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Abstract. The Nielsen-Ninomiya theorem asserts the impossibility of con- 
structing lattice models of non-selfinteracting chiral fermions. A new proof is 
given here. This proof fills a technical gap in the two proofs presented by the 
authors of the theorem. It also serves as prelude to an investigation of the chiral 
properties of the general lattice model. 

1. Introduction 

Nielsen and Ninomiya [1, 2] have demonstrated that there can be no net chirality 
in a lattice model of fermions in which the Hamiltonian satisfies the following 
conditions: 

(1) it is quadratic in the fields; 
(2) it is invariant under change of the phase of the fields; 
(3) it is invariant under translations of the (cubic) lattice; and 
(4) it is tocal, specifically in the sense that it is continuous in momentum space. 
One way of coping with this result is to suppose that chiral fermions on the 

lattice must be selfinteracting. The Nielsen-Ninomiya theorem then might have 
a generalization equating the number of chiral fermions to some quantity associated 
with their interaction. This quantity would have to vanish with the selfinteraction. 
As a first step towards such a generalization, we reprove the original theorem 
here, in language potentially adaptable to models with selfinteraction. The structure 
of the proof suggests that the number of chiral fermions in the general lattice 
model might be determined entirely from examination of its high energy spectrum. 

In [1-1, the theorem was proved using arguments from homotopy theory 
(algebraic topology). A second proof [2] called on intersection theory (differential 
topology). The present proof uses calculus (differential geometry). It is technically 
more complete than the original proofs. First, it shows the mathematical content 
to be a part of the theory of characteristic classes. Second, it is easily carried 
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through for a lattice of any odd dimension. Third, it deals with a somewhat esoteric 
technical possibility ignored in [1] and [-2]. 

The theorem states, precisely, that in each irreducible representation of the 
internal symmetry group there are no chiral fermions. The internal symmetries 
are assumed to satisfy a locality condition analogous to (4) above. Nielsen and 
Ninomiya proved the absence of chiral fermions in a model containing N single 
component fermion fields. They did not distinguish among difl?rent representations 
of the internal symmetries. They then asserted that the fields transforming under 
a given representation Q of the internal symmetries (i.e., the fields of charge Q) 
formed a sub-model of the same type as the original: consisting of N' single 
component fermion fields. With this assertion no more remains to be proved. But 
in fact it is completely consistent with locality that the fields of charge Q might 
form a nontrivial vector bundle over momentum space, in which case they would 
not consist of a set of single component fields. The proofs of El] and [2] would 
have to be made rather more elaborate to account for this possibility. 

The paper is organized as follows. The theorem is stated in Sect. 2 and proved 
in Sect. 3. Comments are provided in Sect. 4. 

2. The  T h e o r e m  

This section duplicates, for the most part, material presented in [1]. The principal 
differences are: (t) the dimension of space is an arbitrary odd positive integer; (2) 
a modified locality condition on the internal symmetries is used and (3) no mention 
is made of generic intersection of energy levels. 

We consider free fermions on a cubic lattice of odd dimension d. They are 
described by an N-component fermion field ~(x)  defined on the lattice Z d. The 
lattice momentum p dual to the translation group Z d ranges over the torus T ~ 
(i.e., the first Brouillon zone with periodic boundary conditions). The Fourier 
transform of the field satisfies the canonical anti-commutation relations 

[~ . (p) ,  Ob(q)] + = O, 

[ ~ ( p ) ,  O"(q)] + = 5 ~ ( p  -- q). 

(t) 

(2) 

The Hamiltonian, according to conditions (1-4) above, takes the form 

H = ~ dpO*(p)K~,(p)Ob(p), (3) 

where K(p) is an N x N hermitian matrix which depends smoothly on p. The 
degree of smoothness has only temporary technical significance. In the end, the 
relevant property will be continuity in momentum space. 

