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Abstract

The subject of the course is modern applications of quantum field
theory with emphasis on the quantization of non-Abelian gauge theo-
ries. The following topics are discussed:

• Classical gauge transformations.

• Quantization for fermionic and bosonic fields and perturbation
theory with path-integrals is developed.

• Quantization of non-Abelian gauge-theories. The Fadeev-Popov
method. BRST symmetry.

• The quantum effective action and the effective potential.

• Classical symmetries of the effective action. Slavnov-Taylor iden-
tities. The Zinn-Justin equation.
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• Physical interpretation of the effective action.

• Spontaneous symmetry breaking. Goldstone theorem. Sponta-
neous symmetry breaking for theories with local gauge invari-
ance.

• Power-counting and ultraviolet infinities in field theories. Renor-
malizable Lagrangians.

• Renormalization and symmetries of non-Abelian gauge theories.
Renormalization group evolution.

• Infrared divergences. Landau equations. Coleman-Norton phys-
ical picture of infrared divergences. Soft and collinear singulari-
ties.
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1 Path integral quantization in Quan-

tum Mechanics

We have carried out a quantization program for simple field theories in
the course of QFT I by means of “canonical quantization” (imposing
commutation and anti-commutation relations on fields). Here we will
quantise gauge invariant field theories with a different method, us-
ing a formalism based on path integrals. The formalism is somewhat
imperative to develop. While the canonical formalism can be suc-
cessfully applied to Quantum Electrodynamics, it is not understood
how it can be applied to the gauge field theories which describe the
unified strong and electroweak interactions. As a warm-up we revisit
quantum mechanics, formulating quantisation using path integrals.

1.1 The propagator

We consider a quantummechanical state |ψ〉 which satisfies the Schrödinger
equation:

ih̄∂t |ψ〉 = Ĥ |ψ〉 . (1)

The solution of this equation

|ψ(t2)〉 = e−
i
h̄
Ĥ(t2−t1) |ψ(t1)〉 , (2)

determines the evolution of this state from an initial moment t1 to a
later moment t2. The wave function ψ (x2, t2) ≡ 〈x2| ψ(t2)〉 is then

ψ (x2, t2) = 〈x2| e−
i
h̄
Ĥ(t2−t1) |ψ(t1)〉 (3)

We now insert a unit operator

1 =

∫

d3x1 |x1〉 〈x1| , (4)

obtaining

ψ (x2, t2) =

∫

d3x1 〈x2| e−
i
h̄
Ĥ(t2−t1) |x1〉 〈x1| ψ (t1)〉

=

∫

d3x1 〈x2| e−
i
h̄
Ĥ(t2−t1) |x1〉 ψ (x1, t1) . (5)

In other words, if we know the wave-function at one time, we can
determine it fully at a later time by integrating,

ψ (x2, t2) =

∫

d3x′K(x2, x1; t2 − t1)ψ (x1, t1) , (6)
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with a kernel

K(x2, x1; t2 − t1) = 〈x2| e−
i
h̄
Ĥ(t2−t1) |x1〉 (7)

which depends on the Hamiltonian of the system and the elapsed
time t2− t1. This integration kernel is called the “propagator”. For
t2 = t1, the propagator is a delta function

K(x2, x1; t1 − t1) = 〈x2| x1〉 = δ3(x2 − x1). (8)

Exercise: Prove that the propagatorK(x, x′; t−t′) satisfies the Schrödinger
equation in the variables x, t for times t > t′.
Exercise: Prove that

∫ ∞

−∞
dxe−ax

2
=

√

π

a
.

Exercise: Compute the propagator K(x, x′; t− t′) for

• a free particle,

• the simple harmonic oscillator.

The propagator is the amplitude for a particle measured at position
|x1〉 at time t1 to propagate to a new position |x2〉 at time t2 > t1.
We can verify this easily. Consider a particle measured at a position
x1. After time t2 − t1 it will be evolved to a new state

e−
i
h̄
Ĥ(t2−t1) |x1〉 . (9)

The probability amplitude to be measured at a position x2 is obtained
by taking the inner product of the evolved state and a position ket
|x2〉,

〈x2| e−
i
h̄
Ĥ(t2−t1) |x1〉 = K(x2, x1; t2 − t1). (10)

We can attempt to compute the propagator for a transition which
takes a very small time δt→ 0.

K(x, x′; δt) = 〈x| e− i
h̄
Ĥδt
∣

∣x′
〉

= 〈x| 1− i

h̄
Ĥδt

∣

∣x′
〉

+O
(

δt2
)

= 〈x|
(

1− i

h̄
Ĥδt

)(∫

d3p |p〉 〈p|
)

∣

∣x′
〉

+O
(

δt2
)

=

∫

d3p

{

〈x| p〉 〈p| x′
〉

− i

h̄
δt 〈x| Ĥ |p〉 〈p| x′

〉

}

+O
(

δt2
)

(11)
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We now specialise to Hamiltonian operators of the form Ĥ = f1(p̂) +
f2(x̂). Then

〈x| Ĥ |p〉 = H 〈x| p〉 , (12)

where H is not an operator anymore but the classical Hamiltonian,
i.e. a real-valued function of position and momentum. Recall that the
position and momentum states are related via a Fourier transform,

〈x| p〉 = e
i
h̄
px

√
2πh̄

. (13)

For simplicity let us consider one only dimension; the three-dimensional
case is a faithful repetition of the same steps. Then we find for the
propagator at small time intervals:

K(x, x′; δt) =

∫

dp

2πh̄
e

i
h̄
p(x−x′)

(

1− i

h̄
Hδt

)

+O
(

δt2
)

=

∫

dp

2πh̄
exp

(

i

h̄

{

p
(

x− x′
)

−Hδt
}

)

+O
(

δt2
)

.(14)

An interesting form for the propagator for small time intervals arises
when the Hamiltonian is of the form

H =
p2

2m
+ V (x). (15)

Then,

K(x, x′; δt) =

∫

dp

2πh̄
exp

(

i

h̄

{

p
(

x− x′
)

− p2

2m
δt− V (x)δt

})

+O
(

δt2
)

=

∫

dp

2πh̄
exp

(

i

h̄

{

− δt

2m

(

p−m
x− x′

δt

)2

+ δt
1

2
m

(

x− x′

δt

)2

− V (x)δt

})

+O
(

δt2
)

=

∫

dp̃

2πh̄
exp

(

iδt

h̄

{

− p̃2

2m
+

1

2
m

(

x− x′

δt

)2

− V (x)

})

+O
(

δt2
)

, (16)

where in the final step we performed a trivial change of integration
variable. Our final result reads:

K(x, x′; δt) ≃ 1

N(δt)
exp

(

iδt

h̄

{

1

2
m

(

x− x′

δt

)2

− V (x)

})

, (17)

with
1

N(δt)
=

∫

dp

2πh̄
exp

(−iδtp2
2mh̄

)

=
( m

2πih̄δt

)1/2
(18)
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1.2 The path integral

We consider now the transition from an initial position (xi, ti) to a
final position (xf , tf ), which has a propability amplitude given by the
propagator:

K(xf , xi; tf − ti).

We can take a “snapshot” at an intermediate time t1 during this tran-
sition:

ti < t1 < tf .

If taking the “snapshot” particle is a measurement of the position
x1 of the particle at the moment t1, then the amplitude for the full
transition will be:

K(xf , xi; tf − ti) = K(xf , x1; tf − t1)K(x1, xi; t1 − ti). (19)

If taking the “spanshot” is only a thought experiment and we don’t
actually determine the position x1 of the particle at t1 with a real
measurement, we should integrate over all probability amplitudes for
the particle to have performed this transition via any point. We then
have:

K(xf , xi; tf − ti) =

∫ ∞

−∞
dx1K(xf , x1; tf − t1)K(x1, xi; t1 − ti). (20)

We are allowed decide to take several “snapshots” during the transi-
tion from xi to xf , in times ti < t1 < t2 < . . . < tn < tf . Using again
the superposition principle we must write:

K(xf , xi; tf − ti) =

∫ ∞

−∞
dx1 . . . dxnK(xf , xn; tf − tn)K(xn, xn−1; tn − tn−1)×

. . .K(x2, x1; t2 − t1)K(x1, xi; t1 − ti). (21)

For simplicity, we now consider infinitesimal equally fast tk+1 − tk =
δt =

tf−ti
n+1 intermediate transitions. Then we obtain

K(xf , xi; tf − ti) = lim
n→∞

∫ ∞

−∞
dx1 . . . dxnK(xf , xn; δt)K(xn, xn−1; δt)×

. . .K(x2, x1; δt)K(x1, xi; δt). (22)

We have discretised and taken the infinite limit, which is the defining
procedure of an integration. However, this new integral is rather un-
usual. Think of all the paths which connect the initial and final points
xi and xf . The points which belong to these paths are accounted for
by the limit of infinitesimal n → ∞ transitions which we have taken
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in Eq. 22. Therefore, the rhs of this equation is an integral over all
paths that a particle may take in going from xi → xf .

We can insert the expressions for the propagator at small time
intervals of Eq. 14 or Eq. 17 into Eq. 22. Notice that in the limit
δt→ 0,

xn − xn−1

δt
→ ẋn.

Then Eq. 22 becomes:

K(xf , xi; tf − ti) = lim
n→∞

1

N(δt)n

∫ ∞

−∞
dx1 . . . dxn

exp

(

iδt

h̄

[m

2
ẋ1

2 − V (x1)
]

)

exp

(

iδt

h̄

[m

2
ẋ2

2 − V (x2)
]

)

. . .

exp

(

iδt

h̄

[m

2
ẋf

2 − V (xf )
]

)

. (23)

Equivalently,

K(xf , xi; tf − ti) = lim
n→∞

1

N(δt)n

∫ ∞

−∞
dx1 . . . dxn

exp

(

i

h̄
{L(x1(t1))δt+ L(x2(t2))δt+ . . . L(xf (tf ))δt}

)

,

(24)

where
L(x) =

m

2
ẋ2 − V (x),

is the Lagrangian of the system. We now have a more concrete under-
standing of the above integral. This is an integration over “all paths”
connecting the fixed points xi and xf , which we write symbolically as

K(xf , xi; tf − ti) =
1

N

∫

Dx exp
(

i

h̄

∫ tf

ti

dtL[x(t)]

)

, (25)

and the sum (integral) in the exponential is the classical action as it
is evaluated in each of the paths. Even shorter, we can write:

K(xf , xi; tf − ti) =
1

N

∫

Dx exp
(

i

h̄
S[x]

)

. (26)

Exercise: Consider a Lagrangian of the form

L =
1

2
f(x)ẋ2 + g(x)ẋ− V (x).
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1. Compute the Hamiltonian

2. Compute the propagator for a small transition

3. Write the path-integral expression for the propagator at large
time integrals. Notice that the measure of the path integration
is modified

Dx→ Dxf(x) 1
2
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1.3 An “adventurous” transition

We look now at a more eventful transition amplitude. We first prepare
a particle on an initial position xi at a time ti and let it evolve for
some time t− ti according to a Hamiltonian Ĥ:

e−
i
h̄
Ĥ(t−ti) |xi〉

At the time t, something abrupt occurs (e.g. an interaction with an-
other particle which was originally far away) and modifies the particle
state. We will see later how we can describe interactions of particles
using path integrals; now, let us consider an “easy” modification of
the state where the state is “mixed up” in a simple way, acting on it
with the position operator:

x̂e−
i
h̄
Ĥ(t−ti) |xi〉

Then we allow the particle to evolve undistracted for a time tf − t,

e−
i
h̄
Ĥ(tf−t)x̂e−

i
h̄
Ĥ(t−ti) |xi〉 ,

and then we place a detector at xf :

〈xf | e−
i
h̄
Ĥ(tf−t)x̂e−

i
h̄
Ĥ(t−ti) |xi〉 .

We can compute this matrix-element as a path integral. Before we
proceed, we should use some language which is more convenient to
describe “eventful” transitions. We can write the same transition am-
plitude as:

{

〈xf | e−
i
h̄
Ĥtf
}{

e
i
h̄
Ĥtx̂e−

i
h̄
Ĥt
}{

e
i
h̄
Ĥtf |xf 〉

}

= 〈xf , tf | x̂(t) |xi, ti〉 . (27)

We have defined states

|ψ, t〉 ≡ e
i
h̄
Ĥt |ψ〉 , (28)

which refer to a fixed moment t only and do not evolve

ih̄
∂

∂t
|ψ, t〉 = ih̄

∂

∂t

(

e
i
h̄
Ĥt |ψ〉

)

= e
i
h̄
Ĥt

(

ih̄
∂

∂
|ψ〉
)

+ ih̄

(

∂

∂t
e

i
h̄
Ĥt

)

|ψ〉

= e
i
h̄
Ĥt
(

Ĥ − Ĥ
)

|ψ〉 = 0. (29)
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We have defined operators which do change with time

Ô(t) = e
i
h̄
ĤtÔe−

i
h̄
Ĥt. (30)

As you recognise, this is the “Heisenberg picture” of evolution. For
us, it is convenient to assign a time date on a state which denotes a
particle or a collection of particles at the beginning of an experiment
or at the end of it. However, one could have equally well chosen to
work in the probably more familiar “Schrödinger picture”.

Lets us now compute this “eventful” transition:

〈xf , tf | x̂(tj) |xi, ti〉 with ti < t < tf ,

following the method we used for the simple transition 〈xf , tf | xi, ti〉 =
〈xf | e

i
h̄
Ĥ(tf−ti) |xi〉, and subdividing the transition in small time inter-

vals. We will find a similar/related path integral for the new case as
well.

〈xf , tf | x̂(tj) |xi, ti〉 =

∫

dx1 . . . dxj−1dxj . . . dxn

×〈xf , tf | xn, tn〉 . . . 〈xj+1, tj+1| xj , tj〉
× 〈xj , tj | x̂(tj) |xj−1, tj−1〉
× 〈xj−1, tj−1| xj−2, tj−2〉 . . . 〈x1, t1| xiti〉 .(31)

The subdivision of time is carefully chosen. We have

x̂(tj) |xj , tj〉 =
(

e
i
h̄
Ĥtj x̂e−

i
h̄
Ĥtj
)(

e
i
h̄
Ĥtj |xj〉

)

= e
i
h̄
Ĥtj (x̂ |xj〉)

= xje
i
h̄
Ĥtj |xj〉

= xj |xj , tj〉
❀ 〈xj , tj | x̂(tj) |xj−1, tj−1〉 = xj 〈xj , tj | xj−1, tj−1〉 . (32)

We then obtain for the transition amplitude the same succession of
propagators as for the simple transition multiplied with an additional
factor xj :

〈xf , tf | x̂(tj) |xi, ti〉 =
∫

dx1 . . . dxjxj . . . dxn

×〈xf , tf | xn, tn〉 . . . 〈xj+1, tj+1| xj , tj〉 〈xj , tj | xj−1, tj−1〉 . . . 〈x1, t1| xi, ti〉 .(33)

Introducing, as before, the explicit form for the propagator during a
small time transition

〈xb, tn+1| xa, tn〉 ≈
(

m

2πih̄ (tn+1 − tn)

) 1
2

exp

[

i

h̄

{

m

2

(

xb − xa
tn+1 − tn

)2

− V (xa)

}

(tm+1 − tm)

]
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and taking equal time intervals, we obtain the path integral

〈xf , tf | x̂(tj) |xi, ti〉 = lim
n→∞

1

N(δt)n

∫ ∞

−∞
dx1 . . . dxjxj . . . dxn

× exp

(

n
∑

r=1

L(xr, ẋr)δt

)

with δt =
tf − ti
n+ 1

. (34)

In compact notation we can write

〈xf , tf | x̂(τ) |xi, ti〉 =
∫

Dxx(τ)e i
h̄
S[x]. (35)

Exercise:

1. Prove that

〈xf , tf | x̂(τ) |xi, ti〉 =
∫ ∞

−∞
dxx 〈xf , tf | x, τ〉 〈x, τ | xi, ti〉 .

2. Evaluate the above integral explicitly for a free particle

3. Observe the dependence of the result on the intermediate time τ

4. You (could) have considered the simpler matrix element 〈xf , tf | xi, ti〉
and written down an analogous integral. Observe how the inter-
mediate time τ drops out from the final expression, when nothing
special occurs then!

We now elaborate further on the form of the path integral that
we have just found. Recall the method for computing exponential
integrals of the form

In =

∫ ∞

−∞
dxxne−ax

2
with n = 1, 2, . . . (36)

from the result of the integral

I0 ≡
∫ ∞

−∞
dxe−ax

2
=

√

π

a
. (37)

We can compute In with a rather very simple differentiations, after
we add a “source” term on the exponent of the integrand

IJ =

∫ ∞

−∞
dxe−ax

2+Jx =

∫ ∞

−∞
dxe−a(x−

J
2a)

2
+J2

4a

=

∫ ∞

−∞
dx̃e−ax̃

2+J2

4a =

√

π

a
e

J2

4a (38)
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To compute the I1 it is sufficient to differentiate the last expression
with respect to the source and substitute J = 0.

dIJ
dJ

∣

∣

∣

∣

J=0

=

∫ ∞

−∞
dx

de−ax
2+Jx

dJ

∣

∣

∣

∣

∣

J=0

=

∫ ∞

−∞
dxxe−ax

2
.

Similarly,
dnIJ
dnJ

∣

∣

∣

∣

J=0

=

∫ ∞

−∞
dxxne−ax

2
.

Adding a source term to the exponent does not increase the difficulty
of the computation and it allows us to calculate all integrals where the
integrand is multiplied with a polynomial in the integration variable.
This is very suggestive, and we will do the same trick for path integrals
such as the one that we found in Eq. 34. We then add a linear term
(source) in the Lagrangian; this is only a computational trick and
eventually we will compute all interesting physical quantities as in the
above example with the source term set to zero. The simple transition
from a state |xi, ti〉 to a state |xf , tf 〉 in the presence of the source has
a probability amplitude:

〈xf , tf | xi, ti〉J = lim
n→∞

1

N(δt)n

∫

dx1 . . . dxne
i
h̄

∑

k dtk(L(xk,ẋk)+Jkxk)(39)

We can then compute

〈xf , tf | x̂(tl) |xi, ti〉 =
h̄

i

∂

∂Jl
〈xf , tf | xi, ti〉J

∣

∣

∣

∣

Jl=0

. (40)

Let us now differentiate two times with respect to the source.
(

h̄

i

)2 ∂2

∂Jl∂Jq
〈xf , tf | xi, ti〉J

∣

∣

∣

∣

∣

Jl,q=0

= lim
n→∞

1

N(δt)n

∫

dx1 . . . dxlxl . . . dxqxq . . . dxn

×e i
h̄

∑

k dtk(L(xk,ẋk)+Jkxk). (41)

We can recognise the rhs as the expectation value for the product of
two position operators x̂(tl)x̂(tq) if tq is earlier than tl or x̂(tq)x̂(tl)
otherwise. We then write

〈xf , tf |T (x̂(tl)x̂(tq)) |xi, ti〉 =
(

h̄

i

)2 ∂2

∂Jl∂Jq
〈xf , tf | xi, ti〉J

∣

∣

∣

∣

∣

J=0

,

(42)
where we have introduced the notation T (Ô(t1)Ô(t3)Ô(t2) . . . Ô(tn))
to remind us that we should put the operators in the correct time
order once the sequence of the moments ti is known. For example, if
t1 < t2 < t3 < . . . < tn we should write

T (Ô(t1)Ô(t3)Ô(t2) . . . Ô(tn)) = Ô(tn) . . . Ô(t3)Ô(t2)Ô(t1).

Exercise: Compute 〈xf , tf |T (x̂(tl)x̂(tq)) |xi, ti〉 for a free particle.
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1.4 Functional differentiation

It is cumbersome to work with path integrals by writing explicitly
the infinite limit of discretised paths. We introduced earlier a more
compact notation,

〈xf , tf | xi, ti〉J =
1

N

∫

Dxe
i
h̄

∫ tf
ti

dt[L(x(t),ẋ(t))+J(t)x(t)]. (43)

We can write neatly expressions for the expectation values of opera-
tors,

〈xf , tf | x̂(t1) |xi, ti〉 =
1

N

∫

Dx x(t1) e
i
h̄

∫ tf
ti

dtL(x(t),ẋ(t))

or

〈xf , tf |T (x̂(t1)x̂(t2)) |xi, ti〉 =
1

N

∫

Dx x(t1) x(t2) e
i
h̄

∫ tf
ti

dtL(x(t),ẋ(t))

by defining a functional derivative. We consider an integral F[f] over a
function f(t) (for example a path-line). We define a functional deriva-
tive by changing slightly the function f(y):

δF [f(y)]

δf(t)
= lim

ǫ→0

F [f(y) + ǫδ(y − t)]− F [f(y)]

ǫ
. (44)

For example, consider the derivative of the action integral in the pres-
ence of a source with respect to the source:

δ
∫

dy {L (x(y), ẋ(y)) + J(y)x(y)}
δJ(t)

=

∫

dyδ(t− y)x(y)

= x(t). (45)

Practically, we need the chain rule and to remember that

δf(x)

δf(y)
= δ(x− y).

The expectation values of time-ordered operators can then be written
as

〈xf , tf |T (x̂(tl) . . . x̂(tn)) |xi, ti〉 =
(

h̄

i

)n δn

δJ(t1) . . . δJ(tn)
〈xf , tf | xi, ti〉J

∣

∣

∣

∣

J=0

.

(46)

END OF WEEK 1
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1.5 Vacuum to vacuum transitions

Field theory allows us to compute transitions between states with
different particle content. Interestingly, we can build particle states
acting with creation (or field) operators on the ground state which
contains no particles (vacuum). All transition amplitudes can be de-
scribed as expectation values of operators in the vacuum:

〈0, tf |T (. . .) |0, ti〉 .
We can compute expectation values of operators in the vacuum with
path integrals. First, we try a direct approach

〈0, tf |T (. . .) |0, ti〉 =
∫

dxdx′ 〈0, tf | x, t〉 〈x, t|T (. . .)
∣

∣x′, t′
〉 〈

x′, t′
∣

∣ 0, ti〉 .(47)

This formula is complicated. It requires that we know the wave func-
tion of the vacuum and that we are able to convolute it with the result
for a path integral. There is a rather simpler way with less integra-
tions.

Consider a Hamiltonian, Ĥ with eigenstates |n〉,
Ĥ |n〉 = En |n〉 (in the Scrhödinger picture)

and a general state

|ψ〉 =
∑

n

cn |n〉 .

Taking a “Heisenberg photograph” of the state in the very past (−t→
−∞), we find:

|ψ,−t〉 = eiH̄(−t)
∑

n

cn |n〉 . (48)

Now, we play a mathematical trick; we give a very small imaginary
part to the Hamiltonian

Ĥ → Ĥ(1− iǫ), (ǫ→ 0+),

which has the same energy eigenstates as the physical Hamiltonian
in the limit. The general state in the very past with the modified
Hamiltonian is

|ψ,−t〉 = eiĤ(−t)(1−iǫ)
∑

n

cn |n〉

=
∑

n

cne
−(ǫ+i)Ent |n〉

= e−(ǫ+i)E0t

[

c0 |0〉+
∞
∑

n=1

e−(ǫ+i)(En−E0)tcn |n〉
]

= e−ǫE0t

[

c0 |0,−t〉+
∞
∑

n=1

e−ǫ(En−E0)tcn |n,−t〉
]

(49)
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Recall that the states in Eq. (49) are in the Heisenberg picture, and
thus independent of time. The time argument in the ket is only a
label. For a very long time t in the past the exponential e−ǫ(En−E0)t

vanishes; it vanishes faster for larger energy eigenvalues. We can then
approximate,

|ψ,−t〉 ≈ e−ǫE0tc0 |0,−t〉 . (50)

This is a very convenient. An arbitrary Heisenberg state in the very
past with the slightly complex Hamiltonian is, essentially, the vacuum
state in the very past. Higher energy eigenstates do not contribute to
the superposition since the small imaginary part forces them to decay
as we take the time −t further back in the past.

Similarly, for a general Heisenberg state 〈ψ′, t| labeled in the far
future (t→ ∞), we have

〈

ψ′,+t
∣

∣ =
∑

n

c′∗n 〈n| e−iHt(1−iǫ)

≈ c′∗0 〈0| e−iE0t(1−iǫ)

≈ c′∗0 e
−ǫE0t 〈0, t| , t→ +∞. (51)

For amplitudes of vacuum-to-vacuum transition over very long times
we can therefore write

〈0, t|T (. . .) |0,−t〉 =
e2ǫE0t

c0c′∗0

〈

ψ′, t
∣

∣T (. . .) |ψ,−t〉 , t→ ∞.

