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IR physics “nontrivial’’

reminder on ’t Hooft anomalies:

SU(3) QCD with 2 massless flavors of fundamental quarks

exact global symmetry  SU(2)L × SU(2)R × U(1)B

U(1)B SU(2)2
L

jμ
B

jν
L a

jλ
L b

UV:

IR:
single massless �  �  doublet, �  (p, n) SU(2)L QB = 1

massless Goldstones �(π+ , π−, π0)

quarks, �QB = 1
3

anomaly  
RG invariant

.
.

.
Ex.:



new “generalized ’t Hooft anomaly matching” 
                  Gaiotto, Kapustin, Komargodski, Seiberg,Willett … 2014- 

thought anomaly matching was set in stone since ca. 1980  
“0-form”, or “traditional”, anomalies played major role in, say, 
“preon” models (1980’s),  Seiberg dualities (1990’s)
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“generalized ’t Hooft anomaly matching”

currently active area of research, across fields

“anomalies of exact global (discrete) symmetries 

revealed upon turning on background gauge fields for global 
symmetries, compatible with their faithful action

(interpret some as “gauging higher-form symmetry”)”



“generalized ’t Hooft anomaly matching”

impossible to review all!

currently active area of research, across fields
   condensed matter, mathematical physics, high-energy theory

classification
general theorems

examples and dynamical implications in QFT

“anomalies of exact global (discrete) symmetries 

revealed upon turning on background gauge fields for global 
symmetries, compatible with their faithful action

(interpret some as “gauging higher-form symmetry”)”



“learn by example”:

SU(N) gauge theory:  
  Dirac flavors     of N-ality  Nf Ψ = (ψ, ψ̃) ∼ (R, R*) nc

(  fundamental;   two-index S/AS; …;   adjoint)nc = 1 nc = 2 nc = N

global symmetry:   
 SU(Nf )L × SU(Nf )R × U(1)B × ℤ(0)

2NfTR

usual stuff 

U(1)A : ψ → eiαψ, ψ̃ → eiαψ̃

m trψ̃ ⋅ ψso   violates �U(1)A

(Ψ → (Ψ eiα2NfTRQtop

α = 2π
2NfTR

, so U(1) → ℤ(0)
2NfTR

anomaly free part of axial U(1)

here, vectorlike theories, 
see Konishi’s talk for chiral 

not in QCD:  � , �  part of �  and centers of �TF = 1 ℤ(0)
2Nf

U(1)B SU(Nf )L,R



SU(N) gauge theory:  
  Dirac flavors     of N-ality  Nf Ψ = (ψ, ψ̃) ∼ (R, R*) nc

(  fundamental;   two-index S/AS; …;   adjoint)nc = 1 nc = 2 nc = N

global symmetry:   
 SU(Nf )L × SU(Nf )R × U(1)B × ℤ(0)

2NfTR

usual stuff 

U(1)A : ψ → eiαψ, ψ̃ → eiαψ̃ (Ψ → (Ψ eiα2NfTRQtop

anomaly free part of axial U(1)

ℤ(0)
2NfTR

so, under  
anomaly free (Ψ → (Ψ ei2πQtop

= 1,  Qtop ∈ℤ
:

phase



SU(N) gauge theory:  
  Dirac flavors     of N-ality  Nf Ψ = (ψ, ψ̃) ∼ (R, R*) nc

(  fundamental;   two-index S/AS; …;   adjoint)nc = 1 nc = 2 nc = N
“1-form” symmetry

Ex.: �  adj: �  �p = gcd(N, nc) p = N, ℤ(1)
N

fundamental (F) quark probes can not be screened 

in adjoint theory; �  means that N F-quarks can be 

screened in adjoint theory: 

- fundamental strings unbreakable

- their number conserved mod(N)

ℤ(1)
N

global symmetry:   
 SU(Nf )L × SU(Nf )R × U(1)B × ℤ(0)

2NfTR
× ℤ(1)

p= gcd(N,nc)



SU(N) gauge theory:  
  Dirac flavors     of N-ality  Nf Ψ = (ψ, ψ̃) ∼ (R, R*) nc

(  fundamental;   two-index S/AS; …;   adjoint)nc = 1 nc = 2 nc = N
“1-form” symmetry

Ex.: �p = gcd(N, nc)
p = 2, ℤ(1)

2AS/S � -even:  N

fundamental (F) quark probes can not be screened 

in AS/S theory; �  means that 2 F-quarks can be 

screened in AS/S 2-index, even-N theory: 