We suppose that the internal symmetries of the model act linearly on the 
fundamental fields and that they are translation invariant and local. The action 
of an internal symmetry is thus of the form O"(P) --' T~,(P)0b(P), where T(p) is unitary 
and depends smoothly on p. For each irreducible representation Q of the internal 
symmetries there exists a projection Pa(p), depending on p, such that the fields of 
charge Q are exactly those satisfying Pe(P)0e(P)= Oe(P). The internal symmetries 
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commute with the Hamiltonian, so 

[ K ( p ) , P e ( p ) ]  = 0. (4) 

It will be evident below that the appropriate locality condition on the internal 
symmetries is that the projections PQ(p) should depend smoothly on p. This is 
stronger than the condition that the symmetry transformations T(p) be smooth 
in p. The discrete chiral symmetries of [3], for example, satisfy the latter but not 
the former. The smoothness condition on PQ(p) also expresses the possibility of 
coupling the charge Q locally to an external field, which is to say, the possibility 
of observing it. 

In [1] and [2] the implicit assumption is made that Po(P) does not depend at 
all on p. In such a case the charge Q portion of the field, i.e. the range of PQ, can 
be represented as an N'-component field O~(p). The same is true given the weaker 
assumption that there is some p-dependent unitary transformation U~(p), depend- 
ing smoothly on p, such that UPQU-I(p) is constant in p. This amounts to the 
assumption that the charge Q portion of the field forms a trivial vector bundle over 
momentum space. But there do in fact exist nontrivial complex vector bundles over 
the torus Td; that is, projections PQ(p) which cannot be made constant. The proof 
must take account of this possibility. It happens to be a somewhat nontrivial 
mathematical fact that a sufficiently local Po(P) can always be made constant. PQ(p) 
must be such that its Fourier transform Pe(x) is nonzero only on a finite set of points 
x. [4] In the present circumstances such a locality condition is artificially strong. 

The theorem now states that in each irreducible representation Q of the internal 
symmetries there must be equally as many left- as right-handed low energy 
elementary excitations (i.e. massless fermions). If we take the difference between 
the numbers of left and right handed fermions to be the number of chiral fermions, 
then the statement is that the number of chiral fermions of charge Q is zero, for 
every Q. 

The low energy spectrum is to be found in a neighbourhood of the Fermi 
surface, which consists of those momenta p~ at which one or more of the eigenvalues 
of K(p) is zero. We require, for the existence of an acceptable continuum limit, 
that the low energy spectrum be interpretable as that of collection of relativistic 
massless fermions. This means, first of all, that the Fermi surface cannot be a 
surface; it must contain only a finite number of points p~. Otherwise an 
accumulation point would exist at which the spectrum could not possibly appear 
relativistic. 

Next, the elementary low energy excitations at momenta p near p~ must resemble 
massless fermions. These excitations correspond to the eigenvectors of K(p) with 
eigenvalue near zero. We can always find unitaries U(p), smooth in p near p~, 
which rotate the space of low energy eigenvectors to the space spanned by the 
first N~ components. The requirement of a relativistic spectrum then becomes that, 
for p_~p~, 

o 

\ o IK (p - 
(5) 
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where K~(0) has only nonzero eigenvalues, and where F~ is an N~-dimensional 
representation of the Clifford algebra on d generators: 

r~c~ + r~c~ = 26~j. (6) 

In the physically interesting case d = 3, these representations of the Clifford algebra 
would be direct sums of the irreducible representations by Dirac matrices: 

½(1 ± ~5)~'o71. 
The excitations corresponding to the eigenvectors of K~(p) are not seen in the 

low energy limit. By (4), the representation F~ of the Clifford algebra splits up 
into the direct sum of representations F f  ,~ corresponding to the possible charges 
Q. 

