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1 Duality and Triality

A, duality, D,, duality, D, triality, Fg duality.

2 Triality and F}

2.1 Review of h3(0) and F)

Recall that h3(Q) is the octonionic-Hermitian matrices of the form
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We saw it was useful to decompose this Jordan algebra in any of the following ways
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The use of Ag ~ OF instead of Ay is used to emphasize that the Jordan product does not
come form the R%! C Cly,1 action, but rather from the R? C Cly action, with the additional
R factor acting by scalar multiplication. These isomorphisms are nicely summed up by
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From here, it is easily seen that
QP? ~ F,/Spin(9) (4)
so that as vector spaces we have
fa = 50(9) & Ao. (5)
With s0(9) ~ s0(8) @ R® and with Ag ~ A§ @ Ay after reduction to s0(8), we have
f, = s0(8) ®R® @ A @ Ag. (6)

The bracket on the s0(8) ®R® piece comes from $0(9). Two things are of note. First, under
this bracket, s0(8) acts on R® via the vector representation; second, this provides a natural
bracket

[R®, R®] — s0(8) (7)

It is possible to build brackets [AT, AT] — 50(8), [A7,A7] — s0(8) as well. To do so,
consider an orthonormal bases {S;"}, {S; } of A%, A~, and an orthonormal basis {g*} of
50(8) with associated matrices (gff), (gfj*) Then define

Si Si ng:i k' (8)

One must check that the Jacobi identity holds. The bracket on the R® @ A§ @ Ag piece,
aside from the brackets we have just described, is the triality map! Also, this gives a
beautiful description of Fj as two copies of Dy.

3 Differentiation and F}

A second way of seeing f4 can be seen, which is useful in that it lends itself to generalization.
Define the 3 x 3 special anti-Hermitian matrices over the division algebra K

sa3(K) = {X €RE) | X =-X and Tr(X) =0 } . 9)



Given A € saz(K) we have
adx : b3(K) — b3(K) (10)

is in fact a derivation. However sas(K) is not a Lie algebra unless K is commutative and
associativel However there is a bracket

[adx, ady] — 0er(K) @ saz(K). (11)
To describe this, first we define D, ,, for z,y € K. We define
Dmvya‘ = [[xay]v CL] + [1'7 Y, a]' (12)

One easily verifies D, , € der(K). Obviously if K is commutative and associative then
D, , =0. We set

3
1
[adx, ady] = ad[x7y]0 + 3 Z DXfijaYij' (13)

i,j=1

and if D, D’ € der(K) we set

[D, D'] = DD" — D'D
(14)
[D, adx] = (LdD(X).
This bracket makes
ver(K) @ sas(K) (15)
into a Lie algebra. We have
50(3) =~ ver(R) @ saz(R)
s5u(3) ~ der(C) @ saz(C) (16)
s5p(3) =~ der(H) @ saz(H)
fa =~ vet(0) @ sa3(0)

The first three isomorphisms are easy to prove. The fourth requires some calculation to
show that all derivations of h3(Q) are of the form der(Q) @ sas(0).

4 The Magic Square

The so-called “magic square” (or Freudenthal-Tits magic square) is the generalization of
the definition of f4 from division algebras K to products K @g K'. With det(K @ K') =~
der(K) @ der(K), we consider the Lie algebra

ver(K) @ ver(K') @ saz(KeK'). (17)



The only trouble is defining the bracket on the final summand. For a ® a’,b @ b € K® K/,
we set

Da®a’,b®b’ = (alv b/) Da,b + (a7 b) Da’,b’ (18)
then
1 3
[adx, ady] = = ad[X_,y]O + gijzl DX”.’yU. (19)

as before. The wonderful thing about this construction is that becomes a semi-simple
Lie algebra.

Now when K, K’ are commutative and associative, the derivation algebras vanish and
we obtain the rather trivial little square

L R [ € |
R s0(3) su(3) (20)
C su(3) su(3) @ su(3)

In the next instance, the algebras det(H) do not vanish. We obtain the medium square

L [ R [ ¢ [ H |
R 50(3) su(3) 5p(3) (21)
C su(3) su(3) @ su(3) s5u(6)
H sp(3) su(6) s50(12)
Finally when we include the octonions we have the magic square
. [ R [ ¢ [ H | 0O ]
R 50(3) s5u(3) 5p(3) fa
C su(3) su(3) @ su(3) su(6) ¢ (22)
H sp(3) su(6) s50(12) e7
0 fa 6 e7 s

5 Fg

We have already seen two good descriptions of Eg. The first is that it is the determinant-
preservation group of h3(Q). The second is that it preserves the Jordan algebra h3(C @ Q),
and can therefore be seen as the isometry group of the associated projective space, the
bi-octonionic plane.



6 Ly

The Lie algebra e; has a representation of lower dimension than its adjoint representation.
This representation can be seen as follows. The group E~ is the group of automorphisms of
the Fruedenthal triple system.

7 Iy

The Lie algebra eg has a triality description:

g ~ 50(R®) @ s0(R®) @ end(R®) @ end(AF) @ end(Ag)

~ 50(0) @ 50(0) & (O®0) ® (O0) & (0Ox0). (23)
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