
Fermionic Functional Integrals

Fermions and Grassmann Numbers

In the classical limit h̄ → 0, the commutators between bosonic fields vanish, so the

classical bosonic fields can be though as ordinary real-number valued (or complex-number

valued) functions of x. But for the fermionic fields, it’s the anticommutators which vanish,

so the classical fermionic fields anticommute with each other, Ψα(x)Ψβ(y) = −Ψβ(y)Ψα(x).

Consequently, their values are anticommuting Grassmann numbers rather than the ordinary

real or complex numbers.

So let me start with a quick review of Grassmann algebras. An algebra allows addition

and multiplication by real or complex numbers which obey the usual vector-space rules, and

it also allows multiplications of any two elements. In a Grassmann algebra, the product is

associative but not always commutative; instead the algebra is Z2 graded into even and odd

elements: the even Grassmann numbers act as bosons and the odd Grassmann numbers act

as fermions,

B1B2 = +B2B1 , F1F2 = −F2F1 , FB = +BF. (1)

A simple way to construct a Grassmann algebra is to start with N anticommuting

fermionic generators θ1, . . . , θN , and let the algebra span all linear combinations of all inde-

pendent products of the generators. For finite N such algebras have finite dimensions 2N

as vector spaces. Indeed, the generators anticommute with each other and with themselves,

hence they all square to zero, (any θi)
2 = 0, and in any non-zero product of θ’s no generator

may appear more then once. Consequently, any non-zero generator product has form

product = ±(1 or θ1)× (1 or θ2)× · · · (1 or θn), (2)

and there are 2n distinct products of this kind. For example, for N = 3 there are 8 distinct

products: 4 bosons (even products)

1, θ1θ2 , θ1θ3 , θ2θ3 , (3)
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and 4 fermions (odd products)

θ1 , θ2 , θ3 , θ1θ2θ3 . (4)

However, a classical fermionic field Ψα(x) acts as an infinite family of independent Grassmann

numbers, thus and independent generator Ψα(x) for each component α and each spacetime

point x. Hence, the Grassmann algebra generated by this fermionic field is infinite dimen-

sional.

Next, consider functions of Grassmann numbers. A function of an ordinary real or

complex number x can be expanded into a power series,

f(x) = f0 + f1 × x + f2 × x2 + f3 × x3 + · · · . (5)

However, a similar expansion for a function of an odd GN θ stops after the linear term,

f(θ) = f0 + f1 × θ + nothing else because θ2 = 0. (6)

Thus, a function of an odd GN is a linear polynomial with constant coefficients f0 and f1.

Likewise, a function of 2 independent odd GN θ1 and θ2 amounts to a quadratic polynomial

with 4 independent terms

f(θ1, θ2) = f00 + f10 × θ1 + f01 × θ2 + f11 × θ1θ2 . (7)

for some constants f00, f10, f01, f11. More generally, a function of N independent odd GN is

a degree-N polynomial with 2N independent terms.

Now let’s integrate over odd Grassmann numbers. Integration should be linear, so

∫
dθ
(
f(θ) = f0 + f1θ

)
(8)

should be a linear combination of the coefficients f0 and f1. Felix Berezin came up with the
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definition
∫
dθ
(
f(θ) = f0 + f1θ

) def
= f1 (9)

which is invariant under shifting the integration variable θ by a constant odd GN, f(θ) →

f(θ + η); indeed,

f(θ + η) = f0 + f1(θ + η) =
(
f0 + f1η) + f1θ, (10)

hence
∫
dθ f(η + η) = f1 =

∫
dθ f(θ). (11)

Berezin integral (9) has a straightforward generalization to integrals over several odd GN,

for example
∫
dθ2

∫
dθ1
(
f(θ1, θ2) = f00 + f10θ1 + f01θ2 + f11θ1θ2

)

=

∫
dθ2
(
f10 + f11θ2

)
= f11 .

