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Let (V,Q) be anm-dimensionalC-vector space (m ≥ 2) equipped with a

non-degenerate symmetric bilinear form,Q.
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Representations ofso(2n, C)

Let (V,Q) be anm-dimensionalC-vector space (m ≥ 2) equipped with a

non-degenerate symmetric bilinear form,Q.

The groupG = SO(Q) = SO(n,C) is the group of automorphisms ofV

preservingQ and with determinant one. Its Lie algebra isg = so(Q) = so(n,C).

It is simple of dimensionm(m− 1)/2.

Triality and fixed points ofSpin-bundles – p. 4/28



Representations ofso(2n, C)

Let (V,Q) be anm-dimensionalC-vector space (m ≥ 2) equipped with a

non-degenerate symmetric bilinear form,Q.

The groupG = SO(Q) = SO(n,C) is the group of automorphisms ofV

preservingQ and with determinant one. Its Lie algebra isg = so(Q) = so(n,C).

It is simple of dimensionm(m− 1)/2.

Supposem = 2n.

Triality and fixed points ofSpin-bundles – p. 4/28



Representations ofso(2n, C)

Let (V,Q) be anm-dimensionalC-vector space (m ≥ 2) equipped with a

non-degenerate symmetric bilinear form,Q.

The groupG = SO(Q) = SO(n,C) is the group of automorphisms ofV

preservingQ and with determinant one. Its Lie algebra isg = so(Q) = so(n,C).

It is simple of dimensionm(m− 1)/2.

Supposem = 2n.

We can choose a basis in whichQ has matrix

M =





0 In

In 0



 .
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Representations ofso(2n, C)

Let (V,Q) be anm-dimensionalC-vector space (m ≥ 2) equipped with a

non-degenerate symmetric bilinear form,Q.

The groupG = SO(Q) = SO(n,C) is the group of automorphisms ofV

preservingQ and with determinant one. Its Lie algebra isg = so(Q) = so(n,C).

It is simple of dimensionm(m− 1)/2.

Supposem = 2n.

We can choose a basis in whichQ has matrix

M =





0 In

In 0



 .

LetEij be the2n× 2n matrix with1 in the(i, j) position and0 in the others.

Then, the matrices

Hi = Eii − En+i,n+i

generate a Cartan subalgebra ofg. LetL1, . . . , Ln be the duals.
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Representations ofso(2n, C)

The adjoint representation

ad : so(2n,C) → gl(so(2n,C))

is irreducible of dimensionn(2n− 1) and with maximal weightL1 + L2.
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The adjoint representation

ad : so(2n,C) → gl(so(2n,C))

is irreducible of dimensionn(2n− 1) and with maximal weightL1 + L2.

The standard representation

st : so(2n,C) → gl(V )

is irreducible of dimension2n and maximal weightL1.
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Representations ofso(2n, C)

The adjoint representation

ad : so(2n,C) → gl(so(2n,C))

is irreducible of dimensionn(2n− 1) and with maximal weightL1 + L2.

The standard representation

st : so(2n,C) → gl(V )

is irreducible of dimension2n and maximal weightL1.

The spin representation ofso(2n,C)

∆ : so(2n,C) → gl

(

•
∧

W

)

,

whereW is an isotropicn-dimensional subspace ofV breaks into the two

half-spin representations Triality and fixed points ofSpin-bundles – p. 5/28



Representations ofso(2n, C)

∆+ : so(2n,C) → gl

(

+
∧

W

)

,

∆− : so(2n,C) → gl

(

−
∧

W

)

,

both irreducible and with maximal weights

1

2
(L1 + · · · + Ln−1 + Ln) and

1

2
(L1 + · · · + Ln−1 − Ln)

respectively.
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The case ofso(8, C)

The Dynkin diagram of the algebraso(8,C) isD4,
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The case ofso(8, C)

Theorem. Let g be a simple algebra. The groupOut(g) = Aut(g)/ Int(g) is

isomorphic to the group of symmetries of the Dynkin diagram of g.
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The case ofso(8, C)

Theorem. Let g be a simple algebra. The groupOut(g) = Aut(g)/ Int(g) is

isomorphic to the group of symmetries of the Dynkin diagram of g.