(52)

as long as we set H → H(1− iǫ) in the right hand side.
We can fix the normalization by dividing with the simplest am-

plitude of the kind that corresponds to a vacuum-to-vcuum tensition
without an “interaction” occuring in an intermediate time. We obtain

〈0, t|T (. . .) |0,−t〉
〈0, t| 0,−t〉 =

〈ψ′, t|T (. . .) |ψ,−t〉
〈ψ′, t| ψ,−t〉 t→ ∞, (53)

We can choose as states in the right-hand side of Eq. (53) two
positions Heisenberg states; one labelled to be the eigenvalue of the
position operator in the very far past and the second in the very far
future.

〈0, t|T (. . .) |0,−t〉
〈0, t| 0,−t〉 =

〈x2, t|T (. . .) |x1,−t〉
〈x2, t| x1,−t〉

, t→ ∞. (54)
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Then we can express vacuum to vacuum transitions, from the far past
(t→ −∞) to the far future (t→ −∞), as a ratio of path integrals,

〈0,∞|T (x̂(t1) . . . x̂(tr)) |0,−∞〉
〈0,∞| 0,−∞〉

= lim
ǫ→0+

∫

Dxx(t1) . . . x(tr) e
i
h̄

∫+∞

−∞
dtL[x(t),ǫ]

∫

Dx e i
h̄

∫+∞

−∞
dtL[x(t),ǫ]

. (55)

The action integral in the exponent of the path integals is the classical
action appearing in Eq. (55), with a small modification (as indicated
by the ǫ in the argument of the Lagrangian) which is inherited by the
Ĥ → Ĥ(1 − iǫ) deformation that we employed in order to “decay”
excited states.

1.6 The simple harmonic oscillator

An instructive example is the simple harmonic oscillator, with a clas-
sical Hamiltonian

H =
p2

2m
+

1

2
mω2x2. (56)

The Hamiltonian of Eq (56) is positive definite. For vacuum-to-
vacuum transitions over large times, we will need to modify it, H →
H · (1− iǫ), giving to it a small imaginary part. We can achieve this in
an easy way, by giving a small negative imaginary part to the square
of the frequency,

ω2 → ω2 − iǫ, ǫ→ 0+. (57)

The slightly deformed Hamiltonian reads,

H =
p2

2m
+

1

2
m(ω2 − iǫ)x2. (58)

The Lagrangian, now, acquires an infinitessimal positive imaginary
part,

L = pẋ−H

=
1

2
mẋ2 − 1

2
mω2(1− iǫ)x2, (59)

We will now compute a so called “generating functional integral”

W [J ] =

∫

Dx ei
∫

dt(L+J(t)x(t)),

=

∫

Dx ei
∫

dt[ 12mẋ
2− 1

2
mω2(1−iǫ)x2+J(t)x(t)], (60)
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which also includes a source term in the action. Functional differ-
entiation with respect to the source J will permit as to compute a
large variety of vacuum-to-vacuum transitions including interactions
or perturbations.

Things become easier if we perform a Fourier transformation of all
quantities which depend on time:

x(t) =

∫ ∞

−∞

dE

2π
e−iEtx̃(E), (61)

J(t) =

∫ ∞

−∞

dE

2π
e−iEtJ̃(E). (62)

(63)

The action integral in the exponent of the generating functional be-
comes

S[x] =

∫

dt

[

1

2
mẋ2 − 1

2
m(1− iǫ)ω2x2 + J(t)x(t)

]

=
1

4π2

∫

dEdE′dt
1

2
e−it(E+E′) ×

{[

−mEE′ −mω2(1− iǫ)
]

x̃(E)x̃(E′)

+J̃(E)x̃(E′) + x̃(E)J̃(E′)
}

=

∫

dE

4π

{

m
[

E2 − ω2 + iǫω2
]

x̃(E)x̃(−E)

+J̃(E)x̃(−E) + x̃(E)J̃(−E)
}

=

∫

dE

4π

{

m
[

E2 − ω2 + iǫ
]

x̃(E)x̃(−E) + J̃(E)x̃(−E) + x̃(E)J̃(−E)
}

=

∫

dE

4π

{(

x̃(E) +
J̃(E)

m [E2 − ω2 + iǫ]

)

m
[

E2 − ω2 + iǫ
]

(

x̃(−E) +
J̃(−E)

m [E2 − ω2 + iǫ]

)

− J̃(E)J̃(−E)

m [E2 − ω2 + iǫ]

}

(64)

simplified (E2 + ω2)ǫ→ ǫ. We can also define

ỹ(E) = x̃(E) +
J̃(E)

m [E2 − ω2 + iǫ]
(65)

The second term of the right-hand side corresponds to the Fourier
transform of the solution of the Euler-Lagrange equations; i.e. it cor-
responds to the classical path. We can verify it easily. The classical
equation of motion for the harmonic oscillator with a source term and
a small negative imaginary part for the frequency is

m

[

d2xcl
dt2

+
(

ω2 − iǫ
)

xcl

]

= J(t), (66)
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and taking the Fourier transform

xcl =

∫ ∞

−∞

dE

2π
e−iEtx̃cl,

we obtain

m
[

E2 − ω2 + iǫ
]

x̃cl(E) = −J̃(E)

❀ x̃cl(E) = − J̃(E)

m [E2 − ω2 + iǫ]
. (67)

Then the path integral over paths x(t), under a shift

x(t) = xcl(t) + y(t), (68)

becomes

W [J ] = e
− 1

2

∫

dE
2π

J̃(E)iJ̃(−E)

m[E2−ω2+iǫ]

∫

Dye i
2

∫

dE
2π
ỹ(E)m[E2−ω2+iǫ]ỹ(−E)(69)

The dependence of the path integral on the source terms becomes a
simple pre-factor. It is easy to see that the new path integral corre-
sponds to the harmonic oscillator Hamiltonian with no sources. We
can therefore write the above expression as,

〈xf ,+t| xi,−t〉J = e
i
2

∫

dE
2π

J̃(E)(−1)J̃(−E)

m[E2−ω2+iǫ] 〈xf ,+t| xi,−t〉 , (70)

where t → ∞. Performing the inverse Fourier transformations, we
have:

∫ ∞

−∞

dE

2π

−J̃(E)J̃(−E)

E2 − ω2 + iǫ

=

∫ ∞

−∞

dE

2π

−
(

dte−iEtJ(t)
)

(

dt′eiEt
′
J(t′)

)

E2 − ω2 + iǫ

=

∫

dtdt′J(t)G(t− t′)J(t′), (71)

with

G(t− t′) = −
∫ +∞

−∞

dE

2π

ei(t−t
′)E

E2 − ω2 + iǫ
(72)

We then write:

〈xf , t| xi,−t〉J = e
i
2

∫

dtdt′J(t)G(t−t′)J(t′) 〈xf ,+t| xi,−t〉 . (73)
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We can now differentiate this expression with respect to the sources
as many times as we need. We then obtain:

〈xf ,+t|T x̂(tn) . . . x̂(t1) |xi,−t〉 =

(

1

in
δn

δJ(t1) . . . δJ(tn)
e

i
2

∫

dtdt′J(t)G(t−t′)J(t′)

)

×〈xf ,+t| xi,−t〉 . (74)

Taking the limit of ǫ→ 0+ will select the ground state on both sides of
the equation as asymptotic states (the normalization factors are also
the same on both sides of the equation). We therefore have for the
vacuum expectation value of time ordered position operators:

〈0, t|T x̂(tn) . . . x̂(t1) |0,−t〉
〈0, t| 0,−t〉 =

(

1

in
δn

δJ(t1) . . . δJ(tn)
e

i
2

∫

dtdt′J(t)G(t−t′)J(t′)

)

(75)

Exercise:

1. Show that
〈0, t|T x̂(tn) . . . x̂(t1) |0,−t〉 = 0,

for n odd.

2. Compute 〈0, t|T x̂(t2)x̂(t1) |0,−t〉 and 〈0, t|T x̂(t4) . . . x̂(t1) |0,−t〉
in terms of G(t− t′).

3. Find a general expression for 〈0, t|T x̂(t2n) . . . x̂(t1) |0,−t〉 in terms
of G(t− t′).

We now compute the propagator G(t1, t2) explicitly.

G(t1 − t2) = = −
∫

dE

2π

e−i(t2−t1)E

E2 − ω2 + iǫ

= −
∫

dE

2π

e−i(t2−t1)E

(E − ω + iǫ) (E + ω − iǫ)

= −
∫

dE

2π

e−i(t2−t1)E

2ω

[

1

E + ω − iǫ
− 1

E − ω + iǫ

]

.(76)

We can compute this integral using the residue theorem. If t2 > t1 we
can close the contour of integration on the lower complex half plane
where the exponential vanishes at infinity. If t1 < t2 we can only
close the contour on the upper complex half-plane. For both cases, we
obtain:

G(t1 − t2) =
i

2ω
e−iω|t2−t1|. (77)
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2 Path integrals and scalar fields

In this Chapter, we will write down path integrals for quantum field
theory. Earlier, in Quantum Mechanics, we found that the canonical
quantization condition and the law of time-evolution,

[x̂(t), p̂(t)] = i, i∂t |ψ(t)〉 = Ĥ |ψ(t)〉 (78)

give rise to a path integral formulation for quantum mechanical cor-
relation functions,

〈0,+∞|T (x̂(t1) . . . x̂(tn)) |0,−∞〉
〈0,+∞| 0,−∞〉

= lim
ǫ→0+

∫

D x(t1) . . . x(tn) e
i
∫

dtL[x(t),ǫ]

∫

D ei
∫

dtL[x(t),ǫ]
. (79)

In quantum field theory, the canonical quantization formalism pos-
tulates commutation relations, which for scalar fields read

[φ(~x, t), π(~y, t)] = iδ3(~x− ~y). (80)

Comparing the commutation relations in QM and QFT, we observe
that in passing from the former to the latter, the role of the time
coordinate is played by the set of all four space-time coordinates xµ

and the role of the position x(t) in a path should be played by the
value φ(xµ) of the field.

To formulate path integrals in QFT, we will heuristically try out
a QM to QFT dictionary, which reads

t→ xµ ,

x(t) → φ(xµ) , (81)

Dx→ Dφ .

We will not attempt to derive a path integral for correlation functions
in QFT directly, starting from the canonical quantization conditions
as we did in QM 1. Instead, we will write down correlation functions
in quantum field theory in terms of path integrals applying the dictio-
nary of Eqs. (81) on Eq. (79). We will test the validity of this heuristic
approach by verifying that the QFT correlation functions (or, equiva-
lently, the Feynman rules of perturbation theory) which we will derive
in this way, are the same as the ones we obtain with the canonical
quantization formalism 2.

1although, this is possible for scalar fields
2We described the canonical formalism in the lecture series of QFT I.
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We will start with a field theory of a single scalar field φ(x). Mo-
tivated from our results for path integrals in quantum mechanics, we
postulate a generating functional for the field

Z [J ] = N
∫

Dφei
∫

d4x(L+J(x)φ(x)+iǫφ2) (82)

In Eq. (82), the Lagrangian has already been expressed as the space
integral of a Lagrangian density,

L =

∫

d3~xL,

The role of the iǫφ2, with ǫ → 0+, will be, as in our QM treatment,
to dissipate the contributions of excited states in expectation values
of operators, yielding expectation values only in the ground state (the
“vacuum” state). We will postulate that correlations functions in QFT
are given by

G(x1, . . . , xn) ≡
〈Ω,+∞|T

(

φ̂(x1) . . . φ̂(xn)
)

|Ω,−∞〉
〈Ω,+∞| Ω,−∞〉

= lim
ǫ→0+

(−i)n
Z[0]

δn Z[J ]

δJ(x1) . . . δJ(xn)

∣

∣

∣

∣

J=0

. (83)

2.1 Real Klein-Gordon field

Let us now try to compute some correlation functions using the path
integral of Eq. (82) and Eq. (83) in the simplest possible case of the
real Klein-Gordon field. The Lagrangian density for a free real scalar
field is

L =
1

2

(

∂µφ∂
µφ−m2φ2

)

. (84)

The action integral in the exponent of Eq. (82) is

S =

∫

d4x

{

1

2

(

∂µφ∂
µφ−m2φ2

)

+ iǫφ2 + Jφ

}

=

∫

d4x

{

1

2

[

∂µ (φ∂
µφ)− φ∂2φ−m2φ2

]

+ iǫφ2 + Jφ

}

= −
∫

d4x

{

1

2
φ
[

∂2 +m2 − iǫ
]

φ− Jφ

}

(85)

In the above, we performed an integration by parts, where we could
discard a surface term. The path integral for this action

Z [J ] = N
∫

DφeiS ,
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is a straightforward generalization in four dimensions of the path-
integral of the simple harmonic oscillator.

We can then compute this path integral repeating the steps of the
previous lectures, for the harmonic oscillator in QM. An important
step has been to change the path integral integration variable from a
generic path x(t) to its difference y(t) = x(t)−xcl(t) from the solution
of the classical equations of motion. We will do the same here, for the
QFT path integral. We shift

φ(xµ) → φ(xµ) + φclassical(x
µ)

We then find

Z [J ] = e−
1
2

∫

d4xd4yJ(x)∆F (x,y)J(y) ×

N
∫

Dφe− i
2

∫

d4xφ(∂2+m2−iǫ)φ , (86)

where we reconginse the Feynman propagator of a free scalar field,

∆F (x− y) = i

∫

d4k

(2π)4
e−ik·(x−y)

k2 −m2 + iǫ
. (87)

Exercise:

a) Write the Euler-Lagrange equations for the free real scalar field.

b) Evaluate the generating path integral for the free real scalar field
working in Fourier space and following the analogous derivation
of the simple harmonic oscillator.

c You can also obtain the result of Eq. (86) directly, without re-
sorting to a Fourier transform. Try it out!

d) Find the Fourier representation of the propagator.

e) Integrate the Fourier representation of the propagator over the
energy using the Cauchy theorem. Pay attention to the condi-
tions on the time variable in order to be able to use a closed
contour of integration.

As you can easily compute, Eq. (83) gives for the one, two, three
and four-point correlation functions the following results,

G(x1) = 0 (88)

G(x1, x2) = ∆F (x1 − x2) (89)

G(x1, x2, x3) = 0 (90)

G(x1, x2, x3, x4) = ∆F (x1 − x2)∆F (x3 − x4)

+∆F (x1 − x3)∆F (x2 − x4) + ∆F (x1 − x4)∆F (x2 − x3) (91)
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The above results are in agreement with what we obtain in the canon-
ical formalism, by applying Wick’s theorem.

For interacting theories, the path integral will serve as a very con-
venient formalism enabling to develop a method for deriving Feynman
rules and performing perturbative expansions. Also for interacting
theories, we will find that the path integral formalism for scalar fields
reproduces the results of the canonical formalism.

There is a convenient graphical representation which facilitates
computations of correlation functions, such as in deriving the correla-
tion functions of Eqs (88)- (91). In a Feynman graphical notation, we
represent the propagator of Eq. (87) with a line,

yx ≡ ∆(x− y). (92)

The integral over one endpoint of a propagator times a source evalu-
ated at this endpoint, is represented graphically with

y ≡
∫

d4xJ(x)∆(x− y). (93)

Finally, the integral over both endpoints of a propagator multiplied
with sources at each endpoint is represented with

≡
∫

d4xd4yJ(x)∆(x− y)J(y). (94)

With this notation, Eq. (83) takes the form,

G(x1, . . . , xn) = (−i)n δ
n e−

1
2

δJ(x1) . . . δJ(xn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J=0

. (95)

The above differentiations are straightforward with our graphical mnemonic.
For example, we have that

δ

δJ(x1)
= z + z = 2 z , (96)

and

δ

δJ(w) z = zw . (97)
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For the one-point correlation function, we find

G(x1) = −i δe
− 1

2

δJ(x1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J=0

= i x1
e−

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

J=0

= 0. (98)

For the two-point correlation function we have,

G(x1, x2) = (−i)2 δ
2e−

1
2

δJ(x1)δJ(x2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J=0

=
δ

δJ(x2)











x1
e−

1
2











∣

∣

∣

∣

∣

∣

∣

∣

∣

J=0

=







 x2x1
− x1 x2









e−
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

J=0

= x2x1
, (99)

and so on.

2.2 Functional Integration and determinants
of differential operators

So far, we have avoided to carry out any path integration, as all de-
pendence on the sources J(x) was a “constant” with respect to the
integration over paths after a shift of the integration variable by the
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classical path. The path integral factor was eliminated by the normal-
ization in the denominator of the right-hand side of Eq. (83). Nev-
ertheless, it will be useful to gain an insight on the meaning of the
path integral itself. In what follows, we will see that the path integral
has a meaning as a “determinant” of the differential operator which
appears in the classical Euler-Lagrange equations. For this purpose,
we will develop some additional simple mathematical tools.

We start with the familiar integral

∫ ∞

−∞
dxe−ax

2
=

√

π

a
, a > 0. (100)

We then obtain

∫ ∞

−∞
dx1 . . . dxne

−
∑n

i=1 aix
2
i =

π
n
2

(a1 . . . an)
1
2

, ai > 0. (101)

We can define

A = diag (a1, a2, . . . , an) , (102)

xT = (x1, . . . , xn). (103)

We then rewrite the above integral as

∫ ∞

−∞

(

∏

i

dxi√
π

)

e−x
TAx =

1

(detA)
1
2

. (104)

Let us now perform a transformation

xi = Rijyj , or x = Ry. (105)

The integral can be written as

∫ ∞

−∞

(

n
∏

i=1

dyi√
π

)

(detR) e−y
T (RTAR)y =

1

(detA)
1
2

. (106)

We define the matrix
B = RTAR. (107)

We can easily verify that B is symmetric.

BT = (RTAR)T = RTAT
(

RT
)T

= RTAR = B.

The determinant of B is then

detB = det(RTAR) = (detA)(detR)2.
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We then find

∫ ∞

−∞

(

n
∏

i=1

dyi√
2π

)

e−
1
2
yTBy =

1

(detB)
1
2

, (108)

where B is any real, positive definite (positive eigenvalues), symmetric
matrix.

Let us finally take the limit n → ∞. The exponent in the rhs is
originally a double sum over the two indices of the n × n matrix B.
We can then write:

∫

Dφe− 1
2

∫

φ(x)Â(x)φ(x) =
1

√

detÂ
, (109)

which we can view as a definition for the determinant of a continuous
differential operator.

We can also define the determinant of a Hermitian operator via
path integration over complex fields. Consider

π

a
=

∫ ∞

−∞
dxdye−a(x

2+y2)

=

∫ ∞

−∞
dxdye−a(x−iy)(x+iy). (110)

We define

x =
z + z∗

2
, y =

z − z∗

2i

We obtain
∫

dzdz∗

2πi
e−azz

∗

=
1

a
. (111)

Following the same steps as before, we can write the determinant of a
Hermitian operator as:

∫

DφDφ∗e−
∫

d4xφ∗(x)Â(x)φ(x) =
1

detA
. (112)

2.3 Path integrals and interacting fields

For a free scalar field, the computation of correlation functions with
the path integral formalism was straightforward. The only integration
required was for the evaluation of the Feynman propagator,

∆F (x1 − x2) ≡ x2x1
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Using the Feynman propagator as a kernel of a generating functional,
we could obtain Green’s functions by taking functional derivatives
with respect to sources avoiding to carry out explicit functional inte-
grations.

In general, for field theories with interactions, it is not possible to
compute exactly correlation functions in four spacetime dimensions.
However, the path integral formalism can be very useful, as it enables
rather straightforwardly the use of perturbative expansions, where one
can compute a few 3 terms in the series with advanced but established
computational methods. The terms of the perturbative xpansion will
be represented graphically, in terms of Feynman diagrams. In this
Section, we will see how they arise with the path integral approach.
The results will be the same as with the canonical formalism and we
will verify that this is so in some cases.

Let us consider a real scalar field which can interact with itself,

L = L0 + LI , (113)

where

L0 = −1

2
φ(x)

(

∂2 +m2 − iǫ
)

φ(x), (114)

and

LI = − λ

4!
φ(x)4. (115)

According to our previous conclusions, we can obtain the correlation
functions of this theory by taking functional derivatives on the follow-
ing path integral,

Z[J ] = N
∫

Dφei
∫

d4x{L0+φ(x)J(x)+LI}. (116)

We consider the case of a small coupling constant λ ≪ 1 and assume
this condition to suffice for a perturbative expansion around λ ∼ 0.
We separate the action into a “free” and an “interacting” part,

S = S0 + SI , (117)

where the “free” part includes the sources as well as the quadratic
terms of the Lagrangian in the field φ,

S0[J, φ] =

∫

d4x {L0 + φ(x)J(x)} , (118)

and the “interacting” part includes,

SI [φ] =

∫

d4xLI . (119)

3typically three
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We were able to compute correlation functions rcactly for λ = 0. We
will attempt to build solutions for small λ as perturbations of the
known solutions at λ = 0, which we hope that they will furnish the
leading contributions to the correlation functions of the interacting
theory. A Taylor series expansion of the path integral in λ gives,

Z[J ] = N
∫

DφeiS0[J,φ]+iSI [φ] = N
∫

Dφ
∞
∑

n=0

(iSI [φ])
n

n!
eiS0[J,φ]

= N
∫

Dφ
∞
∑

n=0

[

i
∫

d4y
(

−λ
4! φ(y)

4
)]n

n!
eiS0[J,φ]

= N
∞
∑

n=0

[

i
∫

d4y

(

−λ
4!

(

δ
iδJ(y)

)4
)]n

n!

∫

DφeiS0[J,φ]. (120)

In the last step, we used the fact that we can generate powers of φ in
the integrand of the path integral by acting with functional derivatives.
In a short notation, we “sum back” the series into an exponential
of functional derivatives. The result for the generating functional is
compactly written in the form,

Z[J ] = N e
i
∫

d4yLI

(

1
i

δ
δJ(y)

) ∫

DφeiS0[J,φ] (121)

Let us stress that the exponential of functional derivatives is only
meant as a short notation. The precise meaning of it is defined through
the Taylor series in the last line of Eq. (120). In the righ-hand side of
Eq. (121), we find the path integral of the free field theory,

Z0[J ] ≡ N0

∫

DφeiS0[J,φ]

= N0

∫

DφeiS0[0,φ] e−
1
2 (122)

Substituting Eq. (122) into Eq. (121) and defining an overall normal-
ization,

N ′ = N
∫

DφeiS0[0,φ] ,

we obtain

Z[J ] = N ′ e
i
∫

d4yLI

(

1
i

δ
δJ(y)

)

e−
1
2 (123)
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We fix the normalization of the generating functional by requiring that
the amplitude for a vacuum to vacuum transition over infinitely long
times is the unity,

Z[0] = 1.

We then obtain,

Z[J ] =
e
i
∫

d4yLI

(

1
i

δ
δJ(y)

)

e−
1
2

e
i
∫

d4yLI

(

1
i

δ
δJ(y)

)

e−
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

J=0

(124)

We will compute explicitly the generating functional Z[J ] of Eq. (124)
through order O(λ2). Let us consider the numerator of the right-hand
side of Eq. (124),

Num[J ] = e
i
∫

d4yLI

(

1
i

δ
δJ(y)

)

e−
1
2

=

(

1− iλ

4!

∫

d4z
δ4

δJ(z)4

)

e−
1
2 +O(λ2). (125)

After carrying out the four functional differentiations, we obtain

Num[J ] = e−
1
2

(

1− i
λ

4!

[

− 6

+3 z
]

)

+O(λ2) (126)

The denominator of Z[J ] in Eq. (82) is given by

Den = Num[J]|J=0 = 1− i
λ

4!

[

3 z
]

+O(λ2) (127)

We can then compute the generating function, dividing our results
for numerator and denominator and expanding consistently in λ. We
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find,

Z[J ] =
Num[J ]

Den

= e−
1
2

(

1− i
λ

4!

[

− 6

]

)

+O(λ2) (128)

Notice the effect of dividing with the denominator, Den, which guar-
antees the normalization Z[0] = 1, on our result of Eq. (128). After
expanding in λ, the denominator cancels all vacuum graphs which also
appear in the numerator Num[J ]. All graphs which remain in the final
result are connected to a source.

We can now compute Green’s functions perturbatively, through
order O(λ), using the master formula

G(x1, . . . xn) = (−i)n δnZ[J ]

δJ(x1) . . . δJ(xn)

∣

∣

∣

∣

J=0

, (129)

and substituting the perturbative expansion of Eq. (128). We find,

G(x1) = 0 , (130)

G(x1, x2) = x2x1
− iλ

2 x1 x2
+O(λ2) , (131)

G(x1, x2, x3) = 0 , (132)
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G(x1, x2, x3, x4) =
x3 x4
x1 x2

+
x2 x4
x1 x3

+
x2 x3
x1 x4

−iλ
2















x3 x4
x1 x2

+
x2 x4
x1 x3

+
x2 x3
x1 x4

x1 x2
x3 x4

+
x1 x3
x2 x4

+
x1 x4
x2 x3















−iλ

x1 x2

x3 x4

+O(λ2) (133)

and so on. We observe that we observe the same Feynman diagram
expressions as one obtains with perturbation theory in the canonical
quantization formalism.