To describe the handedness of these excitations, define, 

r~,,-(-i)~-1~/~,,...,,r~,~ rg ,~, (7) 
5 - d! "'" 

which satisfies 

(re.~z 1, (8) 

[ r~  ,~, r f , q  = 0. (9) 

The sub-representation of the F~ '" on which F5 e,~ = 1 can be called right-handed; 
it consists of one irreducible representation for each right-handed masstess fermion 
in the spectrum. The sub-representation with F5 e'~ = - 1 is called left-handed. 

Define the chiral index at p~ to be 

Ie, ~ = 2-(a- 1)/2 tr (Fse'~). (10) 

The coefficient 2 (e- 1)/2 is the dimension of the irreducible representations of the 
Clifford algebra. Define the total chiral index to be 

I~ = ~ 10,~. (11) 

I e is the total number of right-handed massless fermions minus the number of 
left-handed massless fermions occurring in the low energy, charge Q spectrum of 
the model. 

The Nielsen-Ninomiya theorem states that the chiral index of a model of free 
latice fermions is zero; i.e., I e = 0 for each charge Q. 

3. The Proof 

We will use a construction on energy-momentum space. Points in this space will 
de denoted p = (p") = (pO, pl), where p0 is an arbitrary real number, the energy, and 
p = (pi) is a point in d-dimensional momentum space. We will write ~, for O/Sp ~. 
The spectrum of K consists of the points p = (p0, p) for which pO is an eigenvalue 
of K(p). 

For  each charge Q we will construct a (d+  1)-current j~(p) on energy- 
momentum space, j~(p) will be called the chiral (d + 1)-current; j~?(p), the chiral 
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charge density; and jQ(p), the chiral d-current. It will have the following properties: 

(P1) OuJ~(P)= 0, i.e. chiral charge is conserved. 
(P2) j~(p) vanishes away from the spectrum of K; 
(P3) j~(p) depends only on the spectral projection of K near p; and 
(P4) j~(0,p) = ~ 6 ~  - p,)IQ.~, 

The theorem will then follow immediately. By property (P3), the chiral index 
is the total chiral charge at p0 = 0: 

IQ = ~ dpj~(0, p). (12) 

By property (P1) the conservation of chiral charge, and by the compactness 
of momentum space, the total chiral charge is the same at all energies: 

~dpj~(0, p) = ~dpj~(p °, p) (13t 

for any pO. But, because K(p) is a matrix of finite dimension and because momentum 
space is compact, the spectrum of K is bounded in the p°-direction. Therefore, by 
(P2), 

~dpj~(p °, p) = 0 (14) 

for p0 large enough. Combining (12-14) gives I e = 0. 
To construct J"e(P), first define a projection valued distribution S(p) by 

S(p) = P d p ) 0 ( K ( p )  - pO). (15)  

S(p) projects the eigenvectors of K(p) which have charge Q and eigenvalue > p0. 
S(p) is a projection because [PQ(p), K(p)] = 0, and the product of two commuting 
projections is also one. The chiral current is given in terms of S(p) by: 

d d _ l  1 
j ~ ( p ) = [  (~---)!(27ci)(d-1)/21 e ~ ....... ~tr(OvlS,..cg~S)(p). (16) 

The definition would appear to be ambiguous because it requires multiplication 
of the distributions OuS, but in fact the combination of the antisymmetrization 
and the trace removes all ambiguity. 

Property (P1), that ~uJ~ =0,  is obvious from (16). To see that j~ has 
property (P2), note that when S(p) is smooth in p, we have 

OuS = O,(S ~) = S(O~S) + (O,S)S, 
so (1 - S)#,S = (~,S)S and (0,S)(1 - S) = S(O,S), so 

8~S = S(~,S)(1 - S) + (1 - S)(O,S)S. (17) 

When the expression (t6) for j~ is expanded using (17), each of the resulting 
2 e terms contains at least once the product S(1 -S ) ,  because of the fact that d is 
odd and the trace is cyclic. Thus wherever S(p) is smooth in p, j~(p) vanishes. 
From the definition (15) of S(p) it is clear that S(p) is smooth for p not in the 
spectrum of K. Therefore (P2) holds. 

