NOTES ON TRIALITY

MAX-ALBERT KNUS

1. INTRODUCTION

Let I be an algebraically closed field of characteristic not 2 and 3. Simple Lie algebras
£ or simple, connected, simply connected algebraic groups G , or simple, connected, adjoint
algebraic groups G over F are classified by their Dynkin diagrams A,, B,,..., FEs. For
example the diagram

o—0— .. —0
1 2 n

of type A,,, n > 1, corresponds to £ = M, 1(F)o, the Lie algebra of (n+1 x n+ 1)-matrices
of trace zero, or G = SL,;; or G = PGL,; the diagram

-
N
3
|
N

of type D;, I > 3, corresponds to £ = Skewq(F)y, the Lie algebra of skew-symmetric
matrices in My (F), or G = Spin(2l) or G = PGO7,.

Inner automorphisms of £, CN}', or G i.e., those induced by conjugation with elements
of G, form a normal subgroup of the full automorphism group and the quotient group is
isomorphic to the group of automorphisms of the Dynkin diagram. In most of the cases the
group of automorphisms of the Dynkin diagram is either trivial or consists of two elements.
For example the class of the automorphism z — —az! of £ is the nontrivial class in case A,
if n > 2. For D,, conjugation with diag(1,—1,...,—1) (which is an element of PGOy;, but
not of PGOJ,) gives the non-inner class. The case of type Dy is exceptional, in the sense
that the group of automorphisms of the Dynkin diagram is Ss, the group of permutations
of 3 objects. This phenomenon is known as triality. Our aim in these notes is to describe
some avatars of triality, starting with the simple case of (8 x 8)-skew-symmetric matrices
and ending with various twisted forms (in the sense of Galois cohomology), associated with
PGO{. In this case a certain “trialitarian” associative algebra places a central role. As
shown by A. Weil, classical connected semisimple adjoint algebraic groups can be realized
as automorphism groups of algebras with involution. The case D, was not considered by
Weil. Trialitarian algebras can be used to fulfill Weil’s program for D,.
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Techniques from differents fields of algebra will be used. It will be impossible to prove
everything, however we will try to “test” at least parts of the used techniques in concrete
situations. In these notes we somehow work on a huge exercice around a very exceptional
situation.

Triality also occurs in projective geometry (like duality). These geometric aspects are
not touched here. A lovely introduction to triality (algebraic as well as geometric) is given
in the paper “Octaves and triality”, Nieuw. Arch. Wisk. (3) 8 (1960), 158-169, by van Blij
and Springer.

The presentation given here owes much to the “Book of Involutions” published recently
by the AMS as volume 44 of the Series Colloquium Publications. Historical remarks can
be found in the quoted paper of van Blij and Springer or in the “Book of Involutions”. Re-
sults in the generic situation come from work in preparation with Parimala and Sridharan.
Special thanks are due to Frank DeMeyer who was willing to act as a guinea-pig for parts
of these notes.

2. MATRICES

Let M, (F) be the F-algebra of (n x n)-matrices with entries in F. For any matrix
A = (aij) we note a' the transpose, (a);; = a;j;. The map a — a’ is an involution of M, (F),
i.e., an F-anti-automorphism of order 2. The set of skew-symmetric matrices

Skew,,(F) = {a € M,(F) | a" = —a}

is a Lie algebra for the Lie bracket [z,y] = zy — yz induced by the multiplication of M, (F),
since
(ry —yx)' = y'a’ —a'y’ = yo — ay
n(n—1)
2
symmetric matrices &;; = e;; — €j;, ¢ < j, where the e;; are the standard matrix units in

M, (F). Since &£;E;, = ey for i # j, j # k and i # k, the set {&;;} generates M, (F) as an
algebra if n > 3. The Lie algebras Skew, (F) are simple! for n > 3, (n # 4)?, and are, in
the classification of simple Lie algebras, of type B; if n = 21 + 1, resp. of type D, if n = 2l.

The vector space Skew, (F') over I’ has dimension . A basis is given by the skew-

From now on we assume that n = 2[ is even.

To any a € GL,(F), the group of invertible matrices in M, (F'), we associate the inner
automorphism Int(a)(z) = axa™" of M,(F) and Int(a) = 1 if and only if a is a nonzero
element of the center F. Since any automorphism of M, (F) is inner we may identify
Autp(M,(F)) with

PGL,(F) = GL,(F)/F*

1simple means simple over an algebraic closure F of F

2Skews (F) ~ Ms(F)o x M3(F)o, where M, (F)o is the Lie algebra of (n x n)-matrices with zero trace
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We write [a] € PGL,,(F) for the class of a € GL,(F'). The group of similitudes is
GO, (F) ={a € GL,(F) | ad* € F*}

and m(a) = aa'® € F* is the multiplier of the similitude a. If A is an algebra with
involution o, an automorphism of the pair (A, o) is an automorphim « of A such that
a(o(a)) = o(a(a)) for all a € A. For a € GO,(F) we have

(aza™)' = (o V)'2'a’ = azla™
hence PGO,,(F) = GO, (F)/F* acts as automorphisms of (M, (F),t). In fact
Autp (M, (F),t) = PGO,(F)
since, writing any automorphism of (Mn(F ), t) as Int(a), the condition
Int(a) (") = (Int(a)(x))

for all z € M,(F) implies that aa’ € F*. Elements of Autp(M,(F),t) are also automor-
phisms of Skew,, (F') and, in fact,

t

Autp(Skew,,(F)) = PGO,(F)

if n =20 > 6, but n # 8. To discuss the case n = 8 we need the notion of a proper
similitude. For any similitude a we have det(aa') = det(a)? = m(a)?, so that det(a) =
+m(a)!. Similitudes a with det(a) = m(a)’ form the subgroup GO} (F) of GO, (F) of
proper similitudes. Similarly we get the subgroup PGO} (F') of PGO,,(F) of classes of proper
similitudes. Let s be a similitude which is not proper, for example s = diag(1,—1,...,—1),
then PGO,,(F) is the disjoint union

PGO,(F) = PGO; (F) U [s] PGO* (F)

and Z/27Z = {1, [s]} acts on PGO;! (F') through conjugation with [s]. Thus PGO,,(F) is the
semidirect product PGO,,(F) = PGO/} (F) x Z/2Z. In particular,

Autp (Skew,(F)) = PGO} (F) x Z/2Z

for n = 2l even and [ > 5. We recall that, if a group A acts as automorphisms on a group
B, then the semidirect product B x A consists of pairs (a,3), a € A, € B with the
multiplication (a, 3)(a’, 5) = (af(a’), 55’). For example the group Ss of permutations of 3
objects is the semidirect product of the alternating subgroup Az with S, S3 = Az X Ss.

From now on we call PGO; (F) the group of inner automorphisms of Skew, (F). Au-
tomorphisms which are not inner are outer automorphisms. Thus conjugation with s as
above is not an inner automorphism. In the case Dy, (I = 4) we shall see that

Autp (Skeng(F)) = PGO;(F) X Sg
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Thus the Lie algebra Skewg(F') has a group of outer automorphisms isomorphic to S,
the group of permutation of 3 objects. Observe that if ¢ is an automorphism of order
3 of Skewg(F') which is not inner, then it cannot be extended to an automorphism of
(Ms(F),t), since Autp(Ms(F),t) = PGOg(F) x S, even if the set of skew-symmetric
matrices generates Mg(F') as an algebra. The action of S5 on the Lie algebra Skewg(F)
and on the group PGOT (F) is the first aspect of “triality” which we shall describe. A
fundamental tool is the Clifford algebra, which we discuss soon. For this we need first to
characterize different types of involutions.

3. THE TYPE OF AN INVOLUTION

For any algebra A with involution o, ¢ induces an automorphism of order < 2 of the
center of A. We shall only consider involutions which restrict to the identity on the center,
so-called involutions of the first kind.

Typical examples can be given on the endomorphism algebra of a finite dimensional
vector space. Let V be a finite dimensional vector space of even dimension n and let
b: V xV — F be a bilinear form, symmetric or skew-symmetric. If b is nonsingular we
define the involution o}, adjoint to b on Endr (V') through the identity:

b(Ub(f)(x),y) = b(% f(?J))

for x, y € V and f € Endp(V).