From the theorem it follows thatOut(so(8,C)) is isomorphic toS3. In particular,

so(8,C) admits two different automorphisms (modulo inner automorphisms) of

order3 (those corresponding to the symmetries ofD4). These automorphisms are

mutually inverse.
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This table sums up the basic information about representations:
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The case ofso(8, C)

Theorem. Let g be a simple algebra. The groupOut(g) = Aut(g)/ Int(g) is

isomorphic to the group of symmetries of the Dynkin diagram of g.

From the theorem it follows thatOut(so(8,C)) is isomorphic toS3. In particular,

so(8,C) admits two different automorphisms (modulo inner automorphisms) of

order3 (those corresponding to the symmetries ofD4). These automorphisms are

mutually inverse.

This table sums up the basic information about representations:

Representation Complex dimension Dominant weight

ad 28 L1 + L2

st 8 L1

∆+ 8 1
2 (L1 + L2 + L+ L4)

∆− 8 1
2 (L1 + L2 + L− L4)
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The case ofso(8, C)

The family of weights

{L1, L1 + L2,
1
2 (L1 + L2 + L3 + L4),

1
2 (L1 + L2 + L3 − L4)} is a fundamental

system of weights ofso(8,C).
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The case ofso(8, C)

The family of weights

{L1, L1 + L2,
1
2 (L1 + L2 + L3 + L4),

1
2 (L1 + L2 + L3 − L4)} is a fundamental

system of weights ofso(8,C).

In fact, the automorphisms of order three ofso(8,C) leaves the standard

representation invariant and moves the other three (ad to ∆−, ∆− to ∆+ and∆+

to ad), so these automorphisms correspond to the order three symmetries of the

Dynkin diagram
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The case ofso(8, C)

L1 L1+L2

(L1+L2+L3+L4)/2   

(L1+L2+L3-L4)/2 
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The case ofso(8, C)

Let τ andτ−1 be the automorphisms of order three. InAut(so(8,C)) we consider

other equivalence relation,∼i, given by conjugation by inner automorphisms, that

is, if α, β ∈ Aut(so(8,C)),

α ∼i β ⇔ ∃θ ∈ Int(so(8,C)) : α = θβθ−1.
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is, if α, β ∈ Aut(so(8,C)),

α ∼i β ⇔ ∃θ ∈ Int(so(8,C)) : α = θβθ−1.

Let Aut3(so(8,C)) be the set of automorphisms of order three. In our language,

results of Wolf and Gray prove the following propositions.

Triality and fixed points ofSpin-bundles – p. 11/28



The case ofso(8, C)

Let τ andτ−1 be the automorphisms of order three. InAut(so(8,C)) we consider

other equivalence relation,∼i, given by conjugation by inner automorphisms, that

is, if α, β ∈ Aut(so(8,C)),

α ∼i β ⇔ ∃θ ∈ Int(so(8,C)) : α = θβθ−1.

Let Aut3(so(8,C)) be the set of automorphisms of order three. In our language,

results of Wolf and Gray prove the following propositions.

Proposition. Aut3(so(8,C))/ ∼i has four elements, the classes ofτ andτ−1 and

the classes of other two automorphisms of order three,τ ′ andτ ′−1.

Out3(so(8,C)) is given by the classes ofτ y τ−1.
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The case ofso(8, C)

Proposition. Via the natural map

Aut3(so(8,C))/ ∼i→ Out3(so(8,C)) ∪ {1},

the classes ofτ andτ ′ modulo inner conjugation are sent to the class ofτ modulo

inner automorphisms and the classes ofτ−1 andτ ′−1 modulo inner conjugation

are sent to the class ofτ−1 modulo inner automorphisms.
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The case ofso(8, C)

Proposition. Via the natural map

Aut3(so(8,C))/ ∼i→ Out3(so(8,C)) ∪ {1},

the classes ofτ andτ ′ modulo inner conjugation are sent to the class ofτ modulo

inner automorphisms and the classes ofτ−1 andτ ′−1 modulo inner conjugation

are sent to the class ofτ−1 modulo inner automorphisms.