Notice that Eq. (129) generated all Feynman diagrams for the four-
point Green’s function at the right-hand side of Eq. (133). These
comprise diagrams which do not connect all four external points x1,
x2, x3, and x4, along the one diagram (the last graph in the right-
hand side of Eq. (133)) which is fully connected. Indeed, we can
recast Eq. (129) as

G(x1, x2, x3, x4) = −iλ

x1 x2

x3 x4

+G(x1, x2)G(x3, x4) +G(x1, x3)G(x2, x4) +G(x1, x4)G(x2, x3)

+O(λ2) . (134)

As it is known from scattering theory and the LSZ-formula, the dis-
connected graphs which belong in products of lower point Green’s
functions, do not contribute to the scattering probability amplitudes.
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2.3.1 Generating functional of connected Feynman dia-
grams

There is a simple and general method to generate directly fully con-
nected Feynman diagrams, by differentiating the logarithm of the path
integral logZ[J ], rather than differentiating Z[J ]. Let us define a path
integral W [J ] via,

Z[J ] = eiW [J ]. (135)

For the one-point function, we find

G(x1) = (−i) δZ[J ]
δJ(x1)

∣

∣

∣

∣

J=0

=
δW [J ]

δJ(x1)

∣

∣

∣

∣

J=0

(136)

For the two-point correlation function, we obtain

G(x1, x2) = (−i)2 1

i2
δ2Z[J ]

δJ(x1)δJ(x2)

∣

∣

∣

∣

J=0

= −i δ2W [J ]

δJ(x1)δJ(x2)

∣

∣

∣

∣

J=0

+G(x1)G(x2) . (137)

Rearranging, we find that acting with two derivatives on the logarithm
W [Z] of the path integral Z[J ] has the effect of removing the product
of one-point correlation functions, leaving only the fully connected
diagrams,

−i δ2W [J ]

δJ(x1)δJ(x2)

∣

∣

∣

∣

J=0

= G(x1, x2)−G(x1)G(x2)

≡ Gconn.(x1, x2) (138)

Similarly, for the three point function we find

(−i)2 δ3W [J ]

δJ(x1)δJ(x2)δJ(x3)

∣

∣

∣

∣

J=0

= Gconn(x1, x2, x3)

≡ G(x1, x2, x3)−Gconn.(x1, x2)G(x3)−Gconn.(x2, x3)G(x1)

−Gconn.(x1, x3)G(x2)−G(x1)G(x3)G(x3) , (139)

and so on. The general result reads,

Gconn.(x1, x2, . . . , xn) = (−i)n−1 δnW [J ]

δJ(x1)δJ(x2) . . . δJ(xn)

∣

∣

∣

∣

J=0

(140)

In the case of the φ4 scalar theory, we have.

W [J ] =
i

2
+
λ

4
− λ

4!
+O(λ2). (141)
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Applying Eq. (140), we find indeed only the connected graph for the
four point function,

Gconn.(x1, x2, x3, x4) = (−i)3 δ4W [J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣

∣

∣

∣

J=0

= −iλ

x1 x2

x3 x4

(142)
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2.4 Fermionic path integrals

We have discussed the path integral for scalar fields which are bosonic.
To describe fermions, we need to formulate path integration over anti-
commuting functions.

We will introduce a new kind of numbers, the Grassmann numbers,
which are defined to obey

{ci, cj} = cicj + cjci = 0. (143)

A Grassmann number c is also defined to commute with a regular
number x,

x c = c x . (144)

From the definition of Eq. (143), we have that

c2i = 0. (145)

Therefore, any function constructed out of Grassmann variables is at
most linear in any of these variables.
Exercise:Show that the product of two Grassmann variables a = c1c2
commutes wth a Grassmann variable c3

[a, c3] = 0

Exercise: Show that linear combinations of Grassmann variables are
also Grassmann variables.

We will now develop our calculus for functions of Grassmann vari-
ables, defining derivatives and integration. This will lead us to a
definition of a path integration over Grassmann fields, which we will
postulate to describe fermions.

We start by defining a derivative similarly to derivatives of com-
muting numbers,

∂ci
∂cj

= δij . (146)

We will also take that we can apply a chain rule for differentiating
functions of Grassmann variables.

Our definition of Grassmann differentiation, as it stands now, is
a bit naive. When it is used to differentiate functions of multiple
Grassmann variables it leads to ambiguities. To obtain unambiguous
results, we must introduce a further rule.

Let us consider a concrete example of a function of two Grassmann
variables c1, c2. The general form of the function contains up to linear
terms, and it is given by

f (c1, c2) = a0 + a1c1 + a2c2 + a12c1c2, (147)
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where the coefficients a0, a1, a2, a12 are regular commuting numbers.
Ambiguities arise because a reordering of Grassmann variables in a
product may give rise to minus signs. For example, we can decide to
commute the c2 variable to the left of the c1 Grassmann variable in the
last term of the right-hand side of Eq. (147), obtaining an equivalent
expression.

f (c1, c2) = a0 + a1c1 + a2c2 − a12c2c1, (148)

A naive application of Eq. (146) could yield two different results,

∂

∂c2
= a2 + a12c1, or

∂

∂c2
= a2 − a12c1.

We will need to fix this ambiguity before we take derivatives.
We will define a “left” derivative with respect to c2 which acts in

the following way,

∂Lf

∂c2
=

∂L

∂c2
(a0 + a1c1 + a2c2 + a12c1c2)

=
∂L

∂c2
(a0 + a1c1 + a2c2 − a12c2c1)

= a2 − a12c1. (149)

The meaning of “left” (as the superscript denotes) is that we must
bring the variable which we differentiate to the left of any other Grass-
mann variable in a product, anticommuting by means of Eq. (143),
before we eliminate the variable by differentiating with the rule of
Eq. (146).

Analogously, we could have defined a “right” derivative, where we
always anti-commute a Grassmann variable to the right of any other
variable before we eliminate it. In our example, we have:

∂Rf

∂c2
= a2 + a12c1. (150)

In this lecture series, we will always use left derivatives, unless it is
explicilty stated otherwise. From now on, we will drop the superscript
L on derivatives of Grassmann variables and we will assume implicitly
that the derivative is a left one.
Exercise: Prove that

{

Ci,
∂

∂Cj

}

= δij , (151)

and
{

∂

∂Cj
,
∂

∂Cj

}

= 0. (152)
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Our next step is to define an integration over Grassmann variables
ci. As functions of Grassmann variables are linear, we only require to
know two integrals

∫

dc 1 =?

and
∫

dc c =?

We will set
∫

dc 1 = 0. (153)

In addition, we will set
∫

dc c = x,

where x is a usual commuting number of a fixed value. As the only
other possible integral, Eq. (153) vanishes, the actual value of x can
be absorbed into a redefinition of the integration measure. It is con-
venient to take,

∫

dc c = 1. (154)

For integration, as well as for differentiation, we will need to fix sign
ambiguities when integrating over functions of multiple Grassmann
variables. Our rule will be to order products of Grassmann variables
so that the Grassmann variable that we integrate over to appear to
the left. For example, in integrating a product of two Grassmann
variables, we have

∫

dc1c2c1 = −
∫

dc1c1c2 = −c2.

We can now reveal a striking fact about our definitions of differen-
tiation and integration on Grassmann variables. Differentiation and
integration are identical operations.

∫

dc2f =

∫

dc2 (a0 + a1c1 + a2c2 + a12c1c2)

=

∫

dc2 (a0 + a1c1 + a2c2 − a12c2c1)

= a2 − a12c1

=
∂f

∂c2
. (155)

Multiple integrals over Grassmann variables can be used to express
determinants. This property, will turn out to be very useful in defining
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a path integral for non-abelian gauge theories. Consider a general
integral

∫

dc1dc2 . . . dcnf(c1, c2, . . . , cn),

and perform a linear transformation

ci =Mijbj . (156)

We shall have
∫

dc1dc2 . . . dcnf(ci) = (Jacobian)

∫

db1db2 . . . dbnf (Mijbj) . (157)

What is the Jacobian? In the case of a double integral, we have:

∫

dc1dc2c1c2 = (Jacobian)

∫

db1db2 (M11b1 +M12b2) (M21b1 +M22b2)

= (Jacobian)

∫

db1db2 (M11M22b1b2 +M12M21b2b1)

= (Jacobian)

∫

db1db2b1b2 (M11M22 −M12M21)

= (Jacobian)det(M)

∫

db1db2b1b2

❀ Jacobian =
1

det(M)
. (158)

Exercise: Prove that the same results holds for multiple integrals of
arbitrary dimensions.
If we recall that Grassmann integration is in reality differentiation,
it is not surprising that the Jacobian of the transformation on Grass-
mann variables is the inverse of what emerges in integrations of normal
commuting variables.
Exercise: Consider the complex linear combinations

y =
c1 + ic2√

2
, ȳ =

c1 − ic2√
2

,

of two real Grassmann variables c1, c2. Show that:

{y, ȳ} = 0
∫

dc1dc2f(c1, c2) = i

∫

dydȳf

(

y + ȳ√
2
,
y − ȳ√

2i

)

After we have defined integration over Grassmann variables, we
can now study multiple integrals over exponentials of Grassmann vari-
ables. This will be an intermediate step in formulating a path integral
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for fermionic fields, as an analogous step emerged in the formulation of
a path integral for scalar bosonic fields. Let us start with two indepen-
dent vectors of Grassmann variables xT = (x1, x2) and y

T = (y1, y2).
We have

xT y = x1y1 + x2y2, (159)

and
(

xT y
)2

= (x1y1 + x2y2)(x1y1 + x2y2)

= x1y1x2y2 + x2y2x1y1

= 2x1y1x2y2. (160)

We can easily see that
(

xT y
)n

= 0, n > 2. (161)

Then, for the exponential, we have

e−x
T y = 1− xT y +

1

2
(xT y)2 − 1

3!
(xT y)3 + . . .

= 1− x1y1 − x2y2 + x1y1x2y2 (162)

Therefore, using a Taylor expansion, we have
∫

dx1dy1dx2dy2e
−xT y =

∫

dx1dy1dx2dy2 [1− (x1y1 + x2y2) + x1y1x2y2]

= 1. (163)

We can now perform linear transformations on both x and y.

x→Mx′,

y → Ny′.

We find,

1 =

∫

dxdye−x
T y = det(MT )−1det(N)−1

∫

dxdye−x
TMTNy

= det(MTN)−1

∫

dxdyex
TMTNy. (164)

Defining A =MTN , we obtain that
∫

dxdye−x
TAy = det(A). (165)

Exercise: Prove the above for xT = (x1, x2, x3) and y
T = (y1, y2, y3).

Generalize to arbitrary dimensionality
Recall that for normal commuting variables we have

∫

dxdx†e−x
†Ax ∼ 1

detA
. (166)
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Let us now define a path integral over Grassmann variables by con-
sidering an infinite number of them and taking the continuous limit.
This path integral will give correlation functions for the fermionic field
ψ by taking functional derivatives with respect to sources, similarly to
what we have seen in the scalar field case. It will differ however from
the Green’s functions of the bosonic field, in that the order of differen-
tiations will matter. Different orderings will yield minus signs which
are expected in Fermi spin-statistics. Let us consider the Lagrangian
of a free Dirac fermion.

L = ψ̄ (i 6∂ −m)ψ. (167)

We can write a generating functional

Z0 [a, ā] = N
∫

DψDψ̄ei
∫

d4x[L+āψ+ψ̄a]. (168)

In this path integral the integration variables ψ, ψ̄ and the sources a, ā
are all independent Grassmann functions. The constant N is fixed as
usual by requiring that

Z0 [0, 0] = 〈0| 0〉 = 1.

Everything works in an analogous way as in the case of the path in-
tegral for the scalar field. For a theory without interactions, we can
“complete the square” and compute the generating functional explic-
itly if we shift he fields ψ, ψ̄ by a constant corresponding to their
classical value which minimizes the action. We need the inverse of the
Dirac wave operator,

(i 6∂ −m1)S(x− y) = i δ4 (x− y)1. (169)

As for the scalar field and the harmonic oscillator we can write a
Fourier representation,

S(x− y) = i

∫

d4k

(2π)4
6k +m

k2 −m2
e−ik·(x−y) (170)

Exercise:Write the Euler-Lagrange equations for the action with sources
a, ā. Solve these equations in Fourier space. The values of ψ, ψ̄ which
minimize the action are now given by

ψcl = i

∫

d4yS(x− y)a(y),

ψ̄cl = −i
∫

d4yā(y)S(x− y),
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and the change of variables

ψ = ψcl + η, ψ̄ = ψ̄cl + η̄,

yields
Z0[a, ā] = e−

∫

d4xd4yā(x)S(x−y)a(y). (171)

We obtain expectation values of time-ordered products of field op-
erators from the generating functional via

〈0,+∞|T . . . ψi(x) . . . ψ̄j(y) . . . |0,−∞〉 = . . .
1

i

δ

δāi(x)
. . . i

δ

δaj(y)
. . . Z0[a, ā],

(172)
where the indices i, j are spinor indices. Exercise:Calculate the ex-
pectation values

• 〈0,+∞|Tψi(x1)ψ̄j(x2) |0,−∞〉
• 〈0,+∞|Tψi(x1)ψ̄j(x2)ψk(x3)ψ̄l(x4) |0,−∞〉

and compare them with your results from canonical quantization. We
can also develop a perturbative expansion repeating faithfully the
steps we performed in the φ4 scalar field theory. It is not hard to
convince ourselves that a completely analogous formula should be
valid here for the generating functional when an interaction term LI
is present in the Lagrangian:

Z [a, ā] =
e
i
∫

d4zLI

(

i δ
δa

(x), 1
i

δ
δā(x)

,
)

Z0 [a, ā]

e
i
∫

d4zLI

(

i δ
δa

(x), 1
i

δ
δā(x)

,
)

Z0 [a, ā]

∣

∣

∣

∣

a=ā=0

. (173)

Besides the main similarities in the appearance of the formulae
there are also very important differences which are encoded in the
Grassmann algebra of the functions which we integrate upon. What
is very important to remember, is the fact that functional derivatives
anticommute, generalizing the result that we found for the derivatives
of discrete Grassmann variables:
{

δ

δa(x)
,

δ

δa(y)

}

=

{

δ

δā(x)
,

δ

δā(y)

}

=

{

δ

δa(x)
,

δ

δā(y)

}

= 0. (174)

We should also remember that these derivatives are left (by conven-
tion) derivatives, and the order in which sources appear in the inte-
grand matters indeed.
Exercise: Consider a theory with a fermion a real scalar and a
Yukawa interaction λψ̄ψφ. Calculate the fermion and scalar propa-
gators through O(λ2). Derive the Feynman diagrams contributing to
the scattering of four fermions. Derive the Feynman diagrams con-
tributing to the scattering of two fermions and two scalars. 4

4This exercise is very important for checking your understanding of the material covered
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3 Non-abelian gauge theories

We will now discuss quantum field theories with a gauge symmetry.
Realisitc theories such as QED, QCD and the full Standard Model are
all symmetric under local gauge transformations.

3.1 Gauge invariance and QED

We shall start with the familiar case of Quantum Electrodynamics. We
will see how the QED Lagrangian emerges from extending the Dirac
Lagrangian of free electrons, by requiring that the “global” symme-
try of U(1) transformations found in the Dirac Lagrangian becomes
“local”.

The Dirac Lagrangian for a fermion field ψ is

LDirac = ψ̄(x) (i 6∂ −m)ψ(x) (175)

This is clearly invariant under a “global” transformation,

ψ(x) → ψ′(x) = exp(i g θ)ψ(x). (176)

where the parameter θ is constant
(

∂θ
∂x = 0

)

. Under a local gauge
transformation,

U(x) = exp (i g θ(x)) , (177)

the free Dirac Lagrangian is not invariant.

ψ̄ 6∂ψ → ψ̄ 6∂ψ + ψ̄e−igθ
[

6∂eigθ
]

ψ. (178)

We will now modify the Dirac Lagrangian in order to make it invariant
under local gauge transformations with θ = θ(x). To achieve this goal,
we must introduce another field Aµ, which we will recognise as the
photon field.

The term which causes the Dirac Lagrangian not to be invariant
under local transformations is the derivative term,

6∂ψ → 6∂ψ′ = ei g θ [ 6∂ + ig ( 6∂θ)]ψ.

We will substitute the simple derivative ∂µ with a covariant derivative
Dµ which transforms more conveniently. Specifically, we look for a
covariant derivative which, under a local gauge transformation, trans-
forms as:

6Dψ → U(x) 6Dψ. (179)

so far. Please spend as much time as needed until you get it right.
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To obtain a covariant derivative, we add to the usual derivative a new
function (field):

Dµ = ∂µ − igAµ(x). (180)

The new field Aµ(x) must be a vector field, as it must have the same
Lorentz transformation as the derivative ∂µ which is a vector. The
field Aµ will also have its own gauge transformation,

Aµ → A′
µ

which we will define in such a manner so that we obtain the covariant
derivative transformation of Eq. (179) We need:

Dµψ(x) → D′
µψ

′ = U(x)Dµψ

❀

(

∂µ − igA′
µ

)

(U(x)ψ) = U(x) (∂µ − igAµ)ψ

❀ U(x)∂µψ + [∂µU(x)]ψ − igA′
µU(x)ψ = U(x)∂µψ − igAµU(x)ψ

❀ A′
µ = Aµ −

i

g
U−1(x)∂µU(x) (181)

The covariant derivative transforms as:

Dµ → D′
µ = ∂µ − igA′

µ

= ∂µ − ig

(

Aµ −
i

g
U−1∂µU

)

= ∂µ − igAµ − U−1 (∂µU)

= ∂µ − igAµ + U
(

∂µU
−1
)

= U(x) (∂µ − igAµ)U
−1(x) (182)

Therefore:
Dµ → D′

µ = U(x)DµU
−1(x) (183)

We can now replace the free Lagrangian of the spin-1/2 field with
a new Lagrangian which is also gauge invariant.

L′ = ψ̄ [i 6D −m]ψ

→ ψ̄U−1U [i 6D −m]U−1Uψ

ψ̄ [i 6D −m]ψ.

If Aµ is a physical field, we need to introduce a kinetic term in the
Lagrangian for it. We will insist on constructing a fully gauge invariant
Lagrangian. To this purpose, we can use the covariant derivative as a
building block. Consider the gauge transformation of the product of
two covariant derivatives:

DµDν → D′
µD

′
ν = UDµU

−1UDνU
−1

= UDµDνU
−1.
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This is not a gauge invariant object. Now look at the commutator:

[Dµ, Dν ] →
[

D′
µ, D

′
ν

]

= U [Dµ, Dν ]U
−1 (184)

This is gauge invariant. To convince ourselves we write the commu-
tator explicitly:

[Dµ, Dν ] = (∂µ − igAµ) (∂ν − igAν)− [µ↔ ν]

= ∂µ∂ν − ig (∂µAν)− igAν∂µ − igAµ∂ν + (ig)2AµAν − [µ↔ ν]

= −ig [∂µAν − ∂νAµ] . (185)

Inserting Eq. 185 into Eq. 184, we find that the commutator of co-
variant derivatives (in the abelian U(1) case) is gauge invariant. We
have also found that it is proportional to the field strength tensor of
the gauge (photon) field:

Fµν =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ (186)

We now have invariant terms for a Lagrangian with an “electron”
and a “photon” field. The Lagrangian for QED reads

LQED = ψ̄ ( 6D −m)ψ − 1

4
FµνF

µν . (187)

Exercise: Find the Noether current and conserved charge due to
the invariance under the U(1) gauge transformation of the QED La-
grangian.
Exercise: Think of at least five more operators that one can add to
the QED Lagrangian without spoiling gauge invariance. There is an
infinite number of them. Which of them do not have mass dimension
four? As we shall see, operators of higher dimension spoil renormal-
izability

3.2 Non-abelian (global) SU(N) transformations

Lagrangians for theories with more than one fields may be symmet-
ric under more complicated transformations than a U(1) symmetry.
In particular, a symmetry group which is relevant for quantum chro-
modynamics and weak theory is the SU(N) symmetry group. Let’s
consider, as an example, a collection of N scalar fields and the La-
grangian.

L = (∂µφi) (∂
µφ∗i )−m2 (φiφ

∗
i )−

λ

4
(φiφ

∗
i )

2 , i = 1 . . . N, (188)
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where we have used Einstein’s double index summation. The La-
grangian is symmetric under SU(N) transformations of the φi fields,

φi → φ′i = Uij φj , U † = U−1 , detU = 1 . (189)

Indeed,

φ∗iφi → φ′∗i φ
′
i = U∗

ijφ
∗
jUikφk

= U †
jiUikφ

∗
jφk = δjkφ

∗
jφk = φ∗iφi . (190)

We can learn a lot by studying small SU(N) transformations. Due
to them forming a group, large transformation can be obtained by
repeating (infinitely) many small ones. We write:

Uij = δij − iθaT aij +O(θ2), (191)

where we choose θa to be real parameters.
The N ×N matrices T a are generators of SU(N) matrices. They

are N2−1: An arbitrary N×N complex matrix has 2N2 real elements.
For a unitary matrix U † = U−1, only N2 elements are independent.
The specialty condition detU = 1 adds one more constraint, leaving
N2 − 1 independent elements. Remember the dimensionality of the
indices defining the generators,

T ai,j : a = 1 . . . (N2 − 1) and i, j = 1 . . . N ,

as they will be needed in various situations.
Exercise SO(N) group: N ×N matrices with

RijRklδjl = δik.

Find the number of generators.
Exercise The symplectic group Sp(2N) can be defined as 2N × 2N
matrices S with

SijSklδjl = ηik,

where,
ηij = −ηji and η2 = −1.

Find the number of generators.
The SU(N) generators are hermitian:

U †U = 1

❀

(

1 + ig(T a)†θa
)(

1− igT bθb
)

= 1+O(θ2)

❀ T a† = T a (192)
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and traceless:

detU = 1 ❀ log (detU) = 0

❀ Tr (logU) = 0

❀ Tr log (1− iθaT a) = 0

❀ Tr (iθaT a) = 0

❀ Tr (T a) = 0 (193)

We can choose a normalization condition for the SU(N) generators.
By convention, we choose,

Tr
(

T aT b
)

≡ T aijT
b
ji = TR δab, TR =

1

2
. (194)

A very basic property of the generators is that they satisfy a Lie
algebra

[

T a, T b
]

= ifabcT c, (195)

where fabc are the structure constants of the algebra.
Exercise: Prove Eq. 195 by considering a transformation U ′−1U−1U ′U ,
with U,U ′ independent SU(N) transformations.
From Eq. 195, we can derive

[

T a, T b
]

= ifabdT d ❀
[

T a, T b
]

T c = ifabdT dT c

❀ fabc = −2iT r
([

T a, T b
]

T c
)

. (196)

Exercise: Prove that the structure constants are fully antisymmetric
and real

3.3 Local non-abelian gauge symmetries

We now consider N fields φi (scalar or spinor). We are interested in
Lagrangians which are invariant under a local SU(N) transformation:

φi(x) → φ′i(x) = Uij(x)φj(x). (197)

As in QED, the building block for the construction of a gauge invariant
Lagrangian will be a covariant derivative:

Dµ = ∂µ − igAµ, (198)

such that

Dµ → D′
µ = UDµU †, with U † = U−1. (199)
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For a scalar field φ we have

(D′
µφ

′†)(D′µφ′) → (Dµφ
†)(Dµφ)

Similarly, the kinetic term with the same covariant derivative for a
fermion field is invariant. There are many similarities with QED,
however there are also many important differences. Let’s start by
pointing out that the gauge field Aµ is an N ×N matrix.

We can easily find the transformation for the gauge field:

Dµ → D′
µ = U(x)DµU

†(x)

❀

(

∂µ − igA′
µ

)

= U (∂µ − igAµ)U
†

❀ ∂µ − igA′
µ = ∂µ + U

(

∂µU
†
)

− UigAµU
†

❀ A′
µ = U(x)AµU

†(x) +
i

g
U(x)

(

∂µU
†(x)

)

(200)

This formula is analogous to the gauge transformation of the photon in
QED. However, here the gauge field Aµ and the gauge transformation
U are complex N ×N matrices rather than complex numbers.

We now compute the corresponding commutator:

[Dµ, Dν ] = (∂µ − igAµ) (∂ν − igAν)− [µ↔ ν]

= ∂µ∂ν − ig (∂µAν)− igAν∂µ − igAµ∂ν + (ig)2AµAν − [µ↔ ν]

= −ig {∂µAν − ∂νAµ − ig [Aµ, Aν ]} . (201)

The commutator term was absent in the case of QED.
The gauge field strength:

Gµν ≡ i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig [Aµ, Aν ] , (202)

is no longer gauge invariant:

Gµν → G′
µν = U(x)GµνU

†(x).

