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The observations made  here are p rompted  by the paper  [1] of De Sapio in which 
he gives an exposi t ion of the principle of tr ial i ty and related topics in the context  
of the Octonion algebra of Cayley. However many  of the results discussed there 
are highly group theoret ic  and it seems desirable to have an exposit ion of t h e m  
f rom a purely group theoret ic  point  of view not using the Cayley numbers.  In 
what  follows this is what  we do. In par t icular  we discuss some proper t ies  of 
the imbeddings  of Spin(7) in SO(8) and Spin(8). The  techniques used here are 
well-known to specialists in representat ion theory  and so this paper  has a s emi -  
exposi tory  character .  We take for granted the basic propert ies  of Spin(n) and 
its spin representat ions  and refer to [2] for a beautiful  account of these. For 
general background in representat ion theory of compact  Lie groups we refer to 
[3]. The  main  results are Theorems 1.3 and 1.5, Theorem 2.3, and Theorems  
3.4 and 3.5. 

1. Conjugacy classes of  Sp in(7) - subgroups  in SO(8) and Spin(8) .  
We work over 1~ and in the category of compact  Lie groups. Spin(n) is the 
universal  covering group of SO(n).  We begin with a brief review of the me thod  
of const ruct ing the groups Spin(n) by the theory of Clifford algebras. 

Let  n be an integer _> 3. By the Clifford algebra Cn (over the field R of 
real numbers)  we mean  the algebra over R with n generators  xi(1 < i < n) such 
t ha t  

2 x~ = - 1 ,  x~xj  + xjx~ = 0 (i 7 £ j )  

I t  is of dimension 2 '~ and the elements 

1, x i lx i2  . . . x i  k (1 < i l  < i2 < . . .  < ik _< n) 

form a basis of Cn. The  elements x i x j  generate the subalgebra  C ° which is 
l inearly spanned by 

1, x i lx i2  . . .x i2~ (1 _< il  < i2 < . . .  < i2r < n) 
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This is the so-called even subalgebra of Ca. The algebra C,~ has a unique antiau- 
tomorphism/3 such that/3(x~) = x~ for all i. Spin(n) is the group of all elements 
u of C ° such that  

(i) u is invertible 

(ii) uVnu -1 = Vn where Vn is the linear span of the x~ 

(iii) ~(u)u = 1. 

Actually one should work with a vector space and a nondegenerate quadratic 
form of arbitrary signature over it, and associate a Clifford algebra to such data,  
but for our purposes this narrower definition will suffice. 

Let us now equip Vn with the metric for which the xi form an orthonormal 
basis. In this case Spin(u) is a connected Lie group. The action p(u) of any 
element u C Spin(u) on Vn by v,  > uvu -1 is an orthogonal t ransformation and 
p(u,  ~ p(u)) is a surjective morphism Spin(n) ~ SO(n) with kernel {+l} .  
Spin(u) is the universal covering group of SO(n). Spin(n) may also be described 
as the group of all elements of C ° of the form ulu2. . .u2k where the ui are 
elements of V,~ with Ilu~l] = 1 for all i. If n - k _ 3 and we identify SO(n - k) 
with the subgroup of SO(n) tha t  fixes the xi (1 _< i _< k), the preimage of 
SO(n - k) in Spin(n) through the covering map is Spin(n - k); this is because 
- 1  is in the connected component of the preimage, as may be seen by the fact 
tha t  for any i , j  (i ¢ j , i , j  > k + 1), the path etX'~J (0 < t < 7r) lies entirely 
in the connected component of the preimage and connects 1 and - 1  . Thus 
Spin(m)CSpin(n) i f3_<  m < n. I f 3 _ <  m < n a n d C m  is the subalgebra of 
Cn generated by the xi (1 < i < m), then Cm is the Clifford algebra with m 
generators. The two descriptions given above of the Spin groups then lead to 
the formula 

Spin(m) = Spin(n) N C ° 

An irreducible representation of Spin(n) is said to be of spin type if it is 
nontrivial on the kernel of the covering map Spin(n) ~ SO(n). The spin repre- 
sentations are the irreducible representations that  have the smallest dimension 
among the spin type representations of Spin(n). It can be shown that  these are 
the irreducible representations corresponding to the right extreme nodes of the 
Dynkin diagram of SO(n). 

In what follows we make essential use of the structure of real representations 
of certain compact Lie groups. To make our arguments self-contained we collect 
here those properties that  are of importance for us. If K,  H are compact Lie 
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groups, by a K-subgroup of H we mean a closed subgroup of H which is the 
image of an imbedding K ¢-+ H. 

