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Preface

This monograph treats an extensively developed field in modern mathematical
physics — the theory of generalized coherent states and their applications to
various physical problems.

Coherent states, introduced originally by Schrédinger and von Neumann,
were later employed by Glauber for a quantal description of laser light beams.
The concept was generalized by the author for an arbitrary Lie group. In the last
decade the formalism has been widely applied to various domains of theoretical
physics and mathematics.

The area of applications of generalized coherent states is very wide, and a
comprehensive exposition of the results in the field would be helpful. This
monograph is the first attempt toward this aim. My purpose was to compile and
expound systematically the vast amount of material dealing with the coherent
states and available through numerous journal articles. The book is based on a
number of undergraduate and postgraduate courses I delivered at the Moscow
Physico-Technical Institute. In its present form it is intended for professional
mathematicians and theoretical physicists; it may also be useful for university
students of mathematics and physics.

In Part I the formalism is elaborated and explained for some of the simplest
typical groups. Part II contains more sophisticated material; arbitrary Lie
groups and symmetrical spaces are considered. A number of examples from
various areas of theoretical and mathematical physics illustrate advantages of
this approach, in Part III.

It is a pleasure for me to thank Dr. Yu. Danilov for many useful remarks.

Moscow, April 1985 A. Perelomov
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Introduction

The method which is the subject of this book originated from the early times of
quantum mechanics. In 1926, Schrodinger [1] first introduced a system of
nonorthogonal wave functions to describe nonspreading wave packets for
quantum oscillators. A few years later, in the famous book by von Neumann [2],
an important subset of these wave functions was considered, which was related
to the partitioning of the phase plane of a one-dimensional dynamical system
into regular cells. Yon Neumann used this subset to investigate the coordinate
and momentum measurement processes in quantum theory. For a considerable
time these ideas of the eminent scientists did not attract undue attention. It was
only in the early sixties that the approach was thoroughly studied [3-6]. Glauber
[7,8] named the states invented by Schrodinger the coherent states (CS) and
showed that they are adequate to describe a coherent laser beam in the
framework of quantum theory.

An unusual property of the CS system is its overcompleteness, yet it is just
this feature which opens up new possibilities. A complete orthonormal system of
basis vectors in a Hilbert space is one of the main concepts of mathematical
physics and functional analysis. It was found, however, that overcomplete and
nonorthogonal systems of state vectors are quite appropriate in solving some
problems of quantum physics. A system of vectors is called overcomplete if at
least one vector exists in the system which can be removed, while the system
remains complete. So the system contains more states than necessary to
decompose an arbitrary state vector. A basis like the CS system cannot be treated
within the standard routine; however, it is a powerful tool when used by means
of proper methods.

The CS system has a number of advantages compared with the usual
orthonormal systems of states. During the past one and a half decades it has been
successfully applied not only to quantum optics and radiophysics, but also in
other areas of physics, for example, in the theory of superfluidity for a weakly
nonideal Bose gas. The CS systems are also used to describe spin waves in the
Heisenberg model of ferromagnetism, soft photon clouds around charged
particles in quantum electrodynamics, and for an approximate quantum
description of localized field states (solitons) in nonlinear field theories.
Properties of CS systems have been considered in some detail in a number of
books and reviews [9-13]. References to numerous original papers in the field
can be found therein.



2 Introduction

The standard CS system is intimately related to a group, considered first by
Weyl [14], the so-called Heisenberg-Weyl group. The CS method is particularly
effective in cases where the Heisenberg-Weyl group is the dynamical symmetry
group of a considered physical system. The simplest example is a quantum
oscillator under the action of a variable external driving force. In this case the
Heisenberg equations of motion coincide with the corresponding equations for
the classical variables. In the course of the time evolution, any coherent state
remains coherent, and the motion of the phase space point representing the
coherent state is described by the classical equations. This fact enables one to
simplify the quantum problem significantly, reducing it to the corresponding
classical problem.

The Heisenberg-Weyl group is, of course, not the universal dynamical
symmetry group; other symmetry groups appear in many cases. For instance,
the symmetry group for spin precession in a variable magnetic field is SU(2), and
for the problem of a quantum oscillator with variable frequency the symmetry
group is SU(1,1).

A question arises whether for other Lie groups systems of states exist having
some properties similar to those of the standard CS system. The answer is
positive, as shown in [15]. In that work general CS systems related to
representations of an arbitrary Lie group were constructed and investigated;
elaborate methods of group theory were employed to study properties of these
systems.

A different generalization of the coherent state was proposed earlier by Barut
and Girardello [16]. However, their approach is not applicable to all Lie groups;
in particular, it is invalid for compact groups. Besides, the set of coherent states
in [16] is not invariant under the action of group operators, unlike the
generalized CS proposed in [15]. The particular case of the three-dimensional
rotation group was considered also by Radcliffe [17]. The CS system constructed
there coincides with the corresponding generalized CS system of [15].

Generalized coherent states, which were introduced in [15], are relevant to an
arbitrary Lie group; they are parametrized by points of homogeneous spaces
where the group acts. In some cases, one can consider these spaces as generalized
phase spaces for classical dynamical systems. For example, the two-dimensional
sphere and the Lobachevsky plane are such generalizations of the usual phase
plane. If one has a situation of this type, the coherent states correspond to points
in the phase space representing states of the classical system. In some cases
coherent states are those quantum states closest to the corresponding classical
states, as they have minimum uncertainties. Therefore the conversion of the
classical system into its quantum counterpart is performed in the most natural
manner in terms of the coherent states. Such generalized coherent states arise
quite naturally in a number of physical problems having dynamical symmetries
(relevant information has been presented in [12,18], see also Part III of this
book). Along this line I mention some nonstationary problems: the precession of
spin in a variable magnetic field, a quantum oscillator under the action of a
variable external force, the parametric excitation of the quantum oscillator, the
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creation of particle pairs in variable external fields (electric or gravitational), the
relaxation of the quantum oscillator to a thermodynamical equilibrium state.

The generalized coherent states were also found to be useful in a number of
purely mathematical problems, in particular, in the theory of representations of
Lie groups, as well as in the investigation of special functions, automorphic
functions, reproducing kernels, and in some other branches of functional
analysis.

The CS formalism is also related to the so-called geometric quantization
method. (Among the many works concerning this method one should mention
the important ones by Kirillov [19] and Kostant [20,21].) Geometric quantiza-
tion involves the group representation space which is considered as the Hilbert
space of states of a quantum dynamical system. In parallel to the quantum
system, the corresponding classical system is analysed which has the same
dynamical symmetry group. The essence of the quantization method [19-21]isa
correspondence between a real function in the phase space of the classical
dynamical system and a self-conjugate operator in the Hilbert space. The CS
approach is, apparently, an adequate method in this field.

I should mention also another quantization method, developed by Berezin
[22]. This method is applicable to a more restricted class of spaces, but it is closer
to the quantization employed in physics, and enables one to get more complete
results.

This book consists of three parts and several appendices.

Part I contains a study of properties of the generalized CS systems for the
simplest Lie groups: the simplest nilpotent group, the Heisenberg-Weyl group;
the simplest compact non-Abelian group, the three-dimensional rotation group;
and the simplest noncompact non-Abelian groups, the n-dimensional Lorentz
groups.

Part IT considers generalized CS systems for a wider class of Lie groups:
nilpotent Lie groups, compact semisimple Lie groups, and the automorphism
groups of homogeneous complex symmetrical domains. This part is addressed to
the reader with a higher level of knowledge in mathematics. To master the matter
presented here and in the sections marked by an asterisk, the reader must be
familiar with some special mathematics: first of all, the theory of Lie groups and
symmetric spaces. Those who feel that these sections of the book are too difficult
may skip them and proceed further.

Part IIT deals with applying the CS methods to solving a number of real
physical problems. The subject of this part is clear from the Table of Contents.

Some calculations which are not necessary for an understanding of the main
text are presented in the appendices.

As the material on coherent states is abundant, while this volume is limited,
some relevant results remain beyond the scope of this book. In particular, I do
not mention some properties of standard CS systems, as this subject has already
been considered exhaustively in a number of books and reviews. For brevity, I
also drop proofs of some statements, in the hope that the interested reader would
be able to reconstruct every proof without too much effort. -






Part I

Generalized Coherent States
for the Simplest Lie Groups






1. Standard System of Coherent States Related to the
Heisenberg-Weyl Group: One Degree of Freedom

The subject of this chapter is an overcomplete and nonorthogonal system of
Hilbert-space vectors (states) — the system of the so-called standard coherent
states (CS).

In quantum mechanics, the standard CS in coordinate representation
describe nonspreading wave packets for the harmonic oscillator. (For a reader
not familiar with quantum mechanics, the coordinate representation for a
system with one degree of freedom is the realization of the Hilbert space as a
space of square-integrable functions on the line.) Schrddinger considered them
from this point of view as early as 1926 [1]. Somewhat later von Neumann, in his
famous monograph [2], studied an important subsystem of CS, related to the
regular cell partition of the phase plane for a system with one degree of freedom.
This system was used by von Neumann to analyze the quantum-mechanical
measurement process. Later on, after about three decades, further investigations
of CS was undertaken [3-6].

Among early works in this area, the important papers by Glauber [7, 8]
should be mentioned. There the concept of the coherent state was introduced and
it was shown that CS provides an adequate means for a quantum description of
coherent laser light beams.

Detailed discussion of properties of the standard CS system for a finite
number of degrees of freedom, as well as references to a lot of relevant papers,
may be found in [9-13]. The case of an infinite number of degrees of freedom was
considered by Segal [S] and Berezin [6] and in numerous papers published in
Communications in Mathematical Physics.

This chapter deals mainly with well-known material, but the exposition is not
quite conventional. The relation between the standard CS system and the
Heisenberg-Weyl group (considered originally by Weyl [14]) being established,
the basic properties of this system are derived by group-theoretical methods. For
simplicity, I restrict myself to the case of one degree of freedom. The case when
the number of degrees of freedom is more than one, but still finite, is considered
in Chap. 3.
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1.1 The Heisenberg-Weyl Group and Its Representations

1.1.1 The Heisenberg-Weyl Group

The simplest operators used in describing a quantum-mechanical system with
one degree of freedom are the coordinate operator q and the momentum operator
p. They act in the standard Hilbert space # and satisfy the Heisenberg
commutation relations

l¢.p1=ik1, [q,1]=[p,1]=0. (1.1.1)

Here 1 is the identity operator, / is Planck’s constant, and the bracket means the
commutator [4, B|=AB—BA.

The structure of the canonical commutation relations (1.1.1) is described by a
group, the so-called Heisenberg-Weyl group [14]. The simplest properties of this
group are treated in this section. (A number of more subtle mathematical aspects
of this group is considered by Cartier [23].)

Instead of the operators g and p, another pair of operators is sometimes more
suitable, the annihilation operator a and its conjugate, the creation operator a™,
defined as

P S
V2h’ V/2h
Here and in the following * stands for Hermitian conjugation, and the bar ~

means complex conjugation. The commutation relations follow immediately
from (1.1.1,2):

(1.1.2)

[a,a*1=1, [a,1]=[a*,1]=0. (1.1.3)

Relations (1.1.1 or 3) mean that the operators g, p, I (respectively, a, a*, 1) are
generators of a Lie algebra, which will be denoted by #; . This is the Heisenberg-
Weyl algebra.

Introducing new quantities

er=i()"Pp, e=i()""q, e=il, (1.1.4)

and regarding them as elements of an abstract Lie algebra, not just as operators
in a Hilbert space, gives the following definition.

The Heisenberg-Weyl algebra W1 is a real three-dimensional Lie algebra, given
by the basic commutation relations

ler,ex]=es, [er,e3]=[ez, e3]=0. (1.1.5)
In general, elements of the algebra #; are written as

x=(8; X1, X3)=X1€1 + Xy, + 5€3 (1.1.6)
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or

x=isi+% (Pq—Qp)=isl+(aa™ —aa), 1.1.7)

where s, x;, and x, are real numbers,
x;=—-m7Q,  x,=(h)7'7P,
a=Q2h)T12(Q+iP)=2"12(—x; +ix,), a=Qh)"*(Q—iP).

The commutator of the elements x=(s; x;, x,) and y=(¢;y,,y,) is given by
[x,y]=B(x,y)es, Bx,y)=x1y,—X3);. (1.1.8)

Note that B(x,y) is the standard symplectic form on the (x;, x,) plane.
Construction of the Lie group corresponding to the Lie algebra is done, as
usual, by exponentiation:

exp (x)=exp (is)D(a), D(x)=exp (aa* —aa). (1.1.9)

To find the multiplication law for the operators D () we use the operator identity
(an equivalent identity was proven originally by Weyl [14])

exp A exp B=exp {}[4, B]} exp(4+B), (1.1.10)
which is valid if
[4[4, B]]=0, [B[4, B]]=0. (1.1.11)

Let us consider a simple proof of the identity (1.1.10), proposed by Glauber
[24]. We construct an operator function

F(t)=exp (tA) exp (tB) exp (—t(A4 + B)). (1.1.12)

It satisfies
§=exp (t4) [A,exp (tB)lexp (—t(A+ B))=t[A4, B]F(¢). (1.1.13)

Integrating this equation up to =1, one gets (1.1.10).
Finally, substituting 4 =aa™ —&a, B=pa™ — Pa into (1.1.10), we obtain the
multiplication law

D(«)D(B)=exp (ilm {op}) D (a + B). (1.1.14)
The corresponding formula for the product of several operators D(«) is

D() D(oty—1). . .D(ay)=exp(i0) D(aty+atp—1+ . . . + ), (1.1.15)
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where

5=Im{z a,-a,,}. (1.1.16)

j>k
The phase Im {«B} in (1.1.14) has a simple geometrical meaning. In fact,

Im {«f}=24(0,B,0+p), (1.1.17)

where A4 (a, B, 7) is the area of the triangle with vertices at the points «, §, y, and 4
is positive if the cycle a— f, f—7, y—a is counterclockwise, in the opposite case
A <0. The phase angle in (1.1.15) may be interpreted similarly. Recall the
relation a=(2 k) "2 (Q +iP), and write the expression for é in the form

5=t [ PdQ, (1.1.18)
hr

where integration is along the boundary of the polygon with vertices at the points
0, ay, g +0,..., a;+0y+...+a, A reader aware of quantum mechanics
would note a semiclassical form of this representation; ¢ is just proportional to
the polygon area on the phase plane.

A consequence of (1.1.14) is

D(@)D(B)=exp (2iIm {«B}) D(B) D («). (1.1.19)

Actually, this is an integral form of the Heisenberg commutation relations. Wey!
[14] wrote an equivalent of this relation, though in a somewhat different form:

o )ew (B en (2o on(2)  r

An advantage of this form, (1.1.19), as compared with (1.1.3), is that unlike p, g,
which are unbounded operators in the Hilbert space 5#, the operators D(«) are
bounded, so that their domain of definition is the whole space #.

Another consequence of (1.1.14) is that the operators exp (i¢) D(«) form a
representation of the group with elements fixed by three real numbers,
g=(t;x,,Xx,), or by a real number ¢ and a complex number o, g=(¢;a). This
group will be called the Heisenberg-Weyl group, denoted by W, . It is not difficult
to see that the multiplication law in W] is

(55%1, %) (£; 91, y2)=(s+t+B(x,¥); X1 + 1, X2 +12),
B(x,y)=x1y;, —y1%,. (1.1.20)

Note that the group W, belongs to the class of so-called nilpotent groups; a
typical example relevant to this class is the group of upper (lower) triangle
matrices with unities on the main diagonal. (More general nilpotent Lie groups
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are considered in PartIL) In the case considered, W; ={g}, where

1 a ¢
g={0 1 b]. (1.1.21)
0 0 1

These matrices form the simplest finite-dimensional nonunitary representation
of the group W, . The corresponding generators of the Lie algebra e, e,, e; are
represented by

010 0 00 0 01
0 0 0), {0 0 1),and|{0 O O], (1.1.22)
000 000 0 00

respectively.

1.1.2 Representations of the Heisenberg- Weyl Group

The first problem to consider is the description of all unitary irreducible
representations of ;. Note first of all that the elements (s, 0) form the center of
W, i.e., the set of all elements commuting with every element of ;. Therefore
for any unitary irreducible representation 7'(g) of the group W;, the operators
T((s,0)) form a unitary representation of the subgroup {(s,0)}, which is
determined by a real number A:

T*((s; 0)) =exp (iAs)1 (1.1.23)

This problem was solved by Stone [25] and von Neumann [26]; the result is the
following theorem.

Theorem. For a fixed value of A (A+0) any two unitary irreducible representa-
tions of the group W, are unitarily equivalent.

In other words, for any two systems of operators {D(x)} and {D(a)},
satisfying (1.1.19), a unitary operator U exists such that

D()=U*D(x)U. (1.1.24)

An analoguous statement is valid also for operator pairs a*, @ and a*, a
satisfying the commutation relations (1.1.3):

at=u*atu, d=utau (1.1.24")
However, since the operators a and a™ are unbounded, this statement holds only
if some additional conditions on the domain of operators ¢*, d and a*, a are
satisfied [23].
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Thus a unitary irreducible infinite dimensional representation of the group
W, is fixed by a single real number 1: T(g) = T*(g), A +0. Furthermore, there are
representations with A=0. They are all one-dimensional and are fixed by a pair
of real numbers, say yand v: 7(g) = T*(9) = %, (9) L, 10(9) =€xp {i(1x; +vx,)}.
This completes the outline of the theory of representations of the Heisenberg-
Weyl group. The structure of the set of representations of the group W, described
here is explained within the theory by Kirillov [19], where any group
representation is constructed for an orbit of the coadjoint representation of the
group. More details are given in Part II. We now describe the representations
T*(g) explicitly.

1.1.3 Concrete Realization of the Representation 7(g)

The operators ¢, p and a™, a act in the standard Hilbert space. Here and in the
following the vectors belonging to this space are denoted by Dirac’s symbol |y,
the scalar product of the vector |@) and |} linear in |{/) and antilinear in |@) is
written { |y, and the projection operator upon |y is written |y ><|. The state
Y is described by a class of the vectors differing from |/) by a numerical factor.

It is known that a so-called vacuum vector |0 exists in 5, i.e., a normalized
vector annihilated by the operator a:

aloy=0, <00y =1. (1.1.25)

Action of the creation operator a* generates a set of normalized vectors from the
vacuum

Iy =)~ @*yloy, n=0,1,2,.... (1.1.26)

The vectors {|n)} form a basis in #. The action of the operators a and a* in this
basis is given by

aln) =]/;|n =1y, a*lny=yn+1n+1), a*an)=n|n). (1.1.27)

Sometimes it is appropriate to use concrete functional realizations of the
Hilbert space J# or, using physical terminology, definite representations. In the
case of the so-called coordinate representation, the vector |/ is represented by a
coordinate function <{g|y/) =(g), which is square-integrable

| W(9)fPdg < oo. (1.1.28)

The action of the coordinate operator ¢ in the coordinate representation is just a
multiplication by ¢, while the momentum operator p is represented by
differentiation with respect to g: p= —ihd/dq. The basis vector |n) is described by
the function

gln> = @u(q)=(nh) 4 2"n) P H,(h " Pg)exp [-2R) 7], (1.1.29)
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where H,(q) is the Hermite polynomial of degree n. In the coordinate
representation, (1.1.27) become recursion relations for the Hermite polyno-
mials:

d
" H,(9)=2nH,_,(q), (1.1.30)
d
(24 —3‘;) H,(9)=H,+1(9). (1.1.31)

Hence one gets at once the useful relations

d\"

H,(9)=(- 1)"exp(qz) eXp( 7) (1.1.32)

as well as a differential equation for the Hermite polynomials,
H,—-2qH,+2nH,=0. (1.1.33)

In the coordinate representation the action of the operator D(a), a=(2k) /2
-(Q+1iP), is given by

v i
p@o@=o (552) exp (12) o-0). (1.1.34

1.2 Coherent States

This section treats some overcomplete systems of states related to the
Heisenberg-Weyl group W, the systems of generalized coherent states. The
standard system of coherent states is a particular yet very important case. The
concept of the generalized coherent state is introduced here, following the
presentation by the author [15].

