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Notations

Matn(C) associative algebraic of n× n complex matrices
GL(n,C) group of invertible C-linear transformations on Cn

GL(n,R) group of invertible R-linear transformations on Rn

O(n,C) complex orthogonal group consisting of {g ∈ GL(n,C) : gtg = I}, where I is
the n× n identity matrix and gt is the transpose of g

U(n) unitary group consisting of {g ∈ GL(n,C) : g∗g = I}, where g∗ is the conjugate
transpose of g

SO(n) real special orthogonal group {g ∈ GL(n,R) : gtg = 1, det(g) = 1}
S1 group of unit circle {z ∈ C× : ‖z‖ = 1}
Sn nth symmetric group

G ↓ H branching rule from G to its subgroup H, where the inclusion H ↪→ G is
understood

T maximal torus of a compact connected Lie group
W Weyl group corresponding to a maximal torus

X(T ) HomLie(T, S
1), the character lattice of T

Λ integral lattice, or kernel of the exponential map of a torus
Λ∗ lattice of integral froms
Φ roots of a compact connected Lie group with a choice of maximal torus
K Weyl chambers corresponding to Φ

Φ+ subset of Φ consisting of positive roots for a choice of K
ρ half sum of the roots
χπ character of a representation π
πGλ continuous irreducible representation of G with highest weight λ

[πGλ : πHµ ] multiplicity of πHµ in πGλ restricting to H
`(λ) length of a partition λ
|λ| sum of λ1 + λ2 + · · · for a partition λ
s

(n)
λ Schur polynomial of n variables with signature λ
h

(n)
k complete symmetric polynomial in n variables

Σ(n) Weyl group of SO(2n+ 1)

Σ0(n) Weyl group of SO(2n)

D(V ) Weyl algebra associated to V
P(V ) space of polynomials on V
S(V ) symmteric algebra of V
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1 Introduction

Suppose we have a group G and a subgroup H ⊂ G. Given an irreducible representation
(π, V ) of G, it is not necessarily true that the restricted representation (π|H , V ) of H is
irreducible. In the case where G is a compact Lie group and H a closed subgroup, the
restricted representation π|H will decompose into a sum of irreducible representations of the
subgroup H. The rules for such decomposition are called branching rules. Branching rules
have important applications in physics, for example, in the case of explicit symmetric breaking.
In representation theory, we often need to know the decomposition of the tensor product of
irreducible representations into a sum of irreducible representations; such tensor product rule
is the same as the branching rule for G as the diagonally embedded subgroup into G×G. We
will see examples of this for G = GL(n,C) and O(n,C).

In the first half of this paper, we present an original combinatorial proof of the branching
rules for the successive unitary groups and for the successive special orthogonal groups. The
proof of U(n) ↓ U(n− 1) branching relies on the Weyl character formula and the ingredients
from symmetric function theory that involves proper cancellation of Schur polynomials of
horizontal strips. The branching rule for orthogonal group, on the other hand, involves two
different cases, SO(2n + 1) ↓ SO(2n) and SO(2n) ↓ SO(2n − 1). The branching rule for
SO(2n+ 1) ↓ SO(2n) is easier to obtain since both groups share the same maximal torus. To
get the branching rule for SO(2n) ↓ SO(2n−1), we make use of the branching rule for unitary
group along with careful combinatorial manipulation. Two remarkable things come out of
these branching rules. First, the branching rules share an interleaving pattern. Secondly,
all these branching rules have multiplicity one. If we keep branching down an irreducible
representation of U(n) or SO(n) all the way to U(1) or SO(2), the irreducible summands will
terminante in one-dimensional representations. In this way, we can get a basis labelled by a
chain of interleaved signatures, called Gelfand-Tsetlin basis, of any irreducible representations
of U(n) or SO(n).

The second half of the paper is an exposition on the existing literature of obtaining branch-
ing rules via duality. Our exposition is based on Chapter 4 and 5 of [GW09] and [HTW05].
First we setup the language of linear algebraic groups over C and introduce the more gen-
eral context of representation theory of algebras. Then we prove a general theorem on the
duality between the irreducible regular representations of a linear algebraic group G and the
irreducible representations of the commuting algebra of G. As an application, we next prove
a duality theorem when the commuting algebra comes from the Weyl algebra which acts as
polynomial differential operators on polynomials on a complex vector space. This will give
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us GL(n,C)-GL(k,C) duality and O(n,C)-sp(k,C) Howe duality. By combining Schur-Weyl
duality and the GL(n,C)-GL(k,C) duality, we give three interpretations of the Littlewood-
Richardson coefficients as branching rules of three different group/subgroup pairs. Finally,
we prove the branching rule for O(n,C)×O(n,C) ↓ O(n,C) that is only valid for irreducible
O(n,C)-representations in the stable range. This proof will make use of most of the dualities
we have developed, following [HTW05].
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2 Branching Rule of Successive Unitary Groups

2.1 Weyl Character Formula

We briefly introduce the notations and conventions we use to describe the root system of
a compact connected Lie group. Our conventions follow Chapter V of [BtD85].

Let G be a compact connected Lie group, and fix T to be a maximal torus of G with
T ∼= (S1)n. We define the Weyl group of G (with fixed choice of T ) to be W = NG(T )/T ,
where NG(T ) is the normalizer of T in G. Then W acts on T naturally by conjugation. We
denote the character lattice of G to be X(T ) = HomLie(T, S

1), and we let W act on X(T ) via
(g.λ)(t) = λ(g−1t). We can identify X(T ) ∼= Zn as follows. If µ = (µ1, . . . , µn) ∈ Zn, then the
corresonding element in X(T ) is the continuous map sending (t1, . . . , tn) ∈ T to

∏n
i=1 t

µi
i . We

write tµ =
∏n

i=1 t
µi
i . This way, the multiplication on X(T ) becomes addition on Zn.

Let (π, V ) be a finite-dimensional continuous representation of G over C. If we restrict
the representation to T , then (π|T , V ) will decompose as a sum of one-dimensional irreducible
representations of T . In terms of characters, we have χπ(t) =

∑
µ∈X(T ) mπ(µ)tµ, where mπ(µ)

is the dimension of the weight space Vµ = {v ∈ V : π(t)v = tµv,∀t ∈ T}. We say λ ∈ X(T ) is
a weight of V if mπ(λ) > 0.

Let Ad : G → GL(g) be the adjoint representation of G, and let AdC denote the com-
plexified representation. We use Φ to denote the set of nonzero weights of AdC, and we call
them roots of G. We choose an Ad-invariant inner product 〈−,−〉 on g, which is possible
since G is compact. The induced action of W on t agrees with Ad|NG(T ), so the inner prod-
uct is also W -invariant. We identify t with t∗ = HomR(t,R) via this inner product. The
kernel Λ of the exponential map exp : t → T is called the integral lattice, and the group
Λ∗ = {α ∈ t∗ : αΛ ⊂ Z} is called the lattice of integral forms. We will always choose the
coordinates of T so that Λ is simply Zn and 〈−,−〉 is the standard Euclidean metric, so that
Λ∗ = Zn as well. Thus given a ∈ Φ, we can view it as an element of Λ∗ via X(T ) ∼= Zn.

Given a ∈ Φ, we can associate a hyperplane Ha ⊂ t with Ha = Lie(ker a). These
hyperplanes will divide t into finitely many convex regions, called Weyl chambers. We will fix
a choice of K for each G, and we call it the fundamental Weyl chamber. For such K, we can
assign to it a set of positive roots Φ+ = {a ∈ Φ : 〈a, t〉 > 0 for all t ∈ K}. Then we can define
a partial order on t∗. We write γ ≤ λ for γ, λ ∈ t∗ if 〈γ, τ〉 ≤ 〈λ, τ〉 for every τ ∈ K. In this
case we say λ is higher than γ. We call elements in K ∩ Λ∗ dominant weights.

The gem of the theory of compact Lie group is the following celebrated character formula
by Weyl that describes the character of all irreducible representation of a compact connected
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2.2. Maximal Torus and Root System of U(n)

Lie group. A proof of it can be found in Section VI.1, VI.2 of [BtD85], or Chapter 22 of
[Bum04].

Theorem 2.1.1 (Weyl character formula). Suppose (π, V ) is an irreducible continuous rep-
resentation of a compact connected Lie group G. Then

(i) π has a unique highest weight λ with mπ(λ) = 1.

(ii) π is the unique irreducible continuous representation of G with highest weight λ. In
addition, every dominant weight is the highest weight of some irreducible continuous
representation.

(iii) For t ∈ T ,

χπ(t) =

∑
w∈W det(w)tw(λ+ρ)∏
a∈Φ+

(ta/2 − t−a/2)
,

where det(w) is the determinant of the action of w on t, and ρ = 1
2

∑
a∈Φ+

a, the half
sum if positive roots. We call the denominator the Weyl denominator with respect to
G. Moreover, ∏

a∈Φ+

(ta/2 − t−a/2) =
∑
w∈W

det(w)tw(ρ).

Note that since W preserves the inner product 〈−,−〉 on t, we have det(w) = ±1. It
is a fact that elements of W are generated by hyperplane reflections on t, so we also write
det(w) = (−1)`(w), where `(w) denote the smallest number of elementary reflections used to
generate w (see Chapter 20 of [Bum04]). The two equivalent descriptions of the denominator
in the Weyl character formula will turn out to be useful in different scenarios.

2.2 Maximal Torus and Root System of U(n)

We use the following description of the root system of U(n), following the convention in
Section V.6 of [BtD85]. We assume n ≥ 2. We choose T to be the maximal torus of U(n)

consisting of diagonal matrices. That is, T = diag(t1, . . . , tn) for ti ∈ S1. The Weyl group of
U(n) turns out to be the nth symmetric group W ∼= Sn, and W acts on T by permuting ti’s.
The induced W -action on t ∼= Rn is, for σ ∈ W and µ ∈ t,

σ(µ1, µ2, . . . , µn) = (µσ(1), µσ(2), . . . , µσ(n)).

The determinant det(w) = (−1)`(w) in the character formula is the same as the sign of
the permuation w. The roots of U(n), identified with elements in Λ∗ ∼= Zn, are ei − ej,
1 ≤ i, j ≤ n. Here ei ∈ Zn is the basis element with 1 on its ith entry and zeros elsewhere, and
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2.3. Statement of U(n) ↓ U(n− 1) Branching Rule

it correpsonds to the weight T → S1 that projects t 7→ ti. The fundamental weyl chamber we
choose is K = {(µ1, . . . , µn) ∈ t : µ1 ≥ µ2 ≥ · · · ≥ µn}, so the positive roots are ei − ej for
i < j. The dominant weights are therefore µ ∈ Zn with µ1 ≥ · · · ≥ µn.

Hence by Theorem 2.1.1, given a dominant weight λ, the unique irreducible representation
of U(n) with highest weight λ, denoted as πU(n)

λ , has character

χπ(t) =

∑
σ∈Sn(−1)`(σ)tσ(λ+ρ)∑
σ∈Sn(−1)`(σ)tσρ

, (2.1)

where ρ = 1
2

∑
a∈Φ+

a = (n−1
2
, n−3

2
, . . . , −(n−1)

2
).

2.3 Statement of U(n) ↓ U(n− 1) Branching Rule

Suppose we are given an irreducible representation π
U(n)
λ where λ is a dominant weight.

We realize U(n− 1) as a subgroup of U(n) by

A 7→

(
A 0

0 1

)
,

which induces an inclusion of the maximal tori T ′ ↪→ T . This gives a surjection X(T ) ∼= Zn →
X(T ′) ∼= Zn−1 by projecting the first n − 1 entries. With such embedding, we can restrict
π

U(n)
λ to πU(n)

λ |U(n−1). Then as a representation of U(n− 1), it decomposes into the direct sum
of irreducible representations of the subgroup U(n− 1), each indexed by its highest weight:

π
U(n)
λ

∣∣∣∣
U(n−1)

=
⊕
µ

[π
U(n)
λ : πU(n−1)

µ ]πU(n−1)
µ .

The sum is over dominant weights of U(n − 1), and we use [π
U(n)
λ : π

U(n−1)
µ ] to denote the

multiplicity of πU(n−1)
µ in the decomposition. Our goal is to determine [π

U(n)
λ : π

U(n−1)
µ ] for all

pairs of λ ∈ Zn and µ ∈ Zn−1. It turns out that this multiplicity has a very clean description.

Theorem 2.3.1 (U(n) ↓ U(n− 1) branching rule). Suppose λ is a dominant weight of U(n),
and µ is a dominant weight of U(n − 1). Then [π

U(n)
λ : π

U(n−1)
µ ] = 1 if λ and µ interleave.

That is,
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn,

and 0 otherwise.
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2.4. Schur Polynomials and Pieri’s Formula

2.4 Schur Polynomials and Pieri’s Formula

Before proceeding further, we first modify the character formula (2.1) for πU(n)
λ so that both

the numerator and the denominator can be expressed as elements in the ring Z[t1, . . . , tn]. To
do this, we simply multiply both the numerator and the denominator by

t(
n−1
2

)n = t
n−1
2

1 t
n−1
2

2 · · · t
n−1
2

n .

Since the action of σ ∈ Sn does nothing to such half-weight, in the formula (2.1) we may
replace ρ with ρ′ = (n − 1, n − 2, . . . , 0). Then we can rewrite the character formula using
determinants:

χπ(t) =
det(t

λj+n−j
i )

det(tn−ji )
.