Let G be a connected compact Lie group. By a real representation of G we 
mean an action of G by orthogonal linear transformations in a real euclidean 
space V or some R ~ with the usual scalar product. It may also be viewed 
as a morphism of G into SO(n). If such a representation L is irreducible, the 
commutant of L, namely the R-algebra of endomorphisms of V commuting with 
L, is a division algebra and so is one of R, C (as a R-algebra), H,  the quaternion 
algebra. Accordingly we shall say L is of type R, C, H. The complexification 
of a real irreducible representation L is already irreducible if L is of type R,  
and splits over C as M @ M where M is irreducible and M is the conjugate 
representation to M, in the other cases. If L is of type C, M and M are not 
equivalent, while for L of type H, M and M are equivalent. If L i ( i  = 1, 2) are 
two real irreducible representations of type R,  they are unitarily equivalent over 
C if and only if they are orthogonally equivalent over R. 

We shall list now the irreducible real representations of dimension < 8 of 
various groups of importance for us. The statements below are easily proved 
using the standard theory of representations. We shall write 1 for the trivial 
representation. An irreducible representation of dimension k is denoted by k. 
Generally this notation will be unambiguous in the context in which it is used. 
By k is meant the conjugate of the representation k when it is not equivalent to 
k. 

Spin(8) :  The three fundamental representations attached to the three extreme 
nodes of the Dynkin diagram-the vector representation 8 and the two spin rep- 
resentations 81, 82-are all of dimension 8 and are of type R; for the 8i this is 
due to the fact that the signature of the quadratic form on R s is - 0 mod 8 
[2]. All nontrivial irreducible representations (real or complex) have dimension 
>__ 8. Therefore there is no nontrivial real representation in dimension < 8, and 
in dimension 8 a real nontrivial representation is either the vector or one of the 
two spin representations. 

Spin(7) :  The vector representation is denoted by 7. The spin representation 
is of dimension 8 and is denoted by 8; both are of type R,  and for 8 this 
follows from the fact that the signature is = 7 mod 8 [2]. The fundamental 
representations of Spin (7) over C are 7, 8, and 21, the adjoint representation. 
So the only real irreducible representations of Spin(7) of dimension < 8 are 1, 7, 
8, and all are of type R. 21 is also of type R,  while 1 and 7 descend to SO(7). 
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SO(7) :  Since 8 is a faithful representation of Spin(7), the only real irreducible 
representations of S0(7) of dimension < 8 are 1, 7. 

Spin  (6) ~ SU(4) :  The fundamentals are 4, 6, 4. The representations 4 and 
are the spin representations; they are not real and do not descend to S0(6), while 
6, the vector representation of S0(6), is real and of type R. All irreducibles over 
C other than the fundamentals are of dimension > 10. So the real irreducible 
representations of dimension _< 8 are 1, 6, 4 @4, of types R,  R,  C respectively. 

SO(6) :  Since 4 @4 is faithful on Spin(6), for SO(6) the only real irreducibles 
of dimension < 8 are 1, 6. 

A d ( S O ( 6 ) ) :  Since 6 is faithful on SO(6), 1 is the only real irreducible of 
dimension < 8. 

G2: The fundamental representations are 7, 14. The representation 7 is thus 
self-dual and so admits an invariant nondegenerate bilinear form which is either 
symmetric or anti-symmetric. But the antisymmetric case cannot occur as the 
dimension is odd. So we have a nontrivial morphism of the complex group 
corresponding to G2 into S0(7,C). This morphism maps G2 into a maximal 
compact of S0(7,C) which is conjugate to SO(7). By the minimality of the 
dimension, 7 has to be of type R. The real irreducibles of G2 of dimension _< 8 
are thus 1, 7. G2 has trivial center and so there is no other group with the same 
Lie algebra. 

B2 ~ Spin(5) :  The fundamentals are 4, 5. 4 is the spin representation and 
is not real but is conjugate to itself; 5, the vector representation, is real and of 
type R. All other irreducibles have dimension _> 10. The real irreducibles of 
Spin(5) of dimension < 8 are thus 1, 5, 4 @ 4, of type R, R,  H respectively. 

SO(5) :  As before, the real irreducibles of S0(5) of dimension <_ 8 are 1 and 5, 
both of type R. 

