Global inconsistency and 't Hooft anomaly in bifundamental gauge theories at finite theta angles

Yuta Kikuchi (Kyoto University & Stony Brook University)

with Yuya Tanizaki (RIKEN BNL Research Center) JHEP 1706 (2017) 102, arXiv:1708.01962 [hep-th]

Abstract: we study possible vacuum structures of $SU(n) \times SU(n)$ gauge theory with bifundamental fermions by using the global inconsistency and 't Hooft anomaly.

Consider a theory with the global symmetry G. Let $\mathcal{Z}[A]$ be the partition function under background G-gauge field A. G has an 't Hooft anomaly if

 $\mathcal{Z}[A + d\theta] = \mathcal{Z}[A] \exp(i\mathcal{A}[A, \theta])$

under the G-gauge transformation $A \mapsto A + d\theta$.

't Hooft anomaly matching rules out the trivial IR theory:

- G is unbroken and the theory contains massless excitations.
- \bullet G is unbroken, vacuum is gapped, and the theory is described by $TQFT$.
- G is broken \Rightarrow degenerate vacua, NG modes.

Gauging \mathbb{Z}_n center symmetry

Prepare \mathbb{Z}_n **topological gauge theory** [Kapustin, Seiberg 2014]

't Hooft anomaly and anomaly matching

't Hooft anomaly is an obstruction to gauging the global symmetry. ['t Hooft 1980]

Assume G $\hat{\hat{}}$ has no 't Hooft anomaly $\Rightarrow \exists k$ \bar{k} k_i s.t.

> $\mathcal{Z}_{\vec{g}_i,\vec{k_i}}[h\cdot\mathsf{A}] = \mathcal{Z}_{\vec{g}_i,\vec{k_i}}$ $[A]$

Choose \bar{k} k_1 at both $~\vec{g_1}$ and $~\vec{g_2} \Rightarrow~\vec{G}$ $\hat{\hat{}}$ has a global inconsistency if

> $\mathcal{Z}_{\vec{g}_2,\vec{k}_1}[h\cdot\mathcal{A}] = \mathcal{Z}_{\vec{g}_2,\vec{k}_1}[A] \exp(\mathrm{i} \mathcal{A}_{\vec{g}_2,\vec{k}_1}]$ $[h, A]).$

There exists no \bar{k} k which is compatible with the H-invariance at \vec{g}_1 and \vec{g}_2 .

IR theory compatible with the global inconsistency

The vacuum either at \vec{g}_1 or \vec{g}_2 is nontrivial. [Gaiotto, Kapustin, Komargodski, Seiberg 2017] \vec{g}_1 and \vec{g}_2 are separated by a phase transition.

$1\times$ $SU(n)$ bifundamental gauge theory

The Euclidean classical action of $SU(n)_1 \times SU(n)_2$ bifundamental gauge theory:

Global inconsistency

Consider a QFT $\mathcal T$ with a set of continuous parameters $\vec g$.

- G the symmetry at generic \vec{g} .
- G $\hat{\bm{\hat{J}}}$ - the symmetry enhanced by H at high symmetry points $\vec{g_1}$, $\vec{g_2}.$

Gauge G-symmetry at high symmetry points by coupling to topological G-gauge theory with discrete parameters \bar{k} k.

 $SU(n)_1\times SU(n)_2\to$ $SU(n)_1\times SU(n)_2\times U(1)$ $\overline{\mathbb{Z}_{n}}$

- Identify $U(1)$ gauge field with A in the topological theory.
- Replace $SU(n)$ gauge fields a_i by $U(n)$ gauge fields A_i :

$$
S=-\frac{1}{2g_1^2}\int\limits^{\cdot}_1\mathrm{Tr}[G_1\wedge *G_1]-\frac{1}{2g_2^2}\int\limits^{\cdot}_2\mathrm{Tr}[G_2\wedge *G_2]+\int\limits^{\cdot}_1\mathrm{Tr}[\bar{\Psi}(\not\!\! D+m)\Psi]\\+\frac{{\rm i}\theta_1}{8\pi^2}\int\limits^{\cdot}_3\mathrm{Tr}[G_1\wedge G_1]+\frac{{\rm i}\theta_2}{8\pi^2}\int\limits^{\cdot}_3\mathrm{Tr}[G_2\wedge G_2],
$$

with

$$
\bar{\Psi}(\rlap{\,/}D+m)\Psi=\bar{\Psi}\gamma^{\mu}(\partial_{\mu}+a_{1,\mu}\Psi-\Psi a_{2,\mu}).
$$

• Ψ - Dirac field belonging to fund. rep. of $SU(n)_1$ and anti-fund. rep. of $SU(n)_2$.

.

$$
S_{\text{TFT}} = \frac{\mathrm{i}}{2\pi} \int F \wedge (\mathrm{d}A + nB) + \frac{\mathrm{i}nk}{4\pi} \int B \wedge B.
$$

• A: $U(1)$ 1-form gauge field, B: $U(1)$ 2-form gauge field, F 2-form auxiliary field. \bullet $U(1)$ 1-form gauge transformation:

 $A \mapsto A - n\lambda$, $B \mapsto B + d\lambda$, $F \mapsto F - k\lambda$.

Gauge invariance $\Rightarrow k \in \mathbb{Z}_n$: a discrete parameter.

• Eom for $F \Rightarrow dA = -nB$.