(12)

More generally,
∫
dNθ f(θ1, . . . , θN )

def
=

∫
dθN · · ·

∫
dθ1 f(θ1, . . . , θN )

= coefficient of the senior θ1θ2 · · · θN term in the expansion of f.
(13)

Grassmann algebras with complex coefficients usually define complex conjugation g → g

of the Grassmann numbers themselves. From the Physics point of view, the Grassmann

numbers are classical limits of quantum operators, so their conjugation should behave similar

to the Hermitian conjugation in QM. In particular, for any two GN g1 and g2, odd or even,

g1 × g2 = +g2 × g1 . (14)

Also, complex Grassmann algebras have independent generators θi and θi, thus

θ × θ̄ = −θ̄ × θ 6= 0. (15)

Consequently,

f(θ, θ̄) = f00 + f10θ + f01θ̄ + f11θθ̄ , (16)
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∫
dθ̄

∫
dθ f(θ, θ̄) = f11 = coefficient of θθ̄, (17)

and likewise for functions of several complex GN and their conjugates. Note however that

conjugation reverses the order in which the GN are multiplied, hence

∫
dNθ =

∫
dθN · · ·

∫
dθ1 but

∫
dN θ̄ =

∫
dθ̄1 · · ·

∫
dθ̄N , (18)

and therefore

∫
dN θ̄

∫
dNθ f(θ1, . . . , θN ; θ̄1, . . . , θ̄N ) = coefficient of θ1 · · · θN × θ̄N · · · θ̄1 in f. (19)

Gaussian Integrals over Odd Grassmann Numbers

Of particular interest to QFT are the Gaussian integrals over the odd Grassmann num-

bers such as

∫
dN θ̄

∫
dNθ exp

(
−Θ†AΘ

)
,

∫
dN θ̄

∫
dNθ exp

(
−Θ†AΘ

)
× θ̄kθℓ, etc., etc., (20)

where

Θ†AΘ = θ̄iAijθj =
N∑

i,j=1

θ̄iAijθj , (21)

for some N ×N bosonic matrix Aij .

Theorem:

∫
dN θ̄

∫
dNθ exp

(
−Θ†AΘ

)
= det(A). (22)

Before proving this theorem for general N , let’s see how it works for N = 1 and N = 2. For
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N = 1, A is just a number (real or complex), Θ†AΘ is simply θ̄Aθ, and

exp
(
−θ̄Aθ

)
= 1 − θ̄Aθ + nothing else = 1 + A× θθ̄,

hence
∫
dθ̄

∫
dθ exp

(
−θ̄Aθ

)
=

∫
dθ̄

∫
dθ (1 + A× θθ̄) = A. (23)

Next, for N = 2

exp
(
−Θ†AΘ

)
= 1 −

(
Θ†AΘ

)
+ 1

2

(
Θ†AΘ

)2
(24)

where the highest component is

1
2

(
Θ†AΘ

)2
= 1

2AijAkℓ × θ̄iθj θ̄kθℓ = −1
2AijAkℓ × θjθℓ × θ̄iθ̄k . (25)

Moreover, since there are only two independent θ’s at play and they anticommute with each

other,

θjθℓ = ǫjℓθ1θ2 (26)

where ǫjℓ is the 2D Levi–Civita tensor, and likewise

θ̄iθ̄k = ǫik θ̄1θ̄2 = −ǫik θ̄2θ̄1 . (27)

Consequently,

[
exp
(
−Θ†AΘ

)]highest
component

= +1
2AijAkℓ × ǫjℓǫik × θ1θ2θ̄2θ̄1 (28)

and therefore
∫
d2θ̄

∫
d2θ exp

(
−Θ†AΘ

)
= +1

2AijAkℓ × ǫjℓǫik . (29)

Finally, on the RHS here

+1
2AijAkℓ × ǫjℓǫik = 1

2A11A22 − 1
2A12A21 − 1

2A21A12 + 1
2A22A11

= A11A22 − A12A21 = det(A),
(30)

which verifies the theorem for N = 2.
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In the same way, for N ≥ 3, the highest component of exp
(
−Θ†AΘ

)
is

1

N !

(
−Θ†AΘ

)N
=

(−1)N

N !
Ai1j1Ai2j2 · · ·AiN jN × θ̄i1θj1 θ̄i2θj2 · · · θ̄iN θjN

=
(−1)N

N !
Ai1j1Ai2j2 · · ·AiN jN × (−1)N(N+1)/2 θj1 · · · θjN × θ̄i1 · · · θ̄iN .