It is relevant for us to study tha algebras of fixed points ofτ andτ ′. The same

work of Wolf and Gray gives us the key.
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The case ofso(8, C)

Proposition. Via the natural map

Aut3(so(8,C))/ ∼i→ Out3(so(8,C)) ∪ {1},

the classes ofτ andτ ′ modulo inner conjugation are sent to the class ofτ modulo

inner automorphisms and the classes ofτ−1 andτ ′−1 modulo inner conjugation

are sent to the class ofτ−1 modulo inner automorphisms.

It is relevant for us to study tha algebras of fixed points ofτ andτ ′. The same

work of Wolf and Gray gives us the key.

Proposition. The algebra of fixed points ofτ is isomorphic to the algebrag2 and

the algebra of fixed points ofτ ′ is isomorphic to the algebraa2.
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Triality automorphism

Recall the definition and basic properties ofSpin groups.
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Triality automorphism

Recall the definition and basic properties ofSpin groups.

Let K be a field and(V,Q) aK-vector space equipped with a symmetric bilinear

form. In the tensor algebra ofV ,
⊗

V , we consider the ideal

J(V ) = 〈v ⊗ v −Q(v, v) : v ∈ V 〉 .
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Triality automorphism

Recall the definition and basic properties ofSpin groups.

Let K be a field and(V,Q) aK-vector space equipped with a symmetric bilinear

form. In the tensor algebra ofV ,
⊗

V , we consider the ideal

J(V ) = 〈v ⊗ v −Q(v, v) : v ∈ V 〉 .

We define the Clifford algebra associated toV andQ as

Cl(Q) =
⊗

V/J(V ).
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Triality automorphism

Recall the definition and basic properties ofSpin groups.

Let K be a field and(V,Q) aK-vector space equipped with a symmetric bilinear

form. In the tensor algebra ofV ,
⊗

V , we consider the ideal

J(V ) = 〈v ⊗ v −Q(v, v) : v ∈ V 〉 .

We define the Clifford algebra associated toV andQ as

Cl(Q) =
⊗

V/J(V ).

LetCl(Q)0 be the subalgebra of the Clifford algebra generated by the products of

an even number of elements ofV and the automorphism∗ : Cl(Q) → Cl(Q)

defined by

(v1 · · · · · vr)
∗ = (−1)rvr · · · · · v1.
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Triality automorphism

We define the groupSpin as

Spin(Q) = {x ∈ Cl(Q)0 : x is invertible,xx∗ = 1, xV x∗ ⊆ V } .
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Triality automorphism

We define the groupSpin as

Spin(Q) = {x ∈ Cl(Q)0 : x is invertible,xx∗ = 1, xV x∗ ⊆ V } .

We will consider the complex field and dimension8.
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We will consider the complex field and dimension8.

The following properties ofSpin will be relevant for us.
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Triality automorphism

We define the groupSpin as

Spin(Q) = {x ∈ Cl(Q)0 : x is invertible,xx∗ = 1, xV x∗ ⊆ V } .

We will consider the complex field and dimension8.

The following properties ofSpin will be relevant for us.

The Lie algebra ofSpin(8,C) is so(8,C).

Spin(8,C) is simply connected. So it is the simply connected group of

algebraso(8,C).
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Triality automorphism

We define the groupSpin as

Spin(Q) = {x ∈ Cl(Q)0 : x is invertible,xx∗ = 1, xV x∗ ⊆ V } .

We will consider the complex field and dimension8.

The following properties ofSpin will be relevant for us.

The Lie algebra ofSpin(8,C) is so(8,C).

Spin(8,C) is simply connected. So it is the simply connected group of

algebraso(8,C).

