1

�

�

g

��

J�

�

= sin

�3

�

2

�

��

2

sin

3

�

2

�

��

2

+ sin

�2

�

2

^

P (�

1

; �

1

; �

2

); (25)
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where

^

P = sin

�1

�

1


os

�1

�

1

�

��

1

(sin�

1


os�

1

)

�

��

1

+ 
os

�2

�

1

�

2

��

2

1

+ sin

�2

�

1

�

2

��

2

2

: (26)

The integral measure of S

4

in biharmoni
 
oordinate system is

d� = Jd�

1

d�

2

d�

1

d�

2

= sin�

1


os�

1

sin

3

�

2

d�

1

d�

2

d�

1

d�

2

: (27)

To solve above eigenvalue equation of Lapala
e operator, we separate variables i.e. the

eigenve
tor fun
tion 	

l

1

l

2

m

1

m

2

(�

1

; �

2

; �

1

; �

2

) =  

l

1

l

2

(�

2

)'

l

1

m

1

m

2

(�

1

)exp(im

1

�

1

+ im

2

�

2

) and obtain

the following se
ond-order ordinary di�erential equation (the eigenvalues of this Lapala
e

operator are l

2

(l

2

+ 3), whi
h 
an be derived after having solved the equations),

^

C 

l

1

l

2

= l

2

(l

2

+ 3) 

l

1

l

2

; (28)

^

P'

l

1

m

1

m

2

= �l

1

(l

1

+ 2)'

l

1

m

1

m

2

: (29)

The general solutions of above two equations are

 

l

1

l

2

(�

2

) = tan

l

2

�

2


os

l

2

�

2

F

1

[

1

2

(l

1

� l

2

);

1

2

(l

1

� l

2

+ 1); l

1

+ 2;�tan

2

�

2

℄ (30)

'

l

1

m

1

m

2

(�

1

) = tan

m

2

�

1


os

l

1

�

1

F

1

[

1

2

(m

1

+m

2

� l

1

);

1

2

(jm

2

j �m

1

+ l

1

); m

2

+ 1;�tan

2

�

1

℄; (31)

where F

1

is the standard hypergeometri
 fun
tion. The restri
tion relations among the

eigenvalues m

1

; m

2

; l

1

and l

2

are

jl

1

j = l

2

� n; l

2

� 0; n = 0; 1; :::; l

2

: (32)

jm

1

j+ jm

2

j = l

1

� 2k; k = 0; 1; :::; [

1

2

l

1

℄; (33)

Above solutions 
an be written in terms of d

J

m;m

0

- fun
tions of the ordinary rotation

group SO(3). The result is

	

l

1

l

2

m

1

m

2

(�

1

; �

2

; �

1

; �

2

) = N

�

1

2

sin

�1

�

2

d

l

2

+1

l

1

+1;0

(�

2

)d

1

2

l

1

1

2

(m

1

+m

2

);

1

2

(m

1

�m

2

)

(2�

1

)exp(im

1

�

1

+ im

2

�

2

);

(34)

where the normalizations 
onstant N = 4�

2

(2l

2

+ 3)

�1

(l

1

+ 1)

�1

, and the orthogonality

relation is
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Z

�

0

sin

3

�

2

d�

2

Z
�

2

0

sin�

1


os�

1

d�

1

Z

2�

0

d�

1

Z

2�

0

d�

2

�

	

l

0

1

l

0

2

m

0

1

m

0

2

	

l

1

l

2

m

1

m

2

= Æ

l

1

l

0

1

Æ

l

2

l

0

2

Æ

m

1

m

0

1

Æ

m

2

m

0

2

: (35)

These harmoni
s only give the basis for the symmetri
 tensor irreps of SO(5). In the

next se
tion, we will extend them to monopole harmoni
s, whi
h in
ludes the basis for spinor

and spinor tensor representations. However, it is still ne
essary to express the in�nitesimal

generators in above biharmoni
 
oordinate system. Moreover, it appears there are apparent


onne
tions between the eigenvalues 
hara
terizing the harmoni
s and the angular momen-

tum dis
ussed in Se
.(??). The following equations gives the detailed representations of the

operators de�ned in Se
.(??):

J

3

= �

i

2

�

��

J

; K

3

=

i

2

�

��

K

;

