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We analyze the entanglement spectrum of quantum Hall states on the torus and show that it is arranged in
towers, each of which is generated by modes of two separated chiral edges with unusual dispersion. Strikingly,
theses structures are present for all torus circumferences, which allows for a microscopic identification of the
prominent features of the spectrum by perturbing the solvable thin torus limit.
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Introduction — The description of condensed matter
phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑

i

e−ξi/2|ψA
i 〉 ⊗ |ψB

i 〉,

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though
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Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with
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New States of Quantum Matter

Quantum Hall Effect
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One electron in a magnetic field (2D)
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Integer versus fractional filling
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Standard theory - brief review
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Electrons form new particles, composite fermions, 
by absorbing magnetic flux. FQHE is IQHE of these composite fermions.
Gives                            directly. 
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(All                 odd, experimentally similar.)

Many-body wave functions

(Moore and Read  ‘91)Non-abelions Appear (?) in higher Landau levels (and/or in rotating condensates)
Motivated by conformal field theory (CFT-FQHE correspondence) 

...and it goes on.....

(Laughlin ‘83)

Gapless states (Halperin, Lee and Read ‘93)Half filled Landau level;  free composite fermions
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Topological Quantum Computing

Nonabelian Anyons: Quantum particles which know which way they are braided

Braiding many nonabelian anyons encodes computation in a quantum computer

Qbit

Source: Scientific American

Topology of braids insensitive
to “small” amount of noise

Feasible with ν=5/2 or 12/5 ?

Nayak et al., RMP ’08
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A “one-dimensional” microscopic approach
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A “one-dimensional” microscopic approachν = 1
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Exact solution at L1→0  (Bergholtz et al., ‘05-’09, Seidel et al)

Hopping 
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This is a simple classical electrostatics problem!

States with electrons in fixed positions are the energy eigenstates - 
groundstate obtained by separating the electrons as much as possible:
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Unit cell
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(Tao-Thouless (TT) states)

At               ground state is TT-state with p electrons in unit cell of length q.
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‘gapped crystal’

For several fractions this TT state is adiabatically connected to the bulk FQH state !



Exact Diagonalization: Main Idea

Solve the Schrödinger equation of a quantum many body system numerically

Sparse matrix, but for quantum many body systems the vector space 
dimension grows exponentially!

But you can get a tremendous amount of physical information out of a 
finite system and the reward is a powerful: 

H|ψ〉 = E|ψ〉

Quantum Mechanics Toolbox



Exact Diagonalization: Present Day Limits

Fractional quantum hall effect
 different filling fractions ν, up to 16-20 electrons 
up to 300 million basis states, up to several billion in the near future

Spin S=1/2 models: 
 40 spins square lattice, 39 sites triangular, 42 sites star lattice at Sz=0
                64 spins or more in elevated magnetization sectors
up to 1.5 billion(=109) basis states with symmetries, up to 4.5 billion without

t-J models:
 32 sites checkerboard with 2 holes
 32 sites square lattice with 4 holes
up to 2.8 billion basis states

Hubbard models
 21 sites triangular lattice at half filling, 20 sites quantum dot structure
                22-25 sites in ultracold atoms setting
up to 160 billion basis states
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Perimeter/Area Law

Topological entanglement entropy

S(ρ) = Tr[−ρ log ρ]

(Topological) Entanglement Entropy

 Let us look at reduced density matrices, and their entanglement entropies
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Topological entanglement entropy

Alexei Kitaev1,2 and John Preskill1
1 Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

We formulate a universal characterization of the many-particle quantum entanglement in the
ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a
disk in the plane, with a smooth boundary of length L, large compared to the correlation length.
In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a
marginal density operator ρ for the degrees of freedom in the interior. The von Neumann entropy
S(ρ) of this density operator, a measure of the entanglement of the interior and exterior variables,
has the form S(ρ) = αL−γ+ · · ·, where the ellipsis represents terms that vanish in the limit L → ∞.
The coefficient α, arising from short wavelength modes localized near the boundary, is nonuniversal
and ultraviolet divergent, but −γ is a universal additive constant characterizing a global feature of
the entanglement in the ground state. Using topological quantum field theory methods, we derive
a formula for γ in terms of properties of the superselection sectors of the medium.

PACS numbers: 03.65.Ud, 71.10.Pm, 73.43.Nq

In a quantum many-body system at zero temperature,
a quantum phase transition may occur as a parameter
varies in the Hamiltonian of the system. The two phases
on either side of a quantum critical point may be charac-
terized by different types of quantum order; the quantum
correlations among the microscopic degrees of freedom
have qualitatively different properties in the two phases.
Yet in some cases, the phases cannot be distinguished by
any local order parameter.

For example, in two spatial dimensions a system with a
mass gap can exhibit topological order [1]. The quantum
entanglement in the ground state of a topologically or-
dered medium has global properties with remarkable con-
sequences. For one thing, the quasiparticle excitations of
the system (anyons) exhibit an exotic variant of indistin-
guishable particle statistics. Furthermore, in the infinite-
volume limit the ground-state degeneracy depends on the
genus (number of handles) of the closed surface on which
the system resides.

