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A. SO(5) Group

An element R in the orthogonal group O(5) is a real linear orthogonal transformation
in five dimension space. Supposing X, Y are two vectors in five dimension space, the scalar
product

XY = z1y1 + T2y + T3y3 + TaYs + T5Ys

is invariant under the transformation X’ = RX,Y’ = RY. Therefore, the matrix R must
satisfy the following equation, R* = R, RR = 1, det(R) = £1. SO(5) is a subgroup of O(5).
The elements in SO(5) satisfy det(R) = 1. det(R) = 1.

Any elements in SO(5) can be diagonalized by a unitary matrix U. The eigenvalue A
should satisfy |A| = 1; thus, A* is also an eigenvalue. Generally, the element R in SO(5) can
be written as

R=UAU'=¢*

A is a diagonal matrix. Since R* = R, the matrix H satisfies H* = —H,tr(H) = 0. H is
a traceless and pure matrix, that kind of matrix requires ten independent parameters . We
choose ten basis matrixes Ly, a < b =1,2,3,4,5, and (Lgp)ea = —i(0ac0pq — 0aadpe) and H
can be written as

H = ZwabLabaaab = 1727374757

a<b

where w,, are the real parameters.
The above ten matrixes zl,, are called the generators of SO(5). The commutation

relation between them defines the Lie algebra of SO(5),



[Tab; Tcd] = _i(ébcTad + 5adTbc - 6achd - 5deac)-

The diagonal matrix A can be written as

ei(pl
0
A= 0

0

0

0
a

0

0
0

61@2

It is convenient to convert above matrix to real matrix, which can be written as

VAV = A=

, where

cosp; —sinp; 0 0 0
Sinpy  cosyy 0 0 0
0 0 cosps —sinpy 0
0 0 stnyy  cosps 0
0 0 O 0 1
G0 0o
G000
0 0 7 550
0 0 5% %0
0 0 O 01

It is easily to check that the matrix UV is a real and unitary matrix. UV is an element

of SO(5). So the equation (UV)"'R(UV) = A define the class of SO(5). The class in SO(5)

can be described by two parameters ¢y, 5. The class concepts is very useful in discussing

the representation of group.

B. The Symplectic Group SP(4)

The symplectic group SP(4) is the group of real linear transformation P in four dimen-

sional space, which leave skew — symmetric bilinear form defined as
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XY =2y — 2y + T2y2 — w5y (2)

invariant. Here we choose the components of a vector X in four dimensional space as

(21, T2, 2, xb). Simply, the skew — symmetric bilinear form can be written as

XY = Eijl'iyj,
where the ¢ matrix is
0 0 10
0 0 01
E =
-1 0 00
0 =100

The invariance of above equation defines an symplectic transformation P which satisfies
PeP=¢ (3)

The symplectic transformation P is unimodular, which means det(P) = 1. This property can
be easily derived from above equation. To derive the generators of SP(4), we consider the
infinitesimal symplectic transformation P = I — ¢A, where [ is the identical transformation
and A is the infinitesimal part. By using Eq.7?7, we immediately obtain that the infinitesimal

matrix A has the following form

Ao A A |
Ay — A
and Ay = Ay, A3 = A;, A* = A. Therefore, each of matrixes A, and A3 has three in-
dependent parameters, and the matrix A; has four. There are totally ten parameters for
A. The matrix A can be expressed by ten basis matrixes E,s,, = *£1,£2. Here we
choose these ten independent matrixes as (Eug)ye = 1(sign(a)da,0ss — sign(B)0_g0_a0),

and E,3 = E_g_,. The commutation relation between the generators is
(Eag, Eye) = i(sign(B)0sy Eae — sign(a)daeEypg + sign(B)0p—oEo—y — sign(a)da—E_ps). (4)
The above commutator defines the Lie algebra for SP(4).
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C. The equivalence of SO(5) and SP(4)

One can check that the Lie algebra of SO(5) is the same as that of SP(4) by comparing
the generators as shown in (table ??). Later we will see the Dynkin diagram for SP(4),C,
and SO(5),By are similarly related. Since these two groups have the same Lie algebra
structure, their finite irreducible representations (irreps) are also identical. In this paper,
we focus on the SO(5). However, sometimes it is more convenient to use the notation of
SP(4). For example, we can obtain all of irreps of SP(4) by making use of the SO(4)
tensors, however, if we discuss SO(5), we need to discuss three different kind representation:

tensor spinor and spinor tensor representations.

E(SP(4)) Root(SO(5)) Operator L(S0(5)) T(SO(4))
TEn $(Hy + Hy) 5(S: — Q) 5(L12 + L3s) T
By, E3 Ty — imy $(Lia + Lo +i(La1 + Laa)) —2T}¢
E_11 E_g 71';r + iﬂ'; %(LM + Log — i(L31 + L24)) ﬂTE%O
$Eo $(H1 — Hy) —1(8: + Q) 5(L1y — L3s) Tgs
Ey N — Ty — Ty 5(—=Lig + Loz + i(L31 — Los)) —V2T5}
E_99 E_4 —7ry+ + lW;:F %(—L14 + Log — i(Lgl — L24)) \/§T811
11
~phoz| B —iv2rs 73 (L2s +iLns) TZ 4
11
—%E—m E, V2 %(L% —iL5) ng
11
1 1 1 . 23
———=Fy E_ ——==5_ —=(Ly4s5 + 1L T2?
Nkt 2 V2 \/5( 45 +iL3s) -1l
11
—%Ei,g Ey %S+ %(_LALS + 'L'L35) Tgi%

TABLE I. Mapping of infinitesimal operators between Sp(4) and SO(5). The third column

responds to the irreducible tensor operators of SO(4) (see Section 77?)




I. REPRESENTATION OF SO(5)

In this Chapter, three different methods with respect to the representation of SO(5) are
given. Readers who have different favors can readily choose one of them and follow it. All
concepts we use in this chapter are briefly discussed. In section (??), our discussion is based
on tensor and spinor. It is easily to be understood by those who are not familiar with the
general concepts in Lie Algebra. Readers are supposed to know some basic concepts of Young
Operator and Young Pattern. The second section is devoted to the general highest weight
representation of SO(5). We briefly express the concepts and omit the mathematical proof.
The third section is rather special only for SO(5). The method can not be generalized
to all of other simple Lie Group. We decompose SO(5) to its subgroup SO(4), which is
equal to SU(2) x SU(2). The states in the representation space are naturally labeled by
representation in SU(2). For practical application in physical model, this method may be

more convenient.