A2 -~ SU(3) :  The fundamentals are 3 and 3. The adjoint representation is real 
and of type R and has dimension 8; we denote it by 8. In addition there is a 
pair 6 and 6 of irreducibles of dimension 6. The real irreducibles of dimension 
_<8arel, 8,3@3. 

A d ( S U ( 3 ) ) :  For Ad(SU(3)) the real irreducibles of dimension _~ 8 are 1, 8. 
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L e m m a  1. Let f l ,  f2 be two imbeddings of a compact connected Lie group K 
into a compact Lie group H. Suppose that all automorphisms of K are inner. 
Then f l  and f2 are conjugate by an element of H if and only if their images 
in H are conjugate as subgroups of H. In particular this is true for K = G2, 
Spin(7), SO(7). 

P roo f .  The only nontrivial point is to show that if f l  (K) and f2 (K) are con- 
jugate then f l  and f2 are conjugate. We may assume that f l (K )  = f2(K) and 
write S for this common image. Then S is a closed Lie subgroup of H and the 
f~ are isomorphisms of K with S. Hence f 21 f l  is an automorphism of K and 
so must be inner, say f21( f l (x ) )  = axa- l ( x  E K) for some a E K. This gives 
f l (x)  -.---- f2(a)f2(x)f2(a) -1 for all x e K. 

L e m m a  2. There is no imbedding of Spin(7) into the adjoint group of SO(8). 

P roo f .  Let H be the adjoint group of SO(8) and K be a closed subgroup 
isomorphic to Spin(7). Let ~, b be the Lie algebras of K, H respectively. The 
action of K on ~ splits over C into irreducible components, and as K acts 
faithfully, its nontrivial central element must act as - 1 in one of the components 
and so that component must have dimension > 8, the dimension of the spin 
representation of Spin(7). But the action of K on t~ is the adjoint representation 
of Spin(7) and so is irreducible over C and has dimension 21. As the dimension 
of ~ is 28 there is no room for an irreducible component of dimension > 8, a 
contradiction. 

T h e o r e m  3. The Spin(7)-subgroups of SO(8) form exactly 2 conjugacy classes. 
I fE i ( i  = 1, 2) denote these, then any outer automorphism of SO(8) maps E1 to 
E2. Finally, any Spin(7)-subgroup of SO(8) contains-1 and -1  is the nontrivial 
central element of that subgroup. 

Proof .  The spin representation 8 of Spin(7) may be viewed as an imbedding 
of Spin(7) into SO(8). Let u be an element of 0(8) of determinant - 1  and let 
f be an imbedding of Spin(7) into SO(8); write f '  = u f u  -1. We claim that f 
cannot be conjugate to f ' .  If f and f '  are conjugate there is x in SO(8) such 
that f = y f y - 1  where y = xu. This means that y commutes with the image 
of f and hence that y is a scalar, hence +1, and hence det(y) -- (+1) s = 1. 
This is a contradiction. To complete the proof of the first statement we must 
show that if g is any imbedding of Spin(7) into SO(8), g is conjugate either to 
f or to fl. But from the list of real representations of Spin(7) discussed above 
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we conclude that g must be the spin representation, hence is equivalent to f ,  
and so g = v f v  -1 where v E 0(8). If v is in SO(8), then g is conjugate to f;  
otherwise, it is conjugate to f~. For the last statement, if a Spin(7)-subgroup 
of SO(8) does not contain -1 ,  it imbeds into the adjoint group of SO(8) which 
contradicts Lemma 2. 

L e m m a  4. Any two SO(7)-subgroups of SO(8) are conjugate. 

Proof .  Let S be an $0(7) sitting inside SO(8). The action of S on R s must 
split as the direct sum of 1 and 7. Hence S must fix a unit vector which we 
may move by SO(8) to Uo where ui(0 < i < 7) is the standard basis of R s. So 
S must be conjugate to the SO(7) that fixes uo. 

We now come to imbeddings of Spin(7) into Spin(8). We begin with some 
remarks on Spin(8). Let Z be the center of Spin(8). Then Z is isomorphic to 

2 = 1 and ei = ejek where Z2~Z2 and so we can write Z = {1, eo, el, e2} where e i 
i jk  is any permutation of 012. If ai(i = 0, 1, 2) are the vector and spin represen- 
tations of Spin(8) (all of dimension 8), we can arrange the notation so that the 
kernel of ai is {1, ei}. The representations ai may be viewed as morphisms of 
Spin(8) onto SO(8) with R.1 as their commutants. The inner automorphisms 
of Spin(8) fix each element of Z but the outer automorphisms permute the ei. 
An automorphism is inner if and only if it fixes the ei; indeed, if it fixes each 
ei, it preserves each of the cri, and so induces the identity automorphism on 
the Dynkin diagram, and so must be inner. The group Aut(Spin(8))/Spin(8) is 
isomorphic to the permutation group of {e0, el, e2}. 