However, the trace

Tr(GµνG
µν)

→ Tr(UGµνU
†UGµνU †)

→ Tr(U †UGµνU
†UGµν)

→ Tr(GµνG
µν)

is gauge invariant.
We can expand the gauge field in the basis of generators:

Aµ = AaµT
a, (203)
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Equivalently,

Aaµ =
Tr(AµT

a)

TR
(204)

We also have
Gµν = GaµνT

a, (205)

with

Gaµν =
Tr(GµνT

a)

TR
. (206)

It is

Gaµν =
1

TR
Tr(GµνT

a)

=
1

TR
Tr (∂µAνT

a − ∂νAµT
a − ig [Aµ, Aν ]T

c)

= ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (207)

A prominent example of a theory with a non-Abelian local gauge
symmetry is QCD which is invariant under SU(3) gauge transforma-
tions.

LQCD = ψ̄ (i 6D −m1)ψ − 1

4
GcµνGcµν . (208)

Exercise:Expand all terms in the QCD Lagrangian using the explicit
expressions in terms of the gauge field for the covariant derivative and
the gauge field strength. Sketch the interactions (the precise Feynman
rules will be derived in forthcoming lectures)
Exercise:Write a gauge invariant Lagrangian under SU(N) trans-
formations for a scalar field. This case appears in supersymmetric
theories for the scalar partners of quarks. Sketch the interactions.

3.3.1 Adjoint representation:

By expanding the commutators we can easily prove the Jacobi identity,

[[

T a, T b
]

, T c
]

+
[[

T b, T c
]

, T a
]

+
[

[T c, T a] , T b
]

= 0. (209)

From this we derive a relation for the structure constants:

❀

[

fabdT d, T c
]

+
[

f bcdT d, T a
]

+
[

f cadT d, T b
]

= 0

❀ fabdfdce + f bcdfdae + f cadfdbe = 0 (210)

We define the matrices
T̃ bac = ifabc. (211)
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Then the above relation can be written as
[

T̃ b, T̃ c
]

= if bcdT̃ d. (212)

Therefore, the matrices T̃ furnish a representation of the same Lie
algebra. This is called the adjoint representation.

We can now consider fields ψa which transform in the adjoint rep-
resentation. An example emerges in supersymmetric theories of QCD
where the gluino, the supersymmetric partner of the gluon, transforms
in the adjoint. Specifically, the transformation is

ψa → ψ′
a = UA

abψb with UabA = e−iθ
cT̃ c

ab and a, b, c = 1 . . . (N2−1).
(213)

Or, for small transformations,

ψa → ψ′
a = ψa − iθbT̃ bacψc

❀ ψ′
a = ψa − iθb

(

ifabcψc

)

❀ ψ′
a = ψa + fabcθbψc (214)

We can find a covariant derivative for the transformations of the ad-
joint representation in a complete analogy as for the “fundamental”
representation:

Dµψa = ∂µψa − igAbµT̃
b
acψc

= ∂µψa + gfabcAbµψc. (215)

Now consider a general member of the represenation ψ = ψaT
a. The

covariant derivative acts on it like:

Dµψ =
(

∂µψa + gfabcAbµψc

)

T a

= ∂µψ − ig
[

T b, T c
]

ψcA
b
µ, (216)

or equivalently

Dµψ = ∂µψ − ig [Aµ, ψ] , ψ ≡ ψaT
a, Aµ ≡ AaµT

a. (217)

Exercise: Take an element ξ = ξaT a of the Lie algebra, transform-
ing in the adjoint representation, and a field χ transforming in the
fundamental representation. Prove the Leibniz rule for the covariant
derivative:

Dµ (ξχ) = (Dµξ)χ+ ξ (Dµχ) . (218)
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3.3.2 Euler-Lagrange equations / conserved currents∗

We consider the variation of the gauge field

Aµ → Aµ + δAµ

and
∂νAµ → ∂νAµ + δ (∂νAµ) .

The corresponding variation of the gauge field strength is

δGµν = δ (∂µAν − ∂νAµ − ig [Aµ, Aν ])

= ∂µδAν − ∂νδAµ − ig [δAµ, Aν ]− ig [Aµ, δAν ]

❀ δGµν = Dµ (δAν)−Dν (δAµ) . (219)

We can now look at the variation of this term in the QCD action

δ

∫

d4xTr (GµνG
µν)

= 2

∫

d4xTr (GµνδG
µν)

= 2

∫

d4xTr (Gµν [Dµ (δAν)−Dν (δAµ)])

= 4

∫

d4xTr (GµνDµ (δAν)) antisymmetry

= 4

∫

d4x {Dµ [Tr (G
µν (δAν))]− Tr [Dµ (G

µν) δAν ]} (220)

The first trace is gauge invariant. We can then find a gauge transfor-
mation for the gluon field so that Dµ → UDµU

† = ∂µ, and drop the
surface term. So, we have:

δ

∫

d4xTr

[−1

2
GµνG

µν

]

= 2

∫

d4xTr [Dµ (G
µν) δAν ] .(221)

The fermionic term in the Lagrangian varies as:

δ

∫

d4xψ̄ (i 6D −m)ψ = δ

∫

d4xψ̄ (i 6∂ + g 6A)ψ

= g

∫

d4xψ̄δ 6Aψ = g

∫

d4xψ̄γµT aψδAaµ =

= 2g

∫

d4x
(

ψ̄iγ
µT aijψj

)

Tr [δAµT
a]

= −2gTr [JµδA
µ] , (222)

with
Jµ = JaµT

a, (223)
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and
Jaµ = −gψ̄γµT aψ. (224)

Combining the variation of both fermionic and gauge boson terms in
the Lagrangian of Eq. 208 we derive the Euler-Lagrange equation:

DµG
µν = Jν . (225)

We can act with a second covariant derivative on the above equation:

DνDµG
µν = DνJ

ν (226)

The lhs is:

DνDµG
µν = Dν (∂µG

µν − ig [Aµ, G
µν ])

= ∂ν∂µG
µν

−ig [∂νAµ, Gµν ]
−ig [Aµ, ∂νGµν ]− ig [Aν , ∂µG

µν ]

−g2 [Aν [Aµ, Gµν ]] (227)

Using that Gµν = −Gνµ and

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

you can prove that

DνDµG
µν =

−ig
2

[Gµν , G
µν ] = 0 (228)

Therefore:
DµJ

µ = 0. (229)

The fermionic current is thus no longer (as in QED) a conserved cur-
rent. It is rather covariantly conserved!
Exercise: In an abelian gauge theory, consider the dual tensor

F̃µν =
1

2
ǫµνρσFρσ.

Show that
FµνF̃µν = ∂µK

µ, (230)

with
Kµ = ǫµνρσAνFρσ

Exercise: In a non-abelian gauge theory, consider the dual tensor

G̃µν =
1

2
ǫµνρσGρσ.

Show that
GµνG̃µν = ∂µK

µ, (231)

with

Kµ = ǫρσµνTr

[

GσµAν +
2

3
AσAµAν

]

.
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4 Quantization of non-abelian gauge

theories

We now have a sufficient formalism to study correlation functions with
a path integral formalism in a non-abelian gauge theory. The classical
Yang-Mills Lagrangian is,

LYM = −1

4
GaµνGaµν . (232)

with

Gaµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (233)

Proceeding in analogy with the path integral quantization of the scalar
field theory, we may write the following path integral for the Yang-
Mills theory,

Z[Jµa ] = N
∫

DAaµei
∫

d4x[LYM(Aµ
a)+J

µ
aAaµ] (234)

We would like to develop a perturbation theory program. Remember

what steps emerged in the scalar −λφ44! case. We could try to define
the analogous steps here. Namely,

- find the propagator of the free-field by inverting the differential
operator in the quadratic part of the Lagrangian. This would
give us an expression for the path integral when all interactions
are switched off (g = 0)

Z0[J
µ
a ] = N ′ei

∫

d4xd4yJµ
a (x)∆µνab(x−y)J

ν
b (x). (235)

- derive the perturbative expansion from

Z[J ] ∼ e
−

∫

d4zLint

(

1
i

δ

δJ
µ
a (z)

)

Z0[J
µ
a ]. (236)

We will see that the first of the two steps is problematic in a naive
treatment.

The free-field action (g = 0) is

Sfree = −1

4

∫

d4x
(

∂µA
a
ν − ∂νA

a
µ

)

(∂µAνa − ∂νAaµ)

= −1

2

∫

d4x
[

(∂µA
a
ν) (∂

µAνa)−
(

∂νA
a
µ

)

(∂µAνa)
]

= −1

2

∫

d4x
[

∂µ (A
a
ν∂

µAνa)−Aaν∂µ∂
µAνa − ∂ν

(

Aaµ∂
µAνa

)

+Aaµ∂ν∂
µAνa

]

= −1

2

∫

d4xAaµδab
[

−∂2gµν + ∂µ∂ν
]

Aνb. (237)
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We now need to find the inverse of the operator

[

−∂2gµν + ∂µ∂ν
]

δab.

However, it turns out that there is none! This operator has zero
eigenvalues, and its determinant is zero. In particular we obtain zero
when it acts on any function that can be written as a total derivative:

[

−∂2gµν + ∂µ∂ν
]

∂νΛ(x) = −∂2∂µΛ(x) + ∂2∂µΛ(x) = 0. (238)

Our naive attempt to establish a perturbation expansion in g using
a path integral formalism has failed at the first step. However, there
is a property of the theory, gauge invariance, which we have not yet
used and we can exploit it to remove the zero-modes of the operator
in the free part of the Lagrangian.

Let us start by defining a δ-functional, in analogy to a δ-function,
which we will need in a while. The integral over a δ-function is

∫

dfδ(f) = 1.

We can change variables, f = f(w), and we obtain
∫

dw
∂f

∂w
δ(f(w)) = 1.

The multidimensional generalization of this equation is:

1 =

∫

dw1 . . . dwndet

(

∂fi
∂wj

)

δ(f1(w1, . . . , wn)) . . . δ(fn(w1, . . . , wn)).

We can take the limit n → ∞ which yields a functional integral over
w(x), where x is the continuous variable corresponding to the index
i = 1 . . . n. We define the infinite product of delta functions as a delta
functional. We write:

∫

Dwdet
(

δf(x)

δw(y)

)

δ [f(w)]

≡ lim
n→∞

∫

dw1 . . . dw1det

(

∂fi
∂wj

)

δ(f1(w1, . . . , wn)) . . . δ(fn(w1, . . . , wn))

= 1. (239)

Notice the emergence of a functional determinant, due to changing
variables in the measure of a functional integral.

We now return to the gauge-theory; the action is of course invariant
under gauge transformations

Aµ → A′
µ = U(x)AµU

†(x) +
i

g
U(x)

(

∂µU
†(x)

)

, (240)
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with Aµ ≡ AaµT
a. The transformation matrices U are determined by

as many independent parameters as the generators of the Lie group,

U(x) = e−iθ
a(x)Ta

= 1− iθa(x)T a +O(θ2). (241)

The integration
∫

DAaµ in the path integral formalism does not dis-
criminate among the fields which are connected via a gauge transfor-
mation.

Consider all the fields A
a(independent)
µ which cannot be connected

via a gauge transformation. We never know them explicitly, but we
can impose that they satisfy gauge-fixing conditions of the form

F (Aaµ) = 0,

which remove the superfluous degrees of freedom. For example, a very
common choice is a Lorentz gauge fixing condition,

∂µA
aµ = 0.

Of course, we will need to apply this gauge condition an infinite
amount of times, corresponding to all possible values of gauge transfor-
mation θaµ(x) values at each x which are sampled in the path integral.

Let us now go back to the path integral for the gauge theory with-
out sources:

Z = N
∫

DAaµei
∫

d4x[LYM(Aµ
a)] (242)

This integrates over all fields including the ones related by gauge trans-
formations. In other words, had we thought of all possible gauge fix-
ings, it integrates over all these possibilities. We can write:

Z = N
∫

DAaµei
∫

d4x[LYM(Aµ
a)] × 1

= N
∫

DAaµei
∫

d4x[LYM(Aµ
a)] ×

∫

DF aδ[F a(Aaµ)], (243)

where
F a(Aµa) = 0 ❀ Aaµ = Aaµ(θb).

Different gauge fixings F a correspond to different group parameters, so
we may change variables F a → θa in the second functional integration.

Z = N
∫

DAaµei
∫

d4x[LYM(Aµ
a)]
∫

Dθb det
(

δF a(Aaµ)

δθb

)

δ[F a(Aaµ(θb))]

= N
∫

Dθb
∫

DAaµei
∫

d4x[LYM(Aµ
a)] det

(

δF a(Aaµ)

δθb

)∣

∣

∣

∣

Fa(Aaµ(θb))=0

δ[F a(Aaµ(θb))]

(244)
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Now there is a crucial observation to be made. No term in the inner
functional integral depends on θb. Let us justify this statement. We
have,

1 =

∫

DF aδ [F a(Aaµ)]

❀

1

det
(

δFa(Aaµ)
δθb

)∣

∣

∣

Fa(Aaµ(θb))=0

=

∫

Dθbδ(F a(Aaµ(θb)))(245)

This determinant is therefore just a gauge-invariant number, as it
does not depend on gauge parameters which are integrated over in
the right-hand side. The exponential of the Yang-Mills action is of
course gauge invariant:

ei
∫

d4xLYM(Aµ) = ei
∫

d4xLYM(Aa
µ(θ

b)).

Finally, the gauge-boson fields are also members of the Lie algebra
and only get reshuffled by gauge transformations. The measure DAaµ
can be evaluated at any gauge.

DAaµ = DAaµ(θb). (246)

Exercise: Consider a gauge transformation Aaµ → Aaµ
′. Prove that

DAaµ = DAaµ′. You only need to consider an infinitesimal gauge trans-
formation.
We then compute all terms in the inner path integral at the specific-
gauge chosen by the delta-functional.

Z = N
∫

Dθb
∫

DAaµei
∫

d4x[LYM(Aµ
a)] det

(

δF a(Aaµ)

δθb

)∣

∣

∣

∣

Fa(Aaµ(θb))=0

δ[F a(Aaµ(θb))]

= N
∫

Dθb
∫

DAaµ(θb)ei
∫

d4x[LYM(Aµ
a(θ

b))] det

(

δF a(Aaµ(θ
b))

δθb

)

δ[F a(Aaµ(θb))]

= N
(∫

Dθb
)∫

DAaµei
∫

d4x[LYM(Aµ
a)] det

(

δF a(Aaµ)

δθb

)

δ[F a(Aaµ)] (247)

In the last line we noticed that the gauge-fixed field variable Aaµ(θ
b) is

a dummy integration variable. The path integration over all possible
gauge transformations (corresponding to all possible gauge fixings) is
an overall normalization factor. This is an infinite integration over
the measure of infinite Lie algebra parameters. However, this is not a
problem if we want to compute physical quantities, since the overall
normalization will cancel. We therefore end up with the gauge-fixed
path integral

Z = N ′

(∫

Dθb
)∫

DAaµei
∫

d4x[LYM(Aµ
a)] det

(

δF a(Aaµ)

δθb

)

δ[F a(Aaµ)].

(248)
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It is very important to notice that (up to an irrelevant infinite nor-
malization) this path integral does not depend on the gauge-fixing
condition F (Aaµ) that we may choose!

This new-path integral in Eq. 248 integrates over fields which can-
not be related via gauge transformations; it should therefore be fine
to derive Green’s functions for fields which are physically distinct.
However, the new expression has two features, the gauge-fixing delta-
functional and the determinant, which were absent in our formulation
of perturbation theory. It is therefore unclear at first sight how to
establish a calculable perturbative expansion with the mathematics
that we now. Two very clever tricks will come to our rescue.

Without loss of generality we write

F a(Aaµ) = Ga(Aaµ)− wa(x). (249)

We are allowed to multiply the path-integral with an overall constant
without any physical consequences. We then multiply with the factor,

C =

∫

Dwae−i
∫

d4x
wa(x)2

2ξ . (250)

We can do this because Z[Jµa ] in Eq. 248 does not depend on w(x).
We have

Z ∼
(∫

Dwae−i
∫

d4x
wa(x)wa(x)

2ξ

)∫

DAaµei
∫

d4x[LYM(Aµ
a)] det

(

δGa(Aaµ)
δθb

)

δ[Ga(Aaµ)− wa(x)]

=

∫

DAaµei
∫

d4x[LYM(Aµ
a)] det

(

δGa(Aaµ)
δθb

)∫

Dwae−i
∫

d4x
w(x)2

2ξ δ[Ga(Aaµ)− w(x)]

=

∫

DAaµe
i
∫

d4x
[

LYM(Aµ
a)−

1
2ξ

(Ga(Aaµ))2
]

det

(

δGa(Aaµ)
δθb

)

(251)

With this trick, we remove the delta-function from the integrand and
modify the exponent of the path-integral. This also yields a well-
defined propagator for the gauge boson field. If we choose for example
the gauge-fixing condition

Ga(Aaµ) = ∂µA
aµ,

the free-part (g = 0) of the action in the exponent becomes:

Sfree = −1

2

∫

d4xAaµδab
[

−∂2gµν +
(

1− 1

ξ

)

∂µ∂ν

]

Abν .(252)

Now, the new differential operator has an inverse:

∆ab
µν = δab

∫

d4k

(2π)4
e−ikx

k2 + iǫ

[

gµν − (1− ξ)
kµkν
k2 + iǫ

]

. (253)
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Exercise: Find the inverse of the operator:

[

(

−∂2 +M2
)

gµν +

(

1− 1

ξ

)

∂µ∂ν.

]

This will be the case of a massive gauge-boson such as W,Z.
Exercise: Find the gauge boson propagator in an axial gauge

G(A) = nµA
aµ,

where n is a light-like vector n2 = 0.

We now need to deal with the determinant in the integrand of the
path integral. Here we will use a result that we found from infinite
integration over Grassmann variables. We proved earlier that:

∫

dx1 . . . dxndy1 . . . dyne
−xTAy = det(A). (254)

where A is an n×n matrix and x, y are Grassmann variables. We can
take the limit of n → ∞. We then obtain express a functional deter-
minant as a fermionic path integrals over two independent Grassmann
functions x and y:

ig det(A) =

∫

DyDxei
∫

d4x1d4x2 y(x1)(gA(x1−x2))x(x2). (255)

The Fadeev-Popov idea was to introduce two new fields with odd spin-
statistics (Grassmann variables in the path-integral), a ghost and an
anti-ghost, and write the determinant as functional integral over an
exponential. We write,

Z ∼
∫

DAaµe
i
∫

d4x
[

LYM(Aµ
a)−

1
2ξ

(Ga(Aaµ))2
]

det

(

ig
δGa(Aaµ)
δθb

)

∼
∫

DAaµDη̄aDηae
i
∫

d4x
[

LYM(Aµ
a)−

1
2ξ

(Ga(Aaµ))2
]

×

×e
i
∫

d4x1d4x2η̄a(x1)

(

g
δGa(Aa

µ(θa))

δθb

)

ηb(x2)
. (256)

We need not to worry about computing precisely the overall normal-
ization of the path-integral. This will drop out when we require that
vacuum to vacuum transitions have a unit amplitude. The factor −ig
is convenient, in order to later combine easierly all terms under a
common exponential.

Let us consider a local gauge transformation

U(x) = e−iθ
aTa

,
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under which a gauge-field transforms as

Aµ(θ) = U(x)AµU
†(x) +

i

g
U(x)

(

∂µU
†(x)

)

, (257)

where, as usual, Aµ = AaµT
a. For a small transformation, we obtain

Aµ,a(θ) = Aµ,a − 1

g

[

∂µδab − gfabcAµ,c
]

θb. (258)

We recognize in the above expression the covariant derivative in the
adjoint representation:

Dab
µ ≡ ∂µδ

ab − gfabcAcµ, (259)

so we can write:

Aµ,a(θ) = Aµ,a − 1

g
Dµ,abθb. (260)

We then have,

δAµ,a(θ(x))

δθb(y)
= −1

g

δ (Dµ,ac(x)θc(x))

δθb(y)
= −1

g
Dµ,ab(y)δ(x− y). (261)

We can now compute the functional derivative

g
δG(Aµ,a(θ(x)))

δθb(y)
= g

∫

d4z
δG(Aµ,a(θ(x)))

δ(Aν,c(θ(z)))

δ(Aν,c(θ(z)))

δθb(y)

= −
∫

d4z
δG(Aµ,a(x))

δ(Aν,c(z))
Dν,cb(z)δ(z − y)

= −δG(A
µ,a(x))

δ(Aν,c(y))
Dν,cb(y) (262)

We can then write the following expression for the path integral:

Z ∼
∫

DAaµDη̄aDηae
i
∫

d4x
[

LYM(Aµ
a)−

1
2ξ

(Ga(Aaµ))2
]

×

×e
i
∫

d4x1d4x2η̄a(x1)

(

−
δGa(Aa

µ(x1))

δAc
ν (x2)

Dcb
ν (x2)

)

ηb(x2)
. (263)

This is valid for any arbitrary gauge fixing condition Ga(Aaµ).
It will be instructive and practical (this is what we need to do when

we compute elements of the S-matrix) to choose a gauge. A common
choice is the Lorentz gauge:

Ga(Aaµ) = ∂µA
µ,a, (264)

where

δ∂µA
µ,a(x1)

δAν,c(x2)
= ∂µg

µ
ν δ

acδ(x1 − x2) = ∂νδ
acδ(x1 − x2). (265)
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Therefore, in the Lorentz gauge, the path integral is (up to a normal-
ization):

Z =

∫

DAaµDη̄aDηae
i
∫

d4x
[

− 1
4
Ga

µνG
a,µν− 1

2ξ
(∂µAaµ)2−η̄a(x)∂µDµ;abηb(x)

]

.

(266)
After a partial integration, we obtain:

Z =

∫

DAaµDη̄aDηae
i
∫

d4x
[

− 1
4
Ga

µνG
a,µν− 1

2ξ
(∂µAaµ)2+(∂µη̄a)Dµ;abηb

]

.

(267)
In this last expression, we have exponentiated all terms which arose
from gauge-fixing. The argument of the exponential is a new ac-
tion, modified by a gauge-fixing term and contributions from the ghost
fields.

Notice that the form of the quadratic term in the ghost fields is the
same as for a complex scalar field. However, the variables η, η̄ in the
path-integral are anti-commuting Grassmann variables. Therefore,
the ghost field is a scalar field with the “wrong” spin-statistics.

We also observe that for an abelian gauge theory fabc = 0 we
have Dab

µ = δab∂µ and there is no interaction term for the ghost field
and the gauge-boson. In this case, the ghost field is a free field and
we can integrate out its contribution to the path integral (changing
the irrelevant overall normalization). This is why in QED you never
needed to introduce it.

Exercise: Find the expression of the path-integral for an SU(N)
Yang-Mills theory in an axial gauge

G(A) = nµA
aµ,

where n is a light-like vector n2 = 0.

4.1 Perturbative QCD

After gauge-fixing and the Fadeev-Popov method, we can formulate a
path integral for QCD, where the path-integral action is:

S =

∫

d4xL,

with

L = LYANG−MILLS+LFERMION+LGAUGE−FIXING+LFADEEV−POPOV.

The classical Yang-Mills Lagrangian is:

LYANG−MILLS = −1

4
GaµνG

a,µν ,
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and
Gaµν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν .

The gauge fixing and the Fadeev-Popov terms, in the Lorentz gauge,
are:

LGAUGE−FIXING = − 1

2ξ

(

∂µAaµ
)2
.

LFADEEV−POPOV = (∂µη̄a)Dab
µ η

b,

and the fermion term:

LFERMION = ψ̄i
(

iγµDij
µ −mδij

)

ψj .

The covariant derivatives in the adjoint and fundamental representa-
tion are

Dab
µ = ∂µδ

ab − gfabcAcµ

and
Dij
µ = ∂µδ

ij − igT cijA
c
µ

accordingly.
We would like to compute Green’s function using perturbation the-

ory. If we switch off the coupling, g = 0, then we are left with terms
which are quadratic in the fields, and we can compute the correspond-
ing path integral for the free action. We define,

L = Lfree + Linteracting, (268)

with
Lfree = L|g=0 .