(31)

Furthermore, since there are only N θ’s at play

θj1 · · · θjN = ǫj1,...,jN × θ1 · · · θN (32)

where ǫj1,...,jN is the N -dimensional Levi–Civita tensor, and likewise

θ̄i1 · · · θ̄iN = ǫi1,...,iN × θ̄1 · · · θ̄N = ǫi1,...,iN × (−1)N(N−1)/2 θ̄N · · · θ̄1 . (33)

Consequently,

[
exp
(
−Θ†AΘ

)]highest
component

=
+1

N !
Ai1j1Ai2j2 · · ·AiN jN × ǫj1,j2,...,jN ǫi1,i2,...,iN ×θ1 · · · θN θ̄N · · · θ̄1

(34)

and therefore

∫
dN θ̄

∫
dNθ exp

(
−Θ†AΘ

)
=

+1

N !
Ai1j1Ai2j2 · · ·AiN jN × ǫj1,j2,...,jN ǫi1,i2,...,iN = det(A),

(35)

which proves the theorem (22).

Note: unlike the bosonic Gaussian integral

∫
dNz∗

∫
dNz exp

(
−z∗iAijzj

)
=

(2π)N

det(A)
, (36)

the fermionic Gaussian integral (22) is directly rather than inversely proportional to the

determinant det(A). However, both types of Gaussian integrals can be easily generalized to

Gaussian+ integrals such as

∫
dNz∗

∫
dNz exp

(
−z∗iAijzj

)
× zkz

∗
ℓ =

(2π)N

det(A)
×
(
A−1

)
kℓ
, (37)
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∫
dNz∗

∫
dNz exp

(
−z∗iAijzj

)
× zkzℓz

∗
mz
∗
n =

(2π)N

det(A)
× (38)

×
((

A−1
)
km

(
A−1

)
ℓn

+
(
A−1

)
kn

(
A−1

)
ℓm

)
,

etc., for the bosonic variables — as we saw last lecture, — and similarly

∫
dN θ̄

∫
dNθ exp

(
−Θ†AΘ

)
× θk θ̄ℓ = det(A)×

(
A−1

)
kℓ
, (39)

∫
dN θ̄

∫
dNθ exp

(
−Θ†AΘ

)
× θkθℓθ̄mθ̄n = det(A)× (40)

×
(
−
(
A−1

)
km

(
A−1

)
ℓn
+
(
A−1

)
kn

(
A−1

)
ℓm

)
,

etc., for the fermionic variables. Indeed,

∫
dN θ̄

∫
dNθ exp

(
−Θ†AΘ

)
× θkθ̄ℓ

=
∂

∂Aℓk

∫
dN θ̄

∫
dNθ exp

(
−Θ†AΘ

)

=
∂

∂Aℓk
det(A) = det(A)×

(
A−1

)
kℓ
,

(41)

likewise

∫
dN θ̄

∫
dNθ exp

(
−Θ†AΘ

)
× θkθℓθ̄mθ̄n

= −
∂

∂Anℓ

∂

∂Amk

∫
dN θ̄

∫
dNθ exp

(
−Θ†AΘ

)

= −
∂

∂Anℓ

∂

∂Amk
det(A) = −

∂

∂Anℓ

(
det(A)×

(
A−1

)
km

)

= det(A)×
(
−
(
A−1

)
km

(
A−1

)
ℓn
+
(
A−1

)
kn

(
A−1

)
ℓm

)
,

(42)

and similarly for more (θ, θ̄) pairs outside the exponential.
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Functional Integrals for Free Fermionic Fields

A ‘classical’ Dirac field Ψα(x) is odd–Grassmann–number valued. That is, for each

spacetime point x and each Dirac component α there is an independent complex Grassmann

variable Ψα(x) and its conjugate Ψ†α(x), and all such variables anticommute with each other.

