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Outline 
0. Warm-up: Berry phases, Chern number, and topological 
insulators	


!
!
1. Magnetoelectric response in all insulators and the non-Abelian 
Berry gauge field in the Brillouin zone	


(thanks to A. Essin, A. Turner, D. Vanderbilt)	


!
!
!
2. Approaching metallic transport in 2D by statistical topology	


Trying to develop a topological theory of the anomalous Hall effect 	


(J. Dahlhaus, R. Ilan, and JEM, unpublished; JEM and J. Orenstein, PRL 2010)	


!
!
!
Assume noninteracting electrons unless otherwise stated.



Topological invariants
Most topological invariants in physics arise as integrals of some geometric quantity.	



!
Consider a two-dimensional surface.	


!
At any point on the surface, there are two radii of curvature.	


We define the signed “Gaussian curvature”	


!
!
!
Now consider closed surfaces.	


!
!
!
!
!
The area integral of the curvature over the whole surface is “quantized”, and is a 
topological invariant (Gauss-Bonnet theorem).	


!
!
!
!
where the “genus” g = 0 for sphere, 1 for torus, n for “n-holed torus”.

from left to right, equators	


have negative, 0, positive	



Gaussian curvature
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Topological invariants

Bloch’s theorem:	


One-electron wavefunctions in a crystal	


(i.e., periodic potential) can be written	


!
!
!
where k is “crystal momentum” and u is periodic (the same in every unit cell).	


!
Crystal momentum k can be restricted to the Brillouin zone, a region of k-space 
with periodic boundaries.	


As k changes, we map out an “energy band”.  Set of all bands = “band structure”.	


!
The Brillouin zone will play the role of the “surface” as in the previous example,	


!
!
!
which will give us the “curvature”.

Good news:	


for the invariants in the IQHE and topological insulators,	



we need one fact about solids

and one property of quantum mechanics, the Berry phase

�(r) = eik·ruk(r)



Berry phase
What kind of “curvature” can exist for electrons in a solid?	



!
!

Consider a quantum-mechanical system in its (nondegenerate)	


ground state.	


!
The adiabatic theorem in quantum mechanics implies that,	


if the Hamiltonian is now changed slowly, the system remains in 
its time-dependent ground state.	


!
But this is actually very incomplete (Berry).	


!
When the Hamiltonian goes around a closed loop k(t) in 
parameter space, there can be an irreducible phase	


!
!
!
relative to the initial state.	


!
!
Why do we write the phase in this form?	


Does it depend on the choice of reference wavefunctions?

Michael Berry
� =

�
A · dk, A = ⌅⇥k|� i⌥k|⇥k⇧



Berry phase
Why do we write the phase in this form?	


Does it depend on the choice of reference wavefunctions?	


!
!
!
!
If the ground state is non-degenerate, then the only freedom in 
the choice of reference functions is a local phase:	


!
!
!
Under this change, the “Berry connection” A changes by a	


gradient,	


!
!
just like the vector potential in electrodynamics.	


!
So loop integrals of A will be gauge-invariant,	


as will the curl of A, which we call the “Berry curvature”.	


!
!
!
!

Michael Berry

� =
�
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Berry phase in solids
In a solid, the natural parameter space is electron momentum.	


!
The change in the electron wavefunction within the unit cell leads 
to a Berry connection and Berry curvature:	


!
!
!
!
!
We keep finding more physical properties that are determined 
by these quantum geometric quantities.	


!
!
The first was that the integer quantum Hall effect in a 2D crystal 
follows from the integral of F (like Gauss-Bonnet!).  Explicitly,	


!
!
!
!
!
!
!
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The importance of the edge
But wait a moment...	


!
This invariant exists if we have energy bands that are	


either full or empty, i.e., a “band insulator”.	


!
How does an insulator conduct charge?	


!
Answer: (Laughlin; Halperin)	


!
There are metallic edges at the boundaries of our 2D	


electronic system, where the conduction occurs.	


!
These metallic edges are “chiral” quantum wires (one-way 

streets).  Each wire gives one conductance quantum (e2/h).	


!
!
The topological invariant of the bulk 2D material just tells how 
many wires there have to be at the boundaries of the system.	