J

+

= J

1

+ iJ

2

=

i

2

(tan

�1

2�

1

�

��

J

� sin

�1

2�

1

�

��

K

� i

�

��

1

);

J

�

= J

1

� iJ

2

=

i

2

(tan

�1

2�

1

�

��

J

� sin

�1

2�

1

�

��

K

+ i

�

��

1

);

K

+

= J

1

+ iJ

2

=

i

2

(sin

�1

2�

1

�

��

J

� tan

�1

2�

1

�

��

K

� i

�

��

1

);

K

�

= J

1

� iJ

2

=

i

2

(sin

�1

2�

1

�

��

J

� tan

�1

2�

1

�

��

K

+ i

�

��

1

);

T

�

1

2

�

1

2

1

2

1

2

=

�1

p

2

e

�i(�

J

��

K

)

[
os�

1

tan

�1

�

2

�

��

1

�

i

2

sin

�1

�

1

tan

�1

�

2

(

�

��

J

�

�

��

K

) + sin�

1

�

��

2

℄;

T

1

2

1

2

1

2

1

2

=

1

p

2

e

i(�

J

��

K

)

[
os�

1

tan

�1

�

2

�

��

1

+

i

2

sin

�1

�

1

tan

�1

�

2

(

�

��

J

�

�

��

K

) + sin�

1

�

��

2

℄;

T

�

1

2

1

2

1

2

1

2

=

1

p

2

e

�i(�

J

+�

K

)

[sin�

1

tan

�1

�

2

�

��

1

+

i

2

sin

�1

�

1

tan

�1

�

2

(

�

��

J

+

�

��

K

)� 
os�

1

�

��

2

℄;

T

�

1

2

1

2

1

2

1

2

=

1

p

2

e

i(�

J

+�

K

)

[sin�

1

tan

�1

�

2

�

��

1

�

i

2

sin

�1

�

1

tan

�1

�

2

(

�

��

J

+

�

��

K

)� 
os�

1

�

��

2

℄; (36)

where �

J

=

1

2

(�

1

+ �

2

) and �

J

=

1

2

(�

1

� �

2

). Two total angular momentum operators,

^

J

2

and

^

K

2

, are identi
al operators in the symmetri
 tensor irreps. They 
an be expressed with

related to the above operator

^

P , by

^

J

2

=

^

K

2

= �

^

P

4

; (37)

and the eigenvalues on the harmoni
s are

^

J

2

	

l

1

l

2

m

1

m

2

=

^

K

2

	

l

1

l

2

m

1

m

2

=

l

1

2

(

l

1

2

+ 1)	

l

1

l

2

m

1

m

2

; (38)
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^

J

3

	

l

1

l

2

m

1

m

2

=

1

2

(m

1

+m

2

)	

l

1

l

2

m

1

m

2

;

^

K

3

	

l

1

l

2

m

1

m

2

=

1

2

(m

2

�m

1

)	

l

1

l

2

m

1

m

2

: (39)

The detailed formations of SO(5)harmoni
s with l

2

= 0; 1; and,2 are listed in the follow-

ing:

1. l

2

= 0(d = 1):

	

00

00

= (

4�

2

3

)

�

1

2

tan

�1

�

2

2. l

2

= 1(d = 5):

	

01

00

= (

8�

2

15

)

�

1

2


os�

2

;

	

11

�10

= (

16�

2

15

)

�

1

2

sin�

2


os�

1

exp(�i�

1

);

	

11

0�1

= �(

16�

2

15

)

�

1

2

sin�

2

sin�

1

exp(�i�

2

)

3. l

2

= 2(d = 14):

	

02

00

= (

64�

2

21

)

�

1

2

(1� 5
os

2

�

2

);

	

12

�10

= (

64�

2

105

)

�

1

2

sin2�

2

sin�

1

exp(�i�

1

);

	

12

0�1

= �(

64�

2

105

)

�

1

2

sin2�

2

sin�

1

exp(�i�

2

);

	

22

00

= (

64�

2

105

)

�

1

2

sin

2

�

2

	

22

�20

= �(

64�

2

105

)

�

1

2

sin

2

�

2


os

2

�

1

exp(�i�

1

);

	

22

0�2

= �(

64�

2

105

)

�

1

2

sin

2

�

2

sin

2

�

1

exp(�i�

2

);

