The SU(N) Heisenberg model of quantum permutations on a lattice

F. Mila Ecole Polytechnique Fédérale de Lausanne **Switzerland**

Collaborators

P. Corboz (Zürich), A. Läuchli (Innsbruck), K. Penc (Budapest) T. Toth (Toronto), M. Troyer (Zürich), B. Bauer (Santa-Barbara) L. Messio (Lausanne), HongYu Yang (Lausanne)

Introduction: SU(N) models in condensed matter and cold atoms **SU(3)** on triangular and square lattice → 3-sublattice color order $\text{SU}(4)$ on square lattice → dimerization and Néel order **Probing color order with cold atoms** \rightarrow multiple occupancy **Conclusions**

Quantum permutations

D Objects with N flavours on a lattice Hilbert space = $\{|\sigma_1 \sigma_2 ... \sigma_L >\}$ $\sigma_i = 1, 2, ..., N$ or $\sigma_i = A, B, C, ...$ or $\Theta, \Theta, \Theta, ...$

$$
\mathcal{H} = \sum_{\langle i,j \rangle} P_{ij}
$$

 $P_{ij}|\sigma_1...\sigma_i...\sigma_j...\sigma_N\rangle = |\sigma_1...\sigma_j...\sigma_i...\sigma_N\rangle$

SU(N) formulation

$$
H = \sum_{\langle i,j \rangle} S_m^n(i) S_n^m(j)
$$

$$
S_m^n|\mu\rangle = \delta_{n,\mu}|m\rangle
$$

$$
[S_m^n, S_k^l] = \delta_{n,k} S_m^l - \delta_{m,l} S_k^n
$$

 S_m^n \rightarrow generators of SU(N)

At each site: fundamental N-dimensional representation

Physical realizations I Magnetic insulators

 \blacksquare N=2 \rightarrow spin-1/2 Heisenberg $P_{ij} = 2\vec{S}_i \cdot \vec{S}_j + 1/2$ \blacksquare N=3 \rightarrow S=1 biquadratic $P_{ij} = \vec{S}_i \cdot \vec{S}_j + (\vec{S}_i \cdot \vec{S}_j)^2 - 1$ ■ N=4 → symmetric Kugel-Khomskii model $H = \sum_{ii} J_{ij} \left(2 \vec{s}_i \cdot \vec{s}_j + \frac{1}{2} \right) \left(2 \vec{\tau}_i \cdot \vec{\tau}_j + \frac{1}{2} \right)$

Physical realizations II N-flavour fermions in optical lattice (⁴⁰K, ⁸⁷Sr,…)

N-flavour Hubbard model

$$
\mathcal{H} = -t \sum_{\langle i,j\rangle}\sum_{\alpha=1}^N(c_{i,\alpha}^\dagger c_{j,\alpha} + h.c.) + U\sum_i\sum_{(\alpha,\beta)}n_{i,\alpha}n_{i,\beta}
$$

(1 fermion per site) 1/N filling

$$
\mathcal{H} = \frac{2t^2}{U} \sum_{\langle i,j \rangle} P_{ij}
$$

General properties

Soluble in 1D with Bethe Ansatz \rightarrow algebraic correlations with periodicity 2π/N Sutherland, 1974

Equivalent of SU(2) dimer singlet: N sites

 $| S > = (1/\sqrt{N!}) \sum_{P} (-1)^{P} | \sigma_{P(1)} \sigma_{P(2)} ... \sigma_{P(N)} >$ with $\{\sigma_1 \sigma_2 ... \sigma_N\} = \{1 \ 2 ... N\}$ Li, Ma, Shi, Zhang, PRL'98

Hartree approximation

$$
\Big|\,|\psi\rangle = \prod_i |\varphi_i\rangle
$$

$$
\langle \varphi_1 \varphi_2 | P_{12} | \varphi_1 \varphi_2 \rangle = \langle \varphi_1 \varphi_2 | \varphi_2 \varphi_1 \rangle = | \langle \varphi_1 | \varphi_2 \rangle |^2
$$

 \rightarrow on 2 sites, energy minimal if $\langle \varphi_1 | \varphi_2 \rangle = 0$

 \rightarrow on a lattice, Hartree energy minimal as soon as colors on nearest neighbors are different

NB: For SU(2), Hartree \Leftrightarrow classical \rightarrow fundamental representation: S=1/2 \rightarrow S=1/2: all states are magnetic

SU(3) on triangular lattice

u Unique 'classical' (Hartree) state → 3-sublattice covering of triangular lattice \rightarrow The equivalent of Néel on square lattice Schwinger bosons \rightarrow Flavour wave theory

$$
\mathcal{P}_{ij} = \sum_{\mu,\nu \in \{A,B,C\}} a_{\mu,i}^{\dagger} a_{\nu,j}^{\dagger} a_{\nu,i} a_{\mu,j}
$$

$$
\tilde{a}_{A,i}^{\dagger},\tilde{a}_{A,i}\rightarrow\sqrt{M-\tilde{a}_{B,i}^{\dagger}\tilde{a}_{B,i}-\tilde{a}_{C,i}^{\dagger}\tilde{a}_{C,i}}
$$

3-sublattice order stable Tsunetsugu, Arikawa, JPSJ 2006 A. Läuchli, FM, K. Penc, PRL 2006

SU(3) on square lattice

Infinite number of 'Hartree' ground states

 A B A B $B \cap A$ B $A \cap B \to C$ at any site A B A B

Quantum fluctuations: order by disorder? \rightarrow Flavour-wave theory \rightarrow Zero-point energy