- fundamental strings unbreakable

- their number conserved mod(2)

ℤ(1)
2

global symmetry:   
 SU(Nf )L × SU(Nf )R × U(1)B × ℤ(0)

2NfTR
× ℤ(1)

p= gcd(N,nc)



SU(N) gauge theory:  
  Dirac flavors     of N-ality  Nf Ψ = (ψ, ψ̃) ∼ (R, R*) nc

(  fundamental;   two-index S/AS; …;   adjoint)nc = 1 nc = 2 nc = N

“1-form” global symmetry
acts on topologically nontrivial line 
operators (Wilson loops winding 
around, say, the torus) - classic probe of
deconfinement, for example…

Ex.: �  adj: �  �p = gcd(N, nc) p = N, ℤ(1)
N

p = 2, ℤ(1)
2AS/S � -even:  N

global symmetry:   
 SU(Nf )L × SU(Nf )R × U(1)B × ℤ(0)

2NfTR
× ℤ(1)

p= gcd(N,nc)



global symmetry:   

 
SU(Nf )L × SU(Nf )R × U(1)B × ℤ(0)

2NfTR

ℤN
p

× ℤNf

× ℤ(1)
p= gcd(N,nc)

discrete identifications (eliminate redundancies) important…

“anomalies of exact global (discrete) symmetries 

revealed upon turning on background gauge fields for global 
symmetries, compatible with their faithful action

(interpret some as “gauging higher-form symmetry”)”



global symmetry:   

 
SU(Nf )L × SU(Nf )R × U(1)B × ℤ(0)

2NfTR

ℤN
p

× ℤNf

× ℤ(1)
p= gcd(N,nc)

- put the theory on some (large � ) manifold, say �  (or � )≫ Λ−1 ,4 ℂℙ2

- turn on general global symmetry backgrounds on �  (or � ),4 ℂℙ2

- these lead to an anomaly in discrete symmetry if �Q = Qbckg d ≠ℤ
(Ψ → (Ψ ei2πQ:ℤ(0)

2NfTR

- this phase �  is the anomaly - RG invt, to be reproduced at any 
scale (and at any volume, incl. � ): IR can not be “trivially gapped”, 
i.e. have unique vacuum with a mass gap

ei2πQ

V → ∞

idea goes like…

“New ’t Hooft anomalies” (example of):



two points remain to illustrate during rest of talk:

1. what are these backgrounds with   Q ≠0

2. what constraints do new anomalies  place? 

- ’t Hooft fluxes and their generalizations, on   ,4, ℂℙ2 . . .

- usually require   be (partially) broken (or CFT)ℤ(0)
2NfTR

- limit/forbid scenarios where massless composites saturate 
all the usual ‘traditional’ ’t Hooft anomalies

- constrain the physics of domain walls

- “generalized” anomalies do not tell us which consistent IR scenario is realized

- I think, we do not yet know what is the complete set of consistency requirements

DISCLAIMER:

- constrain finite-T phases (eg ordering of phase transitions, interfaces…)



1. what are these backgrounds that have   Q ≠0
- ’t Hooft fluxes and their generalizations, on   ,4, ℂℙ2 . . .

Ac
i = (Ωc

ij)−1(Ac
j + id)Ωc

ij

i
j



Ωc
ijΩc

jlΩc
li = 1

i
j

l

Ωc
ij ∈SU(N)
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ij ∈SU(N)

global 1-form center 
� 

�

ℤ(1)
N : Ωc

ij → ei 2π
N mij Ωc

ij
mij + mjl + mli = 0 mod N

action nontrivial on winding  
(around the “world”) 

Wilson loops only
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N mij Ωc
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action nontrivial on winding  
(around the “world”) 

Wilson loops only

1. what are these backgrounds that have   Q ≠0
- ’t Hooft fluxes and their generalizations, on   ,4, ℂℙ2 . . .

Tr[ e
i

2
∫
1

Ai Ωij e
i

3
∫
2

Aj Ωjl e
i

1
∫
3

Al Ωli ]

1

2

3>

>

>

..
.

Ac
i = (Ωc

ij)−1(Ac
j + id)Ωc

ij

21

Ac
left Ac

rig h t = (Ac
left)Ωc. .