T h e o r e m  5. There exist Spin(7)-subgroups of Spin(8). Each of these contains 
exactly one of the ei. The subgroups that contain ei form a single conjugacy 
classes Ei. If  a is any automorphism of Spin(8) that moves ei to ej, then it 
takes Ei to Ej. In particular, there are exactly 3 conjugacy classes of Spin(7)- 
subgroups of Spin(8) and Aut(Spin(8))/Spin(8) acts transitively on them. 

Proof .  If g is a morphism of Spin(7) into SO(8), it can be lifted to a morphism 
f of Spin(7) into Spin(8) since Spin(8) is the universal covering group of SO(8). 
If g is already an imbedding, it is immediate that f is also an imbedding. Since 
imbeddings of Spin(7) into SO(8) exist by Theorem 3, it is clear that imbeddings 
of Spin(7) into Spin(S) also exist. 

If S is a Spin(7)-subgroup of Spin(8) that does not contain any of the ei, we 
have S N Z = {1}. Hence S imbeds as a Spin(7)-subgroup of the adjoint group 
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of Spin(8), contradicting Lemma 2. S must therefore contain at least one ei. 
But if it contains two, it contains all of Z. This cannot be true since the center 
of Spin(7) contains only 2 elements. Since inner automorphisms of Spin(8) fix 
the ei, Spin(7)-subgroups that contain different ei cannot be conjugate. 

Fix i and let Sj (j = 1, 2) be two Spin(7)-subgroups of Spin(8) that contain 
ei. We claim that $1 and $2 are conjugate. We have remarked that we may view 
the repr.esentation ai as a morphism of Spin(8) onto SO(8) with kernel {1, ei}. 
Then ai(Sj)( j  = 1, 2) are two SO(7)-subgroups of SO(8) and so are conjugate 
by Lemma 4, say by an element x' of SO(8). Let x E Spin(8) be above x'. Since 
Sj = a~-l(ai(Sj)), $1 and $2 are conjugate by x. This finishes the proof. 

Def in i t ion .  Two Spin(7)-subgroups in Spin(8) or SO(8) are called like if they 
belong to the same conjugacy class; otherwise they are called unlike.  

2. C o n j u g a c y  of  G2 a n d  D3-subgroups  inside Spin(7) .  Our goal is to 
study the intersection properties of Spin(7)-subgroups inside SO(8) and Spin(8). 
This will need some preparation, in fact a study of conjugacy classes of subgroups 
of Spin(7) which are isomorphic to G2 or D3. Here by D3 we mean any compact 
connected Lie group whose Lie algebra is isomorphic to s0(6), i.e., one of Spin(6), 
SO(6), or Ad(SO(6))=SO(6)/{+I}. 

L e m m a  1. There ezist imbeddings of Spin(6) in Spin(7), and of G2 in Spin(7) 
and SO(7). 

Proof .  From our remarks at the beginning of §1 on the construction of the 
spin groups based on the theory of the Clifford algebras we see that we have 
imbeddings Spin(m) ¢-~ Spin(n) if 3 < m < n. To obtain imbeddings of G2 in 
Spin(7) and SO(7) we argue as follows. 

First of all the adjoint group of G2 is already simply connected and so 
we may use the symbol G2 to refer to the unique compact group which has 
trivial center, simply connected, and has the corresponding Dynkin diagram. 
The irreducible representation 7 is real and of type R as we have seen earlier, 
and so may be viewed as a morphism of G2 into SO(7). Since G2 has trivial 
center, this morphism is an imbedding. It lifts to an imbedding of G2 in Spin(7). 

L e m m a  2. Let H be Spin(7) or SO(7) and let K be a proper closed connected 
subgroup of H. Assume that dim(K) >_ 14. Then K is either G2 or D3. Both 
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possibilities exist and in either case K is maximal among closed proper connected 
subgroups of H.  

Proof .  The rank of K is < 3. By classification we see that the only possibilities 
for K with dimension > 14 and < 21 are G2, G2.T where T is a circle group 
commuting with G2, and D3. In view of Lemma 1 it is enough to exclude G2"T. 