Property (P3) requires some calculation. We calculate j~(p) at a generic point 
p in the spectrum of K, namely a point p = (p0, p) such that for all q near p, K(q) 
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has exactly one, possibly degenerate, eigenvalue k(q) near pO. Let Po(q) be the 
projection on the eigenspace (of c~harge Q) corresponding to that eigenvalue. P0(q) 
is smooth in q near p because K(q) is smooth in q there. S(q) is given by 

S(q) = 0(k(q) - q°)Po(q) + P,(q), (18) 

where P~(q) is the projection on the eigenspaces corresponding to the eigenvalues 
greater than k(q). Ps(q) is smooth for q near p. Now substitute, using (18), in (16). 
Analogues to Eq, (17) hold also for the smooth projections Po(q) and Ps(q). After 
repeated use of them, we arrive at the formula 

1 j~(p) = _ !(2~i)(a-1)/2 a(k(p) - p0)eu ...... ~ ~(k(p) - pO) 

• tr (Po0,,,Po... 0~Po)(P), (19) 

valid at any generic point p. Thus (P3) holds. 
To obtain (P4) we must calculate j~(p) at p0 = 0. The spectrum of K at pO = 0 

consists of the isolated points p~, so it suffices to calculate j~(p) for p near (0, p=). 
We would like to use the canonical form (5) for K(p) near p= in conjunction with 
formula (19) for j~. But the form (5) for K(p) results from performing a p-dependent 
unitary transformation U(p) near p~. We need to know how to take into account 
the effect on j~. 

Examine first the effect of an infinitesimal transformation. Its generator is a 
skew hermitian matrix A(p), depending smoothly on P. The change in S(p) is 

~SS(p) = [A(p), S(p)]. (20) 

The change in j~(p) is calculated from (16) to be 

(}J~2(P) = c~, ,fv'(p), (21) 

where 

(22) 

Because of (17), fUV(p) is, like j~(p), supported on the spectrum of K. 
It follows by integration that if U(p) is a unitary transformation, smooth in p, 

which can be connected smoothly to the identity transformation and if S(p) is 
replaced by USU-I(p) then j~ is replaced by j~ + O~f"~ for some f"v supported 
on the spectrum of K. Any U(p) given only locally in p, but for all pO, can certainly 
be connected smoothly to the identity transformation. Therefore if we use 
expression (5) forK(p) near p~ we do no more than change j~(p) near (0,p,) by a 
total divergence. We will determine j~(0, p~) by calculatingj~(p °, p) for (pO, p) ~ (0, p~) 
and then appealing to conservation of chiral charge. Adding a total divergence to 
j~ will not affect the result. 

We proceed with the calculation, using (9) in (19). Write p = (pO, p~ + q) with 
(p0, q) ~ 0. From (5), 

P0(P~ + q) ~ ½(1 + c~ir f,~) (23) 
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k(p~ ÷ q) ~ Iql. (24) 

Substituting in (19) gives 

"# 0 Jo.(P , P~ + q) ~ Io,J 3(p° --Iql)[V( Sd ~)lql d ~]- l ( 1 , q ) ,  (25) 

where V(S d- ~) is the volume (area) of the unit sphere in Euclidean d-space. The 
limit pO ~ 0 yields 

.o 0 )Q( , p) = Io,~cS(p - p~) (26) 

for p near p~. 