While it is clear that these unusual properties emerge
because the ground state is profoundly entangled, up un-
til now no firm connection has been established between
topological order and any quantitative measure of en-
tanglement. In this paper we provide such a connection
by relating topological order to von Neumann entropy,
which quantifies the entanglement of a bipartite pure
state.

Specifically, we consider a disk in the plane, with a
smooth boundary of length L, large compared to the
correlation length. In the ground state, by tracing out
all degrees of freedom in the exterior of the disk, we
obtain a marginal density operator ρ for the degrees
of freedom in the interior. The von Neumann entropy
S(ρ) ≡ −trρ log ρ of this density operator, a measure of
the entanglement of the interior and exterior variables,
has the form

S(ρ) = αL − γ + · · · , (1)

where the ellipsis represents terms that vanish in the limit
L → ∞. The coefficient α, arising from short wavelength
modes localized near the boundary, is nonuniversal and
ultraviolet divergent [2], but −γ (where γ is nonnegative)
is a universal additive constant characterizing a global
feature of the entanglement in the ground state. We call
−γ the topological entanglement entropy.

This universal quantity reflects topological properties
of the entanglement that survive at arbitrarily long dis-
tances, and therefore can be studied using an effective
field theory that captures the far-infrared behavior of
the medium, namely a topological quantum field theory
(TQFT) that describes the long-range Aharonov-Bohm
interactions of the medium’s massive quasiparticle exci-
tations. We find

γ = logD , (2)

where D ≥ 1 is the total quantum dimension of the
medium, given by

D =

√

∑

a

d2
a ; (3)

here the sum is over all the superselection sectors of the
medium, and da is the quantum dimension of a particle
with charge a.

Any abelian anyon has quantum dimension d = 1;
therefore, for a model of abelian anyons, D2 is simply
the number of superselection sectors. Thus for a Laugh-
lin state [3] realized in a fractional quantum Hall system
with filling factor ν = 1/q where q is an odd integer, we
have D =

√
q. For the toric code [4], which has four sec-

tors, the topological entropy is γ = log 2, as has already
been noted in [5].

However, nonabelian anyons have quantum dimension
greater than one. The significance of da (which need not
be a rational number) is that the dimension Naaa···a of
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Topological entanglement entropy

Alexei Kitaev1,2 and John Preskill1
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2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

We formulate a universal characterization of the many-particle quantum entanglement in the
ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a
disk in the plane, with a smooth boundary of length L, large compared to the correlation length.
In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a
marginal density operator ρ for the degrees of freedom in the interior. The von Neumann entropy
S(ρ) of this density operator, a measure of the entanglement of the interior and exterior variables,
has the form S(ρ) = αL−γ+ · · ·, where the ellipsis represents terms that vanish in the limit L → ∞.
The coefficient α, arising from short wavelength modes localized near the boundary, is nonuniversal
and ultraviolet divergent, but −γ is a universal additive constant characterizing a global feature of
the entanglement in the ground state. Using topological quantum field theory methods, we derive
a formula for γ in terms of properties of the superselection sectors of the medium.

PACS numbers: 03.65.Ud, 71.10.Pm, 73.43.Nq

In a quantum many-body system at zero temperature,
a quantum phase transition may occur as a parameter
varies in the Hamiltonian of the system. The two phases
on either side of a quantum critical point may be charac-
terized by different types of quantum order; the quantum
correlations among the microscopic degrees of freedom
have qualitatively different properties in the two phases.
Yet in some cases, the phases cannot be distinguished by
any local order parameter.

For example, in two spatial dimensions a system with a
mass gap can exhibit topological order [1]. The quantum
entanglement in the ground state of a topologically or-
dered medium has global properties with remarkable con-
sequences. For one thing, the quasiparticle excitations of
the system (anyons) exhibit an exotic variant of indistin-
guishable particle statistics. Furthermore, in the infinite-
volume limit the ground-state degeneracy depends on the
genus (number of handles) of the closed surface on which
the system resides.

While it is clear that these unusual properties emerge
because the ground state is profoundly entangled, up un-
til now no firm connection has been established between
topological order and any quantitative measure of en-
tanglement. In this paper we provide such a connection
by relating topological order to von Neumann entropy,
which quantifies the entanglement of a bipartite pure
state.

Specifically, we consider a disk in the plane, with a
smooth boundary of length L, large compared to the
correlation length. In the ground state, by tracing out
all degrees of freedom in the exterior of the disk, we
obtain a marginal density operator ρ for the degrees
of freedom in the interior. The von Neumann entropy
S(ρ) ≡ −trρ log ρ of this density operator, a measure of
the entanglement of the interior and exterior variables,
has the form

S(ρ) = αL − γ + · · · , (1)

where the ellipsis represents terms that vanish in the limit
L → ∞. The coefficient α, arising from short wavelength
modes localized near the boundary, is nonuniversal and
ultraviolet divergent [2], but −γ (where γ is nonnegative)
is a universal additive constant characterizing a global
feature of the entanglement in the ground state. We call
−γ the topological entanglement entropy.

This universal quantity reflects topological properties
of the entanglement that survive at arbitrarily long dis-
tances, and therefore can be studied using an effective
field theory that captures the far-infrared behavior of
the medium, namely a topological quantum field theory
(TQFT) that describes the long-range Aharonov-Bohm
interactions of the medium’s massive quasiparticle exci-
tations. We find

γ = logD , (2)

where D ≥ 1 is the total quantum dimension of the
medium, given by

D =

√

∑

a

d2
a ; (3)

here the sum is over all the superselection sectors of the
medium, and da is the quantum dimension of a particle
with charge a.