A. Young pattern, Young tableaux and SO(5)(SP(4)) representation

In this section, we discuss how to use the Young pattern and Young tableaux to label
the irreducible representations of SO(5) and SP(4). A brief summary about the irreducible
tensor representation of SU(N) is attached in appendix ??. The representations of SO(5) is
a little more complicated. They can be divided into three kinds of representations: tensor,
spinor, and spinor tensor representations. We will discuss those basic concepts. However,
instead of detailing the representations of SO(5), we will only focus on how to obtain the
irreducible representation of SP(4) by Young’s technique in this section, although it is
possible to study each type of representations of SO(5), respectively. We will show how to
derive the the general formula of an irreps dimension of SP(4), a method to decompose a
given irreps of SU(4) into irrepses of SP(4), and a generalized Littlewood-Richardson rule
on SP(4).



Similar to SU(N), the n order tensor of SO(5) is defined as
OrTu105..0n = Rayby Rasy - Bab, Torbs. b,y @iybi = 1,2,3,4,5. (5)

An essential difference here is that an constant tensor d,, is unvariant tensor of SO(5), which
mean

OR(sab = Roa Ryy 6a’b’ .

Therefore, given any tensor T} 4,. 4,, the tracing tensor on any two indexes,for example
> o Taaas..a, Dy tracing the first two indexes, is an invariant tensor space of SO(5). If we
want to use Young pattern to describe the invariant tensor space of SO(5), we must first
separate the tracing tensor space. Then, we can use Young pattern to obtain the other
invariant space for the tensor irreps of SO(5).

The irreducible tensor representations obtained above are not complete . there exists
the other irreducible representations on SO(5). They are called spinor and spinor tensor
representations. In Appendix (??7), we summarize some basic concepts related to Clifford
algebra, which is necessary in order to understand spinor and spinor tensor representation.

For SO(5), the Clifford algebra is given by the famous Dirac matrixes(see Appendix
(?2), 71, 72, 35 V4, V55

{Ya, W} = 200

The spinor representation of SO(5) is defined as
D(R)™'7,D(R) =Y Raym, R € SO(5).
b

The spinor representation of SO(5) is 4 dimensional.

The spinor tensor is defined as
OR\IIalaz...an,oz - Ra1b1Ra2b2"'RanbnD(R)aﬂ\ljblbz...bn,ﬂa g, b’L - 17 27 37 47 51 a, /8 = ]-7 27 37 4.

The irreducible representation gotten from the spinor tensor space is called the spinor tensor
irreps. The tensor index in the invariant spinor tensor space must also satisfy the traceless

condition.



So far, we give the basic concepts about the tensor, spinor and spinor tensor represen-
tation of SO(5). Although it is possible to study each of these irrepses with Young pattern
and tableux more deeply, the easiest way to apply Young technique is to discuss irrepses
of SP(4) . Since the Lie algebras of SP(4) are exactly the same as SO(5), the irreps of
SP(4) are also the same as SO(5). The whole finite irreps of SP(4) can be obtained from
its tensor invariant spaces; thus, the tensor and spinor representations of SO(5) are auto-
matically included in the irrepses of SP(4). The following part of this section is devoted to
the irreducible tensor representation of SP(4).

A tensor of SP(4) has the same definition as Eq.??. Considering the space of tensors of
rank n, with components T, 4, ., We can construct the specific trace in the SP(4) tensor
spaces by multiplying the matrix ¢,

(trT)ag.an = D CarasTaras...an-
aras
The trace operation gives a tensor of rank n — 2. The subspace of such trace contraction
tensors becomes an invariant space under the transformation in SP(4). There are n(n — 1)
traces for a n-th rank tensor. So we divide the space of tensors of rank n into two subspaces,
one with all traceless tensors, the other with the trace contraction tensors. a general nth

rank tensor of SP(4) can be written as

_ 0
Tala2---an - Talaz...an + Fala2---an
0 . . .
where T, ,, . is the traceless part and Fy, q,. 4, is the trace contraction part. Generally we

can use traceless condition to get the formation of 7°. The irreducible representation spaces
can be obtained by use of the Young pattern. However, the rows of the Young pattern to
mark the irreducible representations SP(4) should be not larger than two. The reason is
that a space of nth traceless tensors is exactly equal to duality space of (N — n)th traceless
tensors by use of anti-symmetry tensor € given in Appendix (??). Therefore, if the boxes of
a column in a Young pattern are three, we can use its duality column with boxes equal to

4 — 3 = 1. The difference on SP(4) from that discussed on SU(N) is that since the tensor
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is traceless, we can directly combine the duality column with the left part of origin Young
pattern together. The representations with respect to the origin and later Young pattern are
equivalent. Each irreducible representation of SP(4) can be marked by Young pattern [p, ¢,
p,q = the boxes in first and second rows. There is an easy way to calculate the dimension

of the irreducible representation of SP(4) with respect to that of SU(4),

D(p,q) = d(p,q) —d(p —1,q—1) (6)

where the d(p,q) is the dimension of irreps of SU(4) labeled by the same Young pattern [p, ¢|
. The result counts on the following reason: Since the tensors in the representation space for
SP(4) are traceless, we divide the representation tensor space for SU(4) into two subspace,
one with trace contraction tensors and the other with traceless tensors. The later subspace
should be equal to the representation space for SP(4). The dimension for the former space
is exactly equal to the dimension of representation of SU(4) labeled by the Young pattern

[p — 1,q — 1]. Utilizing the result for SU(4) given in Appendix (??), we obtain

D(p,a) = 50+ 2)a+ Dp—a+ D(p-+q+3) (7

It is very tedious and tiresome work to obtain the generator irreps matrix based on the
invariant traceless tensor space. However, the Young pattern is rather helpful to discuss
other aspects.

