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Complex numbers and quaternions form special cases of lower-dimensional
Clifford algebras, their even subalgebras and their ideals

C ! C!0,1 ! C!+2 ! C!+0,2,

H ! C!0,2 ! C!+3 ! C!+0,3 ! 1
2 (1 ± e123)C!0,3.

In this chapter, we explore another generalization of C and H, a non-associative
real algebra, the Cayley algebra of octonions, O. Like complex numbers and
quaternions, octonions form a real division algebra, of the highest possible
dimension, 8. As an extreme case, O makes its presence felt in classifications,
for instance, in conjunction with exceptional cases of simple Lie algebras.

Like C and H, O has a geometric interpretation. The automorphism group of
H is SO(3), the rotation group of R3 in H = R⊕R3. The automorphism group
of O = R ⊕ R7 is not all of SO(7), but only a subgroup, the exceptional Lie
group G2. The subgroup G2 fixes a 3-vector, in

∧3 R7, whose choice determines
the product rule of O.

The Cayley algebra O is a tool to handle an esoteric phenomenon in di-
mension 8, namely triality, an automorphism of the universal covering group
Spin(8) of the rotation group SO(8) of the Euclidean space R8. In general, all
automorphisms of SO(n) are either inner or similarities by orthogonal matrices
in O(n), and all automorphisms of Spin(n) are restrictions of linear transfor-
mations C!n → C!n, and project down to automorphisms of SO(n). The only
exception is the triality automorphism of Spin(8), which cannot be linear while
it permutes cyclically the three non-identity elements −1, e12...8,−e12...8 in the
center of Spin(8).
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We shall see that triality is a restriction of a polynomial mapping C!8 → C!8,
of degree 2. We will learn how to compose trialities, when they correspond to
different octonion products. We shall explore triality in terms of classical linear
algebra by observing how eigenplanes of rotations transform under triality.

1. Division Algebras

An algebra A over R is a linear (that is a vector) space A over R together with
a bilinear map A×A → A, (a, b) → ab, the algebra product. Bilinearity means
distributivity (a + b)c = ac + bc, a(b + c) = ab + ac and (λa)b = a(λb) = λ(ab)
for all a, b, c ∈ A and λ ∈ R. An algebra is without zero-divisors if ab = 0
implies a = 0 or b = 0. In a division algebra D the equations ax = b and
ya = b have unique solutions x, y for all non-zero a ∈ D. A division algebra is
without zero-divisors, and conversely, every finite-dimensional algebra without
zero-divisors is a division algebra. If a division algebra is associative, then it
has unity 1 and each non-zero element has a unique inverse (on both sides).

An algebra with a unity is said to admit inverses if each non-zero element
admits an inverse (not necessarily unique). An algebra is alternative if a(ab) =
a2b and (ab)b = ab2, and flexible if a(ba) = (ab)a. An alternative algebra is
flexible. An alternative division algebra has unity and admits inverses, which
are unique. The only alternative division algebras over R are R, C, H and O.

An algebra A with a positive-definite quadratic form N : A → R, is said to
preserve norm, or admit composition, if for all a, b ∈ A, N(ab) = N(a)N(b).
The dimension of a norm-preserving division algebra D over R is 1, 2, 4 or 8;
if furthermore D has unity, then it is R, C, H or O.

Examples. 1. Define in C a new product a◦b by a◦b = ab̄. Then C becomes a
non-commutative and non-alternative division algebra over R, without unity.
2. Consider a 3-dimensional algebra over R with basis {1, i, j} such that 1 is
the unity and i2 = j2 = −1 but ij = ji = 0. The algebra is commutative and
flexible, but non-alternative. It admits inverses, but inverses of the elements of

the form xi + yj are not unique, (xi + yj)−1 = λ(yi − xj) − ix + jy

x2 + y2
, where

λ ∈ R. It has zero-divisors, by definition, and cannot be a division algebra,
although all non-zero elements are invertible.
3. Consider a 3-dimensional algebra over Q with basis {1, i, i2}, unity 1 and
multiplication table

i i2

i i2 3
i2 3 −6i
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The algebra is commutative and flexible, but non-alternative. Each non-zero
element has a unique inverse. Multiplication by x + iy + i2z has determinant
x3 + 3y3 − 18z3, which has no non-zero rational roots (Euler 1862). Thus, the
algebra is a division algebra, 3D over Q.

2. The Cayley–Dickson Doubling Process

Complex numbers can be considered as pairs of real numbers with component-
wise addition and with the product

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

Quaternions can be defined as pairs of complex numbers, but this time the
product involves complex conjugation

(z1, w1)(z2, w2) = (z1z2 − w1w̄2, z1w2 + w1z̄2).

Octonions can be defined as pairs of quaternions, but this time order of mul-
tiplication matters

(p1, q1) ◦ (p2, q2) = (p1p2 − q̄2q1, q2p1 + q1p̄2).

This doubling process, of Cayley-Dickson, can be repeated, but the next al-
gebras are not division algebras, although they still are simple and flexible
(Schafer 1954). Every element in such a Cayley-Dickson algebra satisfies a
quadratic equation with real coefficients.

Example. The quaternion q = w+ix+jy+kz satisfies the quadratic equation

q2 − 2wq + |q|2 = 0.
The Cayley-Dickson doubling process

C = R⊕ Ri

H = C⊕ Cj

O = H⊕H!

provides a new imaginary unit !, !2 = −1, which anticommutes with i, j, k.
The basis {1, i, j, k} of H is complemented to a basis {1, i, j, k, !, i!, j!, k!}
of O = H ⊕ H!. Thus, O is spanned by 1 ∈ R and the 7 imaginary units
i, j, k, !, i!, j!, k!, each with square −1, so that O = R⊕R7. Among subsets of
3 imaginary units, there are 7 triplets, which associate and span the imaginary
part of a quaternionic subalgebra. The remaining 28 triplets anti-associate.
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The multiplication table of the unit octonions can be summarized by the
Fano plane, the smallest projective plane, consisting of 7 points and 7 lines,
with orientations. The 7 oriented lines correspond to the 7 quaternionic/as-
sociative triplets.