The mapρ : Spin(8,C) → SO(8,C), x 7→ ρ(x)(v) = xvx∗ is a2 : 1

covering map. SoSpin(8,C) is the universal cover ofSO(8,C).
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Triality automorphism

We know that there is a bijective correspondence between theautomorphisms of a

simply connected group and those of its Lie algebra. Moreover, we have the

following result.
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Triality automorphism

We know that there is a bijective correspondence between theautomorphisms of a

simply connected group and those of its Lie algebra. Moreover, we have the

following result.

Proposition. Let g be a complex Lie algebra andG the unique connected and

simply connected group with Lie algebrag. Then, there is a natural automorphism

of short exact sequences of groups

1 −−−−→ Int(G) −−−−→ Aut(G) −−−−→ Out(G) −−−−→ 1




y





y





y

1 −−−−→ Int(g) −−−−→ Aut(g) −−−−→ Out(g) −−−−→ 1.
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Triality automorphism

We know that there is a bijective correspondence between theautomorphisms of a

simply connected group and those of its Lie algebra. Moreover, we have the

following result.

Proposition. Let g be a complex Lie algebra andG the unique connected and

simply connected group with Lie algebrag. Then, there is a natural automorphism

of short exact sequences of groups

1 −−−−→ Int(G) −−−−→ Aut(G) −−−−→ Out(G) −−−−→ 1




y





y





y

1 −−−−→ Int(g) −−−−→ Aut(g) −−−−→ Out(g) −−−−→ 1.

We obtain that the automorphismτ lifts uniquely to an automorphism of

Spin(8,C). this automorphism is calledtriality automorphism.
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Triality automorphism

The automorphismτ ′ lifts uniquely to an automorphism ofSpin(8,C), too. Let it

bej′.
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Triality automorphism

The automorphismτ ′ lifts uniquely to an automorphism ofSpin(8,C), too. Let it

bej′.

From all this we deduce that the group of fixed points ofj is isomorphic toG2 and

the group of fixed points ofj′ is isomorphic toSL(3,C).
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Moduli of principal bundles

Definition. LetG be a reductive group. A holomorphic principalG-bundleE is

said to be stable (resp. semistable) if for each reduction ofthe structure group of

E to a parabolic subgroupP of G (that is, for each global sectionσ : X → E/P ),

we have thatdeg σ∗(TG/P ) > 0 (resp.≥ 0), whereTG/P is the sub-bundle of

TE/P , tangent along the fibres ofE/P .
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Moduli of principal bundles

Definition. LetG be a reductive group. A holomorphic principalG-bundleE is

said to be stable (resp. semistable) if for each reduction ofthe structure group of

E to a parabolic subgroupP of G (that is, for each global sectionσ : X → E/P ),

we have thatdeg σ∗(TG/P ) > 0 (resp.≥ 0), whereTG/P is the sub-bundle of

TE/P , tangent along the fibres ofE/P .

This notion coincides with the classical notion of Mumford for vector bundles in

the case in whichG = GL(n,C).
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Definition. LetG be a reductive group. A holomorphic principalG-bundleE is

said to be stable (resp. semistable) if for each reduction ofthe structure group of

E to a parabolic subgroupP of G (that is, for each global sectionσ : X → E/P ),

we have thatdeg σ∗(TG/P ) > 0 (resp.≥ 0), whereTG/P is the sub-bundle of

TE/P , tangent along the fibres ofE/P .

This notion coincides with the classical notion of Mumford for vector bundles in

the case in whichG = GL(n,C).

As in the case of vector bundles, we can assign a graded element grE to each

semistableG-bundleE, so we have a good notion ofS-equivalence.
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Definition. LetG be a reductive group. A holomorphic principalG-bundleE is

said to be stable (resp. semistable) if for each reduction ofthe structure group of

E to a parabolic subgroupP of G (that is, for each global sectionσ : X → E/P ),

we have thatdeg σ∗(TG/P ) > 0 (resp.≥ 0), whereTG/P is the sub-bundle of

TE/P , tangent along the fibres ofE/P .

This notion coincides with the classical notion of Mumford for vector bundles in

the case in whichG = GL(n,C).