If we identify Endp(V) with M, (F) through the choice of a basis (eq,...,e,), and let
b = (bij), with b;; = b(e;,e;), be the matrix of b, then o,(f) = b~'f'h. In particular
oo(f) = fif b is the diagonal form diag(1,1,...,1).

Observe that if o is any F-linear involution of M, (F'), o ot is an automorphism, hence
of the form Int(u) and o(f) = uffu~!. The condition 0? = 1 implies u’ = u or u = —u’.

We say that o = Int(u) o t is orthogonal if u' = u and is symplectic if u* = —u. For any
algebra A with F-linear involution o, let

Skew(A,0) ={zr € A|o(x) = —x} and Sym(A,0) ={x € A | o(z) =z}

Since
- Skew (M, (F),t) if u=u'
Skew (M, (F), Int(u) o t) = u - Skew (M, (F),t) if u=u
we have
W dimp Skew (M (F),0) = { | %) ¢ 15 orthogona

if o is symplectic
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Thus the notion of an orthogonal (resp. symplectic) involution is stable under scalar
extension and we define the type of an involution ¢ on a central simple algebra A as the
type of 0 ® 15 over some splitting field F of the algebra.

4. THE CLIFFORD ALGEBRA AND THE LIE ALGEBRA OF A QUADRATIC SPACE

Let ¢ : V — F be a quadratic form on V', with associated polar form

by(z,y) = q(z +y) — q(z) — q(y).

We call the pair (V, q) a quadratic space if b, is nonsingular. We write o, for the involution
associated with b,. As in Section 1, the space

Skew (Endp(V),0,) = {f € Endp(V) | o,(f)=—f}
{f € Endp(V) | by(z, f(y)) + by(f(x),y) = 0}

is a Lie subalgebra (of dimension @) of Endg (V) for the Lie bracket [f,g] = fog—go f
of Endp(V). We write o(V,q) = Skew (Endp(V),0,) and call o(V,g) the Lie algebra of
(Viq). fg=<1,1,...,1 >, ie,

Q(Z Ti€;) = Z 9%2

with respect to a basis (eq,...,e,), then o(V, q) = Skew, (F).

Let C(V,q) be the Clifford algebra of the quadratic space (V, q). We recall that C(V,q) =
TV /I where T'V is the tensor algebra of V' and I is the ideal of TV generated by the elements
x®x —q(x)-1, x € V. The canonical map V — C(V, ¢q) is injective and the image of V/
in C(V,q) (which we identify with V') generates C(V, q) as an algebra. The even Clifford
algebra Cy(V, q) is the subalgebra of C(V,q) generated by even products of elements of V.

Example 2. Assume that dimV is even and that ¢ =< 1,1,...,1 > with respect to some
basis (e1,...,e,) of V. Then (1, e1,... e, €iej, i < j, €5 €, i1 <ig < ...i5,1 <
Jj<mn, ...,e1ea---e,) is a basis of C(V,q) and the relations

6?:1, 1< <n, €i€j+€jei207 27&]

hold in C(V, q). The algebra C(V,q) is central over F. The set {e;e;,i < j} generates the
even algebra Cy(V, ¢) and the element z = eje, - - - €,, which satisfies 22 = 1, generates the

center of Cy(V,q). Note that the assumption n even only matters for the claims about the
center. We write C(V, ¢q) = C(n) and Cy(V, q) = Cn).

The properties of the Clifford algebra which we shall need are summarized in the follow-

ing:
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Proposition 3. Let (V,q) be a nonsingular quadratic space of even dimension n = 21.

1) The F-algebra C(V,q) is central simple of dimension 2" and has a unique involution T
which is the identity on V.

2) The center Z of the even Clifford algebra is a separable quadratic extension of F', of the
form Z = F(\/6), 6 = (—1)'det(b,) the signed discriminant of q. If Z is a field, Co(V,q)
is central simple over Z of dimension 22V if Z ~ F x F, Cy(V,q) is the direct product
of two central simple algebras over F of dimension 2201 The involution T restricts to an
involution 1o of Co(V,q) which is the identity on Z if | is congruent to 0 modulo 2; as a
Z-linear involution, T is of orthogonal type if | is congruent to 0 modulo 4 and of symplectic
type if | is congruent to 2 modulo 4.

Reference. For a proof see for example the book of Scharlau on Quadratic and Hermitian
Forms. 0

The Lie algebra o(V, q) can be identified with a Lie subalgebra of Skew(Cy(V, q), 79), as

we now show:

Lemma 4. Forx, y, z € V we have in C(V,q):
[[xay]v Z] - 2(qu(y7z) - ybq(l’,2)> eV

Proof. This is a direct computation based on the fact that for v, w € V', b,(v, w) = vw+wv
in C(V, q): one finds

[, 9], 2] = (xyz + 22y + yza + 2yz)
— (yxz + yzr + xzy + zxy)
= 2(aby(y, 2) — yby(x, 2)) € V.
forz, y, z € V. O

Let [V, V] € C(V,q) be the subspace spanned by the brackets [z,y] = zy — yx for z,
y € V. In view of Lemma 4 we may define a linear map

ad: [V, V] — Endp(V)
by: ade(z) = [€, 2] for £ € [V, V] and z € V. Lemma 4 yields:
(5) adp,, =2(z ® by(y) —y ® l;q(a:)) forz, y eV,
by: V = V* denoting the isomorphism z — by(z, —).

Lemma 6. The subspace [V, V] is a Lie subalgebra of Skew (C’O(V, q),T), and ad induces
an isomorphism of Lie algebras:

ad: [V,V] = o(V,q).
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Proof. Jacobi’s identity yields for x, y, u, v € V:
[[w, o], [z, 9] = [llz, ], v], u] = [[[z, y], ul, v].

Since Lemma 4 shows that [[z,y], 2] € V for all z, y, z € V, it follows that

[lw, ], [z,y]] € [V, V].
Therefore, [V, V] is a Lie subalgebra of Skew (CO(V, q), 7'0). Jacobi’s identity also yields:

ad[g,c] = [adg, adg] for f, C € [‘/, V],
hence ad is a Lie algebra homomorphism. From (5) it follows for x, y, u, v € V' that:
by (ad[rvy} (U>>U) - Q(bq(ma U)bq(ya u) — bq(ya U>bq($a U))

= —bg (u, ad[fc,y](U»v
hence ady,, € 0o(V,q). Therefore, we may consider ad as a map:

ad: [V,V] — o(V,q).

It only remains to prove that this map is bijective. By going to an algebraic closure of F

wqe may assume that ¢ =< 1,1,...,1 > with respect to some basis (e, ...,e,), in which
case the claim follows from the computations in the next Example. 0
Example 7. Assume that ¢ =< 1,1,...,1 > with respect to some basis (ey,...,e,) of

V. Then (eie;, i < j), is a basis of [V, V], since [e;, e;] = 2e;ej, and ad™' identifies the
skew-symmetric matrices &£;; with the elements %eiej of Cy(V, q), since

ad[ei,ej}(ek) =2 adeiej (ek) = 4(ei5jk — ej(sz'k> = 4€ij6k

(in the last formula we view ej as a column vector with entry 1 in k-th position and zero

entries elsewhere). Thus, through ad ™', any skew-symmetric matrix 3

1
to ) Zi<j Uij€7;€j.

i<; Wij€i; 1s mapped

We have more in dimension &:

Lemma 8. Let Z be the center of the even Clifford algebra Co(q). If V has dimension 8, the
embedding [V, V] C Skew (C’o(q),r) induces a canonical isomorphism of Lie algebras over

Z [V,V]® Z = Skew (C’o(q),T). Thus the adjoint representation induces an isomorphism
ad: Skew (Cy(q),7) = 0(q) ® Z.