Let T(g) be a unitary irreducible representation of W, (described in the
preceding section), and |y, a fixed vector in the representation space #. It is not
difficult to see that the state corresponding to the vector |/, is stable only under
the action of the operators of the form T((s, 0)). (Recall that a state is represented
by a set of vectors exp (ip)|y, differing from the vector |/ by a phase factor
only, [exp (i(p)| =1.) In other words, the isotropy subgroup H for an arbitrary
state |y, contains only elements of the form (s, 0).
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Apply now the representation operator T(g)=T((¢,a))=exp (it) D(x) to
[0y The result is a set of the states {|o)}

o> =D ()]0, (1.2.1)

where o is a complex number. Furthermore, since the isotropy subgroup of
the state |yo) is H={h}, h=(z,0), different « correspond to different states.
The system {|a)} is just a system of generalized coherent states of the
type {T(g), [¥op}. An important particular case is the choice of the vacuum
vector |0) as the starting vector |o». This is the case of standard coherent

states.
The generalized CS system has a number of remarkable properties,

considered below.

Note first of all that because the representation 7'(g) is irreducible, the system
is complete. However, the states are, in general, not mutually orthogonal.
Actually,

{Bloy =<o|D* (B) D(@)|ro ) = exp (ilm {aB}) {yro| D (o — )0, (1.22)
[<Blay[? = |[<Wo| D (o — B)|Wod 2 = (e —B), (1.2.3)

and the function ¢(a) cannot be identically zero.
The operator D(«) transforms any coherent state into another coherent state,

D()| By =exp (ilm {«f})|+ B). (1.2.4)
Relation (1.2.4) determines the action of group W, on the a plane,
(s;Ba=a+p. (1.2.5)

This action is not effective, since the subgroup H={(z,0)} acts as the identity
transformation in the a plane. As seen from (1.2.5), the factor group W, /H is the
group of translations of the a« plane. Hence the invariant metric in the o plane is
written as usual,

ds* =|dof. (1.2.6)
The corresponding invariant measure in the o plane is

du(0)=Cd*u=Cdudo,, oa=a;+iay, 1.2.7)
where C is a constant.

Now we turn to derivation of the so-called resolution of unity. Let |o)<o| be
the projection operator on the state |o). Consider the operator

A= du(B)|BY<B. (12.8)
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It is easily seen that 4 commutes with any D(a). Therefore, in view of Schur’s
lemma, this operator is the unit operator times a number,

A=d -1 (1.2.9)

To find the constant d we calculate the average of the operator 4 over a coherent
state |o)

d™* =l dloy = [ <ol BYdu(B) = o(B)du(B). (1.2.10)

For a bounded operator A the constant d is nonzero, so the factor C in (1.2.7)
may be chosen such that d=1. The resulting “resolution of unity” is’

[ du(@)|ey<a| =1, (1.2.11)

where du(a) is given in (1.2.7). The constant C is determined from the condition

[e(@du(@)=1. . _
An immediate consequence from the resolution of unity (1.2.11) is the linear
dependence of the coherent states

[ du(@)]ay<a] By=|8>. (1.2.12)
Clearly, the kernel K(a, f)=<«|B) is reproducing

§ K(o B)K (B, v)du(B)=K(a, 7). (1.2.13)

(The general theory of reproducing kernels may be found in [30, 31].)
Using the completeness condition, (1.2.11), it is not difficult to expand an
arbitrary state |y in the coherent states,

> = du(@)y (@)|e) » (1.2.14)
where the coefficient function ¥/ («) is given by

Y(o)=<afy). (1.2.15)

The function y(«) determines the state |y/> completely; it is called the symbol of
the state |y>. Evidently,

> ={ ¥ (@) du(@). (1.2.16)

! This identity was obtained by Klauder [3] for the standard system of coherent states.
Overcomplete systems of states may also be considered, for which an analog of (1.2.11) is valid,
with no reference to the theory of group representations. Such an approach was developed by
Klauder and McKenna [27,28], who named it “the theory of continuous representations”. A
number of theorems were proven by Berezin within this approach [29].
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Up to now the state vector |y, which was the origin for constructing the
generalized CS system, was considered as an arbitrary element of the Hilbert
space #. A question arises whether it is possible to use this arbitrariness insuch a
way that the resulting CS system would have some prescribed properties, for
instance, the coherent states would be as close as possible to the classical states.

In the situation considered, it is natural to use the Heisenberg uncertainty
relation

A=Aq- Ap>h/2 (1.2.17)

to determine the criterion of closeness between the classical and quantum states.
Here

(49 =<@—<D)>, @py=B-F) (1.2.18)

and (4> means the average of the operator § over the considered state

WD : <@ =<Yldl>.

First we show that for all the states in the system {|a)} not only the
uncertainty magnitude 4, but also the dispersions 4q and Ap are universal, i.e.,
independent of a. To this end, we use the identity

D*(ax)aD(a)=a+a, a=o,+ie, (1.2.19)

which is easily proven, say, by expanding the operator D(«) in powers of the
operator (aa* —aa) and using the commutation relations (1.1.3). From (1.2.19)
one gets at once

<algloy = <Wolg|Wo) + 2 B) ey (1.2.20)
<alploy =Wo|plo) + (2 B)*2a,  so that

(49);=(49)5,  (4p)i=(4p)§ (1.2.21)

and our statement is proven.
Another consequence is that among the coherent states there is always a state
for which (§) = {(p) =0. It is easily seen that this property is specific for the state

| =) =D(—0)|Yo), (1.2.22)

where o= <{Wpola|yo). Thus with no loss of generality we may assume that

<Wold o> = <ol B0 = 0.
Let us now find all the states with {§» ={p) =0, minimizing the Heisenberg
uncertainty relation

Aq- Ap=h/2. (1.2.23)

Consider an evident inequality
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(A* 420, A=’52L‘:, i>0 or (1.2.24)
2(4q): —Ah+(4p)=0. (1.2.25)

It is not difficult to see that fulfilling this inequality for all 4 is equivalent to the
Heisenberg uncertainty relation and that (1.2.23) may hold only if for some
positive A

AGg+ip

Allﬁo>=<m>lwo>=0- (1.2.26)

Specifically, such a state is the vacuum |0) (for A=1).
Note that the operators 4 and 4™ satisfy the commutation relation

[4,47]1=1 (1.2.27)

so they may be considered as a new pair of ‘“‘annihilation-creation” operators.
They are obtained from the original operators via a linear canonical transfor-
mation,

A=ua+va*, A*=ua*+va, |u*—|f=1. (1.2.28)

Note that this type of representation constitutes SU(1, 1), the group of linear
transformations of two-dimensional complex space which leave the form
|z1|* —|z,[* invariant.

Let us now look for a specific property of the state vector |, satisfying
(1.2.26), from the algebraic point of view. For this purpose we follow a method of
aprevious work [11] and consider the complex envelop %;° of the Lie algebra ¥,
i.e., the set of all linear combinations of the basis elements 4, p and I with
complex coefficients. The isotropy subalgebra of the state |y is denoted by
#={b}, i.e., the set of all elements of #;°, for which blyso) = Alyo). Let Z={b}
be a subalgebra of #7°, conjugate to #. The subalgebra 4 is called maximal here,
if 4+ % =%;°. The states for which the isotropy subalgebras are maximal are the
most symmetrical, so they can be distinguished. It can be shown that in this case
the coherent state is determined by a point in the coset space W;°|B= B|D, where
9 =% N2A,and Band D are the Lie groups corresponding to the Lie algebras 2
and 2. Such coherent states may be realized naturally in a certain space of
analytical functions (see the next section). In particular, the vacuum state vector
has a maximal isotropy subalgebra:

B={a,1}, B={a*1}, B+B=W".

The state vectors satisfying the condition (ua+va*)|[y)=yjY>, [u]> —|p?=1,
where u, v, y are complex numbers, also have this property. This construction is
considered further in Chap. 2 in more detail.
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The states {|a)}, |« =D(x)|0) form the standard coherent state system.
Evidently, all the formulae in this section are valid also for this system. However,
for this particular case a number of useful formulae also hold which are not
applicable to the general case.

For instance, it is easy to see that the state |ocy is annihilated by the operator

D(e)aD* (o). (1.2.29)
As follows from (1.2.19), this fact is equivalent to
aloy = ofor). (1.2.30)

Thus the standard coherent state is an eigenstate of the annihilation operator,
while any complex number « may be an eigenvalue. It is not difficult to show also
that the operator a* has no eigenvector in #.

Itis remarkable that because of (1.1.2) the o plane is an analog of the classical
phase plane, where a point has the coordinates (Q, P). Hence the coherent states
realize a mapping of the phase plane into the Hilbert space 5.

Below some other useful relations for the states |a) are presented.

First of all, the following expressions for the operator D(x) may be easily
derived from the identity (1.1.10):

D(a)=exp(—|oc|2/2)exp (ea™)exp (—aa) (1.2.31)
D(0)=exp (|o*/2) exp (—aa) exp (aa ™). (1.2.32)

The representation (1.2.31) is the so-called normal, or Wick, form for the
operator D(a). In this representation all the creation operators a® in the
expansion stand to the left of the annihilation operators a; respectively, (1.2.32)
is the antinormal, or anti-Wick, form of the operator D ().

The following useful relations stem from (1.2.31, 32):

a+D(oz)=<a%+g> D(x), D(x)a” =(¢% —%) D(a) (1.2.33)
0 «a 0 «a
aD(0) = _<a_a_§> D), D(x)a= —(£+5> D(a). (12.34)
Another consequence of (1.2.31) is
|ocy =exp (—|o?/2) exp (xa™)|0)> (1.2.35)

which may be also rewritten in Glauber’s form,

an

= —|al? ¥
|ocy =exp (—|of*/2) n;Ol/_

n!

n>. (1.2.36)
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Below explicit expressions are also given for the coherent states in the
coordinate and momentum representations

Caloy = ()~ exp [i(2/) P g exp ( —["—'(22"—,).,/“—]) (12.37)
_ 1 2
(plly = ()~ exp [ —i(2/R)?; pl exp (-L?;”ﬂ) L 239
Further, it follows immediately from (1.2.36) that
(o By =exp (—Jof* 3| AP +36). (1.2.39)
0@ =Koy =exp(—|of), KoY =exp(—|x—pB*). (1.2.40)

Note that here the function g(«) is nonzero everywhere, so that any two coherent
states are nonorthogonal to each other. This property pertains also to general
coherent-state systems having maximal isotropy subalgebras.

Itis not difficult to obtain now the magnitude of the constant Cin (1.2.7). Itis
71, so that the measure is given by

du(@y=n"do, do,, a=o04+io,. (1.2.41)

Note the minimization of the Heisenberg uncertainty relation for the
coherent state system; for these states 4gAp=~h/2.

1.3 The Fock-Bargmann Representation

In the conventional coordinate or momentum representations no conditions of
analyticity are imposed upon the functions ¢(g) and @(p), corresponding to a
vector in the Hilbert space #. However, there is a realization of the space, where
any state vector is described by an entire analytical function. This realization was
considered by Fock [32] and Bargmann [4], so it is called the Fock-Bargmann
representation. This representation enables one to find simpler solutions for a
number of problems, exploiting the theory of analytical entire functions.

Such a representation may be related to any coherent state system, having a
maximal isotropy subgroup. Here we consider only the case of the usual coherent
states |a) =D(«)|0), |0) is the vacuum state vector, a|0) =0.

Let [y be an arbitrary normalized vector in #. Then, as shown in the
preceding section, the state |y is completely determined by its symbol |y ). Let

> = 2} cny, Yy = go lea? =1. (1.3.1)
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Then in view of (1.2.36),

{ofy>=exp(—%|af*)y (@), where (1.3.2)
V@)=Y citn@). (@)= 1/Z;Tv , (133)

The series in (1.3.3) converges uniformly in any compact domain of the z plane
because of the condition Y 2 |¢,|* =1, so Y/ (z) is an entire analytic function in the
complex z plane, and

W)= <yl> = | exp (=|P)Y @) du(z) < co. (1.3.4)

The scalar product of two entire functions ¥,(z) and y,(z), satisfying
condition (1.3.4), is defined by

Yalwo> ={ exp (= |21 @) Y2 () du(2). (1.3.5)

Bargmann [4] showed that this functional space is in fact a Hilbert space.

Thus we are led to a concrete realization of the Hilbert space as a space of
entire analytical functions ¥(z), satisfying condition (1.3.4). [A “physical”
interpretation of (1.3.4) would consider it as a statistical average of the function
V(z) =y (p, q) over the classical phase space (p, ¢), z =g + ip, for a system with the
classical oscillator Hamiltonian H=(p*+4¢?)/2=|z*/2, at f=1/kT=2, the
distribution being exp (—fH).]

Originally this representation was introduced by Fock [32] in 1928, in a
somewhat different but equivalent form. Fock proposed an operator solution for
the Heisenberg commutation relations (1.1.3),

a—dldz, at-z (1.3.6)

in analogy to the Schrodinger solution, p= —ihd/dgq, §=q. He used this
representation in investigating the quantum field theory. This representation
was thoroughly studied by Bargmann [4], and in a number of subsequent works
[33-36] for a finite number of creation-annihilation operators g; and a;" . (The
case of an infinite number of operators was considered by Segal [5]. Some
aspects of this case applicable to quantum field theory are discussed in [6] and in
a number of papers published in Communications in Mathematical Physics, so it
is not considered here.)

We name it the Fock-Bargmann representation, and the representation space
will be denoted by #. The scalar product in this space is given by (1.3.5). A
consequence of the Schwartz inequality

Kyl < v
is
W (2)|<C exp |z (1.3.7)
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for any y(z)e#. The inverse statement would be wrong. For example, the
function ¥ (z) =exp (z2/2) satisfies (1.3.7), but has infinite norm.

As was mentioned above, (1.3.6), in the Fock-Bargmann representation the
operator a* is the multiplication by z, while the operator a is the differentiation
with respect to z, and it is easily seen that a* is conjugate to a for the scalar
product given in (1.3.5). It is remarkable that the form of the scalar product may
be derived from the requirement that the operators a and a* must be conjugated.

Note some properties of the Fock-Bargmann representation.

The orthonormal basis in # has a much simpler form than in the coordinate
representation,

le

|n>a<z|n>=un(z)=w. (1.3.8)
n!
The corresponding representation of the coherent state |o) is
{z|oy =exp (—}|of* +oz). (1.3.9
The role of the ¢ function in the space % is played by
8(z,2")= Y, un(2)u,(z")=exp (zZ'). (1.3.10)
n=0

Actually, it is easy to see that for any analytic function f'(z) in £,

F@=[ 6@ z")exp(—|2’]P) f(")du(z). (1.3.11)

Let us now consider the space L,, the space of all functions (not necessarily
analytic), satisfying the condition

I£12=J 17 G 2)I* exp (—|z/*) du(z) < co. (1.3.12)
Evidently,
F@=[ exp ez’ —|2'P) f (2, 2)du(z) (1.3.13)

realizes a projection of the space L, onto & : L,—%. Note also that if the states
[¥> and |«) are orthogonal, then y (&) =0.

Finally, the relation between the usual coordinate representation and the
Fock-Bargmann representation is given by the kernel <z|g), satisfying

alzlgy =z<zlg), (1.3.14)

where a is an operator acting in the ¢ space. Explicitly, this equation is

d
[h d—q+q—(2 h)l/zz:l (zlg> =0, (1.3.15)
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giving
1
<z|q>=c(z)exp [_ﬁ q2+(2/h)1/22q]. (1.3.16)

In particular, the oscillator function ¢, (g) = (nh) "/ - exp (—g¢?/2 h) corresponds
to fo(z)=1, hence

[e@]™ =(zh)""* [ exp [—qh—2+(2/h)”zzq] dg = (nh)'/* exp (2°2).

1.3.17)
Thus the kernel is
z2 q*
K(z,q)=<z|g) =(nh)~"*exp [ —5+(2/h)”zzq —ﬁ] (1.3.18)
and the formulae producing the relation are
f@)=[K(z 9)o(q)dg, (1.3.19)
e(@=1lim | K(z,9)f(2)exp(—|z[*) du(z) (1.3.20)

r—o |z|<r

n n 2
; Pn(g)=(nh)"1* Y Z_' 272 H,((h) ") exp <_§_h),

K Z, =
(1.3.21)

(They were obtained by Bargmann [4].) Comparing this expression with (1.3.18)
gives the generating function for the Hermite polynomials:

0 n

exp(—z2+22z9)= ), ;—, H,(9). (1.3.22)

n=0

In particular, an integral representation for the Hermite polynomials is obtained
from (1.3.20)

nf2

Hn(q)= o

2
| exp [ —%+ 2zq —|z|2‘|z"‘d22,
d’z=dxdy, z=x+iy. (1.3.23)

In conclusion, I present the formulae describing the action of the operators
D(o) in coordinate representation
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i

D(x)=exp [ﬁ (Pg— Qp)]

=exp <_§lﬁ PQ) exp (i %) exp <—i %’—’), (1.3.24)

i . P
D(o)y(q) =exp (—2—;’— PQ) exp <1 #) Y(q—0), (1.3.25)
and in the Fock-Bargmann representation

D(«) f (z2)=exp (—5|of*) exp (az) f (z — ). (1.3.26)

The Fock-Bargmann representation will be exploited in solving the problems
considered in the subsequent sections.

1.4 Completeness of Coherent-State Subsystems

In Sect. 1.2 it was mentioned that the coherent-state system {|a)} is over-
complete. Hence subsystems of CS must exist which are complete. Here I
indicate criteria of completeness for a subsystem {|a,»} corresponding to a set of
points {o;} in the complex o plane.

First suppose that the subsystem {|o;>} is not complete. Then a vector
[¥> %0, belonging to the Hilbert space J#, exists orthogonal to any |u):
{Y|os> =0. Hence it is clear that the function

¥ (@) =exp (jof*/2) (Yfo> (14.1)

vanishes at every point of the set {ozk}. Meanwhile, as shown above, the function
¥(a) is an entire analytic function of the complex variable a satisfying the
condition

I=] |y (@) exp (—|o*)du(e) < oo. (1.4.2)

(Only the standard CS system is considered in this section.) In other words, y(a)
belongs to the space #. If, however, the system {|o >} is complete, no such
function exists.

Thus we have proven the following proposition.