As in the case of vector bundles, we can assign a graded element grE to each

semistableG-bundleE, so we have a good notion ofS-equivalence.

Definition. Two semistable bundles are said to beS-equivalent if they have

isomorphic graded elements.
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Moduli of principal bundles

Definition. LetG be a reductive group. A holomorphic principalG-bundleE is

said to be stable (resp. semistable) if for each reduction ofthe structure group of

E to a parabolic subgroupP of G (that is, for each global sectionσ : X → E/P ),

we have thatdeg σ∗(TG/P ) > 0 (resp.≥ 0), whereTG/P is the sub-bundle of

TE/P , tangent along the fibres ofE/P .

This notion coincides with the classical notion of Mumford for vector bundles in

the case in whichG = GL(n,C).

As in the case of vector bundles, we can assign a graded element grE to each

semistableG-bundleE, so we have a good notion ofS-equivalence.

Definition. Two semistable bundles are said to beS-equivalent if they have

isomorphic graded elements.

The moduli of principalG-bundles,M(G), is, then, an algebraic variety that

parametrizes classes ofS-equivalence of semistable bundles.
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Moduli of principal bundles

This theorem (due to A. Ramanathan) gives some useful properties of the moduli

of principal bundles.
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This theorem (due to A. Ramanathan) gives some useful properties of the moduli

of principal bundles.

Theorem. If G es semisimple,M(G) is an algebraic variety of dimension

dim g(g − 1). The number of connected components ofM(G) is equal to the

number of elements ofπ1(G). In particular, ifG is simply connected,M(G) is

connected and, in fact, irreducible.
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This theorem (due to A. Ramanathan) gives some useful properties of the moduli

of principal bundles.

Theorem. If G es semisimple,M(G) is an algebraic variety of dimension

dim g(g − 1). The number of connected components ofM(G) is equal to the

number of elements ofπ1(G). In particular, ifG is simply connected,M(G) is

connected and, in fact, irreducible.

From this,M(Spin(8,C)) is a variety of dimension28(g − 1) and the varieties

M(Spin(8,C)), M(G2) andM(SL(3,C)) are irreducible.
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Moduli of principal bundles

This theorem (due to A. Ramanathan) gives some useful properties of the moduli

of principal bundles.

Theorem. If G es semisimple,M(G) is an algebraic variety of dimension

dim g(g − 1). The number of connected components ofM(G) is equal to the

number of elements ofπ1(G). In particular, ifG is simply connected,M(G) is

connected and, in fact, irreducible.

From this,M(Spin(8,C)) is a variety of dimension28(g − 1) and the varieties

M(Spin(8,C)), M(G2) andM(SL(3,C)) are irreducible.

Recall the notion of simplicity.

Definition. A G-bundle is said to be simple if its unique automorphisms are

multiplication by elements of the center ofG.
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Moduli of principal bundles

We will study stable and simple fixed points for certain automorphisms of the

moduli of principalSpin(8,C)-bundles.
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Moduli of principal bundles

We will study stable and simple fixed points for certain automorphisms of the

moduli of principalSpin(8,C)-bundles.

Proposition. If G is semisimple,M(G) is smooth in the open set of stable simple

points.
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Moduli of principal bundles

We will study stable and simple fixed points for certain automorphisms of the

moduli of principalSpin(8,C)-bundles.

Proposition. If G is semisimple,M(G) is smooth in the open set of stable simple

points.

From this proposition we know that we will study smooth fixed points of the

moduli.
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Action of Out(G) in M(G)
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Action of Out(G) in M(G)

LetG a complex semisimple Lie group. The groupAut(G) acts onM(G) in this

way: if E is aG-bundle andA ∈ Aut(G),A(E) will be equal toE as a variety

but equipped with the following action ofG,

e♦g = eA−1(g)

for e ∈ E andg ∈ G.
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Action of Out(G) in M(G)

LetG a complex semisimple Lie group. The groupAut(G) acts onM(G) in this

way: if E is aG-bundle andA ∈ Aut(G),A(E) will be equal toE as a variety

but equipped with the following action ofG,

e♦g = eA−1(g)

for e ∈ E andg ∈ G.