Let K = G.T where T is a circle group commuting with G -~ G2. If H = 
SO(7), the action of G2 on R 7 is nontrivial and so G already acts as 7. Thus 
T acts trivially. Hence T = 1, a contradiction. If H = Spin(7), we use the spin 
representation of Spin(7) in R s. The action of G is 1 @7 and so T acts trivially 
in each of the two components. Hence T = 1 again, a contradiction. 

For the maximality we need only check that we cannot have G2 c D3. 
Suppose there is such an inclusion. The Lie algebra of D3 has an irreducible 
faithful complex representation of dimension 6, and its restriction to the Lie 
algebra of G2 is nontrivial. This is impossible. 

T h e o r e m  3. The action, via the spin representation, of Spin(7) on the unit 
sphere in R s, is transitive, the stabilizer of any unit vector is connected and is 
a G2-subgroup of Spin(7), and all G2-subgroups of Spin(7) are obtained in this 
manner. In particular, for any G2-subgroup G C Spin(7), we have Spin(7)/G 
S 7, and all G2-subgroups in Spin(7) are conjugate. 

Proof .  Let G be a G2-subgroup of Spin(7). The spin representation of Spin(7) 
restricted to G is a faithful nontrivial representation of G in R s and so splits 
as 1 ~ 7. So G fixes a u n i t  vector uo in R s. Let H b e  the stabilizer of u0 
in Spin(7). Then H °, the connected component containing the identity of H,  
is a closed, connected, proper subgroup of Spin(7) containing G. By Lemma 2 
we must have H ° = G. So dim(H) = dim(H °) = 14. Hence Spin(7)/H has 
dimension 7, showing that Spin(7) acts transitively on the unit sphere in R s. 
Thus Sp in (7 ) /g  -~ S 7. If H ¢ g °, we would have Spin(7)/H ° as a nontrivial 
cover of Spin(7)/H - S 7 which is simply connected. Hence H = H0, i.e., H 
is connected. Thus G is the stabilizer of u0. If G1 is another G2-subgroup of 
Spin(7), the above argument applies to G1 equally, and so there is a unit vector 
ul such that G1 is the stabilizer of ul. If x E Spin(7) is such that x moves Ul 
to uo, it is clear that xG1x -1 is the stabilizer of Uo. Hence xGlX -1 = G. The 
theorem is completely proved. 

L e m m a  4. Any two G2-subgroups of SO(7) are conjugate. 
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P r o o f .  Let G be a G2-subgroup of S0(7). Then G acts as 7 on R 7. This 
implies tha t  if G, G1 are two G2-subgroups of S0(7),  there is x E O(7) such 
tha t  x G x  -~ = G~. If det(x) = -1 ,  we have d e t ( - x )  = 1 and so we may assume 
tha t  x E SO(7). 

L e m m a  5. Let H be either SO(7) or Spin(7). Let G C H be a G2-subgroup. 
I f  G C K C H where K is a closed proper subgroup of H,  then K = G if  H = 
SO(7), while K is either G or G U eG /f H = Spin(7), e being the nontrivial 
central element of Spin(7). In this case L = G U eG is a closed subgroup of H 
containing G as a subgroup of index 2. 

P r o o f .  We know already that  K ° = G. Suppose tha t  x E K.  Since all 
automorphisms of G are inner we can find y E G such that  z = y - i x  centralizes 
G. If H = SO(7), z must be =t=l as G acts as 7, hence z = 1 as it lies in SO(7). 
So x = y E G and therefore K = G in this case. Let now H = Spin(7). Imbed 
H in SO(8) via the spin representation. We know that  G splits as 1 ~ 7. Then 
z is +1 in each of the irreducible components and so, as det(z) = 1, we must 
have z = =t=1. So G C K C G U eG. Since G has trivial center, e ~ G, and so 
L = G U eG is a closed subgroup of H containing G as a subgroup of index 2. 

We take up now the structure and conjugacy properties of D3-subgroups 
in Spin(7) and SO(7). 

L e m m a  6. Let H be Spin (7) or SO(7) and let K be a connected D3-subgroup 
of H.  / f  H = Spin(7), then g = Spin(6) and contains the center of Spin(7). I f  
H = SO(7), then K = SO(6). I f N  is the normalizer o f g  in H (in either case), 
then N O = K and N / K  ~_ Z2. In particular, the only closed proper subgroups 
of H containing K are K and N .  