Explicitly,

Lfree = −1

4

(

∂µA
a
ν − ∂νA

a
µ

)

(∂µAa,ν − ∂νAa,µ)− 1

2ξ

(

∂µAaµ
)

(∂νAaν)

+ (∂µη̄
a) (∂µη̄a)

+ψ̄i (iγµ∂µ −m)ψi (269)

It is convenient to use integration by parts and cast the free Lagrangian
in a “standard form”:

−1

2
(FieldA) Ô (FieldA) + ∂µ (. . .)

or, for terms with independent fields (appearing separately in the mea-
sure of the path-integral),

− (FieldA) Ô (FieldB) + ∂µ (. . .) .
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We have

Lfree = −1

2
AaµK

ab,µνAbν

−η̄aKabηb

−ψ̄iΛijψj
+∂µ (. . .) , (270)

with (∂2 ≡ ∂µ∂
µ)

Kab,µν = δab
[

−gµν∂2 +
(

1− 1

ξ

)

∂µ∂ν
]

, (271)

Kab = δab∂2, (272)

Λij = δij (m− i 6∂) . (273)

An essential step in order to compute the generating functional for
the free path-integral is to find the inverse of the above operators, i.e.
objects which diagonilize them in all indices. We define:

Kac
µρ(x)D

cb,ρν(x− y) = δabgνµδ
(4)(x− y),

Kac(x)Dcb(x− y) = δabδ(4)(x− y),

Λik(x)Skj(x− y) = δijδ(4)(x− y). (274)

Exercise: Solve these equations. The solutions are given next in the
text and it is easy to verify whether they are correct or not by insertibg
them above. However, it will be instructive to think how to find them
if nobody told you the answer!

We find that

Dab
µν(x) = δab

∫

d4k

(2π)4
e−ik·x

k2 + iǫ

[

gµν − (1− ξ)
kµkν
k2 + iǫ

]

(275)

Dab(x) = δab
∫

d4k

(2π)4
e−ik·x

k2 + iǫ
(−1) (276)

Sij(x) = δij
∫

d4k

(2π)4
e−ik·x

k2 −m2 + iǫ
(−1) ( 6k +m) . (277)

The generating functional for the free-Lagrangian is

Z0

[

Jψ, Jψ̄, Jη, Jη̄JA
]

=

∫

DψDψ̄DηDη̄DAµ exp
(

i

∫

d4x

[

− 1

2
AaµK

ab,µνAbν − η̄aKabηb − ψ̄iΛijψj

+Ja,µA Aaµ + J iψ̄ψ
i + ψ̄iJ iψ + Jaη̄ η

a + η̄aJaη

])

(278)
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where we have included independent sources for all fermion, anti-
fermion, ghost, anti-ghost, and gauge fields. We should keep in mind
that only the source Ja,µA for the gauge field is a bosonic (commut-
ing) variable; all other sources are Grassmann variables. We can now
“complete squares” by shifting the fields as,

Aa,µ(x) → Aa,µ(x) +

∫

d4yDab
µν(x− y)Jb,νA (y) (279)

ηa(x) → ηa(x) +

∫

d4yDab(x− y)Jbη(y) (280)

η̄a(x) → η̄a(x) +

∫

d4yJbη̄(y)D
ba(x− y) (281)

ψi(x) → ψi(x) +

∫

d4ySij(x− y)J jψ(y) (282)

ψ̄i(x) → ψ̄i(x) +

∫

d4yJ j
ψ̄
(y)Sji(x− y). (283)

We then obtain (with an undetermiend overall constant factor),

Z0

[

Jψ, Jψ̄, Jη, Jη̄, JA
]

= N exp

(

i

∫

d4xd4y

[

1

2
Ja,µA (x)Dab

µν(x− y)Jb,νA (y)

+Jaη̄ (x)D
ab(x− y)Jbη(y) + J iψ̄(x)S

ij(x− y)J jψ(y)

])

(284)

We will now deal with the interaction Lagrangian; this is defined
as

Linteraction = L − Lfree. (285)

We find

Linteraction = gψ̄iT aij 6Aaψj

−g (∂µη̄a) fabcAa,µηb
−2gfabcAb,µAc,ν

(

∂µA
a
ν − ∂νA

a
µ

)

−g
2

4
fabcfadeAbµA

c
νA

d,µAe,ν . (286)

The generating functional for the full theory can be obtained pertur-
batively, expanding in g,

Z
[

Jψ, Jψ̄, Jη, Jη̄, JA
]

= N exp

{

i

∫

d4zLinteraction
(

−i δ

δJA
, i

δ

δJψ
,−i δ

δJψ̄
, i

δ

δJη
,−i δ

δJη̄

)}

Z0

[

Jψ, Jψ̄, Jη, Jη̄, JA
]

, (287)
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where we must replace in the interaction Lagrangian the field variables
with functional derivatives with respect to their corresponding sources.

Exercise:

• Compute Z
[

Jψ, Jψ̄, Jη, Jη̄, JA
]

through O(g2) in the expansion
around g = 0.

• Compute the generating functional of connected diagrams

W
[

Jψ, Jψ̄, Jη, Jη̄, JA
]

= −i logZ
[

Jψ, Jψ̄, Jη, Jη̄, JA
]

through the same order.

• Compute the gauge-boson propagator through the same order

〈0,+∞|TAa,µ(x)Ab,ν(0) |0,−∞〉

• Transform this expression in momentum space
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5 BRST symmetry

We recall here the path-integral for a non-abelian gauge theory with
a fermion field,

Z ∼
∫

DAaµDψ̄iDψiDη̄aDηae
i
∫

d4x
[

LYM+Lfermion−
1
2ξ

(Ga(Aµa))2+η̄a∆a
]

,

(288)

where we have defined,

∆a(x) = −
∫

d4y

(

δGa(Aaµ(x))
δAcν(y)

Dcb
ν (y)

)

ηb(y). (289)

It is convenient to linearize the action in the gauge-fixing term. If we
introduce (yet) another (bosonic) field, wa, we can re-write,

∫

Dwaei
∫

d4x( ξ
2
wawa+waGa) =

∫

Dwae
i ξ
2

∫

d4x

[

(

wa+Ga

2

)2
−GaGa

ξ2

]

= Nxe
i
∫

d4x−GaGa

2ξ (290)

We will denote,
Lcl = LYM + Lfermion, (291)

the classical Lagrangian which satisfies local gauge-invariance. The
path-integral, up to a normalization, is equal to

Z =

∫

DAaµDψ̄iDψiDη̄aDηaDwaei
∫

d4x[Lcl+η̄
a∆a+waGa+ ξ

2
wawa].

(292)
If we want to go back to the original form of Z we simply need to
integrate out the field wa. The exponent is not gauge invariant, except
the term with the classical Lagrangian Lcl.

We find a closely related symmetry which is called Becchi-Rouet-
Stora; Tyutin or, shorter,BRST symmetry which leaves invariant not
only the classical Lagrangian but also the sum gauge-fixing and Fadeev-
Popov terms. The BRST symmetry transformations are gauge trans-
formations of a special form for the gauge boson Aaµ and fermion ψ
fields which enter the classical Lagrangian Lcl. the gauge boson Aaµ
and fermion ψ. The gauge parameter is made out of the ghost field
and a Grassmann variable. Specifically, the fermion transforms as:

δθψ = −iT a (θηa)ψ. (293)

This is equivalent to classical gauge transformation with the replace-
ment

θa(x) → θηa.
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where both η and the ghost field ηa are Grassmann variables. Of
course, their product is a bosonic variable as expected by a classical
gauge transformation. We take the parameter θ to be global

∂µθ = 0.

For the gauge boson, we require that the BRST transformations is
also a gauge transformation with gauge parameter θηa:

δθA
a
µ = −θ

g
Dab
µ η

b. (294)

Similarly, the anti-fermion field transforms as:

δθψ̄ = ψ̄iT a (θηa) .

Notice that the Grassmann variable entering here is η, so that we
perform the same gauge-transformation on all classical fields ψ, ψ̄, Aaµ.

Before we present the transformations for the remaining fields, we
state a characteristic property of the transformation: Two succes-
sive BRST transformations on an arbitrary function of fields
leave the function invariant (nilpotent transformation).

δθ2δθ1F (A,ψ, ψ̄, η, η̄) = 0. (295)

If we insist on this property, we obtain:

0 = δθ2 (δθ1ψ)

= δθ2 (−iT aθ1ηaψ)
= −iT aθ1 [(δθ2ηa)ψ + ηa(δθ2ψ)]

= −iT aθ1
[

(δθ2η
a)ψ + ηa

(

−iT bθ2ηbψ
)]

= −iT aθ1
[

(δθ2η
a)− iηaθ2η

bT b
]

ψ (296)

Equivalently,

T cδθ2η
c = iT bT cηbθ2η

c

❀ tr(T aT c)δθ2η
c = −iθ2tr(T aT bT c)ηbηc beware of Grassmann!

❀

δac

2
δθ2η

c = −iθ2tr
(

T aT bT c
) ηbηc − ηcηb

2

❀ δθ2η
c = −iθ2tr

(

T a
[

T b, T c
])

ηbηc

❀ δθ2η
c = f bcdtr(T aT d)ηbηc, (297)

Therefore we require the ghost field to transform as:

δθη
a =

θ

2
fabcηbηc. (298)
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Two successive transformations on the gauge field produce,

δθ2δθ1A
a
µ = −θ1

g
δθ2

[

∂µη
a − gfabcηbAcµ

]

= −θ1
g

[

∂µ (δθ2η
a)− gfabc

(

δθ2η
b
)

Acµ − gfabcηb
(

δθ2A
c
µ

)

]

= −θ1
g

[

Dab
µ (δθ2η

a) +
1

2
fabcηbθ2D

cd
µ η

d

]

= . . . = 0. (299)

Exercise:Fill the dots... Prove the above statement using the anti-
commutation of Grassmann variables and the Jacobi identity for the
structure constants

For the remaining two independent fields in the action of the path
integral, we have no unabiguous guidance in order to construct their
BRST transformations. We will make two very simple choices. We
perform no transformation on the auxiliary bosonic field,

δθw
a = 0.

For the anti-ghost we require that under a a BRST transformation it
gets shifted by a a constant.

δθη̄
a =

1

g
θwa.

This choice as we will see guarantees BRST invariance of the quantum
action. Notice that

δθ1δθ2 η̄
a = δθ1δθ2w

a = 0.

Let us now compactify the notation. We consider any field F from
{Aµ, ψ, ψ̄, η, η̄, w}. We will introduce the short-hand notation:

δθF ≡ θ(sF )

We have pulled an explicit prefactor of the BRST transformation pa-
rameter, and the notation sF denotes the remainder of the expression
after we transformed the field F . For example, we write

δθψ = −igT aθηaψ ❀ sψ = −igT aηaψ.

Notice that if the field F is a bosonic field then sF is Grassmannian
and vice versa. If we perform two consecutive BRST transformations,
we have:

δθ1δθ2F = θ1θ2s
2F.

Nilpotency means that:
s2F = 0. (300)
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Nilpotency is a property valid for a product of two variables as well.
Performing a BRST transformation on the product of two fields we
have:

δθ1(F1F2) = (δθ1F1)F2 + F1(δθ1F2)

θ1(sF1)F2 + F1θ1(sF2)

θ1 [(sF1)F2 ± F1(sF2)] , (301)

where the minus sign arises if F1 is a Grassmann variable. We have
used here that the field F and sF have always opposite spin-statistics.
If we perform a double BRST transformation on the product F1F2 we
then find,

δθ2δθ1(F1F2) = θ1δθ2 [(sF1)F2 ± F1(sF2)]

= θ1 [(sF1)θ2(sF2)± θ2(sF1)(sF2)]

= θ1θ2 [∓(sF1)(sF2)± (sF1)(sF2)]

= 0. (302)

We can continue in the same spirit. We find that:

δθ2δθ1(F1F2 . . . Fn) = 0. (303)

In fact every functional of these fields satisfies,

δθ2δθ1G[(F1, F2, . . . , Fn)] = 0.

We will return to this shortly.
We should investigate the effect of a BRST transforamtion on the

gauge fixing term Ga in the Lagrangian. Ga is a function of the gauge
field and we should use the chain-rule.

δθGa(Aaµ(x)) =

∫

d4y
δGa(x)
δAbµ(y)

δθA
b
µ(y)

= −1

g
θ

∫

d4y
δGa(x)
δAbµ(y)

Dab
µ η

b(y)

=
θ

g
∆a (304)

Let us now consider the variation:

δθ

[

η̄a
(

Ga + ξ

2
wa
)]

= (δθη̄
a)

(

Ga + ξ

2
wa
)

+ η̄a(δθGa)

=
θ

g

(

η̄a∆a + waGa + ξ

2
wawa

)

. (305)
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In other words, the non-classical part of the Lagrangian is already a
total variation under a BRST-transformation. Due to the property of
nilpotency, such terms remain invariant under a BRST-transformation.

δθ

[

Lcl + η̄a∆a + waGa + ξ

2
wawa

]

= (δθLcl)+gδθ
(

s

[

η̄a
(

Ga + ξ

2
wa
)])

= 0

(306)
We remind here that the classical-part of the Lagrangian is BRST-
invariant due to its gauge-invariance.
Exercise:Prove that the Jacobian of a BRST transformation is unit.
This completes a proof that the full path-integral is BRST-invariant.

The BRST symmetry provides us with the asymptotic states of
the S-matrix. Let us compute the S-matrix element

〈α| β〉 ,

in a two different gauges, G1 and G2, where the two gauge fixing con-
ditions differ by little:

G2 = G1 + δ̃G.
We require that the initial |β〉 and final 〈α| states are physical and
thus the same in both gauges:

〈α|G1
= 〈α|G2

, |β〉G1
= |β〉G2

.

The matrix-element is computed through the path integral Z, which
has an apparent but fake dependence on the gauge. A difference due
to the different gauge-fixing conditions shows up due to the change of
the action in the exponent of the path-integral. We will have:

δ̃Z = ZG2−ZG1 =

∫

DA . . . ei
∫

d4Lcl+gsK|G1−
∫

DA . . . ei
∫

d4Lcl+gsK|G2

Since we have considered infinitesimally different gauge-fixing condi-
tions, we have that:

δ̃Z = ZG1igsδ̃K.

Demanding that this difference has no physical consequences leads to a
selection criterion for physical states. Promoting δ̃K into an operator,
we would like that it yields a zero expectation value when inserted in
a matrix-element for the transition in between physical states:

0 = 〈out| sδ̃K |in〉 .

We can construct an operator Q which is the generator of the BRST
transformations for canonical fields.

δθ(Field) = i [θQ, F ield]± (307)
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where a commutator for a field with even spin and an anti-commutator
for a field with odd spin are understood with the± subscript: [A,B]± ≡
AB ±BA. Using the BRST generator we write:

〈out| sδ̃K |in〉 = 〈out|
[

Q, δ̃K
]

±
|in〉 = 〈out|QK |in〉 ± 〈out|KQ |in〉 .

The matrix-element is the same in all gauges if the above vanishes.
For this to happen, we must impose a condition on the states,

〈out|Q = Q |in〉 = 0. (308)

We have arrived to a selection criterion on asymptotic (in and out)
physical states. Physical in or out states necessarily must annihilate
the generator of BRST transformations.

Q |phys〉 = 0 . (309)

However, not all “in” or “out” states which annihilate Q need be
considered as physical. Specifically, there is a class of states, called
“BRST exact” which are of the form,

|exact〉 = Q |χ〉 , (310)

where |χ〉 in the right-hand side can be any other state. These do
not have a physical relevance due to the nilpotencly of the BRST
transformations. We can write:

0 = s(s F ield) =
[

Q, [Q,Field]∓
]

±
=
[

Q2, F ield
]

−
.

For the above to be satisfied for every field we need:

Q2 = 0.

Clearly, “BRST exact” states annihilate the generator Q,

Q |exact〉 = Q2 |χ〉 = 0 |χ〉 = 0. (311)

However, BRST exact states do not contribute to physical scatter-
ing matrix-elements due to the following. Assume a truly physical
state |phys〉 which is not an exact state. The matrix element for the
scattering to an exact state is zero. Indeed,

〈phys| exact〉 = 〈phys|Q |χ〉 = 0. (312)

Similarly, we find
〈

exact′
∣

∣ exact〉 =
〈

χ′
∣

∣Q2 |χ〉 = 0. (313)

In summary, consistency of canonical quantization and the path
integral necessitates that we select as physical in or out states the
ones that annihilate the generator Q of BRST transformations, mod-
ulo BRST exact states which do not contribute to physical matrix-
elements.
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5.1 Application to the free electromagnetic field

If we turn off the coupling constant g = 0, non-abelian gauge theories
reduce to the free electrodynamics. In and out states of the S-matrix
are constructed from the requirement that asymptotic states at times
very far in the future and the past are states of the interaction-free
Lagrangian. It is therefore very useful to study the BRST symmetry
and its consequences due to Eq. (309) on free photon states.

The generating functional for electrodynamics in the Lorentz gauge
takes the form

Z =

∫

DAµDη̄DηDw exp

{

i

∫

d4x

[

−1

4
FµνF

µν +
ξ

2
w2 + w∂µA

µ − η∂2η

]}

,

(314)

The BRST transformations take a simple enough form even if we
integrate out the auxilliary w field, working with a Lagrangian form
which is non-linear in the gauge-fixing condition,

Z =

∫

DAµDη̄Dη exp
{

i

∫

d4x

[

−1

4
FµνF

µν − (∂µA
µ)2

2ξ
− η̄∂2η

]}

.

(315)

The classical Euler-Lagrange equation of motion for the auxiliary field
w is

w = −1

ξ
∂µA

µ (316)

Notice that we can obtain the part-integral with the field integrated
out in Eq. (315) by substituting in the path-integral of Eq. (314) the
equation of motion of Eq. (316).

The BRST transformations (with the w field integrated out) are

δθη = 0, δθη̄ =
θ

gξ
∂µA

µ, δθA
µ = −θ

g
∂µη. (317)

Indeed, we can verify that

δθ

[

(∂µA
µ)2

2ξ
+ η̄∂2η

]

=
∂µA

µ

ξ
∂µδθA

µ + (δθη̄) ∂
2η

= −∂µA
µ

gξ
∂2η +

∂µA
µ

gξ
∂2η = 0 . (318)

73



We now write the quantum fields as a superposition of plane waves,

Aµ(x) =

∫

d3k

(2π)32ωk

∑

λ

[

ǫµλ(k)aλe
ik·x + ǫµλ(k)

∗a∗λe
−ik·x

]

(319)

η̄(x) =

∫

d3k

(2π)32ωk

[

beik·x + b∗e−ik·x
]

(320)

η(x) =

∫

d3k

(2π)32ωk

[

ceik·x + c∗e−ik·x
]

, (321)

where the operators b, b∗ and c, c∗ are not necessarily Hermitian con-
jugates. Following a canonical quantization programme (see QFT I
lectures) the operators a∗λ are creation operator of photon states with
polarization λ,

a∗λ |0〉 = |γλ〉 . (322)

Similarly, the b∗ and c∗ operators generate antighost and ghost states
in the Fock space, correspondingly.

b∗ |0〉 = |η̄〉 , c∗ |0〉 = |η〉 (323)

We will select the polarization vectors ǫµλ are polarization to satisfy
the normalization

ǫλ · ǫ∗λ′ = gλλ
′

. (324)

Specifically, we will take the zeroth polarization to be “scalar”, point-
ing to the time direction,

ǫµ0 (k) =









1
0
0
0









, (325)

the third polarization to be “longitudinal”, pointing in the direction
of motion of the photon,

ǫµ3 (k) =
1
∣

∣

∣

~k
∣

∣

∣









0
k1

k2

k3









, (326)

and the other two polarization vectors ǫµ1,2(k) to be transverse to the
time and longitudinal directions.
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Substituting the plane wave expansion of the fields into the BRST
transformations of Eq. (317), we obtain (exercise):

[Q, aλ] = − k · ǫλ
ǫλ · ǫ∗λ

c (327)

[Q, a∗λ] =
k · ǫλ
ǫλ · ǫ∗λ

c∗ (328)

{Q, b} =
1

ξ

∑

λ

(ǫλ · k) aλ, (329)

{Q, b∗} =
1

ξ

∑

λ

(ǫλ · k) a∗λ, (330)

{Q, c} = 0. (331)

{Q, c∗} = 0. (332)

(333)

Let us multiply both sides of the three equations which contain cre-
ation operators above and use that Q |0〉 = 0. We obtain

Q |γλ〉 =
k · ǫλ
ǫλ · ǫ∗λ

|η〉 (334)

Q |η̄〉 =
1

ξ

∑

λ

(ǫλ · k) |γλ〉 (335)

Q |η〉 = 0 . (336)

For a transverse photon (λ = 1, 2), we have from Eq. (334) that

Q |γ1〉 = Q |γ2〉 = 0. (337)

These states annihilate the BRST generator and we will consider them
to be physical. For a scalar or a longitudinal photon, Eq. (334) gives

Q |γ0〉 = Q |γ3〉 = k0 |η〉 6= 0. (338)

Therefore, purely longitudinal or purely scalar photon states do not
annohilate the BRST generator and they are unphysical.

From Eq. (338), we see that there is a linear combination of a scalar
and a longitudinal photon which annihilates the BRST operator,

Q [|γ0〉 − |γ3〉] = 0. (339)

However, this state turns out to be “BRST exact” and it does not
contribute to the S-matrix. Indeed, writing explicitly the surviving
terms in the sum of the right-hand side of Eq. (335), we find

k0

ξ

[

|γ0〉 − |γ3〉
]

= Q |η̄〉 . (340)
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Reading Eq. (338) as

|η̄〉 = 1

k0
Q |γ0〉 , (341)

we find that in our out states with ghost are BRST exact and do not
contribute to the S-matrix.

Finally, the Lagrangian has a symmetry which preserves the ghost
number. This symmetry dictates that ghost states cannot appear alone
and one should have both a ghost and an antighost. Due to the latter,
external ghosts also do not contribute to scattering.

Suggested further reading:
“A Brst Primer”
D. Nemeschansky, C. R. Preitschopf and M. Weinstein.
10.1016/0003-4916(88)90233-3
Annals Phys. 183, 226 (1988).
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END OF WEEK 6
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6 Quantum effective action and the ef-

fective potential

We have started to collect essential tools for the renormalization of
gauge field theories by proving the existence of the BRST symmetry.
In the following lectures we will convince ourselves that gauge theories,
such as QCD, are renormalizable. It turns out that for renormalization
we need to worry only about one-particle-irreducible (1PI) Feynman
diagrams. If these are rendered finite, then the full S-matrix elements
will possess no other ultraviolet singularities. In this Section, we will
introduce a new functional, the quantum effective action, which gen-
erates only 1PI graphs. The quantum effective action is also a very
important tool in order to define the ground state of the quantum field
theory, and to study symmetry breaking via quantum effects.

We have worked with the generating functional

Z[J ] =

∫

Dφei(S[φ]+
∫

d4xJ(x)φ(x));

Green’s functions are obtained via:

〈0|Tφ(x1) . . . φ(xn) |0〉 =
1

in
1

Z[J ]

δnZ[J ]

δJ(x1) . . . δJ(xn)

∣

∣

∣

∣

J=0

.

We found that if we require only connected graphs to be generated,
which are relevant for computing S-matrix elements, we should use
the generating functional W [Z], with

Z[J ] = eiW [J ]
❀W [J ] = −i logZ[J ].

Then,

〈0|Tφ(x1) . . . φ(xn) |0〉CONNECTED =
1

in−1

δnW [J ]

δJ(x1) . . . δJ(xn)

∣

∣

∣

∣

J=0

.

An important Green’s function is the one-point function

〈0|φ |0〉 (x) = δW [J ]

δJ(x)

∣

∣

∣

∣

J=0

,

which we typically find it to vanish for physical fields that can create
asymptotic states. However, there are situations that a field (external
field) fills the vacuum 〈0|φ |0〉 (x) 6= 0. Such a field cannot be in the
final or initial state of a scattering process, but it can be a background
where scattering of other fields takes place. For example, the Higgs
field may have such a role. The field vacuum expectation value does
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not have to vanish either when the corresponding source term in the
functional is not set to zero. In the presence of sources, we have

〈φ〉J ≡ 〈0|φ |0〉J (x) =
δW [J ]

δJ(x)
.

The above equation defines a relation between the source J(x) and
the vacuum expectation of the corresponding field. We can then trade
source functions in the path-integral and in functional derivatives with
the corresponding vev’s (vacuum expectation values).

〈φ〉J = function(J), J = function−1(〈φ〉J).

Considering it as differential equation, we solve

W [J ] =

∫

d4x 〈φ〉j (x)J(x) + Γ [〈φ〉J ] (342)

where the last term is a constant of integration and does not depend on
the source J(x). This constant of integration is the quantum effective
action

Γ [〈φ〉J ] =W [J ]−
∫

d4xJ(x) 〈φ〉J (x). (343)

and it is a functional of field vacuum expectation values with very
interesting properties. From the above we find the simple equation,

δΓ [〈φ〉]
δ 〈φ〉J (x)

= −J(x). (344)

Recall the role of the classical action S[φ]. The equations of motion
for the classical field are found by requiring that the action takes a
minimal value

δS[φ]

δφ

∣

∣

∣

∣

φ=φclassical

= 0.

