Quantum Hall States and Entanglement Entropy

Tohoku Univ. N. Shibata

 $\overline{\Omega}$

entanglement

- Entanglement entropy
- Density matrix renormalization group
- Topological entanglement entropy of Quantum Hall states
- Relation between 2D quantum Hall systems and 1D systems

Basis states :
$$|i j\rangle = |i\rangle_{\Omega} |j\rangle_{\overline{\Omega}}$$

Wave function : $|\Psi\rangle = \sum_{ij} \Psi_{ij} |i\rangle_{\Omega} |j\rangle_{\overline{\Omega}}$

Reduced $\rho_{\Omega} = Tr_{\overline{\Omega}} |\Psi\rangle \langle \Psi|$ $(\rho_{\Omega})_{ii'} = \sum_{j} \Psi_{ij}^* \Psi_{i'j}$

Entanglement entropy : $S_{\Omega} = -Tr \rho_{\Omega} \ln \rho_{\Omega}$

Measure of entanglement between two regions

S=1/2 2-Spin system

$$S1 = \uparrow \text{ or } \downarrow S2 = \uparrow \text{ or } \downarrow$$

Wave function

$$\Psi > = \sum_{S_1 S_2} \Psi S_1 S_2 | S_1 > | S_2 >$$
$$\Psi_{S1 S2} : \begin{pmatrix} \Psi_{\uparrow\uparrow} & \Psi_{\uparrow\downarrow} \\ \Psi_{\downarrow\uparrow} & \Psi_{\downarrow\downarrow} \end{pmatrix} = \Psi$$

Reduced density matrix

$$\rho_{\Omega} = \Psi \Psi$$

$$(\rho_{\Omega})_{ii'} = \sum_{i} \Psi_{ij}^* \Psi_{i'j}$$

Entanglement entropy

$$S_{\Omega} = -Tr \, \rho_{\Omega} \ln \rho_{\Omega}$$

 $S_{1} \text{ is independent of } S_{2}$ - Not correlated - $\frac{1}{\sqrt{2}} \left(| \uparrow \uparrow \rangle + | \uparrow \downarrow \rangle \right) \implies \Psi = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 \end{pmatrix} \qquad \rho_{\Omega} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \text{disentangled}$ $= \frac{1}{\sqrt{2}} | \uparrow_{S_{1}} \rangle \otimes \left(| \uparrow \rangle + | \downarrow \rangle \right)$

$$S_{1} \text{ depends on } S_{2}$$
- correlated -
$$\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle > - |\downarrow\uparrow\rangle >) \implies \Psi = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} \quad \rho_{\Omega} = \begin{pmatrix} \Psi^{*} & \Psi^{\prime} \\ 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

$$S_{\Omega} = 2\left(\frac{1}{2}\ln 2\right) = \ln 2$$

$$entangled$$

$$\rho_{ii'} = \sum_{j} \Psi_{ij}^{*} \Psi_{i'j} \\
\rho = \begin{pmatrix} \frac{1}{\sqrt{m}} & \cdots & \frac{1}{\sqrt{m}} \\ 0 & \cdots & 0 \\ \vdots & 0 & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{m}} & \cdots & 0 \\ \frac{1}{\sqrt{m}} & \cdots & 0 \\ \vdots & 0 & \vdots \\ \frac{1}{\sqrt{m}} & \cdots & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \longrightarrow \begin{bmatrix} \text{Entangential} \\ S = \\ 0 \\ \text{disc} \\ \text{disc} \\ S = \\ \text{disc} \\ \text$$

Entanglement entropy $S = -Tr \rho \ln \rho$ $= -\ln 1 = 0$ disentangled

$$\rho_{ii'} = \sum_{j} \Psi_{ij}^{*} \Psi_{i'j} \\
\rho = \begin{pmatrix} \frac{1}{\sqrt{m}} & 0 & \mathbf{0} \\ 0 & \frac{1}{\sqrt{m}} & & \\ 0 & \frac{1}{\sqrt{m}} & & \\ & \ddots & \\ \mathbf{0} & & \frac{1}{\sqrt{m}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{m}} & 0 & \mathbf{0} \\ 0 & \frac{1}{\sqrt{m}} & & \\ & 0 & \frac{1}{\sqrt{m}} \end{pmatrix} = \begin{pmatrix} \frac{1}{m} & 0 & \mathbf{0} \\ 0 & \frac{1}{m} & & \\ & 0 & \frac{1}{m} \end{pmatrix}$$

Entanglement entropy

$$S = -Tr \rho \ln \rho$$
$$= m \left(\frac{1}{m} \ln m\right) = \ln m$$

Maximally entangled

Scaling of entanglement entropy

Relation between correlations and scaling of entanglement entropy

Scaling of entanglement entropy

entanglement 🏑

Short range correlation $(L >> \xi)$

Srednicki, PRL, 1993 Wolf, Verstraete, Hastings, Cirac, PRL, 2008

Kitaev & Preskill; Levin & Wen, PRL,2006

Application of DMRG to quantum Hall systems

To confirm the prediction of boundary term and topological term

Application of DMRG

Initial basis states

Periodic boundary conditions for both x and y directions

 $k_y = 2\pi n/L_y = X_n / l^2$

 $\varphi_{XN}(\mathbf{r}) = \exp\left[i\frac{X_n y}{l^2} - \frac{(x - X_n)^2}{2l^2}\right] H_N(\frac{x - X_n}{l})$

(Landau gauge)

H_N: Hermite polynomials

One particle states are uniquely specified by X_n and N

X_n: guiding center N : Landau level index

Mapping on to effective 1D lattice model

Ground state of Quantum Hall systems

Fractional quantum Hall effect

R. Willett et al (1987)

DMRG and Entanglement entropy

Ground state $|\Psi\rangle = \Psi_{ij} |i\rangle |j\rangle$ Density matrix $(\rho_{\Omega})_{ii'} = \sum_{j} \Psi_{i'j} \Psi_{ij}$

$$S_{\Omega} = -Tr \rho_{\Omega} \ln \rho_{\Omega}$$

Entanglement entropy is calculated from eigenvalues of ρ_{Ω}

Fixed boundary length

Fractional quantum Hall state v = 1/3

density matrix eigenvalues ai

 α_i is almost the same when the boundary length is the same

Area law

Disk geometry : Haque, Zozulya, and Schoutens, PRL, 2007 Torus geometry : Friedman and Levine, PRB, 2008

Bilayer quantum Hall system at $\nu=1$

V0-V1 bilayer system at v=1

Relation between 2D systems and 1D systems

2D topological charge entropy = $2 \ln m^{1/2} = 0$ (v = 1/m = 1)

1D spin entropy = 2D pseudo-spin entropy

Summary

DMRG is applied to quantum Hall systems

Entanglement entropy

Measure of

Entanglement between two regions

Correlation and topological order

Similarity between different models