T. Toth, A. Läuchli, FM, K. Penc, PRL 2010

Flavour wave spectrum

3-sublattice helical 2-sublattice

Order by disorder

3-sublattice helical 2-sublattice

Quantum fluctuations: minimize $\Sigma\omega_q \rightarrow 3$ -sublattice order **Thermal fluctuations:** maximize # zero modes \rightarrow 2-sublattice order

Flavour-wave theory

$$
\mathcal{H} = \sum_{\substack{\alpha, \beta \text{ is nonmected} \\ \alpha \neq \beta}} \mathcal{H}_{\alpha\beta} \qquad \mathcal{H}_{\alpha\beta} = \sum_{\substack{\text{disconnected} \\ \text{clusters } C}} \sum_{\substack{\langle i, j \rangle \in C \\ i \in \alpha, j \in \beta}} \mathcal{H}_{\alpha\beta}(i, j)
$$

$$
\mathcal{H}_{\alpha\beta}(i,j) = (\alpha_i^{\dagger} + \beta_j)(\alpha_i + \beta_j^{\dagger}) - 1
$$

$$
\langle (\alpha_i^{\dagger} + \beta_j)(\alpha_i + \beta_j^{\dagger}) \rangle \ge 0 \Rightarrow \langle \mathcal{H}_{\alpha\beta}(i,j) \rangle \ge -1
$$

Lower bound saturated for two sites - Make clusters as small as possible

DMRG and iPEPS for SU(3)

Triangular lattice Square lattice

B. Bauer, P. Corboz, A. Laeuchli, L. Messio, K. Penc, M. Troyer, FM, unpublished

SU(4) ladder

Spontaneous SU(4) plaquette singlet formation Confirmed by field theory in weak and strong rung limits M. Van Den Bossche, P. Azaria, P. Lecheminant, FM, PRL 2001

SU(4) on square lattice: early results

Low-lying SU(4) singlets: plaquette coverings? M. Van den Bossche, F.-C. Zhang, FM, EPJB 2001 **Plaquette long-range order** H.-H. Hung, Y. Wang, and C. Wu, Modern Phys Lett 2006 **Liquid with emergent nodal fermions** Fang, Vishwanath, PRB 2009 **n** Chiral spin liquid ground state with topological order for N>4 Hermele et al, PRL 2009 Stripe color order?

SU(4) on square lattice

Hartree: infinite number of coverings Flavor-wave theory \rightarrow small clusters favored (2 and 4 sites) \rightarrow stripe order not stabilized

 $E/J=-1.5$ $E/J=-1.29$ $E/J=-0.73$

iPEPS

 \blacksquare iPEPS = infinite Projected Entangled Pair **States**

- **D** Variational method based on a tensor product wave-function
- **Becomes exact if the dimension D of the** tensors \rightarrow infinity
- **Can be seen as a generalization of DMRG** Verstraete and Cirac, 2004

iPEPS: SU(4) on square lattice

 $D>2$

SU(4) on square lattice IPEPS, ED, Hartree + flavour-wave theory,… IRREP dim=6

Dimerized ground state + Néel order

P. Corboz, A.Läuchli, K. Penc, M. Troyer, F. Mila, PRL 2011

IRREP 6 on square lattice: Algebraic order? Assaad 2005 Long-range order? Paramekanti and Marston, 2007

SU(4) spin-orbital model

 $A = | \uparrow, a \rangle, \quad B = | \downarrow, a \rangle, \quad C = | \uparrow, b \rangle, \quad D = | \downarrow, b \rangle$

$$
(AB - BA)/\sqrt{2} \rightarrow |\text{spin singlet}\rangle \otimes |a, a\rangle
$$

$$
(CD - DC)/\sqrt{2} \rightarrow |\text{spin singlet}\rangle \otimes |b, b\rangle
$$

$$
(AC - CA)/\sqrt{2} \rightarrow |\uparrow, \uparrow\rangle \otimes |\text{orbital singlet}\rangle
$$

$$
(BD - DB)/\sqrt{2} \rightarrow |\downarrow, \downarrow\rangle \otimes |\text{orbital singlet}\rangle
$$

 $\begin{array}{|c|c|}\n (AD-DA)/\sqrt{2} & \rightarrow \\
(BC-CB)/\sqrt{2} & \end{array}$

|spin singlet $\rangle \otimes$ |orbital T_0 } $|spin T_0\rangle \otimes |orbital singlet\rangle$

IRREP6

Probing color order

Problem: long-range order sets in at low temperature (T=0 in 2D!)

SU(2): probe short-range order through doubleoccupancy Gorelik et al, PRL 2010

 $D = \frac{zt^2}{2U^2}(1-\langle \vec{\sigma}_i \cdot \vec{\sigma}_j \rangle)$

How to probe local order for SU(3)?

Double occupancy? No \rightarrow enhanced for both Triple occupancy? Yes! > suppressed for Néel order → enhanced for 3-sublattice order

Triple occupancy for SU(3) chain

$$
n_{i, A} n_{i, B} n_{i, C} = \frac{4}{9} \frac{t^4}{U^4} \sum_{(j,k)} (1 - P_{ij} - P_{ik} - P_{jk} + P_{ijk} + P_{ijk}^{-1})
$$

Quantum Monte Carlo

Strongly enhanced below S=ln3

L. Messio, HongYu Yang, FM, unpublished

Conclusions

SU(3) on triangular lattice \rightarrow canonical example of color order **SU(3) on square lattice** → 3-sublattice order at zero temperature \rightarrow 2-sublattice correlations at large T? $\text{SU}(4)$ on square lattice \rightarrow dimerization + Néel order **Probing color order** \rightarrow multiple occupancy