3. Multiplication Table of O

Denote the product of a, b ∈ O by a ◦ b. Let 1, e1, e2, . . . , e7 be a basis of O.
Define the product in terms of the basis by

ei ◦ ei = −1, and ei ◦ ej = −ej ◦ ei for i (= j,

and by the table

e1 ◦ e2 = e4, e2 ◦ e4 = e1, e4 ◦ e1 = e2,
e2 ◦ e3 = e5, e3 ◦ e5 = e2, e5 ◦ e2 = e3,

...
...

...
e7 ◦ e1 = e3, e1 ◦ e3 = e7, e3 ◦ e7 = e1.

The table can be condensed into the form

ei ◦ ei+1 = ei+3

where the indices are permuted cyclically and translated modulo 7.
If ei ◦ ej = ±ek, then ei, ej , ek generate a subalgebra isomorphic to H.

The sign in ei ◦ ej = ±ek can be memorized by rotating the triangle in the
following picture by an integral multiple of 2π/7 :

Example. The product e2 ◦ e5 = −e3 corresponds to a triangle obtained
by rotating the picture by 2π/7.

In the Clifford algebra C!0,7 of R0,7, octonions can be identified with par-
avectors, O = R⊕ R0,7, and the octonion product may be expressed in terms
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of the Clifford product as

a ◦ b = 〈ab(1− v)〉0,1,

where v = e124 + e235 + e346 + e457 + e561 + e672 + e713 ∈
∧3 R0,7. In C!0,7,

the octonion product can be also written as

a ◦ b = 〈ab(1 + w)(1− e12...7)〉0,1 for a, b ∈ R⊕ R0,7

where 1
8 (1 + w) 1

2 (1 − e12...7) is an idempotent, w = ve−1
12...7 ∈

∧4 R0,7 and
e−1
12...7 = e12...7.

In the Clifford algebra C!8 of R8, we represent octonions by vectors, O = R8.
As the identity of octonions we choose the unit vector e8 in R8. The octonion
product is then expressed in terms of the Clifford product as

a ◦ b = 〈ae8b(1 + w)(1− e12...8)〉1 for a,b ∈ R8

where 1
8 (1 + w) 1

2 (1− e12...8) is an idempotent, w = ve−1
12...7 ∈

∧4 R8, e−1
12...7 =

−e12...7 and v = e124 + e235 + e346 + e457 + e561 + e672 + e713 ∈
∧3 R8.

4. The Octonion Product and the Cross Product in R7

A product of two vectors is linear in both factors. A vector-valued product of
two vectors is called a cross product, if the vector is orthogonal to the two
factors and has length equal to the area of the parallelogram formed by the
two vectors. A cross product of two vectors exists only in 3D and 7D.
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The cross product of two vectors in R7 can be constructed in terms of an
orthonormal basis e1, e2, . . . , e7 by antisymmetry, ei × ej = −ej × ei, and

e1 × e2 = e4, e2 × e4 = e1, e4 × e1 = e2,
e2 × e3 = e5, e3 × e5 = e2, e5 × e2 = e3,

...
...

...
e7 × e1 = e3, e1 × e3 = e7, e3 × e7 = e1.

The above table can be condensed into the form

ei × ei+1 = ei+3

where the indices are permuted cyclically and translated modulo 7.
This cross product of vectors in R7 satisfies the usual properties, that is,

(a× b) · a = 0, (a× b) · b = 0 orthogonality
|a× b|2 = |a|2|b|2 − (a · b)2 Pythagorean theorem

where the second rule can also be written as |a×b| = |a||b| sin!(a,b). Unlike
the 3-dimensional cross product, the 7-dimensional cross product does not
satisfy the Jacobi identity, (a × b) × c + (b × c) × a + (c × a) × b (= 0, and
so it does not form a Lie algebra. However, the 7-dimensional cross product
satisfies the Malcev identity, a generalization of Jacobi, see Ebbinghaus et al.
1991 p. 279.

In R3, the direction of a × b is unique, up to two alternatives for the
orientation, but in R7 the direction of a×b depends on a 3-vector defining the
cross product; to wit,

a× b = −(a ∧ b) v [(= −(a ∧ b)v]

depends on v = e124 + e235 + e346 + e457 + e561 + e672 + e713 ∈
∧3 R7. In

the 3-dimensional space a × b = c × d implies that a,b, c,d are in the same
plane, but for the cross product a × b in R7 there are also other planes than
the linear span of a and b giving the same direction as a× b.

The 3-dimensional cross product is invariant under all rotations of SO(3),
while the 7-dimensional cross product is not invariant under all of SO(7), but
only under the exceptional Lie group G2, a subgroup of SO(7). When we let
a and b run through all of R7, the image set of the simple bivectors a∧ b is a
manifold of dimension 2·7−3 = 11 > 7 in

∧2 R7, dim(
∧2 R7) = 1

27(7−1) = 21,
while the image set of a× b is just R7. So the mapping

a ∧ b→ a× b = −(a ∧ b) v
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is not a one-to-one correspondence, but only a method of associating a vector
to a bivector.

The 3-dimensional cross product is the vector part of the quaternion prod-
uct of two pure quaternions, that is,

a× b = Im(ab) for a,b ∈ R3 ⊂ H.

In terms of the Clifford algebra C!3 ! Mat(2, C) of the Euclidean space R3 the
cross product could also be expressed as

a× b = −〈abe123〉1 for a,b ∈ R3 ⊂ C!3.

In terms of the Clifford algebra C!0,3 ! H×H of the negative definite quadratic
space R0,3 the cross product can be expressed not only as

a× b = −〈abe123〉1 for a,b ∈ R0,3 ⊂ C!0,3

but also as1

a× b = 〈ab(1− e123)〉1 for a,b ∈ R0,3 ⊂ C!0,3.