Any abelian anyon has quantum dimension d = 1;
therefore, for a model of abelian anyons, D2 is simply
the number of superselection sectors. Thus for a Laugh-
lin state [3] realized in a fractional quantum Hall system
with filling factor ν = 1/q where q is an odd integer, we
have D =

√
q. For the toric code [4], which has four sec-

tors, the topological entropy is γ = log 2, as has already
been noted in [5].

However, nonabelian anyons have quantum dimension
greater than one. The significance of da (which need not
be a rational number) is that the dimension Naaa···a of

1
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D Total quantum dimension

For topologically ordered phases:
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FIG. 6: (Color online.) Entanglement entropies in Moore-
Read state wavefunctions, extrapolated to the thermody-
namic limit. Dashed line is a fit to −γ + c1

√

lA, with some
points dropped. Inset plots SlA against 1/N for various fixed
lA.

C. Numerical results

Moore-Read state. Fig. 6 shows results of numerical
calculations for the ν = 1/2 Moore-Read state. We
used exact wavefunctions up to N = 18 particles. These
wavefunctions were obtained by diagonalizing L̂2 in an
Lz = 0 Hilbert space spanned by the “squeezed states”27.
After numerically obtaining the entanglement entropies
SlA(N) from these wavefunctions, we obtain estimates
and uncertainties for the N → ∞ extrapolations by the
procedure outlined in the previous subsection. The re-
sulting data are plotted in Fig. 6.

The linear SlA versus
√

lA behavior is expected only
for large lA; however our large-lA points have the greatest
uncertainty. For estimating the topological entropy, we
therefore make linear fits after discarding 0 to 5 of the
smallest-lA points and/or 0 to 2 of the largest-lA points.
This results in estimates of γ (magnitude of the vertical
intercept) scattered between 0.85 and 1.35. The error
propagated into our γ estimate from our extrapolation
uncertainties is ∼ 0.3, larger than that obtained from this
scatter. With all this we arrive at the result γ % 1.1±0.3,
quite consistent with the expected value of γ % 1.04.

Laughlin state. We used the well-defined procedure
of the previous subsection to revisit our previous esti-
mate of the topological entropy for the ν = 1/3 Laugh-
lin state.10 To get the extrapolated SlA , we now use the
BST estimates rather than doing several polynomial fits.
Dropping 0 to 4 of the smallest-lA points and 0 to 2
of the lrgest-lA points leads to γ%0.51±0.14, consistent
with the previously reported estimate (0.60 ± 0.15) and
with the expected value γ ≈ 0.55. The error estimate
reported in Ref. 10 only took into account this varia-
tion, due to dropping various number of points. There is
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FIG. 7: (Color online.) Density matrix eigenvalues in de-
creasing order for orbital partitioning with lA orbitals in a
block for N = 9, m = 3 Laughlin state.

also some error propagated from the extrapolation uncer-
tainty. Using the conservative uncertainty estimate pro-
posed in the previous subsection gives us a more conser-
vative and more rigorous error estimate, γ % 0.51± 0.25.

D. Eigenvalue distribution for reduced density
matrix

In Fig. 7, we show the largest eigenvalues of reduced
density matrices obtained by orbital or spatial partition-
ing. The eigenvalues are ordered according to decreasing
magnitude and plotted on a log scale; the resulting curves
are roughly linear, suggesting a roughly exponential de-
cay of the eigenvalue distribution function.

It is interesting to note the complete dissimilarity of
this eigenvalue spectrum compared to the particle parti-
tioning case discussed earlier, e.g., Fig. 1. It would also
be interesting to put our observations in the context of
the spectra of reduced density matrices of many-body
systems in general. Reduced density matrices for spa-
tially connected blocks have been studied previously in
the context of the convergence of the DMRG algorithm;
an overview is available in section III-B of Schollwöck’s
DMRG review.28 From our numeric data, It is difficult
to say whether or not the decay of the eigenvalue distri-
butions is slower than exponential.

V. CONCLUDING REMARKS

We have presented a detailed study of the entan-
glement entropy in abelian and non-abelian quantum
Hall states, taking a paradigmatic example of each, the
ν = 1/3 Laughlin state and the ν = 1/2 Moore-Read
state.

For entanglement between subsets of particles, we have
demonstrated the effects of particle-particle correlations
in the deviation of the entanglement entropies from an

A

B

Haque, Zozulya & Schoutens, PRL ’07
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Block and Topological Entanglement of Quantum Hall wave functions on the torus

Andreas M. Läuchli∗
Max Planck Institut für Physik komplexer Systeme, Nöthnitzerstr. 38, D-01187 Dresden, Germany

(Dated: November 3, 2008)

PACS numbers:

We revisit the work [3] in order to understand entan-
glement properties of quantum hall wave functions on the
torus.