The Dirac action

S[Ψ(x),Ψ(x)] =

∫
d4xΨ(i 6∂ −m)Ψ (43)

is bi-linear in Ψ and Ψ, so the Functional integral over these fields

∫∫∫
D[Ψ(x)]

∫∫∫
D[Ψ(x)] exp

(
iS[Ψ,Ψ]

)
= Det(6∂ + im) (44)

simply generalizes the Gaussian fermionic integrals from the previous section to the infinite-

dimensional family of independent fermionic variables. Likewise, the correlation functions

of the fermionic fields obtain from the generalization of the Gaussian+ integrals (39), (40),

etc.:

〈Ω|TΨ(y)Ψ(x) |Ω〉 =

∫∫∫
D[Ψ]

∫∫∫
D[Ψ] exp

(
iS[Ψ,Ψ]

)
×Ψ(y)Ψ(x)∫∫∫

D[Ψ]
∫∫∫
D[Ψ] exp

(
iS[Ψ,Ψ]

)

= 〈x|
i

i 6∂ −m
|y〉 =

∫
d4p

(2π)4
eip(x−y) ×

i

6p−m

(45)

(Dirac indices suppressed), likewise

〈Ω|TΨ(w)Ψ(z)Ψ(y)Ψ(x) |Ω〉 =

∫∫∫
D[Ψ]

∫∫∫
D[Ψ] exp

(
iS[Ψ,Ψ]

)
×Ψ(w)Ψ(z)Ψ(y)Ψ(x)∫∫∫

D[Ψ]
∫∫∫
D[Ψ] exp

(
iS[Ψ,Ψ]

)

= −〈x|
i

i 6∂ −m
|z〉 × 〈y|

i

i 6∂ −m
|w〉

+ 〈x|
i

i 6∂ −m
|w〉 × 〈y|

i

i 6∂ −m
|z〉 .

(46)

etc., etc.

For closer similarity with functional integrals over the bosonic fields, let’s analytically

continue the Dirac fields to the Euclidean spacetime and introduce the sources. In Euclidean
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spacetime, all 4 Dirac matrices γµE are Hermitian, specifically

γ4E = γ0M , ~γE = −i~γM , =⇒ {γµE , γ
ν
E} = 2δµν (47)

and also

6∂E = γ0M (−i∂0)M + (−i~γM ) · ∇M = −i 6∂M . (48)

Consequently,

iSM = i

∫
d4xM Ψ(i 6∂M −m)Ψ =

∫
d4xE Ψ(−6∂E −m)Ψ = −

∫
d4xE LE (49)

for

LE = Ψ(6∂E +m)Ψ. (50)

As to the sources, since Ψα(x) and Ψα(x) are independent fermionic fields, we have indepen-

dent sources for both of them, ηα(x) and ηα(x). Altogether, the Euclidean action including

the source terms is

SE [Ψ,Ψ; η, η] =

∫
d4xE

(
LE − ηΨ − Ψη

)
, (51)

the partition function is

Z[η, η] =

∫∫∫
D[Ψ]

∫∫∫
D[Ψ] exp

(
−SE [Ψ,Ψ; η, η]

)
, (52)

and its logarithm (or rather − log(Z)) is the generating functional of the connected correla-

tion functions,

Gconn
2 (x; y) = −

δ2 logZ[η, η̄]

δη̄(x) δη(y)
, etc. (53)

For the free fermions, this generation functional — or rather its dependence on η and η̄

sources — can be completed exactly by completing the action (51) to a full square: For any
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given η(x) and η̄(x), let

Ψ′(x) = Ψ(x) − (6∂ +m)−1η(x), Ψ
′
(x) = Ψ(x) − η(x)(

←

6∂ +m)−1, (54)

then

SE =

∫
d4xE

(
Ψ(6∂ +m)Ψ − ηΨ − Ψη

)
=

∫
d4xE

(
Ψ
′
(6∂ +m)Ψ′ − η(6∂ +m)−1η

)
(55)

and consequently

Z[η, η] =

∫∫∫
D[Ψ]

∫∫∫
D[Ψ] exp

(
−SE [Ψ,Ψ; η, η]

)

=

∫∫∫
D[Ψ

′
]

∫∫∫
D[Ψ′] exp

(
−

∫
d4xE Ψ

′
(6∂m)Ψ

′

)
× exp

(
+

∫
d4xe η(6∂ +m)−1η

)

= exp

(
+

∫
d4xe η(6∂ +m)−1η

)
× Z[0, 0].

(56)

Or in terms of the generating functional of the connected correlators,

− logZ[η, η̄] = − logZ0 −

∫
d4xe η(6∂ +m)−1η (exactly). (57)

Thus, the free Dirac fields have only one connected correlation function, namely the free

propagator

Gconn
2 (x, y) =

δ

δη̄(y)

δ

δη(x)

(
− logZ

)
= + 〈y| (6∂+m)−1 |x〉 =

∫
d4pE
(2π)4

eip(x−y)×
1

i 6pE +m
.

