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Gapless “Entanglement Spectrum” of
FQH states and Topological Insulators

F. D.M. Haldane
Princeton University

*The AREA law (not just O(1)) part of bipartite

entanglement has a feature that characterizes
topological ordered (pure) quantum states.

*This is hidden when the entanglement is measured by a single number
(Von Neumann entropy), but revealed in the full “entanglement” (Schmidt) spectrum



Bipartite entanglement of (pure) quantum states
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® Spatial decomposition of wavefunction into two parts

® Singular value (Schmidt)decomposition of W:
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Von Neuman (bipartite) entanglement entropy:
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* dimensionless analog of
® generalize this to “energy levels”
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dimensionless analog of
“inverse temperature”



| D system (strip, embedded in infinite system)

“R”region

it By —siomsheit ( ground state of gapped,
£— 00 non-critical system)

lim Syy — ~eln(£/a) ( ground state of gapless
e e critical system)

conformal anomaly
® Lots of recent interest in Von-Neumann entanglement

entropy of Condensed matter ground states probably due
to this famous result
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generalization: lim S(ﬂ) > 'B cln(f/a) (Linear in “temperature”)
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® Rather than just representing entanglement
by a single number Syn , it is useful to
examine the full “entanglement spectrum” &x

® In particular, examine its “low-energy”

structure (or examine S(P) for large B
(low “temperature” limit)

result: gapped systems with_topological order appear
to always have a gapless entanglement spectrum




Classification of Schmidt
entanglement states:

® [f the state is a singlet representation of
some group, the entanglement eigenstates
form irreducible representations.

example: spin-singlet state
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entanglement spectrum has spin multiplets



Example: S=1 chain

entanglement spectrum “ground state”
is a degenerate S=1/2 doublet in the
topologically-ordered “Haldane gap” phase

No topological order
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. not a simple P
simple product state, but still a
product state generic topologically- L R
trivial state.

Note that the low “energy” S=1/2 entanglement degrees of freedom
become the free S=1/2 edge state if a physical cut is made!




® Divide a translationally-invariant gapped
infinite d-dimensional system into two
semi-infinite pieces along a (d-1)-
dimensional translationally-invariant plane.

® Can classify entanglement spectrum by
(d-1)-dimensional momentum or Bloch
vector parallel to boundary.



second example: FQHE states:

® Edges of gapped bulk FQHE states are
described by conformal field theories.

® Expect that the low-energy entanglement
spectrum is the same (gapless) cft. (Correct!)

® Analogs of AKLT state are the model wavefunctions (Laughlin,
Moore-Read, etc) that are exact ground states of “special”

models. They have a simpler entanglement spectrum than
“generic” states with the same topological order.

H.Li and FDMH, PRL 2008



FQHE states in spherical geometry

® Schmidt decomposition of
Fock space into N and S
hemispheres.

® Classify states by Lz and
Ne in northern
hemisphere, relative to
dominant configuration.
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Represent bipartite Schmidt
decomposition like an excitation |
spectrum (with Hui Li) =
|\II> B ZB_BQ/2|\I’NOL> ® I\IJSO{> ST —

® |ike CFT of edge states.

® A |lot more information than
single number (entropy)

(b) N=12, Ny =33

FIG. 1: Entanglement spectrum for the 1/3-filling Laughlin
states, for N=100m=3,Na=2Tand N=12,m=3,Ns =
33. Only sectors of Na = Ng = N/2 are shown.

® many zero eigenvalues

_rBa i
€ =5 (due to*squeezing” (dominance) property of Laughlin wavefunction)



® Spectrum allows characters of cft (up to a

finite-size truncation of Virasoro level) to be
“read off”.

® Spectrum gives (a) conformal anomaly c (b)
quantum dimensions of each sector, etc.



Interpolation between |/3 Laughlin state and “true’

’

ground state of Coulomb interaction.
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FIG. 6. Low-lying states at N=6, 25 =15 (v = 1) as the
‘““hard-core’” pseudopotential component V), is varied. The

other V,, take their Coulomb values.

V3 and the Coulomb

value (C) of V, are marked. Angular momentum quantum
numbers L are indicated. Also shown is the projection of

the LJ state on the ground state.

In the gapless regime

(XA > 1.25), the LJ state reappears as the hightest L =0 level.
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FIG. 1. The spectrum of 1656 multiplets (50388 states)
of the N=7 clectron, 25 =18 flux quanta system with
Coulomb interactions, grouped by total angular momentum
L. Energies (in units of e¥/4mwel) are shown relative 10 the
incompressible (v = 3'» ) isotropic ( L = 0) ground state
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FIG. 3. (a) Ground-state pair correlation function for
P - { N =6, (b),(¢) Density profiles of localized quasipar-
ticle and quasihole defects. The condensate density p satis-
fies 4w R%p =6, 5%, and 6+, respectively. Filled curves,
Coulomb interaction; broken curves, model Laughlin-
Jastrow wave functions.




Look at difference between Laughlin state,entanglement spectrum
and state that interpolates to Coulomb ground state.
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@z=1 (b)z=1/3 (c) z=1/10

FIG. 2: Entanglement spectrum for the ground state, for a system of N = 10 electrons in the lowest Landau level on a sphere
enclosing N, = 27 flux quanta, of the Hamiltonian in Eq. (12) for various values of z.

x=0 is pure
H =sH,+ (1 —a)W Laughlin

Can we identify topological order in “physical as opposed to model
wavefunctions from low-energy entanglement spectra?