Proof. Since dimp V' = 8, 73 is of orthogonal type as a Z-linear involution (see Proposition 3)
and dimy Skew (C’O(V, q), 7'0) = 28. Fixing an orthogonal basis of V, it is easy to check that
[V, V] and Z are linearly disjoint over F' in Cy(q), so that the canonical map [V,V]® Z —
Skew (C’O (q), T) is injective. It is surjective by dimension count. O
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Similitudes of the quadratic space (V,q) are linear automorphisms f € Autp(V) with
q(f(x)) = m(f)q(z), where m(f) € F* is the multiplier of the similitude. They form a
group GO(V, ¢) which can be identified with GO,,(F) if ¢ =< 1,1,...,1 >. A similitude f
is proper if det(f) = m(f)™? (recall that we assume dimy V = 2[ even). Proper similitudes
form a normal subgroup GO™(V, q) of GO(V, q) of index 2. Similitudes are isometries if
they have multiplier equal to 1.

It readily follows from the definition of Clifford algebras that isometries of (V,¢) induce
automorphisms of C'(V, ¢q). For similitudes we have:

Proposition 9. Any similitude f € GO(V, q) induces an automorphism C(f) of Co(V,q)
such that

C(f)(zy) =m(f)~ f(x)f(y)
for x, y € V.. The automorphism C(f) restricts to the identity of the center Z of Co(V,q)
if and only iof f is proper. Further we have

ado C(f) = Int(f) o ad
on [V, V].

Proof. The algebra Cy(V,q) can be identified with T'(V @ V')/(I,J) where I is the ideal
generated by the set {r ® x — ¢(z) -1, x € V} and J is the ideal generated by the set
{y@(rz@r—q(x)-1)®z2, z,y,2€ V}. The map

f=m(H) R f VRV VeV

extends to an automorphism 7'(f) of T(V @ V') which maps [ to itself since
m(f)" f(2) @ fz) —q(z) - 1=m(f)" (f(z) ® f() —q(f(z)) - 1)

Similarly 7'(f) maps J to itself. The map induced by T'(f) on Cy(V, q) is the desired map
C(f). For the claim on the center we may assume (by going to an algebraic closure) that
q = diag(1,1,...,1) with respect to a base (e, es,...,¢€,). Then

C(f)(erez---en) =m(f) " det(fleres---en

hence the claim about the center. For the last claim we have, using the identity in Lemma
4,
(ado C(f))(([z,y]) (2) = 2m(f) " ((f (@)bg(f(y), 2) = ()b (f(2), 2))
and
(Int(f) 0 ad) ([x,y]) (=) = 2f(wby(y, [ (2)) — yby(x
= 2(f(@)bg(y, (2)) = fly

=
)

8
7

so that the claim follows from

m(f) o ((f(y), 2) = byly, f(2))).
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O

Example 10. If ¢ =< 1,1,...,1 > and (ey,es,...,e,) is an orthogonal basis, and if we
identify Skew,,(F') with [V, V] through ad~' (see Example 7), then for b € GO,,(F) and U
skew-symmetric, C'(b)(U) = UL~ .

For any A € F*, \-1y is a similitude with multiplier m(\-1y,) = A2, so that C'(\-1y) acts
trivially on Cy(V, q) and we have an induced action of PGO(V, q) = GO(V, q)/F*, resp. of
PGO*(V,q) = GO™(V,q)/F*. Observe that the homomorphism

C: PGO(V, q) — Autp(Co(V,q), 70)

is injective if dimV > 3, in view of Proposition 9 and the fact that o(V,q) generates
Endg(V) as an algebra. It is a nontrivial result of Wonenburger that C is an isomorphim
up to dimension 6.

5. THE OCTONIONS

In this section we restrict to a quadratic space V of dimension 8 and quadratic form
g =< 1,1,...,1 >. We use the notations 0(8) for Skewg(F') and C(8), (resp. Cy(8))
for C(V,q), (resp. Cy(V,q)). We take as a model the octonion algebra @ with norm
n=<1,1,...,1 > and start with an explicit description of Q.

Let H be the quaternion algebra with standard basis e; =1, e5 =i, e3 =7, e4 =k =1j
and relations 2 = —1, j2 = —1, ij + ji = 0. We denote a — @ the conjugation on H. The
norm form z — xx of H is isometric to the diagonal form < 1,1,1,1 > with respect to the
basis (eq,...,e4). Let @ be the octonion algebra H & vH with multiplication rule v? = —1
and

(a+vb) - (¢ +vd) = ac — db + v(ad + cb)
The algebra O is not associative anymore. It only satisfies the weaker alternative rule
(z2)y = x(zy) and z(yy) = (zy)y
forall x, y € O. An element a such that (xy)a = x(ya) holds for all z, y € O lies necessarily
in F'. The conjugation of the quaternion algebra extends to a conjugation

Tx=a+vb—T=a—vb

of O, satisfying m(zy) = 7(2)7(y). The norm n(x) = 2T = Tx is a multiplicative quadratic
form (i.e., n(zy) = n(x)n(y)) on O. We complete the given basis of H to a basis of O by
putting es = v, eg = vi, e; = vj and eg = vk. With respect to this basis the multiplication
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table of O is

€1 €9 €3 €4 €5 €p €7 €g

€1 €1 €2 €3 €4 €5 €6 €7 €s
€2 | €2 —€ €4 —€3 —6€g €5 —€g €7
€3 | €3 —€4 —€ €2 —€7 €s €5 —6€¢
(11) ereq €3 —ex —e —es —er €5 €3
€5 | €5 €6 €7 €g —€1 —€3 —€3 —€4
€6 | €6 —€5 —€8 er €2 —€1 —€4 €3

€7 | €7 €g —€s —€g €3 €4 —€1 —€3

€g | €g —€7 €6 —€5 €4 —€3 €2 —€1

and the norm n of @ with respect to the same basis is the diagonal form < 1,1,...,1 >.

6. LOCAL TRIALITY

We now describe triality for the Lie algebra o(8) (local triality) following the Book of In-
volution. Let @ be the octonion algebra with norm n =< 1,1,...,1 >. The multiplication

THY =T,
where (z,y) — z -y, z, y € O, is multiplication in O, satisfies
(12) zx(yxx) = (x*xy)*xx =n(z)y
for z, y € Q. Further b, is associative, in the sense that
bo(zxy,x) = by(x,y % 2).

Proposition 13. Let r,.(y) = yxx and l,(y) = x xy. The map O — Endp(O & Q) given

by
0 ¢,
€T +—
r, O

o (0(8)77') = (Endp(@@@>,0nln)

mduces 1somorphisms

and
(14) ap: (Co(8), 1) = (Endp(0),0,) x (Endr(0),0,),

of algebras with involution.
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Proof. We have 1, 0 l,(y) = £, or,(y) = n(x) -y by (12). Thus the existence of the map «
follows from the universal property of the Clifford algebra. The fact that a is compatible

with involutions is equivalent to
b (2% (2% y),u) = by (2, y* (uxz))
for all z, y, z, w in S. This formula follows from the associativity of b,,, since
bp(z % (2% y),u) =by(uxz, 2%y) =b,(2,y* (uxz)).
The map « is an isomorphism by dimension count, since C(8) is central simple. O

From now on we use the basis of Q given above to identify O with F'®, n with < 1,...,1 >,
0, with transpose and Endp(Q) with Mg(F).
Through ad™" we have identified o(8) with [0, Q] inside of Cy(8). Thus we get an (injec-
tive) homomorphism
aoloo 0 ad™ 1 0(8) — 0(8) x 0(8).
(The fact that the image lies in 0(8) x 0(8) follows from the fact that ay is an isomorphism
of algebras with involution.) For any A € 0(8) let

Oé0|[@7@] (@) ad_l()\) = ()\+, )\_>

Proposition 15 (Local triality). For any A € o(8), there exist elements AT, A\~ € o(8)
such that

(1) A(zxy) = Ax)xy+ x5 A" (y),
(2) A (zxy) = AT (@) xy +z* A(y),
(3) ANz xy) = A" () xy +xx A" (y)

for all z, y € o(n). Furthermore the pair (A\*,\7) is uniquely determined by the first
relation.

Proof. Let & = ad™'(\). Since ag is an isomorphism of algebras we have ag o ad|s =
ad |ag(¢) © @, hence

(-6 209 ()
Xt x) — 0% A (g) = A(@) %y
A (yxx) — A (y)xx =y * ().
This gives the formulas (1) and (2). From (1
bo (AT (@ xy), 2) = by (M@

we obtain

*y,2) + by (2 A (y), 2).