At the quantum level, fields are promoted into operators. The ana-
logue of the classical fields in quantum field theory is the expectation
value of the field operator in the state, usually ground state, of the
system. In the absence of sources, the quantum effective action yields
the equations of motion for the average values of quantum fields:

δΓ [〈φ〉]
δ 〈φ〉0 (x)

= 0. (345)
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6.1 The quantum effective action as a gener-
ating functional

We may take a next step and promote the quantum effective action to
generate new Green’s functions. We use it in the exponent of a path
integral:

eiWΓ[g,J ] =

∫

D 〈φ〉 e
i
g{Γ[〈φ〉]+

∫

d4xJ(x)〈φ〉(x)}. (346)

We can establish perturbation theory using this path integral. It is
possible to derive propagators by identifying the quadratic terms in
the action and inverting the corresponding operator. We will not do
this explicitly here; we are rather interested in counting powers of the
arbitrary constant g.

Every propagator in a graph (since it is produced by inversion),
will contribute a single power of g. Vertices are derived from the non-
quadratic terms in the Lagrangian without any inversion. Thus, each
vertex will contribute a power 1/g to a Feynman graph. For a graph
with NI propagators and NV vertices the overall power of the coupling
is:

gNI−NV .

All connected graphs generated by WΓ
5 with NI propagators and NV

vertices have L = 1 +NI −NV loops. It only takes trying a few ex-
amples out in order to convince ourselves about the above statement.
Otherwise, assign NI unconstrained momenta for each propagator.
Each vertex will provide one constraint, of which one combination is
an overall delta function stating that the sum of momenta of incoming
an outgoing particles is zero. NI − NV + 1 momenta are left uncon-
strained and they are thus loop momenta. The power of g for a graph
is therefore determined exclusively from the number of loops that it
posseses:

gL−1.

We can then perform an expansion:

WΓ[g, J ] =
∞
∑

L=0

gL−1W
(L)
Γ [J ]. (347)

Of course, we can still be interested in the case with g = 1. What the
above expression tells us,

WΓ[1, J ] =

∞
∑

L=0

W
(L)
Γ [J ], (348)

5they are connected because WΓ is the logarithm of a path integral
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is that the generating functional WΓ[1, J ] can be decomposed as a

sum of independent generating functionals W
(L)
Γ [J ] corresponding to

different loop orders. The functionals W
(L)
Γ are independent in the

sense that shifts in the measure do not mix them; symmetries of the
full action should therefore be symmetries of each one of the loop
contributions separately.

Let us explore the possibility of a very small parameter g. We can
expand the exponent in the path integral around the value:

〈φ〉 = 〈φ〉J + η, with
δΓ[〈φ〉]
δ 〈φ〉J (x)

= −J(x).

We have for the exponent of the path integral:

Γ[〈φ〉] +
∫

d4xJ 〈φ〉 = Γ[〈φ〉J ] +
∫

d4xJ 〈φ〉J +

+

∫

d4xη(x)

[

δΓ[〈φ〉]
δ 〈φ〉J

+ J

]

+

∫

d4xd4yη(x)
δ2Γ[〈φ〉]

δ 〈φ〉J (x)δ 〈φ〉J (y)
η(y) + . . .

(349)

The linear term in η vanishes. We therefore have,

Γ[〈φ〉]+
∫

d4xJ 〈φ〉 =
{

Γ[〈φ〉J ] +
∫

d4xJ 〈φ〉J
}

+O(η2) =W [J ]+O(η2).

(350)
We then have,

e
i
g

∑∞
L=0 g

LW
(L)
Γ [J ]

= e
i
g
W [J ]

∫

Dηe
i
g

∫

O(η2). (351)

The path integral over η can be computed perturbatively. The factor
1
g can be eliminated by redefining η = η′g1/2. Then we are left with a
“canonically” normalized quadratic part. The important observation
to make is that this perturbative expansion will start at order O(g0)
the earliest. After taking the logarithm of both sides of the above
equation, and by comparing the 1

g coefficients, we find that:

W [J ] =W
(0)
Γ [J ]. (352)

In other words, the full generating functional of connected graphs
W [J ] can be obtained by a generating function where we have replaced
the classical action with the quantum effective action:

−i log
∫

Dφei[S[φ]+
∫

d4xJ(x)φ(x)] =

∫

TREE

Dφei[Γ[φ]+
∫

d4xJ(x)φ(x)],

(353)
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and keeping only the tree-contributions (denoted with the sub-
script in the integral symbol).

This is a remarkable result; it states that it is possible to re-
organize the perturbative expansion, which gives rise to both tree
and loop graphs, into a new expansion where only tree-graphs appear.

Of course, W [J ] and W
(0)
Γ [J ] are equal. The corresponding perturba-

tive expansions are therefore equivalent; the apparent lack of loops in

the expansion from the path integral wth the effective action W
(0)
Γ [J ]

should be explained by a re-writing of the usual expansion from W [J ]
with modified vertices and propagators. These new exotic vertices and
propagators should be “dressed” to account for all loop effects that
we have encountered in the path integral of the classical action.

The above result is of great importance for renormalization. “Trees”
do not have any ultraviolet divergences. Therefore, we only need to es-
tablish a renormalization procedure which renders finite the “dressed”
propagators and vertices of the quantum effective action.

Let us take the “tree-only” statement seriously, and write down
all possible graphs that we might have for two-, three-, and four-point
functions. This will be sufficient to establish a pattern for the Green’s
functions derived from the effective action. Actually, we can only have
a very small number of tree-graphs for small number of external legs.

Figure 1: Possible tree-graphs for two-, three-, and four-point functions.
This very small number of connected graphs, which arises from the pertur-
bative expansion of the path integral WΓ[J ] with the effective action Γ[〈φ〉],
should contain in the propagators and vertices all loop effects found in the
usual path integral W [J ].
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We can figure out the propagators and vertices of the tree dia-
grams of Fig 1 by comparing with the usual Feynman diagrams which
we obtain by expanding W [J ]. The two-point function in Fig 1 must
be equivalent to the full propagator, computed at all orders in pertur-
bation theory from W [J ]:

= ( this is the full propagator )

= + 1PI + 1PI 1PI

+ 1PI 1PI 1PI + . . . (354)

where we sum all possible Feynman diagrams with two external legs.
We can write the sum of all graphs contributing to the full propa-
gator as a geometric series of one-particle-irreducible two-point loop
Feynman diagrams.

1PI = + + + . . .(355)

One-particle irreducible diagrams are these which cannot be separated
into two diagrams after we cut one of the propagators. Knowledge of
the 1PI propagator graphs is sufficient to determine the full propaga-
tor. Let us work, as an example, with a scalar field theory. We denote,
in Fourier-space,

1PI =
i

p2 −m2

(

−iΣ(p2)
) i

p2 −m2
.

From Eq. 354 we find,

= =
i

p2 −m2

∞
∑

n=0

[

Σ(p2)

p2 −m2

]n

=
i

p2 −m2 − Σ(p2)
.

Indeed, the full propagator is then computed using only 1PI graphs.
We proceed to compare the three-point Green’s functions of Fig. 1

with the result of the full perturbative expansion from W [J ]. We now
that the propagators connected to the triple-vertex are full propaga-
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tors.

=

The triple vertex must then be only the sum of all 1PI three-point
functions.

= + + +

Three-point graphs which are one-particle reducible, always contribute
a two-point subgraph to the full propagators of the external legs and
an 1PI 3-point subgraph to the vertex.

We can now convince ourselves easily that the four point vertex in
Fig. 1 contains all one-particle irreducible four point functions.

The same of course holds for higher multiplicities. Our conclusion is
that we can always rearrange the sum of graphs in the perturbative
exansion, derived viaW [J ] and containing both loops and trees, to an
equivalent “tree-level graphs only” expansion where the propagator
is the full “two-point” function and the vertices are all one-particle
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irreducible graphs with the same number of external legs as in the
vertex.

The important statement is that W [J ] = W
(0)
Γ [J ] and that all

Green’s functions can be obtained automatically from the tree-level
expansion of a generating functional with the effective action replacing
the classical action. Let us verify that the two, three, and four point
functions are derivable from the effective action Γ[J ].

We first introduce the short notation

〈φ〉J (x) ≡ φx, J(x) ≡ Jx.

We start from the equation,

δΓ

δφx
= −Jx.

Differentiating with a source, we obtain:

δ(x− y) = − δ

δJy

δΓ

δφx

= −
∫

d4z
δφz
δJy

δ2Γ

δφzδφx

=

∫

d4z

[

δ2Γ

iδφxδφz

] [

δ2W

iδJzδJy

]

. (356)

From the above we see that

1

i

δ2Γ

δφxδφy

is the inverse of the full two-point function

∆(x1 − x2) ≡ 〈0|Tφ(x1)φ(x2) |0〉 =
1

i

δ2W

δJxδJy
.

Before we compute the three-point function we need two tricks.

- Chain rule:

δ

δJx
=

∫

d4z
δφz
δJx

δ

δφz

=

∫

d4z
δ2W [J ]

δJxδJz

δ

δφz
= i

∫

d4z∆(x− z)
δ

δφz
. (357)

- Differentiation of an inverse matrix

1 =MM−1

❀ 0 =
∂
(

MM−1
)

∂λ
=
∂M

∂λ
M−1 +M

∂M−1

∂λ

❀

∂M−1

∂λ
= −M−1∂M

∂λ
M−1. (358)
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We have:

=
1

i2
δ3W [J ]

δJx1δJx2δJx3

=

∫

d4y1∆(x1 − y1)
δ

δφy1

[

δ2W

iδJx2δJx3

]

=

∫

d4y1∆(x1 − y1)
δ

δφy1

[

δ2Γ

iδφx2δφx3

]−1

=

∫

d4y1d
4y2d

4y3∆(x1 − y1)

[

δ2Γ

iδφx2δφy2

]−1
δ3Γ

iδφy1δφy2δφy3

[

δ2Γ

iδφy3δφx3

]−1

=

∫

d4y1d
4y2d

4y3∆(x1 − y1)∆(x2 − y2)∆(x3 − y3)
δ3Γ

iδφy1δφy2δφy3
(359)

Now we may compare the graph on the lhs and the rhs of this equa-
tion. We have explicitly found that the full three-point function is the
convolution of propagators, one for each external leg, and the third
derivative of the effective action. From our earlier discussion we now
that after we factor out full propagators for the external legs, the
remainder is the sum of one-particle irreducible three-point diagrams.

Exercise: Prove that

δ4Γ

iδφy1δφy2δφy3δφy4

is the sum of 1PI 4-point functions.
In summary, we can deduce from the Quantum Effective Action

all physical predictions in a quantum field theory.

• The second derivative of Γ[〈φ〉] is the inverse propagator. The
zeros of the inverse propagator yield the mass values of the phys-
ical particles in the theory.

• Higher derivatives of the effective action are 1PI Green’s func-
tion. Connecting them with full propagators to from trees we can
derive all connected amplitudes which are required for S-matrix
element computations.

Additionally, solving the equation

δΓ

δ 〈φ〉 = 0

yields the values of vevs where the effective action is minimal. This will
serve to define the true ground-state of the theory. The location of the
minimum will also reveal whether any symmetries of the Lagrangian
are broken spontaneously.
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6.2 The effective potential

We have just observed that by differentiating the effective action
functional with respect to the field vevs, we generate one-particle-
irreducible Feynman diagrams. All functional derivatives of Γ[〈φ〉] are
therefore represnted in terms of Feynman diagrams; if we could com-
pute all these diagrams we could compute the full effective action by
summing up all the terms of a Taylor series expansion.

Specifically, we can expand

Γ [〈φ〉] =

∞
∑

n=1

1

n!

∫

d4x1 . . . d
4xn

δΓ [〈φ〉]
δ 〈φ(x1)〉 . . . δ 〈φ(xn)〉

〈φ(x1)〉 . . . 〈φ(xn)〉

=

∞
∑

n=1

i

n!

∫

d4x1 . . . d
4xn Γ

(n)(x1, . . . , xn) 〈φ(x1)〉 . . . 〈φ(xn)〉 ,

(360)

where

Γ(n)(x1, . . . , xn) ≡
1

i

δΓ [〈φ〉]
δ 〈φ(x1)〉 . . . δ 〈φ(xn)〉

. (361)

are one-particle-irreducible Green’s functions (in coordinate space).
We consider the case where the ground state (vacuum) is transla-

tion invariant, i.e a constant in space-time. There are situations where
this is not true (instantons), however the space-time blind vacuum case
is interesting and common. We then have,

〈φ(x)〉 = constant ≡ φ. (362)

The Green’s functions simplify if we use a Fourier transformation (
momentum space),

∫

d4x1 . . . d
4xnΓ

(n)(x1, . . . , xn) 〈φ(x1)〉 . . . 〈φ(xn)〉

= φn
∫

d4x1 . . . d
4xnΓ

(n)(x1, . . . , xn)

= φn
∫

d4x1 . . . d
4xn

∫

d4k1
(2π)4

. . .
d4kn
(2π)4

e−ik1x1 . . . e−iknxn(2π)4δ(4)(k1 + k2 + . . .+ kn)

×Γ̃(n)(k1, . . . , kn)

= φn
∫

d4k1 . . . d
4knδ

(4)(k1) . . . δ
(4)(kn)(2π)

4δ(4)(k1 + k2 + . . .+ kn)

×Γ̃(n)(k1, . . . , kn)

= φn(2π)4Γ̃(n)(0, 0, . . . , 0)δ(4)(0). (363)
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Notice that we have explicitly shown the delta-function which imposes
momentum conservation. The multiple integrations over space-time
xi are simple because of the assumption of x-independent vev φ. The
factor

(2π)4δ(0) =

∫

d4xe−i0·x =

(∫

d4x

)

.

We then have for the effective action,

Γ[φ] =

(∫

d4x

) ∞
∑

n=1

φn

n!
Γ̃(n)(0, 0, . . . , 0). (364)

The effective potential is defined from the effective action, factoring
out the space-time volume:

Veff(φ)] ≡ − Γ[φ]
(∫

d4x
) (365)

We obtain:

Veff(φ) = −
∑

n=1

φn

n!
Γ̃(n)(0, 0, . . . , 0). (366)

Therefore, the recipe to compute the effective potential is:

• Compute all 1PI Green’s fucntions with increasing number of ex-
ternal legs in momentum-space and setting all external momenta
to zero.

• For each external leg include a power of the classical vev of the
corresponding field.

• Sum the series up without forgetting to include the i/n! from
the Taylor series expansion.

Let us consider the Lagrangian of a real scalar field with a quartic
interaction,

L =
1

2
(∂µφ)

2 − m2

2
φ2 − λ

4!
φ4. (367)

A computation of the effective potential including all orders in pertur-
bation theory is impossible. We can compute the effective potential
easily in the tree and one-loop approximation.

We observe that the only two 1PI Green’s functions that we can
write in the tree approximation are the 2-point (amputated propaga-
tor) and 4-point (vertex). From Eq. 366 we find,

V 00tree
eff = +

m2

2
φ2 +

λ

4!
φ4. (368)

It turns out that the effective potential at tree-level is the same as the
potential of the classical Lagrangian.

The 1-loop computation of the effective potential will be discussed
in the exercise class.
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7 Symmetries of the path integral and

the effective action

Our guiding principle in constructing realistic theories for particle in-
teractions is invariance of the classical action under certain symme-
tries (e.g. BRST symmetry for Yang-Mills theories). Symmetries of
the classical action S may not be automatically symmetries of the ef-
fective action Γ. However, the effective action Γ satisfies very general
equations (Slavnov-Taylor identities) due to these classical symmetry
constraints.

7.1 Slavnov-Taylor identities

Consider a theory of φi interacting fields with arbitrary (bosonic or
fermionic) spin-statistics. We assume that this theory is symmetric
under an infinitesimal symmetry transformation:

φi → φi
′ = φi + ǫFi(x, φi),

where ǫ is a small parameter and F i is usually an ordinary function
of the fields φi and their derivatives. Then, we require that both the
action and the path-integral measure of the fields are invariant under
this transformation:

S[φi + ǫFi(x, φi)] = S[φi]

D (φi + ǫFi(x, φi)) = Dφi.

After transforming the fields, the generating path-integral is

Z[Ji] =

∫

Dφ′ieiS[φ
′
i]+i

∫

d4xφ′iJi

=

∫

D (φi + ǫFi(x, φi)) e
iS[φi+ǫFi(x,φi)]+i

∫

d4x(φi+ǫFi(x,φi))Ji

=

∫

DφieiS[φi]+i
∫

d4x(φi+ǫFi(x,φi))Ji .

We can now expand in the small parameter ǫ,

Z[Ji] =

∫

DφieiS[φi]+i
∫

d4xφiJi
(

1 + iǫFi(x, φi) +O(ǫ2)
)

= Z[Ji] + iǫ

∫

Dφi
(∫

d4yFi(y, φi)Ji(y)

)

eiS[φi]+i
∫

d4xφiJi

❀

∫

Dφi
(∫

d4yFi(y, φi)Ji(y)

)

eiS[φi]+i
∫

d4xφiJi = 0, (369)
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or, dividing by the path integral,

∫

d4y

[

∫

DφiFi(y, φi)eiS[φi]+i
∫

d4xφiJi

Z[Ji]

]

Ji(y) = 0 (370)

In the square brackets we recognize the average of the transformation
over all field configurations,

〈Fi(y, φi)〉J ≡
∫

DφiFi(y, φi)eiS[φi]+i
∫

d4xφiJi

Z[Ji]
. (371)

We then find the identity,
∫

d4y 〈Fi(y, φi)〉J Ji(y) = 0, (372)

concluding that if there exists an infnitesimal symmetry transforma-
tion of the classical action, then there is a constraint on the “average”
value of the transformation. Eq. 372 depends on abritrary sources, and
by differentiating multiple times with the sources, we can obtain an in-
finite number of identities. These are called Slavnov-Taylor identities;
we shall consider an example soon.

7.2 Slavnov-Taylor identities in QED

We now consider an example of Slavnov-Taylor identities in QED. The
classical Lagrangian is, in the Lorentz gauge,

L = −1

4
FµνF

µν + ψ̄ (i 6D −m)ψ − 1

2λ
(∂µA

µ)2 . (373)

The corresponding path integral is,

Z [Jµ, ρ̄, ρ] =

∫

DAµDψ̄Dψei
∫

d4x[L+AµJµ+ψ̄ρ+ρ̄ψ]. (374)

An infinitesimal local gauge transformation is:

Aµ → Aµ −
1

q
∂µΘ(x),

ψ → (1− iqΘ(x))ψ,

ψ̄ → (1 + iqΘ(x))ψ̄.

The path integral measure is invariant under the gauge transforma-
tion. In the integrand of the path-integral exponent, we can identify
a part which is invariant under these transformations, while the re-
maining, which includes the gauge-fixing term and the source term, is
not invariant.

Lnon−invariant = − 1

2λ
(∂µA

µ)2 +AµJµ + ψ̄ρ+ ρ̄ψ. (375)
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By performing a gauge-transformation on the path-integral we can
derive, as before, the Slavnov-Taylor identity,

∫

d4x 〈δLnon−invariant〉 = 0. (376)

We can work out what is the change in the non-invariant part of the
Lagrangian. The gauge-fixing transforms as:

− 1

2λ
(∂µA

µ)2 → − 1

2λ

[

∂µ

(

Aµ − 1

q
∂µΘ

)]2

= − 1

2λ
(∂µA

µ)2 +
1

qλ
∂µA

µ∂2Θ(x) +O
(

Θ2
)

❀ δ

(

− 1

2λ
(∂µA

µ)2
)

=
1

qλ
∂µA

µ∂2Θ(x). (377)

Adding the variation of the source terms, we obtain:

δLnon−invariant =
1

qλ
∂µA

µ∂2Θ(x)−iqΘ(x)ρ̄ψ+iqΘ(x)ψ̄ρ−1

q
Jµ∂µΘ(x).

(378)
The Slavov-Taylor identity is:

∫

d4x

〈

1

qλ
∂µA

µ∂2Θ(x)− iqΘ(x)ρ̄ψ + iqΘ(x)ψ̄ρ− 1

q
Jµ∂µΘ(x)

〉

= 0

❀

∫

d4x

[

1

qλ
∂µ 〈Aµ〉 ∂2Θ(x)− iqΘ(x)ρ̄ 〈ψ〉+ iqΘ(x)

〈

ψ̄
〉

ρ− 1

q
Jµ∂µΘ(x)

]

= 0

❀

∫

d4xΘ(x)

[

1

λ
∂µ∂

2 〈Aµ〉 − iq2ρ̄ 〈ψ〉+ iq2
〈

ψ̄
〉

ρ+ ∂µJ
µ

]

= 0, (379)

where we have used integration by parts. The above should be valid
for arbitrary Θ(x), therefore the kernel of the integration in the square
brackets should be identically zero.

1

λ
∂µ∂

2 〈Aµ〉 − iq2ρ̄ 〈ψ〉+ iq2
〈

ψ̄
〉

ρ+ ∂µJ
µ = 0. (380)

Substituting vacuum expectation values with functional derivatives of
the path-integral for connected graphs, W = −ilnZ, we write:

1

λ
∂µ∂

2 δW

δJµ
− iq2ρ̄

δW

δρ̄
− iq2

δW

δρ
ρ+ ∂µJ

µ = 0, (381)

where the functional derivatives are left derivatives for the fermionic
sources.
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Eq. 381, provides constraints for Green’s functions in QED at all
orders in perturbation theory. We find the simplest example, by differ-
entiating this equation with a photon source and then set all sources
to zero,

δ

δJν(y)

(

1

λ
∂µ∂

2 δW

δJµ
− iq2ρ̄

δW

δρ̄
− iq2

δW

δρ
ρ+ ∂µJ

µ

)∣

∣

∣

∣

J,ρ,ρ̄=0

= 0,

❀

1

λ
∂µ∂

2 δ2W

δJµ(x)δJν(y)

∣

∣

∣

∣

J,ρ,ρ̄=0

+ ∂µδ(x− y) = 0.

❀

1

λ
∂µ∂

2 〈0|TAµ(x)Aν(y) |0〉 = −∂µδ(x− y). (382)

We now write the Fourier representations,

δ(x− y) =

∫

d4k

(2π)4
e−ik(x−y),

and

〈0|TAµ(x)Aν(y) |0〉 =
∫

d4k

(2π)4
e−ik(x−y)Dµν(k).

Substituting into Eq. 382 we find that the photon propagator in mo-
mentum space should satisfy,

kµD
µν(k) = λ

kν

k2
(383)

We can write, in complete generality,

Dµν = A(k2)gµν +B(k2)
kµkν
k2

. (384)

Substituting in Eq. 383, we find

A(k2) +B(k2) =
λ

k2
. (385)

Thus, the photon propagator in momentum space has the form,

Dµν(k) = A(k2)

(

gµν − kµkν

k2

)

+
λ

k2
kµkν

k2
(386)

This is a result valid at all orders in perturbation theory.
Notice that the term which depends on the gauge-fixing parameter

is fully known. We can compare this with the result at leading order
in perturbation theory,

Dµν(k) =
−1

k2

(

gµν − kµkν

k2

)

+
λ

k2
kµkν

k2
+O(g2). (387)
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We can see that the gauge-fixing contribution is accounted fully in
the leading order result, and therefore it is not modified at higher
orders in perturbation theory. Higher order corrections modify only
the function A(k2). For this reason, the gauge-fixing parameter λ does
not receive any renormalization.

A second important observation to make is that the part of the
propagator which does not depend on λ,

Dµν
T = A(k2)

(

gµν − kµkν

k2

)

,

is transverse to the photon-momentum. Indeed, we easily find that

Dµν
T (k)kµ = 0.

7.3 Symmetry constraints on the effective ac-
tion

The generating Slavnov-Taylor identity of Eq. 372 identity tells us
that there exists a symmetry for the effective action. Substituting

Ji(y) = − δΓ

δ 〈φi(y)〉J
,

we obtain:
∫

d4y 〈Fi(y, φi)〉J
δΓ

δ 〈φi(y)〉J
= 0. (388)

Equivalently,

Γ [〈φi〉J ]
ǫ

+

∫

d4y 〈Fi(y, φi)〉J
δΓ

δ 〈φi(y)〉J
=

Γ [〈φi〉J ]
ǫ

❀ Γ [〈φi〉J ] + ǫ

∫

d4y 〈Fi(y, φi)〉J
δΓ

δ 〈φi(y)〉J
= Γ [〈φi〉J ]

❀ Γ [〈φi〉J + ǫ 〈Fi(y, φi)〉J ] = Γ [〈φi〉J ] +O
(

ǫ2
)

. (389)

Therefore, the effective action is symmetric under the transformation

〈φi〉 → 〈φi〉′ = 〈φi〉+ ǫ 〈Fi (φi)〉 . (390)

We recall that the classical action is symmetric under the transforma-
tion

φi → φ′i = φi + ǫFi (φi) . (391)

Are these two transformations the same? Otherwise, is it Fi =
〈Fi〉? In general they are not! The symmetries of the classical action
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are usually no symmetries of the quantum effective action. Consider
an example of a classical action symmetric under a field transformation

φ(x) → φ(x) + ǫφ2(x)

The quantum action should be symmetric under the transformation

〈φ(x)〉 → 〈φ(x)〉+ ǫ
〈

φ2(x)
〉

.