Similarly, the 7-dimensional cross product is the vector part of the octonion
product of two pure octonions, that is, a×b = 〈a ◦ b〉1. The octonion algebra
O is a norm-preserving algebra with unity 1, whence the vector part R7 in
O = R⊕R7 is an algebra with cross product, that is, a× b = 1

2 (a ◦ b− b ◦ a)
for a,b ∈ R7 ⊂ O = R⊕ R7. The octonion product in turn is given by

a ◦ b = αβ + αb + aβ − a · b + a× b

for a = α + a and b = β + b in R⊕ R7. If we replace the Euclidean space R7

by the negative definite quadratic space R0,7, then not only

a ◦ b = αβ + αb + aβ + a · b + a× b

for a, b ∈ R⊕ R0,7, but also

a ◦ b = 〈ab(1− v)〉0,1

where v = e124 + e235 + e346 + e457 + e561 + e672 + e713 ∈
∧3 R0,7.

1 This expression is also valid for a,b ∈ R3 ⊂ C!3, but the element 1 − e123

does not pick up an ideal of C!3. Recall that C!3 is simple, that is, it has no proper
two-sided ideals.
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5. Definition of Triality

Let n ≥ 3. All automorphisms of SO(n) are of the form U → S US−1 where
S ∈ O(n). All automorphisms of Spin(n), n (= 8, are of the form u → sus−1

where s ∈ Pin(n). The group Spin(8) has exceptional automorphisms, which
permute the non-identity elements −1, e12...8,−e12...8 in the center of Spin(8) :

−1 −→ e12...8

↖ ↙ ρ(±e12...8) = −I.
−e12...8

Such an automorphism of Spin(8), of order 3, is said to be a triality automor-
phism, denoted by trial(u) for u ∈ Spin(8).

Regard Spin(8) as a subset of C!8. In C!8, triality sends the lines through
1,−e12...8 and −1, e12...8, which are parallel, to the lines through 1,−1 and
e12...8,−e12...8, which intersect each other. Thus, a triality automorphism of
Spin(8) cannot be a restriction of a linear mapping C!8 → C!8.

A non-linear automorphism of Spin(8) might also interchange −1 with
either of ±e12...8. Such an automorphism of Spin(8), of order 2, is said to be
a swap automorphism, denoted by swap(u) for u ∈ Spin(8).

On the Lie algebra level, triality acts on the space of bivectors
∧2 R8, of

dimension 28. Triality stabilizes point-wise the Lie algebra G2 of G2, which is
the automorphism group of O. The dimension of G2 is 14. In the orthogonal
complement G⊥2 of G2, triality is an isoclinic rotation, turning each bivector
by the angle 120◦. A swap stabilizes point-wise not only G2 but also a 7-
dimensional subspace of G⊥2 , and reflects the rest of the Lie algebra so(8) ! D4,
that is, another 7-dimensional subspace of G⊥2 . For a bivector F ∈

∧2 R8, we
denote triality by Trial(F) and swap by Swap(F).

On the level of representation spaces, triality could be viewed as permuting
the vector space R8 and the two even spinor spaces, that is, the minimal
left ideals C!+8

1
8 (1 + w) 1

2 (1 ± e12...8), which are sitting in the two-sided ideals
C!+8

1
2 (1±e12...8) ! Mat(8, R) of C!+8 !2Mat(8, R). This means a 120◦ rotation

of the Coxeter–Dynkin diagram of the Lie algebra D4 :
Rather than permuting the representation spaces, triality permutes ele-

ments of Spin(8), or their actions on the vector space and the two spinor
spaces.

Because of its relation to octonions, it is convenient to view triality in terms
of the Clifford algebra C!0,7 !2Mat(8, R), the paravector space $R8 = R⊕R0,7,
having an octonion product, the spin group

$pin(8) = {u ∈ C!0,7 | uū = 1; for all x ∈ $R8 also uxû−1 ∈ $R8},
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the minimal left ideals C!0,7
1
8 (1 + w) 1

2 (1 ∓ e12...7) of C!0,7 ! 2Mat(8, R), and
the primitive idempotents

f = 1
8 (1 + w)1

2 (1− e12...7), f̂ = 1
8 (1 + w)1

2 (1 + e12...7).

For u ∈ $pin(8), define two linear transformations U1, U2 of $R8 by

U1(x) = 16〈uxf〉0,1, U2(x) = 16〈uxf̂〉0,1.

The action of u on the left ideal C!0,7
1
8 (1 + w) of C!0,7 results in the matrix

representation 2 3

$pin(8) 1 u !
(

U1 0
0 U2

)
where U1, U2 ∈ $O(8).

For U ∈ SO(8), 4 define the companion Ǔ by

Ǔ(x) = Û(x̂) for all x ∈ $R8.

2 Choose the bases (e1f, e2f, . . . , e7f, f) for C!0,7f and (e1f̂ , e2f̂ , . . . , e7f̂ , f̂) for
C!0,7f̂ , where f = 1

8 (1 + w) 1
2 (1 − e12...7) and f̂ = 1

8 (1 + w) 1
2 (1 + e12...7). Then the

matrices of U1 and U2 are the same as in the basis (e1, e2, . . . , e7, 1) of $R8. Denoting
fi = eif, i = 1, 2, . . . , 7, and f8 = f, (U1)ij = 16〈f̄iufj〉0, and denoting gi = eif̂ ,
i = 1, 2, . . . , 7, and g8 = f̂ , (U2)ij = 16〈ḡiugj〉0.

3 If we had chosen the bases (f1, f2, . . . , f7, f) for C!0,7f and (f̂1, f̂2, . . . , f̂7, f̂) for
C!0,7f̂ , where fi = eif and f̂i = −eif̂ for i = 1, 2, . . . , 7, then we would have obtained
the following matrix representation

u &
�

U1 0
0 Ǔ2

�
,

where U1(x) = 16〈uxf〉0,1 as before but Ǔ2(x) = 16〈ûxf〉0,1. This representation is
used by Porteous 1995.

4 Or, for U ∈ Mat(8,R).
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The companion ǔ of u ∈ $pin(8) is just its main involution, ǔ = û, 5 and
corresponds to the matrix

ǔ !
(

Ǔ2 0
0 Ǔ1

)
.

For a paravector a ∈ $R8, define the linear transformation A of $R8 by 6

A(x) = 16〈axf〉0,1, that is, A(x) = a ◦ x,

making $R8 the Cayley algebra O. Since Ǎ$(x) = 16〈axf̂〉0,1, we have the
correspondence

a !
(

A 0
0 Ǎ$

)
, abbreviated as a ∼ A.