NN
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Since by, (x *xy, 2) = by(x,y x 2) and since A~, A and AT are in 0(8), this implies
—bp, (@, y * AT (2)) = —bu (2, ANy * 2)) + by (2, A" (y) * 2)

for all z, y, and z in 0(8), hence (3). We finally check that, given A, the pair \*, A\~
are uniquely determined by (1). It suffices to check that the only pair of linear maps A1,
A2 € Endp(O) satisfying
M(z*y) =a* A2(y)

for all z, y € O is the pair (0,0). Going back to the multiplication of @, we have \(Ty) =
ZA2(y). Then x = 1 implies A\ () = A2(y), so that A\ (Ty) = TA(y) and A\ (z) = za for
a = A(1). This finally implies (zy)a = z(ya) for all z, y € O and a lies in F. However
A (z) = ax for a € F only lies in 0(8) if a = 0. O

Let d,, resp. d,2 be the endomorphisms of 0(8) defined by A* = d,(\) and A~ = d2(\)
for A € 0(8), so that agoad™" = (d,,d,2).

Corollary 16. The endomorphisms d, and d,2 are automorphisms of 0(8) (as a Lie algebra)
and satisfy

(d,)? = dy2 and (d,)* = 1.
Proof. The claims follow from uniqueness in Proposition 15. U

The conjugation 7 of O induces an automorphism d, of o(8), d,: f +— 7nfm, and an
automorphism C(m) of C'(8) which is of the form Int(e), with e the image of 1g in C(8).

Remark 17. More generally, let v € V' be such that ¢(v) # 0 and let 7, be the reflection
in V with respect to v, i.e.,

Then C(m,) = Int(v) in C(V, q).
Proposition 18. The relations
(de)>=1and dyod, =d,: od,
hold in Autp(0(8)) and {dx,d,} generate a subgroup isomorphic to Ss.

Proof. The first relation is obvious. We check the second one. Since C(7) = Int(e) for

e = 1g, we have
aoC(m)oa ! =Int(afe))
Plugging in the definition of a we get for ({;2 € My (F),

)
(0 C(m)oa™)(f4) = (" ajx)-

T fr
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On the other hand we know that ad o C(7) oad ™ = Int(7) on 0(8) by Proposition 9. Thus,
since (a0 ad™")(X) = (d,(N), d2(N)),

(ado C(m) o ad™") (dy(N), d,2(N)) (7d 2 (N, wd,(A)T)

(o C Joad ') ()

= (aoad oadoC(m)oad™')())
Eoz oad” ) (mAT)

TAT), dy2(TAT))

hence the second relation. Thus we get get a homomorphism S3 — Aut F(0(8)). The fact
that it is injective follows from the explicit formulas given in the next section. O

7. TRIALITY FOR GENERIC MATRICES

Explicit formulas can be given for d,,, df) and d,, using generic matrices. Computing the
induced action on the Dynkin diagram, we shall see that the action is not inner. Let x;, 1,
j=1,...,8, be indeterminates and let F'(z;;) be the quotient field of the polynomial ring
Flz;;] in the inderminates x;;. The (8 x 8)-matrix X = Z xii B € Mg (F(a:”)) is the

generic (8 x8)-matriz and the matrix X = Y . . x,;;&;; is the generic skew-symmetric matriz

1<
and lies in 0(8) ® F'(x;;). We compute the imaée of & under the automorphisms d, and d,
of 0(8) ® F(x;;). The element &;; corresponds to the product e;e; in the Clifford algebra
Co(8), through the identification of 0(8) with [0, Q] C Cy(8) given in Example 7. Thus the
image of &;; under d, is the matrix of the automorphism u — e; x (uxe;) =€ - (e; - u) of
the space Q. Straightforward explicit calculations using the multiplication table (11) show

that X = ). _.2,;&; has as images under «ag o ad™! the skew-symmetric matrices

1<J

—T12 + T34 | —T13 —T24 | —T14 +T23 | —T15 +T2e | —Tie — T25 | —T17 + T2 | —Tig — T27

—Ts56 — T78 | —Ts7 +Tes | —Tss — Ter | +X37 + XTag | —X38 + Tar | —T3s — Tae T36 — T45

—T14 + T23 T13 + T24 Ti6 + T25 | —T15 + T26 r18 + T27 | —T17 + T28

+x58 + 267 | —x57 + Teg | —@38 +Tar | —T37 —T48 | +T36 — Ta5 | +T35 + Tae

—T12 + T34 r17 +T28 | —T18 +T27r | —Ti5 — T26 | +T1i6 — T2s

+Zs56 + T7s | +T35 — Tae | 36 + Tas | +T37 — Tag | +T38 + Tay

1 T18 — T27 r17 +T28 | —T16 + T25 | —T15 — T26

d (X) — +x36 + Tas | —X35 + Tae | +T38 + Tar | —T37 + Tas
P 2 12 + T34 T13 — T24 T14 + T23
+xs56 — 78 | +xs57 + Tes | +Ts8 — Ter

Tia + T23 | —T13 + T2a

—Ts58 + Te7 | +T57 + Tes

T12 + T34

—Ts56 + 78
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and
—Ti12 — T34 | —T13 +T24 | —T14 — T23 | —T15 — 26 | —L16 T T25 | —T1r — T2 | —Ti8 + T27
+xs56 + 78 | +@57 — XTes | +¥s58 + Te7 | —X37 — Tag | +X38 — T4y | +T35 + Tae | —T36 + Tas
Ti14 + @23 | —T13 + T24 | —T16 + T25 T15 + T26 | —T18 + Ta27 T17 + 28
+58 + o7 | —@s7 +Tes | —w38 + T4 | —T37 —T48 | +T36 — Tas5 | +T35 + T4e
Ti2 + T34 | —T17 + T8 r18 + Ta7 T15 — T26 | —T16 — T25
+Ts56 + 78 | +T35 — Tae | +T36 + Tas | +X37 — Tag | +T38 + Tay
1 —x18 —T27 | —T17 + T28 T16 + T25 T15 — T26
d 5 (X) —— +x36 + Tas | —T35 + Tae | +T38 + Tar | —T37 + Tag
P 2 —T12 + T34 | —T13 — T24 | —T14 + T23
+T56 — x78 | +x57 + Tes | +T58 — Te7
—x14 + T23 13 + T24
—T58 + Te7 | +T57 + Tes
—T12 + T34
—Ts56 + 78
Since the conjugation map of @ is given by the diagonal matrix P = diag(1, —1,...,—1)
we have

de(X) = PXP =Y —a;&+ Y @&y

1<j 1<i<y
For any skew-symmetric matrix U we get d,(U) for a = p, p? and 7 by specializing X to
U. This shows that S3 acts faithfully on o(8).

Remark 19. The elements f of 0(8) fixed under the action of Ss are such that

flxxy) = flz)xy+xxf(y)
for all x, y € O@. Such f are derivations of @ and they define a Lie algebra of type Gs.

8. TRIALITY AND THE DYNKIN DIAGRAM

In this section we apply classical results about semisimple Lie algebras for algebras of
type Dy. References are the books on Lie algebras of Jacobson, Bourbaki and Humphreys.
Let £ be a simple Lie algebra of type D;, [ > 3, over an algebraically closed field F, for
example Skew, (F'). A Cartan subalgebra $) of £ is a commutative subalgebra such that
[z, 9] C 9 implies = € H. Two Cartan subalgebras are conjugate in £. For each such
there is a direct sum decomposition (as vector space)

(20) L=9& (BaLa)
where the £, are eigenspaces for ad | g, i.e.,
[h, 2] = a(h)za, To € La,

corresponding to nonzero linear forms, h — «(h) on $, (called the roots). The algebra § is
[-dimensional and all the £, are one-dimensional. There are 2[(I — 1) roots, which can be
described as follows: The restriction of the Killing form (x,y) — k(z,y) = Tr(adz o ad y)
of £ to $ is nonsingular. Fix an orthonormal basis (hq,..., k) of $ and let (eq,...,¢;) be
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the dual basis in $* = Homp($, F') of . Then the set of roots is {+e; +e;, i < j}. Among
these roots, there are [ simple roots {a; =e€; —e€;41, i =1,...1—1, oy = ¢;_1 +¢;}. Simple
roots can be characterized as follows: a root a = Y \e; is positive is the first nonzero \;
is positive (assume that they are in Q) and « is simple if it is positive and not the sum
0B + v of two positive roots. The simple roots forms a basis of $* over F. For any root «,
let h, be such that k(h,, h) = a(h) and let (o, §) = k(ha, hg) be the correponding bilinear
form on $*. The (I x I)-matrix A;; = 2(o, a;)/(, o;) is the Cartan Matriz of £ (relative
to $). To the matrix (A;;) we associate the Dynkin diagram whose points are the simple
roots {aq, ..., o} and where q; is connected to a; by A;;Aj; lines. The Dynkin diagram of
D, is: o3

