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G3: Introduction to Lie Groups

- Overview of group axioms
Introduction to SU(N) and SO(N)
SU(3) and subgroups

- U(1) as limit of Zn

U(1) is isomorphic to SO(2)

Lie groups




Group axioms

A group is a set of elements a,b,... which can
be combined together with ab inside the set

O (ab)c=a(bc)
O One element e satisfies ae=ea=a for all a

O For each element a there is an element a’

which satisfies aa'=a'a=e

e.g. special orthogonal or unitary matrices
form groups under matrix multiplication




Orthogonal (real) matrix O(N)
/
0'0=1 NxN

Unitary (complex) matrix U(N)

GEEE
implies T = U~! inverse

where UT = (U*)?*




SU(N) and SO(N) form groups

SU(N) = Special Unitary NxN matrices

/ \

Unit determinant Unitary  Unit matrix

dttreys  rias

SO(N) = Special Orthogonal NxN matrices

7 \

Unit determinant Orthogonal

det O = 1 O0'0 =1




SU(3) and a few of its subgroups

Subgroups —., BSBN@M— SO(3)| — Subgroups

lIsomorphic




SU(3) and a few of its subgroups

10

)

det e’? =

Unitary 3x3
- matrices with
~unit determinant

Special
detU =1

U'U =1

Unitary




SU(3) and a few of its subgroups

Unitary 3x3
| matrices with

Standard
Model




SU(3) and a few of its subgroups
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SU(3) and a few of its subgrops

Special

det O =1 N\ Orthogonal 3x3
T | SO(3) | matrices with
9 i 1  unit determinant

Orthogonal

cosf —sinf
sinf cosf@
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SU(3) and a few of its subgroups

O'0 =1

\—__ Orthogonal 3x3
| . matrices with
T wunit determinant




SU(3) and a few of its subgroups

We start with U(1) and SO(2)
where U(1) is limiting case of Zn




Zn, rotation group of reqular N-polygon

Z4 1S square, Zs Is pentagon, Zs hexagon, etc.
ZN generators given by 2pi/N rotation

Order = N group elements {e,a,a?,...,aN-1}

We write e.g. a=p where

o e N
10_6 /7
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limit: N

“circle
group”

— =




In the limit N— discrete group Zn becomes '
continuous group U(1) parameterised by the
real angle ©

“circle group”

group
element

ol 2 L e e O N




U(1) S |somorph|c to SO(Z) |

Argand =2 +iy =re"’ =r(cosf + isinb)
plane

f U(1) transformation

2 — ey

equivalent to rotation

" 0@ )0
SO(2) = orthogonal 2x2
matrices with det = 1




Lie Groups

A Lie group Is a group whose elements are
labelled by a set of continuous parameters
with a multiplication law that depends
smoothly on the parameters

For Lie groups U(1) or SO(2) the continuous
Lie parameter is just angle 6

The Lie group is compact since 0=[0..21]
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Quantum Mechanics

Physical states represented by state

vectors,
v)

Physical transformations on physical states
represented by Unitary operators,

Ulv) = [v')
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Unitary operators as matrices

Consider U acting on some orthonormal
basis vectors,

)5 137

Then U may be represented by the Unitary
matrix

Us i)




Lie Groups

Any representation of compact Lie group is

equivalent to a representation by Unitary
operators U

So Lie groups correspond to unitary
transformations in quantum mechanics

Lie groupQ U 0 quantum mechanics




Lie Groups

Any group element which can be obtained
from the identity by continuous changes in
parameters can be written as:

U i eiozaXa s

where (Y are real Lie parameters,
and X are linearly independent
Hermitian operators.




