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1 Introduction

In this report, we want to show that SU(2)/C2 ≃ SO(3). This result follows from finding a
surjective homomorphism

ϕ : SU(2) → SO(3),

with Ker(ϕ) = {I,−I} ≃ C2 where I is the identity element of SU(2). In addition, we will
show that one choice of such homomorphism is given by

[ϕ(U)]ij =
1

2
Tr(σiUσjU

−1),

where σi’s are the Pauli matrices.

2 Derivation

Recall the Pauli matrices with the identity

I =
(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

They form a basis of M2(C) since they are linearly independent and span M2(C). Let us
consider the subspace V ⊂ M2(C) spanned by σ1, σ2, σ3. This means that any element A ∈ V
can be written as

A = x1σ1 + x2σ2 + x3σ3 =

(
x3 x1 − ix2

x1 + ix2 −x3

)
.

If xi’s are real, we can consider A as a map

A : R3 → V,

x 7→ x1σ1 + x2σ2 + x3σ3.

One can check that this map is bijective. Then, for any x,y ∈ R3, we have

A(x)A(y) = (x1σ1 + x2σ2 + x3σ3)(y1σ1 + y2σ2 + y3σ3) =
∑
i,j

xiyjσiσj,
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where i, j = 1, 2, 3. Upon taking the trace, we get

Tr[A(x)A(y)] =
∑
i,j

xiyjTr(σiσj).

The Pauli matrices have the following properties

σ2
i = I ∀i,

σiσj + σjσi = 0 ∀i ̸= j.

By taking the trace of these equations and using the cyclic property of the trace, it can be
shown that

Tr(σ2
i ) = 2 ∀i, and Tr(σiσj) = 0 ∀i ̸= j,

or equivalently Tr(σiσj) = 2δij.

Then, we get

Tr[A(x)A(y)] = 2
∑
i

xiyi = 2⟨x,y⟩,

where ⟨ , ⟩ is the inner product defined in R3. Therefore, we can define an “inner product”
⟨ , ⟩ in V that is equivalent to the one in R3 by

⟨A(x), A(y)⟩ = 1

2
Tr[A(x)A(y)].

Now, let us define a transformation TU on V where U ∈ SU(2) by

TU [A(x)] = UA(x)U−1 = UA(x)U∗.

The map TU , indeed, gives us an element of V and we will show it as follows. Consider V
as a subspace of M2(C) in which every element is self-adjoint and has zero trace. These
properties completely define V the same as before. Then, one has{

(TU [A(x)])
∗ = [UA(x)U∗]∗ = UA(x)U∗ = TU [A(x)],

Tr (TU [A(x)]) = Tr[UA(x)U−1] = Tr[U−1UA(x)] = Tr[A(x)] = 0,

so TU [A(x)] ∈ V . We can now consider the inner product of TU [A(x)] and TU [A(y)],

⟨TU [A(x)], TU [A(y)]⟩ =
1

2
Tr[UA(x)U−1UA(y)U−1]

=
1

2
Tr[UA(x)A(y)U−1]

=
1

2
Tr[U−1UA(x)A(y)]

=
1

2
Tr[A(x)A(y)]

= ⟨A(x), A(y)⟩.
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This means that TU preserves the inner product in V . However, consider the transformation
on R3 instead of V . Set ϕU = A−1 ◦ TU ◦ A which is a transformation on R3 corresponding
to TU . Then, the above equality implies

⟨ϕU(x), ϕU(x)⟩ = ⟨x,y⟩,

in R3 so ϕU preserves the inner product in this space. As a result, ϕU ∈ O(3). The relations
between the maps and the spaces can be summarized by the following diagram

R3 R3

V V

ϕU

A

TU

A

We can also consider U as a variable and ϕ as a (continuous) map, so we have

ϕ : SU(2) → O(3),

U 7→ ϕU .

Proving that ϕ is a group homomorphism:

To show that ϕ is a homomorphism with the properties as mentioned in Section 1, we need
to show that ϕ preserves the group law and the identity in SU(2) is mapped to the identity
in SO(3). By definition,

ϕU(x) = A−1(TU [A(x)]) = A−1[UA(x)U∗] or UA(x)U∗ = A[ϕU(x)].

Then, for U, V ∈ SU(2),

ϕUV (x) = A−1[(UV )A(x)(UV )∗]

= A−1[UV A(x)V ∗U∗]

= A−1(UA[ϕV (x)]U
∗)

= ϕU(ϕV (x)),

meaning that ϕUV = ϕUϕV . Also, we have IA(x)I∗ = A(x) so

ϕI(x) = A−1A(x) = x,

implying that ϕI = I′, in which we have denoted I′ as the identity element in O(3). These
prove that ϕ is a homomorphism.