Qg

Let p be an automorphism of £ which maps $ to itself. It follows from

p(lh, za]) = [p(h), p(za)] = (a0 p~) (p(h)) plwa)

that a0 p=! = (px)~!(a) is also a root of L. Thus (p*)~! permutes the roots, in fact it
permutes the simple roots and induces an automorphism of the Dynkin diagram. Con-
versely, any automorphism of the Dynkin diagram comes from an automorphism of the Lie
algebra (not uniquely, since inner automorphisms (i.e., given by conjugation with elements
of GOJ)) induce the identity on the Dynkin diagram). For o(8) of type D, the group of
automorphisms of the Dynkin diagram is S3 and there is an exact sequence:

(21) 1 — Innp(0(8)) — Autp(0(8)) — S5 — 1

The group Inng (0(8)) is the group of inner automorphisms of 0(8). The above computations
with generic matrices can be used to show the surjectivity of the map to Ss:

Proposition 22. The automorphisms d, and d, of o(8) induce the full group of automor-
phisms of the Dynkin diagram.

Proof. A Cartan subalgebra $) of 0(8) is generated by the four diagonal blocks £12, 34, Es6
and Erg (see Helgason, Differential Geometry, Lie groups, and Symmetric Spaces, p. 187).
The action of d, on § with respect to the basis hy = 34, ho = Es6, hy = Erg and hy = &9
is given by the orthogonal matrix

1 1 1 -1

1 —
r_1 1 1 1 1
211 -1 1 +1
1 -1 -1 -1



16 MAX-ALBERT KNUS

Since the matrix is orthogonal it is equal to its transpose inverse and we let it operate on
the simple roots a; = e — e, as = €3 —e3, ag = e3 —eg and ay = e3 + e4. We get
T(1) = ay, T(ag) = ag, T(a3) = a; and T'(ay) = a3. This cyclic permutation of the roots
(a1, g, arg) induces obviously an automorphism of order 3 of the Dynkin diagram. Finally
conjugation with 7 on $ maps hy to —hy and leaves the other h; fixed. Thus the action
on roots maps e4 to —ey and lets the other roots invariant. On the level of simple roots it
permutes a3 and ay. This concludes the proof. 0

Remark 23. In the considerations above we choose the octonion algebra with norm the
identity form < 1,1,...,1 > to get simple formulas for the trialitarian action on generic

matrices. There exist octonion algebras with norm

<1, 8,7, a8, 8y, ay,aby >

for any triple «, 3, v of nonzero elements of F' (so-called 3-Pfister forms). In particular the
form ¢, = diag(1,1,1,1,—1,—1, -1, —1) of maximal index can occur. The advantage of g,
is that the Cartan decomposition (20) of Skew (Ms(F), 0,,) holds over F. The drawback
is that elements of Skew (Mg(F ), aqs) are more complicated than skew-symmetric matrices.
To get a Cartan decomposition (20) for 0(8) = Skewg(F') one needs v/—1 € F (see the book
of Helgason, p. 187, for explicit formulas).

Remark 24. The exact sequence (21), which holds a priori over an algebraic closure F of
F, since it uses classification results valid over an algebraically closed field, holds in fact over
F. The surjectivity of the map to Ss follows from the construction of d, and d,, which are
over F.. We check exactness at Autp(0(8)). If @ € Autp(0(8)) maps to the identity, then
by exactness of (21) over F, a® 15 is inner, say a® 17 = Int(a), a € GOZ (F). Then Int(a)
maps 0(8) to 0(8) and Ms(F) to Mg(F). Since the set 0(8) C Mg(F) generates Mg(F) as
an algebra, Int(a) is an automorphism of Mg(F'), hence of the form Int(b), b € GLg(F). It
follows that Int(b) ® 1%) = Int(a), hence a = Ab, A € F”. Replacing a by aA\~!, we may
assume that a € GLg(F) NPGO{ (F) = PGO; (F).

9. SIMILITUDES AND TRIALITY

Any proper similitude f € GOg (F) induces an automorphism C(f) of (00(8), 7'0) which
leaves the center of Cy(8) invariant (Proposition 9). Thus ag o C(f) o ap' is a pair of

automorphisms of (Mg(F ), t), hence of the form (Int( f1), Int( fg)) for similitudes fi, fo.

Proposition 25. For any proper similitude f € GOg (F) there exist proper similitudes f,
fo such that: 1) ago C(f) ooy’ = (Int(f1), Int(f2)).

2)

(1) m(fi) " filz xy) = f(z) * fay),
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(2) m(f)" flaxy) = fa(z) *x fiy)
and
(3) m(fo) " falz xy) = fi(z) x f(y).

The pair (f1, f2) is determined by t up to a factor (m,m~1'), m € F*, and we have

m(fi)m(f)m(f2) = 1.
Furthermore, any of the formulas (1) to (3) implies the others.

Proof. Let f be a proper similitude with multiplier m(f). The map O — Endg(O @ O)

given by
. 0 Ci ) _ 1 0 ol f(x
o <m<f>—1rf<z> 0> (o m(f)‘1> @)

is such that (¢(f)(z))? = m(f)*n(f(z)) = n(z), so it induces a homomorphism
2(f): C(8) = Endr(0O & Q).
By dimension count @(f) is an isomorphism. By the Skolem-Noether Theorem, the auto-
morphism @(f) o a™! of Endp(Q @ Q) is inner. Let @(f)oa™! = Int(ig i;) Computing
a to@(f) on a product zy for z, y € O shows that a o @(f)|c, = C(f). Since f is proper,
C(f) is Z-linear. Again by Skolem-Noether we may write a o C(f) o a™! = Int(sé) 32 ).
This implies s; = s3 = 0 and we may choose s; = sg, 55, = s2. We deduce from
o(f)(z) =Int( 2) o (ag(x)) that
Uiy = solysy ' and m(f)_lrf(m) = SoTySy "

or

so(xxy) = f(x) * so(y) and sy(y * ) = m(f) 'so(y) * f(z), =, y€ .
The fact that C(f) commutes with the involution 7 of Cy(8) implies that sg, s are simil-
itudes and we have m(sg) = m(f)m(sy). Putting f; = m(sg) 'so and fo = sy we get (1)
and (3). To obtain (2), we replace x by y *x in (1). We have

m(fi)"'n(y) filx) = fy*x)* fa(y)-
Multiplying with fo(y) on the left gives

m(f1)"'n(y) f2(y) x fi(z) = f(y* x)m(fa)n(y).

By viewing y as “generic”, we may divide both sides by n(y). This gives (2).
To show uniqueness of fi, fo up to a unit, we first observe that f;, fo are unique up to
a pair (rq,79) of scalars, since

aC(flat = Imt({)1 ]92)
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Replacing (f1, f2) by (r1f1,7m2f2) gives
p(f)(r) " fulexy) = rafa(x) * f(y) = p(f) "' rafiz x y).
This implies ;! = ry. To show that fi, (resp. f») is proper, we observe that

aoC(f1)oa= (Int(f), Int(f2))
is the identity on the center. ([

Examples 26. Right multiplication r, is a similitude with multiplier n(a) if n(a) # 0. The
Moufang identity (az)(ya) = a(xy)a, which holds in any alternative algebra, in particular
in O, implies the identity
(zxa)x(axy) =ax (ax(z*y))
for the “ %7 multiplication. The corresponding similitudes are
(1o)1 = n(a) ", and (r4)s = n(a) g o L,.
Another interesting case is given by reflections. If

bn (,

o) = (x,a)

n(a)

is the reflection with respect to some a € O with n(a) # 0, then C(w,) = Int(a) in C(V, q),
so that o C(7,) o ™' = Int(a(a)). This implies

Ta(@) * (axy) = ax (y*x)
and
(ma o m)(x) % ((bxy) % 0) = ax ((zxy) 1),
Thus

(mgomp)1 =Ly ory and (m, 0 mp)a = 01y

Passing from GOy to PGO™(8), we get well defined automorphisms of PGO™(8), p: [f] —
(1], 2': [f] = [fo], and uniqueness in Proposition 25 implies that p' = p?, p? = 1. Let 7 be
the automorphism of PGO™(8) induced by Int(w). It also follows from Proposition 25 and
the identity 7(z xy) = 7(y) x 7(z) that 7 o p = p? o 7. Thus :

Corollary 27 (Global triality). The set {m, p} generate a subgroup of AutF(PGO+(8))

isomorphic to Ss.

