Appendiz B

Representations of the algebra sp(2,R)

ABSTRACT: Finite-dimensional representations of the Lie algebra sp(2,R) are used in
geometric aberration optics, and the self-adjoint ones are relevant for wave optics, espe-
cially in the paraxial approximation. In this appendix we gather some information about
this Lie algebra, its self-adjoint, indecomposable, and finite-dimensional representations.

B.1 The Lie algebra sp(g,®) = su(1,1) = s0(2,1)

We dedicate this section to obtain the generators of the Lie group Sp(4R) summarized in
Appendix A; these constitute a basis for the Lie algebra sp(,R), isomorphic to s/(2,R), su(1,1), and
80(2,1), the Lic algebras of the corresponding homomorphic groups. It helps intuition to work with the
‘relativistic’ s0(€,1), justifying the notation and relating its structure to that of the compact rotation
algebra so(8) more readily, since the properties and conventions of the latter are well known and
established.

B.1.1 The cartesian basis

From equations (A.14a, b, ¢}! we may find the basic matrix representatives of the one-parameter
subgroup generators Ji, k = 1,2,0, gi(r) = exp(irJi). We indicate their correspondence by “+~”:

p(2,R) suf1,1) s0(8,1)
0 0 1
-100 1 1o —¢ 1
% 11 0F 5(1 0) &, 5}(1- 0) 5 ‘.(0 0 0): (1a)
1 0 0
0 -1 0
=171 0 =100 1 1
poe GG - F0) - Havo)
0 0 0
0 0 0
~170 1 171 0 1
= = ot {
LR i(—l o) - 1 ) i(O y 1)‘ k)
0 -1 0
These operators satisfy the commutation relations
[Jo, /1] = 1iJs, Vi, Jo] = —idy, [J2, Jo] = iJy. (2a,6,¢)

1That is, equations (14e), (14b), and (14¢) of Appendix A.
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The minus sign in (2b) distinguishes #0(2,1) from s0(3), the compact rotation algebra.

‘We may now abstract the above commutation relations for any particular representation of the
quantities {J;}2_.

Most of the representation theory of semisimple Lie algebras (and groups) deals with repre-
sentations that are self-adjoint (or unitary) and irreducible. These provide a deep understanding of
many of the properties such as muliplet classification by the compact subgroup generator [1]. For
noncompact groups, there are also integral transforms on the continuous spectrum of the parabolic
[2] or the hyperbolic generator [3]. Generally one requires the existence of a complex Hilbert space A
with a sesquilinear inner product (-, -). Analytic continuation of the expressions from the self-adjoint
representations provides the conventions for the finite dimensional, non-self-adjoint representations.

B.1.2 Raising, lowering, and Casimir operators

We follow Bargmann [1] in the definition of the raising and lowering operators as the complex?
linear combinations of the sp(2,R) generators Ji, £ =0,1,2:

JT = J1 +1Jo, Jl = J; —iJo. (3&,6)
Their commutation relations with the weight operator Jy are

o, /1] = £y, 1, 4] = —2Jo. (5)

The Casimir operator —commuting with all Jp— is

Cri=of ), =13
=J1Jl—Jg+J0 (5)
= JyJy =T — Jo.

B.1.3 A Hilbert space and a basis
A representation of sp(2,R) is a mapping of sp(2,R) onto a linear space of operators on ¥, with

a vector basis Jg, & = 1,2,0, whose commutators in ¥ follows equations (2). We shall require the Jy
to be self-adjoint in ¥, i.e.,

Lf,0) = (f,9e9) = (Juf,9), [.9€X, k=0,12; (8)

the domain of Jg and of \JJ; are assumed to be the same. The raising and lowering operators (3) will
then be one the adjoint of the other:

(d;f,g)=(f,Jig), (Jlflg):(fxdTg)' (7a:b)

2These should not be confused with the real linear combinations Jy :== Jo £ Jy that generate the parabolic subgroups
of sp(8,R).
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The operator C representing the Casimir operator through (C'.3) will thus be also self-adjoint in ¥ .

We consider a complete basis for ¥ given by the simultaneous eigenfunctions of Jy and C with
(real) eigenvalues p and g, respectively:

Cril=qrsi, q € X(C, X), (8a)
Jofl =ufl, pen(Jo,H), (8%)

where we use the eigenvalues as eigenfunction labels, and denote by (A, ¥) the spectrum of A in ¥.