(58)

Note: in the Euclidean spacetime, the Dirac propagator is

=
1

i 6pE +m
= i×

i

6pM −m
(59)

where the overall factor of i between Euclidean and Minkowski propagators is common to all

field types, scalars, vectors, spinors, etc., etc. As to the denominator here, due to different
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γµ matrices in Euclidean and Minkowski spaces, we have

6pE = γ4Ep
4
E + ~γE · ~p = γ0(ip0) + (−i~γ) · ~p = iγµpµ = i 6pM (60)

and therefore
(

1

i 6p +m

)

E

=

(
1

−6p +m

)

M

= i×

(
i

6p−m

)

M

, (61)

or equivalently
(
−i 6p +m

p2 +m2

)

E

= i×

(
6p+m

p2 −m2

)

M

. (62)

Similar to the scalar propagator, the pole of the Minklowski-space propagator here is regu-

lated by p2E = −(p2M + iǫ) rathaer than simply p2E = −p2M , thus

(
−i 6p +m

p2 +m2

)

E

= i×

(
i(6p +m)

p2 −m2 + iǫ

)

M

: (63)

Fermionic Functional Integrals in QED

In the simplest version of Quantum ElectroDynamics — EM and electron fields, and

nothing else — the Euclidean Lagrangian is

LE = +1
4

(
F µν

)2
e
+ Ψ(6De +m)Ψ (64)

where Dµ = ∂µ− ieAµ is the covariant derivative, the Euclidean action including the source

terms is

SE =

∫
d4xE

(
LE − JµAµ − Ψη − ηΨ

)
, (65)

and the partition action is

Z[Jµ, η, η̄] =

∫∫∫
D[Aµ] exp

(
−

∫
d4xE

(
1
4F

2
µν − JµAµ

)
e

)
×

×

∫∫∫
D[Ψ]

∫∫∫
D[Ψ] exp

(
−

∫
d4xE

(
Ψ(6De +m)Ψ − ηΨ − Ψη

))
.

(66)

The functional integral over the EM fields Aµ(x) has its own issues, and I address it in a

separate set of notes. For the moment, let’s focus on the fermionic functional integral in a
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background of given EM fields Aµ(x). Thus, we identify the integral on the second line of

eq. (66) as a fermionic partition function

Ẑ[Aµ, η, η̄] =

∫∫∫
D[Ψ]

∫∫∫
D[Ψ] exp

(
−

∫
d4xE

(
Ψ(6De +m)Ψ − ηΨ − Ψη

))
. (67)

The integral here is Gaussian, so it formally evaluates to

Ẑ[Aµ, η, η̄] = Det(6De +m)× exp

(∫
d4xe η

1

6De +m
η

)
(68)

or in terms of the generating functional − log Ẑ,

− log Ẑ[Aµ, η, η̄] = − log det(6De +m) −

∫
d4xe η

1

6De +m
η. (69)

Physically, the red term generates one loop diagrams where a bunch of external photons are

connected to an electron loop

(70)

while the blue term generates tree diagrams where photons are connected to an open electron

line

(71)

To see how this works, let’s start with the functional determinant Det(6De + m). To
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evaluate this determinant, we note that

6De + m = 6∂e − ie 6Ae + m =

[
1 − (ie 6Ae)

1

6∂e +m

]
× (6∂e +m) (72)

and hence

Det(6De +m) = Det

[
1 − (ie 6Ae)

1

6∂e +m

]
×Det(6∂e +m) (73)

where the second factor is badly divergent but does not depend on the background EM

field Aµ(x). Therefore, we may treat that second factor as an overall constant factor of the

partition function. But the first factor in eq. (73) does depend on the EM background, so

when we eventually integrate over EM fields Aµ(x), this factor will appear in the context of

∫∫∫
D[Aµ] exp

(
−SE [Aµ]

)
×Det

[
1 − (ie 6Ae)

1

6∂e +m

]
. (74)

which we may interpret as

∫∫∫
D[Aµ] exp

(
−Seff

E [Aµ] = −Stree
E [Aµ] − ∆SE [Aµ]

)
(75)

where

∆SE [Aµ] = − log Det

[
1 − (ie 6Ae)

1

6∂e +m

]
(76)

acts as an extra bit of effective action for the EM field due to electrons living in the EM

background.

