Quantum Entanglement and Topological Order Ashvin Vishwanath

UC Berkeley

Yi Zhang Berkeley-> Stanford

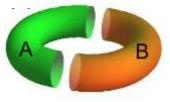
M. Oshikawa ISSP

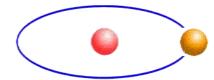
Tarun Grover Berkeley->KITP

OUTLINE

- Part 1: Introduction
 - Topological Phases, Topological entanglement entropy.
 - Model wave-functions.
- Part 2: Topological Entropy of nontrivial bipartitions.
 - Ground state dependence and Minimum Entropy States.
 - Application: Kagome spin liquid in DMRG.
- Part 3: Quasi particle statistics (modular S-Matrix) from Ground State Wave-functions.

Ref: Zhang, Grover, Turner, Oshikawa, AV: arXiv:1111.2342





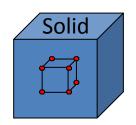
Conventional (Landau) Phases

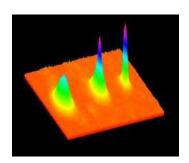
Distinguished by spontaneous symmetry breaking.

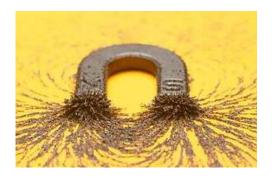
Can be diagnosed in the ground state wave-function by a *local* order parameter.

- Solid (broken translation)
- Superfluids ψ

Magnets (broken spin symmetry) M





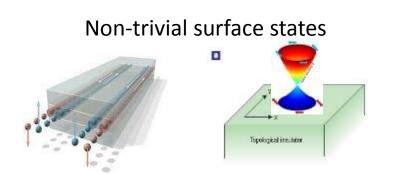


In contrast –topological phases...

Topological Phases

Integer topological phases

- Integer Quantum Hall & Topological insulators
- Haldane (AKLT) S=1 phase
- Interacting analogs in D=2,3 (Kitaev, Chen-Gu-Wen, Lu&AV)



Fractional topological phases

- Fractional Quantum Hall
- Gapped spin liquids

Topological Order:

1. Fractional statistics excitations (anyons).

2. Topological degeneracy on closed manifolds.

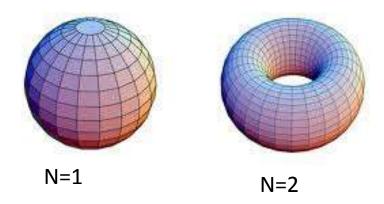
How to tell – given ground state wave-function(s)? Entanglement as topological `order parameter'.

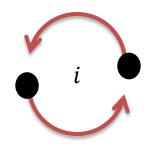
Topological Order – Example 1

Laughlin state (v=1/2 bosons) [`Chiral spin Liquid']

$$\Psi[\{z_i\}] = \prod_{i < j} (z_i - z_j)^2 e^{-\sum_i |z_i|^2} \longrightarrow \Psi(r_1, r_2 \dots, r_N) = \Phi_{C=1}^2(r_1, r_2 \dots, r_N)$$

• Ground State Degeneracy (N=2^g):

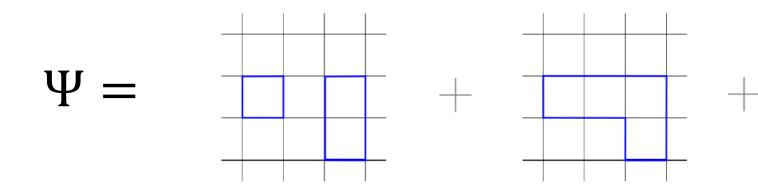




s is a semion

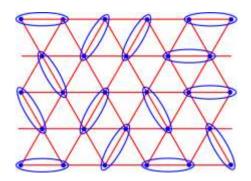
Quasiparticle Types: {1, s}. # = Torus degeneracy Topological Order – Example 2 Ising (Z₂) Electrodynamics

- Here E=0,1; B=0,π
- $\nabla \cdot E = 0 \pmod{2}$ (E field loops do not end)



- Degeneracy on torus=4.
- Degeneracy on cylinder=2 (no edge states)