Computing the matrix product

U(a) = uaû−1 !
(

U1 0
0 U2

)(
A 0
0 Ǎ$

)(
Ǔ−1

2 0
0 Ǔ−1

1

)
,

we find the correspondence U(a) ∼ U1AǓ−1
2 . Denote U0 = Ǔ , and let Ǔ0(a)

operate on x ∈ $R8, to get

Ǔ0(a) ◦ x = (U1AǓ−1
2 )(x) = U1(a ◦ Ǔ−1

2 (x)).

The ordered triple (U0, U1, U2) in SO(8) is called a triality triplet with respect
to the octonion product of O.

5 Recall that for x ∈ $R8 = R⊕ R0,7, U(x) = uxû−1, and so Ǔ(x) = ûx̂u−1.
6 The matrix of A can be computed as Aij = 16〈f̄iafj〉0. The paravector a =

a0 + a1e1 + · · · + a7e7 has the matrix

A =





a0 −a4 −a7 a2 −a6 a5 a3 a1

a4 a0 −a5 −a1 a3 −a7 a6 a2

a7 a5 a0 −a6 −a2 a4 −a1 a3

−a2 a1 a6 a0 −a7 −a3 a5 a4

a6 −a3 a2 a7 a0 −a1 −a4 a5

−a5 a7 −a4 a3 a1 a0 −a2 a6

−a3 −a6 a1 −a5 a4 a2 a0 a7

−a1 −a2 −a3 −a4 −a5 −a6 −a7 a0





.
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If (U0, U1, U2) is a triality triplet, then also (U1, U2, U0), (U2, U0, U1) and
(Ǔ2, Ǔ1, Ǔ0) are a triality triplets. This results in

Ǔ0(x ◦ y) = U1(x) ◦ U2(y) for all x, y ∈ O = $R8,

referred to as Cartan’s principle of triality. Conversely, for a fixed U0 ∈ $O(8),
the identity Ǔ0(x ◦ y) = U1(x) ◦ U2(y) has two solutions U1, U2 in $O(8),
resulting in the triality triplet (U0, U1, U2) and its opposite (U0,−U1,−U2).
Thus, U0 corresponds to two triality triplets (U0, U1, U2) and (U0,−U1,−U2),
while −U0, corresponds to (−U0,−U1, U2) and (−U0, U1,−U2).

The rotations U1, U2 ∈ $O(8) are represented by ±u1,±u2 ∈ $pin(8). We
choose the signs so that

û0 !
(

U1 0
0 U2

)
, û1 !

(
U2 0
0 U0

)
, û2 !

(
U0 0
0 U1

)
,

where u0 = û and U0 = Ǔ . Using the notion of triality triplets,

u0 ! (U0, U1, U2), u1 ! (U1, U2, U0), u2 ! (U2, U0, U1).

The rotation U0 in $O(8) corresponds to u0 ! (U0, U1, U2) and its opposite
−u0 ! (U0,−U1,−U2) in $pin(8), and the opposite rotation −U0 corresponds
to e12...7u0 ! (−U0,−U1, U2) and −e12...7u0 ! (−U0, U1,−U2). Triality is
defined as the mapping

trial : $pin(8) → $pin(8), u1 !
(

Ǔ0 0
0 Ǔ2

)
→ u2 !

(
Ǔ1 0
0 Ǔ0

)
.

Triality is an automorphism of $pin(8); it is of order 3 and permutes the non-
identity elements −1, e12...7,−e12...7 in the center of $pin(8).

Example. Take a unit paravector a ∈ $R8 = R ⊕ R0,7, |a| = 1. The action
x → axâ−1 is a simple rotation of $R8. 7 Thus, a ∈ $pin(8). Denote a0 = â,
a1 = trial(a0) and a2 = trial(a1) so that 16〈â1xf〉0,1 = a2xâ−1

2 , 16〈â2xf̂〉0,1 =
a1xâ−1

1 . Then
a ◦ x = a1xâ−1

1 and x ◦ a = a2xâ−1
2

represent isoclinic rotations of $R8. Left and right multiplications by a ∈ S7 ⊂
O are positive and negative isoclinic rotations of $R8 = O. 8 The Moufang

7 Note that a ◦ x ◦ a = axã, ã = â−1 and a ◦ x ◦ a−1 = sxs−1 where s = a1a
−1
2 ∈

$pin(7).
8 Any four mutually orthogonal invariant planes of an isoclinic rotation of $R8

induce the same orientation on $R8.
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identity

a ◦ (x ◦ y) ◦ a = (a ◦ x) ◦ (y ◦ a)

results in a special case of Cartan’s principle of triality 9

â0(x ◦ y)a−1
0 = (a1xâ−1

1 ) ◦ (a2yâ−1
2 ).

In this special case, a0, a1, a2 commute, a2 = ã1 (= â−1
1 ) and a0a1a2 = 1

implying a = a1a2 = a1â
−1
1 = a2â

−1
2 .

Triality sends a simple rotation to a positive isoclinic rotation and a positive
isoclinic rotation to a negative isoclinic rotation. The isoclinic rotations can
be represented by octonion multiplication having neutral axis in the rotation
plane of the simple rotation:

positive isoclinic rotation↗
simple rotation ↓

↖ negative isoclinic rotation

6. Spin(7)

Let u0 ∈ Spin(7) ⊂ C!8, and u1 = trial(u0), u2 = trial(u1). Then u2 = ǔ1,
that is, trial(trial(u0)) = e8trial(u0)e−1

8 . 10 Thus, u1ǔ
−1
2 = 1 and u1u

−1
2 =

u1e8u
−1
1 e−1

8 ∈ R ⊕ R7e8, being a product of two vectors, represents a simple
rotation. 11 12 Since Ǔ0 = U0, U2 = Ǔ1,

u0 !
(

U1 0
0 Ǔ1

)
, u1 !

(
U0 0
0 U1

)
, u2 !

(
U2 0
0 U0

)
.

Comparing matrix entries of u1u
−1
0 u2, we find u1u

−1
0 u2 ∈ Spin(7) and so

U1U
−1
0 U2 ∈ SO(7).

