New 't Hooft anomalies and the phases of gauge theories

goal: informal intro & *few (or one)* examples from my work with

Mohamed Anber

(1805.12290, 1807.00093, 1811.10642, 1909.09027, 2001.03631, 2002.02037)

and

(1904.11640)

limits fantasies about IR!

reminder on 't Hooft anomalies:

SU(3) QCD with 2 massless flavors of fundamental quarks exact global symmetry $SU(2)_L \times SU(2)_R \times U(1)_B$ $U(1)_B SU(2)_L^2$ *L j μ B j ν L a j λ L b* UV: $j_R^{\mu} \leftarrow \qquad \qquad$ quarks, Q_B = IR: \longrightarrow single massless $(p, n) SU(2)_L$ doublet, $Q_R = 1$ massless Goldstones (π^+, π^-, π^0) 1 3 **anomaly RG invariant** $\overline{1}$. –
/ . Ex.:

IR physics "nontrivial''

thought anomaly matching was set in stone since ca. 1980 "0-form", or "traditional", anomalies played major role in, say, "preon" models (1980's), Seiberg dualities (1990's)

new "generalized 't Hooft anomaly matching" Gaiotto, Kapustin, Komargodski, Seiberg,Willett … 2014-

"generalized 't Hooft anomaly matching"

"anomalies of exact global (discrete) symmetries revealed upon turning on background gauge fields for global symmetries, **compatible with their faithful action** (interpret some as "gauging higher-form symmetry")"

currently active area of research, across fields

"generalized 't Hooft anomaly matching"

"anomalies of exact global (discrete) symmetries revealed upon turning on background gauge fields for global symmetries, **compatible with their faithful action** (interpret some as "gauging higher-form symmetry")"

currently active area of research, across fields

condensed matter, mathematical physics, **high-energy theory**

classification

general theorems

examples and dynamical implications in QFT

impossible to review all!

"learn by example": here, vectorlike theories, *see Konishi's talk for chiral*

SU(N) gauge theory: *N*_f Dirac flavors $\Psi = (\psi, \tilde{\psi}) \sim (R, R^*)$ of N-ality n_c

 $(n_c = 1 \text{ fundamental}; n_c = 2 \text{ two-index S/AS}; ...; n_c = N \text{ adjoint})$

global symmetry: $SU(N_f)_L \times SU(N_f)_R \times U(1)_B \times \mathbb{Z}_{2N}^{(0)}$ 2*NfTR*

usual stuff

anomaly free part of axial U(1)

$$
U(1)_A : \psi \to e^{i\alpha}\psi, \tilde{\psi} \to e^{i\alpha}\tilde{\psi}
$$

so *M* tr $\tilde{\psi} \cdot \psi$ violates $U(1)_{A}$

$$
\mathscr{D}\Psi \to \mathscr{D}\Psi \ e^{i\alpha 2N_f T_R Q_{top}}
$$

$$
\alpha = \frac{2\pi}{2N_f T_R}, \text{ so } U(1) \to \mathbb{Z}_{2N_f T_R}^{(0)}
$$

 ${\bf not}$ in QCD: $\; T_F = 1$, $\mathbb{Z}_{2N_f}^{(0)}$ part of $U(1)_B$ and centers of $SU(N_f)_{L,R}$

SU(N) gauge theory: *N*_f Dirac flavors $\Psi = (\psi, \tilde{\psi}) \sim (R, R^*)$ of N-ality n_c $(n_c = 1 \text{ fundamental}; n_c = 2 \text{ two-index S/AS}; ...; n_c = N \text{ adjoint})$ global symmetry: $SU(N_f)_L \times SU(N_f)_R \times U(1)_B \times \mathbb{Z}_{2N}^{(0)}$ 2*NfTR* usual stuff $U(1)_A : \psi \to e^{i\alpha}\psi, \tilde{\psi} \to e^{i\alpha}\tilde{\psi}$ $\mathscr{D}\Psi \to \mathscr{D}\Psi e^{i\alpha 2N_fT_RQ_{top}}$ anomaly free part of axial U(1) $\mathbb{Z}_{\gamma_N}^{(0)}$ $2N_fT_R$ **so, under anomaly free** $\mathbb{Z}_{\gamma_{NT}}^{(0)}$: $\mathscr{D}\Psi \rightarrow \mathscr{D}\Psi$ $e^{i2\pi Q_{top}}$ $=$ 1, $Q_{top} \in \mathbb{Z}$ **:** phase