Lie Groups

For infinitesimal transformations

generators of
the Lie group

iaaXa ~ )
U=c¢ ~ 1+ 1a,X,

Their commutation relations determine the
full structure of the group

X, Xp| = 1fqpe X, “Lie algebra”
T

“structure constants”
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'G4: SU(N) groups

SU(2) and angular momentum

U(2), subalgebras, simple groups
SU(2)xSU(2) as a semi-simple group
SU(2) representations

SU(2) ~ SO(3)

U(3) and its subgroups

SU(3)

SU(N)

]
O]
O
O]
8
O
]
O]




We now consider SU(2) ~ SO(3) as
examples of Lie groups




SU(2)
Lie algebra is just algebra of the angular
momentum operators  J;, Jo, J3

U — €i9a/:]a’ [ch Jb] =% Z.CC’:CLchc

\ 2 2
SU(2) totally antisymmetric

SU(2) generator Levi-Civita tensor

group

e — & — &
element 123 312 231

S ose=cuI3i=Nciaoi==—




Angular momentum eigenstates

Jslj,m) = mlj,m)  (JaJ®)j,m) = j(i + Dlj,m)|
give matrix representation of Lie algebra

(g, m| |5, m)

e.g.spin1/2 j=1/2, m,m = +1/2

(m!|J%m) = (- ~ 2 Pauli matrices
+) =)

4 )= - 8




In the fundamental representation the geneto of |
U(2) group can be written as




Generators 7“ form a subalgebra of U(2) because

[T“,Tb} — o B il f) e el M M

The set of generators T, T, T° represents the Lie
algebra of SU(2) which elements satisfy the conditions

Ut =1, detU = 1.

Thus in the fundamental representation the elements of
SU(2) group are Special (det U = 1), Unitary, 2 x 2
matrices.
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An invariant subalgebra is a set of generators, X¢, |
which when commuted with any of the generators of the |
Lie group either gives zero or another generator in the
set, X“.

» Inthe U(2) group 7% and 7" form two invariant subalgebras
corresponding to SU(2) and U (1) groups.

Groups which do not possess invariant subalgebras are
called simple groups.

® SU(2)is an example of a simple group while U(2) is not simple.

Groups that do not possess an Abelian invariant
subalgebra are called semi—simple Lie groups.
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SU(Z)xSU(Z) sem|-5|mple group

Group SU(2) ® SU(2) has six generators which in the
fundamental representation can be written in the block
diagonal form

TCL

The first three generators of this group form an invariant
SU(2) subalgebra.

Therefore SU(2) ® SU(2) group Is not simple.




SU(Z) algebra representations
spin 1 representation Js3|j,m) = m|j, m)

j=1 mm =+1,0,-1

(m!|J%|\m) = T° matrix representation
of the algebra

e I 0
7 = R Bl 1] 0
0 i O 0 —1

1 P
Tr(T*T?) = 55“ normalisation of generators
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SU(Z) algebra representations
Adjoint rep of algebra is defined as

(Ta)bc = —1E€abec equivalent to

€123 = €312 = €931 = 1 spinlrep

T 5 WTeW 1
£132 = €213 = €321 = —1

0 i
0 —i = 0],7°
i ' 0




SU(Z) Is rotation group in QM

In QM the action of rotating a spin j particle
through angle 03 about 3-axis is given by

7) = R3(03)|5) = e**73|5)

In general a rotation through angle 6 about
unit axis n=n1i+nzf+nsk Is glven by _ SU@©)

5) = Ra(0)|5) = €72|5) =(*=7")j)group
element

where 61 =0n1,02=0n2 , 63 = 6n3




SU(Z) group representations
spin 1/2 representation
of group U;; =

%

Special Unitary 2x2 matrices with unit determinant:

Baker-Campbell-
Hausdorff (BCH)




SU(Z) group representations

spin 1/2 representation
1

of group Ui = [Ru(0)]i; = €22

For rotations about the 2-axis | hese are
subgroups:

0 o[
R0l = (5% %) SU(R)is the
group of

2 2
For rotations about the 3-axis  ° i i o
about all

[Rs(0))i; = (
axes

- O
(357

0
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SU(2) ~ 50(3)
spin 1 adjoint representation of
group Oz‘j = [R ( )]Z] i@aT;;

0 0 005% B =)
|, 7°=]10 0 0],7°=\|¢: 0 O
0 —i 0 0 0 0 O

Ojj are special orthogonal 3x3 matrices,
real with unit determinant, i.e. SO(3)

: e b : a - b
OTO e 6fLHQ(T ) ezﬁbT e 6—29aT ezﬁbT S




SU(2) ~ SO(3)
spin 1 adjoint representation of
group Oz’j = [Rn(e)]ij = ewaT;;