The first issue can be readily handled here is to decompose an irreps of SU(4) into
irrepses of SP(4). The reason why an irreps of SU(4) can be decomposed into SP(4) is
the irreducible tensor space for SU(4) can be divided into two subspaces as that discussed
above. The trace contraction tensors can be reconsidered as the lower rank tensors, and
can be divided successively into traceless tensors and sub-trace contraction tensors again.
This division ultimately leads to decompose the original tensor space for SU(4) into the
irreducible representation tensor spaces for SP(4). The hint to solve this problem has been

shown in (??). The result is straightforwardly derived , which is

0, dlsuey = [, dlspay Plp — 1,4 — spw--Plp — ¢, 0lsp)- (8)
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However, this result is not complete. The Young pattern labeling the irreps of SU(4) can
be more than two rows. In particular in case of SU(4), we need only to handle the Young
diagram having three rows. We developed a general way to decompose such Young diagram.
The method includes the following steps:

1. Re-write Young diagram more than two rows as the equivalent mixed sign [s]*/[p, ¢
, as the way shown in Appendix (?77?).

2. Decompose [p, q] according to Eq.(?7).

3. Apply the Littlewood-Richardson rule to decompose all of the products of one decom-
posed component Young patterns, which comes from [p, ¢], with [s]*.

4. Disregard the Young patterns which the total rows are more than two.

The decomposition result is the sum of all of the Young patterns which satisfy above
condition. There is an example to illustrate above procedure.

example: [3,3,2]sy4)
[3,3, 2]sv() = [2]7/[1, 1]
1, ]sv@ = [1,1] 4 [0]
2] ® ([1,1] +[0])) = [3,1] + [2,1,1] + [2]

1
2

(1).
(2).
(3)-
(4).

4). Dropping off [2, 1 ,1], the final result is:

3,3, 2]su@y =~ [3,1]spay + [2lspa
Dimension : 45 35 10

The second easily solvable problem is to obtain all irrepses including an product of two

irrepses of SP(4), which means

[p1, 1] Qp2, o) =7 EP7... P

An approach is developed in the following. It is also connected with our above results.

1. Use Equation 7?7 to rewrite the product into

[P, 1] ®[P2,Q2] ~{lp, ] —[pr— 1,0 - 1]}®{[pz,£]2] —[p2—1,¢2 — 1]},

where the Young pattern in the right side of equation denotes the irreps of SU(4).
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2. Apply Littlewood-Richardson rule to revolve above products into the sum of the
irreducible representations of SU(4) on the right part of above equation and keep the sign.

3. Use the method shown above to decompose each obtained irreps of SU(4) into irrepses
of SP(4).

The results is the sum of the total irrepses we obtained.

Two examples are illustrated in following by using above method:

(1) The product of spinor irreps [1](dimension 4) with a general irreps [p, ¢, i.e. [1]®][p, ¢

1@ p,a] =p+1Lq+[pg+1]+[pg—1+[p— 14 (9)
Results of several low dimension irreps products :

1 ® [1

12

2] + [11]

Dimension: 4 x 4 = 10 + 5

Dimension: 4 x 10 = 20 + 16
[1] @ [2,1] = [3,1] + [2,2]
Dimension: 4 x 16 = 35 + 14

n
n
1o 2] = B +[2,1] + [4
-
+ [2] + [1,1]
n

10 + 5

(2) The product of symmetric tensor irreps [1, 1](dimension 5) with general irreps [p, q],

ie. [1,1] ® [p,q].
p+1,¢+1]+[p,ql+p+1,q—1]+[p—1,¢+1]+[p—1,g—1], p#q
L1 ®[p,q] =
p+1Lg+1]+p+1l,g—1+[p—1,q-1], p=gq
(10)

Results of several low dimension irreps products:
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L1 ® [1] ~[2,1] + [
Dimension: 5 x 4 = 16 + 4

1,1] ® [1,1] =~ [2,2] + [2] + [0]
Dimension: 5 x o5 = 14 + 10 + 1

1,1] ® [2,0] ~ [3,1] + [2] + [1,1]
Dimension: 5 x 10 = 35 4+ 10 + 5

1,1] ® [2,2] ~ [3,3] + [3,1] + [1,1]
Dimension: 5 x 14 = 30 + 35 + 5

B. Highest weight representation of SO(5)

The general method to construct irreps of an semi-simple Lie Group is to analyze its Lie
algebra. The irreps is so-called highest weights representation. There are many concepts
with respect to this general representation method. In this section, we just simplify this
method to apply for SO(5). The detailed proof is omitted.

At first, we explain several concepts with respect to semi-simple algebra.

1. Lie algebra,

[La, L] =iCSpLc,

where L, is infinitesimal generators and C§y is called structure constants.

2. Killing matrix:
PQ
Lie algebra is semi-simple if det K # 0. With the generators of SO(5) shown as before, the
Killing matrix K for SO(5) is
Kap = —6045.

3. C'artan subalgebra:

if H is an element of Lie algebra and its eigenvector E is defined as

[H,E] = oF,
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then the vanishing eigenvalue is the unique degenerate eigenvalue. The degeneracy [ is
called the rank of Lie algebra. All of the eigenvectors with eigenvalue zero form an abelian
subalgebra called Cartan subalgebra. In the case of SO(5), the rank of Lie algebra is two.
We can choose

Hl - L127 HZ - L347

to form its Clartan subalgebra.

4. Root, simple root, and root diagram:

The left generators can consist of the eigenvectors of Cartan subalgebra with nonva-
nishing eigenvalue. Each eigenvalue, we call root, can be considered as a “vector” in a
[-dimensional space. This space is called root space. Th e graphical representation of the
root vectors in root space is called root diagram. it is easy to prove that if « is a nonvan-
ishing root, then —q is also a root and it is not degenerate. If the first component in the
root vector is positive, we call this root is positive root. A positive root is a simple root if
it cannot be decomposed into the sum of two positive roots.

In case of SO(5), there are eight roots and the root space is a two dimensional space.:
[H’i; Ea] = aiEaai = 17 27 o = (ala 012)

Based on the Cartan subalgebra and the eigenvectors, the Killing matrix changes to be

0,
where the matrix g;; = —60;5,%,j = 1,2 and o, is the first Pauli matrix, and the Lie algebra
of SO(5) is modified to

[H17 HZ] =0

[Hia Ea] - aiEa
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NopEotp o+ B is aroot

[Eaa Eﬂ] =19 2 CYiHi a=-—0 (11)
0 other
where o = =3, g% a; = g, 3 g gr; = 0i5, and Nyg depends on our choice of eigenvectors

and it satisfies

Nag=-N_os=Nsa
The root vectors and roots in SO(5) are,

Eigenvalues  Eigenvector
o = [1,—1] E, = \/——[Lm + Loy + i(Log — L14)]

a=[-11 E,= T[Ll?) + Loy — i(Loz — L14)]

=[0,1] Ey = 5[Las + iLas]
a_y=1[0,-1] E_5= \/——[ng, — i Ly5]
az = [1,1] E; = T[le’ — Loy +i(Lys + L1y)]
az = [-1,-1] E_3= \/_—[LIS — Loy — i(Log + L14)]
= [1,0] E, = \/——[L25 — iLy5]

a_4 = [—]_, 0] E,4 = E[L25 + iL]_5]

There are four positive roots. The first two positive roots a; = [1, —1],ay = [0, 1] are the

simple roots. The root diagram of SO(5)is shown in Picture ?7.