SU(N) gauge theory: *N_f* Dirac flavors $\Psi = (\psi, \tilde{\psi}) \sim (R, R^*)$ of N-ality n_c $(n_c = 1 \text{ fundamental}; n_c = 2 \text{ two-index S/AS}; ...; n_c = N \text{ adjoint})$ "1-form" symmetry global symmetry: $SU(N_f)_L \times SU(N_f)_R \times U(1)_B \times \mathbb{Z}_{2N}^{(0)}$ 2*NfTR* \times $\mathbb{Z}_{n=}^{(1)}$ $p = \gcd(N, n_c)$

Ex.: $p = \gcd(N, n_c)$ adj: $p = N$, $\mathbb{Z}_{N}^{(1)}$

- fundamental (F) quark probes can not be screened in **adjoint** theory; $\mathbb{Z}_N^{(1)}$ means that N F-quarks can be screened in adjoint theory:
- fundamental strings unbreakable
- their number conserved mod(N)

SU(N) gauge theory: *N*_f Dirac flavors $\Psi = (\psi, \tilde{\psi}) \sim (R, R^*)$ of N-ality n_c $(n_c = 1 \text{ fundamental}; n_c = 2 \text{ two-index S/AS}; ...; n_c = N \text{ adjoint})$ "1-form" symmetry **Ex.:** $p = \gcd(N, n_c)$ fundamental (F) quark probes can not be screened in **AS/S** theory; $\mathbb{Z}_2^{(1)}$ means that 2 F-quarks can be global symmetry: $SU(N_f)_L \times SU(N_f)_R \times U(1)_B \times \mathbb{Z}_{2N}^{(0)}$ 2*NfTR* \times $\mathbb{Z}_{n=}^{(1)}$ $p = \gcd(N, n_c)$

AS/S N -even: $p = 2, \ \mathbb{Z}_2^{(1)}$

screened in AS/S 2-index, even-N theory: 2

- fundamental strings unbreakable
- their number conserved mod(2)

SU(N) gauge theory: *N*_f Dirac flavors $\Psi = (\psi, \tilde{\psi}) \sim (R, R^*)$ of N-ality n_c $(n_c = 1 \text{ fundamental}; n_c = 2 \text{ two-index S/AS}; ...; n_c = N \text{ adjoint})$ global symmetry: $SU(N_f)_L \times SU(N_f)_R \times U(1)_B \times \mathbb{Z}_{2N}^{(0)}$ 2*NfTR* \times $\mathbb{Z}_{n=}^{(1)}$ $p = \gcd(N, n_c)$

Ex.:
$$
p = \gcd(N, n_c)
$$
 adj: $p = N, \mathbb{Z}_N^{(1)}$
ASS N-even: $p = 2, \mathbb{Z}_2^{(1)}$

"1-form" global symmetry acts on topologically nontrivial line operators (Wilson loops winding around, say, the torus) - classic probe of deconfinement, for example…

discrete identifications (eliminate redundancies) important…

"anomalies of exact global (discrete) symmetries revealed upon turning on background gauge fields for global symmetries, **compatible with their faithful action** (interpret some as "gauging higher-form symmetry")"

idea goes like… "New 't Hooft anomalies" (example of)**:**

- put the theory on some (large $\gg \Lambda^{-1}$) manifold, say \mathbb{T}^4 (or \mathbb{CP}^2)
- turn on general global symmetry backgrounds on \mathbb{T}^4 (or \mathbb{CP}^2)
- these lead to an anomaly in discrete symmetry if $Q = Q_{\text{bckgd}} \neq \mathbb{Z}$

$$
\mathbb{Z}_{2N_fT_R}^{(0)}:\quad \mathscr{D}\Psi\rightarrow \mathscr{D}\Psi\ e^{i2\pi Q}
$$

 $-$ this phase $e^{i2\pi Q}$ is the anomaly - RG invt, to be reproduced at any scale (and at any volume, incl. $V \rightarrow \infty$): IR can not be "trivially gapped", i.e. have unique vacuum with a mass gap

two points remain to illustrate during rest of talk:

1. what are these backgrounds with $Q \neq 0$

- '*t Hooft fluxes* and their generalizations, on $\mathbb{T}^4, \mathbb{CP}^2 \ldots$

2. what constraints do new anomalies place?

