Lecture 23 - The Magic Square

April 22, 2013

References:

The Octonions. J Baez (2001)

Spin(8), Triality, F4 and all that, F. Adams (1981)

Trialities and the Exceptional Lie Algebras: Deconstructing the Magic Square. J. Evans (2009)

Geometries, the principle of duality, and algebraic groups. M. Carr, S. Garibaldi (2005) Magic Squares of Lie Algebras. C. Barton, A. Sudbery (2008)

1 Duality and Triality

 A_n duality, D_n duality, D_4 triality, E_6 duality.

2 Triality and F_4

2.1 Review of $\mathfrak{h}_3(\mathbb{O})$ and F_4

Recall that $\mathfrak{h}_3(\mathbb{O})$ is the octonionic-Hermitian matrices of the form

$$\begin{pmatrix}
\alpha & x & z \\
\bar{x} & \beta & y \\
\bar{z} & \bar{y} & \gamma
\end{pmatrix}$$
(1)

We saw it was useful to decompose this Jordan algebra in any of the following ways

$$\mathfrak{h}_{3}(\mathbb{O}) \approx \mathfrak{h}_{2}(\mathbb{O}) \oplus \mathbb{O}^{2}
\approx J(\mathbb{O} \oplus \mathbb{R}) \oplus \Delta_{9}
\approx \mathbb{R}^{9,1} \oplus \Delta_{9}$$
(2)

The use of $\triangle_9 \approx \mathbb{O}^8$ instead of $\triangle_{9,1}$ is used to emphasize that the Jordan product does *not* come form the $\mathbb{R}^{9,1} \subset Cl_{9,1}$ action, but rather from the $\mathbb{R}^9 \subset Cl_9$ action, with the additional \mathbb{R} factor acting by scalar multiplication. These isomorphisms (2) are nicely summed up by

$$\begin{pmatrix} \alpha, (\psi_1, \psi_2)^T, M \end{pmatrix} \longrightarrow \begin{pmatrix} \alpha & \overline{\psi_1} & \overline{\psi_2} \\ \psi_1 & M \\ \psi_2 & M \end{pmatrix} \\
\begin{pmatrix} \alpha, (\psi_1, \psi_2)^T, (\vec{V_9}, \beta) \end{pmatrix} \longrightarrow \begin{pmatrix} \alpha & \overline{\psi_1} & \overline{\psi_2} \\ \psi_1 & \beta \cdot I_{2 \times 2} + \vec{V_9} \end{pmatrix}$$
(3)

From here, it is easily seen that

$$\mathbb{O}P^2 \approx F_4/Spin(9) \tag{4}$$

so that as vector spaces we have

$$\mathfrak{f}_4 = \mathfrak{so}(9) \oplus \triangle_9. \tag{5}$$

With $\mathfrak{so}(9) \approx \mathfrak{so}(8) \oplus \mathbb{R}^8$ and with $\triangle_9 \approx \triangle_8^+ \oplus \triangle_8^-$ after reduction to $\mathfrak{so}(8)$, we have

$$\mathfrak{f}_4 = \mathfrak{so}(8) \oplus \mathbb{R}^8 \oplus \Delta_8^+ \oplus \Delta_8^-. \tag{6}$$

The bracket on the $\mathfrak{so}(8) \oplus \mathbb{R}^8$ piece comes from $\mathfrak{so}(9)$. Two things are of note. First, under this bracket, $\mathfrak{so}(8)$ acts on \mathbb{R}^8 via the vector representation; second, this provides a natural bracket

$$[\mathbb{R}^8, \, \mathbb{R}^8] \, \longrightarrow \, \mathfrak{so}(8) \tag{7}$$