FIG. 1. Root diagram of SO(5)
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5. Dynkin diagram and Cardan matriz:

In Lie algebra theory, there is an alternative ingenious scheme to draw the root diagrams
for any rank Lie algebra. It is called Dynkin diagram. It just tells the information of the
simple roots of Lie algebra. The classic Lie group can be totally defined according to it’s
Dynkin diagram. In this definition, SO(5)is called By, and SP(4) is called C5. The Dynkin
diagrams of SO(5) and SP(4) are shown in Picture 77 where the empty hole represents the
longer amptitute simple root [1, —1], and filled hole represents the shorter roots [0,1] . The

two lines between two roots are corresponding to the angle between them is equal to %.

FIG. 2. Dynkin diagrams of SO(5)and SP(4)

There is also a matrix, called C'artan matrix to label the simple roots of Lie algebras. It
is defined as
2(q;,
Az] — ( (2 J)’
Qy,
where (a;, ;) denote the scalar product, and o, o; are simple roots. Cortan matrix of
SO(5) is
2 =2
A=
-1 2
6. weight, weight diagram and highest weight representation
Since C'artan algebra is an abelian algebra, we can choose the space generated by the
common eigenvectors of the elements H; as the representation spaces. These kinds of spaces

can be divided into the irreps spaces. In case of SO(5)we denote an eigenvectors of its

Cartan subalgebra as |my, my >,
Hi|my, my >= my|lmy,my >,i=1,2.

The two dimensional vector M = [my, my| is called weight and the 2-dimensional vector
space extended by the set of weights is called weight space. If the first nonvanishing compo-

nent of a weight is positive, this weight is called positive weight. A weight [my, ms] is said
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to be higher than [wy, wy)] if [my — wy, my — ws] is positive. In an irreducible representation
space, a weight is said to be simple if it belongs to only one eigenvector.

Since the Lie algebra is totally determined by its simple roots, we can guess the irreducible
representations of Lie algebra must depend on simple roots. A set of weights M, M5, called

fundamental weights, is defined as
2(M;, i) = (v, @i)dij, 4, = 1,2
where «; is a simple root. The fundamental weights of SO(5) are
11
M, =1[1,0], My = [=, =]
1 [ ) ]7 2 [27 2]

There is an obvious geometrical relation between simples roots and fundamental weights:
if the simple roots are a group of basic vectors in root lattice space, the fundamental
weights are just the basic vectors in the reverse lattice space.

The irreducible representations of Lie group are established by the following important
theorem:

Theorem: The irreducible representation is uniquely determined by its highest weight
M~ the highest weight is a simple weight and can be written as an linear combination of
fundamental weights, M* = 3", u; M;, ;1 = 1, 2, is non-negative integer.

A highest weight of SO(5)can be written as

M= [+ 52 (12)
Similar to the roots diagram, A weight diagram can be drawn to represent an irreps in
weight space.

The other powerful theorem is very useful:

2(M,a)

Theorem : For any weight M and root «, the quantity SETR is an integer, and the

weight M' = M — M)y i5 also a weight and has the same degeneracy as M.
(,0)

The geometrical meaning of above Theorem is very obvious in the weight space . M’ is

corresponding to the vector reflecting M through a hyperplane perpendicular to the root a.
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Therefore, generally we can define an group S which includes the total reflection operations
related to the planes perpendicular to the roots and the operation products.

The group S for SO(5) includes eight elements. An weight [mq, ms] by operating trans-
formations in S can be changed to [£my, £mg]and[xms, £m;]. Weyl has derived the general
formula to calculate the dimension of any irreps of any semi-simple Lie algebra. Given the
highest weight M*, the dimension of the irreps is

M*a
a0L) = [+ ==}

[0}

where R = %Za « and the sum here is over all positive roots.
In case of SO(5), R = [2,3], and for a given highest weight M*. above dimension
equation becomes (see Eq.(77?))
Uy U9 2U1 U2

dM7) = 1+ u)d+u)l+ 5+ )0+ =+ ),

Specifically, it is tensor irreps when uy is an even integer, spinor irreps when us = 1, u; = 0,
and spinor tensor irreps in the other situations.
7. details in spinor irreps (d=4) and vector irreps (d=5) of SO(5)

(1) spinor irreps M* = [£, 1]:

272
H =3(1><1/+]2><2|-[3><3]—-[4><4])
Hy = 3(1><1]=[2><2[ - [3>< 3] +[4 >< 4])

E, = %|2 >< 4|

E, = T(H >< 2|+ |4 >< 3|)
E; = 7|1><3|
E, = \/—_(—|1 >< 4| +1]2 >< 3))

16



FIG. 3. weight diagram of spinor irreducible representation of SO(5)
(2) vector irreps M* = [1,0]:

Hy = |1><1]—4><4

Hy = |5><5|—|2>< 2]

B = (1 ><5]+[2><4])
E, = Z(3><2[+[5><3)
By = (|1 ><2[+]5><4])
Ey = Z(=2><4|+[1 ><3|)

FIG. 4. weight diagram of vector irreducible representation of SO(5)

8. The second order Casimir operator
Casimir operators are invariant operators in carrier spaces of an irrepses. We only discuss

the second order Casimir operator here, which is defined as

C=> L2, (13)

a<b
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In the case of SO(5), we can easily calculate it for a given irreps. By using of Cartan
subalgba and eigenvectors defined before, Casimir operator becomes,
C=H{+H;+6 Y  E,Eip.
a,positive root
The value of Casimir operator acting on the state in the carrier spaces of a given irreps

[my = uy + %, my = ] is

C =m? 4+ m3 + 3my + my (14)
2 U%
= Uy + ? + ujug + 3U1 + 2UQ. (15)

C. Irreducible representation of SO(5) based on SO(4)

For practical application, it is convenient and necessary to realize irreps in an explicit
way. In quantum mechanics, we label a state with quantum numbers. In an irreps of specific
group, we can also offer the weights with certain physical meaning. In case of SO(5), there
is a natural way to identify the vectors of weights: indicating the irreps of SO(5)with respect
to SO(4)=S0(3)xSO(3). There are ten generators in SO(5). Six of them can be used to
construct those of the subgroup SO(4). We make use of the following six generators to set

up the Lie algebra of SO(4):

Jv = 5(Lia+ La),  Jo=5(Las+ Lar), Js = 5(Liz + Laa)

Ky = %(L23 — L), Ky = %(Lb’l — Lyy), K3 = %(Lu — Lsy).