- **4** usually require $\mathbb{Z}_{2N_fT_R}^{(0)}$ be (partially) broken (or CFT)
- constrain the physics of domain walls
- limit/forbid scenarios where massless composites saturate all the usual 'traditional' 't Hooft anomalies
- constrain finite- Γ phases (eg ordering of phase transitions, interfaces...)

DISCLAIMER:

- - **"generalized" anomalies do not tell us which consistent IR scenario is realized**
- **I think, we do not yet know what is the complete set of consistency requirements**

1. what are these backgrounds that have $Q \neq 0$

- '*t Hooft fluxes* and their generalizations, on $\mathbb{T}^4, \mathbb{CP}^2 \ldots$

 $A_i^c = (\Omega_{ij}^c)^{-1}(A_j^c + i \mathrm{d})\Omega_{ij}^c$ **i j**

global 1-form center

$$
\mathbb{Z}_{N}^{(1)} : \Omega_{ij}^{c} \to e^{i\frac{2\pi}{N}m_{ij}} \Omega_{ij}^{c}
$$

 $m_{ij} + m_{jl} + m_{li} = 0 \mod N$

action nontrivial on winding (around the "world") **Wilson loops only**

$$
A_i^c = (\Omega_{ij}^c)^{-1}(A_j^c + id)\Omega_{ij}^c \qquad \Omega_{ij}^c \Omega_{jl}^c \Omega_{li}^c = 1 \qquad \Omega_{ij}^c \in SU(N)
$$

global 1-form center

$$
\mathbb{Z}_N^{(1)} : \Omega_{ij}^c \to e^{i\frac{2\pi}{N}m_{ij}} \Omega_{ij}^c
$$

 $m_{ij} + m_{jl} + m_{li} = 0 \mod N$

action nontrivial on winding (around the "world") **Wilson loops only**

$$
A_i^c = (\Omega_{ij}^c)^{-1}(A_j^c + id)\Omega_{ij}^c \qquad \Omega_{ij}^c \Omega_{jl}^c \Omega_{li}^c = 1 \qquad \Omega_{ij}^c \in SU(N)
$$

j

l

.

global 1-form center

$$
\mathbb{Z}_N^{(1)} : \Omega_{ij}^c \to e^{i\frac{2\pi}{N}m_{ij}} \Omega_{ij}^c
$$

 $m_{ij} + m_{jl} + m_{li} = 0 \mod N$

action nontrivial on winding (around the "world") **Wilson loops only**

Tr[
$$
e^{i \int A_i} \Omega_{ij} e^{i \int A_j} \Omega_{jl} e^{i \int A_l} \Omega_{li}
$$
]

i

1

2

.

.

3 >

>

>

noncontractible loop
\n
$$
A_{left}^{c}
$$
\n
$$
A_{right}^{c} = (A_{left}^{c})^{\Omega^{c}}
$$
\n
$$
A_{right}^{c} = (A_{left}^{c})^{\Omega^{c}}
$$
\n
$$
A_{right}^{c} = (A_{left}^{c})^{\Omega^{c}}
$$

Tr[*e i* 2 ∫ 1 *Ai* $\Omega]$

N

 $\mathbb{Z}_N^{(1)}$: $\times e^{i\frac{2\pi}{N}}$

contractible loop

 $\mathbb{Z}_N^{(1)}$ invariant

 $NB^{(2)} = dB^{(1)}$; $\oint B^{(1)} = 2πZ$; $\oint B^{(2)} =$ 2*π*ℤ **formalism of 2-form** \mathbb{Z}_N gauge field $NB^{(2)} = dB^{(1)}$; $\oint B^{(1)} = 2\pi \mathbb{Z}$; $\oint B^{(2)} = \frac{2\pi \mathbb{Z}}{N} \dots$

less abstract: '*t Hooft fluxes* as examples of $\mathbb{Z}_N^{(1)}$ backgrounds *N*