B.1.4 Normalization coefficients

When we appply J; and J| to the above pair of equations and use (4a), we see that Ji fi and
J, 74, if not null, are eigenfunctions of C with the same eigenvalue g, and of Jy with eigenvalues g + 1
and p — 1, respectively. The spectrum of Jy in ¥ must be thus a collection of equally spaced points. If
the classification (8) resolves the eigenfunctions uniquely, then

Jifl = C?I-Lf;qr{-l’ (9a)
Iy il =l i, (96)
The constant c‘{u will be zero if 4+ 1 is not a point in the spectrum of Jg in X, and analogously for c‘fu,

that is, p £ 1 & X(Jo, ¥) = ¢f1» = 0. The eigenfunctions may be normalized to unity: (f2, f4) =1 for
all u € X(Jo, ¥). That inner product of (9) with itself may be written

e ulP(Fhers Flar)= (91 1%, It F2) [by (9)]
= (fL,IpJIyfi) [by (7)] (10)
= (f2,[C + J3 £ Jol 1) [by (5)]
= (g + u? + p)(f2, 12). [by (8)]

Hence, [c?“,,lz = 0 when g+ p® + p = 0, and otherwise they must be positive. Any eigenvalue pair q, b
must therefore satisfy

lehul? =g+p*£p>0. (11)

The regions of positivity of |¢f,[? and of |¢,|? are depicted in Figure B.1, next page.
tu e

B.2 The self-adjoint irreducible representations

B.2.1 Bounds on multiplets

Consider an eigenfunction f3 such that ¢ and p do satisfy (11). They will determine a point
outside the striped regions of Figure B.1, or on the boundaries. Through successive application of Jt
and J; we can produce the sequence of eigenfunctions fﬁil, f;’,iz, ... which should also fall outside
the striped regions. For fixed g, the multiplet of eigenvalues {u} forms thus a vertical lattice of points.
If any of these points falls on the forbidden regions, (11) is violated and u ¢ (Jy, ¥) for that value of
g, since further application of J; or of J; will yield zero; if the point falls on the boundary, this value
of p will be a bound —lower or upper— of the multiplet. In this regard we have the following distinct
intervals for ¢:
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Figure B.1 The forbidden regions g + u? F u < 0 are marked with horizontal and vertical
stripes, respectively. No eigenfunction f§ of C and Jo within a self-adjoint representation
space may correspond to points ¢, p inside these striped regions.
g> 1 Multiplets are unbounded.
g <o Multiplets are upper- or lower-bound; to describe them it is convenient to introduce the
Bargmann index k, related to ¢:
ypiifL : (12)
Then:
+ If a point g, p falls on the upper branch of the upper parabola, pui, == k is the
Jower bound of its multiplet.
— If a point ¢, p falls on the Jower branch of the lower parabola, pin., = —k is the
upper bound of the multiplet.
0 For ¢ = 0 we have the sp(2,R) trivial representation by zero: Jpofl = 0for n =
0,1,4LL2
0<g<? Both half-bounded and unbounded multiplets coexist in this ezceptional interval: the

former ones happen when some g falls on the parabola, the latter when the unit spacing
of the p’s allow them to jump over the forbidden regions. (+) Lower-bound multiplets
are obtained when esther p,;, = k as before (falling on the upper branch of the upper
parabola); or when pimi, = 1 — k (falling on the lower branch of the upper parabola).
(-) Upper-bounded multiplets occur when either fiy.x = —k (falling on the lower branch
of the lower parabola) or p,,, = k—1 (falling on the upper branch of the lower parabola).
When g = 1, then k£ = L, and the two branches coalesce on the same point pimin = 3
and pme = —5. Unbounded multiplets occur when p = ¢+ 7, |¢| < k, n € 3 (the set

of integers).
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Figure B.2 The Bargmann index & is used as coordinate axis to show the 2p(2,R) repre-
sentation structure in the exceptional interval. The bold lines correspond to the lower—
and upper-bound representations. The open gray region indicates the exceptional continous
representations. The dotted lines prolong the index k to the origin, unfolding thereby the
discrete series doubling due to ¢(k) = ¢(1 — k).

B.2.2 Resolution of irreducible subspaces

In contradistinction to the familiar suf2) case, where the Casimir operator eigenvalue 7(5 + 1)
uniquely specifies the spectrum of the compact generator, the ap(2,R) Casimir operator eigenvalue does
not. This is so because, as we have seen in the preceding subsection, ¥ is not irreducible under the

action of the algebra. In addition to the direct integral decomposition ¥ = fng %) into eigenspaces

of the Casimir operator C, within each }((q), Jo exhibits more than one self-adjoint extension (two for
g < 0, three for ¢ = 0, and a one-parameter family for ¢ > 0). Since we have identified the multiplets

themselves, the reduction of ¥(@ to its irreducible components proceeds as follows: (i) we build the
linear span of all functions {f4} belonging to a given multiplet (g fixed), and (51} the completion of

this space with respect to the original inner product (-, ) will define the Hilbert space }(%) —Ilabelled

by E— which is irreducible under sp(2,®) and where L(Jy, }((Eq)) is unique. We shall now specify what
E is. See Figure B.2, above.