Finding the range of ϕ:

Let us return to the statement that ϕU ∈ O(3). This does not necessarily mean that every
element of O(3) can be reached by ϕ, so we want to restrict the codomain of ϕ to be Ran(ϕ)
only. First, we notice that every element of SU(2) can be written as

U =

(
α −β̄
β ᾱ

)
,
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where α, β ∈ C and |α|2 + |β|2 = 1. Since we can identify any element z ∈ C by an element
(z1, z2) = (Re(z), Im(z)) ∈ R2, we have

|α|2 + |β|2 = α2
1 + α2

2 + β2
1 + β2

2 = 1,

which corresponds to 3-dimensional spherical surface S3 in R4. Therefore, SU(2) is homeo-
morphic to S3, and every continuous path in SU(2) can be identified with a continuous path
on this surface. Because S3 is connected, we also find SU(2) to be connected.

Now, we will prove that the range of a continuous map from a connected space is also
connected. Let f be a continuous and surjective map

f : X → Y,

where X is connected. Assume that Y is not connected, i.e., there exists A,B non-empty
and open in Y such that A ∪B = Y and A ∩B = ∅. From the definitions, we have

A,B are non-empty ⇒ f−1(A) and f−1(B) are non-empty,

f is a function ⇒ f−1(A) ∩ f−1(B) = ∅,

f is continuous ⇒ f−1(A) and f−1(B) are open,

f is surjective ⇒ f−1(A) ∪ f−1(B) = X.

This implies that X is not connected as we can separate X into disjoint non-empty open
subsets f−1(A) and f−1(B), leading to a contradiction. Thus, Y = Ran(f) is connected.
For our problem, this means that Ran(ϕ) is connected. Since ϕI = I′ and ϕ preserves the
group law, Ran(ϕ) is a subgroup of SO(3) — the identity component of O(3) — because it is
connected, in contrary to O(3). The outline for the proof on the connectedness of SO(3) (or
general SO(n)) is given in Chapter 1, Exercise 13 of [3], whereas and the non-connectedness
of O(3) can be seen from the fact that we can make the separation

O(3) = SO(3) ∪ I · SO(3), where I =

−1 0 0
0 −1 0
0 0 −1

 .

Because det(SO(3)) = 1 while det(I · SO(3)) = −1, we cannot define a continuous path
joining the two subsets so they are disjoint, implying that O(3) is not connected.

We have shown that Ran(ϕ) ⊆ SO(3); in fact, it can also be shown that SO(3) ⊆ Ran(ϕ).
The proof of the latter statement is given in the Appendix at the end of the report. As a
result, we get Ran(ϕ) = SO(3) so the map

ϕ : SU(2) → SO(3)

is surjective.

Finding the kernel of ϕ:

By definition, if U0 ∈ Ker(ϕ), we have ϕU0 = I′. This means that

ϕU0(x) = x or U0A(x)U
∗
0 = A(x)
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for arbitrary x ∈ R3. Since A(x) =
∑

xiσi, the above equation is equivalent to

U0σiU
∗
0 = σi ∀i.

As mentioned previously, we can write U0 as

U0 =

(
α0 −β̄0

β0 ᾱ0

)
,

with |α0|2 + |β0|2 = 1. Let us directly calculate each case

U0σ1U
∗
0 = σ1 ⇐⇒

(
−α0β0 − ᾱ0β̄0 α2

0 − β̄2
0

ᾱ2
0 − β2

0 α0β0 + ᾱ0β̄0

)
=

(
0 1
1 0

)

U0σ2U
∗
0 = σ2 ⇐⇒ i

(
α0β0 − ᾱ0β̄0 −α2

0 − β̄2
0

ᾱ2
0 + β2

0 −α0β0 + ᾱ0β̄0

)
= i

(
0 −1
1 0

)
U0σ3U

∗
0 = σ3 ⇐⇒

(
|α0|2 − |β0|2 2α0β̄0

2ᾱ0β0 −|α0|2 + |β0|2
)

=

(
1 0
0 −1

)
From the off-diagonal elements in the third equation, we find that either α0 = 0 or β0 = 0.
However, if α0 = 0, we have |β0| = 1 so the third equation becomes(

−1 0
0 1

)
=

(
1 0
0 −1

)
which is not true. Thus, we are left with β0 = 0 so |α0| = 1 and the set of equations reads

(
0 α2

0

ᾱ2
0 0

)
=

(
0 1

1 0

)
(

0 −α2
0

ᾱ2
0 0

)
=

(
0 −1

1 0

)
(
1 0

0 −1

)
=

(
1 0

0 −1

)
(always true)

.

Solving these equations give us

α2
0 = ᾱ2

0 = 1 ⇐⇒ α0 ∈ {1,−1}.

As a result, we have Ker(ϕ) = {I,−I} ≃ C2.

Finding the explicit expression of ϕ:

Consider the equation
UA(x)U∗ = A[ϕU(x)].

We can expand the left-hand side as

UA(x)U∗ =
3∑

i=1

xiUσiU
∗,
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while the right-hand side is given by

A[ϕU(x)] =
3∑

i=1

[ϕU(x)]iσi =
3∑

i=1

3∑
j=1

[ϕU ]ijxjσi.

We take the summation in the left-hand side equation to be over j since it is just a dummy
index. Then, by collecting terms with the same j, one has

3∑
j=1

xj

(
3∑

i=1

[ϕU ]ijσi − UσjU
∗

)
= 0.

