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Abstract. It is shown that the presence of point magnetic monopoles necessitates a 
fibre-bundle formulation of electrodynamics. The Hopf ‘fibring’ of S 3  over a base space S2 
with fibre S’ yields the Wu-Yang potentials which describe the Dirac monopole. The 
Gauss-Bonnet-Chern theorem yields the Schwinger quantisation condition. 

1. Introduction 

Magnetic monopoles come in two varieties; Dirac monopoles and ’t Hooft-Polyakov 
monopoles. The point magnetic charges of Dirac (1931) are singular, in the sense that 
they are singularities of the electromagnetic field. They may be introduced into, or left 
out of, the theory of electromagnetism, according to taste. If they are included in the 
theory, their mass is arbitrary. The only remarkable thing about them-but it is 
remarkable-is that the product of their magnetic charge with the electric charge of an 
electron (or other charged particle) is quantised. This may explain the quantisation of 
electric charge. The quantisation condition comes about by requiring that the wave- 
function of an electron in the field of a magnetic monopole be single-valued. The 
magnetic poles of ’t Hooft (1974) and Polyakov (1976) could hardly be more different. 
They exist as particular solutions to the SU(2) gauge field equations in the presence of 
spontaneous symmetry breaking (Higgs field). If this gauge theory is right, ’t Hooft- 
Polyakov monopoles inevitably exist. Moreover, their mass is not arbitrary and they 
are a finite size. The gauge field anc the Higgs field, both carrying electric charge only, 
arrange themselves in a particular way so that when viewed from infinity they carry 
magnetic charge. It was quickly realised by Arafune er a1 (1975) that the origin of this 
charge is topological; that is to say that the boundary conditions on the fields are ones 
which cannot be changed continuously into constant values. The asymptotic field 
configuration is topologically non-trivial, and this gives rise to the quantised magnetic 
charge. The Dirac monopole, on the other hand, is usually considered to have no such 
topological structure associated with it. The quantisation condition is not regarded as 
topological in origin, but is the result of the famous ‘Dirac veto’. 

In this paper it is shown that the Dirac monopole does have a topological origin. In 
Dirac’s original paper the vector potential A,  has a line singularity, and the ‘Dirac 
veto’, which leads to the quantisation, is the requirement that the electron wavefunction 
vanish on this line. In recent years, Wu and Yang (1975) have reformulated Dirac’s 
theory to avoid any singularities in A,. This is done by dividing the space surrounding a 
monopole into two overlapping regions, a and b, and defining A: and Ab, in each 
region. A i  and Ab, are both finite in their own region, but are not identical in the 
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overlapping region; instead, they are related by a gauge transformation, and the 
condition for this to be single-valued is Dirac’s quantisation condition. The mathema- 
tical structure of the Wu-Yang theory is that of fibre bundles. 

We shall show below that the relevant fibre bundle is S 3 ,  considered as an S’ fibre 
over an S2 base space. The S1 fibre corresponds to electromagnetic gauge trans- 
formations (S’ is the group space of the gauge group U ( l ) ) ,  and S2 is the (unit) sphere 
surrounding the origin, where the monopole sits. Excising the origin from three- 
dimensional space gives R 3  - { O }  = S2 x R, the Cartesian product of the two-sphere and 
the real line ( r  coordinate). This space has a different topological structure from 
Euclidean space, and cannot be ‘shrunk’ to the origin. Locally, S3=S2XS1, but 
globally they are distinct, since their (co)homology groups are different. 

The simplest mapping of S 3  into S 2  is the Hopf map. It is shown, using this map, that 
S 3  and S2 x S’ are globally distinct, and that the Wu-Yang vector potentials result from 
projecting specific sections of S 3  onto S2. Quantisation of the monopole charge is a 
consequence of the Gauss-Bonnet-Chern theorem in differential geometry, and yields 
the Schwinger condition n = 2. Results similar to these have been obtained by 
Trautman (1977),  though his method differs from the one presented here. 

In Q 2 the ‘conventional’ treatment of the Dirac monopole is outlined, and in Q 3 the 
Wu-Yang treatment. Section 4 is devoted to topology, differential geometry and the 
Hopf map. In 9 5 it is shown how the Hopf map yields the Wu-Yang potentials, and the 
Gauss-Bonnet-Chern theorem the charge quantisation. Concluding remarks follow in 
§ 6. 

2. The Dirac monopole 

We sketch the outline of the customary approach to magnetic monopoles, inaugurated 
by Dirac (1931).  We have to derive two results; the quantisation condition, and an 
expression for the vector potential A,. We shall derive them in that order. 