Topological Order – Example 2 Z₂ Quantum Spin Liquids

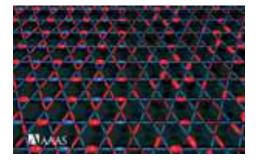


 $\Psi = P_{G}(\Psi_{BCS})$

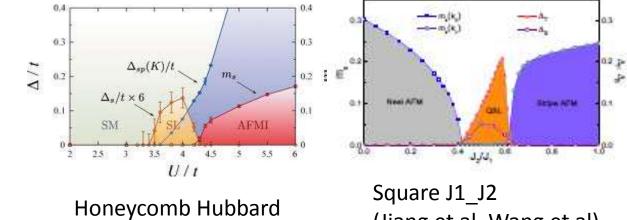
RVB spin liquid: (Anderson '73). Effective Theory: Z₂ Gauge Theory.

Recently, a number of candidates in numerics with no conventional order.

Definitive test: identify topological order.



Kagome (Yan et al)

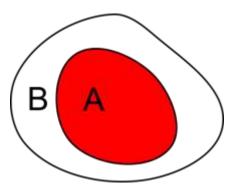


(Meng et al)

(Jiang et al, Wang et al)

Entanglement Entropy

• Schmidt Decomposition: $\Psi = \sum_{i} \sqrt{p_i} |Ai\rangle \otimes |Bi\rangle$



Entanglement Entropy (von-Neumann):

$$S_A = -\sum_i p_i \log p_i$$

= S_B

Note: 1) $S_A = S_B$

2) Strong sub-additivity (for von-Neumann entropy)

$$\mathbf{S}_{\mathbf{A}} + \mathbf{S}_{\mathbf{B}} + \mathbf{S}_{\mathbf{C}} - \mathbf{S}_{\mathbf{B}\mathbf{C}} - \mathbf{S}_{\mathbf{A}\mathbf{C}} - \mathbf{S}_{\mathbf{A}\mathbf{B}} + \mathbf{S}_{\mathbf{A}\mathbf{B}\mathbf{C}} \leq 0$$

Topological Entanglement Entropy

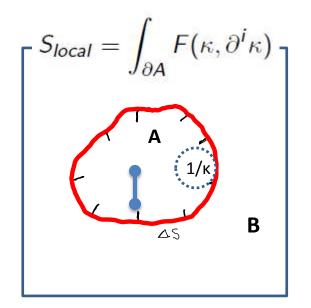
- Gapped Phase with topological order.
 - Smooth boundary, circumference L_A:

 $S_{A} = aL_{A} - \gamma \leftarrow$ Topological Entanglement Entropy(Levin-Wen;Kitaev-Preskill) $\gamma = Log D$. (D : total quantum dimension). Abelian phases: $D = \sqrt{\{Torus Degeneracy\}}$

Z₂ gauge theory: Y=Log 2
Constraint on boundary – no gauge charges inside.
Lowers Entropy by 1 bit of information.

Entanglement Entropy of Gapped Phases

- Trivial Gapped Phase:
 - Entanglement entropy: sum of local contributions.



Curvature Expansion (smooth boundary):

$$F = \mathbf{a_0} + \mathbf{a_k} \kappa + \mathbf{a_2} \kappa^2 + \mathbf{a_4} (\partial_l \kappa)^2 + \dots$$

Z₂ symmetry of Entanglement Entropy: S_A= S_B AND κ →- κ . So a₁=0

No constant in 2D for trivial phase.

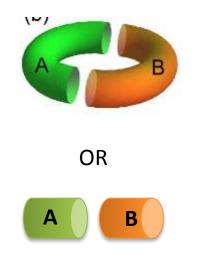
$$S_A = \oint dl [a_0 + a_2 \kappa^2 + \dots]$$

$$= a_0 L_A + \frac{A_2}{L_A} + \dots$$

Grover, Turner, AV: PRB 84, 195120 (2011)

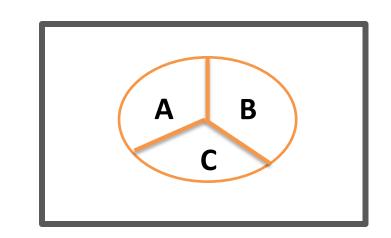
Extracting Topological Entanglement Entropy

• Smooth partition boundary on lattice?