It is possible to build brackets $[\triangle^+, \triangle^+] \to \mathfrak{so}(8)$, $[\triangle^-, \triangle^-] \to \mathfrak{so}(8)$ as well. To do so, consider an orthonormal bases $\{S_i^+\}$, $\{S_i^-\}$ of \triangle^+ , \triangle^- , and an orthonormal basis $\{g^k\}$ of $\mathfrak{so}(8)$ with associated matrices (g_{ij}^{k+}) , (g_{ij}^{k-}) . Then define

$$[S_i^{\pm}, S_j^{\pm}] = \sum_k g_{ij}^{k\pm} g^k. \tag{8}$$

One must check that the Jacobi identity holds. The bracket on the $\mathbb{R}^8 \oplus \triangle_8^+ \oplus \triangle_8^-$ piece, aside from the brackets we have just described, is the triality map! Also, this gives a beautiful description of F_4 as two copies of D_4 .

3 Differentiation and F_4

A second way of seeing \mathfrak{f}_4 can be seen, which is useful in that it lends itself to generalization. Define the 3×3 special anti-Hermitian matrices over the division algebra \mathbb{K}

$$\mathfrak{sa}_3(\mathbb{K}) = \left\{ X \in \mathbb{K}(3) \mid \overline{X}^T = -X \text{ and } Tr(X) = 0 \right\}.$$
 (9)

Given $A \in \mathfrak{sa}_3(\mathbb{K})$ we have

$$ad_X: \mathfrak{h}_3(\mathbb{K}) \to \mathfrak{h}_3(\mathbb{K})$$
 (10)

is in fact a derivation. However $\mathfrak{sa}_3(\mathbb{K})$ is not a Lie algebra unless \mathbb{K} is commutative and associative! However there is a bracket

$$[ad_X, ad_Y] \mapsto \mathfrak{der}(\mathbb{K}) \oplus \mathfrak{sa}_3(\mathbb{K}). \tag{11}$$

To describe this, first we define $D_{x,y}$ for $x,y \in \mathbb{K}$. We define

$$D_{x,y}a = [[x,y], a] + [x, y, a]. (12)$$

One easily verifies $D_{x,y} \in \mathfrak{der}(\mathbb{K})$. Obviously if \mathbb{K} is commutative and associative then $D_{x,y} = 0$. We set

$$[ad_X, ad_Y] = ad_{[X,Y]_0} + \frac{1}{3} \sum_{i,j=1}^{3} D_{X_{ij},Y_{ij}}.$$
 (13)

and if $D, D' \in \mathfrak{der}(\mathbb{K})$ we set

$$[D, D'] = DD' - D'D$$

 $[D, ad_X] = ad_{D(X)}.$ (14)

This bracket makes

$$\operatorname{der}(\mathbb{K}) \oplus \mathfrak{sa}_3(\mathbb{K})$$
 (15)

into a Lie algebra. We have

$$\mathfrak{so}(3) \approx \mathfrak{der}(\mathbb{R}) \oplus \mathfrak{sa}_{3}(\mathbb{R})
\mathfrak{su}(3) \approx \mathfrak{der}(\mathbb{C}) \oplus \mathfrak{sa}_{3}(\mathbb{C})
\mathfrak{sp}(3) \approx \mathfrak{der}(\mathbb{H}) \oplus \mathfrak{sa}_{3}(\mathbb{H})
\mathfrak{f}_{4} \approx \mathfrak{der}(\mathbb{O}) \oplus \mathfrak{sa}_{3}(\mathbb{O})$$
(16)

The first three isomorphisms are easy to prove. The fourth requires some calculation to show that all derivations of $\mathfrak{h}_3(\mathbb{O})$ are of the form $\mathfrak{der}(\mathbb{O}) \oplus \mathfrak{sa}_3(\mathbb{O})$.