P r o o f .  Suppose K = SO(6) and there is a nontrivial morphism of K into 
Spin(7). For the action of K in R s via the spin representation the only possibility 
is 6 @ 1 @ 1. So K must fix a unit vector. But then, by Theorem 3, the image 
of K ,  of dimension 15, must be contained in a G2-subgroup of dimension 14, 
which is impossible. So any D3-subgroup of Spin(7) must be a Spin(6). 

Suppose tha t  K = Spin(6) C SO(7). T h e n K  acts as 1 @ 6 on R 7 and 
so K ~-~ SO(6), hence K _ SO(6) which is impossible because K is simply 
connected and SO(6) is not. If K -- Ad(SO(6)), K acts trivially on R ~ which is 
impossible. So any D3-subgroup of SO(7) is a SO(6). This also proves tha t  any 
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Spin(6)-subgroup of Spin(7) must contain the center of Spin(7) as otherwise it 
will imbed into SO(7). 

It is enough to determine the normalizer in SO(7) as the normalizer in 
Spin(7) is its preimage. We may assume that K is the SO(6) fixing uo, u~(0 G 
i < 6) being the standard basis of R 7. I f n  C N, we havenu0 = +uo a n d n  
acts on U0, the orthogonal complement of u0. If nuo = Uo, then n E K. Fix 
no ESO(7) such that nouo = -u0; then no E N. If n E N and nuo = -u0,  then 
noln  C K. So N = K U noK, showing that N / K  "~ Z2. 

Lemma 7. Any two Spin(6) (resp. SO(6))-subgroups of Spin(7) (resp. S0(7)) 
are conjugate. 

Proof .  Since the Spin(6) subgroups contain the center of Spin(7) we may come 
down to SO(7) and consider SO(6)-subgroups of SO(7). As we argued above, 
any SO(6)-subgroup of S0(7) must fix a unit vector. As SO(7) acts transitively 
on S 6, the conjugacy of any two SO(6)-subgroups of SO(7) is clear. 

Lemma 8. There exists an imbedding of SU(3) in G2, while there is no imbed- 
ding of the adjoint group of SU(3) in G2. 

Proof .  From the Dynkin diagram it is clear that there is a nontrivial morphism 
f of SU(3) into G2. Since the real irreducibles of Ad(SU(3)) are 1 and 8, it is 
clear that Ad(SU(3)) does not imbed into G2 which has a faithful representation, 
namely 7, in dimension 7. In particular, f must be an imbedding. 

Lem m a 9. Let G be a G2-subgroup and D a Spin(6)-subgroup of S = Spin(7). 
Then (G n D) ° ~- SU(3). 

Proof .  We note first that if L1, L2 are two closed Lie subgroups of a Lie group 
L, then 

dim(L1 N L2) _> dim(L1) + dim(L2) - dim(L). 

In fact, if [, h, [2 are the Lie algebras of L, L1, L2 respectively, [1 N [2 is the Lie 
algebra of L1 N L2 and dim(f1 + [2) _< dim(f). The result is immediate from 

dim(I1 + I2) + dim(J1 N [2) = dim([1) + dim([2). 

It follows from this that dim(GND) _> 14+15-21 = 8. The group H = (GND) ° 
has rank < 2. Since G is not contained in D, H is a proper subgroup of G and 
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so 8 < d im(H)  < 14. From classification we see that  the only possibilities are 
H = B2, A2. Suppose H = B2. Then B2 C G N D C S. Let us now look at  the 
image of these groups in the spin representation of S. The action of Spin(6) on 
R s splits either as 4 @ 4 or as 6 @ 1 @ 1 over C. Since Spin(6) acts faithfully, 
it has to be 4 @ 4. Let us look into the action of B2 in one of these pieces of 
dimension 4. From the dimensions of the irreducibles of B2 we see tha t  B2 must  
act irreducibly in bo th  components.  Hence B2 also splits as the direct sum of 
two representat ions of dimension 4. But  B2 C G and G splits as 1 @ 7. So 
B2 contains the trivial representation, a contradiction. So H = A2 ~ SU(3), by 
Lemma 8. 

3. Intersection properties of Spin(7)-subgroups in SO(8) and Spin(8). 
We have the following lemma. 

L e m m a  1. Let S1,S  2 be two distinct Spin(7)-subgroups of SO(S). If the Si are 
like, 

($1 N $2) ° = Spin(6). 

Moreover $1 N $2 has at most 2 connected components. 