The remaining four generators, Lis, Los, L35, Lys, can be considered to construct irre-

ducible tensor operators of SO(4). We use the following definition :

11 11
272 1 . 313 1 .
Tff = _2(L25 - ZLIE)); ij,l = —2(L25 + ZL15)
272 PRI
11 1 ) 11 4
122, = W(L% + ZL35)a Te2, = _2(L45 - 2L35)
272 2°7 3

1
2

T?7,a,f =+, denote the rank of irreducible tensor of SO(4) (also see Table.(??). The

«,

M

11
commutation relations between J;, K;, T} 7 are
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i, J5) = deijiedr, K, K] = i€ Ky, [Ji, K] =0

11 11 11
T kgm0 b ) — 7
o ) atlr F a1
11 11 11 11
125, sl =1y, [Ii5,K3]=pT.7 (16)

We have five operators: C (Casimir operator), J, J;, K and Kj, which are Her-
mitian and mutually commute each other. The states in an irreps can be labeled by
above quantum numbers. Therefore, for a given irreps labeled by the highest weight
M* = [my = uy + %, my = %), We denote an common eigenstate of above five opera-

tors as |Jy Ky J 0 KKy, >, where
1 1 1
JM:§(m1+m2):§(u1+uQ), KM:§U,1

One of convenient treatment in this representation is to obtain the irreps matrixes of
the infinitesimal operators [?]. The matrix elements follow from the explicit expression
for the states |Jy Kyr; J I, KKy, >. The matrix elements of J;, K; are the general angular
momentum matrix elements. To calculate matrix elements of the remaining four infinitesimal
operators, we slightly repeat the method given in Ref. [?] in the following.

Hecht Ref. [?] introduced two operators, O—+ and O__ , which are defined as

1
2

Wl o=

)

O =—V2[(J_ T2 +T J3 +1)]

W= G
o
SN

) )

|
-
—

1P+ P (203)](2K5 + 1). (17)
2 2°2

(NI

O__=-K_O_, +V2[-J

1

T2
l

2’

These two operators have the following important properties,

1 1 1 1
, 1 1 1 1
O__|JMKM;JJ,KK> :C|JMKM;J—§J—§,K—§K—§>. (18)

where ¢ and ¢ are constants. Moreover, these two operators commute with each other, i.e.
[O_4+,0__] =0. This property allows us to obtain the general states included in an irreps
disregard of the order of operation. The general state |Jy Ky; JJ, KK, > can be written

as
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with
J =Ju—3n—3m, 0<n<2(Jy—Ku),
K :KM+%n—%m,0§n§2KM,
Jm :J—l', OSI'SQJ;

where NV is normalization constant and can be written as N = f(n,m)g(J,z)g(K,y),

with

M

_ -2 —4 + !
f(n,m)—(n!) (m!) (Cr?z—l—anJM—l—lCQ]M+IC§JMm+IC§JM—2KMCg}]M+2KM+2C;nKMC;nKM+n+1) )

and

M

9(z1,22) = (21)71(C32) 72,

where C)}? = #1;),”2,
From above results, we can also get the dimension of irreps [Jys, K], which is exactly
identical to that derived (Eg.??) in previous section.
The matrix elements of operators Tf,’ﬂ% can be obtained directly by operating on the
state |Jyr K Jj, Kk >. However, we need not to respectively calculate matrix elements for
11

each operator because of the well known Wigner-Eckart theorem. Since operators Tj}’g are

irreducible tensors of SO(4), the Wigner-Eckart gives us the following result,

o ! ! ll
< JMKM,J] ,KI{I |T(i;32

IniEKu TG, Kk >= 79, C8F < Ty K J K || T3 || T o K >,
9 )

(20)

where C is the C-G coefficients of SO(3) and < Jy Ky J K ||[T22|||Jy Ky JK > is
independent of «, 3, 7, and k. The C-G coeffients are shown in Table(??). For a given state

| Jyv K s Jj, Kk >, there are four nonvanishing matrix elements. The results are

1 1., 1. 1
< JuKr; I = 5K = S||[T22||| Iy Kas JK > = 5

f(J+ K)
2JK P

(M
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1o Lpis 1 f(J+K+1)
Ju Ky JJ+ K+ -||T JuKy; JK > = —=
< JmI; +2 +2|| 22 ||| Jar K > 2[2(J+1)(K+1)]’
1o Lyt 1.g(J - K) 1
<JMKM;J_§K+§||T55|||JMKM;JK> = [g( ) 1

[SIE

sy
1 1 11 1 g(J—K—l) 1
Ky, —K — —||T22 Ky JK > =——[22~ /135 21
(22)
where
gt) = (I — Ky + )y — Ky —t+ 1) (Jas + Ky +t + 1) (Jys + Ky — t +2)
f($)=(Uu+EKEu+s+2)(Ju—Ku+s+1)(Ju+Ky—s+1)(Ky—Ju+s).
8:% 8:—%
h=hts (4757 (4757
h=h-d () 50

TABLE II. C-G coefficients C72/%*

Ji1j,3s
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II. HARMONICS AND MONOPOLE HARMONICS OF S0(5)

In many physical problem, we deal with functions over the homogeneous or symmetric
spaces, in particular, on group spaces. These functions can be decomposed over a set of
eigenfunctions of Casimir operators. Such decomposition is extremely useful and has a clear
physical interpretation. For example, in case of SO(3), Casimir operator is total angular
momentum and eigenfuncitons are spherical harmonics Y7 (6, ¢).