I. THE TORUS

We consider a torus in the geometry shown in Fig 1.
The Landau gauge is chosen: A(x, y) = (By, 0, 0). The
linear dimensions are L1 in the x-direction and L2 in the
y-direction. In order to ensure consistent boundary con-
ditions NS = 2πL1L2 has to be integer. The NS single
particle states in each Landau level are labelled with their
x-momentum or their corresponding y-coordinate. The
block A is chosen as a set of lA contiguous orbitals. Such
a block has the geometric extent shown in gold in Fig. 1.
It is of fixed width L1 and has length LA ≈ lA × 2π/L1.
LA is not defined accurately because of the finite width
of the single particle wave functions in y-direction.

The first observation is that on the torus we do not
obtain a unique ground state but q different ground states
with different entanglement entropies. In Ref. [3] only
one of the degenerate states was selected. As shown in
Fig. 2 a much smoother result is obtained by averaging
over the block entropies of each ground state.

L

L

1

2

A

AL

FIG. 1: Geometry of the torus and the block considered.

∗Electronic address: laeuchli@comp-phys.org
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FIG. 2: A proper entropy result is obtained after averaging
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In the thin torus limit (here L1=13) one
can see the area law at work
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Block and Topological Entanglement of Quantum Hall wave functions on the torus
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PACS numbers:

We revisit the work [3] in order to understand entan-
glement properties of quantum hall wave functions on the
torus.

I. THE TORUS

We consider a torus in the geometry shown in Fig 1.
The Landau gauge is chosen: A(x, y) = (By, 0, 0). The
linear dimensions are L1 in the x-direction and L2 in the
y-direction. In order to ensure consistent boundary con-
ditions NS = 2πL1L2 has to be integer. The NS single
particle states in each Landau level are labelled with their
x-momentum or their corresponding y-coordinate. The
block A is chosen as a set of lA contiguous orbitals. Such
a block has the geometric extent shown in gold in Fig. 1.
It is of fixed width L1 and has length LA ≈ lA × 2π/L1.
LA is not defined accurately because of the finite width
of the single particle wave functions in y-direction.

The first observation is that on the torus we do not
obtain a unique ground state but q different ground states
with different entanglement entropies. In Ref. [3] only
one of the degenerate states was selected. As shown in
Fig. 2 a much smoother result is obtained by averaging
over the block entropies of each ground state.

L

L

1

2

A

AL

FIG. 1: Geometry of the torus and the block considered.
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FIG. 2: A proper entropy result is obtained after averaging
over all q = 3 degenerate ground states.
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FIG. 3: Upper panel: Block entanglement S(L1, NS/2) for
various system sizes plotted as a function of L1. The back-
ward intersect (dashed blue line) is expected to be −2γ =
− ln(3). Lower panel: dS/dL1 as a function of L1.
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Topological entanglement entropy

Alexei Kitaev1,2 and John Preskill1
1 Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

We formulate a universal characterization of the many-particle quantum entanglement in the
ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a
disk in the plane, with a smooth boundary of length L, large compared to the correlation length.
In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a
marginal density operator ρ for the degrees of freedom in the interior. The von Neumann entropy
S(ρ) of this density operator, a measure of the entanglement of the interior and exterior variables,
has the form S(ρ) = αL−γ+ · · ·, where the ellipsis represents terms that vanish in the limit L → ∞.
The coefficient α, arising from short wavelength modes localized near the boundary, is nonuniversal
and ultraviolet divergent, but −γ is a universal additive constant characterizing a global feature of
the entanglement in the ground state. Using topological quantum field theory methods, we derive
a formula for γ in terms of properties of the superselection sectors of the medium.

PACS numbers: 03.65.Ud, 71.10.Pm, 73.43.Nq

In a quantum many-body system at zero temperature,
a quantum phase transition may occur as a parameter
varies in the Hamiltonian of the system. The two phases
on either side of a quantum critical point may be charac-
terized by different types of quantum order; the quantum
correlations among the microscopic degrees of freedom
have qualitatively different properties in the two phases.
Yet in some cases, the phases cannot be distinguished by
any local order parameter.

For example, in two spatial dimensions a system with a
mass gap can exhibit topological order [1]. The quantum
entanglement in the ground state of a topologically or-
dered medium has global properties with remarkable con-
sequences. For one thing, the quasiparticle excitations of
the system (anyons) exhibit an exotic variant of indistin-
guishable particle statistics. Furthermore, in the infinite-
volume limit the ground-state degeneracy depends on the
genus (number of handles) of the closed surface on which
the system resides.

While it is clear that these unusual properties emerge
because the ground state is profoundly entangled, up un-
til now no firm connection has been established between
topological order and any quantitative measure of en-
tanglement. In this paper we provide such a connection
by relating topological order to von Neumann entropy,
which quantifies the entanglement of a bipartite pure
state.

Specifically, we consider a disk in the plane, with a
smooth boundary of length L, large compared to the
correlation length. In the ground state, by tracing out
all degrees of freedom in the exterior of the disk, we
obtain a marginal density operator ρ for the degrees
of freedom in the interior. The von Neumann entropy
S(ρ) ≡ −trρ log ρ of this density operator, a measure of
the entanglement of the interior and exterior variables,
has the form

S(ρ) = αL − γ + · · · , (1)

where the ellipsis represents terms that vanish in the limit
L → ∞. The coefficient α, arising from short wavelength
modes localized near the boundary, is nonuniversal and
ultraviolet divergent [2], but −γ (where γ is nonnegative)
is a universal additive constant characterizing a global
feature of the entanglement in the ground state. We call
−γ the topological entanglement entropy.