Similar calculations for Moore-Read state
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FIG. 1: The complete entanglement spectra of the N, = 16 and N,,;, = 30 Moore-Read state (only the relative values of £ and
L2 are meaningful).
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FIG. 2: The low-lying entanglement spectra of the N. = 16 and N.,; = 30 ground state of the Coulomb interaction projected
into the second Landau level (there are levels beyond the regions shown here, but they are not of interest to us). The insets
show the low-lying parts of the spectra of the Moore-Read state, for comparison [see Figure (1)]. Note that the structure of
the low-lying spectrum is essentially identical to that of the ideal Moore-Read state.



Gap to non-cft entanglement levels states of
“generic” states appear to remain finite in the
thermodynamic limit.
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FIG. 3: Entanglement gap as a function of 1/N. & is the gap at AL = 0, i.e., the distance from the single CFT level at
AL = 0 to the bottom of the generic (non-CFT) levels at AL = 0. At AL = 1,2, the gap d;,» is defined as the distance from
the average of the CFT levels to the bottom of the generic levels. See Table I for the details of various partitionings.



Drlvmg the 2nd LL MR state to
the gapless phase by varying V1

(relative to pure Coulomb)

low-lying entanglement spectrum

matches that of pure MR state




Squeezing property of model wavefunctions
(Jack Polynomials)

® Laughlin I/3 state is represented by
“occupation number” pattern

any 3 consecutive “orbitals”

1001001001001001001001 ... contain exactly | particle

® Moore-Read “Pfaffian” 2/4 (= |/2) state has
the occupation pattern

any 4 consecutive “orbitals”

110011001100110011001100. .. contain exactly 2 particles

(These are not simple Slater determinant states, but (related to)
Jack polynomials with specific negative integer Jack parameters)



® The Laughlin state, Moore-Read State, and Read-Rezayi
states are all proportional to Jack polynomials
(which have the “dominance” property).

® Jacks are symmetric polynomials in N variables, labeled
by a Jack parameter « and a “padded” partition A of N

nonnegative integers.
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“squeeze” this to get this = “dominance”
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“Entanglement spectrum”

(free fermions)
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® Divide infinite crystal along a lattice |
plane into two semi-infinite regions |
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generic “entanglement spectrum” of a band insulator

® |evels below 0 €R
occupied in “ground

state” (dominant term "W "
in (Schmidt) —
expansion) /
T S et
® varies as lattice plane ik .
of cut is moved: bands _\w/\
move from empty to i _ %)
filled region(spectral \"/p\_j
flow . !
) N - m

(quite different if a Fermi surface is present)




spectrum with a Fermi surface
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Ferml surace Fermi surfacz
in this range
in this range

levels coalesce into a continuum if a Fermi surface is present
(density of states proportional to log(width) for a finite width (not semi-infinite) region.



topologically-non-trivial “band insulator”
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® topologically-non-trivial filled bands show
“spectral flow” as a function of k.



2D zero-field Quantized
Hall Effect

FDMH, Phys. Rev. Lett. 61,2015 (1988).

. 2 FIG. |. The honeycomb-net model (“2D graphite™) showing
® 2D quantlzed Hall effect: 0 = ve /h In the nearest-neighbor bonds (solid lines) and second-neighbor bonds

: . . (dashed lines). Open and solid points, respectively, mark the 4
absence of interactions between the partldes’v and B sublattice sites. The Wigner-Seitz unit cell is con-

must be an integer. There are no current-carrying veniently centered on the point of sixfold rotation symmetry

. . . . (marked “*”') and is then bounded by the hexagon of nearest-
states at the Fermi level in the interior of a QHE neighbor bonds. Arrows on second-neighbor bonds mark the

system (a|| such states are localized on its edge!_ directions of positive phase hopping in the state with broken

time-reversal invariance.

® The 2D integer QHE does NOT require Landau

levels, and can occur if time-reversal symmetry is 33 v=0
broken even if there is no net magnetic flux through
the unit cell of a periodic system. (This was first M
demonstrated in an explicit “graphene” model ;!
shown at the right.).
-3/3 v=0
® Electronic states are “simple” Bloch states! (real -m 0 mo
first-neighbor hopping £,, complex second-neighbor FIG. 2. Phase diagram of the spinless electron model with
" |t2/t] < §. Zero-field quantum Hall effect phases (v=+ |,
hopping t,el®, alternating onsite potential M.) where o™ =ve/h) occur if | M/tz| <33 |sine|. This figure

assumes that r; is positive; if it is negative, v changes sign. At
the phase boundaries separating the anomalous and normal
(v=0) semiconductor phases, the low-energy excitations of the
model simulate undoubled massless chiral relativistic fermions,



single-particle entanglement spectrum (schematic, but
confirmed by actual calculations, WIP) (Zig-zag cut)
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generates free
fermion cft (c=1)

/ as full entanglement
spectrum.

“spectral flow” from
L to R as k changes
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“Toric Code” model
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® Gapless nature of “entanglement spectrum”
seems quite universal in topological order

® Simple “ideal states” have less quantum
fluctuations than generic ones, have ONLY the
(required) spectrum of the topological order.

® spectrum seems to be a more useful
characterization of entanglement than “just” a
single number, the Von Neumann entropy.