We recognize the denominator to be the determinant of a Vandermonde matrix, and we denote
it as ∆n(t) = det(tn−ji ) =

∏
1≤i<j≤n(ti − tj). Note that the numerator det(t

λj+n−j
i ) divides

each of ti − tj in Z[t1, . . . , tn], so it divides ∆n(t). Hence χπ(t) is a symmetric homogeneous
polynomial in Z[t1, . . . , tn]. It is called the Schur polynomial corresponding to λ, and we write
it alternatively as sλ = sλ(t1, . . . , tn). When we want to make the number of indeterminants
explicit, we write s(n)

λ instead of sλ.
We first restrict the attention to the case when λ is a partition; i.e., it does not contain

negative entries. Recall that a partition λ is a sequence (λ1, . . . , λm) such that λ1 ≥ λ2 ≥
· · · ≥ λm ≥ 0. We shall identify two partitions to be the same if they only differ by trailing
zeros. We define the length of a partition λ, denoted `(λ), to be `(λ) = sup{n ∈ N : λn > 0},
and `(λ) = 0 if λ = 0. We also denote |λ| = λ1 + λ2 + · · · . Then a partition λ with `(λ) ≤ n

is a dominant weight for U(n). However, not all dominant weights are partitions since they
may contain negative entries. We say λ is a partition of n, denoted λ ` n, if |λ| = n.

For partitions λ, µ, we write inclusion λ ⊂ µ if λi ≤ µi for all i ∈ N. If λ ⊂ µ, then we
define µ/λ to be the nonnegative integer sequence (µ1 − λ1, µ2 − λ2, . . .). Naturally we shall
define |µ/λ| = |µ| − |λ|. We may associate each partition λ with a Young diagram YD(λ).
Then YD(µ/λ) is defined to be the set theoretical difference YD(µ) \ YD(λ). We say µ/λ is
a horizontal strip if YD(µ/λ) has no two boxes in the same column.

For example, let µ = (4, 2, 1) and λ = (2, 1). We lay YD(λ) on top of YD(µ) so there top
left corners coincide. We mark YD(µ) in red. Then µ/λ is a horizontal strip, marked in blue.
However, if λ′ = (1, 1), then µ/λ′ is not a horitonal strip (marked in green):
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2.4. Schur Polynomials and Pieri’s Formula

Lemma 2.4.1. If λ, µ are partitions of length ≤ n, then λ ⊂ µ and µ/λ is a horizontal strip
if and only if

µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · ·µn ≥ λn.

Proof. Clearly µ1 ≥ λ1 ≥ · · · is sufficient for µ/λ to be a horizontal strip. On the other hand,
if µ/λ is a horizontal strip, then we need to require µi ≥ λi for λ ⊂ µ. If µi > λi−1, then the
ith and (i− 1)th rows of YD(µ/λ) will contain a box in the same column. So the condition is
sufficient as well.

Our main tool to prove the branching rule of U(n) ↓ U(n− 1) is Pieri’s formula. Let h(n)
k

be the kth complete symmetric polynomial in n variables. That is,

h
(n)
k (t1, . . . , tn) =

∑
i1≤i2≤···≤ik

ti1 · · · tik .

Observe that h(n)
k is precisely the character of SkCn, the symmetric k-tensor of the standard

representation of U(n). Pieri’s formula gives the decomposition of the product of a Schur poly-
nomial with a complete symmetric polynomial as a sum of Schur polynomials. Equivalently,
in the language of representations, it gives the multiplicity of πU(n)

µ in πU(n)
λ ⊗ SkCn.

Theorem 2.4.2 (Pieri’s formula).

s
(n)
λ h

(n)
k =

∑
µ

s(n)
µ ,

where hk is the kth complete symmetric polynomial in n variables, and the summation is over
all partitions µ with `(µ) ≤ n such that λ ⊂ µ and µ/λ is a horizontal strip with |µ/λ| = k.

Proof. The proof presented here is based on the proof of Theorem B.7 of [BS17]. Define
M = {ν ∈ Zn :

∑n
i=1 νi = k, νi ≥ 0,∀i}. Then h

(n)
k =

∑
ν∈M tν . Let M1 = {ν ∈ M :

λ + ν is a partition and (λ + ν)/λ is a horizontal strip}, and denote M2 = M \ M1. Write
s

(n)
λ h

(n)
k as

s
(n)
λ h

(n)
k = ∆−1

n

∑
ν∈M

tν
∑
σ∈Sn

(−1)`(σ)tσ(λ+ρ),

Since for any σ ∈ Sn, we have
∑

ν∈M tν =
∑

ν∈M tσν , we have

s
(n)
λ h

(n)
k = ∆−1

n

∑
ν∈M

∑
σ∈Sn

(−1)`(σ)tσ(λ+ν+ρ).

Define X(ν) =
∑

σ∈Sn(−1)`(σ)tσ(λ+ν+ρ), so that s(n)
λ h

(n)
k = ∆−1

n

∑
ν∈M X(ν). Our goal is to

show
∑

ν∈M X(ν) =
∑

ν∈M1
X(ν). To this end, we seek a involution ν 7→ ν ′ such that X(ν) =

8



2.5. Proof of U(n) ↓ U(n− 1) Branching Rule

−X(ν ′) for all ν ∈M2, so that
∑

ν∈M2
X(ν) = 0, since if ν 6= ν ′, they would cancel each other;

otherwise X(ν) = 0.
Observe that ν ∈ M2 if and only if (λ + ν)/λ not a horizontal strip (including the cases

where λ+ν is not a partition), and if and only if there exists some i such that λi+1 +νi+1 > λi.
For a given ν, we let i be the largest of such integer. Then we define ν ′ by letting ν ′j = νj for
j 6= i and j 6= i+ 1, and

ν ′i = λi+1 + νi+1 − λi − 1

ν ′i+1 = λi + νi − λi+1 + 1.

Since λi+1 + νi+1 > λi and λi ≥ λi+1, we have ν ′i ≥ 0 and ν ′i+1 ≥ 0. Adding two equations we
see that ν ′i + ν ′i+1 = νi + νi+1, so

∑
i ν
′
i = k. Hence ν ′ ∈M . Note the second equation implies

λi+1 + ν ′i+1 > λi, so ν ′ ∈M2. Finally for j > i, we have λj+1 + ν ′j+1 = λj+1 + νj+1 ≤ λj, so i is
also the largest integer for which λi+1 + ν ′i+1 > λi. It follows that ν 7→ ν ′ is an involution.

Finally we notice that si(λ + ν + ρ) = λ + ν ′ + ρ, where si ∈ Sn swaps ith and (i + 1)th
entries. By making a change of variable σ 7→ σsi, we conclude that X(ν) = −X(ν ′) for all
ν ∈M2.

2.5 Proof of U(n) ↓ U(n− 1) Branching Rule

We first prove a special case of Theorem 2.3.1 when the highest weights of the irreducible
representations we are considering are partitions.

Proposition 2.5.1. Suppose λ, µ are partitions with `(λ) ≤ n and `(µ) ≤ n − 1. Then
[π

U(n)
λ : π

U(n−1)
µ ] = 1 if λ and µ interleave. That is,

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn,

and 0 otherwise.

Proof. The character of πU(n)
λ |U(n−1) is just

χ
π

U(n)
λ

(t1, . . . , tn−1, 1) = sλ(t1, . . . , tn−1, 1)

because of the way we embed U(n − 1) ↪→ U(n). The strategy is then to decompose
sλ(t1, . . . , tn−1, 1) into sum of the form

∑
sµ(t1, . . . , tn−1), which will then tell us the mul-

tiplicities of each sµ with `(µ) ≤ n− 1.
Observe that

sλ(t1, . . . , tn−1, 1) =

det


tλ1+n−1
1 tλ1+n−1

2 · · · 1

tλ2+n−2
1 tλ2+n−2

2 · · · 1
...

... . . . ...
tλn1 tλn2 · · · 1


∆n(t1, . . . , tn−1, 1)

. (2.2)
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2.5. Proof of U(n) ↓ U(n− 1) Branching Rule

We write the denominator as

∆n(t1, . . . , tn−1, 1) =
∏

1≤j<k≤n−1

(tj − tk)
∏

1≤j≤n−1

(tj − 1)

= ∆n−1(t1, . . . , tn−1) · (−1)n−1
∏

1≤j≤n−1

(1− tj).

Expanding the determinant in (2.2) along the rightmost column, then dividing out ∆n−1, we
have

sλ(t1, . . . , tn−1, 1)
∆n(t1, . . . , tn−1, 1)

∆n−1

= (−1)n−1

( ∏
1≤j≤n−1

(1− tj)

)
sλ(t1, . . . , tn−1, 1)

= s
(n−1)
(λ1+1,...,λn−1+1) − s

(n−1)
(λ1+1,...,λn−2+1,λn) + s

(n−1)
(λ1+1,...,λn−3+1,λn−1,λn) − · · ·

=
n∑
i=1

(−1)n−is
(n−1)

λi∗ ,

where we denote
λi∗ = (λ1 + 1, . . . , λi−1 + 1, λ̂i, λi+1, . . . , λn),

and we use hat to mean omission of the term. On the other hand, as formal series, we have∏
1≤j≤n−1

(1− tj)−1 =
∏

1≤j≤n−1

∞∑
i=0

tij =
∞∑
k=0

hk(t1, . . . , tn−1).

Hence

sλ(t1, . . . , tn−1, 1) = (−1)n−1

∞∑
k=0

h
(n−1)
k ·

n∑
i=1

(−1)n−is
(n−1)

λi∗

=
n∑
i=1

(−1)i+1

∞∑
k=0

h
(n−1)
k s

(n−1)

λi∗ .

To simplify notation, we use Ξ(λ) to denote the set of partitions µ with `(µ) ≤ n− 1, µ ⊃ λ

and that µ/λ is a horizontal strip. By Pieri’s formula,
∞∑
k=0

h
(n−1)
k s

(n−1)

λi∗ =
∞∑
k=0

∑
µ∈Ξ(λi∗)
|µ/λi∗|=k

s(n−1)
µ =

∑
µ∈Ξ(λi∗)

s(n−1)
µ .

Note that we get rid of the infinite sum over k by simply removing the constraint on |µ/λi∗|.
Hence we can write sλ(t1, . . . , tn−1, 1) as an alternating sum:

sλ(t1, . . . , tn−1, 1) =
n∑
i=1

(−1)i+1
∑

µ∈Ξ(λi∗)

s(n−1)
µ .

10



2.5. Proof of U(n) ↓ U(n− 1) Branching Rule

We will show that with proper cancellation, the summation can be made to have the desired
interleaving pattern. Let

qk =
n∑
i=k

(−1)i+1
∑

µ∈Ξ(λi∗)

s(n−1)
µ = qk+1 + (−1)k+1

∑
µ∈Ξ(λk∗)

s(n−1)
µ

so that q1 = sλ(t1, . . . , tn−1, 1).

Lemma 2.5.2.

qk = (−1)k+1
∑
µ

s(n−1)
µ ,

where we sum over all µ such that µ1 ≥ λ1 + 1 ≥ µ2 ≥ λ2 + 1 ≥ · · · ≥ µk−1 ≥ λk−1 + 1 ≥ λk ≥
µk ≥ λk+1 ≥ · · · ≥ µn−1 ≥ λn. If an index goes out of range, we simply omit it in the chain
of inequality.

Proof. We shall prove this lemma by induction. For k = n case, we have

qn =
∑

Ξ(λn∗ )

s(n−1)
µ ,

where λn∗ = (λ1 + 1, λ2 + 1, . . . , λn−1 + 1), so this case follows directly from Lemma 2.4.1.
We proceed the inductive case backward. Suppose

qk+1 = (−1)k+2
∑
µ′

s
(n−1)
µ′

for µ′ such that

µ′1 ≥ λ1 + 1 ≥ · · · ≥ µ′k−1 ≥ λk−1 + 1 ≥ µ′k ≥ λk + 1 ≥ λk+1 ≥ µ′k+1 ≥ · · · ≥ λn. (2.3)

Then

qk = (−1)k+1

∑
Ξ(λk∗)

s(n−1)
µ −

∑
µ′

s
(n−1)
µ′

 ,

where the range of µ′ is (2.3). Since λk∗ = (λ1 + 1, λ2 + 1, . . . , λk−1 + 1, λk+1, . . . , λn), applying
Lemma 2.4.1, we see the range of summation for µ is

µ1 ≥ λ1 + 1 ≥ · · · ≥ µk−1 ≥ λk−1 + 1 ≥ µk ≥ λk+1 ≥ µk+1 ≥ · · · ≥ µn−1 ≥ λn. (2.4)

Comparing the range (2.4) with (2.3), we see that they only differ on the range of µ′k and µk,
where

λk−1 + 1 ≥ µ′k ≥ λk + 1

λk−1 + 1 ≥ µk ≥ λk+1.

Since λk + 1 > λk+1, after cancellation, we get λk ≥ µk ≥ λk+1. This agrees with the range
given in the lemma.

11



2.5. Proof of U(n) ↓ U(n− 1) Branching Rule

Since q1 = sλ(t1, . . . , tn−1, 1), by the lemma, we have

sλ(t1, . . . , tn−1, 1) =
∑
µ

s(n−1)
µ ,

where λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn. This precisely means that λ and µ interleave,
finishing the proof of Proposition 2.5.1.

It is now easy to obtain the branching rule of U(n) ↓ U(n− 1) for an irreducible represen-
tation whose highest weight can be any dominant weight, not just a partition.