Proposition 1. The subsystem of states {|o>} is complete if and only if no
function Y (x)e #, Y %0, vanishing at all points of the set {o,}, exists.

A number of examples of complete subsystems within the CS system {|o) } are
taken from [4].

i) Any set {o;} with a limiting point in the finite part of the o plane remains a
complete subsystem even after a finite number of states is removed.
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ii) Any infinite set {o;} which does not contain the origin o =0 and satisfies the
condition

Y o] T2 P= 0 (1.4.3)
k

at some ¢>0 is a complete subsystem. This condition is a consequence of
general theorems relating the order of increase of an entire function at |o| - 0o
to the distribution of its zeros (App. A).

iii) Of special interest is the case where the points o, form a regular lattice L on
the a plane, oy, = a,,, = mw; + nw,, where the periods of the lattice w; and w,
are linearly independent, Im {@,w, } +0, and m, n are arbitrary integers. The
simplest such CS subsystem corresponds to a square lattice with the given
area of the lattice’s elementary cell, S=n. Von Neumann [2] considered this
subsystem long ago in view of the problem of the most accurate simultaneous
measurement of both coordinate and momentum. Such a system was used in
an analysis of the problem of a nonexponential decay law of an unstable
particle [37]. For the results obtained to be valid, the system {|a,,»» } should be
complete. However, no proof that such a system is complete was published
by von Neumann.

A complete solution of the completeness problem for the system {|o,,»}
corresponding to a lattice was given in a theorem proven in [38], and also, in part,
in [39]. (Over-completeness of the system at S == was not considered in [39]. The
theorem in view was also proven in [40], while some mathematical aspects
relevant to it were considered in [41-43].)

Theorem. Let {|a,,»} be a subsystem of coherent states, corresponding to a
lattice whose elementary cell has an area S, the area element being do; do, . Then

i) The system is overcomplete for S <=, and remains overcomplete if a finite
number of states are removed;

ii) the subsystem {|«,,»} is not complete for S>n;

iii) the subsystem is complete for S=m=. It remains complete if one state is
removed, but becomes incomplete when any two states are removed.

This theorem is proved in Appendix A.

Note that the « plane is an analog of the phase plane for the classical system,
and the cell of the « plane of the area = corresponds to the phase plane cell of the
area 2nh. Hence a physical interpretation of the obtained result is clear: the CS
system corresponding to a lattice on the phase plane with a density equal to one
state per Planck cell, or with a higher density, is complete ; if the density is less, the
system is not complete. This fact provides more evidence in favor of the
fundamental importance of partitioning the phase plane into Planck cells.

Thus at S=m, i.e., if one coherent state is chosen for any Planck cell, the
system {|o,,,» } of all the states excluding the vacuum state |0) may be taken as a
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~
complete and minimal system of states. Expanding the vacuum state |0) over the
basis {0, } gives a linear relation between all states of the system {|o,»}. The
calculations lead to a formal relation [38]

Z (_1)mn+m+n|amn>~0. (144)

Let us now look at this relation in the Fock-Bargmann representation. The
state |o) is represented by ¥, (z) =exp ( —%|«|?) exp (az), and (1.4.4) is rewritten as

f@=Y (=)™ "exp (—}|am|”) exp (oms2) =O0. (1.4.5)

m,n

Note that the series in (1.4.5) converges uniformly for any compact subset of the
aplane, sof (z) is an entire function. The fact that f (z) =0 may be also confirmed
directly [38].

In particular, setting z=0 in (1.4.5),

Y (——1)'””*"'*"exp[—g (am2+2bmn+cn2)]50, (1.4.6)
m,n

where ma=|w,|?>, nb=Re{w;®,}, nc=|w,*, ac—b*=1, a>0, ¢>0. For a
rectangular lattice, b=0, and the above identity is equivalent to a bilinear
relation for the theta functions

03 (1) 03(t2) —05(71) 04(72) — 04(71) 03(72) —04(71) 04(72) =0. (1.4.7)

Here 7, =ic/2, 1, =ic ™' /2, and the theta functions 6 (z) and 6, (<) are defined by
the series [47]

0

O;(v)= Y exp(intm®), O,(1)= i (—=1)™exp (intm?). (1.4.8)

m= — o0 m= — o0

Note in conclusion that since the subsystem |, is complete, any subsystem
of the form |,y = Ultmsy, where U is an arbitrary unitary operator, is also
complete. Suppose we choose the operator U so that

UaU* =ua+va*, |uf—|v]*=1. (1.4.9)

(The Stone [25]-von Neumann [26] theorem proves that such an operator exists.)
Then

UD()U*=D(B), P=uo—va (1.4.10)

and the linear mapping a— f is area preserving. Hence the subsystem {|y/,,,>},

[Vmn> =D (Bmn)| o), of the CS system of type (T, [y/o)), [0} = U|0), where the
operator U satisfies (1.4.9), is also complete.
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1.5 Coherent States and Theta Functions

The preceding section showed that the theta functions arise during the analysis of
completeness of the CS subsystem, corresponding to a regular lattice in the a
plane. An investigation of the theta-function properties based on the group-
theoretical arguments related to the Heisenberg-Weyl group was begun by
Cartier [23]. The present section considers the relation between coherent states
and theta functions in more detail.

Let L be a regular lattice in the « plane, that is the set of vectors of the form
oz,,=z njw;, j=1,2, where n; are integers and the vectors w;, w, (the lattice

periojds) are linearly independent over the field of real numbers. Consider also
the set of operators {D(a,)} and let us try to find their eigenvector |0) (such a
vector does not exist in the space 5, but in an extended space, see below). A
common eigenvector exists only if all the operators D(o,) commute, which is the
case when two operators D(w;) commute. According to (1.1.14), this condition is
equivalent to

where £ is an integer. In other words, the area of the parallelogram based on the
vectors w; and w, must be a multiple of =.

The lattice L satisfying condition (1.5.1) is called admissible. The desired
eigenvector is characterized by two real numbers ¢, and ¢,, |0) =|6,), and it must
satisfy

D(w)|0,> =exp (ine)|0,y, j=1,2. (1.5.2)

Thus the quantities & and ¢, lie in the interval 0 <g;<2, so that the vector |6,)
corresponds to a point on the two-dimensional torus.

It is not difficult to see, however, that the vector |6,) cannot belong to the
Hilbert space #, where the operators D(«) act. Let us describe in brief the
extended space # _ ,, containing the vector |6,>. A more detailed discussion of
this construction was given in [23].

Denote by #,, a subspace of # containing only such vectors |y that the
function

{@|T(g)|yy =exp (ir) {@|D ()¢

isinfinitely differentiable for any fixed pe 5. Elements of the space will be called
C® vectors. Note that some C* vectors have the form

s> ={ du(@) f@)D@)y>,

where |y is an arbitrary vector in #, and f(«) is an infinitely differentiable
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function with a compact support. As shown by Gdrding [44], such vectors form a
dense subset in . The space S _ , is defined as a set of all continuous antilinear
forms on #,,, while s# isidentified with a subspace of # _ ,, mapping any vector
||//>e s onto the antilinear form (Y|p) on #,,. Then the representation T(g),
defined originally in #, may be extended to a representation in the space J#_,.

Among the states |6, we select now a state, say |6, ), and let it be subject to the
action of all the operators D(«). The result is a system of generalized coherent
states

|6.> =D (@)[6). (1.5.3)

It is not difficult to see that the system of states obtained is just {|0,)}, defined by
(1.5.2). This is quite natural because the isotropy subgroup H of the state |6,)
contains elements (¢, a,), so the coset space G/H is a two-dimensional torus.

It is also remarkable that the possibility to parametrize the states by means of
a complex number a, see (1.5.3), arises from the well-known fact that any two-
dimensional torus is a complex manifold [45].

Thus the system {|6,)} is a CS system related to an admissible lattice L. To
establish its relevance to the theta functions consider the state |6,) in the Fock-
Bargmann representation, |6,>—6,(z) [for simplicity we restrict ourselves to the
so-called principal lattice corresponding to k=1 in (1.5.1)]. In this case it follows
from (1.5.2) that

D(0,)|0:) =€i™F=™)6,>, 1.5.4)
where a,, =m; w; +m,w, is an arbitrary lattice vector, and

E,(m)=mym, +¢e,m; +e;m;. (1.5.5)
Using (1.3.26), the equality (1.5.4) may be rewritten as

0,(z + B,) =eFe(~melbml*2ePazg (7). (1.5.6)

where f,, =@, is the conjugated lattice vector. Equation (1.5.6) is just the familiar
functional equation for the theta functions [46,47].
Besides 6,(z), the function

8.(z, 2) =" 1#*20,(2) (1.5.7)

is also useful. The following functional equation arises from (1.5.6) for this
function

0.(z+ B, 2+ Byy) =€ FemimEIn (7, 7). (1.5.8)

Thus |9,(z, 2)* = 0(z, 2), where g(z, 2) is a nonnegative function periodical with
respect to L, the lattice conjugate to L. So the usual norm of the function 9,(z) is
infinite.
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As for the solution of (1.5.6), it is not difficult to verify that the function
ho(z)=Y, "™ D(~B,)h(z) (1.5.9)

is a solution for an arbitrary entire function A(z) such that the series (1.5.9) is
converging. A more explicit form is

ho(z)=7Y, e " @ exp (—4|B.[*) exp (= B.2)h(z+B,). (1.5.10)
In particular, for A(z)=1 one gets the following solution

£@)=ch,(z)=Y e irFemglenl’l2 gmmz (1.5.11)

written as a superposition of coherent states. Note, however, that for certain
values of ¢, e.g., for e=(1, 1), the function f;(z) is identically zero.

To conclude this section, consider the relation between the present approach
and that proposed by Cartier [23]. He showed that the theta functions arise in
representations of the Heisenberg-Weyl group #;, which are induced by
representations of its discontinuous subgroup I related to a lattice L. (A number
of general problems related to discontinuous subgroups of continuous groups is
considered in [48].)

Let us consider the set of the operators D,,,=D(mw; +nw,), where a,,,
=mw, +nw, is a point of an admissible lattice L with the elementary cells of area
S=mn. These operators form a discontinuous commutative group with the
multiplication law

Dk,le,n=(_I)B(k’l’m,n)Dk+m,l+n; B(k,l,m,n)=kn—lm (1512)

Let I' be the discontinuous subgroup of #; consisting of the elements
g=(km, a,,). The operators {-i_-Dm,,} form a representation of this subgroup,
while the set of the states {|a,,,»} is a basis for a representation of the group I'.
Now we try to do without the sign factor in (1.5.12); in other words, our purpose
is to get a representation of the factor group I'/T,, where I'o={(kn, 0)}.
Introduce some new operators,

Diy=(=1)"*"Dy, (1.5.13)
and impose the requirement

Dy D= Dicsm,1+n- (1.5.14)
Hence we get a functional equation for F(k,/):

F(k+m,l+n)=F(k,])+ F(m,n)+ B(k,l;m,n) (mod 2), (1.5.15)

where Bisdefinedin (1.5.12). Atm=1,n=1 thisequation coincides with Eq. (71)
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of [23]. The solution of (1.5.15) is

Fk,)=kl+k+1 (1.5.16)
Thus a new set of states arises

|°~‘kl>=5klI0>=(_1)kl+k+l|akl>s (1.5.17)
where the operator Dy, acts as follows:

Dt |y = m, 1+ (1.5.18)

Hence a relation between the states in the system |&,;» may be obtained at once.
As explained above, this relation looks like ) Cyl&u)~0 and is unique.
Consequently, it is invariant under the action of any operator Dy,. It is not
difficult to see that the only relation having this property is

Y [ty =Y, (—1)™ ™o, 5 ~0 (1.5.19)

and coincides with (1.4.4).

It is also remarkable that the uniqueness of the solution of the functional
equation (1.5.6) arises from the fact that the representation of the group W;
induced by that of the discontinuous subgroup I, is irreducible [23,48]. In
particular, at & =¢, =1 the state |0;;) corresponds to the function

fi1(2)=ca(z)exp (—vz?) (1.5.20)

where v=i/4n(nw, —n,w,), n;={(®;/2), o(z) and {(z) are the well-known
Weierstrass functions [38].

In conclusion, I mention an interesting work [49], where the CS related to the
lattice were used to describe the motion of an electron in a periodical magnetic
field.

1.6 Operators and Their Symbols

As shown in Sect. 1.2, any vector |y) of the Hilbert space 5# is determined
completely by a function («|y) which may be called a symbol of the vector
(however, not every function of « determines a vector of Hilbert space). Thus one
gets a functional realization of the Hilbert space. Similarly, using the CS system,
one may represent operators acting in the Hilbert space and belonging to a
certain class by functions. These determine the operators completely and are
called their symbols.

Such a correspondence between operators and their symbols is rather useful.
For instance, questions relevant to the operators can be formulated in terms of
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the functions. The inverse correspondence is also valuable. Actually, operator
symbols may sometimes be considered as functions on the phase space of a
classical dynamical system. Constructing operators for these functions is in fact
the quantization of the system. This is the reasoning underlying the works by
Kirillov [19] and Kostant [20,21], in which quantization is treated as.a general
procedure to construct unitary irreducible representations of the Lie groups. The
coherent states provide the most natural means for this correspondence: in a
number of cases they are quantum states whose properties are as close as possible
to those of the classical states. Therefore the construction of a CS system is in a
sense the completion of the quantization procedure, so it may be called the
postquantization.

Let us consider for simplicity the standard CS system. Suppose A is an
operator. We represent it by the functions 4 (2, f) and A(a, p) defined by

A, B)=<ald|B), (1.6.1)

A(@, p)=exp <M2;ili> A@, p). (1.6.2)

It is not difficult to see that the function A4 (&, f) determines the operator 4
completely and is an analytical function of the complex variables @ and . In fact,
as shown in [36], this function is determined completely by its ““diagonal” values,
i.e., by the function 4 (&, ). To verify this fact, it is appropriate to introduce new
variables u=(a+ B)/2, v=i(a—p)/2, so that f=u+iv, a=u—iv. Then F(u,v)
= A(&, P) is an entire function of « and v. At the diagonal, «= g, # and v are real
variables, so the above statement stems from the well-known fact that any entire
function of variables u, v is determined completely by its values at real  and v.

Thus the function A(&, f) is also determined completely by its diagonal
values, i.e., by the function

Qa(®)=<o]d|oy = A(a, o) =exp (—|o*) A(&, ). (1.6.3)
On the other hand, in a number of cases the operator 4 may be represented by
A= Py(o)oy <ofdp(@), (1.6.4)

where |a) {«| is projection operator on state |oy. This integral representation was
considered originally by Glauber [7,8] and Sudarshan [50].

A reasonable question arises, namely which properties must have a func-
tion of the variables a, & in order to be the P (or Q) symbol of an operator ;
and for which operators such symbols exist. It was found that if an operator A is
bounded, then it always has a symbol Q,(x), which is a value of an entire
function 4(2, f) at f=a, provided that the inequality

|[4@ B)| < | 4] exp <| P +16P ) (1.6.5)
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is satisfied. Here || 4| is, as usual, the upper bound of the expectation values
(Y|A|) overall the normalized states , {y|y> = 1. The Q symbols also exist for
some unbounded operators, say, for operators which are polynomials of the
annihilation-creation operators a and a*.

The following result is known for the P symbols. If P(a, &) is a function, such
that

§ [P, @) exp (—|e*)du(@) <o  at r>2, (1.6.6)

then it is the P symbol of an operator with a dense domain of definition.

The Q and P symbols of operators were investigated in some detail by Berezin
[29, 51], who called them covariant (or Wick) and contravariant (or anti-Wick)
symbols, respectively. A number of properties of these symbols are, in a sense,
dual. Here I present some of them without proof.

1. For an operator A4 let its average values {y|A|y) over states |y,
belonging to a dense set in the Hilbert space, form a point set D(4) in the
complex plane, the values of Q 4(«, &) form a set D(Q), and the convex hull of the
set of values of P, (o, &) form a set D(P). It is established that

D(Q)=D(A)<D(P). (1.6.7)

In particular, for an operator 4 to be bounded, its Q symbol must be bounded,
and it is sufficient that its P symbol be bounded. Besides, an estimate holds:

sup|Q.4 (@, ®)| < || 4] <sup|P4(@ ). (1.6.8)

2. Ifan operator A is defined over finite vectors (a vector |y is called finite if
its symbol exp (3 |o|?) <oy is a polynomial in &), its closure is self-adjoint and it
has the symbol P(a, o). If | | P|*exp (—|a|*)du(a) < oo with k> 1, then it has also
the Q symbol Q(a), and

D(Q)ca(d)=D(P), (1.6.9)

where o(A4) is the convex hull of the spectrum of A.

3. Foran operator 4 be nuclear, its symbol Q (o, &) must be integrable, and it
is sufficient that its symbol P(a, &) be integrable. In this situation the following
relation is valid

tr{A}={ O(a, ) du(@)={ P(x, &)du(a). (1.6.10)

(Operator A is called nuclear if Y |<y,|4|y,»| < oo for any orthonormal basis
{|{ny} in the Hilbert space. For the nuclear operator the sum Y. <y,|4 |y, does

n -~
not depend on choice of the basis and is called the trace of the operator 4.)
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4. For an operator 4 be completely continuous, it is necessary that its
symbol Q(«, &) vanishes at |¢|— oo, and it is sufficient that its symbol P(a, &)
vanishes at |o] > oo.

5. If A is a self-adjoint operator having both Q and P symbols, then

[e @0 <tre” <[ e "*Pdu(a) (1.6.11)

(note that in statistical mechanics t= T, T'is temperature) and the fact that the
operator exp (—tH) is nuclear is a consequence of the existence of the integral
fexp [—tP(a, &)]du(o). The left inequality in (1.6.11) follows from (1.6.10) and
from an equality for the @ symbol U(xalt) of the operator

exXp ( _TH)s
U(a, &) >exp [ —tH (o, 3)]. (1.6.12)

The right inequality in (1.6.11) is an analog of the familiar Feynman inequality
for an operator of the type H=%p?+ V(g), i.e., of the inequality

tr{e " < _2 Y fexp{—1 [ + V(q)]} dpdq. (1.6.13)

The proof of inequality (1.6.13) was based on representing the operator
exp (—tH) as an integral over Wiener s measure, and it cannot be extended to
operators which are not written as ¥ p%+ V(q).

Under quite general assumptions, 1nequa11ty (1.6.11) enables one to obtain
the E— o0 asymptotic behavior of N(E), the number of eigenvalues of the
operator H which are less than E:

N(E)=[1+0(1)] P(g _du@=[1+0(1)] Q({ (@) (1.6.14)

The proof of (1.6.14), given in [29], assumed that both P and Q symbols of the
operator H are regular and satisfy the condition

[ du@=4AE[1+0(1)], 7>0. (1.6.15)

P()<E

Itis notable also that the exponential in inequality (1.6.11) may be substituted for
any concave function, exp (x)— ¢ (x).