	

22

��

= ��(

128�

2

105

)

�

1

2

sin

2

�

2

sin2�

1

exp[i(��

1

+ ��

2

)℄; �; � = �1:

The 
on
ept of monopole harmoni
s was originally introdu
ed by T.T. Wu and C.N.Yang

[?℄ in 1970's. They derived the monopole harmoni
s in three dimension spa
e and later

C.N.Yang [?℄ generalized the idea and extended it to �ve dimension spa
e whi
h SO(5) is


on
erned. Monopole harmoni
s, also 
alled Dira
 harmoni
s, are everywhere analyti
 and

form a 
omplete orthonormal set as the basis of expansion of any wave fun
tion around the

monopole. In the 3-D spa
e 
ase, we 
an imagine it is a real physi
al model with a magneti


monopole and derive the monopole harmoni
s by solving the eigenvalue equation of total

angular momentum. We brie
y summarize the major results of monopole harmoni
s in 3-d

spa
e in the following:
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1. Using spheri
al 
oordinates with a monopole of strength g at the origin , the ve
tor

potential 
an be 
hosen to be

^

A

r

1

=

^

A

�

1

= 0;

^

A

�

1

=

g

sin�

(1� 
os�); 0 � � <

�

2

+ Æ;

^

A

r

2

=

^

A

�

2

= 0;

^

A

�

2

=

�g

sin�

(1 + 
os�); 0 � � <

�

2

� Æ; (40)

2. With a parti
le with 
harge Ze in this monopole model, the gauge transformation

phase fa
tor from A

1

to A

2

in the overlap area of above two 
hosen region is

S = exp(2iq�): (41)

where q =

1

2

DZ; D = 2eg, and 
 = h = 1. The transition 
an be written as

^

A

i

1

=

^

A

i

2

+

i

Ze

S

�S

�1

�x

i

; (42)

where x

i

; i = 1; 2; 3 are the three lo
al orthogonal 
oordinates.

3. The total angular momentum operator in above system 
an be written as

^

L = r̂ � (

^

P � Ze

^

A)� q

r̂

r

: (43)

4. The monopole harmoni
s is de�ned as

^

L

2

Y

q

l;m

= l(l + 1)Y

q

l;m

;

^

L

3

Y

q

l;m

= mY

q

l;m

; (44)

with l = jqj; jq + 1j; et
:, and

R

�

0

sin�d�

R

2�

0

jY

q

l;m

j

2

d� = 1.

5. The expli
it evaluation of the above equation is

[�sin�

�1

�

��

sin�

�

��

+ sin

�2

�(�i

�

��

� q + q
os�)

2

+ q

2

℄Y

q

l;m

= l(l + 1)Y

q

l;m

(45)

with the sign � related to the two 
hosen region 1; 2. The expli
it expression of Y

q

l;m

is

(Y

q

l;m

)

1

= N(1� 
os�)

�=2

(1 + 
os�)

�=2

P

�;�

n

(
os�)exp[i(m + q)�℄; (46)

(Y

q

l;m

)

2

= (Y

q

l;m

)

1

exp(2iq�); (47)

where � = �q �m; � = q �m; n = l +m,

N = 2

m

[

(2l + 1)(l �m)!(l +m)!

4�(l � q)!(l + q)!

1

2

;
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and P

�;�

n

(
os�) are the Ja
obi polynomials,

P

�;�

n

(x) =

(�1)

n

2

n

n!

(1� x)

��

(1 + x)

��

d

n

dx

n

[(1� x)

�+n

(1 + x)

�+n

℄:

The 
onstru
tion of monopole harmoni
s in 5-d spa
e ( we 
all it SO(5) monopole har-

moni
s) is slightly 
ompli
ated. The basi
 idea to realize the 
onstru
tion is to extend the

above ve
tor potential to a nonabelian SU(2) gauge �eld. Sin
e in this paper, we only fo-


us on the monopole harmoni
s. Hen
e, we will 
onstru
t the expli
it expression of SO(5)

in�nitesimal operators with a non-abelian SU(2) gauge �eld in the biharmoni
 
oordinate

system , instead of repeating the abstra
t mathemati
al 
on
epts and derivation in Ref. [?℄.