If {ψij} are transition functions ofE, then{A ◦ ψij} are transition functions of

A(E).
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Action of Out(G) in M(G)

LetG a complex semisimple Lie group. The groupAut(G) acts onM(G) in this

way: if E is aG-bundle andA ∈ Aut(G),A(E) will be equal toE as a variety

but equipped with the following action ofG,

e♦g = eA−1(g)

for e ∈ E andg ∈ G.

If {ψij} are transition functions ofE, then{A ◦ ψij} are transition functions of

A(E).

With the point of view of transition functions, it is easy to show that ifA is an

inner automorphism ofG, thenE is isomorphic toA(E), that is, the action of

Aut(G) is trivial on Int(G).
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Action of Out(G) in M(G)

We can assure that the action ofAut(G) defines an action ofOut(G), that is, this

action ofOut(G) in M(G) is well defined: ifσ ∈ Out(G),A ∈ Aut(G) is a

representant ofσ andE ∈ M(G), we define

σ(E) = A(E).
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Action of Out(G) in M(G)

We can assure that the action ofAut(G) defines an action ofOut(G), that is, this

action ofOut(G) in M(G) is well defined: ifσ ∈ Out(G),A ∈ Aut(G) is a

representant ofσ andE ∈ M(G), we define

σ(E) = A(E).

Observe that, in order to prove that the preceding action is well defined, it is

necessary to see that, ifA ∈ Aut(G), thenA(E) is semistable ifE is semistable

(which is immediate form the definition of semistability) and the following result.

Proposition. If E1 andE2 are semistableS-equivalent bundles, thenA(E1) and

A(E2) areS-equivalent.
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Action of Out(G) in M(G)

We can assure that the action ofAut(G) defines an action ofOut(G), that is, this

action ofOut(G) in M(G) is well defined: ifσ ∈ Out(G),A ∈ Aut(G) is a

representant ofσ andE ∈ M(G), we define

σ(E) = A(E).

Observe that, in order to prove that the preceding action is well defined, it is

necessary to see that, ifA ∈ Aut(G), thenA(E) is semistable ifE is semistable

(which is immediate form the definition of semistability) and the following result.

Proposition. If E1 andE2 are semistableS-equivalent bundles, thenA(E1) and

A(E2) areS-equivalent.

The proof of the preceding proposition follows from the definition.
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Fixed points ofSpin(8, C)-bundles
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Fixed points ofSpin(8, C)-bundles

The main result of this work is the following.

Theorem. LetX be a compact Riemann surface. Letσ ∈ Out(G) with

G = Spin(8,C) an element of order three. LetMσ(G) be the subset of fixed

points ofM(G) for the action ofσ andMσ
stable,simple(G) be the subset of stable

and simple fixed points. Then,

M̃(G2) ∪ ˜M(SL(3,C)) ⊆ Mσ(Spin(8,C))

and

Mσ(Spin(8,C))stable,simple ⊆ M̃(G2) ∪ ˜M(SL(3,C)),

where, ifH is a subgroup ofG, M̃(H) is the image of the map

M(H) → M(G), E 7→ E ×H G

induced by the inclusion of groupsH →֒ G.
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Fixed points ofSpin(8, C)-bundles

Suppose thatA is a lifting of σ andE is a simple fixed point. ThenE andA(E)

are isomorphic. There exists an isomorphism

f : E → A(E).
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Fixed points ofSpin(8, C)-bundles

Suppose thatA is a lifting of σ andE is a simple fixed point. ThenE andA(E)

are isomorphic. There exists an isomorphism

f : E → A(E).