Proof. The fact that S3 acts on PGO™(8) follows from the relations given above. The fact
that the action is faithful follows from the Examples 26. O

The action of S3 on 0(8) given in Proposition 18 and the action on PGO™(8) given in
Corollary 27 are related:
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Proposition 28. Assume that [f] € PGO™(8) is represented by the matriz f € GOy (F)
with fft=m(f) and that p([f]) (resp. p*([f]) is represented by fi (resp. f2) as above. We
then have for any skew symmetric matriz U

1) (C(f) 0 ad ™) U) = ad ™ (JUF ),

2) d,(fUf™) = fid,(U) ", d(LUFTY) = fod,(U) 5 and d,(fld f5) = fd,(U) f

3) dpa(JUS™) = for dpU) 5 dy(FUSTY) = [ QU)F and dya(fohf5) = Frdy (W) i
Furthermore, for the conjugation m € GO(8), we have

4) d,(nUr) = nd2(U)T and d2(tUT) = 7d,(U) ™.

Proof. The first formula is already in Proposition 9. We check the second. By definition
we have ag o ad™' (U) = (d,(U),d,2(U)). Thus

(do(fUF) dpe(fUFT) = aocad ' (fUf)
(o C(f) 0ad™t)(U)
(aoC(f)at) o (aoad™)(U)
= (o000 ) (4t )
(fid,(UFTY), fode(U) f5)

The proofs of the other formulas are similar. O

For any algebraic group scheme G over F' there is a Lie algebra Lie(G) over F' defined as
follows (see for example the book of Waterhouse, Introduction to Affine Group Schemes):
Denote by Fe] the F-algebra of dual numbers, i.e., Fle] = F - 1@ F - ¢ with multiplication
given by €2 = 0. There is a unique F-algebra homomorphism x: F[e] — F with x(g) = 0.
The kernel of G(Fe]) 9 q (F) carries a natural F-vector space structure: addition is the
multiplication in G(F[¢]) and scalar multiplication is defined by the formula a-g = G(¢,)(g)
for g € G(F[¢]), a € F, where {,: Fe] — F|[e] is the F-algebra homomorphism defined by
l,(€) = ae. The kernel of G(Fe]) G, G(F) is the Lie algebra Lie(G). If G C GL,(F)

Lie(G) ={a € M,(F) | 14+ ac € G(F)}.

The Lie algebra structure on Lie(G) can be recovered as follows (see Waterhouse, p. 94)).
Consider the commutative F-algebra R = F[e, '] with e? = 0 = £”>. From d, d’ € Lie(G) we
build two elements g = 1+de and ¢’ = 1+d’e’ in G(R). A computation of the commutator
of g and ¢ in G(R) yields g¢'g'¢'"" = 1+ d"ee’ where d” = [d,d] in Lie(G). For example

Lie(GO!) ={a € M,(F) |a+ada" € F}

and
Lie(PGO;") = Lie(GO})/F = {a € M,(F) | a + a' = 0}
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Any homomorphism of group schemes f: G — H induces a commutative diagram

GFE) =

H(F[e])
G(n)l H(r)

G(F) -~ H(F)
and hence defines an F-linear map df: Lie(G) — Lie(H), which is a Lie algebra homomor-
phism, called the differential of f.

Proposition 29. The differential of the action of Sz on PGOg in Corollary 27 is the

action defined in Proposition 18.

Proof. We only check that the differential of p in Corollary 27 is d, as defined in Proposition
18. Let [g] = [1 + ag] € PGO{ (F[e]), so that [a] € Lie(PGOY) = Lie(GO;))/F. By
definition of the differential we have [p(g)] = [1 + d,(a)e] and by definition of triality

m(p(g) "p(g)(x *y) = g(x) * p*(9)(v).

Thus
(14 dp(@)2) (wxy) = (1 + a)(z) « (1 + dye(a)e) ()
or
dp(a)(w*y) = alz) xy +x x dy2(a)(y)
hence the claim by definition of triality on o(8). 0

10. TRIALITY AND THE GROUP Spin(8)

Proposition 25 describes triality for similitudes: to any proper similitude f we associate
two proper similitudes f; and fy such that

ago C(f)oagt = (Int(f1), Int(f2))
and m(f1) ' fi(zxy) = f(x)* fo(y) holds. However the pair (f1, fo) is only defined up to a

nonzero scalar. Let O"(8) be the group of proper isometries (i.e., proper similitudes f with
multiplier m(f) = 1) It is a natural question to ask if f is taken in O™ (8), can (f1, f2) be so
normalized that they also belong to O%(8)? As we shall see this is not the case in general.
We first go back to the case of quadratic space (V, q) of even dimension. Let Cy(V,q)* be
the group of units of the even Clifford algebra Cy(V,q). The even Clifford group T'*(V,q)
is defined as
I (V,q) ={ceCo(V,q)" | Ve CV}

For c € I'(V,q) and all v € V' we have

mo(cve™) = 10(c Huro(c) = coe™?
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Thus v7o(c)c = 1o(c)cv and p(c) = 1o(c)c lies in the center F' of Cy. Let
Spin(V,q) = {c € I'"(V,q) | 7(c)e = 1}

The homomorphism

x: Spin(V. q) — OF(V, ) given by x(c)(v) = cvc™

is called the vector representation of Spin(V,q). For any f € OF(V,q) C(f) is an inner
automorphism of Cy(V, q), hence lifts to an element ¢ of T (V, ¢). The class of u(c) = 79(c)c
in F*/F*% depends only on f. We note it Sn(f).

Proposition 30. The vector representation x fits into an exact sequence:
1 — {£1} — Spin(V, q) =5 OF(V,q) 2 P /<2,

Proof. The proof follows readily from the definition of the different maps and we leave it

as an exercice. O

Going back to triality, we claim:

Lemma 31. For f € O%(8) and p(f) = fi, p*(f) = fo we have [m(f,)] = [m(f)] = Sn(f)
in F*/F*2. In particular if f € O"(8), then fi, fo can be chosen in OF(8) if and only
f € O (8) can be lifted to Spin(8).

Proof. Let f = x(c); we have ag(c) = (f1,f2) and ao(10(c)) = (ff, fi) since ap is an
isomorphism of algebras with involution. Thus

Sn(f) = cro(c) = (fif1, fofz) = (m(f1), m(fz2))

hence the claim. O

Lemma 31 can be used to give a nice description of Spin(8). For ¢ € Spin(8), let ap(c) =
(ct,c7) € GO™(8) x GO™(8); the two projections xT: ¢ — ¢, x~: ¢ — care called the
half-spin representations of Spin(8).

Proposition 32. 1) For any ¢ € Spin(8), ¢* and ¢~ are proper isometries, hence elements
of OF(8).