The basi
 idea is to express the generators of one of the subgroup SO(3),

^

J

i

or

^

K

i

, by adding

the additional generators of SU(2) gauge �eld, i.e,

^

J

i

=

^

J

0

i

+

^

Y

i

;

^

K

i

=

^

K

0

i

(48)

or

^

K

i

=

^

K

0

i

+

^

Y

i

;

^

J

i

=

^

J

0

i

: (49)

Similar to SO(3) monopole, the di�eren
e of above two 
hoi
es results where the singu-

larity lo
ates when the gauge �eld is 
onstru
ted. The results in the harmoni
s di�ers from a

gauge transformation phase. We will make use of the �rst 
onstru
tion expression. The left

job is to obtain the expli
it expression of the remaining four

^

T operators. By means of the


ommutators between the SO(5) in�nitesimal generators, the

^

T operators 
an be written as

T

1

2

1

2

1

2

1

2

= T

1

2

1

2

(0)

1

2

1

2

+

p

2tan

�1

�

2


os�

1

exp(�i�

1

)Y

+

�

p

2tan

�1

�

2

sin�

1

exp(i�

2

)Y

3

(50)

T

1

2

1

2

1

2

�

1

2

= T

1

2

1

2

(0)

1

2

�

1

2

+

p

2tan

�1

�

2

sin�

1

exp(�i�

2

)Y

+

+

p

2tan

�1

�

2


on�

1

exp(i�

1

)Y

3

(51)

T

1

2

1

2

�

1

2

�

1

2

= T

1

2

1

2

(0)

�

1

2

�

1

2

+

p

2tan

�1

�

2


os�

1

exp(i�

1

)Y

�

�

p

2tan

�1

�

2

sin�

1

exp(�i�

2

)Y

3

(52)

T

1

2

1

2

�

1

2

1

2

= T

1

2

1

2

(0)

1

2

�

1

2

�

p

2tan

�1

�

2

sin�

1

exp(i�

2

)Y

�

�

p

2tan

�1

�

2


on�

1

exp(�i�

1

)Y

3

: (53)

The Casimir operator 
an be 
al
ulated and be written as

^

C = �sin

�3

�

2

�

��

2

sin

3

�

2

�

��

2

+

4J

2

sin

2

�

2

+

2(1� 
os�

2

)

sin

2

�

2

[

^

J

2

�

^

K

2

℄ +

^

Y

2

: (54)
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The SO(5) monopole harmoni
s 
an be written as

	

J

M

K

M

jm

j

;km

k

= Nsin

�1

�

2

F

J

M

K

M

jk

(�

2

)G

jm

j

;km

k

(�

1

; �

1

; �

2

); (55)

where

^

J

2

G

jm

j

;km

k

(�

1

; �

1

; �

2

) = j(j + 1)G

jm

j

;km

k

(�

1

; �

1

; �

2

);

^

J

3

G

jm

j

;km

k

(�

1

; �

1

; �

2

) = m

j

G

jm

j

;km

k

(�

1

; �

1

; �

2

)

^

K

2

G

jm

j

;km

k

(�

1

; �

1

; �

2

) = k(k + 1)G

jm

j

;km

k

(�

1

; �

1

; �

2

);

^

K

3

G

jm

j

;k m

k

(�

1

; �

1

; �

2

) = m

k

G

jm

j

;km

k

(�

1

; �

1

; �

2

)

and the N is the normalized 
onstant. J

M

and K

M

label the given irreps (see eq.??). For a

given irreps (J

M

; K

M

), the eigenvalue of Casimir operator ,

^

C 

J

M

K

M

jm

j

;km

k

= 
 

J

M

K

M

jm

j

;km

k

= 2(J

2

M

+K

2

M

+ 2J

M

+K

M

) 

J

M

K

M

jm

j

;km

k

:

Substituting the expli
it expression of

^

C into above equation, we obtain

[�sin

�1

�

2

�

��

2

sin�

2

�

��

2

+

�

2

+ �

2

+ (�

2

� �

2

)
os�

2

2sin

2

�

2

℄F

J

M

K

M

jk

(�

2

) = [
+ 2� Y (Y + 1)℄F

J

M

K

M

jk

(�

2

):

(56)

where � = 2k + 1 and � = �2j � 1. The above equation has the similar expression as

Eq.(??). Thus we 
an get the allowable value of Y in order to obtain the allowable solution

of above equation. Compared with Eq.(??), the value of Y should be not greater than