!
How does the bulk topological invariant “force” an edge mode?	


!
!

σxy = n
e2

h
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The importance of the edge
The topological invariant of the bulk 2D material 
just tells how many wires there have to be at the 
boundaries of the system.	


!
How does the bulk topological invariant “force” an 
edge mode?	


!
Answer:	


!
Imagine a “smooth” edge where the system 
gradually evolves from IQHE to ordinary insulator.  
The topological invariant must change.	


!
But the definition of our “topological invariant” 
means that, if the system remains insulating so that 
every band is either full or empty, the invariant 
cannot change.	


!
∴ the system must not remain insulating.	


!
!
!
!

n=1
IQHE

Ordinary insulator

e

(What is “knotted” are the electron wavefunctions)

IQHE Ordinary insulator
(or vacuum)



2005-present and 
“topological insulators” 

The same idea will apply in the new topological 
phases discovered recently:	


!
a “topological invariant”, based on the Berry phase, 
leads to a nontrivial edge or surface state at any 
boundary to an ordinary insulator or vacuum.	


!
However, the physical origin, dimensionality, and 
experiments are all different.

n=1
IQHE

Ordinary insulator

e

We discussed the IQHE so far in an unusual way.  The magnetic field entered 
only through its effect on the Bloch wavefunctions (no Landau levels!).	


!
This is not very natural for a magnetic field.	


It is ideal for spin-orbit coupling in a crystal.



The “quantum spin Hall effect”
Spin-orbit coupling appears in nearly every atom and 
solid.  Consider the standard atomic expression	


!
!
!
For a given spin, this term leads to a momentum-
dependent force on the electron, somewhat like a 
magnetic field.	


!
The spin-dependence means that the time-reversal 
symmetry of SO coupling (even) is different from a real 
magnetic field (odd).	


!
It is possible to design lattice models where spin-orbit 
coupling has a remarkable effect: (Murakami, Nagaosa, 
Zhang 04; Kane, Mele 05)	


!
spin-up and spin-down electrons are in IQHE states, 
with opposite “effective magnetic fields”.	


!
!
!

n=1
IQHE

Ordinary insulator

e
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2D topological
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The “quantum spin Hall effect”
In this type of model, electron spin is conserved, and 
there can be a “spin current”.	


!
!
An applied electrical field causes oppositely directed 
Hall currents of up and down spins.	


!
The charge current is zero, but the “spin current”	


is nonzero, and even quantized!

2D topological

insulator

Ordinary insulator

J i
j = σ

s
HϵijkEk

However...
1. In real solids there is no conserved direction of spin.	


!
2. So in real solids, it was expected that “up” and “down” would always 
mix and the edge to disappear.	


!
3. The theory of the above model state is just two copies of the IQHE.



The 2D topological insulator
It was shown in 2005 (Kane and Mele) that, in real 
solids with all spins mixed and no “spin current”, 
something of this physics does survive.	


!
In a material with only spin-orbit, the “Chern number” 
mentioned before always vanishes.	


!
Kane and Mele found a new topological invariant in 
time-reversal-invariant systems of fermions.	


!
But it isn’t an integer! It is a Chern parity (“odd” or 
“even”), or a “Z2 invariant”.

2D topological

insulator

Ordinary insulator

!
Systems in the “odd” class are “2D topological insulators”	


!
1. Where does this “odd-even” effect come from?	


2. What is the Berry phase expression of the invariant?	


3. How can this edge be seen?



The “Chern insulator” and 
QSHE

Haldane showed that although broken time-reversal is necessary 
for the QHE, it is not necessary to have a net magnetic flux.	


!
Imagine constructing a system (“model graphene”) for which 
spin-up electrons feel a pseudofield along z, and spin-down 
electrons feel a pseudofield along -z.	


!
Then SU(2) (spin rotation symmetry) is broken, but time-
reversal symmetry is not:	


!
an edge will have (in the simplest case)	


a clockwise-moving spin-up mode	


and a counterclockwise-moving	


spin-down mode	


(Murakami, Nagaosa, Zhang, ’04)

Topological

insulator

Ordinary insulator

e

e



The 2D topological insulator
1. Where does this “odd-even” effect come from?	