P r o o f .  It follows from the inequality 

dim(L1 n L2) >_ dim(L1) + dim(L2) - dim(L).  

proved above tha t  dim(S1 N $2) >_ 21 + 21 - 28 = 14. Since $1 ¢ $2, $1 N $2 
is a proper  subgroup of $1, and so, from Lemmas 2.2 and 2.6 we know tha t  
G : -  ($1 n $2) ° is either a G2 or a Spin(6) subgroup.  

We claim tha t  G -~ Spin(6). Otherwise G -~ G2. Now $2 = ySly  -1 for some 
y E SO(8) and so G and y - l G y  are bo th  C $1. By Theorem 2.3 we can find 
Yl E $1 such tha t  y ~ l y - l G y y l  = G. Since all automorphisms of G are inner, we 
can find z E G such tha t  yylz centralizes G. But  the action of G on R s splits 
as the direct sum 1 @ 7 and so yylz  is 4-1 in each of the two components;  as it 
is in SO(8), yylz  = 4-1. Since 4-1, yl, z are all in $1, we see that  y E $1. But  
then $2 = $1. The last s ta tement  is immediate from Lemma 2.6 since $1 N $2 
normalizes its connected component  which is -~ Spin(6). 

We consider next  the case of unlike Spin(7)-subgroups. The argument  for 
this case is a little more involved. We begin with: 
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L e m m a  2. Let uo E R s be a unit vector and let S be a Spin(7)-subgroup of 
SO(8). Let  G be the G2-subgroup which is the stabilizer of uo in S.  Then we 

can f ind an x in 0(8) of determinant  - 1  such that XUo = - n o  and 

S n x S x  -1 = G U ( -1)G.  

P r o o f .  Let 0 E O(8) be the reflection in the orthogonal complement Uo of no. 
Then 0S0 is also a Spin(7)-subgroup of SO(8) and 0G0 is the stabilizer of u0 
in it. So both G and 0G0 may be viewed as G2-subgroups of SO(U0) which 
is an SO(7), and hence are conjugate by Lemma 2.4. Thus there is y E S0(8) 
which fixes uo such that  yOGOy -1 = G. If x = y0 then x G x  -1 = G and so G is 
contained in S n x S x  -1. Since det(x) = -1 ,  Theorem 2.3 implies that  S cannot 
be conjugate to x S x  -1 and hence in particular S ~ x S x  -1. Thus S n x S x  -1 is a 
proper closed subgroup of S containing G and so must be contained in G U ( - 1 ) G  
by Lemma 2.5. As - 1  lies in both of them the intersection must be G U ( -1 )G.  

L e m m a  3. IS S~, $2 are two unlike Spin(7)-subgroups of SO(8), then 

$1 n $2 = G U ( -1 )G,  G "" G2. 

P r o o f .  Suppose this were not true. Since ($1 N $2) ° ~- Spin(6) or G2, it must  
be a Spin(6)-subgroup. We can find by Lemma 2 a Spin(7)-subgroup $3 such 
that  $1 and $3 are unlike and ($1 N $3) ° = G where G -~ G2. Clearly $3 is 
different from $2. Hence 

dim(S1 n S2) : 15, dim(S1 N S3) : 14, dim(S2 n S3) : 15 

the last relation following from Lemma 1 as $2 and $3 are like. 

We now claim tha t  

dim((S1 N $2 n $3) °) _> 9. 

Let s~ be the Lie algebra of Si. Since dim(s1 n s3) = 14 it follows that  dim(s1 + 
~3) = 28 and so ~1 + s3 = so(8). Hence 

28 = dim(s1 + s3 + s2) = 28 + 21 - dim((sl  + s3) n s2) 

< 28 + 21 - dim((sl  Ns2) + (s3 ns2))  

= 49 - dim(s1 n s2) - dim(s3 N s2) + dim(s1 n s2 n s3) 

= 49 - 15 - 15 + dim(s1 n s2 n s3). 
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Hence 
dim(s1 n s2 n sa) _> 9. 

We thus have ($1 n $3)  0 - -  G -~ G2, ($2 N $3 )  0 --- D _~ Spin (6), and 

dim(G N D) _> 9. 

This contradicts Lemma 2.9. Thus (SINS2) ° ~ G2. Since -1  6 SINS2, Lemma 
2.5 finishes the proof. 

We have thus proved the following theorem. 