Proof of Theorem 2.3.1. Let det : U(n) → S1 be the determinant function. Then it is the
character of an one-dimensional representation of U(n), denoted as πU(n)

det . Note that χ
π

U(n)
det

(t) =

t1
n

= t1 · · · tn. We can reduce the problem to the case when λ is a partition, i.e., λn ≥ 0, by
looking at πU(n)

λ ⊗ (π
U(n)
det )⊗r, for some r ∈ N. Let γ = (rn) = (r, r, . . . , r), so the character of

(π
U(n)
det )⊗r is t 7→ tγ. Then the character the tensor product πU(n)

λ ⊗ (π
U(n)
det )⊗r is∑

σ∈Sn(−1)`(σ)tσ(λ+γ+ρ)

∆n(t)
.

We choose r big enough so that λ + γ is a partition. Then for t = (t1, . . . , tn−1, 1), we can
apply Proposition 2.5.1 to get∑

σ∈Sn(−1)`(σ)tσ(λ+γ+ρ)

∆n(t)
=
∑
µ

∑
σ∈Sn−1

(−1)`(w)tσ(µ+ρ′)

∆n−1(t)
,

where µ interleaves with λ+ γ. Since Z[t1, t2, . . . , tn−1] is a domain, we can divide both sides
by tγ. Let µ′ = µ− γ. It follows that πU(n−1)

µ′ appears in πU(n)
λ with multiplicity 1 if and only

if λ and µ′ interleaves.
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3 Branching Rule of Successive Orthogonal Groups

3.1 Maximal Tori and Root Systems of SO(2n+ 1) and SO(2n)

Like with the U(n) case, we first give a description of the maximal torus and the root
system of SO(2n + 1) and SO(2n), following Section V.6 of [BtD85]. We will always assume
n ≥ 2.

For SO(2), we can identify SO(2) ∼= S1 by

SO(2) =

{(
cos θ − sin θ

sin θ cos θ

)
: θ ∈ R/2πZ

}
.

Let T = T (n) = (SO(2))n ⊂ SO(2n) ⊂ SO(2n + 1), where we include T (n) as n matrices in
SO(2) along the diagonal of SO(2n), and the inclusion SO(2n) ↪→ SO(2n+ 1) is via

A 7→

(
A

1

)
.

Then T (n) is a maximal torus in both SO(2n) and SO(2n+ 1).
The Weyl group of SO(2n+ 1) is the semidirect product Σ(n) = Zn2 o Sn where we use Z2

to denote the cyclic group of order 2, and Sn acts on Zn2 by permuting the entries. The action
of (τ, σ) ∈ Σ(n) with τ ∈ Zn2 and σ ∈ Sn on µ ∈ t ∼= Rn is

(τ, σ).(µ1, . . . , µn) = ((−1)τ1µσ(1), . . . , (−1)τnµσ(n)).

Thinking of elements in Σ(n) as product of elementary reflections, it is evident that
det(τ, σ) = (−1)`(τ,σ) = (−1)

∑
τi(−1)`(σ). Define a homomorphism δ : Σ(n) → Z2 by

δ(τ, σ) =
∑n

i=1 τi mod 2. Then it turns out the Weyl group of SO(2n) is Σ0(n) = ker δ.
The action of Σ0(n) on t inherits from that of Σ(n).

The root systems for SO(2n + 1), with a fixed choice of the fundamental Weyl chamber,
is:

• Fundamental Weyl chamber: K = {(µ1, . . . , µn) ∈ t : µ1 ≥ · · · ≥ µn ≥ 0}.

• Positive roots: ei ± ej, i < j, and ek, 1 ≤ i, j, k ≤ n.

• Dominant weights: λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 with λ ∈ Zn.

• Half sum of positive roots: (n− 1
2
, n− 3

2
, . . . , 1

2
).
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3.2. Branching Rule for SO(2n+ 1) ↓ SO(2n)

The root system for SO(2n) is given by:

• Fundamental Weyl chamber: K = {(µ1, . . . , µn) ∈ t : µ1 ≥ · · · ≥ |µn|}.

• Positive roots: ei ± ej, 1 ≤ i < j ≤ n.

• Dominant weights: λ1 ≥ λ2 ≥ · · · ≥ |λn| with λ ∈ Zn.

• Half sum of positive roots: (n− 1, n− 2, . . . , 0).

By Theorem 2.1.1, knowing the information about root systems allows us to compute the
character of any irreducible representation indexed by its highest weight.

3.2 Branching Rule for SO(2n+ 1) ↓ SO(2n)

We begin with deriving the branching rule for SO(2n + 1) ↓ SO(2n), which is relatively
more straightforward, as the maximal tori of both SO(2n) and SO(2n+1) have the same rank
n.

Theorem 3.2.1 (SO(2n+1) ↓ SO(2n) branching rule). Let λ be a dominant weight of SO(2n+

1) and µ a dominant weight of SO(2n). Then [π
SO(2n+1)
λ : π

SO(2n)
µ ] = 1 if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn ≥ |µn|,

and 0 otherwise.

Proof. By the Weyl character formula (Theorem 2.1.1),

χ
π

SO(2n+1)
λ

=

∑
w∈Σ(n)(−1)`(w)tw(λ+ρ)

∆SO(2n+1)

,

where ∆SO(2n+1) is the Weyl denominator. Notice the positive roots of SO(2n) is a subset of
that of SO(2n+ 1). Using the product formula for the Weyl denominator, we find

∆SO(2n+1) = ∆SO(2n)

∏
1≤i≤n

(t
1/2
i − t

−1/2
i ).
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3.2. Branching Rule for SO(2n+ 1) ↓ SO(2n)

Hence

∆SO(2n)χπSO(2n+1)
λ

=
∑

w∈Σ(n)

(−1)`(w)tw(λ+ρ)

n∏
i=1

t
1/2
i

ti − 1

=
∑
σ∈Sn

(−1)`(σ)
∑
τ∈Zn2

(−1)`(τ)tτσ(λ+ρ)

n∏
i=1

t
1/2
i

ti − 1

=
∑
σ∈Sn

(−1)`(σ)
∑

τ∈Zn−1
2

(−1)`(τ)

n−1∏
j=1

t
[τσ(λ+ρ)]j
j

n−1∏
i=1

t
1/2
i

ti − 1

{
(t[σ(λ+ρ)]n
n − t−[σ(λ+ρ)]n

n )
t
1/2
n

tn − 1

}
.

Observe that the bracket is the geometric series∑
|k|≤[σ(λ+ρ′)]n

tkn,

where k ∈ Z and the new ρ′ is the half-sum of SO(2n); i.e., ρ′ = ρ−(1
2
)n ∈ Zn. So by induction

we get

∆SO(2n)χπSO(2n+1)
λ

=
∑
σ∈Sn

(−1)`(σ)

n∏
i=1

 ∑
|k|≤[σ(λ+ρ′)]i

tki


=
∑
σ∈Sn

(−1)`(σ)

n∏
i=1

 ∑
|k|≤λi+n−i

tkσ(i)

 ,

where we used [σ(λ + ρ′)]i = (λ + ρ′)σ−1(i) and a change of variable i 7→ σ(i). This can be
rewritten as the determinant of the matrix whose ith row and jth column is

∑
|k|≤λi+n−i t

k
j .

Since the determinant remains the same when subtracting one row from another row, by
subtracting the (i+ 1)th row from the ith row of this matrix, we see that

∆SO(2n)χπSO(2n+1)
λ

= det

 ∑
λi+1+n−i≤|k|≤λi+n−i

tkj


=
∑
σ∈Sn

(−1)`(σ)

n∏
i=1

 ∑
λi+1+n−i≤|k|≤λi+n−i

tkσ(i)

 ,

Note that we may assume λn+1 = 0.
Now we fix σ ∈ Sn. Interchanging product and summation, we can combine the enumerated
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3.2. Branching Rule for SO(2n+ 1) ↓ SO(2n)

integers k’s into a tuple p ∈ Zn:

n∏
i=1

 ∑
λi+1+n−i≤|k|≤λi+n−i

tkσ(i)

 =
∑

λi+1+n−i≤|pi|≤λi+n−i

(
n∏
j=1

t
pj
σ(j)

)
=

∑
λi+1+n−i≤|pi|≤λi+n−i

tσ(p).

For a given p, define τ ∈ Zn2 ∩ Σ0(n) by τi = 0 if pi ≥ 0 and τi = 1 if pi < 0 for i ≤ n − 1.
That is, (−1)τi reflects the sign of pi for i ≤ n − 1. This uniquely determines τn for it to be
in Σ0(n) by requiring

∑
τi mod 2 = 0. Let s ∈ Zn be s = τp, where the action of τ sends

pi 7→ (−1)τipi. Then si ≥ 0 for i ≤ n− 1. Since τ 2 = 1, we have p = τs. Summing over τ and
s instead of p, we obtain ∑

λi+1+n−i≤|pi|≤λi+n−i

tσ(p) =
∑

τ∈Zn2∩Σ0(n)
λi+1+n−i≤si≤λi+n−i

|sn|≤λn

tστs.

Let µ = s− ρ′. Then ∑
τ∈Zn2∩Σ0(n)

λi+1+n−i≤si≤λi+n−i
|sn|≤λn

tστs =
∑

τ∈Zn2∩Σ0(n)

∑
λi+1≤µi≤λi
|µn|≤λn

tστ(µ+ρ′).

Putting everything together,

∆SO(2n)χπSO(2n+1)
λ

=
∑
σ∈Sn

(−1)`(σ)
∑

τ∈Zn2∩Σ0(n)

∑
λi+1≤µi≤λi
|µn|≤λn

tστ(µ+ρ′)

=
∑

w∈Σ0(n)

(−1)`(w)
∑

λi+1≤µi≤λi
|µn|≤λn

tw(µ+ρ′)

=
∑

λi+1≤µi≤λi
|µn|≤λn

∆SO(2n)χπSO(2n)
µ

.

Since Z[t1, . . . , tn] is a domain, diving out ∆SO(2n), we have

χ
π

SO(2n+1)
λ

=
∑

λi+1≤µi≤λi
|µn|≤λn

χ
π

SO(2n)
µ

.

This gives the branching rule SO(2n+ 1) ↓ SO(2n).
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3.3. Branching Rule for SO(2n) ↓ SO(2n− 1)

3.3 Branching Rule for SO(2n) ↓ SO(2n− 1)

Like the ones we have seen so far, the branching rule for SO(2n) ↓ SO(2n− 1) also has an
interleaving pattern.

Theorem 3.3.1 (Branching rule for SO(2n) ↓ SO(2n − 1)). Let λ be a dominant weight of
SO(2n) and µ a dominant weight of SO(2n− 1). Then [π

SO(2n)
λ : π

SO(2n−1)
µ ] = 1 if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ |λn|,

and 0 otherwise.

To obtain this branching rule, we will make use of Theorem 2.3.1, the unitary group
branching rule. This will guide us when restricting the maximal torus to one with less rank,
which is the main obstacle in this case. We apply the branching rule of U(n) ↓ U(n − 1) to
get the following lemma concerning determinants.

Lemma 3.3.2. Let α = (α1, . . . , αn) ∈ Zn and α1 > α2 > · · · > αn. Then for indeterminants
t1, . . . , tn−1 and tn = 1, we have

det(tαij )∏
1≤i≤n−1(t

1
2
i − t

− 1
2

i )
=
∑
β

det(tβij ),

where the summation is over all β = (β1, . . . , βn−1) such that βi ∈ Z + 1
2
and αi+1 < βi < αi

for all i. The determinant on the left is of an n × n matrix, while the one on the right is of
an (n− 1)× (n− 1) matrix.

Proof. Let λ = (λ1, . . . , λn) with λi = αi − (n − i). Then λ1 ≥ λ2 ≥ · · · ≥ λn, so λ is a
dominant weight of U(n). Writing the branching rule U(n) ↓ U(n − 1) in terms of the Weyl
character formula, we have∑

σ∈Sn (−1)`(σ)tσ(λ+ρ)

∆U(n)(t1, . . . , tn−1, 1)
=
∑
µ

∑
σ∈Sn−1

(−1)`(σ)tσ(µ+ρ′)

∆U(n−1)(t1, . . . , tn−1)
, (3.1)

where ρ = (n−1
2
, n−3

2
, . . . , −(n−1)

2
) and ρ′ = (n−2

2
, n−4

2
, . . . , −(n−2)

2
), and the summation is over

all µ such that λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥ µn−1 ≥ λn. By multiplying both sides by t
n−1
2 =∏

1≤i≤n−1 t
n−1
2

i , we may assume ρ = (n− 1, n− 2, . . . , 0) and ρ′ = (n− 3
2
, n− 5

2
, . . . , 1

2
). Then

α = λ + ρ. Obeserve that the set of positive roots of U(n − 1) is contained in that of U(n),
so we have ∆U(n)(t1, . . . , tn−1, 1) = ∆U(n−1)(t1, . . . , tn−1)

∏
1≤i≤n−1(t

1
2
i − t

− 1
2

i ). Multiplying both
sides of (3.1) by ∆U(n−1) and writing in terms of determinants, we get

det(t
[λ+ρ]i
j )∏

1≤i≤n−1(t
1
2
i − t

− 1
2

i )
=
∑
µ

det(t
[µ+ρ′]i
j ).
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3.3. Branching Rule for SO(2n) ↓ SO(2n− 1)

Since λi ≥ µi ≥ λi+1 is equivalent to λi + n− i > µi + n− i− 1
2
> λi+1 + n− i− 1, which is

the same as [λ+ ρ]i > [µ+ ρ′]i > [λ+ ρ]i+1, with a change of variable β = µ+ ρ′, we have

det(tαij )∏
1≤i≤n−1(t

1
2
i − t

− 1
2

i )
=

det(t
[λ+ρ]i
j )∏

1≤i≤n−1(t
1
2
i − t

− 1
2

i )
=
∑
β

det(tβij ),

where αi+1 < βi < αi and βi ∈ Z + 1
2
for all i.