9 To prove Cartan’s principle of triality, in the general case, iterate the Moufang
identity, like b ◦ a ◦ (x ◦ y) ◦ a ◦ b = (b ◦ (a ◦ x)) ◦ ((y ◦ a) ◦ b). Observe the nesting

b ◦ (a ◦ x) = sxŝ−1, where s = trial(b̂)trial(â) = trial(b̂a).
10 Note that trial(trial(u1)) )= e8trial(u1)e

−1
8 , trial(trial(u2)) )= e8trial(u2)e

−1
8 .

11 In C!0,7, u2 = û1, and so u1û
−1
2 = 1, but u1u

−1
2 ∈ R⊕ R0,7.

12 Recall that for u ∈ Spin(8), u−1 = ũ, and for u ∈ $pin(8), u−1 = ū.
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Let the rotation angles of U0 ∈ SO(7) be α0, β0, γ0 so that α0 ≥ β0 ≥ γ0 ≥ 0.
Then the rotation angles of U1 ∈ SO(8) are






α1 = 1
2 (α0 + β0 + γ0)

β1 = 1
2 (α0 + β0 − γ0)

γ1 = 1
2 (α0 − β0 + γ0)

δ1 = 1
2 (α0 − β0 − γ0).

Since eigenvalues change in U0 → U1, triality cannot be a similarity, U1 (=
SU0S−1. Represent the rotation planes of U0 ∈ SO(7) ⊂ SO(8) by unit bivec-
tors A0,B0,C0, and choose the orientation of D0 = ue8, u ∈ R7, |u| = 1 so
that A0 ∧B0 ∧C0 ∧D0 = e12...8. The rotation planes of U1 can be expressed
as unit bivectors 13






A1 = 1
2Trial(A0 + B0 + C0 −D0)

B1 = 1
2Trial(A0 + B0 −C0 + D0)

C1 = 1
2Trial(A0 −B0 + C0 + D0)

D1 = 1
2Trial(A0 −B0 −C0 −D0).

The rotation angles and planes of U2 are

α2 = α1, β2 = β1, γ2 = γ1, δ2 = −δ1

A2 = Ǎ1, B2 = B̌1, C2 = Č1, D2 = −Ď1.

The rotation planes of U0, U1, U2 induce the same orientation on R8, that is,

A0 ∧B0 ∧C0 ∧D0 = A1 ∧B1 ∧C1 ∧D1 = A2 ∧B2 ∧C2 ∧D2.

For u0 ∈ Spin(7), u1, u2 ∈ Spin(8), so that

u0 = exp( 1
2 (α0A0 + β0B0 + γ0C0))

u1 = exp( 1
2 (α1A1 + β1B1 + γ1C1 + δ1D1))

u2 = exp( 1
2 (α1A2 + β1B2 + γ1C2 − δ1D2)).

7. The Exceptional Lie Group G2

A rotation U ∈ SO(7) such that

U(x ◦ y) = U(x) ◦ U(y) for all x,y ∈ O
13 Trial :

∧2 R8 →
∧2 R8 sends negative isoclinic bivectors to simple bivectors.
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is an automorphism of the Cayley algebra O. The automorphisms form a group
G2 with Lie algebra G2 ⊂

∧2 R8, dimG2 = 14. A bivector U ∈ G2 acts on the
octonion product as a derivation

U (x ◦ y) = (U x) ◦ y + x ◦ (U y) for all x,y ∈ O = R8.

The double cover of G2 ⊂ SO(7) in Spin(7) consists of two components, G2

and −G2. The groups G2 and G2 = ρ(G2) are isomorphic, G2 ! G2. 14

A rotation U0 ∈ G2 ⊂ SO(7) has only one preimage in G2 ⊂ Spin(7), say
u0, ρ(u0) = U0. Since trial(u0) = u0, u1 = trial(u0) equals u0, and U1 = ρ(u1)
equals U0. The rotation angles α0, β0, γ0 of U0, such that α0 ≥ β0 ≥ γ0 ≥ 0,
satisfy the identities






α1 = 1
2 (α0 + β0 + γ0) = α0

β1 = 1
2 (α0 + β0 − γ0) = β0

γ1 = 1
2 (α0 − β0 + γ0) = γ0

δ1 = 1
2 (α0 − β0 − γ0) = 0

each of which implies
α0 = β0 + γ0.

This can also be expressed by saying that the signed rotation angles α, β, γ of
U ∈ G2 satisfy

α + β + γ = 0.

Represent the rotation planes of U by unit bivectors A,B,C and choose
orientations so that u = exp( 1

2 (αA + βB + γC)), when U = ρ(u). Then
A w = B + C. Conversely, for an arbitrary rotation U ∈ SO(7) to be in
G2 it is sufficient that

A w = B + C and α + β + γ = 0.

In order to construct a bivector U ∈ G2, pick up a unit bivector A ∈
∧2 R7,

A2 = −1, decompose the bivector A w into a sum of two simple unit bivectors
B+C (this decomposition is not unique), choose α, β, γ ∈ R so that α+β+γ =
0, and write U = αA + βB + γC.

For u ∈ G2, trial(u) = u, and for U ∈ G2, Trial(U) = U, in other words,
triality stabilizes point-wise G2 and G2. Multiplication by u ∈ G2 stabilizes
the idempotent 1

8 (1+w), u 1
8 (1+w) = 1

8 (1+w)u = 1
8 (1+w), while a bivector

14 Note that −I )∈ G2 because −I )∈ SO(7) and −1 )∈ G2 because triality stabilizes
point-wise G2 but sends −1 to ±e12...8.
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U ∈ G2 annihilates 1
8 (1 + w), U 1

8 (1 + w) = 1
8 (1 + w)U = 0, and thus U 1

8 (7−
w) = 1

8 (7 − w)U = U. Conversely, a rotation U ∈ SO(7) is in G2 if it fixes
the 3-vector

v = e124 + e235 + e346 + e457 + e561 + e672 + e713

for which w = ve−1
12...7 = e1236 − e1257 − e1345 + e1467 + e2347 − e2456 − e3567.