$$
A_i^c = (\Omega_{ij}^c)^{-1} (A_j^c + id)\Omega_{ij}^c
$$
\n
$$
A_{top} = A_{bottom}^{\Omega^c}
$$
\n
$$
\uparrow \frac{\pi}{\sqrt{2\pi}} \qquad A_1(x_2) = \frac{2\pi x_2}{L^2} \text{diag}(\frac{1}{N}, \dots, \frac{1}{N}, -1 + \frac{1}{N})
$$
\n
$$
\downarrow \frac{\pi}{\sqrt{2\pi}} \qquad A_1(L) = A_1(0) - i\Omega^{c\dagger}(x_1) \partial_1 \Omega^c(x_1)
$$
\n
$$
A_{bottom} = \frac{\pi}{\sqrt{2\pi}} \qquad A_1(L) = A_1(0) - i\Omega^{c\dagger}(x_1) \partial_1 \Omega^c(x_1)
$$
\n
$$
\Omega^c(x_1) = e^{i\frac{2\pi}{L}x^1 \text{diag}(\frac{1}{N}, \frac{1}{N}, \dots, -1 + \frac{1}{N})}
$$
\n
$$
\Omega^c(L) = e^{i\frac{2\pi}{N}} \Omega^c(0)
$$
\nand

periodicity (=cocycle) only up to center, not allowed in SU(N) theory

 $\oint B^{(2)}$ =

 $\left(\oint B^{(2)} = \frac{2\pi\mathbb{Z}}{N}\right)$

2*π*ℤ

$$
A_i^c = (\Omega_{ij}^c)^{-1} (A_j^c + id)\Omega_{ij}^c
$$
\n
$$
A_{top} = A_{bottom}^{\Omega^c}
$$
\n
$$
\sum_{x_1 \to 0}^{x_2 \to 0} A_{ij} = A_{in}(x_2) = \frac{2\pi x_2}{L^2} diag(\frac{1}{N}, \dots, \frac{1}{N}, -1 + \frac{1}{N})
$$
\n
$$
A_1(x_2) = \frac{2\pi x_2}{L^2} diag(\frac{1}{N}, \dots, \frac{1}{N}, -1 + \frac{1}{N})
$$
\n
$$
A_2(x_1) = A_1(0) - i\Omega^{c\dagger}(x_1) \partial_1 \Omega^c(x_1)
$$
\n
$$
\sum_{x_1 \to 0}^{x_1 \to 0} A_{bottom} = e^{i\frac{2\pi}{L}x^i} diag(\frac{1}{N}, \frac{1}{N}, \dots, -1 + \frac{1}{N})
$$
\n
$$
\Omega^c(x_1) = e^{i\frac{2\pi}{L}x^i} \Omega^c(0)
$$
\n
$$
\Omega^c(L) = e^{i\frac{2\pi}{N}} \Omega^c(0)
$$
\n
$$
\Omega^c(L) = e^{i\frac{2\pi}{N}} \Omega^c(0)
$$
\n
$$
\Omega^c(L) = \frac{e^{i\frac{2\pi}{N}} \Omega^c(0)}{2N_{in}(N)} = \frac{2\pi x_2}{N_{in}(N)} \Omega^c(0)
$$
\n
$$
\Omega^c(L) = \frac{2\pi x_2}{N_{in}(N)} \Omega^c(0)
$$
\n
$$
\Omega^c(L) = \frac{2\pi x_2}{N_{in}(N)} \Omega^c(0)
$$
\n
$$
\Omega^c(L) = \frac{2\pi x_2}{N_{out}(N)} \Omega^c(0)
$$
\n
$$
\Omega^c(L) = \frac{2\pi x_2}{N_{out
$$

Both UV and candidate IR theories can be put on \mathbb{T}^4 in same global symmetry background - and anomaly of $\mathbb{Z}_{2N,T_{\ast}}^{(0)}$ should be the same! 2*NfTR*

$$
A_i^c = (\Omega_{ij}^c)^{-1} (A_j^c + id) \Omega_{ij}^c
$$

\n
$$
A_{top} = A_{bottom}^{\Omega^c}
$$

\n
$$
\uparrow_{\mathcal{R}} \begin{bmatrix} \frac{1}{\sqrt{2}} & A_1(x_2) = \frac{2\pi x_2}{L^2} \text{diag}(\frac{1}{N}, \dots, \frac{1}{N}, -1 + \frac{1}{N})\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & A_1(L) = A_1(0) - i\Omega^{c\dagger}(x_1) \partial_1 \Omega^c(x_1)\\ \frac{1}{\sqrt{2}} & \Omega^c(x_1) = e^{i\frac{2\pi}{L}x^1 \text{diag}(\frac{1}{N}, \frac{1}{N}, \dots, -1 + \frac{1}{N})}\\ \Omega^c(L) = e^{i\frac{2\pi}{N}} \Omega^c(0)
$$