We are now ready to prove the branching rule of SO(2n) ↓ SO(2n− 1).

Proof of Theorem 3.3.1. We embed SO(2n − 1) ↪→ SO(2n) in the natural way such that
the embedding of the corresponding maximal torus is (t1, t2, . . . , tn−1) 7→ (t1, t2, . . . , tn−1, 1).
Comparing the sets of positive roots of SO(2n) and of SO(2n− 1), by the Weyl denominator
formula, we have

∆SO(2n)(t1, . . . , tn−1, 1) =
∏

i<j≤n−1

(t
1
2
i t
− 1

2
j − t

− 1
2

i t
1
2
j )(t

1
2
i t

1
2
j − t

− 1
2

i t
− 1

2
j )

∏
1≤i≤n−1

(t
1
2
i − t

− 1
2

i )2

∆SO(2n−1)(t1, . . . , tn−1) =
∏

i<j≤n−1

(t
1
2
i t
− 1

2
j − t

− 1
2

i t
1
2
j )(t

1
2
i t

1
2
j − t

− 1
2

i t
− 1

2
j )

∏
1≤i≤n−1

(t
1
2
i − t

− 1
2

i ).

Hence
∆SO(2n)(t1, . . . , tn−1, 1) =

∏
1≤i≤n−1

(t
1
2
i − t

− 1
2

i ) ·∆SO(2n−1)(t1, . . . , tn−1).

Let ASO(2n)
λ be the numerator in χ

π
SO(2n)
λ

according to the Weyl character formula, and sim-

ilarly let ASO(2n−1)
µ be the enumerator of χ

π
SO(2n−1)
µ

. Let m(µ) = [π
SO(2n)
λ : π

SO(2n−1)
µ ]. Then

π
SO(2n)
λ |SO(2n−1) =

⊕
µm(µ)π

SO(2n−1)
µ translates to

A
SO(2n)
λ (t1, . . . , tn−1, 1)

∆SO(2n)(t1, . . . , tn−1, 1)
=
∑
µ

m(µ)
A

SO(2n−1)
µ (t1, . . . , tn−1)

∆SO(2n−1)(t1, . . . , tn−1)
.

Multiply both sides by ∆SO(2n−1), we get

A
SO(2n)
λ (t1, . . . , tn−1, 1)∏

1≤i≤n−1(t
1
2
i − t

− 1
2

i )
=
∑
µ

m(µ)ASO(2n−1)
µ (t1, . . . , tn−1). (3.2)

Denote ρ = (n − 1, n − 2, . . . , 0) and ρ′ = (n − 3
2
, n − 5

2
, . . . , 1

2
); i.e., half-sums of positive

roots of SO(2n) and SO(2n− 1). We continue to denote the Weyl group of SO(2n) as Σ0(n).
Observe that

A
SO(2n)
λ (t1, . . . , tn−1, 1) =

∑
w∈Σ0(n)

(−1)`(w)tw(λ+ρ) =
∑
τ∈Zn2
`(τ)=0

∑
σ∈Sn

(−1)`(σ)tστ(λ+ρ).
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3.3. Branching Rule for SO(2n) ↓ SO(2n− 1)

Then the left hand side of equation (3.2) becomes

A
SO(2n)
λ (t1, . . . , tn−1, 1)∏

1≤i≤n−1(t
1
2
i − t

− 1
2

i )
=
∑
τ∈Zn2
`(τ)=0

∑
τ∈Sn(−1)`(σ)tστ(λ+ρ)∏
1≤i≤n−1(t

1
2
i − t

− 1
2

i )
=
∑
τ∈Zn2
`(τ)=0

det(t
[τ(λ+ρ)]i
j )∏

1≤i≤n−1(t
1
2
i − t

− 1
2

i )
.

Once fixed τ , we can compute det(t
[τ(λ+ρ)]i
j )∏

1≤i≤n−1(t
1
2
i −t

− 1
2

i )
via Lemma 3.3.2 by first sorting τ(λ + ρ) in

decreasing order and then apply the lemma. Sorting can be achieved by properly swapping
rows of the matrix (t

[τ(λ+ρ)]i
j ), which may introduce a sign change. Notice that τ(λ + ρ)

contains distinct entries, and λ+ρ is decreasing. Let κ(τ) denote the number of ordered pairs
in τ(λ+ρ), that is, the number of (i, j) pairs, i < j, such that [τ(λ+ρ)]i < [τ(λ+ρ)]j. Clearly
κ depends only on τ , as λ + ρ is decreasing and [λ + ρ]n has the least absolute value. Let
α = sort(τ(λ + ρ)) so that α1 > α2 > · · · > αn. Then κ(τ) will have the same parity as the
number of swaps needed to sort τ(λ+ ρ) into α. By Lemma 3.3.2,

∑
τ∈Zn2
`(τ)=0

det(t
[τ(λ+ρ)]i
j )∏

1≤i≤n−1(t
1
2
i − t

− 1
2

i )
=
∑
τ∈Zn2
`(τ)=0

(−1)κ(τ)
∑

α=sort(τ(λ+ρ))
αi+1<βi<αi
βi∈Z+ 1

2

det(tβij ). (3.3)

Lemma 3.3.3. In the right side of (3.3), it is enough to sum over β such that for every
1 ≤ i ≤ n− 1, there exists some j such that |λ+ ρ|i+1 < |βj| < |λ+ ρ|i.

Proof. Denote θ = |λ+ ρ| (note that the only term that could be negative is (λ+ ρ)n = λn).
First fix some τ . Then fix some β in the summation that does not satisfy the condition in
the lemma. That is, there exists a smallest integer k such that the interval (θk+1, θk) does
not contain any |βj|. Then exact one of [τ(λ + ρ)]k, [τ(λ + ρ)]k+1 is negative, for otherwise
there would be more than one βj lying inside either (θk+1, θk) or (−θk,−θk+1). Let τ ′ = τ

except that τ ′k = τk+1 and τ ′k+1 = τk (i.e. negating τk, τk+1). Then `(τ ′) = `(τ) = 0, and the
same β will appear in the summation of τ ′. Moreover, (−1)κ(τ ′) 6= (−1)κ(τ) since number of
ordered pairs in τ ′θ will be offset by one compared to that in τθ. Also it is clear that the map
τ 7→ τ ′ is an involution (i.e. τ ′′ = τ) since we are looking at the smallest k. Hence the term
det(tβij ) that appears in the summation of τ will be cancelled by the same term appearing in
the summation of τ ′.

Lemma 3.3.4. For any β that satisfies the condition of Lemma 3.3.3, it appears in (3.3) with
multiplicity 1.

Proof. We will show that any such β appears in the summation for a unique τ ∈ Zn2 with
`(τ) = 0. If βk > 0 for all k, then clearly (−1)τi = 1 for 1 ≤ i ≤ n − 1, and τn can be either
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3.3. Branching Rule for SO(2n) ↓ SO(2n− 1)

1 or −1. Let k be the smallest integer such that βk < 0. Then for all i < k, we have βi > 0.
This implies that (−1)τi = 1 and τi = 0, for otherwise there will be more than one β in some
(θi+1, θi). Since βk < 0, we must set τk = 1 so that (−1)τk = −1. Next we find the smallest
k′ > k such that βk′ > 0, and by the same reasoning we require (−1)τk′ = 1 and (−1)τi = −1

for k < i < k′. If we keep doing this, we will see that for i < n, (−1)τi = 1 if βi > 0 and
(−1)τi = −1 if βi < 0. The value of τn is then uniquely determined to make `(τ) = 0.

By the two lemmas, we can write the inner summation on right side of (3.3) by first
enumerating the signs of β. Let τ denote the first n− 1 components of τ , which acts on β by
negating corresponding components. Hence∑

τ∈Zn2
`(τ)=0

det(t
[τ(λ+ρ)i]
j )∏

1≤i≤n−1(t
1
2
i − t

− 1
2

i )
=
∑
τ∈Zn2
`(τ)=0

(−1)κ(τ)
∑

βi∈Z+ 1
2

|λ+ρ|i+1<βi<|λ+ρ|i

det(t
sort(τβ)
j ).

Lemma 3.3.5. det(t
[sort(τβ)]i
j ) = (−1)`(τ)+κ(τ) det(t

[τβ]i
j ).

Proof. Since det(t
[sort(τβ)]i
j ) = (−1)κ(τ) det(t

[τβ]i
j ), it is enough to show that

(−1)κ(τ) = (−1)`(τ)+κ(τ).

By definition, κ(τ) is the number of ordered pairs in τθ, and κ(τ) is the number of ordered
pairs in τθ, consisting of the first n − 1 components of τθ, for some θ sorted decreasingly as
θ1 > θ2 > · · · > θn. Hence the difference κ(τ) − κ(τ) equals the number of ordered pairs
formed by [τθ]i and [τθ]n for all i < n, which is equal to the number of negations among
τ1, . . . , τn−1, i.e., `(τ). Hence the equality follows.

Therefore,∑
τ∈Zn2
`(τ)=0

det(t
[τ(λ+ρ)i]
j )∏

1≤i≤n−1(t
1
2
i − t

− 1
2

i )
=
∑

τ∈Zn−1
2

(−1)`(τ)
∑

βi∈Z+ 1
2

|λ+ρ|i+1<βi<|λ+ρ|i

det(t
[τβ]i
j ).

Let µ = β − ρ′, so µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ 0. We get∑
τ∈Zn2
`(τ)=0

det(t
[τ(λ+ρ)i]
j )∏

1≤i≤n−1(t
1
2
i − t

− 1
2

i )
=
∑

τ∈Zn−1
2

(−1)`(τ)
∑
µi∈Z

|λ+ρ|i+1<[µ+ρ′]i<|λ+ρ|i

det(t
[τ(µ+ρ′)]i
j )

=
∑

τ∈Zn−1
2

(−1)`(τ)
∑
µi∈Z

|λ|i+1≤µi≤|λ|i

det(t
[τ(µ+ρ′)]i
j )

=
∑
µi∈Z

|λ|i+1≤µi≤|λ|i

ASO(2n−1)
µ (t1, . . . , tn−1).

Comparing this with (3.2) yields the branching rule of SO(2n) ↓ SO(2n− 1).
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4 Branching Rules via Duality

In this chapter, we will show an algebraic way of obtaining new branching rules from the old
ones via duality. Unlike our previous proofs that involve careful combinatorial manipulations
of the character formula, the new approach we will see is more systematic, in the sense that
once the general theory is developed, many branching rules will follow.

We will shift our focus from compact Lie groups to linear algebraic groups that are re-
ductive, the analogue of complete reducibility of compact Lie groups. The algebraic setup
will be more suitable to present the duality theorems. A brief discussion of the link between
the complete reducibility of certain linear algebraic groups and that of compact Lie groups is
discussed at Section 4.3.

This exposition is based on Chapter 4 and 5 of [GW09], the appendix of [BS17], and the
paper by [HTW05].

4.1 Algebraic Setup

We consider the following algebraic setup.

Definition 4.1.1. A subgroup G of GL(n,C) is a linear algebraic group if G =
⋂
f∈A f

−1(0)

where A is a set of polynomial functions on Matn(C).

Definition 4.1.2. A C-valued function g on GL(n,C) is regular if

g ∈ C[x11, . . . , xnn, det(x)−1].

A C-valued function on a linear algebraic group G ⊂ GL(n,C) is regular if it is the restriction
of a regular function on GL(n,C). Let O[G] denote the set of regular functions on G, which
forms a commutative algebra.

Definition 4.1.3. Let G,H be linear algebraic gorups. We say a map ϕ : G→ H is a regular
map if ϕ∗(O[H]) ⊂ O[G], where ϕ∗(f)(g) = f(ϕ(g)) for all f ∈ O[H], g ∈ G.

Definition 4.1.4. Let G be a linear algebraic group. A representation of G is a pair (ρ, V )

where V is a complex vector space and ρ : G→ GL(V ) is a group homomorphism.

Definition 4.1.5. We say (ρ, V ) is a regular representation if dimV < ∞ and after fixing a
basis for V , each coordinate-wise ρij is a regular function for all i, j.

We also need to look at infinite-dimensional representations, that are locally regular:
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4.2. Representations of Algebras

Definition 4.1.6. A locally regular representation of G is a representation (ρ, V ) such that ev-
ery finite-dimensional subspace of V is contained in a finite-dimensional G-invariant subspace
where the restriction of ρ is regular.

4.2 Representations of Algebras

For our purpose, we look at a more general notion of representation at the level of asso-
ciative algebras. We will only encounter algebras with identity, so we always assume this.

Definition 4.2.1. Let A be an associative algebra. A representation, or module, of A is a
pair (ρ, V ) where ρ : A → End(V ) is an algebra homomorphism.

Most of the time we will simply write V instead of (ρ, V ) as a representation of A, where
the action ρ will be understood.

Note there is a bijection between the representations (not just the regular ones) of any
group G and the representations of the group algebra C[G]. We will use representations of
groups and representations of the corresponding group algebras interchangably.

Definition 4.2.2. An A-module (possibly infinite-dimensional) V is irreducible if the only
A-invariant subspaces are {0} and V .