1 0 0 cosh) O —sinb
Ri(0)= |0 cosf sinf | Ra2(0)= gl 0
O —sinf cosft sinfd 0 cos6

| 0 7; 1 dRs(6
— il 3()|0:0

do

cos sinf O
—sinf cosf O EXx. check:
R3(0)

special orthogonal 3x3




SU(2) ~ SO(3)
spin 1 adjoint representation of
group Oz’j = [Rn(e)]ij = ewaT;;

1 0 0 cos) 0 —sinf
Ri(0)= |0 cosf sinf | Ra2(0)= gl 0

O —sinf cosft sinfd 0 cos6

cosf sinf O
—sinf cosé 0| EX. using BCH show:
Ry

1 e (023)R2(013)R3(012) = €T

special orthogonal 3x3 where: Ri(823) = ¢¥7




SU(3) and a few of its subgroups

We first consider SU(3) then
SU(N) and SO(N)




# In the fundamental representation the elements of the
[(3) group are 3 x 3 unitary matrices, i.e.

PR U:exp{in‘To‘}, T = Tt

T2 =
’ 2




# In the fundamental representation the elements of the
[(3) group are 3 x 3 unitary matrices, i.e.

721
| 2




# In the fundamental representation the elements of the
[(3) group are 3 x 3 unitary matrices, i.e.
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U(3) ~ SU(3) ® U(1)

# In the fundamental representation the elements of the
[(3) group are 3 x 3 unitary matrices, i.e.

’

Rl [N T z'cuo‘TO&7

, > g \)

)
00/

e — _—_ =




The set of generators 7%, where a = 1, ...8, form
iInvariant subalgebra of /(3) that corresponds to SU(3)

T%T°| = ifaeT

(—T*)* also satisfy the algebra

Otherrepsinclude 1,3,6,8,15,...




The elements of SU(N) group obey the relations

Ut =1, detU = 1.

SU(N —1),... , SU(2) are subgroups of SU(N).

But SU(N) does not possess invariant subalgebras, i.e.
SU(N) Is a simple group.

The quadratic Casimir operator > (7%)* commutes with
all generators of SU(N) group.
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The Cartan subalgebra of SU(N) group involves N — 1
traceless diagonal matrices

(.




The Cartan subalgebra of SU(N) group involves N — 1
traceless diagonal matrices




GS SO(N) groups

0 SO(N) and Clifford algebra
SO(3) vector rep
SO(2N+1) spinor rep

- SO(3) spinor rep

SO(D) spinor rep
SO(2N) vector and spinor reps

- SO(6) spinor rep
SO(6) ~ SU(4) and SU(3) subgroup




SO(N) Is the group of rotations in N dimensions.

This group has 5(N? — N) generators M,, = — M,
which represent rotations in the « — b plane, I.e.

(Mab> — i<5a15bk s 5ak5bl>a a, b, ]f, l - 1, AT N
kl

The generators of SO(NN) group obey algebra

s A =) <5bcMad — OgcMpg — OpaMac 5a,dec>




50(3) vector rep
e.g. SO(3) identify T1=Mazs, Tz—M13,T3—I\/I12

0 0 O 0 0 i
T =0 0 —|,7°=[0 0 0],7T°=
0 i 0 0

The generators of the Cartan subalgebra may be
written in 2 x 2 block form




SO(2N+1) spinor rep

In order to find generators of SO(2N + 1) in the spinor
representation we consider the Clifford algebra

{Fa, Fb} — aRr=lee (2N e 1),

where I',, is a set of (2N + 1) matrices of size 2V x 2V,

In the spinor representation the generators of
SO(2N + 1) group are given by
-

Map = = _Fa, Fb_ -




For the case of SO(3) the matrices I', are given by the
three Pauli matrices

{O-Cba O-b} e 25&()7 Oa, O

e 08! e
where a,b,c =1, 2, 3. 01—<1 O)’02_<i 0)’

2x2 dimensional spinor rep of SO(3) with generators
M12=-M21, M13=-M31, M23=-M32
SU(2) doub{e cover of SO(3) fsame algebra alnd reps)

Myo = 503 Mis = —502 M3 = 501



SO(S) spl nor rep
In the case of SO(5) there are five 4 x 4 I' matrices which may be
written in block form as