Given that
〈φ(x)〉2 6=

〈

φ2(x)
〉

,

the two transformations are different.
Nevertheless, we can identify many symmetries in classical actions

for realistic field theories which are linear:

Fi[φi, x] = ci(x) +

∫

d4yT ij(x, y)φj(y). (392)

The equivalent symmetry transformation for the effective action is

〈Fi[φi, x]〉 =

〈

ci(x) +

∫

d4yT ij(x, y)φj(y)

〉

= ci(x) +

∫

d4yT ij(x, y) 〈φj(y)〉

= Fi[〈φi〉 , x], (393)

and it is identical to the classical transformation. It is usefull to
remember that linear symmetry transformations of the classical
action, are automatically symmetry transformations of the
effective action.

7.4 Contraints on the effective action from BRST
- The Zinn-Justin equation

The BRST transformations are not linear; therefore they are only a
symmetry of the classical action 6 and not of the effective action. Nev-
ertheless, the effective action is constrained by the BRST symmetry
of the classical Lagrangian (Eq. 372). For these nillpotent transfor-
mations Eq. 372 takes a very special form, the so called Zinn-Justin
equation.

We start with a classical action S[φi] of fields φi which is symmetric
under the BRST transformation

δθφi = θBi. (394)

6From now on, by “classical action” for a gauge theory we mean the action obtained
after gauge-fixing using the Fadeev-Popov method.
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Since Bi is nilpotent we also have

δθ′δθφi = 0

❀ δθ′Bi = 0 (395)

We realize that, because of Eq. 395, there is a more general action
which has the same symmetry as the original S[φi]. It is easy to verify
that the action,

S[φi,Ki] = S[φi] +

∫

d4xBi(x)Ki(x), (396)

is indeed symmetric under the same transformation.
The functions Ki are arbitrary (sources). We recall, however, that

the functions Bi have the opposite spin-statistics of the corresponding
field φi. Since the product BiKi must have even spin-statistics (the
same as the action S), we deduce that the source Ki and the field φi
have also opposite spin-statistics.

We can write the generating functional W for connected graphs,

eiW [Ji,Ki] =

∫

DφieiS[φi]+i
∫

d4xBiKi+i
∫

d4xφiJi . (397)

The fields φi may be bosonic or fermionic, therefore the order that we
have chosen in writing the integrands in the exponential is important.
Conventionally, we have placed source terms Ji,Ki to the right.

The vacuum expecation value 〈φi〉 is given by

〈φi(y)〉 =

∫

Dφi(y)eiS[φi]+i
∫

d4xBiKi+i
∫

d4xφiJi

∫

DxieiS[φi]+i
∫

d4xBiKi+i
∫

d4xφiJi

=
δRW [Ji,Ki]

δJi(y)
. (398)

This is an implicit relationship among Ji,Ki, 〈φi〉, and we will consider
Ki, 〈φi〉 as independent variables, and the sources Ji as being expressed
in terms of these two variables:

Ji = Ji(〈φi〉 ,Ki).

The exact form of Ji(〈φi〉 ,Ki) can be found if we evaluate explicitly
the effective action,

Γ [〈φi〉 ,Ki] =W [Ji(〈φi〉 ,Ki),Ki]−
∫

d4x 〈φi〉 Ji(〈φi〉 ,Ki), (399)

and take a left derivative,

δLΓ [〈φi〉 ,Ki]

δ 〈φi(x)〉
= −Ji(〈φi〉 ,Ki)(x). (400)
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We now compute the derivative of the effective action with respect
to the sources Ki.

δRΓ [〈φi〉 ,Ki]

δKi(x)
=

δR
δKi(x)

(

W [Ji(〈φi〉 ,Ki),Ki]−
∫

d4x 〈φi〉 Ji(〈φi〉 ,Ki)

)

=
δRW [Ji,Ki]

δKi(x)

∣

∣

∣

∣

Ji=Ji(〈φi〉,Ki)

+

∫

d4y

(

δRW [Ji,Ki]

δJm(y)

∣

∣

∣

∣

Jm=Jm(〈φi〉,Ki)

)

(

δRJm(〈φi〉 ,Ki)(y)

δKi(x)

)

−
∫

d4y 〈φm〉 (y)
δRJm(〈φi〉 ,Ki)(y)

δKi(x)

=
δRW [Ji,Ki]

δKi(x)

∣

∣

∣

∣

Ji=Ji(〈φi〉,Ki)

+

∫

d4y 〈φm〉 (y)
δRJm(〈φi〉 ,Ki)(y)

δKi(x)

−
∫

d4y 〈φm〉 (y)
δRJm(〈φi〉 ,Ki)(y)

δKi(x)

=
δRW [Ji,Ki]

δKi(x)

∣

∣

∣

∣

Ji=Ji(〈φi〉,Ki)

= −i δR
δKi(x)

ln

(∫

DφieiS[φi]+i
∫

d4xφiJi+
∫

d4xBiKi

)∣

∣

∣

∣

Ji=FIXED

= 〈Bi〉 . (401)

From the general Slavnov-Taylor identity we have,
∫

d4x 〈Bi〉 Ji = 0

❀

∫

d4x 〈Bi〉
δLΓ

δ 〈φi〉
= 0

❀

∫

d4x
δRΓ

δKi

δLΓ

δ 〈φi〉
= 0. (402)

This is a constraint which depends only on the effective action Γ[〈φi〉 ,Ki]
(Zinn-Justin equation). It is a very useful form in order to study the
consequences of symmetry for the effective action, especially in con-
nection with renormalization proofs and studying anomalies.

For later use, we define the product

(F,G) ≡
∫

d4x

(

δRF

δKi

δLG

δ 〈φi〉
− δRF

δ 〈φi〉
δLG

δKi

)

. (403)

for functionals F [〈φi〉 ,Ki], F [〈φi〉 ,Ki] of the functions 〈φi〉 ,Ki. Re-
call that 〈φi〉 and Ki have opposite spin-statistics. Then, the Zinn-
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Justin equation can be written as

(Γ,Γ) = 0. (404)
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8 Spontaneous symmetry breaking

Symmetry transformations that leave the effective action invariant
may not be symmetries of the physical states and the vacuum state.
These symmetries are “spontaneously broken”. Spontateous symme-
try breaking is associated with a degeneracy of the ground state (vac-
uum). Let’s assume that an effective action is symmetric under

〈φ〉 → −〈φ〉 ❀ Γ[〈φ〉] = Γ[−〈φ〉]

a symmetry which is inherited unchanged from the classical action (as
we have seen earlier). Assume also that the physical vacuum expec-
tation value of the field,

〈φ〉a :
δΓ

δ 〈φ〉a
= 0, (405)

with 〈φ〉a 6= 0. In other words, there exists a state |va〉 with

〈φ〉a ≡
〈va| φ̂(x) |va〉

〈va| va〉
6= 0, (406)

for which Γ[〈φ〉a] ≡ Γa is a minimum. Then, there should be a second
value of the field vev in a different state which also gives the same
value for the effective action:

∃ |b〉 : 〈φ〉b = −〈φ〉a with Γ[〈φ〉a] = Γ[〈φ〉b] = minimum .

So, while the transformation φ → −φ preserves the action and the
effective action, it does not preserve the states and transforms one
state into another:

|va〉 → |vb〉 .
The symmetry is broken as long as the system is in one of the degen-
erate states.

8.1 Goldstone theorem

Consider a symmetry transformation

φn(x) → φ′n(x) = φn(x) + iǫ
∑

m

tnmφm(x) (407)

with ǫ a small parameter and tnm generators of the transformation.
The transformation leaves the effective action intact:

Γ [〈φn(x)〉] = Γ
[〈

φ′n(x)
〉]

. (408)
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The symmetry of the effective action gives rise to Slavnov-Taylor iden-
tities:

∫

d4x
δΓ

δ 〈φn(x)〉
tnm 〈φm(x)〉 = 0. (409)

Taking a second derivative, we have:

0 =

∫

d4x
δ2Γ

δ 〈φl(y)〉 δ 〈φn(x)〉
tnm 〈φm(x)〉+

δΓ

δ 〈φn(y)〉
tnl.(410)

For physical systems with zero external sources, Jn(x) = 0, we have
that:

δΓ

δ 〈φl(y)〉
= 0 (411)

and we arrive to the equation

0 =

∫

d4x
δ2Γ

δ 〈φl(y)〉 δ 〈φn(x)〉
tnm 〈φm(x)〉 . (412)

We now make an important assumption that the vacuum state |Ω〉 is
translation invariant. We then find that the vacuum expectation value
of the field is the same in all space-time. Since we can find the value
of the field operator at a space-time point x from the value of the field
at the origin with a translation using the momentum operator as a
generator, we can write:

〈φ(x)〉 = 〈Ω| φ̂(x) |Ω〉
= 〈Ω| eiP̂ xφ̂(0)e−iP̂ x |Ω〉
= 〈Ω| φ̂(0) |Ω〉 = constant ≡ 〈φ〉 . (413)

Then, the effective action can be written as:

Γ [〈φn〉] = −
∫

d4xVeff (〈φn〉) = −
(∫

d4x

)

Veff (〈φn〉) (414)

Eq. 412 then yields for the effective potential Veff the following con-
straint:

∑

nm

tnm 〈φm〉
∂2Veff

∂ 〈φl〉 ∂ 〈φn〉
= 0. (415)

This is a constraint on the mass spectrum of the theory. To see that,
we recall that the second derivative of the effective action is the inverse
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of a two-point Green’s function:

δW [J ]

δJm(x)
= 〈φm(x)〉

❀

δ2W [J ]

δ 〈φn(y)〉 δJm(x)
= δ(x− y)δnm

. . .

❀

∫

d4z 〈Ω|Tφn(y)φk(z) |Ω〉
δ2Γ

δ 〈φk(z)〉 δ 〈φm(x)〉
= δ(x− y)δnm

❀

∫

d4zd4y 〈Ω|Tφn(y)φk(z) |Ω〉
δ2Γ

δ 〈φk(z)〉 δ 〈φm(x)〉
= δnm

❀

∫

d4zd4y 〈Ω|Tφn(y)φk(z) |Ω〉
∂2Veff

∂ 〈φk〉 ∂ 〈φm〉
δ(z − x) = −δnm

❀

∂2Veff
∂ 〈φk〉 ∂ 〈φm〉

∫

d4y 〈Ω|Tφn(y)φk(x) |Ω〉 = −δnm (416)

Substituting the Fourier transformation of the 2-point function:

〈Ω|Tφn(y)φk(x) |Ω〉 =
∫

d4p

(2π)4
Dnk(p

2)e−ip·(x−y) (417)

the integration over the y variable yields a delta function setting the
momentum pµ = 0. We therefore have:

Dnk(0)
∂2Veff

∂ 〈φk〉 ∂ 〈φm〉
= −δnm. (418)

Or, equivalently,
∂2Veff

∂ 〈φn〉 ∂ 〈φm〉
= −D−1

nm(0) (419)

Eq. 415 yields that

∑

nm

D−1
ln (0)tnm 〈φm〉 = 0. (420)

When is this equation satisfied? Let’s write the combination
∑

m tnm 〈φm〉 =
δ 〈φn〉 as the variation of the vev under the symmetry transformation.
Then Eq. 420 becomes:

∑

n

D−1
ln (0)δ 〈φn〉 = 0. (421)

If the transformation leaves the vacuum state and, thus, the vacuum
expectation value of the fields invariant, δ 〈φn〉 = 0, then Eq. 421 is
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fulfilled. What if the symmetry is broken and the symmetry transfor-
mation of the effective action changes the vacuum, so that there are
some δ 〈φi〉 6= 0? Let us rewrite Eq. 421 in a matrix notation:



 D−1
ln (0)







 〈φn〉



 = 0



 〈φn〉



 (422)

We observe that the matrix D−1
nl (0) has zero eigenvalues, as many

as the independent vectors δ 〈φn〉 which are non-vanishing. In the
simplest case of only one field, the inverse propagator of the field at
zero momentum is proportional to the mass of the particle excitation
of the field:

D(p) =
iZ

p2 −m2
+ continuum ❀ D−1(0) ∝ m2.

In general, D−1
nl (0) is the mass-matrix of the theory. Redefining appro-

priately the fields, φn = Rnmφ̃m eliminates non-diagonal terms and
the diagonal terms, the eigenvalues of the matrix, are the masses of
the physical particle excitations of the fields φ̃i.

We have just proven Goldstone’s theorem. Namely, for each inde-
pendent δ 〈φn〉 =

∑

m Tnm 〈φm〉 6= 0 there exists a massless particle
in the spectrum of the theory. The symmetry generators Tnm which
change the vev of the fields are called “broken” generators. There is
an alternative proof 7 of Goldstone’s theorem due to Weinberg. This
proof also demonstrates that

• The massless states are one-particle states.

• They are also invariant under rotations and correspond to spin-0
particles, the so called Goldstone bosons.

• The Goldstone bosons have the same “quantum numbers” as the
conserved currents corresponding to the broken generators.

Goldstone’s theorem seems very powerful and its proof appears
to leave no room for exceptions. Nevertheless, we will be able to
find a loophole soon: it is possible to have spontaneous symmetry
breaking without giving rise to massless particles. We note that our
proof requires translation invariance of the vacuum states as well as
positive norms. These requirements cannot be satisfied simultaneously
for quantum theories with local gauge invariance.

7to be taught in the course of The physics of Electroweak Symmetry Breaking
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8.2 General broken global symmetries

Let’s assume a pattern of spontaneous symmetry breaking:

G→ H,

where G is the symmetry group that leaves invariant the effective
action and H a subgroup of G which leaves invariant the vacuum. We
will also assume that the symmetry group is global. In other words,
the effective action Γ remains invariant Γ[ψn] = Γ[ψ′

n] for

ψ′
n =

∑

m

gnmψm,
∂gnm
∂xµ

= 0, gnm ∈ G, (423)

and the vacuum remains invariant

∑

m

hnm 〈ψm〉 = 〈ψn〉 , ∀ hnm ∈ H. (424)

According to Goldstone’s theorem, the mass matrix of the theory has
zero eigenvalues for the eigenvectors:

∑

m

T anm 〈ψm〉 ≡ δ 〈ψn〉 , (425)

where T anm is a broken generator.
Which independent linear combinations of the fiels in the La-

grangian of the theory correspond to Goldstone fields and which are
not? We shall prove that all fields ψn (including non-Goldstones) can
be obtained from Goldstone-free fields ψ̃n by performing a local group
transformation:

ψn(x) =
∑

m

γnm(x)ψ̃m(x). (426)

We start by observing that Goldstone-free field combinations ψ̃n (the
“heavy” fields of the theory) must be orthogonal to the vectors of
Eq. 425, that is:

∑

nm

ψ̃n(x)T
a
nm 〈ψm〉 = 0. (427)

Without loss of generality, we will assume that the elemebts g ∈ G
belong to a real and orthogonal representation of the group which is
compact. Then, the quantity:

Vψ(g) = ψngnm 〈ψm〉 (428)

is a bounded, continuous, real-valued function.
Exercise: . . . Let us now find an appropriate g = γ for which Vψ(x)(g)
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is a maximum at every space-time point x. Then, under a small
variation of the group parameter

δγnm = i
∑

a

ǫaγnlT
a
lm, (429)

Vψ(g) is stationary:

0 = δVψ(g) = i
∑

a

ǫa
∑

nlm

ψn(x)γnl(x)T
a
lm 〈ψm〉 (430)

Recalling that we have chosen an orthogonal and real representation
of the group, we have:

[γnl] = [γln]
−1 . (431)

Thus,

0 = i
∑

a

ǫa
∑

lm

[

∑

n

γ−1
ln ψn

]

(T alm 〈ψm〉) (432)

Therefore, the field combinations:

ψ̃l =
∑

n

γ−1
ln ψn (433)

are orthogonal to the vectors
∑

m

T alm 〈ψm〉 = δ 〈ψl〉 (434)

and they are not Goldstone bosons.
Let’s rewrite the Lagrangian of the theory by making the substi-

tution which we have just found:

ψ(x) = γ(x)ψ̃(x), (435)

rewriting the fields of the theory as explicit non-Goldstones ψ̃() and
the remaining Goldstone fields contained in γ(x). We remind that
the Lagrangian is only invariant under a global gauge transformation,
while the above transformation is a local gauge transformation which
does not leave the Lagrangian invariant. We have:

L
[

γ(x)ψ̃(x)
]

= L
[

γ(x0)ψ̃(x)
]

+derivatives of γ(x), ψ̃(x) (436)

Due to the global gauge invariance of the theory, L
[

γ(x0)ψ̃(x)
]

=

L
[

ψ̃(x)
]

, we have that:

L
[

γ(x)ψ̃(x)
]

= L
[

ψ̃(x)
]

+derivatives of γ(x), ψ̃(x) (437)
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where the first term does not have any Goldstone bosons. Goldstone
bosons appear only as derivatives. This forbids mass terms:

m2
BB(x)B(x)

for them. Also, ar low energies, Goldstone interactions vanish. In-
deed, the Feynman rules for fields that appear as derivatives will be
proportional to the momenta of the particles:

∂µγ(x) → ∂µB(x) → pµ (in Ferynman rules)

and vanish for zero momenta pµ to0.

8.3 Spontaneous symmetry breaking of local
gauge symmetries

Let us now assume that our Lagrangian is invariant under a local
gauge symmetry. Repeating the reasoning of the previous section and
rewriting

ψ = γψ̃,

we have that
L
[

γ(x)ψ̃(x)
]

= L
[

ψ̃(x)
]

. (438)

In other words, our carefully selected gauge transformation eliminates
all Goldstone boson fields from the Lagrangian. We have just found
an exception of Goldstone’s theorem in theories with local gauge in-
variance, where the symmetry is spontaneously broken but there are
no physical massless Goldstone fields due to the breaking of the sym-
metry. The rewriting ψ = γψ̃ is equivalent to choosing a gauge fixing
condition:

ψ̃ · (T a 〈ψ〉) = 0. (439)

Lagrangians which are locally invariant under a continuous sym-
metry transformation require gauge bosons in order to form covariant
derivatives. Let us look at the quadratic terms in the covariant deriva-
tives:
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9 Renormalization: counting the de-

gree of ultraviolet divergences

Consider a Lagrangian with fisdimensionalityelds f and generic inter-
action operators Oi.

L = kinetic terms + g1O1 + g2O2 + . . .+ gNON . (440)

Each operator Oi is a product of fields and/or their derivatives. In
QED for example, we have one such interaction term:

ψ̄ 6Aψ;

In QCD more operators emerge, e.g.

fabc∂µA
a
νA

µ,bAν,c, fabef cdeAaµA
b
νA

µ,cAν,d, . . .

We would like to keep this discussion as general as possible; At the
end, we will be able to make statements on whether we can remove
via renormalization ultraviolet infinities from arbitrary Lagrangians.
Most of our arguments will be derived using simple dimensional anal-
ysis.

We consider a generic one-particle irreducible Feynman diagram
in perturbation theory. We will first find a simple formula to test
whether it has the most obvious of all possible divergences, the so
called superficial ultra-violet divergence. If the diagram has L loops,
a superficial divergence corresponds to an infinity of the diagram in
the limit

|k1| = |k2| = . . . = |kL| = κ→ ∞,

where ki are the loop-momenta. A Feynman diagram might have di-
vergences in other limits, where only some momenta or linear combi-
nations of them are taken to infinity while the remaining independent
momenta remain fixed. A Feynman diagram in the superficial ultra-
violet limit behaves as

∫ ∞

dκκD−1, (441)

where D is an integer, called the superficial degree of divergence.

• If D > 0 the Feynman diagram has a powerlike divergence,

• if D = 0 it diverges logarithmically,

• if D < 0 it is convergent (only in the superficial limit, since it
might have other divergences).

We can compute D (or an upper bound of it) for any Feynman dia-
gram on general grounds. We assume that our 1PI Feynman diagram
has
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• If internal propagators for each of the fields f ,

• Ef external legs for each of the fields f and

• Ni vertices corresponding to the term giO
i in the Lagrangian.

Recall, as examples, the Feynman rules for propagators in gauge the-
ories, and how they behave at the limit of infinite momentum.

• a photon propagator,

∼ −gµν + kµkν
k2

k2
∼ κ−2;

• a fermion propagator,

∼ 6k +m

k2 −m2
∼ κ−1;

• for a scalar,

∼ 1

k2 −m2
∼ κ−2.

For each of the internal propagators of the field f in the Feynman
diagram there is a contribution to the superficial divergence,

∆f ∼ k−2+2sf ,

where, sf = 0 for a boson and sf = 1
2 for a fermion. The total

contribution to the asymptotic limit from propagators is then

κ
∑

f 2If (sf−1). (442)

The contribution from vertices is easy to find if we know how many
loop momenta appear in the corresponding Feynman rules. For a
vertex due to an operator Oi this number is equal to the number of
space-time derivatives di which can be found in the expression for
Oi. Recall that a Feynman rule for a vertex is esentially the Fourier
transform of the expression of its operator and therefore momenta
arise only from derivatives. The total contribution from vertices to
the superficial ultraviolet limit is

κ
∑

iNidi . (443)

Finally, due to the integration measure d4ki for each loop, the total
contribution from the loop-momenta to the superficial UV limit is

κ4L, (444)

where L is the number of loops in the graph. L is known if we are
given the number of internal propagators If and the number of vertices
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Ni in the graph. The number of loop-momenta carried from internal
propagators is

∑

f If . The vertices provide
∑

iNi constraints of which
one is not for loop-momenta but for the external momenta. Therefore,
the number of loop-momenta is

L =
∑

f

If −
∑

i

Ni + 1.

Putting together the contributions from the loop integration mea-
sures, vertices, and internal propagators, we find that the asymptotic
behavior at infinity has a superficial degree of divergence

D =
∑

f

2If (1 + sf )−
∑

i

Ni(4− di) + 4. (445)

We can express the number of internal propagators in terms of the
number of external legs. Let us assume that we have Nif particles
f in the vertex corresponding to the operator Oi in the Lagrangian.
The total number of (internal) legs of the particle f connected in all
the vertices of the graph are

∑

i

NiNif .

From these Ef are external and the remaining are internal. Every
propagator of f has two edges, so the number of internal legs is

2If .

We then have the identity

2If + Ef =
∑

i

NiNif . (446)

We can therefore write the degree of divergece as

D = 4−
∑

f

Ef (1 + sf )−
∑

i

Ni



4− di −
∑

f

Nif (1 + sf ).



 (447)

Notice that the square bracket in the last expression depends only
on the functional form of the operator Oi. If this operator is multiplied
with a coupling constant gi in the Lagrangian, i.e. L = giOi + . . . we
can prove that this square bracket is exactly the mass dimensionality
of the coupling gi:

[gi] = 4− di −
∑

f

Nif (1 + sf ). (448)
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Indeed. The mass dimensionality of each term in the action should be
zero. We then have that

[

d4x
]

+ [gi] + [Oi] = 0,

where the operator Oi has di derivatives and Nif fields f . Thus,

−4 + [gi] + di −
∑

f

Nif [f ] = 0,

and [f ] = 1 + sf is the mass dimensionality of the field. Indeed,

〈0|Tf(x1)f(x2) |0〉 ∼
∫

k→∞
d4kk−2+2sf e−ikx

❀ 2[f ] = 4− 2 + 2sf ❀ [f ] = 1 + sf . (449)

In conclusion, we can write a very suggestive expression for the super-
ficial degree of divergence:

D = 4−
∑

f

Ef (1 + sf )−
∑

i

Ni[gi]. (450)

If the Lagrangian does not contain any couplings with negative mass
dimensions, [gi] ≥ 0, we find a superficial ultraviolet divergence, D ≥
0, only in Feynman diagrams with a small number of external legs.

D ≥ 0 ❀

∑

f

Ef (1 + sf ) ≤ 4.

In particular, superficial divergences do not appear in (one-particle-
irreducible) Feynman diagrams with five external legs or more.

Examples of theories where superficial divergences may appear in
only a limited number of Green’s fucntions are QED and QCD. All
interaction operators have dimension four and their coefficients are
dimensionless. Superficial ultraviolet divergences are limited in 1PI
Green’s functions, such as 〈0|T ψ̄(x1)ψ(x2) |0〉 , 〈0|TAaµ(x1)Abν(x2) |0〉 ,
〈0|T ψ̄(x1)Abν(x2)ψ(x3) |0〉 . . .. On the contrary 〈0|T ψ̄(x1)ψ(x2)ψ̄(x3)ψ(x4) |0〉1PI
is (superficially) finite.