!
In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.	


!
The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)	


!
So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).	


!
!
!
 

!
!
!



The 2D topological insulator
1. Where does this “odd-even” effect come from?	


!
In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.	


!
The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)	


!
So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).	


!
!
But this rule does not protect	


an ordinary quantum wire	


with 2 Kramers pairs:	


 

!
!
!

E

k

E

k

✓

The topological vs. ordinary distinction depends on time-reversal symmetry.



Experimental signatures
Key physics of the edges: robust to disorder and hence good 
charge conductors .	


!
The topological insulator is therefore detectable by 
measuring the two-terminal conductance of a finite sample: 
should see maximal 1D conductance. 	


!
!
In other words, spin transport does not have to be measured 
to observe the phase.	


!
Materials recently proposed: Bi, InSb, strained Sn (3d), 	


HgTe (2d) (Bernevig, Hughes, and Zhang, Science (2006); experiments 
by Molenkamp et al. (2007) see an edge, but G ~ 0.3 G0)

G =
2e2

h



The 2D topological insulator
Key: the topological invariant predicts the “number of quantum wires”.	


!
While the wires are not one-way, so the Hall conductance is zero, they still contribute to 
the ordinary (two-terminal) conductance.	


!
There should be a low-temperature edge conductance from one spin channel at each edge:	


!
!
!
!G =

2e2

h

This appears in (Hg,Cd)Te quantum wells as a quantum Hall-like plateau in zero magnetic field.

König et al., 
Science (2007)

Laurens 
Molenkamp



Review of 3D facts

The 2D conclusion is that band insulators come in two classes:	


ordinary insulators (with an even number of edge modes, generally 0)	


“topological insulators” (with an odd number of Kramers pairs of edge modes, generally 1).	


!
What about 3D?  The only 3D IQHE states are essentially layered versions of 2D states:	


Mathematically, there are three Chern integers:	


!
Cxy (for xy planes in the 3D Brillouin torus), Cyz, Cxz	


!
There are similar layered versions of the topological insulator, but these are not very stable; 
intuitively, adding parities from different layers is not as stable as adding integers.	


!
However, there is an unexpected 3D topological insulator state that does not have any 
simple quantum Hall analogue.  For example, it cannot be realized in any model where up 
and down spins do not mix!	


!
General description of invariant from JEM and L. Balents, PRB RC 2007.	


The connection to physical consequences in inversion-symmetric case (proposal of BiSb, 
Dirac surface state):  Fu, Kane, Mele, PRL 2007.  See also R. Roy, PRB 2009.



Build 3D from 2D
Note that only at special momenta like k=0 is the “Bloch Hamiltonian” time-reversal 
invariant: rather, k and -k have T-conjugate Hamiltonians.  Imagine a square BZ:

C

�

B

A

�

B

A

C

(a) (b)

H(−k) = TH(k)T−1

“effective BZ”
In 3D, we can take the BZ to be a cube (with periodic boundary conditions):	


!
think about xy planes	


!
!
2 inequivalent planes	


look like 2D problem	


!
!

kz = π/a

kz = −π/a

kz = 0

3D “strong topological insulators” go 
from an 2D ordinary insulator to a 2D 
topological insulator (or vice versa) in 
going from kz=0 to kz=±π/a.	


!
This is allowed because intermediate 
planes have no time-reversal constraint.



Topological insulators in 3D
1. This fourth invariant gives a robust 3D “strong topological insulator” whose metallic 
surface state in the simplest case is a single “Dirac fermion” (Fu-Kane-Mele, 2007)	


!
!
!
!
!
!
!
!
!
!
!
!
2. Some fairly common 3D materials might be topological insulators! (Fu-Kane, 2007)	


!
Claim:	


Certain insulators will always have metallic surfaces with strongly spin-dependent structure	


!
How can we look at the metallic surface state of a 3D material to test this prediction?

kx

ky

E

EF

kx

ky

(a) (b)



ARPES of topological insulators
Imagine carrying out a “photoelectric effect” experiment very carefully.	


!
!
!
!
!
!
!
!
!
!
!
!
!
!
Measure as many properties as possible of the outgoing electron	


to deduce the momentum, energy, and spin it had while still in the solid.	