unit 't Hooft flux in x_1x_2 : gauging $\mathbb{Z}_N^{(1)}$; $F_{12} = const$. add same in $x_3\overline{x_4}$, compute $\Omega^{c}(L) = e^{i\frac{2\pi}{N}}\Omega^{c}(0)$ not good for *ψ*, *ψ*˜ of $n_c < N$, not single valued but add similar fluxes for F, B to compensate! $Q_{top}^c = 1 - \frac{1}{N}$ $\frac{1}{N}$ **- anomaly!!**

$$
\psi_i = (\Omega_{ij}^c)^{n_c} \Omega_{ij}^F \Omega_{ij}^B \psi_j
$$

$$
\prod_{\text{tripple overlaps}} (\Omega^c)^{n_c} \Omega^F \Omega^B = 1
$$

$$
A_i^c = (\Omega_{ij}^c)^{-1} (A_j^c + id)\Omega_{ij}^c
$$
\n
$$
A_{top} = A_{bottom}^{\Omega^c}
$$
\n
$$
\sum_{x_i^c}^{A_{top}} \frac{A_i(x_i)}{\prod_{\substack{s_i^c \text{is} \\ x_i \to \text{for } s}}^{A_i(x_i)} = \frac{2\pi x_2}{L^2} \text{diag}(\frac{1}{N}, \dots, \frac{1}{N}, -1 + \frac{1}{N})
$$
\n
$$
A_1(L) = A_1(0) - i\Omega^{c^2}(x_1)\partial_1\Omega^c(x_1)
$$
\n
$$
\Omega^c(x_1) = e^{i\frac{2\pi}{L}x^1\text{diag}(\frac{1}{N}, \frac{1}{N}, \dots, -1 + \frac{1}{N})}
$$
\n
$$
\Omega^c(L) = e^{i\frac{2\pi}{N}\Omega^c(0)}
$$
\n
$$
\omega_i = (\Omega_{ij}^c)^{n_c} \Omega_{ij}^F \Omega_{ij}^B \psi_j
$$
\n
$$
\Omega^c(L) = e^{i\frac{2\pi}{N}\Omega^c(0)}
$$
\n
$$
\omega_i = (\Omega_{ij}^c)^{n_c} \Omega_i^F \Omega_{ij}^B \psi_j
$$
\n
$$
\Omega^c(L) = \frac{2\pi x_2}{L^2} (-\frac{n_c}{N})
$$
\n
$$
B_1(x_2) = \frac{2\pi x_2}{L^2} (-\frac{n_c}{N})
$$
\n
$$
\Omega^B(x_1) = e^{i\frac{2\pi}{N}x} \Omega^B(0)
$$
\n
$$
\Omega^C(L) = e^{i\frac{2\pi}{N}x} \Omega^C(0)
$$
\n
$$
\Omega^C(L) = B_1(0) + i\Omega^{B\dagger}\partial_1\Omega^B
$$
\n
$$
\Omega^D(L) = B_1(0) + i\Omega^{B\dagger}\partial_1\Omega^B
$$
\n
$$
\Omega^D(L) = e^{-i\frac{2\pi m_c}{N}\Omega^D(0)}
$$
\n
$$
\Omega^D(L) = e^{-i\frac{2\pi m_c}{N}\Omega^D(0)}
$$
\n
$$
\Omega^D(L) = e^{-i\frac{2\pi m_c}{N}\Omega^D(0)}
$$
\n

$$
A_i^c = (\Omega_{ij}^c)^{-1} (A_j^c + id) \Omega_{ij}^c
$$

\n
$$
A_{top} = A_{bottom}^{\Omega^c}
$$

\n
$$
\sum_{\substack{\mathbf{x} \in \mathbb{R}^m \\ \mathbf{x} \neq \mathbf{0}}} A_1(x_2) = \frac{2\pi x_2}{L^2} \text{diag}(\frac{1}{N}, \dots, \frac{1}{N}, -1 + \frac{1}{N})
$$

\n
$$
\sum_{\substack{\mathbf{x} \in \mathbb{R}^m \\ \mathbf{x} \neq \mathbf{0}}} A_1(L) = A_1(0) - i\Omega^{c\dagger}(x_1) \partial_1 \Omega^c(x_1)
$$

\n
$$
\Omega^c(x_1) = e^{i\frac{2\pi}{L}x^1 \text{diag}(\frac{1}{N}, \frac{1}{N}, \dots, -1 + \frac{1}{N})}
$$