T h e o r e m  4. 
like we have 

Let Sdi  = 1, 2) be two Spin(7)-subgroups of SO(8). If  they are 

($I N $2) ° ~_ Spin(6), 

while, if they are unlike, we have 

S~ n S2 = G u (-1)a 

[SIDS2:(SINS2) °] < 2  

G~-G2. 

It now remains to lift this result to Spin(8). We have the following theorem. 

T h e o r e m  5. Let Si (i = 1, 2) be two distinct Spin(7)-subgroups of Spin(8). If  
they are like, then 

If  they are unlike, then 

Moreover, in this case, 

S1 n S2=Spin(6)  

S1N S2 = G ~_ G2. 

we can find a unique Spin(7)-subgroup So such that 
Si(i = O, 1, 2) belong to distinct conjugaey classes and 

So N $I n $2 = G ~- G2. 

I f  S~ is another Spin(7)-subgroup distinct from So such that So, S'o are like, we 
have 

(S~ n $1 N $2) ° = A ~_ SU(3) 
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Proof .  Let the center of Spin(8) be {1, co, el, e2}. Let ao be the fundamen- 
tal irreducible representation with kernel {1, e0}. If S~ contain Co, they map 
mod {1, co} into two distinct SO(7)-subgroups of SO(8) whose intersection 
acts trivially on a plane and so is SO(6). Clearly $1 N $2 = ao  ~ (SO(6)) 
must be a Spin(6) group, as otherwise we will have an SO(6) inside $1 which 
is impossible by Lemma 2.6. Suppose S~ are unlike. We may assume that 
ei E Si(i = 1, 2). Then ao maps S~(i = 1, 2) isomorphically onto a Spin(7)- 
subgroup S~ of SO(8). Since the S~ are unlike, (S~ N S~) ° _~ G2 and hence 
($1 N $2) ° = G -~ G2. But $1 n $2 c Si normalizes G, and hence, by Lemma 
2.6, $1 r~ $2 c (G u elG) ~ (G U e2G). Since G has trivial center, it cannot 
contain any of el, e2, ele2, so that G A elG = G r~ e2G = elG N e2G = 0. Hence 

Sl n S2 = a .  

Under co, $1 maps to the Spin(7)-subgroup S~ of SO(8) and the image G' 
of G is a G2-subgroup. It must therefore fix a unit vector uo so that we may 
view it as a subgroup of an SO(7). The preimage of this SO(7) by (to in Spin(8) 
is a Spin(7)-subgroup So of Spin(8) and G C So. Hence 

So n S~ n S2 = So n G = G 

Suppose now S~) is as in the statement of the theorem. Then 

,S'~ n,s'~ n ,s'2 = s~ ,na  =GNS~NSo 

Since So, S~ are like, SD r~ So = D is a Spin(6)-subgroup and 

(S~ n $1 n $2) ° = (G n D) ° 

By Lemma 2.9, as both G and D are contained in So, (G r~ D) ° _~ SU(3). This 
finishes the proof of the theorem. 

E x a m p l e .  It is possible that in Theorem 3.4, $1 r~ $2 for like Si is not con- 
nected. Let C be the Clifford algebra generated by xi(1 < i < 8) with relations 

2 - 1 , x i x j  + x jx i  = 0 (i ¢ j). The center of Spin(8) is easily seen to X i - ~  

be {+1, ± X l X 2 . . . x s } .  Let C1, C2 be the respective subalgebras generated by 
xi(2 < i < 8), x~(1 < i < 8, i ¢ 2). They are both the Clifford algebras in dimen- 
sions 7. Let $1, $2 be the spin groups inside C1,° C2 .o Clearly - 1  E Si(i = 1, 2). 
The images mod ( 1 , x l x 2 . . . x s }  of $1 and $2 are two like Spin(7)-subgroups 
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S~, S~ in SO(8) and ($1 n $2) ° (which is $1 N $2 by Theorem 3.5 but we do not 
need this fact) maps onto (S~ N S~) °. We claim that  S~ N S~ has 2 connected 
components. To verify this it is enough to exhibit elements u{ E S~ such that  (1) 
ul - u2 mod XlX2. . .  Xs and (2) ul does not map into (S~ N S~) °, i.e., neither Ul 
nor u l x l x 2 . . ,  xs is in ($1 n $2) °. These properties can be verified for ul  -- X2Xs 
a n d  u 2 -~ X l X 3 X 4 . , .  x7 .  Actually, ul @ C2, and u l x l x 2 . . .  Xs @ C1. 
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