This has to hold for any choice of xj’s so in general, we have

3∑
i=1

[ϕU ]ijσi − UσjU
∗ = 0 or

3∑
i=1

[ϕU ]ijσi = UσjU
∗.

Now, let σk for some k act on the right of the second equation then take the trace

3∑
i=1

[ϕU ]ijTr(σiσk) = Tr(UσjU
∗σk).

By using Tr(σiσk) = 2δik, we get

2[ϕU ]kj = Tr(UσjU
∗σk) or [ϕU ]ij =

1

2
Tr(σiUσjU

∗),

after cycling to the right inside the trace once and changing the index from k to i. This is
the same expression given in Section 1 since U−1 = U∗. Another short way to derive this
is by directly calculating the matrix element using its definition with the inner product and
the unit vectors ej’s in R3, i.e.,

[ϕU ]ij = ⟨ei, ϕU(ej)⟩ (in R3)

= ⟨A(ei), A[ϕU(ej)]⟩ (in V )

= ⟨σi, UσjU
∗⟩

=
1

2
Tr(σiUσjU

∗).

Let us make a final remark on this result. The homeomorphism of SU(2) and S3 in R4 also
implies that SU(2) is simply connected (while SO(3) is not). Then, the above isomorphism
means that we can relate problems regarding the non-simply connected group SO(3) with
the simply connected group SU(2). We say that SU(2) is a universal cover of SO(3). Simple
connectedness is of great importance in Lie groups and Lie algebras because if a Lie group
is simply connected, there is a one-to-one correspondence between its representation (or
homomorphism) and the representation (or homomorphism) of its Lie algebra (see section
3.6 and 3.7, [3]) .
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Appendix

We will first work with topological groups for generality then apply it to our problem.
Let G be a topological group with e be its identity and G0 be its identity component. A
neighborhood V of e is called symmetric if

V −1 := {v−1|v ∈ V } = V.

Let V be open and define V k := V V · · ·V (k times). Then, consider the following subset of
G

H :=
∞⋃
k=1

V k.

For any x ∈ V m ⊂ H and y ∈ V n ⊂ H, we have xy ∈ V m+n ⊂ H, and x−1 ∈ (V −1)m =
V m ⊂ H. Also, the conditions for associativity and existence of identity are satisfied because
H ⊂ G which is a group itself and V contains the identity. Thus, H is a subgroup of G.
Assume that V k is open for k ≥ 1, let us consider

V k+1 = V V k =
⋃
a∈V

aV k.

which is a union of left cosets of V k (we can also write in terms of right cosets by considering
V k+1 = V kV instead). For arbitrary x ∈ G, we define a left translation of x on G by

L(x) : G → G,

y 7→ xy.

G is a topological group so by definition, the product map and inverse map for the group
are continuous. Therefore, both L(x) and L(x)−1 = L(x−1) are continuous maps 1. If we let
x = a ∈ V , the map L(a)−1 is continuous so by definition, the inverse image of an open set in
G is also an open set in G. Since (L(a)−1)

−1
= L(a) and V k is open, we have L(a)V k = aV k

is open. Then, V k+1 is open due to it being a union of open sets. We have V 1 = V open so
by induction, V k is open for any k. Then, H is a union of open sets so H is open as well.
However, using the argument for the left coset again, we can show that the subset

K :=
⋃
b/∈H

bH = G \H

is open, which means that H is closed. As a result, H is an open and closed subgroup of
G. In particular, we consider G = G0, which is connected. For a connected space, the only
subsets that are both open and closed are the whole set itself and the empty set, and because
H is non-empty by assumption, we have H = G0. The readers can refer to §23 of [4] for the
proof of this statement.

1In fact, the map L(x) is a homeomorphism.
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The above derivation only involves symmetric neighborhoods of e but we can make this
more general as follows. We consider the identity component G0 alone and let U ⊆ G0 be
any open neighborhood of e. From Lemma 3.4 in [5], we can always find a neighborhood
V ⊆ U of e such V is open and symmetric. Then, we have V k ⊆ Uk and

H =
∞⋃
k=1

V k ⊆
∞⋃
k=1

Uk.

As shown before, H = G0, and because Uk ⊆ G0 for any k, we arrive at

G0 =
∞⋃
k=1

Uk.

Thus, if we have a connected topological group G, i.e., G = G0, any open neighborhood U
of e is a generator of G.

Now, let us return to our problem. We will consider the map

ϕ : SU(2) → SO(3).

We state without proof that there exists (small) open neighborhoods A ⊆ SU(2) of I and
B ⊆ SO(3) of I′ such that ϕ defined on these subsets is a homeomorphism. This also means
that B ⊆ Ran(ϕ), and since ϕ is also a group homomorphism, we have Bk ⊆ Ran(ϕ) for any
k. Then, taking the union over all k gives us

∞⋃
k=1

Bk ⊆ Ran(ϕ).

From the result derived previously, the left-hand side is equal to SO(3) itself, so finally, we
have SO(3) ⊆ Ran(ϕ).
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