To derive the SO(5)harmonics functions, we consider a S* sphere, and choose a specific
coordinate system, so-called biharmonic coordinate system, which will lead us to express

SO(5)harmonics solely in terms of SO(3) well known d?,  (6)-functions.

x5 = cosby,

x4 = sinfycos sing,
x5 = sinfycosh cong,
Ty = sinbysind; sing,,

1 = sinbysinbcongs, (23)

where 60, € [0,7/2), 05 € [0,7), ¢1 € [0,27), and @9 € [0, 27).

The metric tensor g,s matrix in S* sphere in terms of above coordinate choices is

sin?0,sin’0, 0 0 0
0 c0s0,5in°0y 0 0
g= , (24)
0 0 sin?6, 0
0 0 0 1

with the Jocobii term is J = |det(g)|2 = |sinf)costy sind3)|.
Lapalace operator (Casimir operator) is
—C = J9,9% 05

. o . 0 PR
= sin 3928—9282713928—92 + sin 292P(91, b1, P2), (25)
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where

2 ) 82
n ‘0 —. 2
+ sin “6, 007 (26)

. 0 0
P — sin ! —1p 9 . s 2, O
sin~ ~0,cos” 0, 20, (sinb;cosb, ) a6, + cos 0, 907

The integral measure of S* in biharmonic coordinate system is
d[L = Jd91d92d¢1d¢2 = sin9100391sin392d91d92d¢1d¢2. (27)

To solve above eigenvalue equation of Lapalace operator, we separate variables i.e. the
eigenvector function Wil (6,04, ¢y, do) = ¢} (02) 0% 1, (01)exp(imidy +imads) and obtain

the following second-order ordinary differential equation (the eigenvalues of this Lapalace

operator are l(ly + 3), which can be derived after having solved the equations),

Ct = b(l + 3, (28)

p@%lmz = _ll(ll + 2)90?117712' (29)

The general solutions of above two equations are

1

1
Zbll; (92) = tanl292008l292F1[2 ll — lg), 5([1 - l2 + ].), ll + 2, —tan292] (30)
[

| = —~

1
cp?llm(ﬁl) = tan™20,cos" 0, F\[= (my +my — 1), §(|m2| —my +1y),mg + 1, —tan®6;], (31)

[\]

where Fj is the standard hypergeometric function. The restriction relations among the

eigenvalues my, mso,l; and [, are

|l1| :lg—n, l2 20, TLZO,]_,...,ZQ. (32)
1
|m1|+|m2| :l1_2k7 k:0717"'7[§l1]7 (33)

Above solutions can be written in terms of d; . - functions of the ordinary rotation

group SO(3). The result is

5
(m1+mz),%(m17mz)

Witz (0, 0, dr, o) = N_%sin_lﬁgdﬁfiio(%)dz

mims2

(201)exp(imi¢y + imags),
(34)
where the normalizations constant N = 47%(2ly + 3)"*(l; + 1) !, and the orthogonality

relation is
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L z ) 27 27 -
| sin®6.d6, /0 ? sinlcosth db) /0 do, /0 Ao 0 Wt = 08 Ot D (39)

0

These harmonics only give the basis for the symmetric tensor irreps of SO(5). In the
next section, we will extend them to monopole harmonics, which includes the basis for spinor
and spinor tensor representations. However, it is still necessary to express the infinitesimal
generators in above biharmonic coordinate system. Moreover, it appears there are apparent
connections between the eigenvalues characterizing the harmonics and the angular momen-
tum discussed in Sec.(?7?). The following equations gives the detailed representations of the

operators defined in Sec.(?7?):

i 0 i 0
Jo— 2 9 Ko= Lt 9
i 0 0 0
Jy=J, +iJy = —(tan 120, — — sin 120 — =
o\ 1+ iy 2(an 18¢J sin 13¢K 2891),
i 0 0 0
J_=J, —iJy = =(tan 120, — — sin"'20 ——
1 —1Jy 2(an 18¢J sin 18¢K+2891)’
i 0 0 0
Ky =Ji+iJo = —(sin™ 20, — — tan™"20 — i
4 1+ iy 2(8m 18¢J an 18¢K 2891),
i 0 0
K_=Jy —iJy=(sin™'20y —— — tan™"20 =
1 — 1y 2(Sm 13¢J an 13¢K+2391)’
i1 =1 . 0 . , 0 0 . 0
T%g 2 = Ee (07=0K)[cosb tan 1928—01 — 55in Y0, tan 192(% — %7) +szn91a—92],
11 | 4. 0 i _ 0 0 . 0
Tg; = Ee (¢s ¢K)[00391tcm 192—891 + 5 Ly, tan 192(—8¢J — —3¢K) + szn91—892],
_11 1 , _ 0 i _ 0 0 0
T%%ZZ = ﬁe (¢J+¢K)[8m91tan 1028—91 + 55”7, 191tan 192(% + &#7) - 605918—02],
_11 1 . 0 i 0 0 0
T, 2 = —= 0 [sinf tan™ " 0y —— — —sin " O1tan""0y(5— + =) — cosf =
L \/ie [sinbtan 5 5 sin” Yitan 2(8¢J + 3¢K) cos 1892]’ (36)

where ¢; = (¢1 + ¢2) and ¢; = 5(d1 — ¢2). Two total angular momentum operators, J?
and K 2 are identical operators in the symmetric tensor irreps. They can be expressed with

related to the above operator ]3, by

N P
JP=K=——, (37)
4
and the eigenvalues on the harmonics are
A ~ Ll
s (G L 55+ 1wht (38)
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~

VA

mims

mimz2’

1
= §(m1 + mg)\IfM?

mimso 2

. 1
K3\I]lll2 = —(m2 — ml)

\Ijhlz

mimsa"*

(39)

The detailed formations of SO(5)harmonics with I, = 0, 1, and,2 are listed in the follow-

ing:

1. I = 0(d = 1):
W0 = (%ﬂ)%tanlﬁg
2. 1y = 1(d = 5):
Ul = (3T) 3costy,
vl = (%)_%Sin9260591€$p(ﬂ:i¢1),
vl = :F(%)_%sin928in91exp(:|:i¢2)
3. I, = 2(d = 14):
IR = (U7 3(1 - 5c0s%s),
vz, = (614(;752)_%Sin2028in91€$p(:|:i¢1),
vz = IF(%)’%sin2923in916xp(ii¢2),
v = (%)*%Sinwg
vz, = —(%)_%Sin2926082016l‘p(ﬂ:i¢1),
U2, = —(%)’%sin2923in291exp(ii¢2),
\1'326 = _a(%)_%Si”2923i”2916$p[i(a¢1+5¢2)];

«, = +1.