Theories with [gi] ≥ 0 are called renormalizable. As we shall see,
these superficial divergences in a finite number of Green’s functions
can be removed by adding a finite number of extra terms in the original
Lagrangian (counterterms).

If the Lagrangian contains a coupling with negative mass dimen-
sion [gj ] < 0, then from Eq. 450 we see that all Green’s functions,
at some loop-order, will develop a superficial divergence. It is there-
fore impossible to cancel the infinities by adding a finite number of
counterterms. Such theories are called non-renormalizable.
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9.1 Subdivergences

We should stress that the counting of the superficial degree of diver-
gence is not sufficient to prove that a Feynman is finite. Consider the
two example graphs of Fig. 2. Both two-loop graphs have the same

Figure 2: Both two-loop graphs have the same superficial degree of divergence
D = −2. However the Feynman diagram on the right has a self-energy one-
particle-irreducible subgraph which has a superficial degree of divergence
D = 1. A necessary condition for a graph to be UV finite is that the graph
and all its subgraphs have D < 0

superficial degree of divergence D = −2. One could naively conclude
that both Feynman two-loop graphs are likely to be finite. We know,
though, that this is not the case. Let us compute the superficial de-
gree of divergence for all one-loop subgraphs that we can spot in the
two diagrams. For the left diagram, we find that all subgraphs have
a negative superficial degree of divergence. It also turns out with an
explicit calculation (beyond the scope of this lecture) that the dia-
gram is indeed UV finite. However the two-loop Feynman diagram on
the right has an one-loop self-energy subgraph; this has a superficial
degree of divergence D = 1. The self-energy is 1/(d − 4) divergent,
where d is the space-time dimensionality. Such a divergence remains
even after we embed the one-loop self-energy as a subgraph inside a
two-loop graph (there is no mechanism to cancel it). Against our naive
counting for the global superficial degree of divergence, the two-loop
diagram on the right is divergent. The lesson from the above examples
is that for a diagram to be UV finite it is necessary that the supere-
ficial degrees of divergence for the full graph and all of its sub-graphs
must be negative.

9.2 Cancelation of superficial divergences with
counterterms

We derived a criterion to decide whether a Green’s function will de-
velop the most “obvious” type of divergence (superficial) in the limit
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where the magnitudes of all loop momenta tend simultaneously to
infinity. We also found that for renormalizable theories this type of
divergence appears in only a finite number of Green’s functions with
a small number of external legs.

Infinities are not acceptable for physical theories. A way out of this
problem is to recognize that the Lagrangian that we started with has a
certain degree of arbitrariness. The guiding principle for constructing
a Lagrangian is to respect a set of symmetries (e.g. BRST symmetry).
However, this is not a tight enough constraint to fix, for example, the
actual values of independent mass and coupling parameters. It may
be possible to redefine the parameters and fields of the Lagrangian
or even add more operators to it without destroying the symmetries
of the Lagrangian. How can we fix the fields and parameters of the
Lagrangian, choosing among their various possible redefinitions? In
renormalizable theories, we fix (partially) this arbitrariness so that
all Green’s functions calculated with the redefined (“renormalized”)
fields, couplings and masses are finite.

We have seen that for “renormalizable theories” the “disease” of
infinities is only spread to a few Green’s functions. Redefinining the
fields and parameters of the Lagrangian (ψ = ZψR = ψR+ δZψR, . . .)
gives rise to a few new terms (counterterms) with coefficients engi-
neered to cancel exactly the UV infinities which emerge order by or-
der in perturbation theory. But, is it possible mathematically that we
can cancel the infinities from loop diagrams with counterterms? For
this method to work, it is essential that diagrams with counterterms
at a loop order have the same kinematic dependence as the UV in-
finities of loop diagrams without counterterms at higher orders. At
the first two orders in perturbation theory, this statement means that
tree-diagrams with counterterms must have the same kinematic de-
pendence as the infinities of one-loop diagrams without counterterms.

If, for example, the 1/ǫ terms of a Green’s function at the one-loop
order (where d = 4− 2ǫ in dimensional regularisation) are logarithms
of external momenta,

ln(p2)

ǫ

such a contribution cannot be cancelled by the tree-level contribution
of a countertem. Recalling the Feynman rules for vertices which enter
tree-level calculations in all theories that we have examined so far, we
find no such logarithms in their expressions. Feynman rules always
yield simple polynomial expressions for the vertices of tree-diagrams.
For such tree-level expressions made out of counterterms to cancel the
infinities of one-loop diagrams the latter have also to be constants or
simple polynomials of momenta. A necessary condition for the coun-
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terterm program to be succesfull is that one-loop infinities are “local”,
i.e. they appear as simple polynomials in the external momenta as the
usual Feynman rules do.

Let us look at the fuctional form of the superficial infinities at-one
loop order in perturbation theory, and convince ourselves that indeed
this is exactly what happens in practice. Take, as an example, the one-
loop correction to the four-point function in the − λ

4!φ
4 theory. The

superficial degree of divergence is D = 4 − 4 × 1 = 0 and the graph
is indeed divergent. In dimensional regularization, the corresponding
Feynman parameter integral yields,

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4) |0〉|1−loop ∼ λ2
∫

ddk
1

(k2 −m2) [(k + p)2 −m2]

∼ λ2Γ(ǫ)

∫ 1

0
dx1dx2

δ(1− x1 − x2)

(m2 − x1x2s)
ǫ

∼ λ2

ǫ
− λ2γ − λ2

∫ 1

0
dx ln

(

m2 − x(1− x)s
)

(451)

with s = (p1 + p2)
2 = (p3 + p4)

2.
Loop integrals, in general, contain logarithms or integrals of log-

arithms (polylogaritms) with arguments kinematic invariants formed
from external momenta. Our example result is not an exception and
we indeed find logarithmic contributions in the finite part. We cannot
escape to observe however, that the divergent part is very simple; it
is just a constant. We can then modify the interaction terms in the
Lagrangian,

−λ
4!
φ4 → −λ

4!
φ4 +

♯λ2

ǫ
φ4

and adjust the coefficient ♯ so that it cancels exactly the divergent
part of this one-loop integral.

The divergent parts of one-loop integrals are simple polynomials
of the external momenta, as in the above example. If we use Feynman
parameters, any one-loop integral may be written as,

I1−loop ∼ Γ

(

N − d

2

)∫ 1

0

dx1 . . . dxnδ(1− x1 − . . . xn)
(

m2
1x1 + . . .+m2

nxn −
∑

si...jxixj − iδ
)N− d

2

(452)
where N is an integer (equal to the number of propagators) and
d = 4−2ǫ the dimension. The denominator contains a sum over masses
and kinematic invariants of the external momenta. Divergences may
arise from two terms; the Gamma function Γ(N − 2 + ǫ) and the de-
nominator of the integrand. The argument of the Gamma function
N − d/2 = D/2 is proportional to the superficial degree of divergence

113



D of the integral. The denominator of the Feynman integral does
not have any ultraviolet divergences. It could become divergent when
masses or invariants become zero, but it is finite when all the propaga-
tors are massive. If this is not the case, and there are massless particles
propagating in a loop, singularities from the denominator are of in-
frared nature connected to the small or zero values of |k| rather than
the UV |k| → ∞ limit. Infrared singularities can also be regulated
by attributing a small mass to massless particles and/or considering
them to be slighlty off-shell. We shall not worry here about infrared
one-loop singularities and focus on the ultraviolet divergences which
can be found, at one-loop order, in the Gamma function pre-factor of
the Feynman parameters integral:

Γ(N − d/2) = Γ(−1 + ǫ),Γ(ǫ)

for N = 1, 2. Using the identity,

Γ(x) =
Γ(1 + x)

x
,

and
Γ(1 + ǫ) = 1− γǫ+O(ǫ2),

and the fact that for N = 1, 2 (responsible for the UV divergences)
the denominator of Eq. 452 turns into a numerator N − d/2 < 0 in
four dimensions, we can see that the coefficient of the 1/ǫ pole can
only be a polynomial in the external momenta. A loop diagram with
superficial degree of divergence D

∫

|k|→∞
|k|D−1, (453)

has a mass dimensionality D. Therefore, the polynomial can only be
of rank D in the external momenta. Each term in this polynomial
multiplying 1/ǫ must be cancelled by a separate counterterm opera-
tor with a different number of derivatives. Naturally, the number of
derivatives must be:

di ≤ D. (454)

Exercise:Prove that for the cancelation of UV divergences we need at
most as many counterterms in the Lagrangian as the divergent Green’s
functions.

9.3 Nested and overlapping divergences

It can be proven that we only to worry about removing superficial
divergences from loop integrals. Nested and overlapping singularities
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are “automatically” removed with this procedure as well. We refer to
original literature for this topic:

• Hepp:1966eg K. Hepp, “Proof of the Bogolyubov-Parasiuk the-
orem on renormalization,” Commun. Math. Phys. 2 (1966) 301.

115



END OF WEEK 11

116



10 Proof of renormalizability for non-

abelian gauge theories

Consider a theory with action S[φ] which is invariant under BRST
transformations of the fields φi: δθφi = θBi. We can add to the clas-
sical action source terms which preserve the invariance under BRST
transformations due to their nilpotency.

S[φi,Ki] = S[φi] +

∫

d4xBiKi. (455)

We now split the action into two terms,

S[φi,Ki] = SR[φi,Ki] + S∞[φi,Ki]. (456)

The first term is the action with the fields, masses and coupling con-
stants set to their renormalized values. The second term contains the
counterterms. S and SR have the same functional form. Therefore,
they possess the same set of symmetries. It also follows that S∞ must
also possess the same set of symmetries.

The effective action can be cast as an expansion in loops:

Γ[φi,Ki] =
∞
∑

L=0

ΓL[φi,Ki]. (457)

We recall that all terms in the expansion are seperately symmetric
and that we can perform independent shifts to the measure of the
path integral for each one of them.

The Slavnov Taylor identities for the BRST symmetry transfor-
mations result to the Zinn-Justin equation (Eq. 402) which is written
in a short notation as

(Γ,Γ) = 0. (458)

Inserting the loop expansion of the effective action, we obtain:

0 = (Γ0,Γ0)

+(Γ0,Γ1) + (Γ1,Γ0)

+(Γ0,Γ2) + (Γ1,Γ1) + (Γ2,Γ0)

+ . . . (459)

Every line in the above expression must be separetely zero, since it
corresponds to a different order in the loop expansion (equivalently,
the h̄ expansion). For the N−th term of the expansion we have

N
∑

L=0

(ΓL,ΓN−L) = 0. (460)
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At each loop order we find UV infinities. We decompose the L-loop
effective action into a finite and a divergent part:

ΓL = ΓL,fin + ΓL,∞. (461)

At zeroth order we only find tree-graphs and there are no infinities. In
addition, the tree-level effective action is equal to the classical action.
We therefore have

Γ0,fin = SR, Γ0,∞ = 0. (462)

We will prove using induction that we can removing all infinities from
the effective action, rendering all ΓL,∞ = 0, with the counterterms in
SR. Let’s assume that we have achieved this for all loops up to N −1,

ΓL,∞ = 0, L = 1 . . . N − 1. (463)

Then, taking the infinite part of Eq. 460 we obtain that

(Γ0,fin,ΓN,∞) + (ΓN,∞,Γ0,fin) = 0. (464)

Or, equivalently,
(SR,ΓN,∞) = 0. (465)

As we have discussed in a previous section, we expect the infinties of
momentum space Green’s functons in ΓN,∞ to have a simple polyno-
mial dependence in the momenta, given that all divergences at the
previous loop orders are cancelled. We now make two observations:

• As we have shown earlier, the infinities of ΓN,∞ arise in Green’s
functions with a small number of external legs. As we have as-
sumed that the infinities of all loop previous orders have been
cancelled, at the N−th loop order we cannot have any subdiver-
gences. Thus, the N−th loop order divergences correspond to
the superficial limit where all loop momenta are taken to infinity.
For the superficial divergences we have derived that they should
originate from local field operators (products of fields and their
derivatives as well as sources Ki ) in ΓN,∞ whose dimensionality
is less than or equal to four.

• ΓN,∞ has all the linear symmetries of SR. These are:

– Lorentz transformations

– Global gauge transformations

– Anti-ghost translations

– Ghost phase-transformations (❀ ghost number conserva-
tion)
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The last two symmetries are apparent by inspecting the ghost-
terms of the Lagramgian:

LFDEEV−POPOV = (∂µη̄a)Dab
µ η

b. (466)

The anti-ghost field enter the Lagrangian only with its derivative,
and thus the Lagrangian is invariant if we shift globally the field
by a constant. In addition, the Lagrangian is invariant under a
phase-transformation of the ghost and anti-ghost fields:

ηa(x) → ei(+1)ρηa(x), ηa(x) → ei(−1)ρηa,

Aaµ → ei(+0)ρAaµ, ψ → ei(+0)ρψ.

The conserved charge of this symmetry is called the ghost num-
ber. The ghost numbers of the φi = {Aaµ, ψ, ηa, η̄a} fields are
γi = {0, 0,+1,−1} respectively. The above phase-transformations
leave the action S[φi] invariant. For the extended action S[φi,Ki]
to be invariant, we need to assign ghost numbers to the sources
Ki as well. From the BRST transformations we see that if a field
φi has a ghost number γi, the variation under the transformation
Bi of the field has a ghost number γi + 1. The term

∫

d4xBiKi

ought to remain invariant under the pghost-phase transforma-
tion. We must therefore assign ghost numbers −γi − 1 for the
sources Ki. Specifically, the ghost numbers for KA,Kψ,Kη̄,Kη

are −1,−1, 0,−2 respectively.

Lemma: ΓN,∞ is linear in the sources Ki.
Proof: To prove this we shall use dimensional analysis and symmetries.
First we determine the mass dimension of the sources Ki. For a field
φi with dimensionality di the operators Bi have dimensionality di+1,
as can be seen from the expressions of the BRST transformations.
The term

∫

d4xBiKi ought to have zero dimensionality. Therefore we
conclude that the sources Ki have 3 − di dimensionality. Therefore
the dimensionality of BRST sources corresponding to scalar and vector
fields, KA,Kη,Kη̄ is 2 while the dimensionality of the BRST source
corresponfing to fermion fields Kψ is 3/2.

Since the operators of ΓN,∞ are of dimensionality four at most, we
can have operators with at most two sources Ki:

• Kscalar/vectorKscalar/vector,

• KfermionKfermion,

• KfermionKfermionfield, with a dimensionality [field] ≤ 1.

All quadratic terms in the sources Ki have a non-zero ghost-number
and they are therefore excluded, with the exception of

Kη̄aKη̄a
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operator which has a zero ghost-number. We can exclude this operator
for a different reason. The BRST symmetry transformation of the
classical action for an anti-ghost is linear and not quadratic,

δθη̄
a = −θωa. (467)

Therefore,

δLΓN [〈φi〉 ,Ki]

δKη̄a
= −〈ωa〉 ❀ δLΓN [φi,Ki]

δKη̄a
= −ωa (468)

where in the last step we used that the transformation is linear so
that, in that case, the transformation of the “average” is equal to the
“average” of the transformation. The above differential equation tells
us that ΓN is at most linear in the source Kη̄a . We have just shown
that ΓN,∞ is at most linear in all sources Ki. We write

ΓN,∞[φi,Ki] = ΓN,∞[φi, 0] +

∫

d4xB̃iKi. (469)

Recall that the classical action is also linear:

SR[φi,Ki] = SR[φi] +

∫

d4xBiKi. (470)

Substituting in (SR,ΓN,∞) = 0 we obtain two equations for the zeroth
and the first order term in Ki. Namely,

∫

d4x

[

Bi
δLΓN,∞
δφi

+ B̃i
δLSR
δφi

]

= 0, (471)

∫

d4x

[

Bi
δLB̃j
δφi

+ B̃i
δLBj
δφi

]

= 0. (472)

We now define:

Γ(ǫ) ≡ SR + ǫΓN,∞, (473)

Bǫ
i ≡ Bi + ǫB̃i, (474)

where ǫ is a very small parameter. With the Eqs 471, we can prove
that under a field transformation:

φi → φi + θBǫ
i , (475)

• Γ(ǫ) is invariant

• The tranformation is nilpotent (up to O(ǫ)).
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We leave the proof of the above statements to the reader as an exer-
cise.

From the above equations we infer that the dimensionality of B̃i
is at most the dimensionality of Bi. From Eq 472, we also infer that
Bi, B̃i and thus Bǫ

i have all the same ghost number (exercise). With
these constraints, the allowed form of the transformations Eq. 475 is

ψ → ψ + i (θηa)Taψ (476)

Aµ,a → Aµa + θ
[

Bab∂µηb +DabcAµ,bηc
]

(477)

ηa → ηa − 1

2
θEabcηbηc (478)

with Eabc = −Eacb due to the ghost field ηb being a Grassmann vari-
able.

We can place more constraints on the coefficients of Eqs 476 by
exploiting that the transformations are nilpotent:

• From δθ1δθ2η
a = 0, we find that

EabcEbde + EabeEbcd + EabdEbec = 0, (479)

which reveals that Eabc must be a structure constant of some
Lie algebra. It would not be a surprise if this Lie algebra is the
same as the one of the non-Abelian gauge group of the classical
action SR. Indeed, if we set the small parameter ǫ exactly to
its zero value then Γ(ǫ)

∣

∣

ǫ=0
= SR. The structure constants Eabc

must therefore be proportional to the structure constants of the
non-abelian gauge group of the classical action:

Eabc = λfabc. (480)

• The nilpotency of the transformation of the gauge field Aµ,a

yields two constraints. Namely

DabcDbde −DabeDbdc = EbecDadb = λf becDadb (481)

BabEbcd = DabdBbc (482)

Eq. 481 tells us that the the matrices t̃abc = iDbca satisfy the
commutation relation of generators in some representation of
the non-abelian gauge group:

[

t̃c, t̃e
]

= if cebt̃b.

The only representation of the Lie group with the dimensionality
of Dabc is the adjoint representation. Therefore, the solution of
Eq. 481 is:

Dabc = λfabc. (483)
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Eq 482 reveals that the matrix Bab commutes with the structure
constants which can be chosen to be totally antisymmetric. The
only possible solution is therefore a diagonal matrix (exercise).
You can verify this easily in the special case of an SU(2) group
where the structure constants are the totally antisymmetric Levi-
Civita symbol. Eq 482 takes the form:

Babǫbcd = Bbcǫabd

which, as examples, for (a, c, d) = (1, 2, 3) yields B11 = B22

and for (a, c, d) = (1, 2, 2) yields B23 = 0. Similarly, one finds all
diagonal terms to be equal and the non-diagonal terms to vanish.
We write

Bab = Nλδab. (484)

• Nilpotency of the fermion field transformation yields for the ma-
trices T a that the also satisfy the Lie algebra of the non-abelian
group of the classical action,

[

T b, T c
]

= iEabcT a = iλfabcT a. (485)

Therefore, as suggested from the ǫ = 0 limit, we have

T a = λta, (486)

where ta are the generators of the representation for the fermions
in SR.

We have therefore found that the Γ(ǫ) is symmetric under the same
BRST symmetry transformation as SR up to some re-scalings. Ex-
plicitly, the BRST symmetry transformations of Γ(ǫ) take the form:

ψ → ψ + i (λθηa) taψ (487)

Aµ,a → Aµa + λθ
[

N∂µηa + fabcAµ,bηc
]

(488)

ηa → ηa − 1

2
λθfabcηbηc (489)

η̄a → η̄a − θωa (490)

ωa → ωa. (491)

The last two transformations are linear symmetry transformations of
the classical action and they are automatically symmetry transforma-
tions of the effective action and Γǫ as well.

Recall that we expect Γ(ǫ) to be made out of local operators. We
write

Γ(ǫ) =

∫

d4xL(ǫ). (492)
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The dimensionality of the operators is bounded by the power-counting
arguments of the previous chapter. In addition, L(ǫ) should consist of
a combination of operators that they respect the BRST symmetry
which we have just discovered (Eqs 487). Finally, Lǫ is constrained
further to respect all the linear symmetries of the classical Lagrangian:

L = Lfermion−
1

4
GaµνGaµν−(∂µη̄

a) (∂µηa)+fabc (∂µη̄
a)Ab,µηc+ωa∂µA

a,µ+
ξ

2
ωaωa.

These linear symmetries are:

• Lorentz invariance

• Global gauge invariance. Explicitly, the global symmetry trans-
formations are:

δψ = iǫataψ, δAbµ = fbcaǫ
aAcµ, δη

b = fbcaǫ
aηc, δη̄b = fbcaǫ

aη̄c, δωb = fbcaǫ
aωc.

• Anti-ghost translation invariance: η̄a → η̄a + c,

• Ghost-number conservation.

Can we write a Lagrangian density L(ǫ) with additional operators than
the ones that we find in the classical L and still satisfying the list of
constraints that we have found above? If such operators exist, then we
can establish some simple rules for them. To preserve ghost-number,
the ghost and anti-ghost fields must appear in pairs or not appear at all
in such novel operators. Because of anti-ghost translation invariance,
the anti-ghost must always be differentiated. We therefore conclude
that the ghost fields should appear in the form

(∂µη̄
a) (493)

Let us recall the dimensionalities of the fields

[Aa,µ] = [ηµ] = [η̄a] = 1, [ωa] = 2.

The combination of fields in Eq. 493 has a dimensionality three. Oper-
ators must have a dimensionality less than four, thus they can include
at most one such combination of ghost fields. Altogether, we can have
the following operators:

• ghost-operators

(∂µη̄
a)
(

∂µηb
)

, (∂µη̄
a)Ac,µηb, (494)

• auxiliary field operators

ωa
(

∂µA
b,µ
)

, ωaAcµA
b,µ, (495)
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• and operators which contain only fermion and gauge boson fields.
We denote the sum of them as

LψA. (496)

Therefore, the most general Lagrangian density L(ǫ) is

L(ǫ) = LψA +
ξ′

2
ωaωa + Cωa (∂µA

a,µ)

−eabcωaAbµAc,µ − Zη (∂µη̄
a) (∂µηa)− dabc (∂µη̄

a)Ac,µηb,(497)

where ξ′, C, dabc, eabc are unknown constants with eabc being symmetric
in the last two indices: eabc = eacb, which are however constrained by
global gauge invariance.

We now use that L(ǫ) is invariant under the BRST transformations
of Eqs 487. We recall that for fermion and gauge boson fields, the
BRST transformation has the same functional form as a classical local
gauge transformation with a local gauge parameter made out of a
Grassmann constant and the ghost field. Thus, the LψA part of the
Lagrangian has to be not only globally gauge invariant but also locally
gauge invariant with a gauge parameter:

ǫa → λNθηa.

and with a gauge coupling gs → gs/N (equivalently, replacing the gen-

erators and structure constants by
(

ta, fabc
)

→
(

t̃a = ta/N, f̃abc = fabc/N
)

). BRST invariance of the ghost and auxiliary field part of L(ǫ) leads
to a determination of the constants. Specifically, we find (exercise):

C =
Zη
λN

(498)

dabc = −Zη
N

(499)

eabc = 0. (500)

Summarising the effect of all constraints, we can cast L(ǫ) in the
form:

L(ǫ) = −ZAG̃aµνG̃aµν − Zψψ̄γ
µ
[

∂µ − it̃aAaµ
]

ψ

+
ξ′

2
ωaωa +

(

Zη
Nλ

)

ωa∂µA
aµ − Zη (∂µη̄

a) (∂µηa)

+Zηf̃
abc (∂µη̄

a)Ac,µηb, (501)

where the field strength tensor G̃aµν is evaluated as in Gaµν with the
replacement fabc → f̃abc.
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This is a Lagrangian which is vert similar to the classical La-
grangian L, differing only in multiplicative constants. This tells us
that the two Lagrangians describe the same physics, since we are al-
lowed to rescale at wish the definitions of fields, couplings and masses.
We can exploit this freedom to remove all ultraviolet divergences.
With explicit calculations of a few Green’s functions at the N−th
loop order, we can find how the constants that emerged in L(ǫ) (which
contain necessarily the infinities of all matrix-elements) are related
to the original parameters and field definitions of the classical La-
grangian. With this information at hand and reverse-engineering we
can redefine the fields, fermion masses, and coupling constant so that
at the N−th loop order we have Γ(ǫ) = SR, which renders ΓN,∞ = 0.

We have proven that non-abelian gauge theories are renormaliz-
able, in the sense that multiplicative redefinitions of fields and param-
eters order by order in the loop expansion can remove all ultraviolet
infinities from Green’s functions. This is one of the biggest successes in
Quantum Field Theory since we have realistic theories with predictive
power for physical (i.e. finite) observables.
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