0 o

The generators of SO(5) in the spinor representation are given by

Eabe

-A4ﬁb = 9

where ¢ and b run from 1 to 3.




| | ! || o L] ! I I ' I ! I |} I ! I || ! I I I A
——— — —— — —_— — - - - - - - -

Jd M U0 U U u u L d i M UL ] L d oo U u U U

. n_ ok .k b e b - s ok b d =] e =1 u e -k N RN ok ) =] R "

SO(5) spinorrep 4
Cartan generators are M12 and Mz34

1 fog3 O l (o 0 OIo i)
-ty 8 w3 2) 27 )

in basis of two SO(3) spinors of M12 and Mz4

1),12),13),|4) = [++h]—-—hl+-0h1—+)
A T T A T T A
MioMsy  MioM3zqy  MioMsy  MiaMay
1) = +1/2

2) = —1/2
3| M34|3) = —1/2
4| M3y |4) = +1/2




SO(2N) vector rep

(Mab> = i<5az5bk = 5ak5bz>, Aoy e =l s N
ki

The Cartan subalgebra of SO(2/N) has N generators,
M2, M34, ...Man_1 2 Which in 2N dimensional space
can be written in 2 x 2 block form

[ o




SO(2N) spinor rep
The spinor representation of the generators of the

SO(2N) group are constructed from the 2V x 2%
I'—matrices which satisfy the Clifford algebra so that

; e

Map = =7 |Ta, Tp |, Lo, Iy} = 200p 1, a,b=1,..

The projection operators reduce 2V spinor to the two
irreducible spinors which have 2%¥~! components

1
Wy =<iF) W Vp=PrV. Prr=;-

Thus the generators of SO(2N) can be written as
e e atliice s




SO(6) spinorreps 4.4
Therefore group SO(6) has two four dimensional spinor
representation.

The 15 generators of SO(6) in the spinor representation
can be presented in the following form:
0
R

1 o, 0 1 0 —0, 1 0
2 —0, 2 —0, 0 2 —l 0

__1 0 oy _1 0 [ 1
L T SR N S T N Y L
0

o, 7

where a = 1,2, 3 and =+ refers to the "left—-handed" and
"right—handed" representations. 4,4 (complex conjugates)




SO(6) spinorreps 4.4
Therefore group SO(6) has two four dimensional spinor
representation.

The 15 generators of SO(6) in the spinor representation
can be presented in the following form:

| a,
p
f
‘\

where a = 1,2, 3 and =+ refers to the "left—-handed" and
"right—handed" representations. 4,4 (complex conjugates)
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SO(6) spinorreps 4,4
As in SO(5), Cartan generators are M12, Mas |
1 (o5 O = L ) s G Ry
M12:§(0 03> M34_§<0 —03> 03_(0 _1>
in basis of two SO(3) spinors of M12 and Mz4

e ) el e 1 B
But SO(6) has further Cartan generators

F§:+1<[ O), r5:—1<1 O> for 4,4

2) U= 2 \0 —TI
I_I_>7I_I_>7I_>7I_> I_>7I_>7I_I_>7I_I_> SpInOI‘S Of F5
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I D=L
| |

Rl

Mio M3, T
l \ e

)5

5

)5

SO(6) spinorrep 4¢4
The reducible 4 & 4 can be written in basis
of three SO(3) spinors of M12,M34 and I's

f

Mio Msy 1

!

f
|

v

o)

Note that the 4 has even number of - states
and that the 4 has odd number of - states
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SO(6) ~ SU(4)
e e S e
identified as 4 of SU(4) with Cartan generators

1
H,y (Mi2 + M3s) = §dm9(1a SEE 525t

e
2D
1
Hy = Mo 4+ M3y +2T7) =
2 \/E( 12 34 5)

1

G

1
diag(1,1, —2,0
G q( )

1
diag(1l,1,1,—3
7o g( )

Hs (Mys — M3s +T7) =
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SU(4) has SU(3) subgroup

3 states

Subgroup SU(3) involves Cartan generators

H1 and H2 In the same basis as above

1 1
Hy = (Mg + Msy) = §dm9(1a =l

2v/2

1
V12

1
diag(1,1,—2,0)

Mio 4+ May +2I'T) =