The concept of monopole harmonics was originally introduced by T.T. Wu and C.N.Yang

[?] in 1970’s. They derived the monopole harmonics in three dimension space and later

C.N.Yang [?] generalized the idea and extended it to five dimension space which SO(5) is

concerned. Monopole harmonics, also called Dirac harmonics, are everywhere analytic and

form a complete orthonormal set as the basis of expansion of any wave function around the

monopole. In the 3-D space case, we can imagine it is a real physical model with a magnetic

monopole and derive the monopole harmonics by solving the eigenvalue equation of total

angular momentum. We briefly summarize the major results of monopole harmonics in 3-d

space in the following:
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1. Using spherical coordinates with a monopole of strength ¢g at the origin , the vector

potential can be chosen to be

o - g T
AT =AY =0, A‘fzm(l—cosﬁ), 0§9<§+5;

Ay=A9=0, A=—L(1+cosh), 0<O<Z—0; 10
2 2 ) 2 Sine( + cos )7 = 2 ) ( )
2. With a particle with charge Ze in this monopole model, the gauge transformation

phase factor from A; to A, in the overlap area of above two chosen region is

S = exp(2iqp). (41)

where ¢ = %DZ, D = 2eg, and ¢ = h = 1. The transition can be written as

. . i 087!
A=A+ —5— 42
1 2t 7 o (42)
where ¢,7 = 1,2, 3 are the three local orthogonal coordinates.

3. The total angular momentum operator in above system can be written as

~

L=ix(P—ZeA) —q-. (43)
r
4. The monopole harmonics is defined as
LAY = W0+ )Yy, LsYl, =mY,, (44)
with [ = |q, |¢ + 1|, etc., and [ sinfdf [} Y1, [Pdp = 1.
5. The explicit evaluation of the above equation is
a0 0 9y 0 2, 2174 q
[—sind ~—sinf— + sin “0(—i5—= F ¢+ qcosh)” + ¢° Y, = (I + )Y}, (45)

80" 90 9

with the sign F related to the two chosen region 1,2. The explicit expression of qum is

(Yl?m)l = N(1- 0080)0‘/2(1 + cos@)ﬁ/ZPf’ﬁ(cos@)e:rp[i(m + q)¢], (46)
(Y2,)2 = (Y)1)1exp(2iqe), (47)
wherea = —q¢—m, f=q—m, n=I01+m,

(2L + 1) (1 — m)!(L + m)! 2
4re(l — )l + q)! ’

N =27
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and P%P(cosf) are the Jacobi polynomials,

—1)n —a — d" a+n +n
(=) (1 a) (L - ) (L)),

Pt =4

The construction of monopole harmonics in 5-d space ( we call it SO(5) monopole har-
monics) is slightly complicated. The basic idea to realize the construction is to extend the
above vector potential to a nonabelian SU(2) gauge field. Since in this paper, we only fo-
cus on the monopole harmonics. Hence, we will construct the explicit expression of SO(5)
infinitesimal operators with a non-abelian SU(2) gauge field in the biharmonic coordinate
system , instead of repeating the abstract mathematical concepts and derivation in Ref. [?].
The basic idea is to express the generators of one of the subgroup SO(3), J; or K;, by adding

the additional generators of SU(2) gauge field, i.e,

or
K=K +Y, Ji=J. (49)

Similar to SO(3) monopole, the difference of above two choices results where the singu-
larity locates when the gauge field is constructed. The results in the harmonics differs from a
gauge transformation phase. We will make use of the first construction expression. The left
job is to obtain the explicit expression of the remaining four T operators. By means of the

commutators between the SO(5) infinitesimal generators, the T operators can be written as

T%%; - Tf; + V2tan 0,080 exp(—igy)Y T — V2tan " ysindexp(igy) Y (50)
Tféé = Tf—%? + V2tan 0,sind exp(—ig) Y + V2tan ' 0ycondexp(idy )Y (51)
T_%%%_% = T_%(O; +V2tan 0ycosbiexp(ioy)Y  — V2tan ‘bysinfexp(—id,y) Y (52)
T%%%% = T;%?) V2tan '0ysinbiexp(ids)Y ~ — V2tan 'Oyconbrexp(—idy)Y?.  (53)

The Casimir operator can be calculated and be written as

C = —sin 392ism392 1J° 2(1 — costhy)

J?— K+ Y2 54
802 892 + sin202 + sin202 [ ] + ( )
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The SO(5) monopole harmonics can be written as

pluKa Nsin_IQZF;;MKM (92)Gjmj,kmk (01, 1, ¢2), (55)

.]m] akmk
where

jZGjmj,kmk (917 ¢17 ¢2) - .](.] + ]-)Gjmj,kmk (917 ¢17 ¢2)7 j3Gjmj,k;mk (917 ¢17 ¢2) - ijjmj,kmk (917 ¢17 ¢2)

KQGjm]—,kmk (917 ¢17 ¢2) - k(k + ]-)Gjm]-,kmk (917 ¢17 ¢2)7 K3Gjmj,k my, (917 ¢17 ¢2) - mijmj,kmk (917 ¢1 ) ¢2)

and the N is the normalized constant. .Jy, and K, label the given irreps (see eq.??). For a

given irreps (Jyr, Kpr), the eigenvalue of Casimir operator ,

CA"Q/)JMKM — CwJMKM — 2(,]]2\4 _l_K]ZM +2JM +KM)77/}JMKM

jmj,kmk jm]-,k;mk jm]‘,kTTLk'

Substituting the explicit expression of C into above equation, we obtain

9, 0 o+ %+ (a® — %)cosby
.1 . Ju K - Ju K
[=sin™ 0 50-sinfy 55 + 25in?0; JF (0) = [e 42 = V(Y + D]F; 5 (6,).
(56)
where o« = 2k + 1 and f = —25 — 1. The above equation has the similar expression as

Eq.(??). Thus we can get the allowable value of Y in order to obtain the allowable solution
of above equation. Compared with Eq.(??), the value of Y should be not greater than
Jyv — K. However, since the angular momentum operator J is the sum of K and Y, the
value of Y should be not less than |Jy; — Kj|. Therefore, the value of Y can only be equal
to Jy — Ky for a given irreps (Jys, Kpy) and the right side of above equation becomes to
be (Jyr + Kpr + 1) (Jpr + K + 2)]FJ$CMKM(92). The explicit expression of function F' can be

written as
FJQMKM(HQ) = (1 — cos,)*/*(1 + cos0,)P* PP (cost,), (57)

where n = Jyy + Ky +5 —k+ 1.