In the effective theory for the EM fields from which the electrons have been integrated

out, ∆S acts as a perturbation giving rise to n-photon vertices for n = 2, 4, 6, . . .. But in

terms of the original QED, these effective n-photon vertices stem from the one-loop electron

subgraphs. To see how this works, note that for any operator Ô acting on functions of xe
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— or rather spinor-valued functions of xe — we have

logDet(1− Ô) = Tr log(1− Ô) = Tr

(
−

∞∑

n=1

1

n
Ôn

)

= −
∞∑

n=1

1

n

∫
d4xe trDirac

(
〈xe| Ôn |xe〉

)

= −

∞∑

n=1

1

n

∫
d4xe1 · · ·

∫
d4xen trDirac




〈xen| Ô
∣∣xen−1

〉
×
〈
xen−1

∣∣ Ô
∣∣xen−2

〉
×

· · · × 〈xe1| Ô |xe0 = xen〉


.

(77)

Eq. (76) for the −∆SE [A
µ] which generates n-photon vertices has form of eq. (75) for

Ô = (ie 6Ae)
1

6∂e +m
. (78)

Moreover, 6Ae is a function of xe, hence coordinate-space matrix elements

〈xe| Ô |ye〉 = 〈xe| (ie 6Ae)
1

6∂e +m
|ye〉

= (ie 6Ae(x
e))× 〈xe|

1

6∂e +m
|ye〉

= (ie 6Ae(y
e))×Gψ(x

e − ye)

(79)

where Gψ(x
e−ye) is the free electron’s propagator in the Euclidean coordinate space. Plug-

ging this formula into eq. (77) for −∆SE [A
µ], we arrive at

−∆SE [Aµ] = log Det

[
1 − (ie 6A)

1

6∂ +m

]

=

∞∑

n=1

−1

n

∫
d4xe1 · · ·

∫
d4xen trDirac




(ie 6A(xn))×Gψ(xn; xn−1)×

(ie 6A(xn−1))×Gψ(xn−1; xn−2)×

· · ·

×(ie 6A(x2))×Gψ(x2; x1)×

(ie 6A(x1))×Gψ(x1; xn)




=

∞∑

n=1

n-photon amputated diagram

(80)

14



Indeed, each term on the second line here evaluates (in the Euclidean coordinate space) the

n-photon Feynman diagram on the third line. In particular, the 1/n factors stems from the

cyclic symmetry of each diagram, while the overall minus sign is due to one fermionic loop.

Thus we see that the red term in the fermionic free energy

− log Ẑ[Aµ, η, η̄] = − log det(6D +m) −

∫
d4xe η

1

6D +m
η. (69)

indeed generates the electron loops acting as effective vertices for the photon lines attached

to them. As to the blue term involving the fermionic sources η and η̄, it generates tree

diagrams where a bunch of photonic lines are connected to a single open electron line. To

see that, we expand

1

6D +m
=

1

(6∂ +m)− (ie 6A)

=
1

6∂ +m
+

1

6∂ +m
(ie 6A)

1

6∂ +m

+
1

6∂ +m
(ie 6A)

1

6∂ +m
(ie 6A)

1

6∂ +m

+
1

6∂ +m
(ie 6A)

1

6∂ +m
(ie 6A)

1

6∂ +m
(ie 6A)

1

6∂ +m

+ · · · ,

(81)

hence

∫
d4xe η

1

6D +m
η = η̄ η + η̄

A

η (82)

+ η̄

A A

η
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+ η̄

A A A

η

+ · · · (82)

Altogether, the fermionic functional integral

Ẑ[Aµ, η, η̄] =

∫∫∫
D[Ψ]

∫∫∫
D[Ψ] exp

(
−

∫
d4xE

(
Ψ(6D +m)Ψ − ηΨ − Ψη

))
. (83)

takes care of all the electron lines — open or closed — in QED Feynman rules. However, at

this point, all photonic lines are treated as external. To get the photon propagators — and

hence diagrams like

or

we need to integrate over the Aµ(x) fields as well as the fermions. Such functional integrals

over the gauge fields pose their own problems due to gauge symmetry and its fixing. These

issues are discussed in detail in the next set of my notes.
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