A bivector F ∈
∧2 R8, dim(

∧2 R8) = 28, can be decomposed as

F = G + H where G ∈ G2 and H =
1
3
w (w ∧ F) ∈ G⊥2 .

Under triality, F goes to Trial(F) = G + Trial(H), Trial(H) ∈ G⊥2 , where the
angle between H and Trial(H) is 120◦. In particular, triality is an isoclinic
rotation when restricted to G⊥2 , dim(G⊥2 ) = 14.

A bivector F ∈
∧2 R7 can be decomposed as F = G + H, where G ∈ G2,

H ∈ G⊥2 ∩
2∧

R7, dim(G⊥2 ∩
2∧

R7) = 7.

For a vector a ∈ R7, v a ∈ G⊥2 ∩
∧2 R7. The mapping a→ v a is one-to-one,

since a = 1
3v (v a). The element u = exp(v a) ∈ Spin(7) induces a rotation

of R7, which has a as its axis and is isoclinic in a⊥ = {x ∈ R7 | x · a = 0}. A
miracle happens when |a| = 2π/3. Then the rotation angles of U = ρ(u) are
4π/3, which is the same as 4π/3−2π = −2π/3 in the opposite sense of rotation.
For the signed rotation angles we can choose α = 4π/3, β = γ = −2π/3 which
satisfy α + β + γ = 0. Since also A w = B + C, it follows that u ∈ G2.
Therefore, u = exp(v a), where a ∈ R7 and |a| = 2π/3, belongs to

exp(G2) ∩ exp(G⊥2 ∩
2∧

R7) ! S6, where exp(G2) = G2.

Note that α+β+γ = 0 in G2 while α = β = γ in exp(G⊥2 ∩
∧2 R7). An element

u ∈ G2 ∩ exp(G⊥2 ∩
∧2 R7) can be also constructed by choosing a unit bivector

A ∈
∧2 R7, A2 = −1, decomposing A w = B + C, constructing bivectors

2π

3
(2A−B−C) = G ∈ G2 and

2π

3
(−A−B−C) = H ∈ G⊥2 ∩

2∧
R7

and exponentiating
u = eG = eH = − 1

8 + · · ·
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The elements u are extreme elements in G2 in the sense that 〈u〉0 = − 1
8 , while

for all other g ∈ G2, 〈g〉0 > − 1
8 .

The elements u = exp(v a), where a ∈ R0,7 and |a| = 2π/3, satisfy
u3 = 1, and they are the only non-identity solutions of u3 = 1 in G2. The
octonion a = e◦a (= ea) satisfies a◦3 = 1 and a◦−1 ◦ x ◦ a = uxu−1 for all
x ∈ $R8 = R ⊕ R0,7. Conversely, the only unit octonions a ∈ S7 ⊂ O = $R8

satisfying

a◦−1 ◦ (x ◦ y) ◦ a = (a◦−1 ◦ x ◦ a) ◦ (a◦−1 ◦ y ◦ a) for all x, y ∈ $R8

are solutions of a◦3 = ±1.

8. Components of the Automorphism Group of Spin(8)

In general, the only exterior automorphisms of Spin(n), n (= 8, are of type
u → sus−1, where s ∈ Pin(n)\Spin(n). Thus, Aut(Spin(n))/Int(Spin(n)) !
Z2, when n (= 8. However, in the case n = 8, the following sequence is exact

1 −→ Int(Spin(8)) −→ Aut(Spin(8)) −→ S3,

that is, Aut(Spin(8))/Int(Spin(8)) ! S3, a non-commutative group of order
6.

For u ∈ Spin(8), denote swap1(u) = e8trial(u)e−1
8 = trial(trial(e8ue−1

8 ))
and swap2(u) = e8trial(trial(u))e−1

8 = trial(e8ue−1
8 ). Then trial, swap1, swap2

generate S3 :

trial ◦ trial ◦ trial = swap1 ◦ swap1 = swap2 ◦ swap2 = identity
swap1 ◦ swap2 = trial and swap2 ◦ swap1 = trial ◦ trial.

The automorphism group of Spin(8) contains 6 components, represented by
the identity, trial, trial ◦ trial, swap1, swap2 and the companion. 15 In the
component of trial, all automorphisms of order 3 are trialities for some octonion
product.

15 The subgroup of linear automorphisms contains 2 components, represented by
the identity and the companion, u → e8ue−1

8 .
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9. Triality is Quadratic

Triality of u ∈ Spin(8) ⊂ C!8 is a restriction a polynomial mapping C!8 → C!8,
of degree 2,

trial(u) = trial1(u)trial2(u)
trial1(u) = 1

2 (1 + e12...8)[〈u(1 + w)(1− e12...8)〉0,6 ∧ e8]e−1
8

+ 1
2 (1− e12...8)

trial2(u) = (w − 3)[(u(1 + e12...8)) ∧ e8]e−1
8 (w − 3)−1.

The first factor is affine linear and the second factor is linear. To verify that
trial is a triality, it is sufficient to show that it is an automorphism of order 3
sending −1 to e12...8.

In the Lie algebra level, the triality automorphism of a bivector F ∈
∧2 R8

is
Trial(F) = e8〈F− 1

2F(1 + w)(1 + e12...8)2e
−1
8

= 1
2e8(F− F w − (F ∧w) e12...8)e−1

8 .

The triality automorphism of a para-bivector F ∈ R0,7 ⊕
∧2 R0,7 is

Trial(F ) = 〈F − 1
2F (1 + w)(1− e12...7)〉∧1,2

= 1
2 (F − 〈F 〉2 w + (F ∧w) e12...7)∧.

For u ∈ $pin(8), triality is

trial(u) = trial1(u)trial2(u)
trial1(u) = 1

2 (1− e12...7)〈u(1 + w)(1 + e12...7)〉0,6

+ 1
2 (1 + e12...7)

trial2(u) = (w − 3) even (u(1− e12...7))(w − 3)−1.