The CS system may be used to strengthen the so-called Golden—Thompson
inequality [52, 53]

tr {exp [ —t(4 + B)]} <tr {exp (—td) exp (—1B)}. (1.6.16)
The following inequality may be also proven [54]

tr {exp [— (A + B)]} < [ du(x) {xle x> e F=®,  where (1.6.17)

B={ Pg(x)|x) <x|du(x). (1.6.18)
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The Q and P symbols are related by a simple formula
Qa(@)={ Kol B> Pa(B)du(p)
=71 | exp(—|a—B*) Pa(B)d*B. (1.6.19)

The kernel in this relation is smoothing. Therefore Q () exists for any given P(«).
The inverse proposition would be wrong, in general ; operators exist having Q
symbols but no P symbols.

The Q and P symbols of an operator are closely related to its so-called normal
(Wick) and antinormal (anti-Wick) form. Recall that the Wick form of an
operator is its representation by means of the series

A=Y Ap(@a*)"a", (1.6.20)

where the powers of the operator a* are posed to the left of the powers of a. Note
that any bounded operator may be written in such a form. It is easily seen that

Q4@ x)=Co|dlay =Y Apo"a". (1.6.21)

Hence the expansmn of the function Q4 (, «) in powers of o and & produce the
coefficients A,,, in the normal form of the operator A.

Suppose now that the operator 4 is written in the antinormal (anti-Wick)
form

A= Y Apa™(@t)". (1.6.22)

m,n

Rewrite it equivalently

A= Z Apa™i(@t),
where 1 is the unit operator. Substituting T by (1.2.11) yields for the P symbol

Py@, )= Apo™a (1.6.23)

m,n

Thus the P representation is intimately related to the antinormal ordering of the
operator.

Consider an expression for the symbol of a product of operators. Suppose
C=A4B, then

C@y)=[ A@ BB, y)du(p), or (1.6.24)

C@»=[ 4@ B)B(B, ) exp (—|p)du(p). (1.6.25)



34 1. Standard System of Coherent States

Note also that the action of an operator upon a state

> =4|o> (1.6.26)
in terms of the symbol of the state vector

Y@=,  e@=<dp) (1.6.27)
is written as

Y(B) =] {Blay Pa(0) (@) du(w), (1.6.28)

Y(B)=] A(B, %) () du(®). (1.6.29)

The symbols are rather useful; let us now look at some examples where their
use is quite suitable.

a) Schur’s Lemma [36]

Lemma. Any bounded linear operator B, commuting with every operator D (),
is the unit operator times a number.

Proof. The symbol corresponding to the operator is
B(z,z)=exp(|z?) <O|D* (z) BD(2)|0).

From the fact of the commutation one gets at once B(Z,z) = exp (zz) Byy . Hence
B(z, w)=exp (2w) Byo, and the corresponding operator is Byol.

b) Evaluation of tr{D(y)}

Another example is the calculation of the trace of D(y), in other words, the
character of the representation 7'(g), using the symbols. It is not difficult to see
that the symbols corresponding to the operator D(y) are

P(x)=exp G|yP)exp (ya—7a), Q(x)=exp (-3 exp(ya—jo) (1.6.30)
Hence

tr {D()} =exp (—4|yP’) | exp [2i Im (y&)]du(a) =70 (), (1.6.31)
where

F)=001)0(2), y=v11+in.
From (1.6.31) one gets the important consequences

2 tr {D(@D (B} =6*(@—h) (1.6.32)

A= du(mtr {D(m) A} D™ *(y). (1.6.33)
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By means of the symbols, it is not difficult to obtain also an explicit
expression for matrix elements of the operator D(y). Let us consider a function
related to the matrix element in view,

G@, B;7)=exp [ (|of* +| A1 <D ()| B. (1.6.34)
Clearly, using (1.6.30), one gets
G(@, B;v)=exp (—4|y*) exp @B +ay — B7). (1.6.34)

On the other hand,

m

G B:7)=Y. (@) Dyn()un(B); um(a>=l/°‘m (1.6.35)

so that G(&, f8;y) is just the generating function for the matrix elements. Now
(1.6.34) must be expanded in powers of  and . The result is Schwinger’s formula
[55]:

3, m=n

|
/ % exp (—[yP/2)y™ "Ly~ "(|y
Dpn(y)= (1.6.36)

m!
/ 1 exp( P2y (=L (WP, m<n,

where L¥(x) is the Laguerre polynomial. In particular, at m=n
(nle™” e *ny =L, (|o?). (1.6.36")

A derivation of these formulae, as well as a number of the resulting properties
of the Laguerre polynomials, is given in App. B. Note that even before
Schwinger, the matrix elements (1.6.36) were obtained by Feynman [56], though
in a somewhat different form.

Beside the symbols Q 4(«) and P, (a), which are related to the Wick and anti-
Wick ordering of the operator A4, another function is sometimes suitable,
determining the operator completely. Consider the symmetrical ordering of the
operator,

A=Y Ap{@*)a"}, (1.6.37)

where the symmetrical monomial {(a*)"a"} is defined by

1

i) Pl(@*)"a", (1.6.38)

{(a+)man} =

and the symmetrization operator P is just a sum of (m +n)! permutations of the
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factors. The function in view, corresponding to the operator, is written by means
of the series (1.6.37)

Wi(@)=Y Apd"a". (1.6.39)

To find a relation between the operator 4 and its symbol W,, let us write the
Fourier integral representation for W:

Wa(@) = [ exp (@n —an) xa(m)dun). (1.6.40)
It is not difficult to verify that the operator A4 is given by
A= [ D(n) xa(n)du(n)= [ exp (a*n—an) xa(m)du(n). (1.6.41)

The function y,(n) here determines the operator completely. It is called the
characteristic function and is considered in more detail in Sect. 1.7. Thus the
operator A is constructed from the function W, substituting the variables o, & in
the integrand in (1.6.40) by the operators a, a*. This operator-function
correspondence was established by Weyl [14, 57], so the function W () is called
the Weyl symbol of the operator.

The operator A is easily written in terms of W, («) [59-61]. To this end one
must just extract the function y,(#) from (1.6.40) and insert it into (1.6.41):

A=[ Wy(0)T(@)du(x), where (1.6.42)
T(o) = du(n) exp (aiy —n) D(n) (1.6.43)
T(0)=2D(2) JD"* (@) =2 D) J=2JD(—20). (1.6.44)

Here J is the operator of inversion in the a plane,
ID(@)J=D(-a), J*=1, Jum=(—1"6p- (1.6.45)

The operators 7'(«), as the operators D(a), form a complete orthogonal system
1 2
—w{[7@, T(PL}=6*@—p), (1.6.46)

§ @ (@) T (%) Tonn (0) = GO (1.6.47)
Therefore any operator may be decomposed over the system T'(a):
A={ du() (tr {T(2) A} T(x). (1.6.48)

It is not difficult to find relations between the functions Q, P, and W. The
formulae result from (1.6.40,41):
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Wa(@)={ Pa(B)exp(~2lu—BP)du(p) (1.6.49)
Q@)= W4(B)exp(—2lx—B*)du(p)
=[ Py(B)exp (—|a—pP)du(p). (1.6.50)

Thus the functions W, («) and Q ,(a) are smoothed versions of P,4(x). In the
classical limit all three functions variate substantially only at large distances,
Aa>+1, so in this limit all the functions coincide.

1.7 Characteristic Functions

This section treats the basic properties of the characteristic functions [58-62].

Let W(q, p) be a probability distribution on the phase space of a classical
dynamical system. In classical statistics, the characteristic function y (&, ) is
defined as the expectation of the quantity exp [i(—ng + £p)], i.¢., as the Fourier
transform of the distribution W(g, p). Introduce complex variables

a=1_15 (g +ip), n=% (& +im). 1.7.1)
Then

1) =] W) exp (—nctiodu(@),  du(o) = do dt 1.7.2)

W(e)={ x(n)exp (na —7jo)du(n). (1.7.3)

Turning to the quantum case, let us first look at the most important case
where W (g, p) is the symbol of the density matrix: W (@, o) = {a|ole) = Q (), i.e.,
W (@, «) is a normalized real and nonnegative function. Hence the characteristic
function y(n) must satisfy the following conditions

a) x(0)=1, (1.7.4a)
b) x(m=x(—n), (1.7.4b)
©) Y Zizjx(m;—n,) =0, (1.7.4¢)

and the last inequality must be valid for any sets of the complex numbers
Z1,...,zzandny,. .., n,. Thisis the familiar positive definiteness or the Bochner-
Khinchin condition [63].

The characteristic function y(n) is suitable for calculating moments of

random quantities
0

6 m n
My, =™y = | dy(o) W () @"o" = ( —%> <0_11> x@y=o- (1.7.5)
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Suppose a is a sum of several independent random quantities, a=a; + . . . +a,.
Because of the multiplicative property of the exponential, exp(x+y)
=exp (x)exp (»), the characteristic function here is a product of the partial
characteristic functions x;(n), and this is the main advantage of using the
characteristic functions. The corresponding probability distribution W(x) is
found as a convolution,

x(m)= 1;[1 % () (1.7.6)
we)=[...[6*(@—oy—... —a,) ﬁ W(a;)d*;. (1.7.6")
i=1

It is clear from (1.7.6) that, in particular, the distribution W(a) is surely
nonnegative for nonnegative partial distributions W;(«). The property (1.7.6) is
widely exploited in many applications of the characteristic functions in the
theory of probability, specifically in the problems of random walks and
Brownian motions [58, 63].

Two novel aspects appear in applications to quantum theory. First, a state of
the system is represented by a density matrix 9, i.e., by an Hermitian, positive-
definite operator, with the trace equal to 1. For any operator F the expectation
value is given by

(Fy=tr{oF}. 1.7.7)

Second, the variables §, p are now operators and do not commute (the
operators d, 4* do not commute), so the order of the factors exp (na*) and
exp (—7na) is essential. Usually, three variants of the characteristic function are

used:

an(—n)=tr {ge™" e}, (1.7.82)
Xo(—m)=tr {ge™" 77}, (1.7.8b)
xa(—m)=tr {oe ™"}, (1.7.8¢0)

The subscripts N, O, A indicate the normal, symmetrical and antinormal
ordering of 4 and 4™, respectively; the subscript O is often omitted.
These characteristic functions are simply related through (1.2.31,32)

2 (M) =exp (—ow|n*) xn(n) (1.7.9)
0 for k=N,

o,={% for k=0, (1.7.10)
1 for k=A.

Any variant is sufficient to determine the density matrix.
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Suppose the density matrix is diagonal in the occupation-number represen-
tation, 9,,,=w,d..,. Then the characteristic function is

)= Y w,L,(n]). (1.7.11)

Using (1.6.33,7.9), clearly

o= xo(n) D(n)du(n) (1.7.12a)
o={ xn(me ™e™" du(n) (1.7.12b)
o={ xame™ e ™du(n), (1.7.12¢)

(note the order of the operators d and 4" in the integrands). Thus each
characteristic function y, (1) may be used to determine the density matrix g.
Just as in the classical theory, for any &

wO@=1,  xlm=x(-n (1.7.13)

because the operator ¢ is Hermitian and normalized. The nonnegativity of the
density matrix,

Yoy =0 (1.7.14)

for any state vector |lﬁ>, leads to the following condition for the characteristic
function y, (1) [64]:

Z z;Z;exp (m;+ 0'k|’1i —’11|2)Xk(’7i —n;)=0 (1.7.15)

for any sets of complex numbers zy,...,z, and 5y,...,7,.
As in the classical case, the quantum characteristic functions are suitable for
calculating the moments,

oN\" [0\
M,g‘,3=<—%> <0_1_1> xx(m)

Here M are the mean values of the normal, antinormal, and symmetrical
products,

(1.7.16)

n=0

M) ={@"may, ME=<{a"@)"y, Mp={a@)"}). (1.717)

The characteristic functions provide a very appropriate approach to solving
a number of problems, for example, relaxation of a quantum oscillator to
thermodynamic equilibrium (Part III).



2. Coherent States for Arbitrary Lie Groups

The constructions in the preceding chapter can be generalized to any Lie group.
This is the purpose of the present chapter, where, following [15], the concept of
the coherent state is introduced for arbitrary Lie groups and some of their
properties are investigated. A reader whose interests lie mostly in CS for the
simplest Lie groups may skip this chapter.

Note that though the generalized CS may be defined for linear representa-
tions of an arbitrary group (for instance for a finite group), we restrict ourselves
to unitary irreducible representations of the Lie groups: this case enables a
substantial theory of such states to be constructed.

2.1 Definition of the Generalized Coherent State

Let G be an arbitrary Lie group and T'(g) its unitary irreducible representation,
acting in the Hilbert space .

Take a fixed vector |y, in the Hilbert space # and consider a set {|y,>},
where |y,>=T(g)|o) and g is any element of the group G. It is not difficult
to see that two vectors |{,:> and |,,> correspond to the same state, i.e., differ
by a phase factor (|y,:)>=exp (®)|y,,>, |exp (ix)|=1), only if T(g5'g,)|¥0)
=exp (ia)|yo). Suppose H={h} is a subgroup of the group G, such that its
elements have the property

T(h)|yo) =exp [ia(h)}|yo)- 2.1.1)
When the subgroup H is maximal, it will be called the isotropy subgroup for the
state o).

This construction shows that the vectors |y, for all the group elements g,
belonging to a left coset class of G with respect to the subgroup H, differ onlyina
phase factor and so determine the same state. Choosing a representative g(x) in
any equivalence class x, one gets a set of states {|y/,)>}, where xeX=G/H. A
more concise form {|x)}, |x)e #, will be used for this set here. (The group G may
be considered as a fiber bundle with base X =G/H, and fiber H. A choice of g(x)
is a cross section in the fiber bundle.)

Now we are able to present a definition of the generalized coherent state.
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Definition. The system of states {|y,>}, [¥,> =T(g)|o), where g are elements
of the group G (T is a representation of the group G, acting in the Hilbert space
A, and |y, is a fixed vector in this space) is called the coherent-state system
{T s l‘//0>}‘

Let H be the isotropy subgroup for the state |/, ). Then a coherent state |y, >
is determined by a point x=x(g) in the coset space G/H, corresponding to the

element g: [y,> =exp (io)|xD, o) =]0D.

Remark 1. The state corresponding to the vector |x) may also be considered as a
one-dimensional subspace in #, or as a projector P, =|x) (x|, dim P,=1, in /.
Thus the system of generalized CS determines a set of one-dimensional
subspaces in J#, parametrized by points of the homogeneous space X=G/H.

Even more general systems may be considered, where any point of the
homogeneous space X is mapped into a subspace P, in s, which is not one-
dimensional, while T(g) P,T(g ) = P,.. Such systems were investigated in [65].

Remark 2. In a number of cases it is useful to consider not the Hilbert space 5,
but a wider space # > #, the so-called rigged Hilbert space. Then the action of
the representation 7(g) is extended to J#. If an element of J# is taken as the
starting state vector |, then a more general CS system is constructed. Such
systems appear when representations belonging to the principal series are
considered for a semisimple Lie group (Chaps. 6-8), as well as when the isotropy
subgroup H is a discrete subgroup of G (see Sect. 1.5 concerning theta functions
and Sect. 3.2).

Animportant class of CS systems corresponds to the coset space X=G/Hisa
homogeneous sympletic manifold. (Definition and properties of sympletic
manifolds may be found in [66]. Homogeneous sympletic manifolds coincide
with orbits of coadjoint representations [19].) Then X may be considered as the
phase space of a classical dynamical system, and the mapping x— P, is the
“quantization” for this system.

Constructing unitary irreducible representations of the group G, based on a
classical dynamical system with the phase space X, was developed by Kirillov [19]
and Kostant [20], who, however, did not consider the correspondence principle
and the analog of Planck’s constant. When, in addition, analyticity is assumed
(in other words, when X is not only sympletic but also a complex manifold, i.e., a
homogeneous Kihlerian manifold) a somewhat different approach to the
quantization was developed by Berezin [22]. He could then obtain more
advanced results (though for a narrower class of groups). It is remarkable that in
this case the quantization is performed via the coherent states. Moreover, unlike
the general case, it is possible to verify here also the correspondence principle:
classical dynamics is a limit of quantum dynamics when a parameter, which is an
analog of Planck’s constant, tends to zero.

Further below in this chapter, the generalized coherent state is called just the
coherent state, for brevity.
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2.2 General Properties of Coherent-State Systems

Note first of all that a direct consequence of (2.1.1) is exp [ia(hyhy)]
=exp [ia(hy)] exp [ix(hy)), i.¢e., exp [ix (k)] is the one-dimensional unitary repre-
sentation (character) of the subgroup H. If this representation is not identical,
i.e., a(h)#£0, then the quotient 4 of the group H by its commutant H’ is not
trivial, i.e., it contains elements other than unity, and the character of A4
determines the representation of H completely. Recall that the commutant H' of
a group H contains elements of the form 4’ =h,h,h; *h; !. The commutant is an
invariant subgroup in H, and the coset space H/H' is an Abelian group.

If, however, a(h) =0, then H is the usual isotropy subgroup for the vector
||//0>. In both cases, the representation 7 of the group G, when restricted to the
subgroup H, must contain the one-dimensional (identity) representation of H.
Note that if the subgroup H is simply connected, the vector |y, is an eigenvector
of the generators of the representation of H. [Useful information on possible
representations 7'(g) may often be obtained from the Frobenius duality theorem,
namely, if 7% is a representation of G, induced by the character exp (ix) of the
subgroup H, then the representation 7 must be present in the decomposition of
T* over the irreducible representations [19].]

Suppose H, is a subgroup of H, containing elements 4, such that T'(hy)=1.
Evidently, H, is an invariant subgroup of H. Let us consider the quotient group
H/H,. If it is compact, the vector |, > which is an eigenvector for the operators
T(h), belongs to the Hilbert space . If the quotient group H/H, is not compact,
the vector |y, ) is not contained in # but belongs to the space #_,, Sect. 1.5.

Let us consider the action of the operator 7(g) upon the state |y,> =|0D,

T(9)|0) =exp [ioe(9)]|x(9)>- (2.1)

This defines a mapping n: G— M, where M is a fiber bundle whose base is
X =G/H and the fiber is a circle. Here the function a(g) is defined for any element
g of the group G, while for g e H it coincides with the function a (%) considered
above. Replacing g in (2.2.1) by gh gives

a(gh) =a(g) +o(h). 222
Apply now the operator T'(g;) to an arbitrary coherent state,

T(gy)|x) =e™*@ T(g;) T(9)|0) =g, x>,

B(91,9) =a(g19) —2(9)- (2.2.3)

Here x=x(g), g, x=x,€X, x(g) is determined by the action of the group G in the
homogeneous space X =G/H. Note that in view of (2.2.2) the equality (2.2.3) is
correct, since the rhs does not depend on the element g, but on the equivalence

class x(9): B(g1,9)=P(g1,%).
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It is not difficult to see that the scalar product of two coherent states
Pe1>=|x(g1)> and |x,> =|x(g,)) is given by

<x1|x2> =¢€Xp {i [x(g1) —“(gz)]} <0|T(g1_ 192)10> 224

and is independent of the choice of the representatives g; and g,, because of
(2.2.2). As the representation is unitary, [{x;|x,» <1 for x; #x,, and

$xa|x2) = {xax1), (2.2.5)
<gx1|gx2) =exp {i[B(g, x1) — B(g, x2)1} (x1|x2)- (2.2.6)

2.3 Completeness and Expansion in States of the CS System

The first point to be mentioned in discussing completeness is that it is a direct
consequence of the irreducibility of the representation 7'(g). Suppose that a
measure dy(g), which is invariant under left and right shifts, exists for the group
G. It induces an invariant measure dx in the homogeneous space X=G/H.
Assuming that convergence conditions are satisfied, let us consider the operator

B={ dx|x) (], (2.3.0)

where |x) (x| is the projector for the state |x). Because of the definition of B, the
invariance of the measure dx, and in view of (2.2.3), one has at once

T(9)B[T(9)] ' =B. (2.3.2)

Thus B commutes with all the operators T(g) and must be equal to the unity
operator times a numerical factor, because the representation 7T'(g) is irreducible,

B=dl. (2.3.3)

To fix the constant d, it is appropriate to calculate the expectation value of Bfor a
state | ) (recall the normalization (y|y)=1)

By =[|<yxpPdx=[|<0|x)Pdx=d. 2.3.4)

Hence it is seen, by the way, that a necessary condition for B to exist is the
convergence of the integral in (2.3.4). In this case the CS system is called square-
integrable. (The CS are square-integrable for a number of cases: all represen-
tations of compact semisimple groups, representations of discrete series for real
semisimple groups, and some representations of solvable Lie groups.) Introduc-
ing the factor into the measure in X, du(x)=d 'dx, one gets an important
identity (the resolution of unity)

§ du(x)|xy (x| =1. (2.3.5)
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Thus any state |{) may be expanded in the CS system,

Wy =] dux)e(x)|x), (2.3.6)
where c¢(x)=<x[y>, and

Wy =[ duleP. 23.7)
The function c(x), the symbol of the state [y, is not arbitrary, but satisfies

c(x)={ <x|yye(y)du(y). (2.3.8)

Hence the kernel K(p, y)=<x|y) is reproducing,

K(x,2)={ du(y)K(x,»)K(,2), (2.3.9)

while the function c¢(x)=[ K(x,y) f(»)du(p) satisfies (2.3.8) for an arbitrary
function f(x).

Clearly, some ‘“linear dependences” exist for the coherent states. A
consequence of (2.3.6) is

ey =[ <yl y>du(y). (2.3.10)

Thus the CS system is overcomplete, i.e., it contains some subsets of coherent
states which are complete systems. An important class of such subsets may be
constructed by means of discrete subgroups of G. Let I be a discrete subgroup of
G, such that the volume of the coset space I'\X=I\G/H is finite. Consider the
subset of the coherent states

{ep}={x(>}, mnel. 2.3.11)

The problem to consider is whether such subsets are complete. The solution of
the problem for the simplest nilpotent group, the Heisenberg-Weyl group, is
presented in Sect. 1.4. Below is given the solution for a number of noncompact
semisimple Lie groups with discrete representation series.

2.4 Selection of Generalized CS Systems with States Closest to
Classical

The above construction shows that the CS system depends essentially on the
choice of the original state |y/,>. We consider now the problem of which state
vector |y,) must be taken to generate states as close as possible to the classical
states. This principle of selection was proposed in [11] and developed further in
[67], and is also considered in this section.

The idea is to extend the Lie algebra ¢ of the group G up to the complex
algebra ¢°, and to consider in %° the isotropy subalgebra Z for the state |y ).
Those vectors for which the subalgebra is maximal are of special interest; as
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shown below, the corresponding states are the closest to the classical states.
Actually, for a compact simple Lie group these states have the least uncertainty,
in the sense of an invariant definition proposed in [68, 69]. However, the method
presented here is more general and is applicable to other groups, for instance, the
Heisenberg—Weyl group, and some nilpotent and solvable groups, as well as to
noncompact semisimple Lie groups with discrete representation series.

Let us now consider the method.

Let 4 be the Lie algebra for the group G, and %° its complex hull, i.e., the set
of all linear combinations of elements of ¥ with complex coefficients. Let T(g) be
the considered unitary irreducible representation of the group G, T, the
corresponding representation of the algebra ¢, and |y, ) a fixed vector in the
representation space. Denote by 2 = {b} the isotropy subalgebra for the state
[0, i.e., the set of elements of %° such that

Tbl‘//0> = ;Lbl‘//0>- 24.1)

Denote by 48 the subalgebra of 4°, conjugate to #. The subalgebra Z is called
maximal, if # @ #=%°. The states for which their isotropy subalgebras are
maximal are most symmetrical, and, as shown below, they are the closest to the
classical states.

It can be shown that when the subalgebra £ is maximal, the coherent state
is determined by a point in the coset space G°/B=B/D, where B=exp %,
D=exp 2, 2= %N A. Note that the concept of maximal isotropy subalgebra is
intimately related to the concept of completely polarization, introduced by
Kostant [21].

Several properties of this construction are remarkable. First, ZN% = # is
the isotropy subalgebra of the state |, within the Lie algebra . It is not
difficult to see also that 9 = N Zis a complex subalgebra of ¢°, which may be
written as #°=# @iHA.

Further, a consequence of (2.4.1) is (T;: Ty, — Ty, Tb1)||//0> =0,s0 [#, Bl < B,,
where 4, is the subalgebra of # containing elements annihilating |y, >. Note that
the adjoint representation Ad(k) for the subgroup H acting in ¥ may be
continued to ¥° by means of the linearity. Evidently, the representation Ad (k)
conserves the subalgebra 4,

Ad(W) Tylo) = Asltho>-

Here the coset space X=G/H can have a natural complex homogeneous
structure [Ref. 19, p. 224], that appears when X is identified with G°/B=B/D.
The elements of G act in the space X as holomorphic transformations.

Let us consider some examples.

I) Suppose G is the Heisenberg-Weyl group, G=W,. Its Lie algebra ¢
contains (2n+ 1) basic elements p;,. . .,p,, ¢1,- - - ,qn, L, satisfying the Heisen-
berg commutation relations

(9 ] =i5jki, lg;, i] = [p«, T] =[g;,q]= [pj> P]=0. (24.2)
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Within the complex Lie algebra ¢°, the following elements may be considered
(creation—annihilation operators)

af 2L TWs - T (2.4.3)

for any positive w;. In this case the “vacuum” vector |y/o) defined by a|yo) =0
has maximal isotropy subalgebra:

B={a;,1}, B={af.1}, B® B=%"

On the other hand, it is well known that the CS constructed with |y, ) have the
least uncertainty (for them 4p;Ag;=%h), so they are closest to the classical
states.

IT) An example of a solvable group is the so-called oscillator group. Consider
the Lie algebra ¥ with 2n+2 basic elements py,...,pn, G15--->qn, A4, 1,
satisfying the following commutation relations

lg;,pd=18;L, [p;,T1=1[gx, 1=1g;, gl =[P}, 2] =[4,T]1=0

[Qj,A]=in, [or, A]= —igy.

I use the name ‘oscillator algebra’, because the element 4 may be considered as a
Hamiltonian for the quantum n-dimensional oscillator

A=} Y (Pj+4))-
i

(2.4.4)

Again we introduce the operators a;, a; instead of g;, px. As in the preceding
example, the ‘“vacuum” vector has maximal isotropy subalgebra. Now
B={a;,1,4}, B={aj,1, 4}, B®OB=9", and the coherent states constructed
based on the “vacuum” are closest to the classical states.

III) Suppose G is a compact simple Lie group, H is its Cartan subgroup, and
J is the corresponding Lie algebra.! Let T%(g) be a representation of G with
the highest weight 4, and |,,» be the representation vector corresponding
to a certain weight m. Take the vector |y, ) as a starting point for constructing the
coherent states. Evidently, to get #@F=%° it is necessary to have
dim % > (n+r)/2, where n is the group dimensionality and r is its rank. It is not
difficult to see that this property may be realized only for the state vector
|4, corresponding to a dominant weight, i.e., to the highest weight 4, or to a
weight equivalent to the highest one with respect to a transformation of the
Weyl group. Note also that for general representations dim #=(n+r)/2 al-
ways, while the inequality arises only for degenerate representations. Clearly, the
above statement is true also for a general vector in the representation space

! The objects we deal with are defined in [70]. The construction of quantum (coherent)
states closest to the classical states for the three-dimensional rotation group was considered in
[71]. In this section, 5# denotes the Hilbert space, or the Cartan subalgebra ; both notations are
standard, and should not lead to a confusion here.
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which may be written as [Yo) =Y Gu|¥mp. Therefore, with no loss of gener-
ality, one may assume that |Yo> =\ .

Such a state, as well as all the CS constructed on its basis [69], have least
uncertainty if the latter is defined invariantly. Namely, these states minimize the
dispersion 4C,,

C2=gﬂ‘Xij,
4C,= <'/’OIC2|W0> —gjk<'//o|1lel//o> <W0|Xk|¢o>'

where C, is the quadratic Casimir operator, X; is the generator of the
representation of the Lie algebra ¢, and g is the Killing—Cartan metric
tensor.

Thus we have considered another example of CS closest to the classical states.

IV) Let us consider the simplest real semisimple Lie group, G=SU(1, 1),
having a discrete series of representations T%(g). Let ¢ be the Lie algebra for G,
with the standard basis K, K;, K,. The representation is characterized by
a nonnegative number k, and the basis vectors |y,» correspond to the
weights m=k+n, n=0,1,2,...; they are eigenvectors of the operator K;:
Ko|Ymy=m|yy. The Casimir operator here is C,= —K3+Kf+K3; for
a given representation T* it equals the unity times a number, C,|y/)=A|y),
A=k(1 —k). The dispersion

AC, =<K} + K3 —K3> — K1 )* =K )* +<Ko)?
=k—Kk>+(k+n?=k+2kn+n

is minimal, 4C, =k for m=k, n=0, i.e., for the vector corresponding to the
lowest weight, |Yo) =|ysy. Thus in this case, where #={K,, K+ =K; +iK,},
#={K,,K_-=K; —iK,}, the CS system constructed based on the vector
[¥o) =|yx) is the closest to the classical system.

(2.4.5)

Note that this property is specific also for real simple Lie groups with discrete
series of representations. (It is known that the Lie group has a discrete series of
representations if it contains a compact Cartan subgroup.) Furthermore, their
maximal compact subgroups contain one-dimensional centers. In this case these
representations are induced by representations of the maximal compact
subgroup, which are nontrivial only on the center.

It is known also that in the considered case X =G/H may be represented as a
complex homogeneous bounded domain, and the Hilbert space may be realized
as a certain space of analytic functions (a generalization of the Fock-Barg-
mann representation, Sect. 1.3). The CS systems arising in this case were
investigated in [72, 73].

Note that this statement is true also for a certain class of solvable Lie groups
considered in [74].

Thus the principle for selecting generalized CS systems containing states
closest to the classical states, proposed in [11] and investigated further in [67], is
applicable to a wide class of Lie groups.



3. The Standard System of Coherent States;
Several Degrees of Freedom

The case of several degrees of freedom is essentially similar to that of one degree
of freedom considered in Chap. 1. Many formulae from Chapt. 1 are extended to
several degrees of freedom in a trivial manner. Here we present only the most
important results.

A reader mainly interested in applications of the CS method in theoretical
physics should turn to Chaps. 8, 9.

3.1 General Properties

Recall that the basic operators used to describe a quantum system with a finite
number of degrees of freedom are the coordinate operators ¢; and the
momentum operators p, (j,k=1,. . ., N). They satisfy the Heisenberg commuta-
tion relations:

[éjaﬁk]=ih6jkia [qua ék]=[éjsT]=Os [ﬁjs‘ﬁk]=[ﬁjai]=0' (311)

Here 1 is the unity operator and # is Planck’s constant.

The group-theoretical structure of the commutation relations is given by the
corresponding group, called the Heisenberg—Weyl group Wy. As in Chap. 1,
another operator basis is suitable:

g;+ip; +  G—ipy
a;,=——— s a, =————. 3 1 .2
J ‘/ﬁ k l/ﬁ ( )
The commutation relations are obtained from (3.1.1,2),
[ajaal:’]=5jkia [ajaak]=[ajai]=0a [aj+3a:]=[aj+3i]=0 (3'13)

The operators §;, Py, as well as a;, ai” , act in the standard Hilbert space . Itis
known that in J# a so-called vacuum vector |0) exists which is a normalized
vector vanishing under the action of any a;:

aj0y=0,  <0[0y=1. (3.1.4)
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Products of the operators a; generate a set of the normalized vectors

@) ..@¥)r~ |

nl!...nN!

0>. (3.1.5)

Inla' . ',nN>=

A concise notations proposed in [33] are useful

=y, ..,ny),  [n]'=ny!.. . ny!

[a* 1M =(@f)". . .(a¥)™, (3.1.6)
so that (3.1.5) can be written as

@
V [n]!

The set of the vectors {|[n])} is a basis in the Hilbert space #. The action of
the operators g; and a;” in the space # is written as

gy =V/m WD, ai|ln> =V i |ID,
W=ny,....n—y,m—1,.. . ny), [0 1=(ny,...,m+1,...,ny).  (3.1.7)

|in]>= [0>. (3.1.5)

Note also the coordinate representation of the basis vectors

N
q|[n]> = opm(@) = 1:[1 @, (47,

Pu(q)=(2"n!) "2 (nh) " H,(q/}/ ) exp (—¢*/2 ), (3.1.8)

where H, is the Hermite polynomial of degree n.

Let us now turn to (3.1.3). These relations mean that the operators g;, a; and
1 form a basis of the Lie algebra of Wy, which is just the Heisenberg-Weyl
algebra. Any element of the algebra is written as

L1 .
X=st (PG—-0p)=sI—i(ua* —a) (3.1.9)

where s is a real number, o= (Q+iP)/l/ﬁ, a=(Q —iP)/l/ﬁ. Here and below
the following notations are used: P=(Py,...,Py) and Q=(0Q;,...,Qy) are
N
N-dimensional real vectors, o= (ay,. .., oy), a=(ay,...,ay), aa* =Y wa; .
i=1
The operator X is self-adjoint, and the corresponding operator exp (iX) is
unitary,

exp (iX)=exp (isT)D(a), D(x)=exp(aa* —aa). (3.1.10)

It describes a finite element of the group Wy with Lie algebra #y.
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With the above notations, most formulae of Chap. 1 are also valid for this
case, or must be modified in a trivial way. For example, an expression for the CS,
analogous to that in (1.2.36), is

ol

ey =exp (—|of?/2) ¥

m |/ [n]!

1), 3.1.11)
while the integration measure is

du(@)=n"" ﬂ ﬂ dRe {o;} dIm{o}. (3.1.12)
j=1 k=1

3.2 Coherent States and Theta Functions for Several Degrees of
Freedom

The relation between coherent states and theta functions is somewhat more
complicated than in the one-dimensional case (the relevant aspects were
considered in [23, 75]).

First of all, one should extend the representation 7'(g) of the Heisenberg-
Weyl group, given originally in the space #, up to a representation in the space

H _ o, as described in Sect. 1.5. Consider a regular lattice L in the N-dimensional
2N

complex space CV, i.e., the set of vectors written as a,= Y n;w;, where n; are

1
integers, and 2 N vectors w; in C" (periods of the lattice) are linearly independent
when taken with real coefficients. Consider also the set of operators {D ()} and
try to find their eigenvector |0 in the space #_,. For such a state vector to exist,
it is necessary that the operators D(o,) commute, while it is sufficient that the
operators D(w;) commute. According to (1.1.14), this requirement is equivalent
to the requirement that a matrix B has only integer elements

By;=n~" Im {w@;} =0(mod 1). (3.2.1)

The conditions (3.2.1) are a particular case of the so-called Riemann-Frobenius
conditions, imposed on the periods w; to make the quotient space C/L an
Abelian manifold [45].

A lattice L, satisfying (3.2.1), will be called admissible. Then the eigenvector
|6> must satisfy the set of equations

D(w)|.y=€"0,5, j=1,2,...,2N (3.2.2)

while the state corresponding to the vector |6, is determined by the real numbers
&1, - -,&y lying in the interval 0 <¢;<2; in other words, by a point in the 2 N-
dimensional torus. The isotropy subgroup H for the vector |0,) consists of
elements of the form (¢, a,).
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Applying an operator D(o), say, to the vector |0,) yields a system of
generalized coherent states corresponding to the lattice L,

162> =D(@)|65). (3.2.3)

Here a=(oy,. . .,ay) is an N-dimensional complex vector; « runs through the
coset space G/H, which is a complex torus and here (for an admissible lattice),
even an Abelian manifold.

Thus a CS system is constructed corresponding to the admissible lattice L.
The theta functions may also be related to the lattice L. Actually, the theta
functions may be defined as automorphic forms with respect to the lattice
L [46], i.e., as entire functions, satisfying the functional equation f(z+o,)
=exp [v(z, 2,)] f (z), where v(z, a,) is a first-order polynomial with respect to z.
(This equation has a solution only when the periods w; satisfy the Riemann-
Frobenius conditions [46]). As shown below, also [75], the states |6, written in
the Fock-Bargmann representation (|0,)—6,(z)) are given just by the theta
functions.

In the following we discuss only the principal lattices, for which det B=1, so
we deal with admissible lattices of the least possible volume of the elementary
cell. A special basis o, wi (j,k=1,...,N) can be introduced [46], for which

Im{wj@;}=0, Im{w},a;}=0, = 'Im(wjd})=0x. 329
In other words, in this case the matrix may be reduced to the special form

( (I) ;), where 0 and I are the zero and unit N x N matrices, respectively.

Supposing that this condition is satisfied, (3.2.2) can be written in z
representation
D (o) 6. (2) =exp [inF,(m)]0.(2), 3.2.5)

where o, =) (mjw]+mjwj) is an arbitrary vector belonging to the lattice, and
N
F.(m)= ) (mim]+¢mj+emj). (3.2.6)
i=1

By means of (1.3.25), the equality (3.2.5) may be rewritten as
0,(z + Br) =€ Fe("melBm*2eBmz g (7). (327

where B,,=a, is a vector of the conjugate lattice.
Now we show that the norm of the function 0,(z) is infinite. Actually, the
norm is given by the integral

[ |.(z)Pdu(z), where (3.2.8)
B.(z)=exp (—|z[/2)0.(2). .
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The functional equation for 9,(z) is obtained from (3.2.7) immediately:

0.(z+ Bm» 2+ Bu) =exp [inF,(—m)] exp [iIm(zB.)10.(z, 2). (32.9)

Thus |G, (z, 2)] =¢(z, Z), where o(z, ) is a nonnegative function, periodical with
respect to the lattice L, conjugate to L. Therefore the norm of 6,(z) is infinite.

Our next task is to consider the solution of (3.2.5). We shall look for a
solution of the form

hy(z2)=Y. CiD(on)h(2), (3.2.10)

where n=(n',n"), n’ and n” are integer N-dimensional vectors, and A(z) is an
unknown function, rising at infinity not too rapidly, so that the series in (3.2.10)
is convergent. It is not difficult to verify that A,(z) is a solution of (3.2.5) for
Cy;=exp [—inF,(n)] at an arbitrary h(z), provided that the series in (3.2.10) is
convergent. This solution is appropriately written as

ho(2) = T:h(2), (3.2.11)
where the operator T, is

T,=) exp[—inF,(—n)]D(a,). (3.2.12)

A more explicit form of this solution is
h(2) =Y, exp [~inF,(~n)] exp(—4|Bf) exp [~F)hz+B,).  (32.13)

It is known, however, that in the case of a principal lattice considered, the
functional equation (3.2.7) has a unique solution [46], so the function 4,(z) is the
standard theta function times a constant,

ho(z)=T,h(z) = C:0,(2). (3.2.14)

To determine the constant Cj, it is sufficient to calculate 4,(z) at a single point,
where 6.(z)+0. Taking h(z)=1, one gets the simplest solution

7:@)=Y, exp [—inF.(m)] exp(~|o[*/2) exp (4,2) (32.15)

written as a superposition of the coherent states.