Consider a monopole of strength g at the origin. The magnetic field is 

B = (g/r3)r  = - g V ( l / r ) .  

Since V 2 ( 1 / r )  = -41rS~r we have 

V . B = 4 r g s 3 r  

corresponding to a point charge, as desired. Since B is radial, the total flux through a 
sphere surrounding the origin is 

@ = 4 m 2 B  = 41rg. (2 .3)  
Consider a particle of electric charge e in the field of this monopole. Its wavefunction is 

i 
I(, = /I(,/ exp -@. r -Et). 

h 

In the presence of an electromagnetic field, p + p  - (e/c)A, so 

I(, + I(, exp[-(ie/hc)A . r ] ,  

or the phase a changes by 

a + a - (e/hc)A . r. 
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Consider a closed path at fixed r, 8, with 4 ranging from 0 to 27r. The total change in 
phase is 

= (e/hc)(Flux through cap) = (e/hc)@(r, 8) .  (2.4) 

@(r,  8 )  is the flux through the cap defined by a particular r and 8, as shown by the shaded 
area in figure 1. As 8 is varied, the flux through the cap varies. As 8 + 0, the loop 
shrinks to a point and the flux passing through the cap approaches zero: 

@(r,  0 )  = 0.  

Figure 1. The shaded area of the sphere is the cap defined by a particular r and 6 

As the loop is lowered over the sphere, the cap encloses more and more flux, until, 
eventually, at 6 = x we should have, from equation (2.3), 

@(r, x )  = 47rg. (2.5) 

However, as 8 + x,  the loop has again shrunk to a point so the requirement that @(r, T )  

be finite entails, from equation (2.4), that A be singular at 8 = x. Since this argument 
holds for all spheres of all possible radii, A is then singular along the entire negative z 
axis. This is known as the Dirac string. It is clear that by a suitable choice of 
coordinates, the string may be chosen to be along any direction, and in fact need not be 
straight, but must be continuous. 

The singularity in A gives rise to the Dirac veto-that the wavefunction should 
vanish along the negative z axis. Its phase is therefore indeterminate there and, 
referring to equation (2.4), there is no necessity that as 8 + 7r, Aa += 0. We must have 
ha = 2xn, however, for $ to be single-valued. Equations (2.4) and (2.5) then give 

1 eg = Zn hc, 

which is the Dirac quantisation condition. 
We come now to an expression for A,. As seen above, it is singular. This much is 

clear from equation (2.2), for if B = curl A and A is regular, div B = 0, and no magnetic 
charges may exist. From the argument above, A is constructed by considering the pole 
as the end point of a string of magnetic dipoles (Dirac 1931) whose other end is at 
infinity. This gives (Wentzel 1966) 

(2.7) 
X A y = g -  A, = O  -Y A x = g -  

r ( r  + z)’  r ( r  + z)’ 
or 

A,=Ae = 0, A+ = g ( l  -cos 8 ) / r  sin 8. 
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A is clearly singular along r = -2, If, on the other hand, the Dirac string were chosen to 
be along r = z ,  we should have 

A,=Ao=O, Ad, = -g(l  +cos 8) / r  sin 8. (2.9) 

3. Wu-Yang treatment of the Dirac monopole 

In recent years Wu and Yang (1975) have recast the theory of the Dirac monopole into a 
form which avoids the use of a singular vector potential. We here give a bare outline of 
their idea. The space surrounding the monopole-the sphere, essentially-is divided 
into two overlapping regions R, and Rb.  R, excludes the negative z axis (S pole) and Rb 
excludes the positive z axis (N pole). In each region A is defined differently: 

A;  = A :  = 0 ,  

A : = A : = o ,  

A$ = g ( l  -COS 8 ) / r  sin 8, 

Ab, = -g( l  +cos 8 ) / r  sin 8. 

(3.1) 

(3.2) 

By comparison with equations (2.8) and (2.9) it is clear that A" and A b  are both finite in 
their own domain. In the region of overlap, however, they are not the same, but they 
are related by a gauge transformation 

where S = S a b  has to be a single-valued function. With A$ and Ab, given as above, it is 
clear that 

2ige 
hC 

S = exp -4 (3.4) 

satisfies equation (3.3), and the requirement that S be single-valued yields the quan- 
tisation condition (2.6). To check that equations (3.1) and (3.2) do really represent a 
magnetic monopole, we calculate the total magnetic flux through a sphere surrounding 
the origin: 