1 2

Tr[ e
i

2
∫
1

Ai Ω]

contractible loop 
 �  invariantℤ(1)

N

noncontractible loop 
 � : �ℤ(1)

N × ei 2π
N



global 1-form center 
� 

�

ℤ(1)
N : Ωc

ij → ei 2π
N mij Ωc

ij
mij + mjl + mli = 0 mod N

introducing a �  background:  
relax cocycle condition 
1-form �  gauge transforms

ℤ(1)
N

ℤ(1)
N

1. what are these backgrounds that have   Q ≠0
- ’t Hooft fluxes and their generalizations, on   ,4, ℂℙ2 . . .

Ac
i = (Ωc

ij)−1(Ac
j + id)Ωc

ij Ωc
ijΩc

jlΩc
li = ei 2π

N nijl

i

j

l
1

2

3>

>

>

..
.

NB(2) = dB(1); ∮ B(1) = 2πℤ; ∮ B(2) = 2πℤ
N

. . .
formalism of 2-form �  gauge fieldℤN )continuum, lattice, triangulation (

less abstract: ’t Hooft fluxes as examples of   backgroundsℤ(1)
N

Tr[ e
i

2
∫
1

Ai Ωij e
i

3
∫
2

Aj Ωjl e
i

1
∫
3

Al Ωli ] mij + mjl + mli ≠0
nijl → nijl + mij + mjl + mli mod N



A1(x2) = 2πx2
L2 diag( 1

N
, . . . , 1

N
, − 1 + 1

N
)

unit ’t Hooft flux in  : 
gauging  ;  

x1x2
ℤ(1)

N F12 = const .

x 2
→

x1 →

A l
ef

t

A r
ig

ht
=

A l
ef

t

Abottom

Atop = AΩc

bottom

1. what are these backgrounds that have   Q ≠0
- ’t Hooft fluxes and their generalizations, on   ,4, ℂℙ2 . . .

Ac
i = (Ωc

ij)−1(Ac
j + id)Ωc

ij



A1(x2) = 2πx2
L2 diag( 1

N
, . . . , 1

N
, − 1 + 1

N
)

A1(L) = A1(0) − iΩc†(x1)∂1Ωc(x1)

Ωc(x1) = ei 2π
L x1diag( 1

N , 1
N ,...,−1+ 1

N )

unit ’t Hooft flux in  : 
gauging  ;  

x1x2
ℤ(1)

N F12 = const .

Ωc(L) = ei 2π
N Ωc(0)

periodicity (=cocycle) only up to center, 
not allowed in SU(N) theory

∮ B(2) = 2πℤ
N
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L2 diag( 1

N
, . . . , 1

N
, − 1 + 1

N
)

A1(L) = A1(0) − iΩc†(x1)∂1Ωc(x1)

Ωc(x1) = ei 2π
L x1diag( 1

N , 1
N ,...,−1+ 1

N )

unit ’t Hooft flux in  : 
gauging  ;  

x1x2
ℤ(1)

N F12 = const .
add same in  , computex3x4

Ωc(L) = ei 2π
N Ωc(0)

Qc
top = 1 − 1

N - anomaly!!

mixed   - chiral/center 

anomaly in QCD(adjoint)

ℤ(0)
2NWeylN

ℤ(1)
N

Both UV and candidate IR theories can be put on �  in same 
global symmetry background - and anomaly of �  should be the same!

,4

ℤ(0)
2NfTR
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not good for  
of  , not single valued
but add similar fluxes
for F, B to compensate!

ψ, ψ̃
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Qc
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N - anomaly!!
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1. what are these backgrounds that have   Q ≠0
- ’t Hooft fluxes and their generalizations, on   ,4, ℂℙ2 . . .

Ac
i = (Ωc

ij)−1(Ac
j + id)Ωc

ij

B1(x2) = 2πx2
L2 (− nc

N
)

B1(L) = B1(0) + iΩB†∂1ΩB

ΩB(x1) = ei 2π
L x1(− nc

N )

ΩB(L) = e−i 2πnc
N ΩB(0)

Ωc(L) = ei 2π
N Ωc(0)

- periodic, single valued  Ψ
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N

add same in  , computex3x4

Ωc(L) = ei 2π
N Ωc(0) Ωc(L) = ei 2π

N Ωc(0)

QF
top = 1 − 1

NF
QB

top = ( nc

N
+ 1

Nf
)2

Qc
top = 1 − 1

N - anomaly!!

Again, idea is that both UV and IR theories can be put on �  in same 
global symmetry background - and anomaly of �  should be the same!