A consequence of the functional equation (3.2.7) is 6,( —z)=c0,(z), so for
cases of integer characteristics (all components of the 2 N-dimensional vector &
are integers equal to 0 or 1), the function 6,(z) has a definite parity,

0,(—2)=P.0,(z). (3.2.16)
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It is not difficult to show [75] that the parity of the theta function is given by
P=(—1)2=(= 1) (3.2.17)

Thus among all 22¥ theta functions with integer characteristics, 2% "1 (2¥ —1)
functions are odd, and 2¥ "1 (2 +1) are even.

Note that it follows from (3.2.12, 13) that for an integer & the operator T, does
not change the parity of the function 4(z), so A.(z) has the same parity as A(z).
Since the solution of the functional equation (3.2.7) is unique, then A.(z)
= C};0.(z2), so the parity of the function 4,(z) is the same as the parity of P,. Thus
the following theorem follows.

Theorem [75]. If the parities of the characteristics ¢ and function A(z) are
different, i.e., P,P= —1, then k.(z) is zero identically,

h.(2)=0. (3.2.18)

If the parities coincide, P, P= + 1, then h,(z) is proportional to the theta function
of characteristics of &,

he(2)=C;0.(2). (3.2.19)

The identities (3.2.18,19) generalize those obtained in [38] for the one-
dimensional case.

A consequence of (3.2.18) is obtained for the odd characteristics of e = (¢, £”),
i.e., (¢'-¢")=1(mod?2). Taking h(z)=1, one gets 2V~ (2" —1) identities:

@)=Y (=) exp(—4|B.[) exp (B.z)=0. (3.2.20)



4. Coherent States for the Rotation Group
of Three-Dimensional Space

The CS system for the group of rotations of three-dimensional Euclidean space,
group SO (3), was originally considered in [17], where such states were called spin
CS. Properties of this system were investigated in [15, 76]. Here we follow the
general pattern presented in [15]. Some applications of the spin CS will be
considered in Part III of the book.

4.1 Structure of the Groups SO(3) and SU(2)

The three-dimensional rotation group SO (3) is the simplest and most thorough-
ly investigated of the compact, non-Abelian Lie groups. (An exhaustive
exposition of the theory of the group SO(3) and its representation may be found
in [70, 77-79].) It is locally isomorphic to the group SU(2), the group of unitary 2
x 2 matrices with unit determinant. To be more precise, SO (3) is the quotient of
SU(2) by its center Z,={I, —I} (the center of a group is the set of its elements
commuting with every element of the group), where I is unit 2 x 2 matrix, SO (3)
=SUQ)/Z,. The difference between SO(3) and SU(2) is inessential for our
purpose here, and the group in view is actually G=SU(2).
We shall consider the group G= {g}, where

g=<_§ 5:) |a|2+|ﬂ|2=1, a=ot1+ioc2, ﬂ=ﬂ1+lﬁ2 (4.11)
Here «; and f; are real numbers, and the bar means complex conjugation. Hence
one can see, in particular, that G is homeomorphic (topologically equivalent) to
the three-dimensional sphere S®={ay,0,,8;, B, :0f +03+p;+p3=1}, so it is
simply connected. This means that any closed contour in G may be continuously
deformed into a point.

The group G is not complex, but it naturally embeds into the complex group
G°=SL(2, ), which is the group of all complex 2 x 2 matrices with the unit
determinant,

a B _
g=<y 5), oad—Py=1. 4.1.2)

The group G° has a number of subgroup classes. Among the subgroups the
following are of special interest here.
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i) The groups of upper (and lower) triangular matrices, By ={b4},

byt b12> <b11 0 >
b,= , b_= , bbby =1. 4.1.3
* (0 by by by e ( )

These subgroups are maximal solvable groups in G°.
ii) The groups of upper (and lower) triangular matrices, having unit diagonal
elements, Z; ={z},

1 Zy2 1 0
= _= . 4.1.
Z4 <0 1 )a z <221 1 (4.1.4)

These are maximal nilpotent subgroups in G°.
iii) The subgroup of complex diagonal matrices, H°={h},

h=h(s)=<z_1 2) 4.1.5)

The important Gaussian decomposition is valid [70] for any element of G°
(however, it is not realized within G),

g=<:: §>=z+hz_ =b,z_=z,b_, where 4.1.6)
by=z.h, b_=hz_, z+=<(1) f(g)>’
s 0 (e 0
z——<z(g) 1>, h—<0 8(g)>. (4.1.7)
It is not difficult to get from (4.1.6)
{(=l@=po"", z=z(9)=70"", e(g)=0. (4.1.8)

Thus the Gaussian decomposition is unique, and almost every element of G°
(respectively, G), except elements of the form g =< _;_1 g), may be

decomposed accordingly.
Note that for elements of G the parameters {, z and ¢ are related simply,

e@P=0+z@P) ' =01 +[L@PH " (4.1.9)

The quotients of the group G° by its subgroups B. are interesting
homogeneous spaces (with respect to the group G, as well as G°), which are
isomorphic to the complex plane C,

X.=GB_~Z,, X_=B,\G°~Z_. (4.1.10)
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The action of group G° in these spaces is obtained easily by means of the
Gaussian decomposition. For instance, for X,

1
gz+=<;‘ g)(o f):zﬁ,h’z’_ and @.1.11)
g:{->0=(l+ B/ +9). (4.1.12)
Respectively, for the space X_
(1 O\ [« B\ _ ..,
z-g-(z 1) <y 5>—z+h z”  and (4.1.13)
g:z—z"=(az+7y)/(Bz+ ). 4.1.14)

Let us now turn to the group G =SU(2). It contains a subgroup of diagonal
matrices

H={<g 2)} a=exp (iy//2).

It is not difficult to see that the quotient space X = G/H is isomorphic to the set of
elements of G of the form

{(_; f)} B=B1+if,, o +Bi+p3=1. (4.1.15)
With the parametrization
0 .0
a=cos§, /3=—s1n§e“", 0<6<2n, 0<@<2m, (4.1.15)

clearly space X is just the unit two-dimensional sphere S?, i.e., the set of unit
three-dimensional vectors n=(sin 6 cos ¢, sin 0 sin @, cos ). Any element of the
space X may also be written as

.6
gn=C€Xp |:1 2 (my04 +m262)], (4.1.15")

where m, =sin @, m, = —cos ¢, 6y, 0, are the Pauli matrices:

0 1 0 —i
“=\1 o) T4 o)

Thus this matrix describes a rotation by the angle 6 around the vector m,
belonging to the equatorial plane of the sphere S2, and perpendicular to vector n.

The Gaussian decomposition for the element g, indicates the isomorphism
between the coset spaces X and X,
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g..—+gg=(1+|C|2)“’2<_é f) C=—tange‘i‘*’. (4.1.16)

Evidently, the isomorphism is just the familiar stereographical projection of the
sphere from its south pole to the complex { plane. To be more precise, to establish
the isomorphism one has to make the { plane compact, adding to it the point at
infinity, {00}, corresponding to the south pole of the sphere,

—Cu{w). 4.1.17)

The isomorphism between X and X_ is established similarly.

Actually, the above construction introduces a complex coordinate for the
sphere S2, or, more accurately, for the sphere with the south pole removed. Note
that it is impossible to introduce such a coordinate system on the whole sphere,
since the topological structure of the sphere is not that of the plane. Nevertheless,
the sphere S2, as well as any orbit of the adjoint representation for a compact Lie
group, is a compact complex manifold, so it may be described with a
combination of several coordinate systems. In the case considered, it is sufficient
to take the second coordinate system, obtained through stereographical
projection from the north pole of the sphere.

The expression for the G-invariant metrics on the sphere is

4dtdt
—dn - dn — i 4.1.1
ds*=dn-dn (1+|C|2)2 (4.1.18)
and the closed 2-form is written as
. deA
w=2i aiT‘f)f(n, [dx, dy]), (4.1.19)

which is evidently G invariant and here coincides with the element of area on the
sphere. The symbol A here means the external product, d{ Ad{ = —dl Nd{, and
dx and dy are vectors tangent to S at point n. It is remarkable also that the
expressions in (4.1.18,19) may be represented as

a r
ds* = 4666Z -t (4.1.18")
0= alaf dC/\dz where (4.1.19)
F=log(1+[t]). (4.1.20)

This is possible since the coset space is not only a complex manifold, but also the
so-called Kahlerian manifold; the function F in (4.1.20) is the Kéhlerian
potential (Sect. 11.2).
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4.2 Representation of SU(2)

Any unitary irreducible representation 7'(g) of the group SU(2) is given by a
nonnegative integer or half-integer j: T(g9)=T'(g), dimT?=2j+1. In the
representation space #7 the canonical basis |j, u) exists, where y runs from —j
to j with the unity steps (—j<p<j). The infinitesimal operators J; =J; +iJ,,
Jo=J; of the group representation TV(g) satisfy the standard commutation
relations

[J09Ji]=i_Jia [J—,J+]=_2J0- (421)

The operator J (k=1, 2, 3) is related to the infinitesimal rotation around the kth
axis. The representation space vectors |j, u) are eigenvectors for the operators J,
and J2=J2+J2+J2,

3wy =jG+Dj, w>. (4.2.2)

Respectively, the operator exp [iw(mJ)], m> =1, describes the rotation by the
angle w around the axis directed along m. The action of the operators J . in the
canonical basis is given by

Jolj’“>=ﬂ|j’u>, 12

J_hwy=V(+mG—p+D]j,p—1). 4.2.3)
Hence
. . G-m! el
—_ —_ = = B + JTH , — . .2‘
J_js=i>=0, |jm Gl Y, =i (4.2.9)

Now we describe a standard realization of the representation T9(g) that is
appropriate for our purpose. It is a consequence of (4.1.14) that a representation
of the group SU(2) acts in the space &/ of the polynomials of degree less than
(2j+1) on the group Z_ . By linearity, this representation is extended to that of
the group G°=SL(2,C). It is given by
0zz,+ oz +

g y) =Ty 4.2.5)

T'(9)f ()= (.32+5)2’f<ﬂ Iy ~Bto

The corresponding scalar product is written as

2j+1 J L@ L@

) (A +]PP*? d’z=dxdy,

Alf=

z=x+iy, fo=1, {flfy=1 (4.2.6)
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and the infinitesimal operators are represented by the first-order differential
operators

-~ d ~ d ~ d
3 2 — j — e g —— 7
Ji=—z - +2jz, J-= 7 Jo=z z -J. 4.2.7)

The operators J, and J_ are conjugated with respect to the norm (4.2.6), while
Jo is a self-conjugate operator. The basis vectors |j, u) are represented by the
monomials f, =c,z’**, ¢, =21/ — ) 'G+ ) '1*2.

In this representation T7(g) has a simple “semiclassical”” meaning and may be

rewritten as follows (cf. [80], where the general case of a simple compact Lie
group is considered)

Q) S (2)=exp [ S0, 1S 2,), z,,=% | 428

Here S(g, z) is just the classical action integral for free motion on the sphere,

S(g,2)=[ (0—g6)+S(g,0), =9 gzz D g2, F=jin(i+23).
(1]

The 1-form 6 is an analog of the form 6=2Zdz for the plane case.

4.3 Coherent States

Applying operators in the representation T7(g) to a fixed vector |y) according
to the general scheme described in Chap. 2 yields a CS system.
As seen from (4.1.15"), the operator TY(g) may be written as

Ti(g)=T'(gn) T'(h), heH=U(). (4.3.1)

Hence, if a vector |j, u) is taken as the fundamental vector lnpo), the coherent
state is determined by a unit vector n=(sin 6 cos ¢, sin 0 sin ¢, cos 6):

[ny =™ T(g,)[vo). 4.3.2)

Thus, in accordance with the general reasoning, the CS corresponds to a point of
the two-dimensional sphere $%=S0(3)/SO(2)=SU(2)/U(1), which is the orbit
of the coadjoint representation and therefore may be considered as the phase
space of a classical dynamical system, “the classical spin”.

The phase factor exp (ix(n)) may be chosen equal to unity, so

[n)=D(m)|yo), where (4.3.3)
D(n)=T'(g,)=exp[i0(mJ)], 0<6<n 4.3.9



60 4. Coherent States for the Rotation Group of Three-Dimensional Space

and m is a unit vector, orthogonal both to n and ny=(0,0,1): m=(sin ¢,
—cos ¢, 0). Note that this definition of m is valid for any n, excluding that
corresponding to the south pole, n=(0,0, —1).

Here we present another form for the operator D(n), analogous to (1.1.9),

D(m)=D(§)=exp(¢J, —&J-). (434)

Note that though the operators D(n) do not form a group, their multiplication
law may be written within SU(2) as

D(n,) D (nz) =D (n3) exp (i®(ny, n;) Jo). (43.5)

Straightforward calculations show that the quantity @(n,, n,) here is just the
area of the geodesical triangle on the sphere, with the vertices at the points iy, n, ,
n;:

(ny, ny)=A(no, ny, ;). (4.3.6)

As in Sect. 1.1, this fact reveals a semiclassical meaning of the constructed CS
system.

For the systems in view, any vector | j, 4) with an arbitrary y may be taken as
the fundamental vector |y). At first sight, all such CS systems are equivalent.
However, as mentioned in Sect. 2.4, for the vectors |, 47 the dispersion of the
quadratic Casimir operator J2=J? +J% +J? is minimal. Then the dispersion is

AT = (AT ) pin =] 43.7)

so the states |j, +j) determine the system of CS, which are the closest to the
classical states. Either one of two states may be taken as |y, since both lead to
the same CS system. Within our formalism the state |¢0>=| j, —Jj> is more
suitable. Another possibility would be to take |yo) =|, 0> for integer j=1/. We
will not consider this system now, since a similar system is considered in Chap. 6
for the group SO(2,1)~SU(1,1).

The CS system constructed on this basis has a larger symmetry than one
constructed with |yo) =|j, ), u= +j. To verify this statement, let us consider the
complexification ¥° of the Lie algebra 4, i.e., the set of linear combinations of
the basis operators J; , J,, J5 with complex coefficients. This is the Lie algebra for
the Lie group G°=SL(2,C), the group of complex 2 x 2 matrices with unit
determinant.

It is not difficult to see that the isotropy subalgebra % in %° for the state
[¥o) =]/, —j) is generated by the elements J,, J_ , and the corresponding group B
is that of the lower triangular matrices,

571 0
B.—{b), b=<y 6). 4338)

Therefore such a coherent state may be parametrized by a complex number {.
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Actually, from the Gaussian decomposition (4.1.6)

T@Woy=T(E+) T T(z-)o) =€’ NT(z)|¥o),

Z+=((1) f>’ |¢’0>=|ja -

Hence
N 2=o|T(z) )T )Woy, N=1+[[H)7. (4.3.9)

So the phase factor exp (i®) =1 for the operators T(g) which are D(n), (4.3.4),
and then

[ny— | =+ I TEI =,
[>=0+[P) T exp €T/ =1> (4.3.10)

0 _. . s
C=—tan§e“"’, n=(sin 6 cos ¢, sin fsin ¢, cos 6).

Thus, as mentioned above, the relation between n and ( is given by the
stereographical projection. Another form of the operator D(n) is

DO=exp(E, ~E1),  E=i 3 (my —im)= —[éle~. (43.11)

By means of the Gaussian decomposition (4.1.6) this operator may be rewritten
in the “normal form”

D(¢)=exp({J+)exp(no)exp({'J-), where (4.3.12)
(= —tange‘i“’, n=—2lncos|¢{|=In(1+[¢(P), ('=-C (4.3.13)

The “antinormal form” of the operator is

D(S)=exp ({'J-)exp (—nJo)exp ({J4). (43.14)

The parameters are given in (4.3.13).

Since the parameters {, #, {’ involved in (4.3.12, 14) are independent of j, it is
sufficient to verify these formulae at j=1/2, when J =1/2¢, and ¢ are the Pauli
matrices.

Expanding the exponential in (4.3.10) and using (4.2.4), one gets the
decomposition of the CS over the orthonormalized basis, cf. (1.2.36),

j . 12
|C>= =Z_'uu(€)li,u>, u“(C)=[U+_/f)2%'——/zﬁ] (1+|C|2)‘fcf+" (4.3.15)
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or, in angular variables,

|£>= Zj: u, (0, 9)

u=-j

2! 1/2 ) jtu o\
u,(6, ) =(—(1_‘*—'li(—)'!2]_—ﬂj> <—sm 5) (cos 5)

-exp [—i(j+p) o].

Js 1),

The expression for the CS in z representation is

(D =v@=U+[{H)T 1+

Note that the spin CS is an eigenvector for the operator (nJ)

(nd)|ny = —j[n,

and besides

(- +2006 =PI =0.

Formula (4.3.18) is a direct consequence of

JOI"0>= _j|n0>a n0=(0, 0, 1)

because of

D(n) JoD~1(n)=(nJ).

(4.3.16)

4.3.17)

(4.3.18)

(4.3.19)

(4.3.20)

The proof of (4.3.19) is analogous. Formulae (4.3.18, 19) determine the spin
CS up to a phase factor exp (ia). The spin CS system has all the properties of the
standard CS system, described in Sect. 1.2. Here I present a list of the properties,
omitting the evident proofs.

1. An operator TY(g) transforms any CS into another state of the system,

T'(g)|ny =exp [i®(n, g)][n,», where

&(n,g)=jA(ny,n,n,).

For an infinitesimal transformation here

Ti(1+dg)|) =exp (6®)|{ +6() and

6= (aF ;é D & —‘2—1_; 62), F=In(1+|¢P).

@.3.21)

4.3.22)

4321

4.3.22)
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Thus ® =@ is the connection form for the one-dimensional fiber bundle over
the sphere S?, and the fiber is a circle [81]. Note that © = [ w, where

w=dO 4.3.22")

is the area 2-form. Hence (4.3.22) follows.
2. The system of spin CS is complete.
3. The coherent states are not mutually orthogonal,

{ny|m,> =exp [i®(ny, my)] (1 +;11n2> ,

2j
(mylmydp = (182 4.3.23)
oy =(H1222)

CEmy=1A+[EP) A +[nP177 (1 +Eny>,

A+ +&h) VY
I<é|”>lz - ((1 + |€|2) (1 + |’7|2)> where (4324)

1+En>

®(ny, n)=jA(no,my,m), P, )‘; <1+¢n

It is quite natural that @ is given by the area of the spherical triangle. Actually,
the sphere S? can be considered as the phase manifold for spin, and the spin CS
corresponds to semiclassical states. Note that the area 2-form coincides with the
symplectic 2-form, cf. (4.2.8).