We can construct the explicit expression of G, km, by means of C-G coefficients as

Gjmj,k;mk(ela b1, B2) = Z co ;c)|kmkmlka Y(mj - m;c) sz (58)

!
- km,,Y (mj—m
my,
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where

2%+ 1,
272

\kmymy, Ymy >= oy (201) €xp[2i (M b + m0;)]|Ymy > . (59)

The renormalized constant N is

(G+Fk+3)(2k+1)1(25 +1)!
(27 + 2k + 2)!

(NI

N =277F]

7. (60)

The monopole harmonics have the same orthogonality relation as that in Eq.(??). The
explicit forms of SO(5) monopole harmonics of the spinor irreps(d=4), and adjoint repre-
sentation are given in the following :

(1). spinor irreps, d = 4, (Jy = 5, Ky = 0), and ¢ = 2.5:

35>

L
2

2 sinby(1 — 00892)’%%

3 =5 sinfs(1 + cosy) ™ %exp(iqbk)[cos&exp(iqﬁj)|% — % > —sin@lexp(—i@-)%% >|

*%

B

M

I
Sk

sz sindy(1 4 costy) ™ %exp(iqﬁk)[—sin@lexp(iqﬁj)|% — 3 > +costexp(—id;)|55 >]
(2) adjoint irreps, d = 10, (Jpy = 1, Kpy = 0), and ¢ = 6:
\If}g w = 21+ cosy)|10 >

‘I’(l)g,m = \/%(1 — c0562)Goo1a (01, O, ¢5), a=0,%1
\Ijlloa ip - \/%SiRQQG%a,lﬁ(ela ¢k7 ¢])7 a = i%; ﬂ - j:%
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APPENDIX A: SUMMARY OF TENSOR REPRESENTATION OF SU(N)

1. The n rank tensor 17" of SU(N) is defined as:
OuTuras...an = Uarby Yashs-+-Uanby Lbiby. by @iy bi = 1,2,3...N,

where, u is an element of SU(N). Considering the linear space generated by all of compo-
nents of tensor, we can get a representation of SU(N). However, this representation is not

irreducible. It is easy to see that the permutation symmetry in the index of tensor is kept
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under SU(N). This means that set of the components of tensor with certain permutation
symmetry is an invariable subspace under SU(N). The mathematical technique to decom-
pose a tensor space to its invariable subspace is developed by introducing Young Operator
and Young Pattern with respect to S(IN) group ( Readers who are not familiar with these
concepts can find this related material in some standard books.)

2. The irreducible tensor representation of SU(N) is labeled by a Young pattern [Y =
(Y1, Y2, ..., yn)], whose raw is not greater than N. The dimension of irreducible representation
given by a certain Young pattern is equal to the number of Young standard tableaux, which
is defined in following: We label each box in Young pattern with a positive integer not
greater than N. A labeled Young pattern is called Young standard tableux if in a raw, the
number in a box is not greater than the number in its left boxes, and in a column, the
number in a box is smaller than the number in the boxes below it ( the numbers in the same
column must be different).

3. We can also introduce nth rank tensor, which is defined as:
a1as...an __ % * b1b2...b _
O T = gy Uggby-otiy p T2 a3, 0 = 1,2,3...N,

Moreover, we can define general (m,n) rank mixed tensor,

o ’ /7
byby...b

a1042...a 172
OuI52 ar = Uy Wyt -+, by Loy b

"o bi,a b =1,2,3...N,.

n

The irreducible representation of SU(N) can also be derived from tensor or mixed tensor
invariant spaces labeled by Young patterns. We mark [Y]* with respect to the Young pattern
related to invariant tensor space and [Y|*/[W] with respect to the young patterns related
to invariant mixed tensor space . The invariant mixed tensor space should be satisfied with
an additional traceless condition similar to what we discuss in SP(4).

4. Defining a Nth rank antisymmetrical tensor,

1, even permutation
—1, odd permutation (A1)

€aras...an

0, others
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we can change an mth rank antisymmetrical tensor( tensor) to (N — m)th antisymmetrical

tensor(tensor) by

1
_ § b1b2...b
Ta1a2...a1\],m - m' €a1a2...b1b2...me m' (A2)
b

This relation leads to a general result about the equivalence of irreducible representations

between invariant tensor and tensor space:

(Y1, Yo Yn] = (Y1, y1 — YUn—1, Y1 — Yo"

5. Littlewood-Richardson rule:

Littlewood-Richardson rule determines what irreps [Y] are included in the product of
two irreps [Y]] and [Y3].

(1). Draw the Young diagrams of [Y;] and [Y3].

(2). Choose the simpler one between these two Young diagrams and fill up each of boxes
with the line number it locates.

(3). Append each of boxes to the more complicated Young diagram with starting from
the boxes filled with the lowest number in all possible ways subject to the rules(needed to
be satisfied after adding each box):

[.resultant diagram are always regular. II. they are no two boxes filled with the same
number are appeared in the same column III. the number of appended boxes filled with
larger number counting from right to left and from top to bottom should not be greater
than that of appended boxes filled with smaller number counting in the same way. (4).
Disregard the Young diagrams [Y] of more than N rows and delete the columns of length
N in any diagram [Y]

6. Hook rule to calculate the dimension of irreps of SU(N):

The formula to calculate the dimension of irreps of SU(N) is:

dyy= I

1<i<j<N J =

There is a simple Hook rule related to above formula:

dl
_ Oy
dy) = Hyy
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where the numerator dl[y] is a product of integers filled in the boxes of Young diagram [Y]
as the following rule: filling all the diagonal boxes in the Young diagram with integer N,
the subsequent boxes in the same rows with N +1, N +2 ..., and that in the same columns
with N — 1, N — 2 etc,

and the denominator is the product of hooklength associated with each boxes in Young
diagram. hooklength of a given box in a given Young diagram is defined as: the number of
boxes in a hook which consists of the given box, those on its left side at the same row and
below it at the same column.

7. Examples for SU(4):

By = 50+ 20+ 3)a+ Dlg+2)p g +1),

and the Hook rule is shown in the Pic.??.

FIG. 5. Hook rule to calculate the dimension of irreps of SO(4) with Yang pattern [p,q]
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