Definition 4.2.3. Let (ρ, V ) and (τ,W ) be representations of an associative algebra A. We
use HomA(V,W ) denote the linear subspace of the Hom(V,W ) that commute with the action
of A. Such map is called an A-module homomorphism.

We say a vector space V has countable dimension if the cardinality of every linearly in-
dependent set of V is countable. Schur’s lemma asserts the only A-module homomorphisms
between two irreducible (possibly infinite-dimensional but with countable dimension) repre-
sentations are multiplication by scalars. The proof can be found at Lemma 4.1.4 of [GW09].

Lemma 4.2.4 (Schur’s Lemma). Let (ρ, V ) and (τ,W ) be irreducible representations of an
associative algebra A. Suppose V and W have countable dimension over C. Then

dimHomA(V,W ) =

{
1 if (ρ, V ) ∼= (τ,W )

0 otherwise.

Definition 4.2.5. A finite-dimensional A-module V is completely reducible if for every A-
invariant subspace W ⊂ V , there exists a complementary A-invariant subspace U ⊂ V such
that V = W ⊕ U .

22



4.3. Reductivity of Classical Groups

An equivalent definition for complete reducibility of a finite-dimensional A-module V is
if it has a decomposition V = W1 ⊕ · · · ⊕Wn with each Wi a finite-dimensional irreducible
A-module.

We also want to extend the notion of complete reducibility to infintie-dimensional repre-
sentations.

Definition 4.2.6. An A-module V is locally completely reducible if for every v ∈ V , the cyclic
submodule Av is finite-dimensional and completely reducible.

We want to characterize the decomposition into irreducibles for a locally completely re-
ducible representation. Let A be an associative algebra. Let Â be the set of all equivalence
classes of finite-dimensional irreducible A-modules. Suppose V is an A-module. For each
λ ∈ Â, define the λ-isotypic subspace to be V(λ) =

∑
U⊂V,[U ]=λ U . Fix a module F λ to be a

representative for each λ ∈ Â. Then there are tautological maps

Sλ : HomA(F λ, V )⊗ F λ → V, Sλ(u⊗ w) = u(w).

We make HomA(F λ, V )⊗ F λ into an A-module by x.(u⊗ w) = u⊗ (x.w).

Proposition 4.2.7 (Proposition 4.1.15 of [GW09]). Let V be a locally completely reducible
A-module. Then Sλ is an A-module isomorphism onto V(λ). Furthermore,

V ∼=
⊕
λ∈Â

V(λ)
∼=
⊕
λ∈Â

HomA(F λ, V )⊗ F λ.

4.3 Reductivity of Classical Groups

Now back to the algebraic group setting, we record without proof several fundational results
regarding the representation theory of linear algebrac group.

Definition 4.3.1. A linear algebraic group G is reductive if every regular representation of G
is completely reducible.

Let (σ, V ) and (τ,W ) be irreducible regular representations of a linear algebraic reductive
groups H, K, respectively. Let G = H×K. Then it turns out G is reductive as well, and (σ⊗
τ, V ⊗W ) is an irreducible regular representation of G, where σ⊗ τ denote the representation
where (h, k) ∈ G acts by σ(h) ⊗ τ(k). Moreover, all irreducible regular representations of G
arise this way.

In this paper, the only linear algebraic groups we are concerned about are GL(n,C),
the general linear group over C, and the orthogonal group O(n,C), where O(n,C) = {g ∈
GL(n,C) : gtg = In}. Here is the reason why both groups are reductive.
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4.3. Reductivity of Classical Groups

Let G be a linear algebraic group. It can then be viewed as a real Lie group. Let τ be a Lie
group automorphism of G with τ 2 = id. If for any f ∈ O[G] we have [g 7→ f(τ(g))] ∈ O[G],
then we call τ a complex conjugation on G. Let K = {g ∈ G : τ(g) = g}. Then K is a closed
Lie group, and we call K a real form of G. Then it is a general fact that (Proposition 1.7.7 of
[GW09])

Proposition 4.3.2. Let K be a real form of a linear algebraic group G, and let k be the Lie
algebra of K inside g, the Lie algebra of G. Let (ρ, V ) be a regular representation of G. Then
a linear subspace W ⊂ V is invariant under dρ(k) if and only if W is invariant under G0, the
connected component of the identity of G (as a real Lie group).

For G = GL(n,C), let τ be the involution on G sending g 7→ (g∗)−1, where g∗ denotes the
conjugate transpose of g. Then τ fixes precisely K = U(n) ⊂ GL(n,C). But we know any
finite-dimensional continuous representation of U(n) is completely reducible, by constructing
a U(n)-invariant Hermitian form using integration over an invariant Haar measure on U(n).
Since U(n) is connected, the induced representations on k are also completely reducible. Since
regular representations are continuous and GL(n,C) is connected, by Proposition 4.3.2, it
follows that GL(n,C) is reductive. The proposition also implies that a regular representation
of GL(n,C) is irreducible if and only if the restriction to U(n) as a continuous representa-
tion is irreducible. Through a process called complexification, any continous representation
of U(n) can be extended to a complex analytic representation of GL(n,C) with its complex
manifold structure. Moreover, the complex analytic representation that an irreducible contin-
uous representation of U(n) extends to turns out to be automatically algebraic (i.e. a regular
representation of GL(n,C)), so it is irreducible. Complexification of a compact Lie group is
discussed in Chapter 24 of [Bum04] and III.8 of [BtD85]. Hence the Weyl character formula
(Theorem 2.1.1) gives a characterization of all irreducible regular representations of GL(n,C)

by their highest weights (as continuous representations restricted to U(n)).
To see that O(n,C) is reductive, our strategy is to show the index-2 subgroup SO(n,C) =

{g ∈ O(n,C) : det(g) = 1} is reductive. Let τ be the involution on SO(n,C) sending g 7→ g,
so τ is a complex conjugation. Then the fixed subgroup of τ is SO(n). In the same argument
as in previous paragraph, by Proposition 4.3.2, SO(n,C) is reductive. Using an averaging
argument as in proving the complete reducibility over a finite group, it can be shown that if
a finite-index linear algebraic subgroup is reductive, then the original group is reductive (see
Proposition 3.3.5 of [GW09]). Thus O(n,C) is reductive.

Example 4.3.3. To appreciate the reductivity of classical groups GL(n,C) and O(n,C), let’s
consider a group that is not reductive. Let G ⊂ GL2(C) be the “ax+ b” group; i.e.,

G =

{(
a b

0 1

)
: a ∈ C×, b ∈ C

}
.
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4.4. General Duality Theorem

This is clearly a linear algebraic group. We let G act on C2 = Ce1 ⊕ Ce2 in the standard
way by multiplication. Then Ce1 is a G-invariant subspace. However, Ce1 does not have a
G-invariant complement, since (

1 1

0 1

)
e2 = e1 + e2 /∈ Ce2.

4.4 General Duality Theorem

LetG ⊂ GL(n,C) be a reductive linear algebraic group. Let Ĝ denote the set of equivalence
classes of the irreducible regular representations of G, and we fix (πλ, F λ) to be a representative
for each λ ∈ Ĝ. Let (ρ, L) be a locally regular representation of G, and we assume that L has
countable dimension. We hope to apply Proposition 4.2.7, and to do so we need to check two
things, which we put as the next two propositions.

Proposition 4.4.1. L is a locally completely reducible C[G]-module.

Proof. For any v ∈ L, since L is locally regular, we have Cv ⊂ W for some regular G-invariant
subspace W ⊂ L. Then C[G].v ⊂ C[G].W ⊂ W , so the cyclic module C[G].v is regular,
and in particular finite-dimensional. Since G is reductive, it follows that C[G].v is completely
reducible.

Proposition 4.4.2. Let V ⊂ L be a finite-dimensional G-invariant subspace that is irre-
ducible. Then (ρ|V , V ) is a regular representation of G.

Proof. Since L is locally regular, there exists W ⊂ L with V ⊂ W where ρ|W is regular. Since
V is G-invariant, after a change of basis, we can view ρ|V as a submatrix of ρ|W . Hence by
our definition, ρ|V is a regular representation.

Thus by Proposition 4.2.7, as G-modules we have

L ∼=
⊕

λ∈Spec(ρ)

HomG(F λ, L)⊗ F λ,

where Spec(ρ) ⊂ Ĝ denote the set of irreducible representation classes that appear in L, and
g ∈ G acts by I ⊗ πλ(g).

Assume R ⊂ End(L) is a subalgebra such that

(i) R acts irreducibly on L.

(ii) If g ∈ G and T ∈ R, then ρ(g)Tρ(g)−1 ∈ R, so G acts on R.
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4.4. General Duality Theorem

(iii) The action in (ii) is locally regular.

LetRG = {T ∈ R : ρ(g)T = Tρ(g) for all g ∈ G}. Since the action ofRG commutes with that
of G, this makes L into an (RG ⊗C[G])-module Let Eλ = HomG(F λ, L) for λ ∈ Spec(ρ). We
can define an action ofRG on the component Eλ by T ·u = T ◦u for T ∈ RG, u ∈ HomG(F λ, L).
This makes sense because for u ∈ Eλ, x ∈ L, g ∈ G,

(Tu)(πλ(g)x) = T (u(πλ(g)x)) = T (ρ(g)u(x)) = ρ(g)(Tu(x)),

so that Tu ∈ Eλ. Note that this action is compatible with the action of RG ⊂ R on L, since
for any T ∈ RG, the following diagram commutes:

HomG(F λ, L)⊗ F λ L

HomG(F λ, L)⊗ F λ L

Sλ

T⊗I T

Sλ

Hence as a module for RG ⊗ C[G], we have the decomposition

L ∼=
⊕

λ∈Spec(ρ)

Eλ ⊗ F λ

where T ∈ RG acts by T ⊗ I on each summand.

Theorem 4.4.3 (Duality). With the above setup, as an RG module, each Eλ above is irre-
ducible for λ ∈ Spec(ρ). If Eλ ∼= Eµ as RG modules for λ, µ ∈ Spec(ρ), then λ = µ.

To prove the duality theorem, we will assume the following version of Jacobson Density
Theorem (Theorem 4.1.5 of [GW09]).

Theorem 4.4.4 (Jacobson Density Theorem). Let V be a countable-dimensional vector space
of C. Let R be a subalgebra of End(V ) with identity that acts irreducibly on V . If v1, . . . , vn
are linearly independent in V , then for any w1, . . . , wn ∈ V , there exists T ∈ R with Tvi = wi
for 1 ≤ i ≤ n.

As a first step to prove the duality theorem, we prove the following lemma.

Lemma 4.4.5. Let X be a finite-dimensional G-invariant subspace of L. Then HomG(X,L) =

RG|X .

Proof. Clearly RG|X ⊂ HomG(X,L), so we only need to show the other direction. Let
T ∈ HomG(X,L). Let {v1, . . . , vn} be a basis of X. Since R acts irreducibly on L (this
is assumption (i) of R), by Theorem 4.4.4, there exists r ∈ R such that Tvi = rvi for all
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4.5. Schur-Weyl Duality

1 ≤ i ≤ n. Hence T = r|X . By hypothesis, the action of G on R by conjugation is locally
regular (this is assumption (ii)(iii) of R). By Proposition 4.4.1 with L = R, and the by
Proposition 4.2.7, there exists a G-intertwining projection p : R → RG. Since the restriction
R → Hom(X,L) also commutes with G actions, as X is G-invariant, we have T = p(r)|X .

Proof of Theorem 4.4.3. First we show that Eλ = HomG(F λ, L) is irreducible under the action
of RG. Let T, S ∈ HomG(F λ, L) be nonzero elements, and we look for r ∈ RG such that
r ◦T = S. Note that TF λ and SF λ are isomorphic irreducible representations of G with class
λ. By Lemma 4.4.5, there exists r ∈ RG such that r|TFλ implements such isomorphism. By
Schur’s lemma (Lemma 4.2.4), there exists c ∈ C× such that r|TFλ ◦T = cS. Hence the action
of c−1r sends T to S.

Now suppose λ 6= µ for λ, µ ∈ Spec(ρ). Suppose ϕ : HomG(F λ, L) → HomG(F µ, L) is
an RG-module map, and we will show ϕ = 0. Let T ∈ HomG(F λ, L), and set S = ϕ(T ).
Let U = TF λ + SF µ. Since λ 6= µ, the sum is direct. Let p : U → SF µ be the projection
relative to such direct sum decomposition. By Lemma 4.4.5, there exists r ∈ RG such that
r|U = p. As a F λ → SF µ map, pT = 0, so that rT = 0. Then rS = rϕ(T ) = ϕ(rT ) = 0. But
rS = pS = S, so S = 0.

4.5 Schur-Weyl Duality

Let’s now look at an application of the duality theorem in a case where dimL < ∞.
Consider G = GL(n,C), and let Cn be the standard representation of G. Let Sk denote the
kth symmetric group. We can extend the actions of G and Sk to (Cn)⊗k by letting g ∈ G act
diagonally:

g.(v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk,

and by letting σ ∈ Sk act by permuting the entries:

σ.(v1 ⊗ · · · ⊗ vk) = vσ(1) ⊗ · · · ⊗ vσ(k).

It is clear that the action of G commutes with that of Sk. It is not so obvious that the algebra
generated by the action of Sk is the commuting ring of the action of G in End((Cn)⊗k).

Proposition 4.5.1. Let A ⊂ End((Cn)⊗k) denote the algebra generated by the action of Sk
of permuting the entries. Then A = End((Cn)⊗k)G.