@ =  [ Fwy dx""" =$curl  A .  d S =  curl A .  dS+  curl A . d S  
[b 

Now, unlike the complete sphere, the regions a and b have boundaries which may be 
chosen to be the equator 8 = 7/2.  Stokes' theorem is then applicable, and since the 
equator bounds a in a positive orientation and b in a negative one, we have 

@ = $  A".dl"-$ A b . d l b  
8 = r r / 2  a = d z  

ihc d =e $ -$n S-l) d 4  

= 47g (3.5) 

in agreement with equation (2.5), where equations (3.3) and (3.4) have been invoked. 
The Wu-Yang potentials then define a magnetic monopole of strength g. 
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4. The Hopf map 

Since the spaces we are concerned with are spherical rather than Euclidean, theorems of 
integral calculus such as Stokes' theorem have to be generalised. This involves 
introducing a number of topological notions, which though hardly the stock-in-trade of 
physicists, are not so unfamiliar as they once were. We shall only give the briefest 
account here-for further information the reader should consult Choquet-Bruhat 
(1968), Flanders (1963), Pollard (1977) or von Westenholz (1978). A review for 
physicists appears in Misner and Wheeler (1957). 

The first object of concern is the nth homology group H,,(X) of a space X .  It is the 
quotient group of the group of n-cycles 2, divided by the group of n-boundaries B,: 

Hf l (X)  = Z,(X) /Bf l (X) .  
Loosely speaking, the number of generators of (say) the first homology group H 1 ( X )  of 
X is the number of inequivalent (non-homologous) closed curves in X which are not 
boundaries of pieces of area in X .  For example, for the two-sphere S2, 

H1(S2) = 0, 

since every closed curve on S2 bounds a piece of area of S (see figure 2(a)). For the 
torus T 2 ,  however, 

H1( T 2 )  = Z x 2 ;  

where 2 is the group of integers under addition. In other words, H1(T2)  has two 
generators, since there are two types of closed curve on T 2  which do not bound areas on 
T 2 ,  namely the major and minor circumferences c2  and c3  in figure 2(b). The general 
results of concern to us are 

H f l ( S n )  = 2, 

Hj(S") = 0 (0 < i < n), 

H1(S2 x S')  = 2. (4.3) 
We next turn to differential forms. An n-form w, integrated over an n-chain c, is a 

number 

A form w,, is closed if dw, = 0, and exact if w, = dw,-l. In R"  all closed forms are 
exact, but in a general space this is not true. The nth cohomology group H " ( X )  of a 

la) 161 

Figure 2. ( a )  Every closed curve c on the sphere S2 encloses a piece of area of S2. ( b )  The 
three closed curves cl, c 2  and c3 on the torus T 2  are non-homologous. c1 encloses a piece of 
area of T 2 ,  but c2  and c j  do not. 
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space X is the quotient group of closed n-forms divided by exact n-forms. The 
cohomology groups of a space are, by virtue of the duality expressed by equation (4.4), 
dual to the homology groups. It then follows from equation (4.1) that the second 
cohomology of the two-sphere, H2(S2) ,  is nontrivial, and hence that a closed 2-form w 2  
on S* is not necessarily exact. 

On s2, dw2=0 ;f. ~ 2 = d ~ 1 .  (4.5) 
In component language, this means that div B = 0 does not imply that B =curl A, 
where A and B are vector fields defined on S 2 .  

Finally, we have the generalised Stokes’ theorem, according to which if w is ap-form 
and c a ( p  + 1)-chain with boundary ac, 

I,, = I, dw. (4.6) 

Putting p = 1 gives Stokes’ theorem, and putting p = 2 gives the divergence theorem. 
We come now to the Hopf map, which maps S 3  onto S2. S3 may be parametrised by 

xl, x2, x3 and x4 (coordinates in R 4 )  obeying 

x:+x:+x;+x:= 1. (4.7) 
Putting zo = x1 + ix2, z1 = x3 + ix4, this becomes 

Izo)2+ /z1/2 = 1. (4.8) 

‘$:+g+s;= 1. (4.9) 

S 2  is parametrised by &, r2 and t3 (coordinates in R3)  obeying 

The Hopf map f is given by (Hopf 1931) 
2 2 2 2  f :  51 = 2(XlX3+X2X4), 5 2  = 2(X2X3--XIX4), 53 = X I  + X Z - X ~  -xq (4.10) 

since, as may be verified, this implies that 

5: + 5: + 4: = (x:+ x: + x: - x:)2, (4.11) 

in agreement with equations (4.7) and (4.9). 
The two-sphere may alternatively be parametrised by the coordinates on the 

equatorial plane by stereographic projection, as in figure 3. Denoting the two planar 
coordinates by the complex coordinate z (  = x + iy), we have, from the geometry of 
figure 3, and equation (4.10), 