• Problem:

`topological entanglement entropy' depends on ground state. (Dong et al, Zhang et al) General Partition



$$-\gamma = \mathbf{S}_{\mathbf{A}} + \mathbf{S}_{\mathbf{B}} + \mathbf{S}_{\mathbf{C}} - \mathbf{S}_{\mathbf{B}\mathbf{C}} - \mathbf{S}_{\mathbf{A}\mathbf{C}} - \mathbf{S}_{\mathbf{A}\mathbf{B}} + \mathbf{S}_{\mathbf{A}\mathbf{B}\mathbf{C}}$$

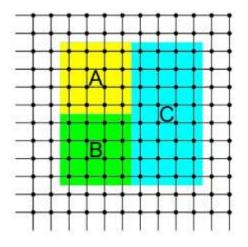
(LevinWen;Preskill Kitaev)

Strong subadditivity implies: $\gamma \ge 0$ Identical result with Renyi entropy

How does this work with generic states?

Topological Entropy of Lattice Wavefunctions

 Υ – From MonteCarlo Evaluation of Gutzwiller Projected Lattice wavefunctions. $e^{-S_2} = \langle SWAP_A \rangle$. (Y. Zhang, T. Grover, AV Phys. Rev. B 2011.)



Expected γ	$\gamma_{\rm calculated}/\gamma_{\rm expected}$
	-0.0008± 0.0059 *
$\log \sqrt{2}$	0.99 ± 0.03
$\log \sqrt{3}$	1.07 ± 0.05
$\log 2$	0.42 ± 0.14
	$\frac{\log \sqrt{2}}{\log \sqrt{3}}$

Good agreement for chiral spin liquid.

Z2 not yet in thermodynamic limit(?)

Alternate approach to diagnosing topological order:

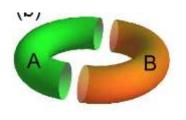
Entanglement spectrum (Li and Haldane, Bernevig et al.).

Closely related to edge states Does not diagnose Z2 SL Cannot calculate with Monte Carlo.

Part 2: Ground State Dependence of Topological Entropy

Topological Entanglement in Nontrivial bipartitions

 Nontrivial bipartition - entanglement cut is not contractible. Can `sense' degenerate ground states.



- Result from Chern-Simons field theory: (Dong et al.)
- Abelian topological phase with N ground states on torus.

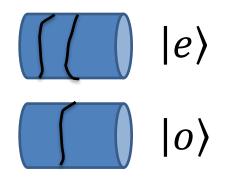
There is a special basis of ground states for a cut, such that:

•
$$\Psi = \sum_{n=1}^{N} c_n |\phi_n\rangle \qquad (p_n = |c_n|^2)$$
$$\gamma = 2\gamma_0 - \sum_{n=1}^{N} p_n \log \frac{1}{p_n}$$

Topological entropy in general *reduced*. $0 \le \gamma \le 2\gamma_0$

For the *special states* $|\phi_n\rangle$, equal to usual value ($\gamma = 2\gamma_0=2\log D$). These Minimum Entropy States correspond to *quasiparticles* in cycle of the torus

Eg. Z₂ Spin Liquid on a Cylinder



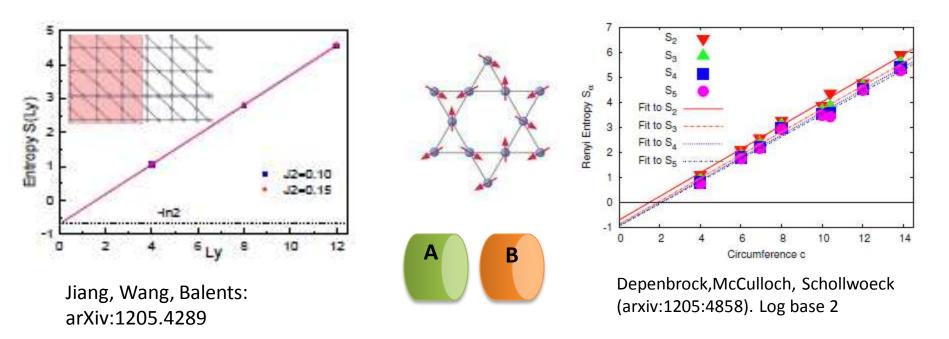
• Degenerate sectors: even and odd E winding around cylinder.