4. The spin CS minimize the Heisenberg uncertainty relation; the inequality

I (I3 =245 J3)? (4.3.25)

is saturated for the state |my). Respectively, for the transformed angular
momentum operator components

Je=D(n) J.D™* (m), (4.3.26)
the uncertainty relation
T LT3y 25 <T3)? 4.3.27)

is minimized for the state |n).
5. “Resolution of unity” may be written as

2’ 1 { anjn) (n|=1 (4.3.28)
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If the points of the complex { plane are used to parametrize the CS system, then

[ aw Ity <=1, where (4.3.29)
_2j+1 d¥

6. Using the above formulae, one is able to decompose an arbitrary state over
the coherent states,

W=y cliwd, [¥>=[ dw; Qv DI, (4.3.31)

where

VYO =W>=0+[tAHPO

FO= 3 cu®. (Z)—(——@L—)MZ“" 43.32)
S GG -w)! ' .

Here §/(7) is a polynomial in  of an order m<2j.

A consequence of these formulae is that for any function f({)=P,({)/
(1+|¢[*, where P,({) is an arbitrary polynomial of degree m<2j, there is a
state vector [y) given by

FQ=I>, [ dwn) &n> fm)=f Q). (4.333)

Recall that the set of such functions is just the Hilbert space %/ describing states
of a spin-j system. Using (4.3.31, 32), it is not difficult to prove that the subsystem
{1,...,sj+1 is complete for any choice of noncoinciding points {;,. .., {j+1. It
is evident, since any polynomial of degree 2j is determined completely by its
values at 2j+1 points.

7. The infinitesimal operators in the CS representation are

Ty i L=IP Tlo=2 % 4334
or, equivalently,
(n|J|n)= —jn. (4.3.35)

8. It is remarkable that the spin CS approach the standard CS system in the
high spin limit, and all the formulae valid for the SU(2) group are transformed to
the corresponding formulae of the W, group. To verify this fact one has to
perform the substitution

Je=@)Pa*, (=@ a, J-=(2))'"a, (4.3.36)
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and let j go to infinity. For example,
[(>=lim (1 +|e?/2/) 77 exp (2a™)|Po) =|o). (4.3.37)
Jjo o

9. The CS representation is appropriate for describing operators, in
particular the spin density matrix. In fact, the density matrix is determined
completely by its symbols P(n), or Q(n), defined by

Y
o=1 du;(m) P(n)|n) <n], duj(n)=—{4—%'-1- n, (4.3.38)

Q(n)={ng|n>. (4.3.39)

Unlike the case of Wy considered above, here P(n) and Q(n) exist for any
operator A since the representations of SU(2) are finite-dimensional. The
decomposition of these functions over the spherical harmonics Y,,,(n) contains
only those terms with /<2j. For example,

P(n)=Y CinYim(n). (4.3.40)
lm

Hence we get the decomposition of the density matrix,
0=y CpnPy,, where 4.3.41)
Lm
f’lm=j d,uj(n) Ylm(n)ln> <n|
Calculating the involved integral, we get

~ 21+1 ., . ., .,
G V| Pl v = e o V'3 Lmlj, vy Gy —js L0V, =), (4.3.42)

where (j,v'; l,m[j, v) are the Clebsch-Gordan coefficients.
10. Here is a list of the simplest examples, taken from [82]

Operator Q(n) P(n)

Js —jcos @ : —(+1)cosb

A —jsinfcos ¢ —(j+1)sinfcos ¢

J, —jsin @sin ¢ —(j+1)sinfsin ¢

J3 JG =% cos?0+%j G+ G+ cos?—4(i+1)

J? Jj(G—%) (sinfcos @)? +%j G+1)(G+2) (sinfcos )* -3 (j+1)
J? Jj(G—%) (sin Osin @) +% j G+1)(+3) (sinfsin p)> =5 (j+1)

For the operator T(t,v)=exp [it(vJ)], v* =1, the function Q(n) is

Q(n)=(cost/2+isint/2cos §)*), nv=cos¥. (4.3.43)
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Hence we get an integral representation for the character of the representation
T(g):

%@) =) =2J4—;1 [ (cost/2+isint/2cos 6)* dn. 4.3.44)

A similar expression arises also for the operator exp [ —f(vJ)]
Q(n)=(cosh B/2+sinh /2 cos )%/ (4.3.45)

11. When j is an integer, j =/, another realization of the representation space
' may be used, namely, the space of the eigenfunctions of the Laplace operator
on the sphere S?>={v:v*=1}:

— oo f(W)=I(+1) f(v), v=(sinfcos g,sinbsin ¢, cosH). (4.3.46)
In this realization the coherent states are
v|n) =(eg —iey, v). (4.3.47)

Here e, and e, are unit vectors, mutually orthogonal and lying in the plane
normal to the vector n. Hence one easily gets an expression for the generating
function for the spherical functions Y,,,(6, ¢):

20)!1 .
KE0,0)= T tn@ (0.0, tin(2)= /an;mz' (4.3.48)

K(z;0,0)=C/(sinfe™**+2zcos 0 +2z%sin f &),

PO ACLust )L i (4.3.49)

12. The CS system may be used to determine the generating function for the
representation matrix elements 7%, ={u|TV(g)|v):

ET @ =IA+[E) (1 + 1] K(E n)
K& m =3 #,(O)up(n) Th(9),

Y B ) LI
up(8) = G +u)!(j—u)!€ : (4.3.50)

Evidently,

K(& n)=(@+ BE—Pn+aln)*. (4.3.51)

(Other generating functions for the matrix elements T3, are presented in [78].)



5. The Most Elementary Noncompact Non-Abelian
Simple Lie Group: SU(1,1)

CS systems for the simplest noncompact non-Abelian Lie group SU(1,1)
~S0(2, 1) are introduced and studied in this chapter, following [15]. Unlike the
case of the simplest compact non-Abelian Lie group SU(2), there are several
types of CS systems, since SU(1,1) has several series of unitary irreducible
representations. Some applications of the CS systems for SU(1, 1) are presented
in Part II1.

5.1 Group SU(1,1) and Its Representations

5.1.1 Fundamental Properties of SU(1,1)

The group SU(1, 1) consists of all unimodular 2 x 2 matrices leaving invariant
the Hermitian form |z,|* —|z,|*. Evidently, elements of SU(1, 1) are parametrized
with a pair of complex numbers,

o
g=(5 f) [of* ~ | =1. (5.1.1)

Group SU(1, 1) islocally isomorphic to SO(2, 1), the group of “rotations” of
the three-dimensional pseudo-Euclidean space, also named the three-dimen-
sional Lorentz group. To be more precise, SO(2,1)=SU(1, 1)/Z,, where Z, is
the cyclic group containing two elements, Z, = { I - I}, I is the unit matrix. It is
locally isomorphic also to the real symplectic group Sp(2, R), as well as to
SL(2,R), the group of real 2 x 2 matrices with the unit determinant. This group
is considered in detail and its representations are described exhaustively in [83]
and in a number of monographs [78, 79, 84]. Here I present only an overview of
those properties necessary for our purpose.

Note the following substantial differences between the groups SU(1, 1) and
SU(2). First, SU(1, 1) is noncompact, while SU(2) is compact. Second, SU(2) is
simply connected, while SU(1, 1) is not.

By definition, the group is simply connected if any closed contour in it may be
continuously deformed into a point. Meanwhile, one may show thatin SU(1, 1) a
loop corresponding to the rotation by 27n, n is an integer, 0<t<2mn,

g(t)=diag [exp (it/2), exp (—it/2)]
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cannot be deformed continuously into a point. This fact is quite evident, because
group G has the topological structure of the direct product D x S*, where D is the
planar disk bounded with the unit circle S*. Hence the fundamental group of G is
not trivial: n,(G)=Z.

It is known that by combining a sufficient number of copies (sometimes
called sheets) of a group G, which is not simply connected, and by splicing the
copies appropriately, one may construct a simply connected group G, called the
universal covering of G. Here G contains an infinite number of sheets.

Our method is similar to that used for SU(2). The group G=SU(1,1) is
embedded into G°=SL(2,C) and the Gaussian decomposition (4.1.6) is valid:

g=z.hz_, z,€Z., z_€Z_, heH" (5.1.2)

Asin thatcase, the group Gactsin Z, andin Z_ . For instance, its actionin Z_ is
given by

(x B\, _az+fp
g—(B &). z—-»zg—ﬂz—_l_é. (5.1.3)

However, in contrast to the case of SU(2), now the action of the group is not
transitive; the complex z plane is foliated into three orbits:

1. X, ={z:|z| <1},
2. X_={z:lz|>1} (5.1.49)
3. Xo ={z:|z|=1},

i.e., the interiority of the unit circle, the circle itself, and the external region.
This statement is easily verified, since according to (5.1.3) the action of any
element g leads to the transformation

(1 =[zP)>1 — |z =|Bz+a| 21 —|z*).

In this construction the spaces X, and X_ may be considered as those obtained
from the upper sheet of the two-sheet hyperboloid and from the one-sheet
hyperboloid, respectively, embedded into the three-dimensional space with the
pseudo-Euclidean metrics s*=x3 —x3 —x3, through the stereographical pro-
jection.

Let us consider, for example, the space X ... It is not difficult to see that, as in
Sect. 4.1, this space may be identified with the set of elements of the group G,
written as

g=<a ﬁ>, o> —p2—p2=1, a=a>0.
B «
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Setting

o=cosh %, B=sinh % e”, >0
we see that X is isomorphic to the upper sheet of the hyperboloid {(a, §;,
Bo): 0> —p2 —PB3=1,a>0}, i.e., to the set of unit (in the pseudo-Euclidean
metrics) vectors, which are of the form

n=(cosh 1, sinh 7 cos @, sinh 7 sin ¢),
n=ni—n?—-ni=1, ny>0.

An element of the space X, is written as

cosh % sinh : el
In= . =exp [t(my0, +m,0,)/2], (5.1.5)
sinh 3 e cosh 3

0 1 0 —i .
where m=(0, sin ¢, —cos ¢), and al=< 1 0), 02=<i ;) are the Pauli

matrices. Thus the matrix g, describes a hyperbolic rotation around the vector
m=(0, sin ¢, —cos @), the rotation “angle” being 1.

As in the case of SU(2) (Sect. 4.1) the Gaussian decomposition leads to
an isomorphism between these spaces. For example, the isomorphism between
the unit circle X, ={{:|{|<1}, and the upper sheet of the hyperboloid
H?={n:n*=n} —n? —n}=1,n,>0} is established through

(= tanh% e, n=(cosht,sinhtcos ¢, sinh 7 sin ¢). (5.1.6)

As in Sect. 4.1, the considered construction provides a complex structure on the
upper sheet of the hyperboloid IH?. Thus the upper sheet of the hyperboloid may
be treated as a noncompact complex manifold.

The G-invariant metrics on H? is

4d{-df
ds?=dndn=—--> 5.1.7
A —[¢PY 617
while the closed G-invariant 2-form is
. dUNdL
0=21 ——>=. 5.1.8
(1 _|C|2)2 ( )

It is remarkable that H? is a Kéhlerian manifold, as well as the sphere S2.
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Therefore (4.1.18’,19’) are in analogy to

ds? = 46{62 dt-dt (5.1.9)
w= awz dC/\df where (5.1.10)
F=—In(1—|tP). (5.1.11)

The group SU(1, 1) is noncompact, so unlike the case of SU (2) all its unitary
irreducible representations are infinite-dimensional. This group has a number of
series of unitary irreducible representations: principal, discrete and supple-
mentary. We shall consider here only representations of discrete and principal
series.

5.1.2 Discrete Series

There are two discrete series of representations T+ and T~ . It is sufficient to
discuss anyone of them, since all the results can be transferred at once to the
other.

The representations of the discrete series are infinite-dimensional, but in
many aspects they are analogous to finite-dimensional representations of SU(2).
For instance, a basis vector |m) in representation space may be fixed by an
integer m, running from zero to infinity.

The Lie algebra corresponding to the Lie group SU(1, 1) has three generators
K, K, and K, as its basis elements. The commutation relations are

(K1, K]=—iK,, [K;, Kol=iK;, [Ko, Ki]=iK;. (5.1.12)
As for SU(2), another basis is appropriate:
Ky =+i(K +iK;), Ko, (5.1.13)

and the corresponding commutation relations are

[Ko,K+]=%K:, [K-,Ki]=2K,. (5.1.14)
It is not difficult to verify that the quadratic operator
C,=K2—K}—K}=K}-4(K.K_+K_K,) (5.1.15)

is invariant (the Casimir operator), i.e., it commutes with every K;. By virtue of
Schur’s lemma, for any irreducible representation this operator is unity times a
number,

Cr=k(k—-11. (5.1.16)
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Thus a representation of SU(1, 1) is determined by a single number k; for the
discrete series this number acquires discrete values, k=1,3/2,2,5/2,.... (The
corresponding representations of the universal covering group SU (1,1) are also
given by a single number k, but it goes continuously on the positive axis from 0
to 00.) Basis vectors |k, 1) in the space where the representation T%(g) acts are
marked by a number yu, which is the eigenvalue of the operator K :

Kolke, iy =plke, uy,  p=k+m, (5.1.17)

where m is an integer, m>0.

Asin Sect. 4.2, we consider a suitable realization of the representation T%(g)
in the space of functions #*={f(z)} analytical inside the unit circle and which
satisfy the condition

|£le< oo,

2k—-1
NP R=25 [ U @Pa P2z, D=z <1). (5.118)

The action of the operators T%(g) in the space #* is given by

az+f

=i (5.1.19)

T*(9)f @)=(Bz+3)"**f (z,),

In this realization the generators K. and K, act as first-order differential
operators:

- d
= 2 —_
K,=z dz+2kz (5.1.20)
. d
k-2 (5.1.21)
Ko= L (5.1.22)
=z dZ . A
As for SU(2), the representation T*(g) can be written in the semiclassical form
T*(9) f (2)=exp [iS(g, 2)1 f (z,)- (5.1.23)

The phase S(g, z) here is an analog of the classical action, and it is given in (4.2.8),
where the Kihler potential should be put in the form F= —kIn (1 —|z%).

5.1.3 Principal (Continuous) Series

Besides the discrete series, two principal (or continuous) series of representations
of SU(1,1) and a supplementary series exist. We are concerned with the class—I
representations, i.e., those containing vector |, in the representation space,
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invariant under the action of the maximal compact subgroup K of group G. Here
K=U(),

K={k: k=diag [exp (i¢/2), exp (—ip/2)]}.

One of the principal series and the supplementary series have this property.
Representations of the principal series are realized in the space of functions on
the orbit of type Xy, i.e., the space of functions of the unit circle. Any class—I
representation is specified by a nonnegative number 4; its realization is given by

T*(9) f(2)=|Bz+3| ' 21 (z,),
z,=(z+p)(Bz+a)™ !, z=e" (5.1.24)

It can easily be verified that the operators T*(g) do indeed form a representation
of the group G, and that for the usual choice of the scalar product in the
functional space

121:

Silfd=5, gfl((?)fz(f))de, F@=1(), (5.1.25)

this representation is unitary. The Casimir operator C,=KZ —K? —K? is a
multiple of the unity operator C, = — (4> + 1.

For representations of the supplementary series the action of the operator
T*(g) is given in the same manner, by (5.1.24), where A should be a purely
imaginary number: A=it, —1/2 <t <1/2. Then the scalar product is given by a
more complicated expression [78]

2n 2=

(f1|f2>=N(f) g

91 _92 —2-2¢0

sin ———= 11(6,) £2(8,)d6,db;

I'c+1)I'(—o0)

TR0 D) (5.1.26)

6=—-%+1, —-1<0<0, N=

The representation space is infinite-dimensional ; in this space one can choose the
basis consisting of eigenvectors of the operator K, which is the infinitesimal
operator for the subgroup K,

KolA, wy=plA, py, p=0,+1,42,.... (5.1.27)
The operators K, = +i(K; +iK;) act in this basis in a simple way,

Kiuy=G—-il+plu+1)

K_[Auy=(—}+id+p)i, u—1). (5.1.28)

In the above formulae K , are infinitesimal operators for the representation
T(g) corresponding to the elements io; ,/2 of the Lie algebra 4. For the
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considered realization of T*(g) the infinitesimal operators K+, K, are written as
the first-order differential operators,

Ko= —id/d0, K.=—ie*®d/doF(—%+id)e*™. (5.1.29)

5.2 Coherent States

5.2.1 Discrete Series

Applying the operators of T*(g) to a fixed vector |y,) gives a CS system.
Itis suitable to take the vector |k, k> as the fixed vector Il/l0>, since in this case
the isotropy subalgebra £ in %° is maximal, so that such coherent states are
closest to the classical states.
Further procedure is analogous to that described in Sect. 4.3. As is well
known, any operator in the representation may be written as

T*(g)=T"(g) T*(h), heH.

Hence the coherent state is fixed by a unit pseudo-Euclidean vector
n=(cosh 7, sinh 7 cos ¢, sinh 7 sin ¢),
|n> =exp [ia(m)] T*(gn)|Vo>- (5.2.1)

This parametrization of the CS system agrees with the general fact that a CS is
determined by a point in the coset space G/H, which is the upper sheet of the two-
sheet hyperboloid in our case, H? = {n; n* =n} —n? —n3 =1,n,>0}. The phase
factor exp [ix(n)] may be taken equal to unity, so that

|n>=D(®)yo)y, where
D(n)=T*(g,)=exp[it(mK)], >0 (5.2.2)

and m is a unit vector orthogonal both to n and to ny=(1,0,0): m=(0, sin ¢,

—Cos ),
The operator D(n) may also be written in another form, which is similar to

that in (4.3.2),
D(m)=D(©)=exp (K. —EK-),  &=i (m; —imy). (5.2.3)

Note that the operators D(n) do not form a group, but the multiplication law is
D(ny) D (n,)=D(n3) exp (i® (nyn;) Ko). (5.2.4)

Direct calculation shows that the function @ (n,, n,) is just the area A(ng, n,, n,)
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of the geodesic triangle on the hyperboloid with vertices at the points ngy, 1y, n, :
D(ny, n))=A(ng, ny, ny). (5.2.5)

This indicates the semiclassical structure of the CS system considered, Sect. 4.3.
The operator D(n) may be written in the “normal form”

D(&)=exp ((K.)exp (nKo) exp (('K-), where (5.2.6)
{=tanh|¢e’?, n=2Incosh|¢|=—-In(1—|(]), {'=-CT (5.2.7)
The ““antinormal” form of the operator is

D(&)=exp({'K-)exp(—nKo)exp ((K), (5:2.8)

where the parameters {, # and {’ are given in (5.2.7). Since the parameters are
independent of k, it is sufficient to verify the above formulae for Ky,=a5/2,
K, ,=ioy,/2, where g; are the Pauli matrices.

Applying the operator D(¢) to the state vector |y and using the normal
form (5.2.6), we get another representation (another parameter system) for the
coherent states:

8> =(1 =[{P)+exp ((K+)[0). (5.29)
Expanding the exponential and using
r(2k) 112
k = —— K )"k, k 5.2.10
we obtain the decomposition of the CS over the orthonormal basis:
e (T(m+2k)\'?
_ _1712\k m
[>=0 -t mgo <m!F(2k) ) "k, k+m). (5.2.11)

Another expression for the CS in the z representation is
2 =y @=01 ~ (Pt - {27 (5.2.12)
It is notable that the considered CS is an eigenvector for the operator
(nK)=nyKy, —n, K, —n,K, (5.2.13)
and, besides,
(K- —2{Ko+ 2K L)Ly =0. (5.2.19)

The proof of these two relations arises from the definition Ko|mo)=k|no),
n,=(1,0,0), and from the relation

D(n)K,D ! (n)=(nK). (5.2.15)



5.2 Coherent States 75

The equalities (5.2.13, 14) determine the coherent state up to an indefinite phase
factor exp (ix).