4. C o m m e n t s  

The above proof proceeded by identifying 1(2 = ~dpj°(0, p), an integer associated 
with the low energy spectrum, with a quantity derived from the high energy 
spectrum: ~dpj°(oe, p). The proofs of [1] and [2] are based on a similar reasoning. 
We might remark that there is a simpler although less suggestive argument. Define 

F~(p)=Id(d~-2.1_)! (2zci)(d- 1)/21 - l~u ....... dtr(S~3v2S...OvdS)(p) (27) 

for p not in the spectrum of K. Clearly, 

In particular, 

SO 

j~(p)=O~F~(p). (28) 

j~2(O, p) = af~j(O, p), (29) 

Ie = FWg(0,  p) 

--  dp  FgJ(0,p) 

= 0.  ( 3 0 )  

We see that to have a nonzero chiral index, we must have nontrivial high energy 
spectrum and also a failure in the definition (27) of F~ ~. For either of these to 
hold K(p) must be an infinite dimensional matrix. 

Before continuing this comment, we digress to remark that the relativistic 
character of the low energy spectrum played a role only in the interpretation of 
the theorem, allowing the chiral index to be equated with the number of chiral 
fermions. The integer IQ = j'dpjg(0, p) is a characteristic of the low energy spectrum 
whether or not that is relativistic in appearance. This chiral index vanishes for a 
system of free lattice fermions, but it is nonzero, for example, for a gas of massless 
chiral fermions in the continuum at nonzero chemical potential/~, since this gas 
is described by K(p)= pia~ + #, which has the spectrum of the free relativistic 
Hamiltonian shifted by # in the p°-direction. 

Return now to the possibility of a nonzero chiral index for an infinite 
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dimensional K(p). We will consider a trivial example which, although of no physical 
interest, does give a first indication of what might occur. The example is simply 
the continuum right-handed fermion made into a lattice object by blocking degrees 
of freedom. In momentum space this amounts to folding the continuum momentum 
space R d over the torus T ~. The field has an infinite number of components ~"(p), 
where the index a is a d-plet of integers a = (a t . . . . .  ad), and is subject to the folding 
boundary conditions 

O" (P + 2rob) = ~,+b (p). (31) 

The matrix K(p) is given, for momentum components pl in the range - ~ __< p~ < re, 
by 

K~(p) = fi(a, b)(p + 2rca) i ai, (32) 

where a~ is the irreducible right-handed representation of the Clifford algebra. 
The only zero eigenvalue of K(p) occurs at p = 0 and the spectrum near there 

is exactly that of the continuum chiral fermion, so 1Q = 1. More comprehensively, 
(25) gives 

jO(p) = ~- ~3(pO _ [p + 2rcal)[V(S a- 1)1 p + 2~ald- 1]- 1, (33) 
a 

so that j°(0, p) = cS(p) as in the continuum. F°~(O, p), defined by (27), is infinite, so 
Eq. (29), exhibiting j°(0, p) as a divergence, does not obtain. 

To examine jO(pO, p) at high energy pO it is convenient to Fourier transform: 

f(P°,X) = S dP ~'p j0(pO, p) (34) 
T a 

~(p°-lpt) 
= [. dpe~"'PV(Sd_l)lPla_ 1 .  (35) 

Na 

From (35) it is clear that, at least for d > 1, 

lira j-O(pO, x) = 6(x). (36) 
pO - ,  CO 

Thus 
lim jO(pO, p) = 1, (37) 

pO~ cO 

where the limit of distributions is meant. The equation between the low and high 
energy expressions for the chiral index reads 

Sdp~(p) = ~dp 1. (3s) 

The spectrum of K at pO > 0 is an immersion of the Euclidean (d - 1)-sphere 
of radius pO by folding into the torus as described by (31-33). The chiral charge 
density jO(pO, p) is the unit measure concentrated on this immersed sphere. 
As p ° ~ o e  the immersed sphere becomes dense in momentum space in 
such a way that the chiral charge density becomes constant. Both j°(0,p) and 
j°(oe,p) are simple in form, even though jO(pO, p) for 0 < p ° < o e  can be 
exceedingly complicated. 