!
This is “angle-resolved photoemission spectroscopy”, or ARPES.



ARPES of topological insulators
First observation by D. Hsieh et al. (Z. Hasan group), Princeton/LBL, 2008.	


!
This is later data on Bi2Se3 from the same group in 2009:	


!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
The states shown are in the “energy gap” of the bulk material--in general no 
states would be expected, and especially not the Dirac-conical shape.



Periodic table of one-fermion TIs
In every dimension, of the 10 Altland-Zirnbauer symmetry classes, there are 3 with integer 
invariants and 2 with Z2 invariants.  But different symmetry classes are topological in 
different dimensions.  (Schnyder et al.; Kitaev)	


!
In the table below, A = unitary class (no symmetry).	


AII = symplectic class (time-reversal symmetry that squares to -1)	


!
!
!
!
!
!
!
!
!
!
!
!



Recall ordinary electrical polarization
Electrical polarization: another simple Berry phase in solids	


(Will eventually give another picture of topological insulators)	


!
Sum the integral of A over bands: in one spatial dimension,	


!
!
!
!
!
Intuitive idea: think about the momentum-position commutation relation,	


!
!
!
There is an ambiguity of e per transverse unit cell, the “polarization quantum.”	


!
Note: just as dA=F is a “closed form” and very useful to define Chern number,	


in 4 dimensions there is a “second Chern form”	


!
Fact from cohomology:	


Odd dimensions have Chern-Simons forms that have a “quantum” ambiguity;	


Even dimensions have Chern forms that are quantized.

A = huk|� irk|uki ⇡ hri

P =
X

v

e

Z
dq

2⇡
huv(q)| � i@q|uv(q)i



To get a physical interpretation of what A means, note that	


if we consider a plane wave exp(i k r), then the vector potential 
just gives the position r.	


!
Now in a periodic crystal, the position can’t be uniquely defined, 
but we nevertheless expect that A might reflect something to do 
with the position of the wavefunction within the unit cell.	


!
!
!
!

� =
�

A · dk, A = ⌅⇥k|� i⌥k|⇥k⇧

F = ⌅�A

How can we picture A?



Electrodynamics in insulators

We know that the constants ε and μ in Maxwell’s equations can be modified 
inside an ordinary insulator.	


!
Particle physicists in the 1980s considered what happens if a 3D insulator 
creates a new term (“axion electrodynamics”, Wilczek 1987)	


!
!
!
!
!
This term is a total derivative, unlike other magnetoelectric couplings.	


It is also “topological” by power-counting.	


!
The angle θ is periodic and odd under T.	


!
A T-invariant insulator can have two possible values: 0 or π.	


!
!
!
!
!

�LEM =
⇥e2

2⇤h
E · B =

⇥e2

16⇤h
��⇥⇤⌅F�⇥F⇤⌅.



Axion E&M

This explains a number of properties of the 3D topological insulator when its 
surfaces become gapped by breaking T-invariance:	


!
Magnetoelectric effect:	


applying B generates polarization P, applying E generates magnetization M)	


!
!
!
!

�LEM =
⇥e2

2⇤h
E · B =

⇥e2

16⇤h
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Graphene QHE
The connection is that a single Dirac fermion contributes a half-integer QHE: this 

is seen directly in graphene if we recall the extra fourfold degeneracy. 	


(Columbia data shown below)

© 2005 Nature Publishing Group 

 

Interference-induced colour shifts, cross-correlated with an atomic
force microscopy profile, allow us to identify the number of depos-
ited graphene layers from optical images of the samples (Supplemen-
tary Information). After a suitable graphene sample has been
selected, electron beam lithography followed by thermally evapor-
ated Au/Cr (30 nm and 5 nm, respectively) defines multiple electro-
des for transport measurement (Fig. 1a, right inset).With the use of a
Hall-bar-type electrode configuration, the magnetoresistance Rxx

and Hall resistance Rxy are measured. Applying a gate voltage, Vg,
to the Si substrate controls the charge density in the graphene
samples.
Figure 1a shows the gate modulation of Rxx at zero magnetic field

in a typical graphene device whose lateral size is,3 mm.Whereas Rxx

remains in the,100-Q range at high carrier density, a sharp peak at
,4 kQ is observed at V g < 0. Although different samples show
slightly different peak values and peak positions, similar behaviours
were observed in three other graphene samples that we measured.
The existence of this sharp peak is consistent with the reduced carrier
density as EF approaches the Dirac point of grapheme, at which the
density of states vanishes. Thus, the gate voltage corresponding to the
charge-neutral Dirac point, VDirac, can be determined from this peak
position. A separate Hall measurement provides a measure for the
sheet carrier density, n s, and for the mobility, m, of the sample, as
shown in Fig. 1b, assuming a simple Drude model. The sign of n s

changes at Vg ¼ VDirac, indicating that EF does indeed cross the
charge-neutral point. Mobilities are higher than 104 cm2V21 s21 for
the entire gate voltage range, considerably exceeding the quality of
graphene samples studied previously8,9.
The exceptionally high-mobility graphene samples allow us to

investigate transport phenomena in the extreme magnetic quantum
limit, such as the QHE. Figure 2a showsRxy and Rxx for the sample of
Fig. 1 as a function of magnetic field B at a fixed gate voltage Vg .
VDirac. The overall positive Rxy indicates that the contribution is
mainly from electrons. At high magnetic field, Rxy(B) exhibits
plateaux and Rxx is vanishing, which are the hallmark of the
QHE. At least two well-defined plateaux with values (2e2/h)21 and
(6e2/h)21, followed by a developing (10e2/h)21 plateau, are observed
before the QHE features transform into Shubnikov de Haas (SdH)
oscillations at lower magnetic field. The quantization of Rxy for these
first two plateaux is better than 1 part in 104, precise within the
instrumental uncertainty. We observed the equivalent QHE features
for holes with negative Rxy values (Fig. 2a, inset). Alternatively, we
can probe the QHE in both electrons and holes by fixing themagnetic
field and changing Vg across the Dirac point. In this case, as Vg

increases, first holes (Vg , VDirac) and later electrons (Vg . VDirac)
fill successive Landau levels and exhibit the QHE. This yields an
antisymmetric (symmetric) pattern of Rxy (Rxx) in Fig. 2b, with Rxy

quantization in accordance with

R21
xy ¼^gsðnþ 1=2Þe2=h ð2Þ

where n is a non-negative integer and ^ stands for electrons and
holes, respectively. This quantization condition can be translated to
the quantized filling factor v ¼ ^g s(n þ 1/2) in the usual QHE
language. In addition, there is an oscillatory structure developed
near the Dirac point. Although this structure is reproducible for any
given sample, its shape varies from device to device, suggesting
potentially mesoscopic effects depending on the details of the sample
geometry13. Although the QHE has been observed in many 2D

Figure 2 | Quantized magnetoresistance and Hall resistance of a graphene
device. a, Hall resistance (black) and magnetoresistance (red) measured in
the device in Fig. 1 at T ¼ 30mK and Vg ¼ 15V. The vertical arrows and the
numbers on them indicate the values of B and the corresponding filling
factor n of the quantumHall states. The horizontal lines correspond to h/e2n
values. The QHE in the electron gas is shown by at least two quantized
plateaux in Rxy, with vanishing Rxx in the corresponding magnetic field
regime. The inset shows the QHE for a hole gas at Vg ¼ 24V, measured at
1.6 K. The quantized plateau for filling factor n ¼ 2 is well defined, and the
second and third plateaux with n ¼ 6 and n ¼ 10 are also resolved. b, Hall

resistance (black) and magnetoresistance (orange) as a function of gate
voltage at fixed magnetic field B ¼ 9T, measured at 1.6K. The same
convention as in a is used here. The upper inset shows a detailed view of
high-filling-factor plateaux measured at 30mK. c, A schematic diagram of
the Landau level density of states (DOS) and corresponding quantum Hall
conductance (jxy) as a function of energy. Note that, in the quantum Hall
states, jxy ¼ 2Rxy

21. The LL index n is shown next to the DOS peak. In our
experiment the Fermi energy EF can be adjusted by the gate voltage, andRxy

21

changes by an amount g se
2/h as EF crosses a LL.

LETTERS NATURE|Vol 438|10 November 2005
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Topological response
Idea of “axion electrodynamics in insulators”	


!
there is a “topological” part of the magnetoelectric term	


!
!
!
!
that is measured by the orbital magnetoelectric polarizability	


!
!
!
!
!
and computed by integrating the “Chern-Simons form” of the Berry phase	


!
!
!
!
(Qi, Hughes, Zhang, 2008; Essin, JEM, Vanderbilt 2009)	


This integral is quantized only in T-invariant insulators, but contributes in all insulators.	


!
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Topological response
Many-body definition: the Chern-Simons or second Chern formula does not directly 
generalize.  However, the quantity dP/dB does generalize:	


a clue is that the “polarization quantum” combines nicely with the flux quantum.	


!
!
!
!
!
So dP/dB gives a bulk, many-body test for a topological insulator.	


!
(Essin, JEM, Vanderbilt 2009)	


!

�P

B0
=

e/⇥
h/e⇥

= e2/h.

e2

h

= contact resistance in 0D or 1D	


= Hall conductance quantum in 2D	


= magnetoelectric polarizability in 3D



Orbital magnetoelectric polarizability
One mysterious fact about the previous result:	


!
We indeed found the “Chern-Simons term” from the semiclassical approach.	


!
But in that approach, it is not at all clear why this should be the only magnetoelectric term 
from orbital motion of electrons.	


!
More precisely: on general symmetry grounds, it is natural to decompose the tensor	


into trace and traceless parts	


!
!
!
!
!
The traceless part can be further decomposed into symmetric and antisymmetric parts.  
(The antisymmetric part is related to the “toroidal moment” in multiferroics;	


cf. M. Fiebig and N. Spaldin)	


!
But consideration of simple “molecular” models shows that even the trace part is not always 
equal to the Chern-Simons formula...
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Orbital magnetoelectric polarizability
Computing orbital dP/dB in a fully quantum treatment reveals that there are additional terms 
in general.  (Essin et al., 1002.0290)	


For dM/dE approach and numerical tests, see Malashevich, Souza, Coh, Vanderbilt, 1002.0300. 	


!
!
!
!
!
!
!
!
!
The “ordinary part” indeed looks like a Kubo formula of electric and magnetic dipoles.	


!
Not inconsistent with previous results:	


in topological insulators, time-reversal means that only the Berry phase term survives.	


!
There is an “ordinary part” and a “topological part”, which is scalar but is the only nonzero 
part in TIs.  But the two are not physically separable in general.	


Both parts are nonzero in multiferroic materials.	


!
!
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Magnetoelectric theory: a spinoff of TIs

This leads to a general theory for the orbital magnetoelectric response tensor in a crystal,	


including contributions of all symmetries (Essin, Turner, Vanderbilt, JEM, 2010).	


!
It is not a pure Berry phase in general, but it is in topological insulators.	


!
Such magnetoelectric responses have been measured, e.g., in Cr2O3 	


!
!
!
!
!

(Obukhov, Hehl, et al.).	


!
Example of the ionic “competition”: BiFeO3	


!
Can make a 2x2 table of “magnetoelectric mechanisms”:	


(ignore nuclear magnetism)	


!

✓ ⇡ ⇡/24 P

electronic P, 
orbital M

ionic P	


orbital M

electronic P, 
spin M

ionic P	


spin M

electronic P effects (left column) should be 
faster and less fatiguing than magnetoelectric 
effects requiring ionic motion.



But what does F do in metals?
It is useful to get some intuition about what the Berry F means:	


!
Its simplest consequence is that it modifies the semiclassical equations of 
motion of a Bloch wavepacket:	


!
!
!
!
!
a “magnetic field” in momentum space.	


!
The anomalous velocity results from changes in the electron distribution within 
the unit cell: the Berry phase is connected to the electron spatial location.	


!
!
Example I: the intrinsic anomalous Hall effect in itinerant magnets	


still no universal agreement on its existence; wait one moment…	


!
Example II: helicity-dependent photocurrents in optically active materials	


(Berry phases in nonlinear transport)	


!
!
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But what does F do?
Example I: the anomalous Hall effect in itinerant magnets	


!
An electrical field E induces a transverse current through the anomalous 
velocity if F is nonzero averaged over the ground state.	


!
!
!
!
!
!
A nonzero Hall current requires T breaking; microscopically this follows since 
time-reversal symmetry implies	


!
!
!
!
Smit’s objection: in steady state the electron distribution is stationary; why 
should the anomalous velocity contribute at all?	


!
(In a quantum treatment, the answer is as if dk/dt resulted only from the 
macroscopic applied field, which is mostly consistent with experiment)	


!
!

dx

a

dt

=
1
~

@✏n(k)
@ka

+ Fab
n (k)

dkb

dt

.

Fab(k) = �Fab(�k).



But what does F do?
To try to resolve the question of what the semiclassical 
equation means:	


!
Example II: helicity-dependent photocurrents in optically 
active materials	


(Berry phases in nonlinear transport)	


!
!
!
!
In a T-symmetric material, the Berry phase is still important	


at finite frequency.  Consider circular polarization:	


!
The small deviation in the electron distribution generated 
by the electrical field gives an anomalous velocity 
contribution that need not average to zero over the wave.	


!

kx

ky

dk/dt

eE
v1

v0



Smit vs. Luttinger
The resulting formula has 3 terms, of which one is “Smit-type” (i.e., nonzero even 
with the full E) and two are “Luttinger-type”.	


!
!
!
!
!
!
!
!
!
(JEM and J. Orenstein, PRL 2010).  See also Deyo, Golub, Ivchenko, and Spivak 
(arXiv, 2009).	


!
We believe that the circularly switched term actually explains a decade of 
experiments on helicity-dependent photocurrents in GaAs quantum wells.	


!
Bulk GaAs has too much symmetry to allow the effect; these quantum wells show 
the effect because the well confinement breaks the symmetry	


(“confinement-induced Berry phase”).
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Confinement-induced Berry phases

Bulk GaAs has too much symmetry to 
allow the effect; these quantum wells 
show the effect because the well 
confinement breaks the symmetry	


(“confinement-induced Berry phase”).	


!
Our numerics and envelope 
approximation suggest	


a magnitude of 1 nA for incident power 
1W in a (110) well, which is consistent 
with experiments by S. D. Ganichev et al. 
(Regensburg).	


!
Only one parameter of GaAs is needed 
to describe F at the Brillouin zone origin:	


symmetries force
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Anomalous Hall effect	


from topology

Problem with semiclassical (and other) approaches:

Focus on 2D systems to make 
the problem especially clear.  
Without disorder, there are 
“Bloch oscillations” and 
transport samples all states, not 
just initially occupied states.	


!
With disorder, there is no true 
metal at T=0 without 
interactions in 2D with broken 
time-reversal symmetry. From Nagaosa et al., RMP 2011



T=0 approach to disorder-
averaged Hall conductivity

Focus on 2D systems to make 
the problem especially clear.  
Without disorder, there are 
“Bloch oscillations” and 
transport samples all states, not 
just initially occupied states.	


!
With disorder, there is no true 
metal at T=0 without 
interactions in 2D with broken 
time-reversal symmetry. From Nagaosa et al., RMP 2011



Take a “supercell” of many unit cells

Phase boundary conditions = 
momentum in band structure

Φ
2

Φ
1

Larger real-space unit cell = 
smaller momentum-space 
“Brillouin zone” 
!
Bands touch at zone boundaries 
since they came from 1 band in 
the original (small) unit cell 

k

E



Supercell Chern number
When bands touch, only the total Chern number is well-defined.

Adding disorder splits degeneracies and leads to “minibands”, 
each with its own Chern number.  These must sum to the original 
Chern number of the whole band. 
!
The precise disorder distribution determines how the Chern 
numbers are assigned to each miniband, consistent with this rule.

k

E

k

E



Supercell Chern number
Simplest case: 

Now we can compute the Hall conductivity in each realization, as 
each realization is (almost) an insulator: since each miniband is 
very narrow in energy, almost every band is completely filled or 
completely empty. 
!
In each realization, compute total Chern number of the bands 
occupied at each filling.

k

E

k

E



The Chern number “shell game”
Simplest case: total Chern is 1; which mini band gets it?

