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1 Duality and Triality

An duality, Dn duality, D4 triality, E6 duality.

2 Triality and F4

2.1 Review of h3(O) and F4

Recall that h3(O) is the octonionic-Hermitian matrices of the form α x z
x̄ β y
z̄ ȳ γ

 (1)

We saw it was useful to decompose this Jordan algebra in any of the following ways

h3(O) ≈ h2(O) ⊕ O2

≈ J(O⊕ R) ⊕ 49

≈ R9,1 ⊕ 49

(2)
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The use of 49 ≈ O8 instead of 49,1 is used to emphasize that the Jordan product does not
come form the R9,1 ⊂ Cl9,1 action, but rather from the R9 ⊂ Cl9 action, with the additional
R factor acting by scalar multiplication. These isomorphisms (2) are nicely summed up by

(
α, (ψ1, ψ2)T , M

)
−→

 α ψ1 ψ2

ψ1 M
ψ2


(
α, (ψ1, ψ2)T , (~V9, β)

)
−→

 α ψ1 ψ2

ψ1
β · I2×2 + ~V9ψ2

 (3)

From here, it is easily seen that

OP 2 ≈ F4/Spin(9) (4)

so that as vector spaces we have

f4 = so(9) ⊕ 49. (5)

With so(9) ≈ so(8)⊕ R8 and with 49 ≈ 4+
8 ⊕4

−
8 after reduction to so(8), we have

f4 = so(8) ⊕ R8 ⊕ 4+
8 ⊕ 4

−
8 . (6)

The bracket on the so(8)⊕R8 piece comes from so(9). Two things are of note. First, under
this bracket, so(8) acts on R8 via the vector representation; second, this provides a natural
bracket

[R8, R8] −→ so(8) (7)

It is possible to build brackets [4+,4+] → so(8), [4−,4−] → so(8) as well. To do so,
consider an orthonormal bases {S+

i }, {S
−
i } of 4+, 4−, and an orthonormal basis {gk} of

so(8) with associated matrices (gk+ij ), (gk−ij ). Then define

[S±i , S
±
j ] =

∑
k

gk±ij g
k. (8)

One must check that the Jacobi identity holds. The bracket on the R8 ⊕ 4+
8 ⊕ 4

−
8 piece,

aside from the brackets we have just described, is the triality map! Also, this gives a
beautiful description of F4 as two copies of D4.

3 Differentiation and F4

A second way of seeing f4 can be seen, which is useful in that it lends itself to generalization.
Define the 3× 3 special anti-Hermitian matrices over the division algebra K

sa3(K) =
{
X ∈ K(3)

∣∣ XT
= −X and Tr(X) = 0

}
. (9)
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Given A ∈ sa3(K) we have

adX : h3(K) → h3(K) (10)

is in fact a derivation. However sa3(K) is not a Lie algebra unless K is commutative and
associative! However there is a bracket

[adX , adY ] 7→ der(K) ⊕ sa3(K). (11)

To describe this, first we define Dx,y for x, y ∈ K. We define

Dx,ya = [[x, y], a] + [x, y, a]. (12)

One easily verifies Dx,y ∈ der(K). Obviously if K is commutative and associative then
Dx,y = 0. We set

[adX , adY ] = ad[X,Y ]0 +
1

3

3∑
i,j=1

DXij ,Yij
. (13)

and if D,D′ ∈ der(K) we set

[D, D′] = DD′ − D′D

[D, adX ] = adD(X).
(14)

This bracket makes

der(K) ⊕ sa3(K) (15)

into a Lie algebra. We have

so(3) ≈ der(R) ⊕ sa3(R)

su(3) ≈ der(C) ⊕ sa3(C)

sp(3) ≈ der(H) ⊕ sa3(H)

f4 ≈ der(O) ⊕ sa3(O)

(16)

The first three isomorphisms are easy to prove. The fourth requires some calculation to
show that all derivations of h3(O) are of the form der(O)⊕ sa3(O).

4 The Magic Square

The so-called “magic square” (or Freudenthal-Tits magic square) is the generalization of
the definition of f4 from division algebras K to products K ⊗R K′. With der(K ⊗ K′) ≈
der(K)⊕ der(K), we consider the Lie algebra

der(K) ⊕ der(K′) ⊕ sa3(K⊗K′). (17)
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The only trouble is defining the bracket on the final summand. For a⊗ a′, b⊗ b′ ∈ K⊗K′,
we set

Da⊗a′,b⊗b′ = (a′, b′) Da,b + (a, b) Da′,b′ (18)

then

[adX , adY ] = = ad[X,Y ]0 +
1

3

3∑
i,j=1

DXij ,Yij
. (19)

as before. The wonderful thing about this construction is that (17) becomes a semi-simple
Lie algebra.

Now when K,K′ are commutative and associative, the derivation algebras vanish and
we obtain the rather trivial little square

R C
R so(3) su(3)
C su(3) su(3)⊕ su(3)

(20)

In the next instance, the algebras der(H) do not vanish. We obtain the medium square

R C H
R so(3) su(3) sp(3)
C su(3) su(3)⊕ su(3) su(6)
H sp(3) su(6) so(12)

(21)

Finally when we include the octonions we have the magic square

R C H O
R so(3) su(3) sp(3) f4
C su(3) su(3)⊕ su(3) su(6) e6
H sp(3) su(6) so(12) e7
O f4 e6 e7 e8

(22)

5 E6

We have already seen two good descriptions of E6. The first is that it is the determinant-
preservation group of h3(O). The second is that it preserves the Jordan algebra h3(C⊗O),
and can therefore be seen as the isometry group of the associated projective space, the
bi-octonionic plane.

4



6 E7

The Lie algebra e7 has a representation of lower dimension than its adjoint representation.
This representation can be seen as follows. The group E7 is the group of automorphisms of
the Fruedenthal triple system.

7 E8

The Lie algebra e8 has a triality description:

e8 ≈ so(R8) ⊕ so(R8) ⊕ end(R8) ⊕ end(4+
8 ) ⊕ end(4−8 )

≈ so(O) ⊕ so(O) ⊕ (O⊗O) ⊕ (O⊗O) ⊕ (O⊗O) .
(23)
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