10. Triality in Terms of Eigenvalues and Invariant Planes

Triality can also be viewed classically, without Clifford algebras, by inspection
of changes in eigenvalues and invariant planes of rotations. Consider U0 ∈
SO(8) and a triality triplet (U0, U1, U2). Let the rotation angles α0, β0, γ0, δ0

of U0 be such that α0 ≥ β0 ≥ γ0 ≥ δ0 ≥ 0. Represent the rotation planes of
U0 by the unit bivectors A0,B0,C0,D0. Then the rotation angles of U1 and
U2 are






α1 = 1
2 (α0 + β0 + γ0 − δ)

β1 = 1
2 (α0 + β0 − γ0 + δ)

γ1 = 1
2 (α0 − β0 + γ0 + δ)

δ1 = 1
2 (α0 − β0 − γ0 − δ)

and






α2 = 1
2 (α0 + β0 + γ0 + δ)

β2 = 1
2 (α0 + β0 − γ0 − δ)

γ2 = 1
2 (α0 − β0 + γ0 − δ)

δ2 = 1
2 (−α0 + β0 + γ0 − δ)
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and the rotation planes are





A1 = 1
2Trial(A0 + B0 + C0 −D0)

B1 = 1
2Trial(A0 + B0 −C0 + D0)

C1 = 1
2Trial(A0 −B0 + C0 + D0)

D1 = 1
2Trial(A0 −B0 −C0 −D0)

and 




A2 = 1
2Trial(Trial(A0 + B0 + C0 + D0))

B2 = 1
2Trial(Trial(A0 + B0 −C0 −D0))

C2 = 1
2Trial(Trial(A0 −B0 + C0 −D0))

D2 = 1
2Trial(Trial(−A0 + B0 + C0 −D0)).

11. Trialities with Respect to Different Octonion Products

An arbitrary 4-vector w ∈
∧4 R8, for which 1

8 (1+w) is an idempotent in C!+8 ,
is called a calibration. 16 The calibration w fixes excatly one line of vectors,
namely {n ∈ R8 | wn = nw}. This line, together with a chosen orientation,
is called the neutral axis of the calibration. A calibration together with its
neutral axis can be used to introduce an octonion product on R8 and a triality
of Spin(8).

Let w1,w2 be calibrations, with neutral axes n1,n2 ∈ R8. Denote the
octonion products by

x ◦w1,n1 y = 〈xn1y(1 + w1)(1− e12...8)〉1,
x ◦w2,n2 y = 〈xn2y(1 + w2)(1− e12...8)〉1

and the trialities by trialw1,n1(u), trialw2,n2(u). Denote the opposite of the
composition of the trialities by trialw12,n12(u) so that

trialw12,n12(trialw12,n12(u)) = trialw1,n1(trialw2,n2(u)).

Then
w12 = 1

2 (w1 + w2) + 1
2 (−w1 + w2)e12...8

= 1
2 (1− e12...8)w1 + 1

2 (1 + e12...8)w2

and

n12 =
y
|y| for a non− zero y = x− 1

4w12 (w12 x), where x ∈ R8.

16 Note that w satisfies w2 = 7 + 6w.
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12. Factorization of u ∈ Spin(8)

Take u ∈ Spin(8) \ Spin(7). Denote s = (u ∧ e8)e−1
8 , and u7 =

s

|s| . Then

u7 ∈ Spin(7), and u = u8u7 = u7u′8, where u8, u′8 ∈ R ⊕ R7e8. 17 These
factorizations are unique, up to a sign (−1 is a square root of 1 in Spin(7)) :

u = u8u7 = (−u8)(−u7) = u7u
′
8 = (−u7)(−u′8).

The following factorizations are unique, up to a cube root of 1 in G2 :

u7 = h0g0 = h1g1 = h2g2 = g0h
′
0 = g1h

′
1 = g2h

′
2,

where
h3

0 = u7trial(u7)−1u7trial(trial(u7))−1,

h′30 = trial(u7)−1u7trial(trial(u7))−1u7,

and
h1 = h0g, h2 = h0g2, h′1 = g′h′0, h′2 = g′2h′0,

g = exp( 2π
3 v h0

|h0| ), g′ = exp( 2π
3 v h′

0
|h′

0|
),

h0 = (H0 ∧H0 ∧H0)e12...7, h′0 = (H′
0 ∧H′

0 ∧H′
0)e12...7,

h0 = eH0 , h′0 = eH′
0 .

In this factorization, g0, g1, g2 ∈ G2 and h0, h1, h2, h′0, h
′
1, h

′
2 ∈ exp(G⊥2 ∩

∧2 R7)
and g, g′ ∈ G2 ∩ exp(G⊥2 ∩

∧2 R7) ! S6. These factorizations are unique, up to
a factor g, g′ ∈ G2, g3 = g′3 = 1. 18

Appendix: Comparison of Formalisms in R8 and R⊕ R0,7

We use the 3-vector

v = e124 + e235 + e346 + e457 + e561 + e672 + e713

in
∧3 R8 or

∧3 R0,7, and the 4-vector w = ve−1
12...7 in

∧4 R8 or
∧4 R0,7,

w = e1236 − e1257 − e1345 + e1467 + e2347 + e2456 − e3467.

Note that e−1
12...7 = −e12...7 in C!8 while e−1

12...7 = e12...7 in C!0,7.

17 Note that u8 =
√

u(e8ue−1
8 )−1 and u′8 =

√
(e8ue−1

8 )−1u.
18 Recall that −1 )∈ G2.
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We use the octonion product

x ◦ y = 〈xe8y(1 + w)(1− e12...8)〉1 for vectors x,y ∈ R8,

x ◦ y = 〈xy(1 + w)(1− e12...7)〉0,1 for paravectors x, y ∈ R⊕ R0,7.

Note that in C!0,7, also x ◦ y = 〈xy(1− v)〉0,1.

The bivector F = A + B ∈
∧2 R8, with B ∈

∧2 R7 and A = ae8, a ∈ R7,
corresponds to the para-bivector F = a−B ∈ R0,7⊕

∧2 R0,7, with a = Ae−1
8 ∈

R0,7. Let u = u+ + u−e8 ∈ Spin(8), where u± ∈ C!±7 . Then u ∈ Spin(8)
corresponds to

( ˜u+ + u−) = ( ̂u+ + u−)−1 ∈ $pin(8).