,4

ℤ(0)
2NfTR

Anber, EP 1909.09027
others, different context

1. what are these backgrounds that have   Q ≠0
- ’t Hooft fluxes and their generalizations, on   ,4, ℂℙ2 . . .

Ac
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j + id)Ωc

ij

      get non-integer topological charges for F,B,C - and anomalies, of course, e.g.: 
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tripple overlaps



A1(x2) = 2πx2
L2 diag( 1

N
, . . . , 1

N
, − 1 + 1

N
)

A1(L) = A1(0) − iΩc†(x1)∂1Ωc(x1)

Ωc(x1) = ei 2π
L x1diag( 1

N , 1
N ,...,−1+ 1

N )

unit ’t Hooft flux in  : 
gauging  ;  

x1x2
ℤ(1)

N F12 = const .
add same in  , computex3x4

Ωc(L) = ei 2π
N Ωc(0)

if,                     (“non-spin manifold”) more constraining phases to match!,4 → ℂℙ2 :

Qc
top = 1 − 1

N - anomaly!!

Qg rav.
top = − 1

8
QF

top = 1
2 (1 − 1

NF
) QB

top = 1
2 ( 1

2 + 1
NF

+ nc

N
)2Qc

top = 1
2 (1 − 1

N
)

Ωc(L) = ei 2π
N Ωc(0)

Anber, EP 2002.02037

Cordova, Dumitrescu 1806.09592

not good for  
of  , not single valued
but add similar fluxes
for F, B, L to compensate!

ψ, ψ̃
nc < N

1. what are these backgrounds that have   Q ≠0
- ’t Hooft fluxes and their generalizations, on   ,4, ℂℙ2 . . .
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i = (Ωc
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j + id)Ωc

ij

�ψi = (Ωc
ij)nc ΩF

ij ΩB
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ij ψj

�∏ (Ωc)nc ΩF ΩB ΩLorentz = 1
tripple overlaps
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global symmetry:   

 
SU(Nf )L × SU(Nf )R × U(1)B × ℤ(0)

2NfTR

ℤN
p

× ℤNf

× ℤ(1)
p= gcd(N,nc)

- turn on general global symmetry backgrounds on �  or �,4 ℂℙ2

- these lead to an anomaly in discrete symmetry �Q = Qbckg rd ≠ℤ

(Ψ → (Ψ ei2πQ:ℤ(0)
2NfTR

- above �  is the “BCF anomaly” - to be reproduced by theory at 
any scale (and at any volume, incl. � , incl. T>0)

ei2πQ

V → ∞

“New ’t Hooft anomalies” (example of):

ei2πQ
UV

= ei2π 1
Nf TR

[Nf TR Qc
top+ dimR TF QF

top+ dimR Nf (QB
top+ Qg rav.

top )]



global symmetry:   

 
SU(Nf )L × SU(Nf )R × U(1)B × ℤ(0)

2NfTR

ℤN
p

× ℤNf

× ℤ(1)
p= gcd(N,nc)

(Ψ → (Ψ ei2πQ:ℤ(0)
2NfTR

ei2πQ
UV

= ei2π 1
Nf TR

[Nf TR Qc
top+ dimR TF QF

top+ dimR Nf (QB
top+ Qg rav.

top )]

suppose a set of massless composites matches all ‘traditional’ anomalies;

then, they can not, by themselves match the new anomaly if either

gcd(N, Nf ) > 1 gcd(N, nc) > 1or

rules out the massless composites as the “sole player” in the IR
need other IR “d.o.f.”: typically symmetry breaking and associated  domain walls/TQFT/: Example

an exercise  (in “number theory”, use either � ),4 or ℂℙ2

2. what constraints do they place? 

“theorem”:

(otherwise, they do match anomaly)



2. what constraints do they place? 

Ex1: SU(2) QCD(adj) with one Dirac flavor = two Weyl

saturates all “traditional” 0-form anomalies; spectrum =   solutionℝ3 × 21

anomaly implications in IR:
Cordova, Dumitrescu 1806.09592

Unsal 2007

SU(2)FA. “vanilla phase” with broken

SU(2)FB. massless composite Dirac fermion, doublet of   

Anber, EP, 1805.12290+…

motivation:

 �gcd(N, nc = N ) = N > 1

Tr λ3 ∼ SU(2)F doubletB. in IR:



2. what constraints do they place? 