Minimum Entropy States:

$$|0,\pi\rangle = (|e\rangle \pm |o\rangle)/\sqrt{2}$$

- The minimum entropy states ($\gamma = \log 2$) are `vison' states magnetic flux through the cylinder that entanglement surface can measure.
- State $|e\rangle$ has $\gamma = 0$. Cancellation from: $\Psi = \frac{|A, even\rangle||B, even\rangle + |A, odd\rangle||B, odd\rangle}{\sqrt{2}}$

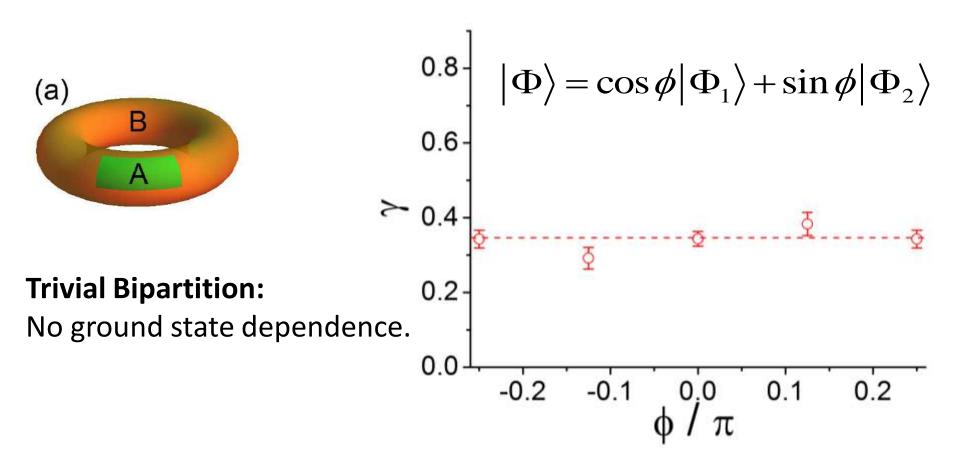
Application: DMRG on Kagome Antiferromagnet



- Topological entanglement entropy found by extrapolation within 1% of *log 2*.
- Minimum entropy state is selected by DMRG (low entaglement).
- Possible reason why only one ground state seen.

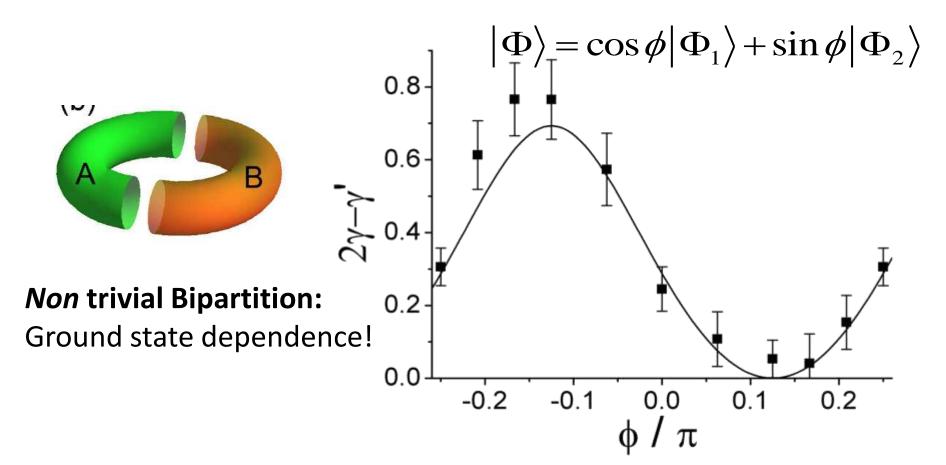
Ground State Dependence of Entanglement Entropy

- Chiral spin liquid on Torus: $\Psi(r_1, r_2, \dots, r_N) = \Phi_{C=1}^2(r_1, r_2, \dots, r_N)$
 - Degenerate ground states from changing boundary conditions on Slater det. $\Phi_{\rm C=1}$