2) There is an isomorphism
Spin(8) ~ {(t,t7,¢7) [ £,¢7,t7 € OF(8), tx xy) =t~ (x) xt"(y)}

such that the vector representation x: Spin(8) — O™ (8) corresponds to the map (t,t,t7) —
t. The other projections (t,tT,t7) — t* and (t,tT,t7) +— t= correspond to the half-spin

representations xP™ of Spin(S,n).
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Proof. We have ag(mo(c) = (¢t', ¢") since ay is an isomorphism of algebras with involution.
Thus the condition 79(c)c = 1 implies that ¢ and ¢~ are orthogonal matrices. We know
already that they are proper. Let

O'(8) = {(t,tT,t7) | tT,t,t- € OF(8), t(xxy) =t (x) xtT(y)},

Then ¢ — (x(c),t",t") defines an injective group homomorphism ¢: Spin(8) — O'(8. It
is also surjective, since, given (¢,t*,t7) € O'(8), we have (¢,t7,t7) = ¢(c) for ap(c) =
(th,t7). O

Proposition 27 implies that if (¢,¢,¢7) € Spin(8), then also (t*,¢7,t) and (t7,t,tT) €
Spin(8). Let p be the automorphism of Spin(8) given by (¢,t*,¢7) — (tT,¢7,t). Let m be
conjugation in Q. It follows from ... that if (¢,¢7,¢7) € Spin(8), then (wim, 7t~ 7w, wt*7w) €
Spin(8). So p and 7: (¢t,t7,t7) > (wtm,wt 7, wtT7) induce an action of S3 on Spin(8)
(triality for Spin(8) !)

Let us = 41 as a multiplicative group.

Lemma 33. The center of Spin(8) can be identified with the group C defined by the exact
sequence
1= C — pg X pig X pig — pig — 1

where the map pa X o X g — po s the multiplication map and the restriction of the action
of S3 on C' is through permutations on po X ps X fig.

Proof. In fact the center consists of the triples
C={(1,1,1),¢g=(1,-1,-1), ¢, = (—1,1,-1), €2 = gy = (—1,—1,1)}

which readily implies the claim. 0

Let ' : Spin(8) — PGO™(8) be the vector representation x composed with the projection
O*(8) — PGO™(8).
Proposition 34. We have an exact sequence

1 — C — Spin(8) X5 PGO*(8)

in which all the maps are equivariant under the action of Ss.

Proof. Exactness follows from the fact that the center of O"8) is up. The fact that the
maps are equivariant follows from the definition of the actions of Ss. O

Remark 35. The fixed elements Spin(8)% of Spin(8) under the action of Sz (or even Aj)
are isometries f such that f(x xy) = f(z)  f(y) for all z, y € @. Such isometries are
automorphisms of the octonion algebra . Assume that, instead of the octonions O, we
would have an 8-dimensional quadratic space (S, n) endoved with a bilinear multiplication
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“%” such that z * (y xx) = (r *y) xx = n(x)y. Such “algebras” are called symmetric com-
positions in the Book of Involutions. Then an action of A3 can be defined on PGO™ (S, n)
and Spin(S,n) (not a full Ss-action, because there is no identity element for the multipli-
cation and no conjugation “r”). This is more than a formal generalization, since there
exist such algebras which are very different from octonions. An example is given by the set
S = M3(F)o of 3 x 3-matrices of trace 0. Assume that F' has characteristic different from

2 and 3 and contains a primitive cubic root of unity w; set pu = I_T“’ and define

rxy = pry + (1 - pyz — 5 Tr(yz)1

Then  has the desired properties for the norm n(z) = —3i(Tr(z)? — Tr(z?)). For the
induced action of A3 on Spin(S,n) we have

Spin(S, ) = PGLs(F).

This and similar examples are discussed in the Book of Involution.

11. CENTRAL SIMPLE ALGEBRAS WITH INVOLUTIONS

Let A be a central simple F-algebra of even degree n = 2[, with an F-linear involution
o of orthogonal type. Let E/F be a finite Galois extension such that there exists

B: (A 0)®E ~ (M,(E),t).

(B is a splitting® of (A,0).) For any v € I' = Gal(E/F) let 7 be the automorphism of
(M,(E),t) defined by ¥ = o (14 ®7) o7 . Clearly 7 is semilinear, i.e., ¥(Az) = y(A\)¥(z)
for A € E and x € M, (F). We have 7,7, = 717 for all 7, 72 € I" and

(36) A={x e M,(E) | y(x) =z for all y € T'}.

The map
_ -1
By =7 (La,p) ®7)
is an E-linear automorphism of (M,(E),t) hence is of the form Int(f,) for f, € GO,(E).

Thus there is a 1-1-correspondence between the the set of the 7 and the set of the 3,. The
B3, satisfy the relations

(37) Brine = Byum (572)

where for any [f] € PGO,(E), v([f]) = [Int(1y,r) @ 7)(f)]. Conversely, given a set
{8y, v € I'}, satistying (37), and putting 7 = 3, o (1Mn(E) ® 'y), then (36) defines a central
simple algebra A over F' of degree n with an orthogonal involution o, split by £. The map

3this is not the usual definition; In the usual definition one considers the involution induced by the bilinear form

of maximal index
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I' = PGO,(E), v+~ f,, is a cocycle of I with values in PGO,,(E). Two cocycles (3, and
3, are equivalent if there exists [b] € PGO,(F) satisfying

8, = 13, (b)) .

Equivalent cocycles define isomorphic algebras with involution. The set of cocycles modulo
equivalence is written H! (F, PGOn(E)). It is bijective with the isomorphism classes of
central simple algebra A over F of degree n with an orthogonal involution o, split by F.

As in Proposition 9 we define for each 7, a semilinear automorphism C(%) of (Co(n), 7o)
and obviously (1) C(7,) o C(7,) = C(7172) for all 71, 7o € I'. The F-algebra

C(A,0)={z € Co(n) | C(H)(x) =x for all y € '}

is such that C(A,0) ® E = Cy(n) and the involution 75 of Cy(n) induces an involution
o of C(A,0). The algebra with involution (C(A,0),0) does not depend (up to canonical
isomorphism) on the choice of the splitting field E/F and is the Clifford algebra of (A, o).
Equivalently, if (A, o) is defined by the cocycle (3, then C(A, o) is defined by the cocycle
C(B,). The Clifford algebra of (Endg(V'),0,) is canonically isomorphic to Cy(V, q) for any
quadratic space (V, ¢). The Clifford algebra C'(A, o) was first defined by descent (as here) by
Jacobson (1964) and later rationally (i.e., without descent) by Tits (1968). Another rational
construction is in the Book of Involution. The construction is functorial, in the sense that
any isomorphism 3: (A4,0) = (A’, ¢’) induces an isomorphism C(3): C(4,0) = C(4,d").
Assume for example that 3: (4,0) ® E = (M,(E),t) = (M,(F),t) ® E is a splitting of
algebras with involution (one says that (A, o) is a twisted form of (M,(F),t)), then

C(B): C(A,0) @ E =S C(M,(F),t) @ E = Cy(n).

The algebra C(A, o) has the same structure as Cy(n). For example (still assuming n even)
its center Z = Z(C(A,0)) is a separable quadratic extension of F and C(A,0) is central
simple over Z if Z is a field. Let Z = F[z]/(z* — d). We define the discriminant of o as
disc(o) = [d] € F*/F*2. If the discriminant is trivial (i.e., disc(c) = 1) then

(38) C(A,0)~C(A0)" xC(A,0)"

and C(A,0)", C(A,0)” are central simple algebras over F. Fix an isomorphism ( :
Z(C(A,0)) = F x F. The cocycle C(f3,) restricts to the identity of Z, hence lies in
PGO/(FE). Conversely given any cocycle with values in PGO; (E), C(f3,) will restrict to
the identity on Z(Cy(n)) ® E, hence induce an isomorphism ¢ : Z(C(A,0)) = F x F.
Hence H'(T',PGO; (F)) classifies triples (A,0,( : Z(C(A,0)) = F x F) which are split
over E. Observe that the image of H' (I, PGO} (E)) in H'(T',PGO,(E)) classifies algebras

with involutions having trivial discriminant; however the map

H'(T',PGO} (E)) — H'(I',PGO,(E))
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need not be injective.

12. CENTRAL SIMPLE ALGEBRAS AND TRIALITY

Assume from now on that n = 8. Triality acts on PGOg (E) and, by fonctoriality, on
H'(I,PGO{(E)). Our next aim is to describe this action.