This universal quantity reflects topological properties
of the entanglement that survive at arbitrarily long dis-
tances, and therefore can be studied using an effective
field theory that captures the far-infrared behavior of
the medium, namely a topological quantum field theory
(TQFT) that describes the long-range Aharonov-Bohm
interactions of the medium’s massive quasiparticle exci-
tations. We find

γ = logD , (2)

where D ≥ 1 is the total quantum dimension of the
medium, given by

D =

√

∑

a

d2
a ; (3)

here the sum is over all the superselection sectors of the
medium, and da is the quantum dimension of a particle
with charge a.

Any abelian anyon has quantum dimension d = 1;
therefore, for a model of abelian anyons, D2 is simply
the number of superselection sectors. Thus for a Laugh-
lin state [3] realized in a fractional quantum Hall system
with filling factor ν = 1/q where q is an odd integer, we
have D =

√
q. For the toric code [4], which has four sec-

tors, the topological entropy is γ = log 2, as has already
been noted in [5].

However, nonabelian anyons have quantum dimension
greater than one. The significance of da (which need not
be a rational number) is that the dimension Naaa···a of

1



 Determine S(L1) by looking at blocks which are long enough (L2 >> 1) 

 Control over the subleading L1 effects ! 
 Better accuracy than on the sphere (a few %)

How to do this on the torus
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Introduction: Fractional Quantum Effect

Topological Entanglement Entropy

Entanglement Spectra
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Entanglement Spectra (Li & Haldane PRL ’08)

 The entanglement entropy is a single number !

 Is there more one can extract from the reduced density matrix ?

 One can always write

 Assuming that the entanglement Hamiltonian and the physical Hamiltonian
 are “similar”, then one expects to see some features related to the open
 boundary block structure  in the spectrum of the reduced density matrix

 FQH states have interesting edge physics, visible in entanglement spectrum ?

A

B
The !i’s are ‘‘energy levels’’ of a system with thermo-

dynamic entropy at temperature T ! 1 equivalent to the
entanglement entropy, S ! P

i!i exp"#!i$, which has
been shown to contain information on the topological
properties of the many-body state [12]. The full structure
of the entanglement spectrum (logarithmic Schmidt spec-
trum) of levels !i contains much more information than the
entanglement entropy S, a single number. This is analo-
gous to the extra information about a condensed matter
system given by its low-energy excitation spectrum rather
than just by its ground state energy.

Because the FQHE ground state is translationally and
rotationally invariant (with quantum number Ltot ! 0 on
the sphere), and the partitioning of Landau-level orbitals
conserves both gauge symmetry and rotational symmetry
along the z direction, in either block A or B both the
electron number (NA

e and NB
e ) and the total z-angular

momentum (LA
z and LB

z ) are good quantum numbers con-
strained by NA

e % NB
e ! Ne, LA

z % LB
z ! 0. The entangle-

ment spectrum splits into distinct sectors labeled by NA
e

and LA
z .

In the thermodynamic limit, the MR model state can be
represented by its ‘‘root configuration’’ [15], which has oc-
cupation numbers ‘‘11001100 & & & 110011’’, with a re-
peated sequence & & & 1100 & & & ; in spherical geometry, this
is terminated by ‘‘11’’ at both ends. This is the highest-
density ‘‘MR root configuration’’, which we define as an
occupation-number configuration satisfying a ‘‘general-
ized Pauli principle’’ that no group of 4 consecutive orbi-
tals contains more than 2 particles (this rule also applies to
MR states with quasiholes, and generates the CFT edge
spectrum of a finite MR droplet on the open plane [15].)
When the MR state is expanded in the occupation-number
basis, the only configurations (Slater determinants) present
are those obtained by starting from the root configuration,
and ‘‘squeezing’’ pairs of particles with Lz!m1, m2 closer
together, reducing jm1 #m2j, while preserving m1 %m2

[15].
From the root configuration, we see that there are three

distinct ways of partitioning the orbitals: (i) between two
0’s; (ii) between two 1’s; or (iii) between 0 and 1 (the
partitioning between 1 and 0 is equivalent to that between 0
and 1 by reflection symmetry). We use symbols P'0j0(,
P'1j1(, and P'0j1( to represent the three cases, respec-
tively. This will correspond to choosing one of the three
sectors of the associated conformal field theory. For finite
systems, we always try to draw the boundary of the parti-
tioning either on the equator (if possible), or closest to the
equator but in the southern hemisphere. Moreover, we can
associate a ‘‘natural’’ value to NA

e for a particular partition-
ing, i.e., the total number of 1’s in the root occupation
sequence on the left-hand side to the boundary. In this
Letter, it is sufficient to consider only levels whose NA

e is
exactly this natural value. Table I describes the precise
meaning of these symbols for systems that are considered
here.

Figure 1 shows the spectra for each of the three different
ways of partitioning, for the Moore-Read state at Ne ! 16
and Norb ! 30. The spectrum not only has far fewer levels
than expected for a generic wave function, but also exhibits
an intriguing level-counting structure (as a function of LA

z
and NA

e ) that resembles that of the associated conformal
field theory of the edge excitations. Intuitively, this is
because the boundary of the Landau-level partitioning in-
deed defines an edge shared by region A and B.