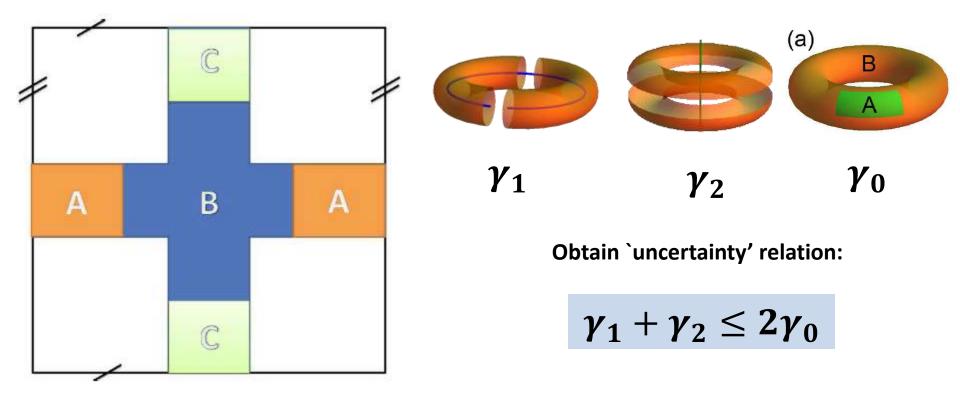
Ground State Dependence of Entanglement Entropy

- Chiral spin liquid on Torus:
 - Degenerate ground states from changing boundary conditions on Slater det. $\Phi_{\rm C=1}$



Ground State Dependence of Topological Entropy from Strong Sub-additivity

• Strong subadditivity: $S_{ABC} + S_B - S_{AB} - S_{BC} \le 0$



Naïve result, $\gamma_1 = \gamma_2 = 2\gamma_0 \ cannot$ hold from general quantum information requirement.

True even without topological field theory.

Part 3: Mutual Statistics from Entanglement

• Relate minimum entropy states along independent torus cuts. (modular transformation: S matrix)

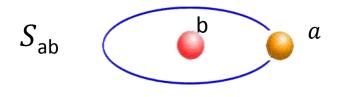
$$\begin{array}{c} & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ &$$

MES: ϕ'_1, ϕ'_2

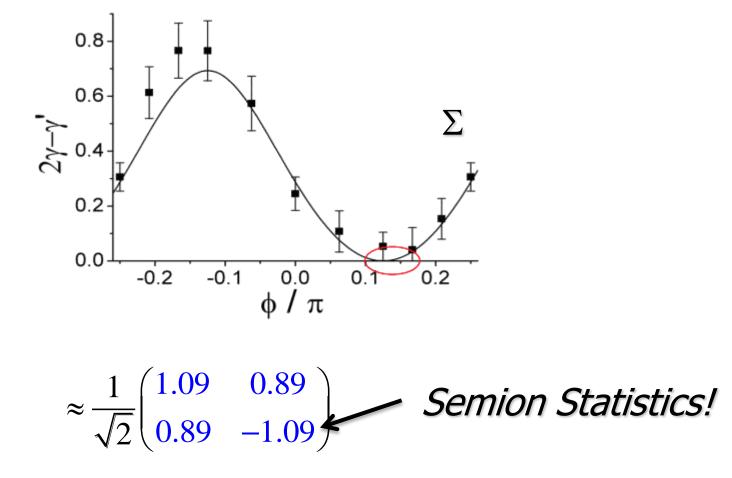
S encodes quasiparticle braiding statisitics: Chiral Spin Liquid:

$$S = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{e} \\ \mathbf{s} \end{bmatrix}$$

MES: ϕ_1, ϕ_2



Statistics from Entanglement – Chiral Spin Liquid



Wavefunction `knows' about semion exciations;

Zhang, Grover, Turner, Oshikawa, AV (2011).

Conclusions

- Entanglement of non-trivial partitions can be used to define `quasiparticle' like states, and extract their statistics.
- Useful to distinguish two phases with same D. (eg. Z₂ and doubled chiral spin liquid, no edge states) Less prone to errors.
- Can topological entanglement entropy constrain new types of topological order (eg D=3)?
- Experimental measurement? Need nonlocal probe.

Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators

M. Endres^{1,*}, M. Cheneau¹, T. Fukuhara¹, C. Weitenberg¹, P. Schauß¹, C. Gross¹, L. Mazza¹, M.C. Bañuls¹, L. Pollet², I. Bloch^{1,3}, and S. Kuhr^{1,4}