\n
$$
\Omega^c(L) = e^{i\frac{2\pi}{N}} \Omega^c(0)
$$

\n
$$
\Omega^c
$$

 $\psi_i = (\Omega_{ij}^c)^{n_c} \Omega_{ij}^F \Omega_{ij}^B \psi_j$ of $n_c < N$ $\sum_{ij}^{C}P_{c}^{C}\ \mathbf{\Omega}_{ij}^{F}\ \mathbf{\Omega}_{ij}^{B}\ \mathbf{\psi}_{j}^{T}$ $\prod (\Omega^c)^{n_c} \Omega^F \Omega^B = 1$ tripple overlaps

 \overline{N} gauging $\mathbb{Z}_{N}^{(1)}$; $F_{12} = const$. unit 't Hooft flux in x_1x_2 : add same in $x_3\overline{x_4}$, compute $(L) = e^{i\frac{2\pi}{N}} \Omega^{c}(0)$ $Q_{top}^c = 1 - \frac{1}{N}$ $\frac{1}{N}$ **- anomaly!!** not good for *ψ*, *ψ*˜ of $n_c < N$, not single valued but add similar fluxes for F, B to compensate!

get non-integer topological charges for F,B,C - and anomalies, of course, e.g.:

$$
Q_{top}^c = 1 - \frac{1}{N}
$$
 $Q_{top}^F = 1 - \frac{1}{N_F}$ $Q_{top}^B = (\frac{n_c}{N} + \frac{1}{N_f})^2$

Anber, EP 1909.09027 others, different context

Again, idea is that both UV and IR theories can be put on \mathbb{T}^4 in same global symmetry background - and anomaly of $\mathbb{Z}_{2N,T_{\ast}}^{(0)}$ should be the same! $2N_fT_R$

$$
A_i^c = (\Omega_{ij}^c)^{-1} (A_j^c + id) \Omega_{ij}^c
$$

\n
$$
A_{top} = A_{bottom}^{\Omega^c}
$$

\n
$$
\uparrow_{\mathcal{S}} \begin{bmatrix} \frac{1}{\sqrt{2}} & A_1(x_2) = \frac{2\pi x_2}{L^2} \text{diag}(\frac{1}{N}, \dots, \frac{1}{N}, -1 + \frac{1}{N})\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & A_1(L) = A_1(0) - i\Omega^{c\dagger}(x_1) \partial_1 \Omega^c(x_1)\\ \vdots & \vdots & \vdots\\ \frac{1}{\sqrt{2}} & \Omega^c(x_1) = e^{i\frac{2\pi}{L}x^1 \text{diag}(\frac{1}{N}, \frac{1}{N}, \dots, -1 + \frac{1}{N})}\\ \Omega^c(L) = e^{i\frac{2\pi}{N}} \Omega^c(0)
$$

 \overline{N} gauging $\mathbb{Z}_{N}^{(1)}$; $F_{12} = const$. add same in $x_3\overline{x_4}$, compute $Q_{top}^c = 1 - \frac{1}{N}$ $\frac{1}{N}$ **- anomaly!!** $\Omega^{c}(L) = e^{i\frac{2\pi}{N}}\Omega^{c}(0)$ not good for *ψ*, *ψ*˜ of $n_c < N$, not single valued but add similar fluxes for F, B, L to compensate!

unit 't Hooft flux in x_1x_2 :

 $ψ_i = (\Omega^c_{ij})^{n_c} \Omega^F_{ij} \Omega^B_{ij} \Omega^{Lorentz}_{ij} ψ_j$ $\prod (\Omega^c)^{n_c} \Omega^F \Omega^B \Omega^{Lorentz} = 1$ tripple overlaps

if, $\mathbb{T}^4 \to \mathbb{CP}^2$: ("non-spin manifold") more constraining phases to match!

$$
Q_{top}^c = \frac{1}{2}(1 - \frac{1}{N})
$$
 $Q_{top}^F = \frac{1}{2}(1 - \frac{1}{N_F})$ $Q_{top}^B = \frac{1}{2}(\frac{1}{2} + \frac{1}{N_F} + \frac{n_c}{N})^2$ $Q_{top}^{grav} = -\frac{1}{8}$

Cordova, Dumitrescu 1806.09592

$$
\frac{\text{global symmetry:}}{SU(N_f)_L \times SU(N_f)_R \times U(1)_B \times \mathbb{Z}_{2N_f T_R}^{(0)}} \times \mathbb{Z}_{p=\text{gcd}(N,n_c)}^{(1)}
$$