The mathematical content of the theorem can be regarded as a standard piece 
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of the theory of characteristic classes. Consider the direct argument of (27-30). The 
projection S(0, p) is smooth in p except at the fermi surface (i.e., the p~ where K(p) has 
zero as an eigenvalue). Remove from momentum space a small open neighborhood 
of the fermi surface (i.e., a small open ball around each p~). Left behind is a d- 
manifold M with boundary. For  the relativistic fermi surface, in which the p~ are 
isolated, the boundary is 0M = ~ S~, where the S~ are small (d - 1)-spheres enclosing 
the p~. The vector spaces range (S0,p)) form a vector bundle W over M. The 
natural covariant derivative in W is 

Its curvature is 

D i = c~ i - 81S(0, p). (39) 

Rij(p) = EDiD)] 

= EOiS, 8iS] (0, p). (40) 

We can now recognize F °~, given by (27), as the dual of the highest component of the 
Chern character of W. [5] Since 

IQ = ~. ~iF °i, (41) 
OM 

fi; being the unit normal vector to ~?M, I~ should be called the Chern number of 
the bundle W restricted to the boundary of M. The theorem IQ = 0 simply states the 
fact that the Chern number is a cobordism invariant: i.e., that the Chern number of a 
boundary is necessarily zero. 

Once we have the interpretation of IQ as the characteristic number of a vector 
bundle we can drop the requirement of smoothness for K(p) and simply demand 
continuity. We then also know that still another proof of the theorem wilt exist, 
in which IQ is expressed as the index of an elliptic differential operator on 0M. 
This fourth, analytic proof is the proof of the cobordism invariance of the elliptic 
index [6]. There is also an evident generalization of the theorem to a setting in 
which the fermion field of the model itself lies in a nontrivial bundle V over 
momentum space. The bundle W is defined as a subbundle of V, as before, but 
its covariant derivative is 

D i D o D O = - ( i S) ,  ( 4 2 )  

where D o is some arbitrarily chosen covariant derivative in V. And of course the 
theorem works whenever the momentum space is a compact manifold of odd 
dimension. Neither of these generalization seem of immediate physical interest. 

The example of the folded fermion gives a bundle W of infinite rank. Its Chern 
number IQ is well defined but not the density hiF~2i which it is the integral of in 
(48). So there is at least a certain category of infinite dimensional bundles for which 
the Chern number, or more generally the elliptic index, need not be a cobordism 
invariant. The chiral index measures the amount by which cobordism invariance 
fails. 

We conclude with a brief indication of how the constructions used in this proof 
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might be applicable to the general lattice model. Define first a Hilbert space by 
means of the following inner product on the fermionic operators of the model: 

(B, A) = ( f2, [B*, A] + (2 >, (43) 

where Q is the ground state. The resulting Hilbert space is the fermionic subspace 
of the physical Hilbert space plus its complex conjugate. The usefulness of this 
expanded Hilbert space is that the inner product (43) depends smoothly on the 
momentum. Define an operator K on this Hilbert space by 

(B, KA) = ( f2, [B*, [H, A] ] + (2 >, (44) 

where H is the Hamiltonian. The spectrum of K consists of the fermionic part of 
the spectrum of H along with its reflection through the origin. Thus O(K) projects 
on the physical vectors. K(p) will describe the action of K on vectors of momentum 
p. The use of the anti-commutator in (44) means that the locality properties of H 
express themselves as smoothness properties of K(p). The goal from this point is 
to construct the chiral (d + 1)-current j~(p) as in (15-t6) and to show that it has 
the properties (P1-4). The key steps are: (1) to implement the derivative 9+ with 
respect to p~, and (2) to make sense of the trace in the definition (16) ofj~. It would 
then be possible to make the chirat index of a model visible in the high energy 
spectrum. This might lead to an improved understanding of the role of anomalies 
in lattice models. It might also make possible calculation of the chiral index, and 
so the number of chiral fermions, without a solution of the dynamics. 

Work in these directions will be reported subsequently. 
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