B.2.2.1 The continuous series 5

For the case of unbounded multiplets in ¢ > 0, the label £ that fully specifies the self-adjoint
irreducible representations is denoted ¢, and is
e = p(mod 1) € (-}, 3. (13)
The spectrum of Jg is p = € + 1, n € 3. There are two subintervals of interest:

Nonexceptional Ing > L, [k = L(1+ k), K € R*], the full range (—1, 1] is available for e. This is
4 2 2,3

the continuous nonexceptional series of representations.

Exceptional In0 < g< % [} <k <1 eis constrained by [¢] < 1 — k. This is the continuous
exceptional series of representations. See the Table in the following page.
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. Continuous C¢
Representation q(k) : o
series: : : Diieameie: i
nonexceptional \ exceptional
g € X(C) g>1 0<g<} g<}
argmann label k: .
qu:k(ll—bk) k=1(1+ik), £ >0 | k=L1(1+x), 0<k<1 E>0
‘multivaluation’ EE (_%, %I
index: € = ¢{mod 1) le] < & €= 4k
€ (except =0, €e=1/2)
tu=¢€c+m
u € L(Jo) p=c¢c¢+m, meE3 I:;LE30+
v € B(Jy) vVER
vER, -1,1
o € B(A) it } +o=1
§eX(J) e +EeRT

Table. Casimir operator eigenvalues and spectra of the elliptic (Jg), hyperbolic
(J1), and parabolic (J_) subalgebra representatives for all representation series. (The
outer algebra automorphism A is described in reference [3].)

B.2.2.2 The discrete series Di

The lower- and upper-bound multiplets belong to the so-called discrete® representation series.
There, it iS fimin O Bmax Which becomes the label £ specifying the representation bound. The main
division concerns the direction in which the multiplet extends, while the bound itself is given in terms
of Bargmann’s label. We thus take E to be + or —, and we write, following the established convention:

Positive P i b s pr=binne (000 ot =30k
Negative Dy: k>0, p=—k+nne{0,-1,-2..}=3".

We may uphold the choice of the parameter ¢, simply setting ¢ = +£ and abandon
the modulo 1 condition since now it is a lower bound for {u}. It is also known [3]
that by means of an (outer) automorphism A of the algebra, A : {J4,Jo,J_} =
{J=,—Jo, J+} we may intertwine the positive and the negative discrete series.

As we can see in Figures B.1 and B.2, the number of discrete-series multiplets corresponding
to a given value of the Casimir eigenvalue g is two for ¢ < 0 (k > 1 i.e., D{ and D), three for ¢ =0
(k=11.e, DT, Dy and the trivial D), fourfor0 < ¢ < 1 (1 < k < li.e, Df, DY, Dy, and D7 ,)%

3The name discrete for these series was given by V. Bargmann [1], who considered the single-valued group representations,
rather than the algebra representations as here. In that case, the spectrum {u} is restricted to integers for SO(%,1), and
the half-integers for Sp(g,R). For the group, the allowed values of Bargmann’s label k are discrete. For the algebra, they

are continuous.

4The well-known oscillator representation falls on ¢ = 3/16; there we have k = 3/4, and so D;H and D'{“ are the

irreducible representations spanned by the odd and even states. The D:,T/4 and Dl_“ representation spaces would contain
negative unbounded energies. They are disregarded as unphysical.
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and finally two againforg =1 (k = % ie., D;L , and D1_/2)~ In all but the first case, these representations
coexist with continuous-series ones. The plethora of cases is conveniently reduced by disregarding the
Casimir operator eigenvalue g in favor of Bargmann’s label k¥ > 0 and =+ for the discrete series, and ¢ —or
equally well k— and e for the continuous series? In the table of last page we abstract this information.

For all self—adjoint representations series, using (11) and the Bargmann label (12), we may write

ISy =Vs+E)p—k+1)fh, (14a)
i/t =Vp-ke+k-1)1_,, (14b)

where the radicands are positive.

B.3 Indecomposable and finite-dimensional representations

‘We now relax the condition (7) that the raising operator be the adjoint of the lowering operator.
We should keep the condition of self-adjointness for Jo and C, however, if in (8) we still want real
eigenvalue labels p and g for the multiplet members. This means that both JyJ; and J;J; are self-
adjoint, as may be seen from (5). We may thus allow the matrix elements of Jy; to keep the absolute
values of (14), but to differ by conjugate phases from those of (J1)f, so that c’T‘uc’f,,ﬂ be real, t.e.,

(k‘)‘ = eEm) /| (u+ k)(w — k+ 1), (15a)

q'
t
C‘f(k,l = ¢ @01 S k) (p+ k—1)]. (15b)

B.3.1 Indecomposable representations

The Bargmann label k will prove to describe the class of indecomposable representations better
than the Casimir operator eigenvalue g.