Couple the bifundamental gauge theory to the topological gauge theory

$$
\mathcal{A}_1=a_1+\frac{1}{n}\mathcal{A},\quad \mathcal{A}_2=a_2+\frac{1}{n}\mathcal{A},\quad \mathcal{A}=\mathrm{Tr}[\mathcal{A}_1]=\mathrm{Tr}[\mathcal{A}_2].
$$

- \bullet $U(1)$ gauge field A does not couple to the bifundamental fermion.
- Replace G_i by $G_i + B$ with $U(n)$ field strengths G_i .

Resultant θ term:

$$
S_{\theta} = \sum_{i=1,2} \frac{\mathrm{i} \theta_i}{8\pi^2} \int \mathrm{Tr}[(G_i + B) \wedge (G_i + B)] = \sum_{i=1,2} \frac{\mathrm{i} \theta_i}{8\pi^2} \int (\mathrm{Tr}[G_i \wedge G_i] - nB \wedge B).
$$

It Hooft anomaly and global inconsistency for $\mathbb{Z}_n \times {\it CP}$ symmetry

Now, we have the partition function $\mathcal{Z}_{(\theta_1,\theta_2),k}[A,B]$ with the \mathbb{Z}_n gauge symmetry. CP transformation [c.f. Gaiotto, Kapustin, Komargodski, Seiberg, 2017]

 \bullet θ term at the high symmetry points

$$
S_{\theta} \mapsto S_{\theta} - \sum_{i=1,2} \frac{2i\theta_i}{8\pi^2} \int \text{Tr}[G_i \wedge G_i] + \sum_{i=1,2} \frac{2i\theta_i n}{8\pi^2} \int B \wedge B.
$$

The second term is in $2\pi i \mathbb{Z}$.

• The topological term

$$
S_{\text{TFT}} = k \frac{\text{in}}{4\pi} \int B \wedge B \mapsto -k \frac{\text{in}}{4\pi} \int B \wedge B.
$$

• The partition function transforms as

$$
\mathcal{Z}_{(\theta_1,\theta_2),k}[\mathsf{T}\cdot (A,B)]\mapsto \mathcal{Z}_{(\theta_1,\theta_2),k}[A,B] \exp\left(\left(\frac{\sum_i \theta_i}{\pi}-2k\right)\frac{\text{in}}{4\pi}\int B\wedge B\right).
$$

Global inconsistency and 't Hooft anomaly

$$
(\theta_1, \theta_2) = (0, 0), (\pi, -\pi),
$$

 $k = 0 \text{ (mod } n).$

•
$$
(\theta_1, \theta_2) = (0, \pi), (\pi, 0),
$$

1-2k = 0 (mod n) \Rightarrow { $\begin{cases} t \text{ Hooft anomaly for even } n, \\ k = (n+1)/2 \text{ for odd } n. \end{cases}$

 $(-\pi,\pi)$

$$
\bullet (\theta_1, \theta_2) = (\pi, \pi),
$$

$$
2 - 2k = 0 \pmod{n} \Rightarrow k = 1.
$$

- \bullet For even *n*, global inconsistencies exists between $(0, 0)$ and (π, π) , and between $(\pi, -\pi)$ and (π, π) .
- \bullet For odd *n*, global inconsistencies exists between $(0, 0)$ and (π, π) , between $(0, 0)$ and $(\pi, 0), \; ...$
- a_i $SU(n)_i$ gauge field. $G_i = da_i + a_i \wedge a_i$.
- $SU(n)_1 \times SU(n)_2$ -gauge transformation (u_1, u_2) :

 $\Psi \mapsto u_1 \Psi u$ † $\overline{a}_1^{\dagger}, \quad a_i \mapsto u_i a_i u_i$ † $u_i^{\dagger} + u_i \mathrm{d}u$ † .T
i ·

Symmetry

 \bullet (\mathbb{Z}_n)_{center} 1-form symmetry

 $(\mathbb{Z}_n)_{\text{center}} : W_1(C) \mapsto \omega_n W_1(C), \quad W_2(C) \mapsto \omega_n W_2(C),$ with $\omega_n = \exp(2\pi i/n)$ and Wilson lines $W_1(C) = \text{Tr}\left[\mathcal{P} \exp \left(-q\right)\right]$ C $\left\{ \left. \begin{array}{c} \mathsf{a}_1 \end{array} \right\} \right\}, \quad \mathsf{W}_2(\mathsf{C}) = \text{Tr} \left\lceil \mathcal{P} \exp \left(\frac{\mathsf{c}_1}{\mathsf{c}_2} \right) \right\rceil.$ C $a₂$ \setminus • CP symmetry exists at $(0, 0), (0, \pi), (\pi, 0), (\pi, \pi)$: high symmetry points.

Phase diagram

A phase diagram compatible with the constraints by the global inconsistencies and 't Hooft anomalies.

- \bullet $(\theta_1, \theta_2) = (\pi, \pi)$ and $(\pi, -\pi)$ must be identified.
- \bullet T is broken at $(\pi,0)$ and $(0,\pi)$.
- T is unbroken at (π, π) but separated from $(0, 0)$ by a phase transition \rightarrow the global inconsistency does not lead to nontrivial vacuum at (π,π) .
- \bullet (0,0) and (π,π) are smoothly connected.
- More exotic phase diagram is possible..

 (π,π)

 $(\pi,0)$