J

M

�K

M

. However, sin
e the angular momentum operator

^

J is the sum of

^

K and

^

Y , the

value of Y should be not less than jJ

M

�K

M

j. Therefore, the value of Y 
an only be equal

to J

M

� K

M

for a given irreps (J

M

; K

M

) and the right side of above equation be
omes to

be (J

M

+K

M

+ 1)(J

M

+K

M

+ 2)℄F

J

M

K

M

jk

(�

2

). The expli
it expression of fun
tion F 
an be

written as

F

J

M

K

M

jk

(�

2

) = (1� 
os�

2

)

�=2

(1 + 
os�

2

)

�=2

P

�;�

n

(
os�

2

); (57)

where n = J

M

+K

M

+ j � k + 1.

We 
an 
onstru
t the expli
it expression of G

jm

j

;km

k

by means of C-G 
oeÆ
ients as

G

jm

j

;km

k

(�

1

; �

1

; �

2

) =

X

m

0

k

C

j;m

j

km

0

k

;Y (m

j

�m

0

k

)

jkm

k

m

0

k

; Y (m

j

�m

0

k

) >; (58)
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where

jkm

k

m

0

k

; Y m

Y

>=

s

2k + 1

2�

2

d

k

m

0

k

;m

k

(2�

1

)exp[2i(m

k

�

k

+m

0

k

�

j

)℄jYm

Y

> : (59)

The renormalized 
onstant N is

N = 2

j�k

[

(j + k +

3

2

)(2k + 1)!(2j + 1)!

(2j + 2k + 2)!

℄

1

2

: (60)

The monopole harmoni
s have the same orthogonality relation as that in Eq.(??). The

expli
it forms of SO(5) monopole harmoni
s of the spinor irreps(d=4), and adjoint repre-

sentation are given in the following :

(1). spinor irreps, d = 4, (J

M

=

1

2

; K

M

= 0), and 
 = 2:5:

	

1

2

0

1

2

�

1

2

;00

=

q

3

8�

2
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2

(1� 
os�

2
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�

1

2

j

1

2

�

1

2

>
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2

0

00;
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2
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=
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3
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2

)

�

1

2

exp(i�

k

)[
os�

1

exp(i�
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2

�

1

2
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os�
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(2) adjoint irreps, d = 10, (J

M

= 1; K

M

= 0), and 
 = 6:

	

10

10;00

=

q

5

8

(1 + 
os�

2

)j10 >
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1�1;00

=

q
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8
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os�
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=
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APPENDIX A: SUMMARY OF TENSOR REPRESENTATION OF SU(N)

1. The n rank tensor T of SU(N) is de�ned as:

O

u

T

a

1

a

2

:::a

n

= u

a

1

b

1

u

a

2

b

2

:::u

a

n

b

n

T

b

1

b

2

:::b

n

; a

i

; b

i

= 1; 2; 3:::N;

where, u is an element of SU(N). Considering the linear spa
e generated by all of 
ompo-

nents of tensor, we 
an get a representation of SU(N). However, this representation is not

irredu
ible. It is easy to see that the permutation symmetry in the index of tensor is kept
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under SU(N). This means that set of the 
omponents of tensor with 
ertain permutation

symmetry is an invariable subspa
e under SU(N). The mathemati
al te
hnique to de
om-

pose a tensor spa
e to its invariable subspa
e is developed by introdu
ing Young Operator

and Young Pattern with respe
t to S(N) group ( Readers who are not familiar with these


on
epts 
an �nd this related material in some standard books.)

2. The irredu
ible tensor representation of SU(N) is labeled by a Young pattern [Y =

(y

1

; y

2

; :::; y

N

)℄, whose raw is not greater thanN . The dimension of irredu
ible representation

given by a 
ertain Young pattern is equal to the number of Young standard tableaux, whi
h

is de�ned in following: We label ea
h box in Young pattern with a positive integer not

greater than N . A labeled Young pattern is 
alled Young standard tableux if in a raw, the

number in a box is not greater than the number in its left boxes, and in a 
olumn, the

number in a box is smaller than the number in the boxes below it ( the numbers in the same


olumn must be di�erent).