Due to (12), g(k) = ¢(1 — k), but k itself, allowed to range over £ > 0 above, may be
extended here to the real line® As for the discrete series, we see from (14b) that pm, = k is a lower

bound for multiplets extending up, and from (14a) that pn.x = —k is an upper bound for multiplets
extending down, since Jlf"imin = 0 and dtfﬁmx = 0 (here we have switched from g to k£ to denote

the representation). Yet, these are one-way barriers, because we may arrive at the lower bound from
below, 1.e., JTfﬁmin_l = e“”\/ﬁfﬁmin and correspondingly Jlf,",mx,,,l = e_“f"\/ﬁfﬁmx. See Figure
B.3, next page.

Suppose now we have k integer and we start with fﬁ=0. In Figure B.3 this falls within the
‘non-self-adjoint’ region to the right of the origin. We may now raise g with J; past the pni, = &
barrier, into the DY region, or we may lower it with J; into the D) region. Once there, however,
we cannot go back to f§ because of the one-way barriers. It follows that fﬁ, 4 € 3 is a basis for an

indecomposable representation of sp(2,R) [and of Sp(&,R)], with two irreducible, self-adjoint pieces Djf

pt X 0
and Dy . The block form of the algebra (and group) representation is thus ( 0 X 0 )
0 X D-

SFurther study of the exceptional interval 0 < k < 1 in terms of quantum mechanical eigenfunctions of a harmonic
oscillator with a weakly attractive or repulsive z—2-core, is undertaken in reference [4].

6The Bargmann label is, in fact, complex for the continuous representation series: k = %(l +ir), £ > 0.
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Figure B.$ The Bargmann index k is prolongued to negative values, showing the one-
way barriers that hold the irreducible spaces within the indecomposable ones. The finite-
dimensional representation multiplets f{t are to the left.

For noninteger k, when p = & (mod 1) we obtain upper-triangular indecomposable repre-
sentations of 2 X 2 block form, with D% in the 1-1 position. Similarly, when g = 1 — & (mod 1), the
lower-triangular indecomposable representations contain P~ in the 2-2 position.

We consider now the region £ < 0 as continuation of the label k in (14) to negative values. Set

J = —k, positive. Then, the Casimir eigenvalue is ¢ = k(1 — k) = —j(5 + 1) [¢f. Eq. (5)]; o = —j

remains a lower bound barrier and y = j and upper bound barrier. Hence, for j = 51,8, 2., the

set of vectors {f{, 'Z;=—j forms a finite-dimensional basis for an irreducible sp(2,®) representation [also

valid for the group Sp(2,®)], which we may call D7. The block form of the representation for all values
X 0 0

# =7 (mod 1) is (X DI X). If 7 is not in the above range of values but some y falls on a boundary,
0 0 X

the block form reduces to 2 X 2 block triangular cases.

B.3.2 The finite-dimensional representations of sp(2,R)

We now consider specifically the finite dimensional (non-self-adjoint) representations D7, where
—k=j5=11, %, 2, .... The phase of the normalization constants in (14) may be chosen to be unity,
so that

G =VE-wi+u+1) i, : (16a)
A =Vi+uni-n+1) £, (165)

These equations have now exactly the same form as the familiar raising and lowering operator
action of the rotation algebra s0{3) [5, Eqs.(3.20)]. What we have done is part of the inverse Weyl trick:
replacing J; ~ 4Jy, J3 ~+ iJy, whereby the minus sign'in (2b) is now a plus, the Casimir operator C'
in (5) is now —J?, and the #’s have been brought into the radicands of (14) to yield those of (16). The
other part of the trick, applied to groups, is the analytic continuation of the group parameters. This we
need not do here; instead, we remain within sp(2,R).
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B.3.3 The finite-dimensional representations of the group

The relation between the general element of the sp(2,R) algebra and its exponentiation to
g(a 2) € Sp(2,R) is the following:
¢

bo+0; . 8
Sin

sig
2

exp z(eoJo +6:J1 + 02J2) =g (17&)

+ =
| &

cOos8

8= \/03 — 62 — 63. (175)

This can be verified to be consistent with (4.14) and (1) in the basic representation.

LS

where

The self-adjoint representations of the algebra exponentiate to unitary representations of the
group. These were found by Bargmann [1,§10] in 1947, and can be seen summarized for the symplectic

group parameters (a (bi) in reference [2]. The finite-dimensional D7 representation matrix elements
¢

in the basis {f{t {;=—j were also given by Bargmann [1, §10g] and written in terms of hypergeometric

functions. In polynomial form, we find

J a b — (]—m,),(]+ml)¥ .7.—7"' ,7'+m npj+m—n _ j+m'—n jn—m—m'
D"‘*""(c d) V (G —m)(7+m) zn: j+m—n ( n )ab § d - (18

This is a polynomial of degree 27 in the symplectic matrix group parameters.
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