In the intuitive picture, the quantum entanglement be-
tween A and B arises from correlated quasihole excitations
across the boundary along which the partitioning is carried

TABLE I. The numbers in the parenthesis are values of (NA
orb,

NA
e ), respectively, for each system and partitioning as specified.

Ne P'0j0( P'0j1( P'1j1(
10 (7,4) (8,4) (9,5)

12 or 14 (11,6) (12,6) (13,7)
16 (15,8) (16,8) (17,9)

FIG. 1. The complete entanglement spectra of the Ne ! 16
and Norb ! 30 Moore-Read state (only the relative values of !
and LA

z are meaningful).

PRL 101, 010504 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
4 JULY 2008

010504-2

ρ =: exp[−HEntanglement]



Moore-Read state on the sphere (Li & Haldane, PRL ’08)

 Entanglement spectrum has dispersive structure

The !i’s are ‘‘energy levels’’ of a system with thermo-
dynamic entropy at temperature T ! 1 equivalent to the
entanglement entropy, S ! P

i!i exp"#!i$, which has
been shown to contain information on the topological
properties of the many-body state [12]. The full structure
of the entanglement spectrum (logarithmic Schmidt spec-
trum) of levels !i contains much more information than the
entanglement entropy S, a single number. This is analo-
gous to the extra information about a condensed matter
system given by its low-energy excitation spectrum rather
than just by its ground state energy.

Because the FQHE ground state is translationally and
rotationally invariant (with quantum number Ltot ! 0 on
the sphere), and the partitioning of Landau-level orbitals
conserves both gauge symmetry and rotational symmetry
along the z direction, in either block A or B both the
electron number (NA

e and NB
e ) and the total z-angular

momentum (LA
z and LB

z ) are good quantum numbers con-
strained by NA

e % NB
e ! Ne, LA

z % LB
z ! 0. The entangle-

ment spectrum splits into distinct sectors labeled by NA
e

and LA
z .

In the thermodynamic limit, the MR model state can be
represented by its ‘‘root configuration’’ [15], which has oc-
cupation numbers ‘‘11001100 & & & 110011’’, with a re-
peated sequence & & & 1100 & & & ; in spherical geometry, this
is terminated by ‘‘11’’ at both ends. This is the highest-
density ‘‘MR root configuration’’, which we define as an
occupation-number configuration satisfying a ‘‘general-
ized Pauli principle’’ that no group of 4 consecutive orbi-
tals contains more than 2 particles (this rule also applies to
MR states with quasiholes, and generates the CFT edge
spectrum of a finite MR droplet on the open plane [15].)
When the MR state is expanded in the occupation-number
basis, the only configurations (Slater determinants) present
are those obtained by starting from the root configuration,
and ‘‘squeezing’’ pairs of particles with Lz!m1, m2 closer
together, reducing jm1 #m2j, while preserving m1 %m2

[15].
From the root configuration, we see that there are three

distinct ways of partitioning the orbitals: (i) between two
0’s; (ii) between two 1’s; or (iii) between 0 and 1 (the
partitioning between 1 and 0 is equivalent to that between 0
and 1 by reflection symmetry). We use symbols P'0j0(,
P'1j1(, and P'0j1( to represent the three cases, respec-
tively. This will correspond to choosing one of the three
sectors of the associated conformal field theory. For finite
systems, we always try to draw the boundary of the parti-
tioning either on the equator (if possible), or closest to the
equator but in the southern hemisphere. Moreover, we can
associate a ‘‘natural’’ value to NA

e for a particular partition-
ing, i.e., the total number of 1’s in the root occupation
sequence on the left-hand side to the boundary. In this
Letter, it is sufficient to consider only levels whose NA

e is
exactly this natural value. Table I describes the precise
meaning of these symbols for systems that are considered
here.

Figure 1 shows the spectra for each of the three different
ways of partitioning, for the Moore-Read state at Ne ! 16
and Norb ! 30. The spectrum not only has far fewer levels
than expected for a generic wave function, but also exhibits
an intriguing level-counting structure (as a function of LA

z
and NA

e ) that resembles that of the associated conformal
field theory of the edge excitations. Intuitively, this is
because the boundary of the Landau-level partitioning in-
deed defines an edge shared by region A and B.

In the intuitive picture, the quantum entanglement be-
tween A and B arises from correlated quasihole excitations
across the boundary along which the partitioning is carried

TABLE I. The numbers in the parenthesis are values of (NA
orb,

NA
e ), respectively, for each system and partitioning as specified.

Ne P'0j0( P'0j1( P'1j1(
10 (7,4) (8,4) (9,5)

12 or 14 (11,6) (12,6) (13,7)
16 (15,8) (16,8) (17,9)

FIG. 1. The complete entanglement spectra of the Ne ! 16
and Norb ! 30 Moore-Read state (only the relative values of !
and LA

z are meaningful).