"New 't Hooft anomalies" (example of)**:**

- turn on general global symmetry backgrounds on \mathbb{T}^4 or \mathbb{CP}^2
- these lead to an anomaly in discrete symmetry $Q = Q_{\text{backward}} \neq \mathbb{Z}$

$$
\mathbb{Z}_{2N_fT_R}^{(0)}: \mathscr{D}\Psi \to \mathscr{D}\Psi \ e^{i2\pi Q}
$$

$$
e^{i2\pi Q}\Big|_{UV} = e^{i2\pi \frac{1}{N_f T_R}[N_f T_R Q_{top}^c + \dim_R T_F Q_{top}^F + \dim_R N_f (Q_{top}^B + Q_{top}^{grav})]}
$$

 $-e^{i2\pi Q}$ is the "BCF anomaly" - to be reproduced by theory at any scale (and at any volume, incl. $V \rightarrow \infty$, incl. T>0)

global symmetry: $SU(N_f)_L \times SU(N_f)_R \times U(1)_B \times \mathbb{Z}_{2N_fT_R}^{(0)}$ $\mathbb{Z}_\frac{N}{p}$ $\frac{N}{p}$ \times \mathbb{Z}_{N_f} \times $\mathbb{Z}_{n=}^{(1)}$ $p = \gcd(N, n_c)$ $\mathbb{Z}_{2N_fT_R}^{(0)}: \mathscr{D}\Psi \to \mathscr{D}\Psi e^{i2\pi Q}$ *ei*2*π^Q UV* $= e$ $i2\pi \frac{1}{N_f T_R} [N_f T_R Q_{top}^c + \text{dim}_R T_F Q_{top}^F + \text{dim}_R N_f (Q_{top}^B + Q_{top}^{grav.})]$ **an exercise** (in "number theory", use either \mathbb{T}^4 or \mathbb{CP}^2) **2**. what constraints do they place?

suppose a set of massless composites matches all 'traditional' anomalies; **"theorem":**

then, they can not, by themselves match the new anomaly if either

$$
\gcd(N, N_f) > 1 \qquad \text{or} \qquad \gcd(N, n_c) > 1
$$

(otherwise, they do match anomaly)

rules out the massless composites as the "sole player" in the IR

need other IR "d.o.f.": typically symmetry breaking and associated domain walls/TQFT/: **Example**

Ex1: SU(2) QCD(adj) with one Dirac flavor = two Weyl Anber, EP, 1805.12290+…

anomaly implications in IR: Cordova, Dumitrescu 1806.09592 **A.** "vanilla phase" with broken $SU(2)_F$

B. massless composite Dirac fermion, doublet of $SU(2)_F$

*motivation***:**

saturates all "traditional" 0-form anomalies; spectrum = $\mathbb{R}^3 \times \mathbb{S}^1$ solution Unsal 2007

 $gcd(N, n_c = N) = N > 1$

B. in IR: $Tr \lambda^3 \sim SU(2)_F$ doublet

Ex1: SU(2) QCD(adj) with one Dirac flavor = two Weyl Anber, EP, 1805.12290+…

anomaly implications in IR: Cordova, Dumitrescu 1806.09592 **A.** "vanilla phase" with broken $SU(2)_F$

on \mathbb{T}^4 OK, with four-fermi condensate $\mathbb{Z}_8^{(0)} \rightarrow \mathbb{Z}_4^{(0)}$

B. massless composite Dirac fermion, doublet of $SU(2)_F$

*motivation***:**

saturates all "traditional" 0-form anomalies; spectrum = $\mathbb{R}^3 \times \mathbb{S}^1$ solution but not the "new" $\mathbb{Z}_8^{(0)}$ chiral- $\mathbb{Z}_2^{(1)}$ center anomaly Unsal 2007

 $\mathbb{R}^3 \times \mathbb{S}^1$! no bilinear condensate, as on

Tr $\lambda^3 \sim SU(2)_F$ doublet $\langle \det \lambda^2 \rangle \neq 0$; $SU(2)_F$ singlet, $\mathbb{Z}_8^{(0)} \rightarrow \mathbb{Z}_4^{(0)}$ **B. in IR:**