A acts on the bundles and on the morphisms. Taking into accountthatA3 = 1, we

have a chain

E
f
→ A(E)

A(f)
→ A2(E)

A2(f)
→ E,

and, so, an automorphism ofE

A2(f) ◦A(f) ◦ f : E → E.
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Fixed points ofSpin(8, C)-bundles

From the simplicity ofE we deduce the existence ofλ ∈ Z(Spin(8,C)) such that

A2(f) ◦A(f) ◦ f = λ.
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Fixed points ofSpin(8, C)-bundles

From the simplicity ofE we deduce the existence ofλ ∈ Z(Spin(8,C)) such that

A2(f) ◦A(f) ◦ f = λ.

In local terms, we obtain that the elements of the groupψfφ−1(x, 1) for x ∈ X

are the solutions of the equation

A2(g)A(g)g = λ.
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Fixed points ofSpin(8, C)-bundles

From the simplicity ofE we deduce the existence ofλ ∈ Z(Spin(8,C)) such that

A2(f) ◦A(f) ◦ f = λ.

In local terms, we obtain that the elements of the groupψfφ−1(x, 1) for x ∈ X

are the solutions of the equation

A2(g)A(g)g = λ.

It will be λ ∈ Fix(A). We know that Fix(A) ∼= G2 or Fix(A) ∼= SL(3,C). From

this and the fact thatλ is in the center, we can deduce thatλ = 1. So we have the

equation

A2(g)A(g)g = 1.
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Fixed points ofSpin(8, C)-bundles

This equation determines a varietyH with tangent space at1

ker
(

dA2
∣

∣

1
+ dA|1 + id

)

.
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Fixed points ofSpin(8, C)-bundles

This equation determines a varietyH with tangent space at1

ker
(

dA2
∣

∣

1
+ dA|1 + id

)

.

We consider the mapX → E(G/H) defined in the following way. Forx ∈ X and

(U, φ) a local trivialization ofE, the image ofx is
[

φ−1(x, 1), H
]

. It is well

defined and defines a global section ofE(G/H).
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Fixed points ofSpin(8, C)-bundles

This equation determines a varietyH with tangent space at1

ker
(

dA2
∣

∣

1
+ dA|1 + id

)

.

We consider the mapX → E(G/H) defined in the following way. Forx ∈ X and

(U, φ) a local trivialization ofE, the image ofx is
[

φ−1(x, 1), H
]

. It is well

defined and defines a global section ofE(G/H).

Global section ofE(G/H) induce global sections of

E
(

Grk
(

ker
(

dA2
∣

∣

1
+ dA|1 + id

)))

→ X

(details are due to A. Ramanathan), wherek is the dimension of the subalgebra

ker
(

dA2
∣

∣

1
+ dA|1 + id

)

.
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Fixed points ofSpin(8, C)-bundles

It can be seen that the subalgebrasker
(

dA2
∣

∣

1
+ dA|1 + id

)

andker (dA|1 − id)

are semisimple and mutually orthogonal with respect to the Killing form. From

this, it is equivalent a global section of

E
(

Grk
(

ker
(

dA2
∣

∣

1
+ dA|1 + id

)))

→ X

an a global section of

E (Gr(ker (dA|1 − id))) → X

or, what is the same, a global section ofE(G/Fix(A)) → X, that is, a reduction

of the structure group ofE to Fix(A).
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Fixed points ofSpin(8, C)-bundles

It can be seen that the subalgebrasker
(

dA2
∣

∣

1
+ dA|1 + id

)

andker (dA|1 − id)

are semisimple and mutually orthogonal with respect to the Killing form. From

this, it is equivalent a global section of

E
(

Grk
(

ker
(

dA2
∣

∣

1
+ dA|1 + id

)))

→ X

an a global section of

E (Gr(ker (dA|1 − id))) → X

or, what is the same, a global section ofE(G/Fix(A)) → X, that is, a reduction

of the structure group ofE to Fix(A).