For a proof of the proposition, see Proposition A.8 of [BS17].
Applying Theorem 4.4.3 to the case when R = End(L), we have a decomposition

(Cn)⊗k ∼=
⊕

λ∈S⊂Ĝ

Gλ
k ⊗ F λ

n , (4.1)
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4.6. Weyl Algebra Duality

where F λ
n denote an irreducible regular representation of G = GL(n,C) with highest weight

λ (see Section 4.3 about using using highest weights to index irreducible representations of
G), and Gλ

k denote a irreducible representation of Sk uniquely determined by λ. The set S of
highest weights λ that appear in the above decomposition can be further determined:

Theorem 4.5.2 (Schur-Weyl duality). In (4.1), S = Par(n, k), where Par(n, k) is the set of
all partitions of k of length ≤ n.

For the proof of the theorem, see Theorem A.10 of [BS17].

4.6 Weyl Algebra Duality

Next we will apply the general duality theorem (Theorem 4.4.3) to the Weyl algebra acting
on the space of polynomials, which we now define.

Definition 4.6.1. Let V be an n-dimensional vector space over C. Fix a set of basis
{e1, . . . , en} for V , and let {x1, . . . , xn} be the corersponding dual basis for V ∗. Let P(V ) ∼=
S(V ∗) ∼= C[x1, . . . , xn] be the space of polynomials on V . We define the Weyl algebra
of V to be the subspace D(V ) ⊂ End(P(V )) generated by the operators Di = ∂

∂xi
and

Mi = multiplication by xi, for i = 1, . . . , n.

Proposition 4.6.2. A C-basis for D(V ) is {MαDβ : α, β ∈ Nn}, where we use the multi-index
notation Mα = Mα1

1 · · ·Mαn
n and Dβ = Dβ1

1 · · ·Dβn
n .

Proof. Note that [Di,Mj] = δijI for all i, j = 1, . . . , n. Hence D(V ) = SpanC{MαDβ : α, β ∈
Nn}. It remains to show linear independence. Suppose for ci ∈ C×, 1 ≤ i ≤ n, we have∑n

i=1 ciM
αiDβi = 0 for αi, βi ∈ Nn. Suppose for i 6= j, either αi 6= αj or βi 6= βj. We use

|βi| to denote
∑n

j=1 β
i
j. Pick i such that |βi| is the smallest (if there are multiple ones, just

pick any). Then MαiDβixβ
i

= kxα
i for some positive integer k. Now we look at the other

contributions to the coefficient of xαi , which must sum up to 0. For all j, since |βj| ≥ |βi|, if
βj 6= βi, then Dβjxβ

i
= 0, so there is no contribution from the action of cjMαjDβj . If βj = βi,

then we need αj = αi to have MαjDβjxβ
i

= k′xα
′ for some k′. Hence i = j, so we need ci = 0,

which is a contradiction.

Let G ⊂ GL(V ) be an reductive linear algebraic group. Let G act on P(V ) by a represen-
tation ρ where (ρ(g)f)(x) = f(g−1x). We want to let G act on D(V ) by g.T = ρ(g)Tρ(g)−1

for T ∈ D(V ) and g ∈ G, so we need to check g.T ∈ D(V ).
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Lemma 4.6.3. For g ∈ G ⊂ GL(V ) with matrix (gij) relative to {e1, . . . , en}, we have

ρ(g)Djρ(g−1) =
n∑
i=1

gijDi

ρ(g)Miρ(g−1) =
n∑
j=1

(g−1)ijMj.

Proof. Let f(x) ∈ P(V ). Then by using chain rule,(
ρ(g)

∂

∂xj
ρ(g−1)f

)
(x) = ρ(g)

(
∂

∂xj
f(gx)

)
= ρ(g)

(∑
i

∂f

∂xi
(gx)

∂(gx)i
∂xj

)

= ρ(g)

(∑
i

∂f

∂xi
(gx)gij

)
=

(∑
i

gij
∂

∂xi

)
f,

which proves the first identity. Similarly,(
ρ(g)xiρ(g−1)f

)
(x) = ρ(g) (xif(gx)) = (g−1x)if(x) =

∑
j

(g−1)ijxjf(x).

Combining with the characterization of the basis for D(V ), we see that the action of
G on D(V ) is well-defined. Let Dk(V ) = SpanC{MαDβ : |α| + |β| ≤ k}, which is finite-
dimensional. Then the previous lemma shows that Dk(V ) is stable under the action of G.
Since g−1 = det(g)−1adj(g), where adj(g) is the adjugate matrix whose entries are polynomials
in matrix entires xij, it follows that the action of G on each Dk(V ) is regular. Hence G acts
locally regular on D(V ).

Theorem 4.6.4 (Weyl algebra duality). Let G ⊂ GL(V ) be a reductive linear algebraic group.
Let G acts on P(V ) by ρ(g)f(x) = f(g−1x) for f ∈ P(V ) and g ∈ G. Then

P(V ) ∼=
⊕
λ∈S

Eλ ⊗ F λ

as a D(V )G ⊗ C[G] module, where S ⊂ Ĝ, F λ is an irreducible regular representation of G
with class λ, and Eλ is an irreducible representation of D(V )G determined uniquely by λ.

Proof. We will apply Theorem 4.4.3 with R = D(V ) and L = P(V ). Then L has a countable
basis B of products of coordinates. If we have any uncountable linearly independent set A of
L, for each b ∈ B it can be written as a linear combination of finitely many elements in A, so
by keeping those elements in A that appear in this way we can reduce A to a countable set of
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4.6. Weyl Algebra Duality

linearly independent vectors, which is a contradiction. Hence L has countable dimension. We
also note ρ is locally regular since Pk(V ), the degree k homogeneous polynomials, is a regular
G-module.

We have already shown that conditions (ii) and (iii) of the hypothesis of duality theorem
have been met. It remains to prove (i), the irreducibility of L = P(V ) as D(V ) module. Let
f ∈ P(V ) that is not zero. Then there is some α ∈ Nn such that Dαf ∈ C×. Hence for
any g ∈ P(V ), if we let Mg be the multiplication-by-g operator in D(V ), then g ∈ CMgD

αf .
Hence D(V ).f = P(V ), so D(V ) acts irreducibly on P(V ).

The goal of the remaining section is to realize D(V )G as a generating Lie subalgebra of it.
We define an action of G on P(V ⊕ V ∗) in the natural way by

g.f(v, w∗) = f(g−1v, w∗ ◦ g),

for g ∈ G, v ∈ V , w∗ ∈ V ∗. Liet x1, . . . , xn be a basis of V , and let ξ1, . . . , ξn be the
corresponding dual basis. Note that g.xi =

∑n
j=1(g−1)ijxj and g.ξj =

∑n
i=1 gijξi.

The first fundamental theorems (FFT) of invariant theory give a finite generating set (as
algebras) for P(V ⊕V ∗)G when G is a classical group. We record the results for G = GL(n,C)

and G = O(n,C), which will be sufficient for our need.

Theorem 4.6.5 (Polynomial FFT for GL(n,C) and O(n,C)). Let V = Cn. Then as associa-
tive algebras,

• P(V k ⊕ (V ∗)k)GL(n,C) is generated by
∑n

a=1 xaiξaj, for all 1 ≤ i, j ≤ k, where ξaj’s are
the coordinates on (V ∗)k dual to the coordinates xai’s on V k.

• P(V k ⊕ (V ∗)k)O(n,C) is generated by
∑n

a=1 xaixaj,
∑n

a=1 ξaiξaj ,
∑n

a=1 ξaixaj for all 1 ≤
i, j ≤ k.

Proof. See Theorem 5.2.1 and 5.2.2 of [GW09].

We wish to relate D(V )G to P(V ⊕ V ∗)G, which we know the generating set of for G =

GL(n,C) or O(n,C).
Define a map σ : D(V ) → P(V ⊕ V ∗) as follows. Let T =

∑
|α|+|β|≤k cαβM

αDβ ∈ Dk(V )

with cαβ 6= 0 for some α, β such that |α|+ |β| = k. Then

σ(T ) =
∑

|α|+|β|=k

cαβx
αξβ ∈ Pk(V ⊕ V ∗).

We call σ(T ) the Weyl symbol of T . Note that σ is not linear, but it is multiplicative, in
the sense that σ(ST ) = σ(S)σ(T ) for S, T ∈ D(V ). Let σk : Dk(V ) → Pk(V ⊕ V ∗) be the
restriction σk = σ|Dk(V ). Then σk descends to σk : Dk(V )/Dk−1(V ) → Pk(V ⊕ V ∗), which is
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4.7. GL(n,C)-GL(k,C) Duality

then linear. Since Dk(V ) is stable under conjugation by G, we can view Dk(V )/Dk−1(V ) as a
G-module with the induced action. By comparing basis, we see such G-action agrees with the
G-conjugation on D(V ). Hence σk is an isomorphism of G-modules for each k.

The next theorem gives a sufficient condition for computing a generating set of the algebra
D(V )G.

Theorem 4.6.6. Let {ψ1, . . . , ψr} be a set of polynomials that generates the algebra P(V ⊕
V ∗)G, and suppose for T1, . . . , Tr ∈ D(V )G with σ(Tj) = ψj for all j. Then {T1, . . . , Tr}
generates the algebra D(V )G.

Proof. Let J be the subalgebra generated by {T1, . . . , Tr}. Since C ⊂ P(V ⊕ V ∗)G, one
of ψj must be an element of C×, and so is Tj, so C = D0(V )G ⊂ J . Next for k ≥ 1,
by induction suppose Dk−1(V )G ⊂ J . Let S ∈ Dk(V )G \ Dk−1(V ). Then S + Dk−1(V ) 6=
0 ∈ Dk(V )/Dk−1(V ). So σk(S + Dk−1(V )) =

∑
cj1···jkψ

j1
1 · · ·ψjrr 6= 0 ∈ Pk(V ⊕ V ∗)G. Let

R =
∑
cj1···jkT

j1
1 · · ·T jrr ∈ D(V ). Since σ(R) = σk(S + Dk−1(V )) ∈ Pk(V ⊕ V ∗)G, it follows

that R ∈ Dk(V ). Hence σ(R) = σk(R + Dk−1(V )) = σk(S + Dk−1(V )). Since σk is an
isomorphism, we have R− S ∈ Dk−1(V )G ⊂ J . Thus S ∈ J , completing the induction.

Corollary 4.6.7. Under the hypothesis of the previous theorem, suppose additionally g′ =

SpanC{T1, . . . , Tr} is a Lie subalgebra of D(V )G. Then in the decomposition of Theorem 4.6.4,
Eλ is an irreducible g′-module where the action of g′ is just the restriction of that of D(V )G.

Proof. Since g′ generates D(V )G as algebra, we have D(V )G ∼= U(g′), where U(g′) denote the
universal enveloping algebra of g′. Then the claim follows since there is a correspondence
between the representations of D(V )G and representations of g′ by the universal property of
U(g′).

In the following sections, we consider applying Theorem 4.6.4 and Corollary 4.6.7 to partic-
ular choices of V andG ⊂ GL(V ) to get concrete forms of decomposition of P(V ) ∼=

⊕
Eλ⊗F λ

where F λ is an irreducible finite-dimensional G-module and Eλ is an irreducible (usually
infinite-dimensional) g′-module.

4.7 GL(n,C)-GL(k,C) Duality

Let G = GL(n,C) and V = Matn,k(C), the space of n× k matrices over C. We let G act
on V by left-multiplication, which induces an action ρ on P(V ) by ρ(g)f(v) = f(g−1v).

For 1 ≤ i, j ≤ k, define Eij ∈ D(V ) by Eij =
∑

1≤a≤n xai
∂

∂xaj
.

Proposition 4.7.1. Let g′ = SpanC{Eij : 1 ≤ i, j ≤ k}. Then g′ is a Lie subalgebra of D(V )G

that is isomorphic to gl(k,C). In addition it generates the algebra D(V )G.

31



4.7. GL(n,C)-GL(k,C) Duality

Proof. Using the Weyl sympbol map σ : D(V )→ P(V ⊕ V ∗) defined in the previous section,
we see that σ(Eij) =

∑n
a=1 xaiξaj . By the FFT for G = GL(n,C) (Theorem 4.6.5), P(V ⊕V ∗)G

is generated by zij =
∑n

a=1 xaiξaj for all 1 ≤ i, j ≤ k. Hence by Theorem 4.6.6, SpanC{Eij} ⊂
D(V )G generates D(V )G as algebra.

To show g′ ∼= gl(k,C), consider another G′ = GL(k,C), and let G′ acts on V by g′.v =

vg′−1. This induces an action ρ′ on P(V ) by ρ′(g′)f(v) = f(vg′). The differential of ρ′ (as a
smooth representation) at the identity e gives an representation Lρ′ : gl(k,C) → End(P(V ))

of the Lie algebra gl(k,C). We will compute the effect of Lρ′ on the standard basis {eij}1≤i,j≤k

of gl(k,C). For X ∈ gl(n,C), its action on f ∈ P(V ) is given by

(X.f)(v) =
d
dt

∣∣∣∣
t=0

(f(vetX)) =
∑

1≤a≤n
1≤b≤k

∂f

∂xab
(v)

d
dt

∣∣∣∣
t=0

(vetX)ab

=
∑

1≤a≤n
1≤b≤k

(vX)ab
∂f

∂xab
(v)

=
∑

1≤a≤n
1≤b,c≤k

vacXcb
∂f

∂xab
(v).