Ex1: SU(2) QCD(adj) with one Dirac flavor = two Weyl Anber, EP, 1805.12290+…

anomaly implications in IR: Cordova, Dumitrescu 1806.09592 **A.** "vanilla phase" with broken $SU(2)_F$

on \mathbb{T}^4 OK, with four-fermi condensate $\mathbb{Z}_8^{(0)} \rightarrow \mathbb{Z}_4^{(0)}$

4

on \mathbb{CP}^2 unbroken part of $\mathbb{Z}_4^{(0)}$ not matched,

 \mathbb{Z}_2 -valued, need an extra IR \mathbb{Z}_2 TQFT

B. massless composite Dirac fermion, doublet of $SU(2)_F$

*motivation***:**

saturates all "traditional" 0-form anomalies; spectrum = $\mathbb{R}^3 \times \mathbb{S}^1$ solution but not the "new" $\mathbb{Z}_8^{(0)}$ chiral- $\mathbb{Z}_2^{(1)}$ center anomaly Unsal 2007

 $\mathbb{R}^3 \times \mathbb{S}^1$! no bilinear condensate, as on

Cordova, Dumitrescu 1806.09592; Bi, Senthil 1808.07465; Wan, Wang 1812.11955; Cordova, Ohmori 1912.13069; Anber,EP 2002.02037

Will not speculate on **A.** vs **B.** Lattice studies Jena, MIT on…latest 1912.11723 Illustrates utility of new anomaly matching.

Ex1.1: SU(N) QCD(adj) with N_F Weyl flavors

Cordova, Ohmori 1912.13069; Anber,EP 2002.02037 Ryttov, EP, 1904.11640;

- **A.** "vanilla phase" with broken *SU*(*Nf*) or CFT…
- **B.** massless composites = gauge invariant copy of UV fermions

saturate all "traditional" 0-form anomalies but not the "new" $\mathbb{Z}^{(0)}_{\gamma NN_c}$ chiral- $\mathbb{Z}^{(1)}_N$ center anomaly 2*NNf* $\mathbb{Z}_N^{(1)}$ *N* on \mathbb{T}^4 OK, with multi-fermi condensate $\mathbb{Z}_{2N}^{(0)}$ 2*NNf* $\rightarrow \mathbb{Z}_{2N}^{(0)}$ 2*NF* on \mathbb{CP}^2 unbroken part of $\mathbb{Z}_{2N_c}^{(0)}$ not matched (even Nf), need an extra IR \mathbb{Z}_2 TQFT - shown to exist... 2*Nf*

Will not speculate on **A.** vs **B.** Illustrates utility of new anomaly matching. **2**. what constraints do they place?

Ex 2: SU(6) [or SU(4k+2)] QCD(AS) with single Dirac

A. "vanilla phase" with broken $\mathbb{Z}_8^{(0)} \to \mathbb{Z}_2^{(0)}$ 2002.02037 domain wall physics nontrivial, e.g. \overline{w} light axion $\frac{Anber,EP}{2001,036}$ 2001.03631

Anber,EP

1909.09027,

B. massless composite Dirac

saturates all "traditional" 0-form anomalies but not the "new" $\mathbb{Z}_8^{(0)}$ chiral-B and C 't Hooft fluxes 8 on \mathbb{T}^4 OK, with 4-fermi condensate $\mathbb{Z}_8^{(0)} \rightarrow \mathbb{Z}_4^{(0)}$

on \mathbb{CP}^2 unbroken part of $\mathbb{Z}_4^{(0)}$ not matched (seen w/ only B flux, not $\mathbb{Z}_2^{(1)}$) need an extra IR TQFT - argued to exist… $_4^{\rm (U)}$ not matched (seen w/ only B flux, not $\mathbb{Z}_2^{(1)}$ Cordova, Ohmori 1912.13069; Thorngren 2001.11938

Will not speculate on **A.** vs **B.** Illustrates utility of new anomaly matching.

Conclusion:

New 't Hooft anomalies are an exciting development.

gave examples

what constraints do they place?

Latter USUAlly require $\mathbb{Z}_{2N_fT_R}^{(0)}$ **be (partially) broken** (or CFT)

- constrain the physics of domain walls
- limit/forbid scenarios where massless composites saturate all the usual 'traditional' 't Hooft anomalies
- constrain finite- Γ phases (eg ordering of phase transitions, interfaces...)
- - **"generalized" anomalies do not tell us which consistent IR scenario is realized**

- **I think, we do not yet know what is the complete set of consistency requirements**