3. We 
an also introdu
e nth rank tensor, whi
h is de�ned as:

O

u

T

a

1

a

2

:::a

n

= u

�

a

1

b

1

u

a

2

b

2

:::u

�

a

n

b

n

T

b

1

b

2

:::b

n

; a

i

; b

i

= 1; 2; 3:::N;

Moreover, we 
an de�ne general (m;n) rank mixed tensor,

O

u

T

a

0

1

a

0

2

:::a

0

m

a

1

a

2

:::a

n

= u

b

1

b

0

1

u

b

2

b

0

2

:::u

b

0

n

b

n

T

b

0

1

b

0

2

:::b

0

m

b

1

b

2

:::b

n

; a

i

; b

i

; a

0

; b

0

= 1; 2; 3:::N; :

The irredu
ible representation of SU(N) 
an also be derived from tensor or mixed tensor

invariant spa
es labeled by Young patterns. We mark [Y ℄

�

with respe
t to the Young pattern

related to invariant tensor spa
e and [Y ℄

�

=[W ℄ with respe
t to the young patterns related

to invariant mixed tensor spa
e . The invariant mixed tensor spa
e should be satis�ed with

an additional tra
eless 
ondition similar to what we dis
uss in SP (4).

4. De�ning a Nth rank antisymmetri
al tensor,

�

a

1

a

2

:::a

N

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1; even permutation

�1; odd permutation

0; others

(A1)
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we 
an 
hange an mth rank antisymmetri
al tensor( tensor) to (N �m)th antisymmetri
al

tensor(tensor) by

T

a

1

a

2

:::a

N�m

=

1

m!

X

b

�

a

1

a

2

:::b

1

b

2

:::b

m

T

b

1

b

2

:::b

m

: (A2)

This relation leads to a general result about the equivalen
e of irredu
ible representations

between invariant tensor and tensor spa
e:

[y

1

; y

2

:::y

N

℄

�

=

[y

1

; y

1

� y

N�1

; ::y

1

� y

2

℄

�

:

5. Littlewood-Ri
hardson rule:

Littlewood-Ri
hardson rule determines what irreps [Y ℄ are in
luded in the produ
t of

two irreps [Y

1

℄ and [Y

2

℄.

(1). Draw the Young diagrams of [Y

1

℄ and [Y

2

℄.

(2). Choose the simpler one between these two Young diagrams and �ll up ea
h of boxes

with the line number it lo
ates.

(3). Append ea
h of boxes to the more 
ompli
ated Young diagram with starting from

the boxes �lled with the lowest number in all possible ways subje
t to the rules(needed to

be satis�ed after adding ea
h box):

I.resultant diagram are always regular. II. they are no two boxes �lled with the same

number are appeared in the same 
olumn III. the number of appended boxes �lled with

larger number 
ounting from right to left and from top to bottom should not be greater

than that of appended boxes �lled with smaller number 
ounting in the same way. (4).

Disregard the Young diagrams [Y ℄ of more than N rows and delete the 
olumns of length

N in any diagram [Y ℄

6. Hook rule to 
al
ulate the dimension of irreps of SU(N):

The formula to 
al
ulate the dimension of irreps of SU(N) is:

d

[Y ℄

=

Y

1�i�j�N

Y

i

� Y

j

� i + j

j � i

: (A3)

There is a simple Hook rule related to above formula:

d

[Y ℄

=

d

0

[Y ℄

H

[Y ℄

;
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where the numerator d

0

[Y ℄

is a produ
t of integers �lled in the boxes of Young diagram [Y ℄

as the following rule: �lling all the diagonal boxes in the Young diagram with integer N ,

the subsequent boxes in the same rows with N +1, N +2 ..., and that in the same 
olumns

with N � 1, N � 2 et
,

and the denominator is the produ
t of hooklength asso
iated with ea
h boxes in Young

diagram. hooklength of a given box in a given Young diagram is de�ned as: the number of

boxes in a hook whi
h 
onsists of the given box, those on its left side at the same row and

below it at the same 
olumn.

7. Examples for SU(4):

d

[p;q℄

=

1

12

(p + 2)(p+ 3)(q + 1)(q + 2)(p� q + 1);

and the Hook rule is shown in the Pi
.??.

FIG. 5. Hook rule to 
al
ulate the dimension of irreps of SO(4) with Yang pattern [p,q℄
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