The converse (a bundle that reduces to Fix(A) is a fixed point) is easy.
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Fixed points ofSpin(8, C)-bundles

Then, we have proved the desired theorem

Theorem. LetX be a compact Riemann surface. Letσ ∈ Out(G) with

G = Spin(8,C) an element of order three. LetMσ(G) be the subset of fixed

points ofM(G) for the action ofσ andMσ
stable,simple(G) be the subset of stable

and simple fixed points. Then,

M̃(G2) ∪ ˜M(SL(3,C)) ⊆ Mσ(Spin(8,C))

and

Mσ(Spin(8,C))stable,simple ⊆ M̃(G2) ∪ ˜M(SL(3,C)),

where, ifH is a subgroup ofG, M̃(H) is the image of the map

M(H) → M(G), E 7→ E ×H G

induced by the inclusion of groupsH →֒ G.
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Appendix

Finally, the last result.
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Appendix

Finally, the last result.

Theorem. This is the last theorem of the lecture.

Proof.
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Appendix

Finally, the last result.

Theorem. This is the last theorem of the lecture.

Proof.

THE END

THANK YOU VERY MUCH
�

Triality and fixed points ofSpin-bundles – p. 28/28


	Table of contents
	Table of contents
	Table of contents
	Table of contents
	Table of contents
	Table of contents
	Table of contents

	References
	References
	References
	References
	References
	References
	References
	References

	Representations of $mathfrak {so}(2n,mathbb {C})$
	Representations of $mathfrak {so}(2n,mathbb {C})$
	Representations of $mathfrak {so}(2n,mathbb {C})$
	Representations of $mathfrak {so}(2n,mathbb {C})$
	Representations of $mathfrak {so}(2n,mathbb {C})$
	Representations of $mathfrak {so}(2n,mathbb {C})$

	Representations of $mathfrak {so}(2n,mathbb {C})$
	Representations of $mathfrak {so}(2n,mathbb {C})$
	Representations of $mathfrak {so}(2n,mathbb {C})$

	Representations of $mathfrak {so}(2n,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$

	The case of $mathfrak {so}(8,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$

	The case of $mathfrak {so}(8,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$

	The case of $mathfrak {so}(8,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$

	The case of $mathfrak {so}(8,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$
	The case of $mathfrak {so}(8,mathbb {C})$

	Triality automorphism
	Triality automorphism
	Triality automorphism
	Triality automorphism
	Triality automorphism

	Triality automorphism
	Triality automorphism
	Triality automorphism
	Triality automorphism
	Triality automorphism
	Triality automorphism

	Triality automorphism
	Triality automorphism
	Triality automorphism

	Triality automorphism
	Triality automorphism

	Moduli of principal bundles
	Moduli of principal bundles
	Moduli of principal bundles
	Moduli of principal bundles
	Moduli of principal bundles
	Moduli of principal bundles

	Moduli of principal bundles
	Moduli of principal bundles
	Moduli of principal bundles
	Moduli of principal bundles

	Moduli of principal bundles
	Moduli of principal bundles
	Moduli of principal bundles

	Action of $Out (G)$ in $mathcal {M}(G)$
	Action of $Out (G)$
in $mathcal {M}(G)$
	Action of $Out (G)$
in $mathcal {M}(G)$
	Action of $Out (G)$
in $mathcal {M}(G)$

	Action of $Out (G)$ in $mathcal {M}(G)$
	Action of $Out (G)$
in $mathcal {M}(G)$
	Action of $Out (G)$
in $mathcal {M}(G)$

	Fixed points of $Spin (8,mathbb {C})$-bundles
	Fixed points of $Spin (8,mathbb {C})$-bundles

	Fixed points of $Spin (8,mathbb {C})$-bundles
	Fixed points of $Spin (8,mathbb {C})$-bundles

	Fixed points of $Spin (8,mathbb {C})$-bundles
	Fixed points of $Spin (8,mathbb {C})$-bundles
	Fixed points of $Spin (8,mathbb {C})$-bundles

	Fixed points of $Spin (8,mathbb {C})$-bundles
	Fixed points of $Spin (8,mathbb {C})$-bundles
	Fixed points of $Spin (8,mathbb {C})$-bundles

	Fixed points of $Spin (8,mathbb {C})$-bundles
	Fixed points of $Spin (8,mathbb {C})$-bundles

	Fixed points of $Spin (8,mathbb {C})$-bundles
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix


