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Representations ofso(2n, C)

Let (V, Q) be anm-dimensionalC-vector spacerf > 2) equipped with a
non-degenerate symmetric bilinear for@,

The groupG = SO(Q) = SO(n, C) is the group of automorphisms bf
preserving? and with determinant one. Its Lie algebrgyis- so(Q) = so(n, C).
It is simple of dimensiomn(m — 1) /2.
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non-degenerate symmetric bilinear for@,

The groupG = SO(Q) = SO(n, C) is the group of automorphisms bf
preserving) and with determinant one. Its Lie algebrgyis= so(Q) = so(n, C).
It is simple of dimensiomn(m — 1) /2.

Supposen = 2n.

We can choose a basis in whi¢hhas matrix

0 I,
M = :

Let E;; be the2n x 2n matrix with 1 in the (7, j) position and) in the others.
Then, the matrices
18l = 185 = 1005 i

generate a Cartan subalgebrgiotet L4, ..., L, be the duals.
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Representations ofso(2n, C)

The adjoint representation
ad : s0(2n,C) — gl(so(2n,C))

IS irreducible of dimension(2n — 1) and with maximal weighf.; + L.
The standard representation

st :50(2n,C) — gl(V)

IS irreducible of dimensioBn and maximal weight.; .
The spin representation 6 (2n, C)

A :s0(2n,C) — gl (/\W) :

wherelV is an isotropic:-dimensional subspace bf breaks into the two
half—spi n representations Triality and fixed points oSpin-bundles — p. 5



Representations ofso(2n, C)

A* - s0(2n,© w(ﬁ )

s mr-afjr)

both irreducible and with maximal weights

1
§(L1+---+Ln_1+Ln) and

1
§(L1‘|‘"‘+Ln—1_Ln)

respectively.
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The case ofso(8, C)

Theorem. Let g be a simple algebra. The groGmt(g) = Aut(g)/ Int(g) is
Isomorphic to the group of symmetries of the Dynkin diagrdmng.o
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From the theorem it follows th&dut(so(8, C)) is isomorphic taSs. In particular,
s0(8, C) admits two different automorphisms (modulo inner autorhaams) of
order3 (those corresponding to the symmetriednf). These automorphisms are
mutually inverse.
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Theorem. Let g be a simple algebra. The grout(g) = Aut(g)/Int(g) is
Isomorphic to the group of symmetries of the Dynkin diagrdmng.o

From the theorem it follows th&dut(so(8, C)) is isomorphic taSs. In particular,
s0(8, C) admits two different automorphisms (modulo inner autorhaams) of
order3 (those corresponding to the symmetriednf). These automorphisms are
mutually inverse.

This table sums up the basic information about representsti

Representation Complex dimension ~ Dominant weight
ad 28 L+ Lo
st 8 LA
AT 8 (L1 4+ Lo+ L+ Ly)
AN 8 2(Ly+ Ly + L — Ly)
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The family of weights

{Ly,Ly1 + Lo, 2(L1 + Lo+ Ly + Ly), 3(L1 + Ly + L3 — Ly)} is a fundamental
system of weights ofo (8, C).

In fact, the automorphisms of order threesof8, C) leaves the standard
representation invariant and moves the other thuddd A—, A~ to AT andA™

to ad), so these automorphisms correspond to the order three symemof the
Dynkin diagram
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The case ofso(8, C)

Let 7 and~—! be the automorphisms of order three Ant(so(8, C)) we consider
other equivalence relation;;, given by conjugation by inner automorphisms, tha
IS, If a, B € Aut(so(8,C)),

o ~; B 30 € Int(s0(8,C)) : a=030"".
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Let 7 and~—! be the automorphisms of order three Ant(so(8, C)) we consider
other equivalence relation;;, given by conjugation by inner automorphisms, tha
IS, If a, B € Aut(s0(8,C)),

a ~; B 30 € Int(50(8,C)) : o= 050"

Let Auts(so(8,C)) be the set of automorphisms of order three. In our language
results of Wolf and Gray prove the following propositions.

Proposition. Auts(so(8,C))/ ~; has four elements, the classes-aind~—! and
the classes of other two automorphisms of order threand'—!.

Outs(s0(8, C)) is given by the classes afy 7 1.
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The case ofso(8, C)

Proposition. Via the natural map
Aut3(s0(8,C))/ ~;— Outs(s0(8,C)) U{1},

the classes of and7’ modulo inner conjugation are sent to the class afodulo
inner automorphisms and the classes of and7’~! modulo inner conjugation
are sent to the class of ' modulo inner automorphisms.
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It is relevant for us to study tha algebras of fixed points ehdr’. The same
work of Wolf and Gray gives us the key.
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Proposition. Via the natural map
Auts(s0(8,C))/ ~;— Outs(s0(8,C)) U {1},

the classes of and7’ modulo inner conjugation are sent to the class afodulo
inner automorphisms and the classes of and7’~—! modulo inner conjugation
are sent to the class of ' modulo inner automorphisms.

It is relevant for us to study tha algebras of fixed points ehdr’. The same
work of Wolf and Gray gives us the key.

Proposition. The algebra of fixed points afis isomorphic to the algebrg and
the algebra of fixed points af is isomorphic to the algebrg.
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Triality automorphism

Recall the definition and basic propertiessplin groups.
Let K be a field andV, Q) aK-vector space equipped with a symmetric bilinear
form. In the tensor algebra &f, &) V', we consider the ideal

JV)={(wv—-—QWw,v) : veV).
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Recall the definition and basic propertiessplin groups.
Let K be a field andV, Q) aK-vector space equipped with a symmetric bilinear
form. In the tensor algebra &f, &) V', we consider the ideal

JV)={(wv—-—QWw,v) : veV).

We define the Clifford algebra associatedt@and( as

ClQ) =R V/J(V).

Let C(Q), be the subalgebra of the Clifford algebra generated by theyats of
an even number of elementsBfand the automorphism: Cl(Q) — Cl(Q)
defined by
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Triality automorphism

We define the grouppin as

Spin(Q) = {z € Cl(Q)o : zisinvertible,xz™ =1, xVa* C V}.

We will consider the complex field and dimensi®n
The following properties o$pin will be relevant for us.
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Triality automorphism

We define the grouppin as

Spin(Q) = {z € Cl(Q)o : zisinvertible,xz™ =1, xVa* C V}.

We will consider the complex field and dimensi®n
The following properties o$pin will be relevant for us.

W The Lie algebra ofpin(8, C) is so(8, C).

W Spin(8, C) is simply connected. So it is the simply connected group of
algebraso (8, C).

W The mapp : Spin(8,C) — SO(8,C), x — p(x)(v) = xzvx*isa2: 1
covering map. S&pin(8, C) is the universal cover #O(8, C).
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Triality automorphism

We know that there is a bijective correspondence betweeauttanorphisms of a
simply connected group and those of its Lie algebra. Moreavehave the
following result.
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Triality automorphism

We know that there is a bijective correspondence betweeauttanorphisms of a
simply connected group and those of its Lie algebra. Moreavehave the
following result.

Proposition. Let g be a complex Lie algebra arid the unique connected and
simply connected group with Lie algebgaThen, there is a natural automorphisn
of short exact sequences of groups

] —— Int(G) —— Auwt(G) —— Out(G) —— 1

l l l

1 — Int(g) —— Aut(g) —— Out(g) — 1.
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We know that there is a bijective correspondence betweeauttanorphisms of a
simply connected group and those of its Lie algebra. Moreavehave the
following result.

Proposition. Let g be a complex Lie algebra ardd the unique connected and
simply connected group with Lie algebgaThen, there is a natural automorphisn
of short exact sequences of groups

] —— Int(G) —— Auwt(G) —— Out(G) —— 1

l l l

1 — Int(g) —— Aut(g) —— Out(g) — 1.

We obtain that the automorphisnlifts uniquely to an automorphism of
Spin(8, C). this automorphism is callemiality automorphism
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Triality automorphism

The automorphism’ lifts uniquely to an automorphism &fpin(8, C), too. Let it
bej’.

From all this we deduce that the group of fixed pointg &f isomorphic to=, and
the group of fixed points of’ is isomorphic ta5L(3, C).
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Moduli of principal bundles

Definition. Let G be a reductive group. A holomorphic princigattbundleFE is
sald to be stable (resp. semistable) if for each reductidheo$tructure group of

E to a parabolic subgroup of G (that is, for each global section: X — E/P),
we have thatleg o*(T;/p) > 0 (resp.> 0), wherel, , p is the sub-bundle of
TE /P, tangent along the fibres &/ P.
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sald to be stable (resp. semistable) if for each reductidheo$tructure group of
E to a parabolic subgroup of G (that is, for each global section: X — E/P),
we have thatleg o*(T;/p) > 0 (resp.> 0), wherel, , p is the sub-bundle of
TE/P, tangent along the fibres &f/ P.

This notion coincides with the classical notion of Mumford ¥ector bundles in
the case in whiclix = GL(n, C).

As In the case of vector bundles, we can assign a graded elemgno each
semistable7-bundleF, so we have a good notion Stequivalence.

Definition. Two semistable bundles are said to$equivalent if they have
Isomorphic graded elements.

The moduli of principalG-bundles,M(G), is, then, an algebraic variety that
parametrizes classes fequivalence of semistable bundles.
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Moduli of principal bundles

This theorem (due to A. Ramanathan) gives some useful grep@f the moduli
of principal bundles.

Theorem. If G es semisimpleM (G) is an algebraic variety of dimension
dim g(g — 1). The number of connected components\df ) is equal to the
number of elements of, (G). In particular, ifG is simply connectedM (G) is
connected and, in fact, irreducible.
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From this, M (Spin(8, C)) is a variety of dimensioB8(g — 1) and the varieties
M(Spin(8,C)), M(G3) and M (SL(3,C)) are irreducible.

Triality and fixed points oSpin-bundles — p. 18



This theorem (due to A. Ramanathan) gives some useful grep@f the moduli
of principal bundles.

Theorem. If G es semisimpleM (G) is an algebraic variety of dimension
dim g(g — 1). The number of connected components\df ) is equal to the
number of elements of; (G). In particular, ifG is simply connectedM (G) is
connected and, in fact, irreducible.

From this, M (Spin(8, C)) is a variety of dimensio28(g — 1) and the varieties
M (Spin(8, C)), M(G3) and M (SL(3,C)) are irreducible.

Recall the notion of simplicity.

Definition. A G-bundle is said to be simple if its unique automorphisms are
multiplication by elements of the center Gf
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Moduli of principal bundles

We will study stable and simple fixed points for certain aubopmisms of the
moduli of principalSpin(8, C)-bundles.

Proposition. If G is semisimple M (G) is smooth in the open set of stable simpl
points.
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Moduli of principal bundles

We will study stable and simple fixed points for certain aubopmisms of the
moduli of principalSpin(8, C)-bundles.

Proposition. If G is semisimple M (G) is smooth in the open set of stable simpl
points.

From this proposition we know that we will study smooth fixexnis of the
moduli.
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Action of Out(G) in M(G)

Let G a complex semisimple Lie group. The gropt(G) acts onM (G) in this
way: if £ is aG-bundle andd € Aut(G), A(F) will be equal toE' as a variety
but equipped with the following action @f,

e(g =eA™ ' (g)

fore € F andg € G.
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Let G a complex semisimple Lie group. The groApt(G) acts onM (G) in this
way: if £ is aG-bundle andd € Aut(G), A(F) will be equal toE' as a variety
but equipped with the following action @f,

e(g =eA™ ' (g)

fore € F andg € G.

If {¢);;} are transition functions o/, then{ A o v;; } are transition functions of
A(E).

With the point of view of transition functions, it is easy toosv that if A is an
inner automorphism afr, thenF is isomorphic toA(FE), that is, the action of
Aut(G) is trivial onInt(G).
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Action of Out(G) in M(G)

We can assure that the action®iit(G) defines an action dut(G), that is, this
action ofOut(G) in M(G) is well defined: ifo € Out(G), A € Aut(G) is a
representant of andE € M(G), we define
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We can assure that the actionfit(G) defines an action ddut(G), that is, this
action ofOut(G) in M(G) is well defined: ifc € Out(G), A € Aut(G) is a
representant of andE € M(G), we define

Observe that, in order to prove that the preceding actioreltdefined, it is
necessary to see thatAf€ Aut(G), thenA(F) is semistable i is semistable
(which is immediate form the definition of semistability)datine following result.

Proposition. If £; andE5 are semistablé-equivalent bundles, thea(E;) and
A(FE,) areS-equivalent.
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We can assure that the actionfit(G) defines an action ddut(G), that is, this
action ofOut(G) in M(G) is well defined: ifc € Out(G), A € Aut(G) is a
representant of andE € M(G), we define

Observe that, in order to prove that the preceding actioreltdefined, it is
necessary to see thatAf€ Aut(G), thenA(F) is semistable i is semistable
(which is immediate form the definition of semistability)datine following result.
Proposition. If £; andE5 are semistablé-equivalent bundles, thea(E;) and
A(FE,) areS-equivalent.

The proof of the preceding proposition follows from the disfom.
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FiXed points of Spin(8, C)-bundles

The main result of this work is the following.
Theorem. Let X be a compact Riemann surface. ket Out(G) with
G = Spin(8, C) an element of order three. L&t° () be the subset of fixed

points of M ((G) for the action ofr and M? (G) be the subset of stable
and simple fixed points. Then,

stable,stimple

e~

M(G3) UM(SL(3,C)) € M (Spin(8, C))

and

P e

MJ(Spin(Sa <C))sta,ble,sz'm,ple g M(G2) U M(SL(37 C))v

—_— ~——

where, ifH is a subgroup of, M(H) is the image of the map
M(H) - M(G), E— ExgG

induced by the inclusion of groupg?d — G.

Triality and fixed points oSpin-bundles — p. 22



FiXed points of Spin(8, C)-bundles

Suppose that is a lifting of o and F is a simple fixed point. Thelh and A(FE)
are isomorphic. There exists an isomorphism

f:E— A(E).
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FiXed points of Spin(8, C)-bundles

Suppose that is a lifting of o and E' is a simple fixed point. TheR' andA(F)
are isomorphic. There exists an isomorphism

f:E— A(E).

A acts on the bundles and on the morphisms. Taking into actband® = 1, we

have a chain

(B) ) 4%(B)

EL AE E,

and, so, an automorphism 6f

A%(f)o A(f)of: E— E.
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points of Spin(8, C)-bundles

simplicity ofEZ we deduce the existence dfc Z(Spin(8, C)) such that

AZ(f)o A(f)o f =\



FiXed points of Spin(8, C)-bundles

From the simplicity ofEf we deduce the existence dfc Z(Spin(8, C)) such that

A%(f) o A(f)o f = A

In local terms, we obtain that the elements of the groyp—!(z,1) forz € X
are the solutions of the equation

A*(9)A(g)g = A.
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FiXed points of Spin(8, C)-bundles

From the simplicity ofEf we deduce the existence dfc Z(Spin(8, C)) such that

A%(f) 0 A(f) o f = A

In local terms, we obtain that the elements of the groyp—!(z, 1) forxz € X
are the solutions of the equation

A*(9)A(g)g = A.

It will be A € Fix(A). We know that FixA) = G5 or Fix(A) = SL(3,C). From
this and the fact that is in the center, we can deduce that 1. So we have the
equation

A*(g)A(g)g = 1.
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points of Spin(8, C)-bundles

ation determines a varidtyywith tangent space at
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FiXed points of Spin(8, C)-bundles

This equation determines a varidty with tangent space at

ker (dA?|, + dA|, +id) .

We consider the may — E(G/H) defined in the following way. Fat € X and
(U, ¢) alocal trivialization ofE, the image of is ¢~ (x, 1), H|. Itis well
defined and defines a global sectionf{iG/H).
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FiXed points of Spin(8, C)-bundles

This equation determines a varigtyy with tangent space at

ker (dA?|, + dA|, +id) .

We consider the may — E(G/H) defined in the following way. Fat € X and
(U, ¢) alocal trivialization ofE, the image of is ¢~ (x, 1), H|. Itis well
defined and defines a global sectionf{iG/H).

Global section of”(G/ H) induce global sections of

E (Gry (ker (dA?|, + dA|, +id))) — X
(details are due to A. Ramanathan), wheiie the dimension of the subalgebra

ker (dA?|, + dA|, + id).
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FiXed points of Spin(8, C)-bundles

It can be seen that the subalgebkas(dA?|, + dA|, + id) andker (dA|, — id)
are semisimple and mutually orthogonal with respect to thlen form. From
this, it iIs equivalent a global section of

E (Gry (ker (dA?|, + dA|; +1id))) — X
an a global section of
E (Gr(ker (dA|; —id))) — X

or, what is the same, a global sectionfofG /Fix(A)) — X, that is, a reduction
of the structure group ok’ to Fix(A).
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FiXed points of Spin(8, C)-bundles

It can be seen that the subalgebkas(dA?|, + dA|, + id) andker (dA|, — id)
are semisimple and mutually orthogonal with respect to titleng form. From
this, it iIs equivalent a global section of

E (Gry (ker (dA?|, + dA|; +1id))) — X
an a global section of
E (Gr(ker (dA|; —id))) — X

or, what is the same, a global sectionfofG /Fix(A)) — X, that is, a reduction
of the structure group ok’ to Fix(A).
The converse (a bundle that reduces tq Rixis a fixed point) is easy.
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FiXed points of Spin(8, C)-bundles

Then, we have proved the desired theorem
Theorem. Let X be a compact Riemann surface. ket Out(G) with
G = Spin(8, C) an element of order three. L&t° () be the subset of fixed

points of M ((G) for the action ofr and M? (G) be the subset of stable
and simple fixed points. Then,

stable,stimple

e~

M(G3) UM(SL(3,C)) € M (Spin(8, C))

and

P e

MJ(Spin(Sa <C))sta,ble,sz'm,ple g M(G2) U M(SL(37 C))v

—_— ~——

where, ifH is a subgroup of, M(H) is the image of the map
M(H) - M(G), E— ExgG

induced by the inclusion of groupg?d — G.
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ndix

e last result.
. This is the last theorem of the lecture.



ndix

e last result.
. This is the last theorem of the lecture.



Appendix

Finally, the last result.
Theorem. This is the last theorem of the lecture.
Proof.

THE END
THANK YOU VERY MUCH
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