(4.12) 

Figure 3. Stereographic projection of the two-sphere 6: + 6: + 6: = 1 onto the plane ( x ,  y ) .  
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Now zo and zl are not uniquely determined by t, for if ( zo ,  21) is replaced by 

~ A Z ~ / ~ + I A Z ~ ~ ~ =  I A ~ ' =  1, (4.13) 

z is unchanged. A is then of the form e'", and generates S' ,  so locally S 3  = S 2  x S'. This 
is not true globally, however, since the first homology groups of the spaces are, from 
equations (4.2) and (4.3), 

H1(S2 x S' )  = z, H ' ( s ~ )  = 0. (4.14) 

From equation (4.13) we see that the Hopf map maps a 1-cycle (SI) in S3 onto a 
point in S 2 ;  this is illustrated in figure 4. S 3  is a fibre bundle with base space S2 and fibre 

(Azo, Azl) with 

S' .  

Figure 4. The Hopf map f maps S' c S 3  into a point in S2 

We now make the observation that S 3  is the group space of the group SU(2), since 
this is the group of 2 x 2 matrices with the property 

3 

U = uo+i  C uiq, u ;+u :+u ;+u :=  1. 
i = l  

S 3  may therefore be parameterised by the Euler angles $84. The SU(2) element 
corresponding to an arbitrary rotation is 

U = exp(icr34/2) e x p ( i ~ ~ 8 / 2 )  exp(ic3(I,/2) 

cos 812 exp i((I, + 4 ) / 2  i sin 812 exp i(4 - $)I2 
i sin 812 exp i((I, - 4 ) / 2  cos 812 exp -i(4 + $)I2 

Putting z o  = x1 + ix2, z1 = x3 + ix4 then gives 

4 + 4  6 x2 = sin( y) cos -, e 
2 

x1= cos( 1) cos -, 
2 

x3 = cos( 7) (1,-4 sin 2, e x4 = sin( 1) * - -4  sin - 6 
2 

The Hopf map (4.10) then gives 

= cos 4 sin 8, t2 = sin 4 sin 8, c3 = COS e, 

(4.15) 

(4.16) 

so that (4, 8) may be identified with the polar angles on the sphere S2, and (I, is the angle 
of the S' fibre. 
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Now let us take ‘sections’ of S 3  corresponding to the circles $ = 4 and $ = -4. The 
above equations give 

II, = 4 :  zo = ei* cos e12 Z 1 
(1 + / Z / ’ y  

21 = 
z1 = sin 812 

(4.17) 

(4.18) 

where w = l / z ,  and both are finite. Equation (4.17) maps S2-{co} into S 3 ,  that is, 
referring to figure 3, the projective plane without the point at infinity; in other words, 
the sphere S2  minus the N pole. Equation (4.18), on the other hand, maps S’-{0}, or 
the sphere minus the S pole, into S 3 .  The fact that these maps do not agree in the 
overlap region is another indication that, globally, S 3  is distinct from S’ X S’. 

W 

( l + l w / ’ y  
21 = 

= - 4 ;  z0 = COS e / 2  1 
z1 =e+ sin e12 1 2 0 = ( 1  +lw12)1/2, 

Finally, the area of S’ (of unit radius) is 

Is, sin 0 d e  A d 4  = 4 ~ .  

Defining the area 2-form uz by 

(4.19) 

u2= sin 0 dB A d 4  (4.20) 

we then have 

U’ = 4T. (4.21) 

The 2-form uz is closed but not exact (daz = 0; u2 # dui); for if it were exact, we would 
have, using Stokes’ theorem (4.6), 

since as’ = 0, and this conflicts with equation (4.20). When, however, u2 is expressed in 
S 3  coordinates, it is exact, since all closed forms on S 3  are exact, i.e. the second 
cohomology group of S is trivial H 2 ( S 3 ) = 0 ,  just as the second homology group is 
H2(S3) = 0 (cf equation (4.2)): 

~2 = d a l  (on s3). (4.22) 

This equation plays a key role in determining the magnetic vector potentials, to which 
problem we now return. 