Taking X = eij, we find (eij.f)(v) =
∑

1≤a≤n vai
∂f
∂xaj

(v). Hence Lρ′(eij) =
∑

1≤a≤n xai
∂

∂xaj
=

Eij ∈ D(V ). Note that Lρ′ may be regarded as a map of complex Lie algebra. Since
{xai ∂

∂xaj
}1≤a≤n,1≤i,j≤k is linearly independent in D(V ), Lρ′ is injective, so we have g′ ∼=

gl(k,C).

Theorem 4.7.2 (GL(n,C)-GL(k,C) duality). Let GL(k,C)×GL(n,C) act on P(Matn,k(C))

by ρ(g′, g)f(v) = f(g−1vg′) for g′ ∈ GL(k,C), g ∈ GL(n,C). Then as a GL(k,C)×GL(n,C)

modules, we have the decomposition

P(Matn,k(C)) ∼=
⊕

λ∈S⊂Ĝ

Eλ ⊗ F λ,

where each Eλ ⊗ F λ is irreducible under the action of GL(k,C)×GL(n,C).

Proof. By Corollary 4.6.7, we have the decomposition

P(Matn,k(C)) ∼=
⊕

Eλ ⊗ F λ,

where Eλ is an irreducible representation of g′ and F λ is an irreducible representation of
GL(n,C). The irreducibility of Eλ as a g′ representation implies it is irreducible as a G′ =

GL(k,C) representation, since G′ is connected. As in the proof of Proposition 4.7.1, the
action of g ∈ GL(k,C) on P(Matn,k(C)) is induced by right multiplying g−1. Hence the above
decomposition can also be regarded as an isomorphism of GL(k,C)×GL(n,C) representations.
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The next theorem gives a description for the representations that occur in the decomposi-
tion of Theorem 4.7.2. We use F λ

n to denote the irreducible representation of GL(n,C) with
highest weight λ. For nonnegative weight λ, as in the previous chapters, we continue to use
`(λ) to denote the length of λ, i.e., the largest index j such that λj > 0. We can improve the
duality in Theorem 4.7.2 by describing the exact irreducible representations appearing in the
decomposition.

Theorem 4.7.3. With notations as in Theorem 4.7.2,

P(Matn,k(C)) ∼=
⊕
µ

(F µ
k )∗ ⊗ F µ

n ,

where the sum is over all nonnegative dominant weights µ with `(µ) ≤ min{k, n}.

Proof. See the proof of Theorem 5.6.7 of [GW09]. Roughly speaking, we seek polynomials in
P(Matn,k(C)) with weights (−µ, µ) that are invariant under the action of a Borel subgroup
GL(k,C)×GL(n,C). Then these weights are precisely the highest weights.

Corollary 4.7.4. As a GL(k,C)×GL(n,C) module,

S(Ck ⊗ Cn) ∼=
⊕
µ

F µ
k ⊗ F

µ
n ,

where the sum is over all nonnegative dominant weights µ with `(µ) ≤ min{k, n}. Here
S(Ck ⊗ Cn) denote the symmetric algebra of Ck ⊗ Cn with action induced by the diagonal
action of GL(k,C)×GL(n,C) on the tensor product Ck ⊗ Cn.

Proof. The symmetric algebra S(Ck × Cn) is related to P(Matn,k(C)) in Theorem 4.7.2
as follows. Consider another representation σ of GL(k,C) × GL(n,C) on P(Matk,n(C))

by σ(g′, g)f(v) = f(gtvg′). This is the induced action of v 7→ (gt)−1vg′−1, under which
Matk,n(C) ∼= (Ck)∗ ⊗ (Cn)∗. Hence P(Matk,n(C)) ∼= S(Ck ⊗ Cn). But σ differs from ρ only
by precomposing g 7→ (gt)−1, which amounts to passing to the dual representation from F µ

k

to (F µ
k )∗.

4.8 O(n,C)-sp(k,C) Duality

Let G = O(n,C) = {A ∈ GL(n,C) : AtA = I}. That is, G is the group preserveing
the symmetric bilinear form (x, y) =

∑n
i=1 xiyi. Let V = Matn,k(C) with G acting by left

multiplication. For 1 ≤ i, j ≤ k, define ∆ij,Mij ∈ D(V ) by

∆ij =
n∑
p=1

∂2

∂xpi∂xpj
, Mij = multiplication by

n∑
p=1

xpixpj.
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We continue to denote Eij =
∑

1≤p≤n xpi
∂

∂xpj
∈ D(V ) for 1 ≤ i, j ≤ k. We have seen that

Eij ∈ D(V )GL(n,C), so Eij ∈ D(V )G.

Lemma 4.8.1. ∆ij,Mij ∈ D(V )G.

Proof. First we compute the effect of ρ(g) ∂
∂xpi

ρ(g−1) on P(V ) for 1 ≤ p ≤ n, 1 ≤ i ≤ k.
Applying Lemma 4.6.3, we have

ρ(g)
∂

∂xpi
ρ(g)−1 =

∑
ab

(gepi)ab
∂

∂xab
=

n∑
a=1

gap
∂

∂xai
.

Hence

ρ(g)∆ijρ(g)−1 =
n∑
p=1

(
ρ(g)

∂

∂xpi
ρ(g−1)

)(
ρ(g)

∂

∂xpj
ρ(g)−1

)

=
n∑
p=1

(∑
a

gap
∂

∂xai

)(∑
b

gbp
∂

∂xbj

)

=
∑

1≤a,b≤n

(
n∑
p=1

gapgbp

)
∂2

∂xaixbj

= ∆ij.

Since Mij is multiplication by (xi, xj) where we view xi, xj as column vectors with xip, xjp on
the ith component, and since the bilinear form is invariant under G, it follows that Mij is
invariant conjugation by ρ(g).

Proposition 4.8.2. Let g′ = SpanC{Eij + (n/2)δij,Mij,∆ij : 1 ≤ i, j ≤ k}. Then g′ is a
Lie subalgebra of D(V )G that is isomorphic to sp(k,C). In addition g′ generates the algebra
D(V )G.

Proof. We first need to check the given spanning set of g′ is closed under the Lie bracket.
Clearly [Mij,Mrs] = 0 and [∆ij,∆rs] = 0. It is then purely technical to verify the remaining
pairs. We show for instance the computation of [∆ij,Mrs]. For a second order differential
operator ∂2

∂x∂y
, for polynomial ϕ and f , we have

∂2

∂x∂y
(ϕf) =

(
∂2

∂x∂y
ϕ

)
f +

∂

∂x
ϕ
∂

∂y
f +

∂

∂y
ϕ
∂

∂x
f + ϕ

∂2

∂x∂y
f.

Hence [
∂2

∂x∂y
, ϕ

]
=

∂2

∂x∂y
ϕ+

∂

∂x
ϕ
∂

∂y
+

∂

∂y
ϕ
∂

∂x
.
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For ϕ = Mrs = (xr, xs), we find

[∆ij,Mrs] =
n∑
p=1

{
∂2

∂xpi∂xpj
(xr, xs) +

(
∂

∂xpi
(xr, xs)

)
∂

∂xpj
+

(
∂

∂xpj
(xr, xs)

)
∂

∂xpi

}
.

Then

∂2

∂xpi∂xpj
(xr, xs) =

∂2

∂xpi∂xpj
(xprxps) = δisδjr + δirδjs

∂

∂xpi
(xr, xs)

∂

∂xpj
=

∂

∂xpi
(xprxps)

∂

∂xpj
= δirxps

∂

∂xpj
+ δisxpr

∂

∂xpj
∂

∂xpj
(xr, xs)

∂

∂xpi
=

∂

∂xpj
(xprxps)

∂

∂xpi
= δjrxps

∂

∂xpi
+ δjsxpr

∂

∂xpi
.

It follows that

[∆ij,Mrs] = δir

(
Esj +

n

2
δjs

)
+ δis

(
Erj +

n

2
δjr

)
+ δjr

(
Esi +

n

2
δis

)
+ δjs

(
Eri +

n

2
δir

)
.

Now assume we have checked that g′ defined as above is a Lie subalgebra. Note that since
Eij + (n/2)δij,Mij,∆ij have different degrees as differential operators, they are necessarily
linearly independent. Recall that sp(k,C) ⊂ gl(2k,C) is the space of matrices X such that

X tJ + JX = 0, where J =

[
0 Ik
−Ik 0

]
. Equivalently, X ∈ sp(k,C) if and only if X takes the

form

X =

[
A B

C −At

]
with A,B,C ∈ Matk(C), B = Bt, C = Ct.

Consider the linear map ϕ : g′ → sp(k,C) defined by sending, for 1 ≤ i, j ≤ k,

Eij + (δ/2)δij 7→ eij − ek+j,k+i, Mij 7→ ei,j+k + ej,i+k, ∆ij 7→ −ei+k,j − ej+k,i.

Then ϕ is a linear isomorphism. Once we have computed all the commutation relations among
the chosen basis of g′, we can verify that ϕ preserves the Lie bracket, so it is an isomorphism
of Lie algebra.

To show that g′ generates the algebra D(V )G, we again resort to Theorem 4.6.6 and com-
pute the Weyl symbols as

σ(Eij +
n

2
δij) =

n∑
p=1

xpiξpj, σ(Mij) =
n∑
p=1

xpixpj, σ(∆ij) =
n∑
p=1

ξpiξpj.

By the FFT for G = O(n,C) (Theorem 4.6.5), P(V ⊕V ∗)G is generated by these polynomials,
so g′ indeed generates D(V )G.
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Applying Corollary 4.6.7, we get

Theorem 4.8.3 (O(n,C)-sp(k,C) duality). Let V = Matn,k(C). Let O(n,C) act on V by left
multiplication, and let sp(k,C) ⊂ D(V )G act on P(V ) by the action of the Weyl algebra. Then
the action of O(n,C) commutes with that of sp(k,C), and we have the decomposition

P(Matn,k(C)) ∼=
⊕

λ∈S⊂Ĝ

Eλ ⊗ F λ,

where each Eλ is an irreducible representation of sp(k,C) and F λ is an irreducible regular
representation of O(n,C).

4.9 Seesaw Reciprocity

We consider a setup similar to the one in Section 4.4. Let G be a reductive group and let
(ρ, L) be a locally regular representation of G. Let R ⊂ End(L) be a subalgebra such that
R acts irreducibly on L, and that G acts locally regularly on R by g.T = ρ(g)Tρ(g)−1. Let
A = RG. Then by the general duality theorem (Theorem 4.4.3), we have

L ∼=
⊕

λ∈Spec(ρ)

Eλ∗ ⊗ F λ, (4.2)

where Eλ∗ is an irreducible representation of A uniquely determined by λ, and F λ is an
irreducible regular representation of G labeled by λ. Then λ ⇔ λ∗ gives a bijection between
irreducible regular representations of G and irreducible representations of A appearing in the
above decomposition. In this case, we say (G,A) is a dual reductive pair relative to L. When
A can be generated by the regular action of a linear algebraic group G′ (resp. Lie algebra g′),
we also call (G,G′) (resp. (G, g′)) a dual reductive pair.

Suppose (G′,A′) is another dual reductive pair acting on the same vector space L. Let
(ρ′, L) be the representation of G′ on L. We assume the we have inclusions G′ ⊂ G and
A ⊂ A′. Then the duality theorem gives

L ∼=
⊕

µ∈Spec(ρ′)

E ′µ
∗ ⊗ F ′µ, (4.3)

where E ′µ∗ is an irreducible representation ofA′ and F ′µ is an irreducible regular representation
of G′, and µ ⇔ µ∗ is a bijection between irreducibles. Assume further that the action of G
restriction to G′ on L is the same as the one from G′, and also the action of A′ is compatible
with that of A for restriction. In this case, we call (G,A) and (G′,A′) a seesaw pair relative
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to L, and we use denote the pair using the diagram

G A′

A G′

Theorem 4.9.1 (Seesaw Reciprocity). In the same notation, we have as vector spaces

Hom(Eλ∗ , E ′µ
∗
) ∼= Hom(F ′µ, F λ),

for λ ∈ Spec(ρ) and µ ∈ Spec(ρ′). In terms of multiplicity formula, we can express this as

[F λ : F ′µ] = [E ′µ
∗

: Eλ∗ ].

Proof. By Proposition 4.2.7, as an A-module, E ′µ∗ in (4.3) decomposes as

E ′µ
∗ ∼=

⊕
σ∗∈Â

HomA(Eσ∗ , E ′µ
∗
)⊗ Eσ∗ .

Hence as (A⊗ C[G′])-modules,

L ∼=
⊕

µ∈Spec(ρ′)

⊕
σ∗∈Â

HomA(Eσ∗ , E ′µ
∗
)⊗ Eσ∗ ⊗ F ′µ. (4.4)

Similarly, by Proposition 4.2.7, as a G′-module,

F λ ∼=
⊕
ν∈Ĝ′

HomG′(F
′ν , F λ)⊗ F ′ν .

Hence (4.2) becomes, as (A⊗ C[G′])-modules,

L ∼=
⊕

λ∈Spec(ρ)

⊕
ν∈Ĝ′

HomG′(F
′ν , F λ)⊗ Eλ∗ ⊗ F ′ν . (4.5)

Comparing (4.4) and (4.5), by equating σ∗ = λ∗ and ν = µ, we have our desired isomorphism.