(This picture is not strictly correct, since there can be Chern 
numbers of either sign.) 
!
There are clearly strong fluctuations in the Chern number of each 
mini band.  But what can determine its average? 
!
Idea: (like equipartition) at weak disorder, the resolving of anti 
crossings does not shift Chern weight on average; the average is 
just determined by the Chern density.



Obtaining the metal as a statistical 
limit of Chern insulators
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Here N is the (large) number of bands in the supercell and angle 
brackets mean averaging over disorder. 
!
The metallic limit is that disorder is weak (it only opens the 
minigaps).  More precisely: 
!
In standard IQHE limit (Chalker-Coddington physics): disorder 
fixed as system size increases.  Eventually IQHE transition 
becomes sharp, occurs at a fixed energy. 
!
Here we should scale disorder to 0 as size increases.



Preliminaries: IQHE and QSHE
One prediction of the localization theory of the IQHE plateau 
transition is: 
as the system size L increases at fixed disorder, the transition 
width in energy or density shrinks as a power law in L. 
!
This can be measured by asking over what region of density the 
topological index is fluctuating for a given size. 
!
In the QSHE, this is esp. interesting as whether or not a U(1) is 
preserved determines whether transition collapses or not. 
!
Essin and Moore, PRB 2009: approached using Avron, Seiler, 
Simon “projection operator” method of computing Chern number, 
which still involves an integral over boundary fluxes. 
!
Hastings and Loring, EPL & Ann. Phys. 2011: developed new 
operator algebra approach via “almost commuting matrices”.



IQHE-type width collapse

!
!
!
Point of Hastings-Loring approach: computing the topological 
invariant for one disorder realization requires (usually) just one 
diagonalization of the Hamiltonian, not one for each point in the 
boundary-condition torus. 
!
Not as robust as disorder goes to 0, but computationally very nice.

from Loring and Hastings, EPL 2011



!
!
!
Point of Hastings-Loring approach: computing the topological 
invariant for one disorder realization requires (usually) just one 
diagonalization of the Hamiltonian, not one for each point in the 
boundary-condition torus. 
!
The band-projected “position” operators almost commute and are 
almost unitary for a system with a mobility gap (satisfied?). 
!
!
!
!
Can they be deformed to exactly unitary and exactly commuting? 
!
!
!
!
Clearly not robust as disorder goes to 0 since then individual-band 
Chern number m isn’t even defined, but algorithm forced to return 
an integer. from Loring and Hastings, EPL 2011
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Metallic limit of topology
Our claim is that there is also an interesting limit different from the 
scaling collapse: suppose we let the effect of disorder get weaker.
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Metallic limit of topology
Our claim is that there is also an interesting limit different from the 
scaling collapse: suppose we let the effect of disorder get weaker.
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Metallic limit of topology
Our claim is that there is also an interesting limit different from the 
scaling collapse: suppose we let the effect of disorder get weaker.

total topological	
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Metallic limit of topology
So, even when the topological invariants of a system are strongly 
fluctuating, the average has meaningful information. 
!
We believe this is the correct route to a precise theory of the 
anomalous Hall effect in ordinary metals, and that this concept 
might be generalized to a few other symmetry classes.
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Conclusion: even when the topological invariants of a system are 
strongly fluctuating, the average has meaningful information. 
!
We believe this is the correct route to a precise theory of the 
anomalous Hall effect in ordinary metals, and that this concept 
might be generalized to a few other symmetry classes.



Conclusions

1. Beyond topological invariants in insulators 
!
For symmetry-protected phases, it appears that if we can find the right way 
to write the topological invariant, it remains physical (though not quantized) 
even without the symmetry. 
!
2. Metals 
!
If there is a limit where the “intrinsic AHE” formula is exact, it may be the 
disorder-averaged pumping conductance.  This is an adiabatic process so 
the diagonal conductivity is effectively 0.  The intrinsic AHE describes the 
mean Chern numbers in a weak-disorder regime where the Chern numbers 
fluctuate strongly between realizations.