5. Wu-Yang potentials and the Hopf map 

We are now in a position to show the relation between monopoles and the Hopf map. 
The magnetic field of a monopole is described by a 2-form, since when integrated over 
an area (a 2-chain) it gives a number (we deal in units where flux is dimensionless). From 
equations (2.1) and (2.3) it is clear that the relevant 2-form is 

B = g u 2 = g s i n e d B  A d4,  (5.1) 
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where cr2 is given by equation (4.20). The flux is then 

Just as cr2 is closed but not exact on S2, so is B, so there is no global vector potential A on 
S2 such that B = dA, or, in components, B = curl A. This is what we have already seen 
above. 

When considered as a 2-form on S3, however, B is exact (cf equation (4.22)), so a 
1-form A exists, with B = dA. The expression for A is 

A = 2 g ( x 2 d x l - ~ l  ~ x Z + X . + ~ X ~ - X ~  ~ X . + ) = - ~ ( ~ $ + C O S  8 dd) ,  (5.3) 

where equation (4.16) has been used. Its exterior derivative is then 

B = dA = 4g(dx2 A dxl +dx4 A dx3) = g sin 0 dB A dq5, (5.4) 

as desired from equation (5.1). Now taking sections $ = q5 and 1+4 = -4, we obtain the 
following expressions for A :  

a :  4 = -4 : A " =  g ( l  -cos 8) dq5, b : $ = q5 : A b  = -g( 1 + COS 8) dq5. 

Putting the 1-form A =A,  dxF, this gives 

g l - tcos  
-4: = -;( T B ) ,  

and Ai =A! = 0. It is seen from equations (3.1) and (3.2) that these are precisely the 
Wu-Yang potentials. These results are summarised schematically in figure 5. 

Finally, we come to the geometrical account of quantisation. A remarkable classical 
theorem in differential geometry, called the Gauss-Bonnet theorem, states that the 
integral of the Gaussian curvature K over a closed (two-dimensional) surface M is 

where x(M), the Euler number of M, is an integer. For the sphere, x = 2, and for a 
sphere with p handles, x = 2 - p .  The remarkable property of the Gauss-Bonnet 

S' A - 1  5 3  

Figure 5. The Wu-Yang potentials derived by taking sections $ = (b and $ = -4 in S3 
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theorem is that it relates a purely local property of a surface (the Gaussian curvature) to 
a topological invariant of the surface. This theorem has been generalised to the case of 
vector fields defined on spheres-more particularly to the case when a ‘connection 
form’ is defined. A connection form is the geometric definition of a covariant deriva- 
tive. The minimal prescription for an electromagnetic field, p + p  - (e/c)A implies that 
the derivative operator V changes into V - (ie/hc)A, which is called the covariant 
derivative (for an introduction to the geometrical treatment of gauge fields, see for 
example Drechsler and Mayer 1977). This identifies the connection form w as 

w = -(ie/tic)A. 

The ‘curvature form’ R is now defined by 

R = d w - w  A W .  

It is clear from equation (5.3) that w A w = 0, so 

a=-( ieltic) dA = -(ie/hc)g sin 6’ de  A dd,  

where equation (5.4) has been used. 
Now define 

de t [ l+ ( i /27 r )R]=1+w1+w2+.  . .+on. 

In our case, where R is not a matrix, this simply gives 

w 1  = (i/27r)R = (eg/2rhc)  sin 0 dB A dd.  

( 5 . 5 )  

The Gauss-Bonnet-Chern theorem now states that each form wi defines a cohomology 
class whose integral is given by (in our case) (Chern 1972, Baum 1970, Drechsler and 
Mayer 1977) 

which gives 

eg = hc, 

which is the Dirac condition with n = 2. The Gauss-Bonnet-Chern theorem has 
yielded quantisation but allowed only one value of n. The case n = 2 is called the 
Schwinger condition. 

6. Concluding remarks 

We have shown that the magnetic monopole is described by the fibre bundle S 3  over the 
base space S 2 .  The electromagnetic vector potential is not globally defined over the 
sphere S2, and appropriately chosen sections in S 3  yield the Wu-Yang vector potentials 
which describe the Dirac monopole. Quantisation of magnetic charge follows from the 
Gauss-Bonnet-Chern theorem, and gives the Schwinger condition. The origin of this 
quantisation is different from that of solitons, for example the ’t Hooft-Polyakov 
monopole. 

Finally, we may expect the instanton (Belavin et a1 1975) to be described by the 
analogous Hopf map S7+S4,  with fibre S 3 .  S4, the base space, is compactified 
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Euclidean space E4, and S 3  the group space of SU(2), corresponds to Yang-Mills gauge 
transformations. This has already been anticipated by Trautman (1977). 

Very closely related work, including a treatment of non-abelian gauge fields and 
instantons, has been done by S Minami (1979a,b). 
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