4.10 Littlewood-Richardson Coefficients

Now we apply seesaw reciprocity to the GL(n,C)-GL(k,C) duality. Let V = Matn,k+m(C)

and Y = S(V ). Let GL(n,C)×GL(k+m,C) act on Y by (g, g′).f(v) = f(gtvg′). By Corollary
4.7.4, we have

S(V ) ∼=
⊕
λ

F λ
n ⊗ F λ

k+m,
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for all dominant weight λ with `(λ) ≤ min{n, k+m}. Let (GL(n,C)×GL(n,C))×(GL(k,C)×
GL(m,C)) act on S(V ) by

((g1, g2), (h1, h2)).f(v1, v2) = f(gt1v1h1, g
t
2v2h2),

where we identify Matn,k+m(C) ∼= Matn,k(C)⊕Matn,m(C) for v1 ∈ Matn,k(C), v2 ∈ Matn,m(C).
Applying Corollary 4.7.4 to GL(n,C) × GL(k,C) acting on the summand Matn,k(C) and to
GL(n,C)×GL(m,C) acting on the summand Matn,m(C), we have

S(Matn,k(C)⊕Matn,m(C)) ∼= S(Matn,k(C))⊗ S(Matn,m(C))

∼=
⊕
µ,ν

(F µ
n ⊗ F

µ
k )⊗ (F ν

n ⊗ F ν
m)

∼=
⊕
µ,ν

(F µ
n ⊗ F ν

n )⊗ (F µ
k ⊗ F

ν
m),

for dominant weights µ, ν with `(µ) ≤ min{n, k} and `(ν) ≤ min{n,m}.
This shows (GL(n,C) × GL(n,C),GL(k,C) × GL(m,C)) is a dual reductive pair with

respect to S(V ), so we can form the seesaw

GL(n,C)×GL(n,C) GL(k +m,C)

GL(n,C) GL(k,C)×GL(m,C)

The inclusion GL(n,C) ↪→ GL(n,C) × GL(n,C) is g 7→ (g, g), and GL(k,C) × GL(m,C) ↪→

GL(k,m)(C) is given by (g, h) 7→

(
g 0

0 h

)
. It can be readily checked that both the repre-

sentations from both dual reductive pairs agree when restricted to GL(n,C) × (GL(k,C) ×
GL(m,C)). Hence the hypothesis of Theorem 4.9.1 is satisfied. By applying the theorem, we
get

[F µ
n ⊗ F ν

n : F λ
n ] = [F λ

k+m : F µ
k ⊗ F

ν
m],

whenever `(λ) ≤ min{n, k + m}, `(µ) ≤ min{n, k} and `(ν) ≤ min{n,m}. Notice that when
n sufficiently large, the right hand side of the equality does not depend on n.

Definition 4.10.1. Define cλµν = [F µ
n ⊗ F ν

n : F λ
n ] for λ, µ, ν ∈ N with n sufficiently large such

that max{`(λ), `(µ), `(ν)} ≤ n. We call cλµν Littlewood-Richardson coefficients.

Hence the Littlewood-Richardson coefficients record simultaneously the branching rules of
GL(n,C)×GL(n,C) ↓ GL(n,C) and GL(k +m,C) ↓ GL(k,C)×GL(m,C).

We can give a third interpretation of Littlewood-Richardson coefficients by resorting to
the Schur-Weyl duality (Theorem 4.5.2).
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4.11. Stable Branching Rule for O(n,C)×O(n,C) ↓ O(n,C)

Let Y = (Cn)⊗(k+m). Let GL(n,C) and Sk+m act on Y as in the Schur-Weyl duality.
That is, GL(n,C) acts diagonally while Sk+m permutes the k + m entries. This gives the
decomposition

Y ∼=
⊕

λ∈Par(n,k+m)

Gλ
k+m ⊗ F λ

n .

Write Y as (Cn)⊗(k+m) ∼= (Cn)⊗k ⊗ (Cn)m, we can let GL(n,C)×GL(n,C) act on Y via

(g1, g2).(v1 ⊗ · · · ⊗ vk+m) = g1v1 ⊗ · · · ⊗ g1vk ⊗ g2vk+1 ⊗ · · · ⊗ g2vk+m,

and we let Sk × Sm act by

(σ1, σ2).(v1 ⊗ · · · ⊗ vk+m) = vσ1(1) ⊗ · · · ⊗ vσ1(k) ⊗ vk+σ2(1) ⊗ · · · ⊗ vk+σ2(m).

By applying Schur-Weyl duality to (Cn)⊗k and (Cn)m separately, we get

Y ∼=

 ⊕
µ∈Par(n,k)

Gµ
k ⊗ F

µ
n

⊗
 ⊕
ν∈Par(n,m)

Gν
m ⊗ F ν

n


∼=

⊕
µ∈Par(n,k)
ν∈Par(n,m)

(Gµ
k ⊗G

ν
m)⊗ (F µ

n ⊗ F ν
n ).

Hence (Sk × Sm,GL(n,C)×GL(n,C)) is a dual reductive pair, so we can form seesaw

Sk+m GL(n,C)×GL(n,C)

Sk × Sm GL(n,C)

We embed Sk×Sm ↪→ Sk+m by sending (σ1, σ2) to the permuation in Sk+m that permutes the
first k entires according to σ1 and permutes the last m entries according to σ2. We embed
GL(n,C) ↪→ GL(n,C)× GL(n,C) diagonally by g 7→ (g, g). It is evident the representations
from diagonal dual reductive pairs restrict to a common representation on (Sk×Sm)×GL(n,C).
Thus by Theorem 4.9.1, we have

[Gλ
k+m : Gµ

k ⊗G
ν
m] = [F µ

n ⊗ F ν
n : F λ

n ] = cλµν .

This gives a third interpretation of cλµν in terms of the branching rule of the symmetric group.

4.11 Stable Branching Rule for O(n,C)×O(n,C) ↓ O(n,C)

In this section, we will make use of the O(n,C)-sp(k,C) duality to deduce a branching rule
of O(n,C) × O(n,C) ↓ O(n,C) for a certain range of irreducibles, where we embed O(n,C)

diagonally inside O(n,C)×O(n,C). This section follows the paper [HTW05].
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4.11. Stable Branching Rule for O(n,C)×O(n,C) ↓ O(n,C)

In Section 10.2 of [GW09], it is shown that all irreducible regular representations of O(n,C)

can be indexed uniquely by a non-negative integer partition ν such that (ν ′)1+(ν ′)2 ≤ n, where
ν ′ denote the transpose partition of ν. Let Eν

n denote the irreducible regular representation
of O(n,C) indexed this way.

Our goal of this section is to prove the following stable branching rule.

Theorem 4.11.1 (Theorem 2.1.2 of [HTW05]). Let λ, µ, ν be non-negative integer partitions
such that `(λ) ≤ bn/2c and `(µ) + `(ν) ≤ bn/2c. Then

[Eµ
n ⊗ Eν

n : Eλ
n ] =

∑
cλαβc

µ
αβc

ν
βγ,

where the sum is over all non-negative integer partitions α, β, γ.

We will assume the following stronger version of O(n,C)-sp(k,C) duality (Theorem 4.8.3),
which gives the exact decomposition into irreducibles with our index convention.

Theorem 4.11.2 (Theorem 3.2 of [HTW05]). The decomposition in Theorem 4.8.3 is

P(Matn,k(C)) ∼=
⊕
λ

Eλ
n ⊗ Ẽλ

k ,

where Eλ
n is the irreducible representation of O(n,C) indexed by λ, and Ẽλ

k is an irreducible
representation of sp(k,C). In the decomposition, λ runs through the set of all integer partitions
such that `(λ) ≤ k and (λ′)1 + (λ′)2 ≤ n. Moreover, in the stable range n ≥ 2k, restricting
Ẽλ
k to gl(k,C) ⊂ gl(k,C)⊕ p+ ⊕ p− as in the complexified Cartan decomposition of sp(k,C),

it decomposes as representations of gl(k,C) by

Ẽλ
k
∼= S(S2Ck)⊗ F λ

k ,

where S(S2Ck) is the symmetric algebra of the symmetric 2-tensor of Ck, the standard repre-
sentation of gl(k,C), and F λ

k is the irreducible representation of GL(k,C) (induced on its Lie
algebra) with highest weight λ.

Remark 4.11.3. The decomposition of Ẽλ
k as a gl(k,C)-module is an instance of the universality

of holomorphic discrete series; see the discussion before Theorem 3.2 of [HTW05].

Proof of Theorem 4.11.1. Let p, q be positive integers that we will determine in the end. Let
V = Matn,p+q(C). We first let O(n,C)×O(n,C) act on P(V ) diagonally through the decom-
position Matn,p+q(C) ∼= Matn,p(C)⊕Matn,q(C) by

(g1, g2).f(v1, v2) = f(g−1
1 v1, g

−1
2 v2).
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4.11. Stable Branching Rule for O(n,C)×O(n,C) ↓ O(n,C)

On each summand, this is the same action as in Theorem 4.8.3, so the action of O(n,C) ×
O(n,C) commutes with sp(p,C)⊕ sp(q,C), and together they have a multiplicity-free decom-
position. With respect to the dual reductive pair (O(n,C)×O(n,C), sp(p,C)⊕ sp(q,C)), by
Theorem 4.11.2 to each summand, and after rearranging terms, we have

P(V ) ∼=
⊕
µ,ν

(Eµ
n ⊗ Eν

n)⊗ (Ẽµ
p ⊗ Ẽν

q ),

where the sum is over all µ and ν such that `(µ) ≤ p, (µ′)1 +(µ′)2 ≤ n, `(ν) ≤ q, (ν ′)1 +(ν ′)2 ≤
n. On the other hand, let O(n,C) act on P(V ) by g.f(v) = f(g−1v), which by Theorem
4.8.3, commutes with the action of sp(p + q,C). So we have another dual reductive pair
(O(n,C), sp(p+ q,C)), which gives decomposition

P(V ) ∼=
⊕
λ

Eλ
n ⊗ Ẽλ

p+q,

where the sum if over all integer partitions λ with `(λ) ≤ p + q and (λ′)1 + (λ′)2 ≤ n. So we
can form seesaw

O(n,C)×O(n,C) sp(p+ q,C)

O(n,C) sp(p,C)⊕ sp(q,C)

where O(n,C) ↪→ O(n,C) × O(n,C) is g 7→ (g, g) and sp(p,C) ⊕ sp(q,C) ↪→ sp(p + q,C) is

given by (X, Y ) 7→

(
X 0

0 Y

)
. It is clear that the representations from diagonal dual pairs

restrict to a common representation at the bottom pair. Hence by Theorem 4.9.1, we have

[Eµ
n ⊗ Eν

n : Eλ
n ] = [Ẽλ

p+q : Ẽµ
p ⊗ Ẽν

q ].

Now the problem becomes determining the branching law for sp(p+q,C) ↓ sp(p,C)⊕sp(q,C).
We assume we are in the stable range n ≥ 2(p+ q). By the second half of Theorem 4.11.2, as
gl(p+ q,C) representations,

Ẽλ
p+q
∼= S(S2Cp+q)⊗ F λ

p+q.

As gl(p,C)⊕ gl(q,C) representations, Cp+q ∼= Cp ⊕ Cq, so that

S(S2Cp+q) ∼= S(S2Cp)⊗ S(S2Cq)⊗ S(Cp ⊗ Cq).

Since n ≥ 2(p+ q) implies n ≥ 2p and n ≥ 2q, again by Theorem 4.11.2, as gl(p,C) represen-
tations,

Ẽµ
p
∼= S(S2Cp)⊗ F µ

p ,
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4.11. Stable Branching Rule for O(n,C)×O(n,C) ↓ O(n,C)

and as gl(q,C) representations,
Ẽν
q
∼= S(S2Cq)⊗ F ν

q .

By cancelling out S(S2Cp)⊗ S(S2Cq) in [Ẽλ
p+q : Ẽµ

p ⊗ Ẽν
q ] after plugging in the the decompo-

sitions, we have
[Ẽλ

p+q : Ẽµ
p ⊗ Ẽν

q ] = [S(Cp ⊗ Cq)⊗ F λ
p+q : F µ

p ⊗ F ν
q ].

By Corollary 4.7.4, we have
S(Cp ⊗ Cq) ∼=

⊕
γ

F γ
p ⊗ F γ

q ,

for `(γ) ≤ min{p, q}. Since n ≥ 2(p + q), by the definition of Littlewood-Richardson coeffi-
cients, we have

F λ
p+q
∼=
⊕
α,β

cλαβF
α
p ⊗ F β

q ,

for `(α) ≤ p and `(β) ≤ q. Hence

[Ẽλ
p+q : Ẽµ

p ⊗ Ẽν
q ] =

∑
α,β,γ

cλαβ[(Fα
p ⊗ F γ

p )⊗ (F β
q ⊗ F γ

q ) : F µ
p ⊗ F ν

q ].

By the alternative interpretation of Littlewood-Richardson coefficients, we have

[Fα
p ⊗ F γ

p : F µ
p ] = cµαγ, [F β

q ⊗ F γ
q : F ν

q ] = cνβγ.

Thus
[Eµ

n ⊗ Eν
n : Eλ

n ] =
∑
α,β,γ

cγαβc
µ
αγc

ν
βγ,

for all α, β, γ such that `(α) ≤ p, `(β) ≤ q, and `(γ) ≤ min{p, q}. The restrictions for λ, µ, ν
are `(µ) ≤ p, `(ν) ≤ q, `(λ) ≤ p + q, and at the same time to stay in stable range we need
n ≥ 2(p + q). If λ, µ, ν satisfy `(λ) ≤ bn/2c and `(µ) + `(ν) ≤ bn/2c, then we can choose
p = `(µ) and q = bn/2c − p.
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