Let A be central simple of degree 8 with an orthogonal involution which is still supposed
to have trivial discriminant. The algebras C(A, o))" and C(A, )" in a decomposition (38)
are also central simple of degree 8 and the transport of ¢ restricts to orthogonal involutions
ot of C(A,0)", resp. 0~ of C(A,0)~. There a canonical choice of C'(A,0)" and C(A,0)~,
related to the isomorphism ag: Co(8) — Mg x Mg of Proposition 13:

Proposition 39. Let B4: (A,04)QE = (Ms(E),t) be a Galois splitting of (A,04). There
exrist
1) central simple algebras B, C, of degree 8 with orthogonal involutions og, oc of trivial
discriminant,
2) splittings Bg: (B,op) @ E = (Ms(E),t), Bc: (C,oc) @ E = (Ms(E),t) and
3) an isomorphism aq: C(A,04) = (B,o5) x (C,0¢)
such that
ag o C(Ba) = (BB, Bc) o (aa @ 1k).

Proof. It 3, € PGOZ (E) is a cocycle defining (A, 04), then the cocycles defining (B,o5)
and (C, o¢) are given by p(f3,) and p*(3,), where p acts as in Proposition 27. O

Triality then implies:

Corollary 40. The set H! (F, PGO;(E)) classifies triples (A, B, C') together with canonical
isomorphisms of algebras with involution ay: C(A,04) — B xC, ag: C(B,op) — C x A,
ac: C(C,o0) = A x B and S3 acts as permutations on (A, B, C).

Remark 41. A characterization of the possible triples (A, B, C) in (40) is not known. A
necessary condition is [A][B][C] = 1 € Br(F'), but the condition is not sufficient: one can
show that the triple (Endp(V), A, A) occur if and only if A is a tensor product of three
quaternions algebras. However there exist, over certain fields, central division algebras
of degree 8, which admit orthogonal involutions with trivial discriminant, and which are
not tensor products of three quaternions algebras. Examples of algebras of degree 8 with
orthogonal involution, which are not tensor products of three quaternion algebras are due
to Amitsur, Rowen, Tignol; the existence of an involution of trivial discriminant on such
an algebra is due to Parimala, Sridharan, Suresh. The condition [A][B][C] = 1 € Br(F)
is however sufficient if [A] = [(a,b)r], [B] = [(a,¢)r] and [C] = [(a,bc)r] for quaternion
algebras (p, q)r.
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Remark 42. The isomorphism d, of (18) restricts to an isomorphism of Lie algebras
Skew(A,04) — Skew(B, o) even if A 2 B. Similarly, let PGO™(A, o) be the connected
component of Autp(A, o). Then p induces an isomorphism PGO™(4,04) — PGO™ (B, 0p).

The split exact sequence of algebraic groups
1 — PGOg — PGOY xS3 — S3 — 1
induces a sequence of pointed sets in Galois cohomology
— H'(I',PGO{ (E)) — H'(T',PGOg (E) x S5) — H(T', S3).

The set H'(T, S3) classifies cubic étale F-algebras L which are split by F, i.e., such that
L®F ~ FEx E x F and H'(I',PGO;) was described above. Following the Book of
Involution, we introduce algebraic objects which are classified by H! (F, PGO; (E) x Sg).

We view the triple (A, B, C) as an algebra T over F' X F' x F with an involution o7 =
(0a,0B,0¢). The triple ar = (a4, ap,a¢) then is an isomorphism of C(T,or) with the
F X Fx F-algebra (BxC)x (C'x A) x (Ax B), which in term can be viewed as p(T®(F x F))
where

ap as b ¢
(43) plor bal=|a a
C1 Co ap b2

If (A,0) = (Ms(F),t) is split, then also (B,o) = (C,0) = (Mgs(F),t) and viewing
0(8) x 0(8) x 0(8) as a Lie subalgebra of Cy(T’) through ad™', we have

aroad ' (z,y,2) = ((d,(y),d2(2)), (dy(2), dp2()), (dp(z), dy2(y)))

for (z,y,z) € 0(8) x 0(8) x 0(8). We say that such a T is split.

Let L be a cubic étale F-algebra split by E (this is no restriction, since F can be taken
as big as necessary) and let T be an L-algebra. If L is not a field we say that T is central
simple over L if each component of T with respect to a field component of L is central
simple. Equivalently T'® F is isomorphic to three copies of Mg(F).

Let T be central simple over L and let o be an orthogonal involution of 7. To extend
the definition of ar given above for L = F x F x F to arbitrary cubic L we need an

isomorphism
ar: (C(T7 UT)7 g) ; (T27 U?)
where (T3, 09) is a central simple algebra with involution over a quadratic extension of L,

which is functorially associated with (T',07). We take L ® A/L as a quadratic extension,
where A/F is the discriminant of L, viewed as a quadratic F-algebra. Then L @ A/F
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is a Galois extension with group S3 and L ® A/A is a Galois extension with group the
alternating group As, such that

(LeA)®E S (ExE)x (ExE)x (ExE).

Let p be a generator of Gal(L ® A/L); for any L-module V' we denote AV ® A) the module
V ® A with L ® A-action twisted through p. We set

(Ty,00) = (T, 0) @F A)
and say that (T, 0r) is a trialitarian F-algebra if there exists an isomorphism
(44) ar: (C(T,o7),0) = (T,0) ®p A)

which over some Galois extension E/F reduces to the split ar described above. A trial-
itarian algebra is given by a quadruple (T, L, o7, ar) and an isomorphism of trialitarian
algebras

v (T7 L7 or, aT) — (T/7 Ll? arr, aT’)
is a pair (¢, ¢) with ¢: L = L' and v: (T, 07) — (T, o1+) such that

ar o C() = (v @ A()).

Trialitarian F-algebras which are split over the Galois extension E are classified by the
pointed set H'(I', PGO*(8) x S3). Let Zr be the center of C(T, o7). The isomorphism (44)
restricts to an isomorphism Zp = AL® A) of the centers, which we use to identify Z7 with
L® A. In view of Lemma 8 we may identify Skew (C’(T, or), g) with Skew (T, or) ®p Z1 =
Skew (T, 01) ®F A so that aq restricts to an isomorphism

o, Skew(T,07) @p A = ?(Skew(T,07) @p A)

which, in turn, can be viewed as a p-semilinear automorphism of Skew (7, 07) @ A as a
Lie algebra. In the split case T'= Mg x Mg x Mg we have by (43)

T1 T2 dp(y1)  dp2(22)
a |y Y2 | = | dp(z1) dp(x2)
2z dp(z1)  dp2(y2)

Let ar = lskew(r,0r) @ ¢, Where ¢ is conjugation on the quadratic algebra A. In the split
case we have
T1 T To I
Qr Y1 Y2 | = |Y2 W
21 22 22 Z1
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Proposition 45. The automorphisms o, and o, generate a subgroup of Autp (SkeW(T, aT))
of semilinear automorphisms isomorphic to S3 = Gal(L ® A/F). The fized points of the
action

o(T) ={z € Skew(T,0r) | ay(z) =2 for all v € S3}

1s a Lie algebra of type Dy associated with the triality T

Proof. The first claim follows from the explicit description of a, and o in the split case.
The last follows by descent. O

If L/F is cubic cyclic the discriminant A(L) is split,
(L®A)= "L x L

and

~

ar: (C(T,0r),0) = AT,0) x *(T,0)
We say in this case that T is cyclic trialitarian. Cyclic trialitarian algebras are classified
by the pointed set H* (F, PGO™(8) x Ag). Denoting the restriction of the two components
of ar to Skew(T,or) by (a,, a,2), we have a2 = a? and get a Galois descent data for

o
Skew (7', or) from L to F.

Examples 46. 1) If L decomposes as F' X Z, Z a quadratic separable extension of F', we
have a corresponding decomposition 7' = A x C' for (C, 0¢) a central simple Z-algebra with
orthogonal involution. then (Book of Involutions) (C,o¢) ~ (C(A,04),0)).

2) Let L be a cubic cyclic field extension of F', with p a generator of Gal(E/F"). We extend
the multiplication * used in Section 6 on O = L& O by ((@z)*(I'®1') = p(P*(I) @z *x').
Then «g extends to an isomorphism

~

C(End;(0),t) = ?End(0) x *End,(0)

which defines a trialitarian structure on End(0).

3) Using the generic formulas given in Section 7, it is possible to define a generic trialitarian
algebra, which is a division algebra over its center. Details are in a forthcoming joint paper
with Parimala and Sridharan.