4 The Magic Square

The so-called "magic square" (or Freudenthal-Tits magic square) is the generalization of the definition of \mathfrak{f}_4 from division algebras \mathbb{K} to products $\mathbb{K} \otimes_{\mathbb{R}} \mathbb{K}'$. With $\mathfrak{der}(\mathbb{K} \otimes \mathbb{K}') \approx \mathfrak{der}(\mathbb{K}) \oplus \mathfrak{der}(\mathbb{K})$, we consider the Lie algebra

$$\operatorname{der}(\mathbb{K}) \oplus \operatorname{der}(\mathbb{K}') \oplus \operatorname{\mathfrak{sa}}_3(\mathbb{K} \otimes \mathbb{K}').$$
 (17)

The only trouble is defining the bracket on the final summand. For $a \otimes a', b \otimes b' \in \mathbb{K} \otimes \mathbb{K}'$, we set

$$D_{a\otimes a',b\otimes b'} = (a',b') D_{a,b} + (a,b) D_{a',b'}$$
(18)

then

$$[ad_X, ad_Y] = ad_{[X,Y]_0} + \frac{1}{3} \sum_{i,j=1}^{3} D_{X_{ij},Y_{ij}}.$$
 (19)

as before. The wonderful thing about this construction is that (17) becomes a semi-simple Lie algebra.

Now when \mathbb{K}, \mathbb{K}' are commutative and associative, the derivation algebras vanish and we obtain the rather trivial little square

	\mathbb{R}	\mathbb{C}
\mathbb{R}	$\mathfrak{so}(3)$	$\mathfrak{su}(3)$
\mathbb{C}	$\mathfrak{su}(3)$	$\mathfrak{su}(3) \oplus \mathfrak{su}(3)$

In the next instance, the algebras $\mathfrak{der}(\mathbb{H})$ do not vanish. We obtain the medium square

	\mathbb{R}	\mathbb{C}	H]
\mathbb{R}	$\mathfrak{so}(3)$	$\mathfrak{su}(3)$	$\mathfrak{sp}(3)$]
\mathbb{C}	$\mathfrak{su}(3)$	$\mathfrak{su}(3) \oplus \mathfrak{su}(3)$	$\mathfrak{su}(6)$	1
H	$\mathfrak{sp}(3)$	$\mathfrak{su}(6)$	$\mathfrak{so}(12)$]

Finally when we include the octonions we have the magic square

	\mathbb{R}	\mathbb{C}	H	0	
\mathbb{R}	$\mathfrak{so}(3)$	$\mathfrak{su}(3)$	$\mathfrak{sp}(3)$	\mathfrak{f}_4	
\mathbb{C}	$\mathfrak{su}(3)$	$\mathfrak{su}(3) \oplus \mathfrak{su}(3)$	$\mathfrak{su}(6)$	\mathfrak{e}_6	(22)
\mathbb{H}	$\mathfrak{sp}(3)$	$\mathfrak{su}(6)$	so (12)	e ₇	
0	\mathfrak{f}_4	\mathfrak{e}_6	\mathfrak{e}_7	\mathfrak{e}_8	

$\mathbf{5}$ E_6

We have already seen two good descriptions of E_6 . The first is that it is the determinant-preservation group of $\mathfrak{h}_3(\mathbb{O})$. The second is that it preserves the Jordan algebra $\mathfrak{h}_3(\mathbb{C}\otimes\mathbb{O})$, and can therefore be seen as the isometry group of the associated projective space, the bi-octonionic plane.

6 E_7

The Lie algebra \mathfrak{e}_7 has a representation of lower dimension than its adjoint representation. This representation can be seen as follows. The group E_7 is the group of automorphisms of the Fruedenthal triple system.

7 E_8

The Lie algebra \mathfrak{e}_8 has a triality description:

$$\mathfrak{e}_8 \approx \mathfrak{so}(\mathbb{R}^8) \oplus \mathfrak{so}(\mathbb{R}^8) \oplus \mathfrak{end}(\mathbb{R}^8) \oplus \mathfrak{end}(\triangle_8^+) \oplus \mathfrak{end}(\triangle_8^-) \\
\approx \mathfrak{so}(\mathbb{O}) \oplus \mathfrak{so}(\mathbb{O}) \oplus (\mathbb{O} \otimes \mathbb{O}) \oplus (\mathbb{O} \otimes \mathbb{O}) \oplus (\mathbb{O} \otimes \mathbb{O}).$$
(23)