Ex1: SU(2) QCD(adj) with one Dirac flavor = two Weyl

saturates all “traditional” 0-form anomalies; spectrum =   solutionℝ3 × 21

but not the “new”  chiral-  center anomalyℤ(0)
8 ℤ(1)

2

on   OK, with four-fermi condensate  ,4 ℤ(0)
8 → ℤ(0)

4

anomaly implications in IR:
Cordova, Dumitrescu 1806.09592

Unsal 2007

SU(2)FA. “vanilla phase” with broken

SU(2)FB. massless composite Dirac fermion, doublet of   

Anber, EP, 1805.12290+…

ℝ3 × 21 ! 

no bilinear 
condensate, as on 

motivation:

Tr λ3 ∼ SU(2)F doublet

⟨det λ2⟩ ≠0; SU(2)F singlet, ℤ(0)
8 → ℤ(0)

4

B. in IR:



2. what constraints do they place? 

Ex1: SU(2) QCD(adj) with one Dirac flavor = two Weyl

saturates all “traditional” 0-form anomalies; spectrum =   solutionℝ3 × 21

but not the “new”  chiral-  center anomalyℤ(0)
8 ℤ(1)

2

on   OK, with four-fermi condensate  ,4 ℤ(0)
8 → ℤ(0)

4

on   unbroken part of   not matched, 
 -valued, need an extra IR   TQFT  

ℂℙ2 ℤ(0)
4

ℤ2 ℤ2

anomaly implications in IR:
Cordova, Dumitrescu 1806.09592

Cordova, Dumitrescu 
1806.09592; 
Bi, Senthil 1808.07465; 
Wan, Wang 1812.11955; 
Cordova, Ohmori 1912.13069;  
Anber,EP 2002.02037  

Unsal 2007

SU(2)FA. “vanilla phase” with broken

SU(2)FB. massless composite Dirac fermion, doublet of   

Anber, EP, 1805.12290+…

ℝ3 × 21 ! 

no bilinear 
condensate, as on 

Will not speculate on A. vs B. Lattice studies Jena, MIT on…latest 1912.11723

Illustrates utility of new anomaly matching.

motivation:



2. what constraints do they place? 

Ex1.1: SU(N) QCD(adj) with   Weyl flavorsNF

saturate all “traditional” 0-form anomalies

but not the “new”  chiral-   center anomalyℤ(0)
2NNf

ℤ(1)
N

on   OK, with multi-fermi condensate  ,4 ℤ(0)
2NNf

→ ℤ(0)
2NF

on   unbroken part of   not matched (even Nf), 

need an extra IR   TQFT - shown to exist…

ℂℙ2 ℤ(0)
2Nf

ℤ2

Cordova, Ohmori 1912.13069;  
Anber,EP 2002.02037  

A. “vanilla phase” with broken   or CFT…SU(Nf )
B. massless composites = gauge invariant copy of UV fermions 

Ryttov, EP, 1904.11640;

Will not speculate on A. vs B. 
Illustrates utility of new anomaly matching.



2. what constraints do they place? 

Ex 2: SU(6) [or SU(4k+2)] QCD(AS) with single Dirac

saturates all “traditional” 0-form anomalies

but not the “new”  chiral-B and C ’t Hooft fluxesℤ(0)
8

on   OK, with 4-fermi condensate  ,4 ℤ(0)
8 → ℤ(0)

4

on   unbroken part of   not matched (seen w/ only B flux, not   )

need an extra IR TQFT - argued to exist…
ℂℙ2 ℤ(0)

4 ℤ(1)
2

Cordova, Ohmori 1912.13069; 

A. “vanilla phase” with broken  ℤ(0)
8 → ℤ(0)

2

B. massless composite Dirac

Will not speculate on A. vs B. 
Illustrates utility of new anomaly matching.

Anber,EP 
1909.09027, 
2002.02037

 Thorngren 2001.11938

domain wall physics nontrivial, e.g. w/ light axion Anber,EP 
2001.03631



what constraints do they place? 

- usually require   be (partially) broken (or CFT)ℤ(0)
2NfTR

- limit/forbid scenarios where massless composites saturate 
all the usual ‘traditional’ ’t Hooft anomalies

- constrain the physics of domain walls

- “generalized” anomalies do not tell us which consistent IR scenario is realized

- I think, we do not yet know what is the complete set of consistency requirements

- constrain finite-T phases (eg ordering of phase transitions, interfaces…)

New ’t Hooft anomalies are an exciting development.

Conclusion:

- gave examples