PRL 101, 010504 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
4 JULY 2008

010504-2
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B

 Degeneracy at large
 momenta follows
 CFT counting rule
 (edge theory of the 
 Pfaffian is U(1)+Majorana)

113
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Moore-Read state on the sphere (Li & Haldane, PRL ’08)

 Now for “realistic” Coulomb Hamiltonian at ν=5/2

A

B

113

out. Any quasihole excitation in region A necessarily
pushes electrons into region B, and vice versa. However,
the electron density anywhere on the sphere must remain
constant, which can be achieved if the quasihole excita-
tions in A and B are correlated (entangled). This gives the
empirical rules of counting the levels. Take the spectrum in
Fig. 1(a) as an example. The partitioning P!0j0" results in
the root configuration 110011001100110 on the northern
hemisphere (region A), and it corresponds to the single
‘‘level’’ at the highest possible value of LA

z # LA
z;max # 64.

We measure the LA
z by its deviation from LA

z;max, i.e. !L :#
LA
z;max $ LA

z , which has the physical meaning of being the
total z-angular momentum carried by the quasiholes. At
!L # 1, the levels correspond to edge excitations upon the
!L # 0 root configuration. There is exactly one edge
mode in this case, represented by the MR root configura-
tion 110011001100101.

The number of !L # 2 levels can be counted in exactly
the same way. There are three of them, of which the root
configurations are

 

1100110011001001
1100110011000110
1100110010101010

;

while for !L # 3, the five root configurations are

 

11001100110010001
11001100110001010
11001100101001100
11001100101010010
11001010101010100

:

The counting for the levels at small !L for P!0j1" and
P!1j1" can be obtained similarly.

For an infinite system in the thermodynamic limit, the
above idea gives an empirical counting rule of the number
of levels at any !L; i.e., it is the number of independent
quasihole excitations upon the semi-infinite root configu-
ration uniquely defined by the partitioning. For a finite
system, this rule explains the counting only for small
!L; for large !L, the finite-size limits the maximal
angular momentum that can be carried by an individual
quasihole. Therefore the number of levels at large !L in a
finite system will be smaller than the number expected
in an infinite system. Not only is this empirical rule con-
sistent with all our numerical calculation, but it also ex-
plains why P!0j0" and P!0j1" have essentially identical
low-lying structures. This is because the (semi-infinite)
configuration ‘‘% % % 1100110’’ is essentially equivalent
to ‘‘% % % 11001100’’ (with an extra ‘‘0’’ attached to the
right). We expect that P!0j0" and P!0j1" become exactly
identical in the thermodynamic limit.

For completeness, we list the root configurations asso-
ciated with the first few low-lying levels in Fig. 1(c).

 

!L # 0 : 11001100110011001
!L # 1 : 110011001100110001

110011001100101010
!L # 2 : 1100110011001100001

1100110011001010010
1100110011001001100
1100110010101010100

Figure 2 shows the spectra of the system of the same size
as in Fig. 1, i.e., Ne # 16 and Norb # 30, but for the ground
state of the Coulomb interaction projected into the second
Landau level, obtained by direct diagonalization.
Interestingly, the low-lying levels have the same counting
structure as the corresponding Moore-Read case. We iden-
tify these low-lying levels as the ‘‘CFT’’ part of the spec-

FIG. 2. The low-lying entanglement spectra of the Ne # 16
and Norb # 30 ground state of the Coulomb interaction projected
into the second Landau level (there are levels beyond the regions
shown here, but they are not of interest to us). The insets show
the low-lying parts of the spectra of the Moore-Read state, for
comparison [see Fig. 1]. Note that the structure of the low-lying
spectrum is essentially identical to that of the ideal Moore-Read
state.

PRL 101, 010504 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
4 JULY 2008

010504-3

 Lower part of entanglement
 spectrum similar to model
 state

 Pollution by generic levels
 above “entanglement gap”

 Energetics not understood



Entanglement Spectrum at ν=1/3 (Coulomb)

 Chiral low energy mode with an entanglement gap to generic levels

 Satisfies degeneracy count for a chiral U(1) theory (1-1-2-3-5-7-11-....)6
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FIG. 5: (Color online) Top row: entanglement entropies for
hemisphere partitioning, plotted against sphere radius; ν =
1/3. Center row shows quality of linear fit as function of
pseudopotential δV1 for ν = 1/3. Bottom row shows χ2 for
ν = 5/2.

VI. ENTANGLEMENT SPECTRUM AND
ENTANGLEMENT GAP

Following Ref. [4], we introduce the ”entanglement
spectrum” ξ as λi = exp(−ξi), where λi are eigenvalues
of the reduced density matrix ρA of one hemisphere. The
eigenvalues can be classified by the number of fermions
NA in the A block, and also by the total “angular mo-

mentum” L(A)
z of the A block. It was argued [4] that

the low-lying spectrum ξi of the reduced density ma-

trix for fixed NA, plotted as a function of L(A)
z , should

display a structure reflecting the conformal field theory
(CFT) describing the edge physics. In figure 6 this “CFT
spectrum” is marked with an ellipse. For interactions at
which the FQH state provides a good description of the
physics, the CFT spectrum is well-separated by a gap
from a higher “non-CFT” part of the spectrum.