The companion ǔ of u is

ǔ = e8ue−1
8 for u in Spin(8) or C!+8 ( or C!8),

ǔ = û for u in $pin(8) or C!0,7.

For u0, u1 = trial(u0), u2 = trial(u1), Cartan’s principle of triality says

ǔ0(x ◦ y)ǔ−1
0 = (u1xu−1

1 ) ◦ (u2yu−1
2 ) in Spin(8),

û0(x ◦ y)u−1
0 = (u1xû−1

1 ) ◦ (u2yû−1
2 ) in $pin(8).

In the Lie algebra level, Freudenthal’s principle of triality says 19

(x ◦ y) F̌0 = (x F1) ◦ y + x ◦ (y F2) in
∧2 R8,

〈(x ◦ y) F0〉0,1 = 〈x F̂1〉0,1 ◦ y + x ◦ 〈y F̂2〉0,1 in R0,7 ⊕
∧2 R0,7.

The non-identity central elements of the Lie groups are permuted as follows

trial(−1) = e12...8, trial(e12...8) = −e12...8 in Spin(8),
trial(−1) = −e12...7, trial(−e12...7) = e12...7 in $pin(8).

Exercises

Show that
1. For U ∈ G2, U w = −U, Uw = −U, U U = −|U|2, |U ∧U| = |U|2.
2. For U0 ∈

∧2 R8, U1 = Trial(U0), U2 = Trial(U1), U0 + U1 + U2 ∈ G2,
2U0 −U1 −U2 ∈ G⊥2 .

19 Note that x F corresponds to 〈x F̂ 〉0,1.
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3. In C!0,7, (1 + w)(1− e12...7) = (1− e124)(1− e235)(1− e346)(1− e457),
(1 + w)(1− e12...7) = (1− v)(1− e12...7).

4. w2 = 7 + 6w.

5. wn =
{

1
8 (7n − 1) + 1 + 1

8 (7n − 1)w, n even,
1
8 (7n + 1)− 1 + 1

8 (7n + 1)w, n odd.
6. For x ∈ R, f(xw) = f(−x) 1

8 (7−w) + f(7x) 1
8 (1 + w). Hint: the minimal

polynomial of w, x2 = 7 + 6x, has roots x = −1, x = 7.
7. For G ∈ G2,

1
8 (1 + w)G 1

8 (1 + w) = 0, 1
8 (7−w)G 1

8 (7−w) = G,
eG = 1

8 (7−w)eG 1
8 (7−w) + 1

8 (1 + w).
8. v2 = −7− 6w in C!8, v2 = 7 + 6w in C!0,7.

9. For v ∈
∧3 R7, eπv = −1. Hint: v4 + 50v2 + 49 = 0, and

x4 + 50x2 + 49 = 0 has roots ±i, ±7i.
10. For v ∈

∧3 R0,7, cos(πv) = −1, sin(πv) = 0. Hint: v4 − 50v2 + 49 = 0,
and x4 − 50x2 + 49 = 0 has roots ±7, ±1.

11. For F ∈
∧2 R8, F = G + H, G ∈ G2, H ∈ G⊥2 : H = 1

3w (w ∧ F).
12. For H ∈ G⊥2 , H = 1

4w (w H).
13. For u0 ∈ $pin(8), u1 = trial(u0), u2 = trial(u1) : u0û

−1
1 u2 ∈ $pin(7). Hint:

a = u−1
0 û0 ∈ R⊕ R0,7 and so a = ̂trial(a)trial(a)−1.

14. For the opposite product x • y = y ◦ x of x,y ∈ O = R8,
ǔ0(x • y)ǔ−1

0 = (u2xu−1
2 ) • (u1yu−1

1 ).
15. u0(x ◦ y)u−1

0 = (ǔ2xǔ−1
2 ) ◦ (ǔ1yǔ−1

1 ).
16. 〈û0x(1 + w)(1− e12...7)〉0,1 = u1xû−1

1 ,
〈û0x(1 + w)(1 + e12...7)〉0,1 = u2xû−1

2 .
17. 〈û0xy(1 + w)(1− e12...7)〉0,1 = u1(x ◦ y)û−1

1 ,
〈û0xy(1 + w)(1 + e12...7)〉0,1 = u2(y ◦ x)û−1

2 .

18. For B ∈
∧2 R8 ∩ Spin(8), 〈trial(B)〉0 = 1

4 . For C ∈
∧4 R8 ∩ Spin(8),

〈trial(C)〉0 = 0. For D ∈
∧6 R8 ∩ Spin(8), 〈trial(D)〉0 = − 1

4 .

19. For C ∈
∧4 R8 ∩ Spin(8), trial(C) ∈

∧4 R8.
20. For u ∈ Spin(8), inducing a simple rotation U = ρ(u) : 〈trial(u)〉8e12...8〉0

and 〈trial(trial(u))〉8e12...8〈0.
21. 〈G2〉0 ≥ − 1

8 , 〈trial(Spin(7))〉0 ≥ − 1
4 .

22. G2 ∩ exp(G⊥2 ∩
∧2 R7) is homeomorphic but not isometric to S6.

23. diam (G2) = 3
2 , diam (trial(Spin(7))) =

√
5
2 .

24. Triality does not extend to an automorphism of Pin(8).
25. [ 14 (w − 3)]2 = 1.
Determine
26. The matrix of 1

4 (w − 3) in the basis (f1, f2, . . . , f8) of C!+8 f, where fi =
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eie8f, i = 1, 2, . . . , 8, and f = 1
8 (1 + w) 1

2 (1 + e12...8).

Solutions

13. u−1
0 û0 = û−1

1 u2û
−1
2 u1 so 1 = u0û

−1
1 u2(û−1

2 u1û
−1
0 ) = u0û

−1
1 u2(û0u

−1
1 û2)−1

which implies u0û
−1
1 u2 = û0u

−1
1 û2 = ̂(u0û

−1
1 u2).

24. Triality sends −1 ∈ Cen (Pin(8)) to e12...8 (∈ Cen (Pin(8)).
26.

16〈f̃i
1
4 (w − 3)fj〉0 =





−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1





.
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