As in Ref. [4], we denote the gap between the lowest

two ξi, at the L(A)
z value where the highest-L(A)

z member
of the CFT spectrum occurs, as δ0. In figure 6, this is the

gap between the lowest two states at L(A)
z = 54 (marked

by arrow). We study what happens to the spectrum as
we tune the interaction away from the FQH state across
a quantum phase transition. We quantify the change of
the spectrum in terms of the quantity δ0, defined above.
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FIG. 6: (Color online) Top panels: entanglement spectrum,
ν = 1/3, N = 12, block A containing lA = 17 orbitals and
NA = 6 fermions. Main plot: ground state for δV1 = 0.04.
Ellipse indicates the most prominent “conformal” part of the
spectrum. Arrow indicates the “entanglement gap” δ0 be-
tween CFT and non-CFT parts of the spectrum. Inset shows
exact Laughlin state, which has no higher-lying non-CFT
part. Lower panel: Empty dots show two lowest levels at
L(A)

z = 54, plotted against δV1. Filled squares show “entan-
glement gap”, the difference of the two lowest levels.

(The quantities δ1,2 defined in Ref. [4], the gaps at other

L(A)
z values, are expected to have similar dependence on

δV1.)
In figure 6 (lower panel), we plot δ0 as a function of the

pseudopotential δV1 for the ν = 1/3 case. This clearly
shows a dramatic decrease of the ”entanglement gap”
around the region of the phase transition. The two levels
in question are also individually plotted with open dots;
there is a level crossing around δV1 ∼ −0.1. We note
that for values of δV1 < −0.1 the CFT-like structure
of the entanglement spectrum is lost so it is no longer
meaningful to think of δ0 as the gap between CFT and
non-CFT energy levels. A similar picture is observed for
Moore-Read wavefunctions [32].

VII. MAJORIZATION

The concept of majorization involves comparison of
two complete spectra. In the context of condensed-
matter applications, it generally involves the comparison
of two reduced density matrix spectra corresponding to

Zozulya, Haque & Regnault
PRB ’09



And now for something different, the torus

 The natural partition of Landau level orbitals leads to blocks having two edges

How do the two chiral edges combine in the entanglement spectrum ?

Can we exploit the tunability of the aspect ratio to understand the entanglement
spectrum quantitatively ?
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prominent features of the spectrum by perturbing the solvable thin torus limit.
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Introduction — The description of condensed matter
phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑

i

e−ξi/2|ψA
i 〉 ⊗ |ψB

i 〉,

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though
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Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with



Combining two chiral U(1) edges

What do we expect to see when there are two linearly dispersing chiral U(1) modes?

 This well known in the excitation spectrum of e.g. Luttinger liquids in spin chains
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phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑
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e−ξi/2|ψA
i 〉 ⊗ |ψB
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where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though
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Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with
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partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
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energy spectrum of a state confined to the region A. Since
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the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
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The two edge hypothesis at work
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on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
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this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with



L1 dependence of chiral edge levels

 Chiral edge theory has the correct U(1) count [1-1-2-3-5-....] (not enforced) ! 

 Adiabatic evolution: perform perturbation theory for small L1

6 12 18
L

1

0

10

20

30

!

"k=0 (1)

"k=1 (1)

"k=2 (2)

"k=3 (3)

"k=4 (5)

0 6 12
L

1

0

0.5

1

1.5

2

2.5

3

D
ia

m
o
n
d
 A

s
p
e
c
t 
R

a
ti
o

12
18
24
30
36

Sphere

(b)(a)

Torus

AML, E. Bergholtz, J. Suorsa & M. Haque
 arXiv:0911.5477

0

10

20

!
(N

A
=
5
)

[010010010010010010]
A

-18 -12 -6 0 6 12 18

K
A

0

10

20

!
(N

A
=
6
)

3 2 2 3
2 1 2
1
1
1

-3 -2 -1 0 1 2 3

"K

0

1

2

3

0

10

20

!
(N

A
=
5
)

[001001001001001001]
A

-18 -12 -6 0 6 12 18

K
A

0

10

20

!
(N

A
=
6
)

A-AB-B

A-B B-A

A′-A′B′-B′

A′-B′ C′-A′

B′-D′

Conspiring chiral structures in the entanglement spectra of Laughlin states on the torus
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We analyze the entanglement spectrum of quantum Hall states on the torus and show that it is arranged in
towers, each of which is generated by modes of two separated chiral edges with unusual dispersion. Strikingly,
theses structures are present for all torus circumferences, which allows for a microscopic identification of the
prominent features of the spectrum by perturbing the solvable thin torus limit.
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Introduction — The description of condensed matter
phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑

i

e−ξi/2|ψA
i 〉 ⊗ |ψB

i 〉,

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though
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Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with



The predictive power of the two edge hypothesis

 Based on some simple microscopic picture, one can predict the occurrence
 and the type of energetics of many towers, even with different NA
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Coulomb vs Laughlin states at ν=1/3

 More and more U(1) structure emerging in the Coulomb state with increasing L1
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Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with



Conclusions

Entanglement Spectrum

Fascinating combination of two 
spatially separated edges to form 
conformal towers with correct Virasoro 
count. Applying now to more 
complicated fractions, such as ν=5/2.
Interesting also for lattice models.

Topological Entanglement Entropy

Exploiting the advantage of the 
torus to continuously change the 
circumference allows to get a 
significantly better estimates for the 
topological entanglement entropy. 
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