The CS system obtained has all the properties of the spin CS system described
in Chap. 4. Here we mention some of them, numbered as in Chap. 4.

3’) The CS are not mutually orthogonal

-2k
I<n1|nz>|2=<1—J%3"—2)> : (5.2.16)
5’) At k>% the resolution of unity is
[ dm@Ioy <=1, where (5.2.17)
C2k-1  d¥

10") The generating function for the matrix elements of the opérator T*(g) is

GEMGD= Y Thmnin(@in(n(n)

mn=0

=(a&n+PE+Pn+a) ">, where (5.2.19)

rm+2k)\'?
um(f)=<m> (448

The last item to be considered in this section is a useful realization of the
representations of SU(1,1) by means of the operators bilinear in the boson
creation and annihilation operators a* and a, satisfying the canonical com-
mutation relations [a,a*]=1. (This realization is possible because the groups
SU(1,1) and Sp(2, R) are isomorphic. An analogous realization for Sp(2N, R)
is treated in Chap. 8.) A calculation shows that three operators

K.=%@*?, K_=%d’, K,=i(aa"+a%a) (5.2.20)

satisfy the commutation relations (5.1.14). For the realization (5.2.20), the
Casimir operator (5.1.15) is

Co=—&1=k(k-1I, (5.2.21)
that corresponds to two solutions
k=% and k=3. (5.2.22)

It is not difficult to see that the states [n) = (n!)~*2(a*)"|0) for even n are a basis
for the unitary representation space of group SU(1, 1) corresponding to k=% ;
respectively, the states with odd # provide with a basis for the case k=3.
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The representation matrix elements for SU(1, 1) are expressed in terms of the
hypergeometrical function [83]. In [85] a simpler expression was obtained for the
representations considered, corresponding to k=% and k=

ne 17 11/2 -1/2 -1
Tt (v)= [ 'il (cosh 2) pimniz ((cosh ) ), (5.2.23)

where P} is the associated Legendre function, n. =min(m, n), n. =max(m, n).

It is possible to introduce two sorts of bosonic operators, say, a, and a_,
satisfying the canonical commutation relations. The corresponding representa-
tions belonging to the discrete series for the group SU(1, 1) are constructed with
the following bilinear operators

K,=ala*, K_=a,a_, Ky=%(la,+a*a_+1) (5.2.24)

which satisfy the commutation relations (5.1.14), as may be verified directly. The
corresponding Casimir operator (5.1.16) is

C,=—%+%t@ta, —ata ) (5.2.25)
Thus for the states
[m,ny=(m!n!)~'?(@i)"(a)"|0,0)

with m —n=no=const, C,=k(k —1)1, k=% (1 +|no|). So the states {|n+no,n)}
with a fixed n, form a basis for an irreducible representation T* of SU(1,1)
belonging to the discrete series, and

k=41 + no)). (5.2.26)

Any representation of the discrete series for SU(1, 1) can be realized in this way.
The matrix elements are known ; for the simplest case k =4 where the vacuum is
the initial state, one has

The purpose of this section was to describe the CS systems related to
representations of SU(1, 1) belonging to the discrete series. The CS systems for
representations of discrete series for other Lie groups are discussed in Sect. 12.1.

2
=(1-00", ¢ =||—£|7- (5.2.27)

5.2.2 Principal (Continuous) Series

Let us consider a unitary irreducible class—I representation T'(g) of the group
G=SU(,1), and let |¢o> be the vector in the representation space, invariant
under the action of K= U(1), the maximal compact subgroup. Applying the
operators T'(g) to this vector gives a CS system parametrized by points of the
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coset space X=G/K=SU(1,1)/U(1), which is the Lobachevsky plane (An
analogous CS system can be constructed for representations T7(g) of SU(2) in
the case where j=/is an integer. A CS system for the imaginary Lobachevsky
plane was constructed by Molchanov [86].) It can be realized, say, as the interior
of the unit disk,

X=D={¢:|¢|<1}. (5.2.28)

Selecting an element g,€G in the equivalence class {e X=G/K, we get the CS
system

[(>=T(@@)I0Y,  [0>=|wo. (5.2.29)

It is suitable to take the element

1 (_% _C>, |£>=T(g0)]0) (5.2.30)

as a representative of the class. Another equivalent definition of the CS system
is

o> =exp(EK, —EK_)|0), &=||e, (=tanh|¢]e™. (5.2.31)

The CS system is overcomplete and not orthogonal. It has a number of
remarkable properties; some of which are listed below.

1. States [() are normalized: ({|{>=1.
2. Group G acts on the coherent state set transitively:

T*(9)|0>=T*(g) T*(99]0> = T*(999)|0> =(,>, (5.2.32)
where
C,,=C’=_°‘l§c_f = gg=gck, keK. (5.2.33)

3. States |C1> and |{,) are, in general, nonorthogonal to each other. Their
scalar product is determined by the function &,(t), the so-called zonal spher1cal
function

CGl62> =<0IT (95, 9.,)|0) = ®:(). (5.2.34)

Here 1 is the distance between points {; and {, in the standard Lobachevsky
metric. It is determined by

cosh ~ ! 1-0,4,. (5.2.35)

2T YI-IGF V1- IC |2
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Function @,(7), in turn, is given by
@,(0)=<0|T*(a(1))[0>,

« B T LT
a(T)—<ﬂ oc)’ Ot—COShE, B——smhi, t>0.

(5.2.36)

(5.2.37)

4. Let {|uy =k, u)} be the orthonormal basis in the representation space # *

given by the eigenvectors of the operator Kj:

Kol uy =l u).
Expanding coherent states in this basis gives
0

[>=Y u0ln), where

n=—o

()= nl0> = T @I0> = (z, ), (= —tanh c*.

The state |{) is normalized, therefore

Y |QP=1.
Note also that
urﬂ; (0, (0) = 6»0

un(t, @)=~ "R} (2).

(5.2.38)

(5.2.39

(5.2.40)

(5.2.41)

(5.2.42)
(5.2.43)

5. Since functions u}(t, @) are matrix elements of the operator T*(g), they
are eigenfunctions of the Laplace-Beltrami operator for the Lobachevsky

plane
— dun(t, )= Au,(t, ), where

Z—a—2+coshr i+L Z
T ot 0t sinh®t 0¢*"

For representations of the principal series
A=}+1?
and for representations of supplementary series

A=}t—0?, —i<o<}.

(5.2.44)

(5.2.45)

(5.2.46)

(5.2.47)
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6. The zonal spherical function u{(z, @), as we have seen, is independent of
¢ u}(t, o) = D,(7) is the eigenfunction of the radial part of the Laplace-Beltrami
operator

—(j—;+coth T %) P,(t)= <12 +%> D;(7). (5.2.48)

It satisfies the normalization condition
?,(0)=1. (5.2.49)

_ 7. Functions u}(t, @) are eigenfunctions of commuting self-adjoint operators
4 and p,= —i0/0¢ and form an orthogonal system of functions on the
Lobachevsky plane. For the class—I principal series

N

T

1 | @ (r, @)ut (x, ) sinh T dv do = N, (1) 5,6 (A—1). (5.2.50)
0

27

Ot 8

8. Coefficient N, (1) is determined by the asymptotic behavior of the function
R}(z) at 1> 00

Ri(D)~[ca(R) ¥ +cy(—A)e™*]e™ (5.2.51)
and, as easily seen,
N,()=N,(—)=mc, (D (5.2.52)

9. It is known also that coefficient Ny(A) determines the Plancherel measure
for representation of the principal series [78]. Namely, an arbitrary function £ (7)
can be expanded in the integral over @,(7)

F@=] FW)®:@)du(d), where (5.2.53)
0
di
du(h) =y 5 =Atanh i d, (5.2.54)
0

and f(4) can be found from
F)=[ &,(x)f(r)sinhzdr. (5.2.55)
0
10. Using (5.2.36) one can easily obtain an expression for the generating

function of the matrix elements T',(g) = (m|T*(g)|n)>. To this end, we consider a
matrix element (&|T*(g)|n). It can be easily seen that

THGny =21 (v), (5.2.56)



80 5. The Most Elementary Noncompact Non-Abelian Simple Lie Group: SU(1,1)

where 7 is the distance between points &, and 5

1 1
cosh I

2 VA=K Vi-InP |

Let us now consider a realization of the representation T*(g). It acts in the
space of square integrable functions on the unit circle {z:z=¢'}:

&+ BE—Pn—aly|. (5.2.57)

az+f

~ra (5.2.58)

T*(9)f @)=|Bz+a|7 221 (), z

It can be readily seen that the Hilbert space vector fy(z) =1 is invariant with
respect to the maximal compact subgroup. The CS system for the principal series
is obtained with the action of the operator T*(g) applied to f;,

T(go) fo=f(2)=|Bz +a| 1 *2

=(1 _|C|2)1/2—i}.|1 _Czl—l +2i}.' (5259)

Going over with the help of stereographic projection from the plane { to the
upper sheet of hyperboloid { n:n*=1,n,>0} we get

(@)~ . ,(0)=[cosh t —sinh tcos (p — )] "2 +%, (5.2.59"
For representations of the supplementary series

f@=0—-» 1 -C*, —1<0<0, where (5.2.60)

{=—-Bla, (<1, z=¢€" [=1. (5.2.61)

Thus, in accord with the general theory, any CS is determined by a point of the
coset space X=G/K, which is the Lobachevsky plane {{:|¢{|<1}. Note some
properties of functions f;(z).

11. At fixed z=¢" function &4()=f(f) is constant on horocycles of
the Lobachevsky plane which in this case are circles tangent to the circle
{¢:|¢|=1} at the point {=z=e [84,87]. The horocycle equation is of the
form

1+ ¢ —2[¢| cos (6 — )
1-[¢f?

= [cosh 7 —sinh 7 cos (¢ — )] =const. (5.2.62)

Thus the kernel K({,z)=f;(z) can be called the horospherical kernel and,
consequently, when realizing representation T(g), the CS system is given by the
horospherical kernels.

This statement remains valid also for representations of the principal series of
an arbitrary Lie group (Part II).
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12. We have

—[¢P
1+[¢P - 2|C|cos 6—9)

where P((,z) is the Poisson kernel for the disk {{:|{|<1}. Thus
f@=[PC " "=2.00)
®X(() = Bi(x, ) = [cosh T —sinh 7 cos (0 — p)] M2+ (5.2.64)

l£@*= =P((,2), (5.2.63)

13. At fixed z the function @ (0)= f(2) is an eigenfunction for the Laplace—
Beltrami operator 4=(1—|{|?)*4 (4 is the usual Laplace operator) on the
Lobachevsky plane,

AP} =F +H DX (5.2.65)

As such functions are constant on horocycles, which are analogs of straight lines
inthe Euclidean plane, the CS are in a sense generalizations of the standard plane
waves, @, (r)=exp (ikr) =exp [ikr cos (0 — ¢)].

14. The orthonormalized basis state vectors {|n)}, which are eigenvectors for
the operators T'(k), keK [K=U(1) is the maximal compact subgroup of
SU(1, 1)] correspond to the functions

fie)=z"=e"". (5.2.66)

15. Decomposing the coherent states over this basis gives an integral
representation

2n

({)__1_ 3" e—1n0(1 IC|2)1/2—M|1 —CZ|_1+2“d0

121:

=—— [ e ™" ®}({)db. (5.2.67)
2m 5

Applying once more the stereographical projection { —tanh— €'?, one gets

2
1 2n . .

ut(z, @) o | (cosht—sinhtcos(6—g))~'2*i*e™i"gp, (5.2.68)
T o

Thus we have reconstructed the familiar integral representation for the matrix
elements T,,(g) [78].

Note that for all values of A and n functions u}(z, ¢) are a complete system of
functions on the upper sheet of the hyperboloid H? = {¢:§2=¢3 —¢2 — 2 =1,

>0}
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16. For zonal spherical functions (r=0) this representation is somewhat
simplified

d,(7) =% | (cosh t —sinh tcos ¢) "2 *itdg. (5.2.69)
0

17. The CS system satisfies the orthogonality relations

© 2m

(2::)2 | @4z, p) D% (r, @) sinh tdrde=Ny(A)5(A—1)5(0—6")
00

(5.2.70)
LT @b, )04 o) duh)dd=(sinh ) 5(c —)5(p ),
@ 4 4
du(2) = [No(A)] " di= 4’ tanh 7 d. (5.2.71)

18. Making use of these relations we can expand an arbitrary function on the
Lobatschevsky plane over the basis @§(z, @)

f(x, (p)=21—n [ F (4, 0)Pi(x, p)d0du(h), where (5.2.72)

74,0 =21—n | ®4(z, 9) f (, p) sinh T dr do. (5.2.73)

19. Functions ®¢(t, ¢) are closely related to a scattering problem. To see this,
let us rewrite the Laplace-Beltrami operator as

0? 0 1 02
—+ctanht —+

4= or? ot ' sinh’t d¢?

S ARV S M W i (5.2.74)
B |/sinht o7 "T4sinh?t 4 sinh’t op?” e
Hence it follows that the function ¥ (t)=]/sinh tu}(z) satisfies the equation

a n*-1/4\ ,
LR i) = a2y 5.2.75
( d172+ sinh? 7 Ya(7) Ya (1) ( )
which is the Schrédinger equation describing the scattering problem with the
potential ¥ ()= (n? —}) sinh ~2 7. The asymptotic behavior of functions () at
T—00 is written as

Y (t) ~cp(A)e* +c,(— e i (5.2.76)
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The S matrix of this problem is

g)
Su(A)= —ccg(_i) . (5.2.77)

20. A simple method to find ¢,(1) and S, (1) is to go over to the limit 7— o0
under the integral. For instance,

ué(r):d),l(r):% j (cosh T —sinh t cos (p)—1/z+ud¢
0

~lco(D)e* +co(—A)e e, 100

1% (1—cos@\ T2t 1 T(id)

21. Thus, the S matrix for the corresponding scattering problem is

r)ré—il

So(H)=

It has poles at the points A=in, n=1,2,3,... and A= —i(n—%), n=1,2,....
22. Note, finally, that from the integral representation (5.2.69) one can easily
get an explicit expression for @;(1):

&,(t)=F(a,b;c; —sinh? 1),
2a=4+id, 2b=%—il, c=1. (5.2.80)

By means of a known transformation of the hypergeometric function one gets an
expression appropriate for calculating the asymptotic behavior,

. rda
&,(t)=(2cosh7) ™12 [(2 cosh 7)i -——Sl—i—)—-—
/nIG+id)
e o—1 1 —2
. F<_§, - —a+§, cosh T>+C.C.]
o= —}+id (5.2.81)

Hence one can easily get expressions for the S matrix and'for the Plancherel
measure.



6. The Lorentz Group: SO(3,1)

In this chapter we study the CS system for SO(3,1), the Lorentz group. The
states in this system are parametrized with points in the upper sheet of the two-
sheeted hyperboloid in the Minkowski space. From another point of view, this
CS system has been considered in [89]. It was found to be suitable for a number of
problems in relativistic physics and representation theory.

6.1 Representations of the Lorentz Group

The Lorentz group and its representations have been described thoroughly in a
number of books [77, 78, 84, 88], so here I present only the information necessary
for the problem in view.

The Lorentz group is the group of linear transformations of four-
dimensional space, leaving invariant the pseudo-Euclidean form x*=x2
—x} —x3 —x3. It is isomorphic locally to the group G=SL(2,C)={g}, i.e., the
group of complex unimodular 2 x 2 matrices. The isomorphism is evident, if one
compares the four-dimensional vector x =(xp, X;, X,, X3) and the 2 x 2 matrix

£=xol+x10'1 + X,0, + X303, (6.1.1)

where I is the unit 2 x 2 matrix, and o; are the Pauli matrices,

0 1 0 —i 1 0
01=<1 0), 0'2=<i ;), a3=<0 _1). 6.1.2)

The matrix transformation X—%'=gxg™* corresponds to the transformation in
the vector space, leaving x? invariant. Two matrix transformations, g and —g,
are mapped to the same vector transformation in SO(3,1):

SO(3,1)=SL(2,T)/Z,, (6.1.3)

where the cyclic group Z, = {I, —1I}is the center of SL(2, C). Therefore one can
consider SL(2, C) instead of the Lorentz group.

It is known [77, 88] that two series of unitary irreducible representations of
the Lorentz group exist, the principal series and the supplementary series. A
representation belonging to the principal series is specified by a nonnegative
halfinteger number j, and a real number A: T(g)=T**(g). For j,=0, the
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representations T°* and 7% ~* are equivalent. When the representation T%* is
restricted to the maximal compact subgroup K=SU(2), it becomes reducible,
and the SU(2)-group representations 7% To*! Th*2  are present in its
decomposition. For j,=0 the representation space contains a vector |yo)
invariant under transformations belonging to the subgroup KX, so it is a class—I
representation, denoted by T*(g).

Representations of the supplementary series correspond to jo=0 and are
specified by a purely imaginary parameter A; A=io, —1 <o <0. All of them are
class-I representations. Two standard realizations of the unitary irreducible
representations are well known [84, 88].

First, they can be realized in the space %, x=(n;,n,), where n; and n, are
complex numbers, such that (n; —n,) is an integer. The space %, is the space of
functions f(z, z) satisfying two conditions.

1. Function f(z, 2) is infinite-differentiable at all values of z

@, z)eC™. (6.1.4)

2. f(z,2)=z"“12"2‘1f<—§, —%)eC‘”. (6.1.5)

Representation T*(g) is determined by
T*(9) f @) =(Bz+ )"~ (Bz+6)""f (z,)
z,=(0z+7y)(fz+0)" . (6.1.6)
For representations of the principal series one has
ny=(jo+id), my=(—jo+id) 6.1.7)

and the scalar product is of the form

<f1|fz>=% § Aifodxdy, z=x+iy. (6.1.8)

For representations of the supplementary series
ny=n,=ao, —1<0'<0, (6.1.9)

and the scalar product is of a more complicated form,

<f1|fz>=% If @2,d%2,|z; —2,| 2721, (2) £2.(2). (6.1.10)
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Thus for the class-I representations n; =n, =n, n=il, or n=a0, so

T®(9)f (2)=|Bz+* "1 *"f (z,). (6.1.6")

It can be easily verified also that a normalized vector invariant under the
maximal compact subgroup is of the form

So@=A+|zH~* (6.1.11)

To obtain the second realization of the representation, let us map the z plane
on the sphere {n:n*=1}, using the transformation inverse to stereographic
projection
11—z o 2z
1+ IR

|z|=tan b cosf= (6.1.12)

5,

We obtain a realization of representations in the space of functions f'(n) on the
unit sphere S?={n:n*>=1}. Here

1
I[P =7 § W @)Pan, (6.1.13)

where function (n) is related to function f(z) by

F@=fo@Ym=1+[z)" Ty (n). (6.1.14)
Hence we get the transformation law of functions y(n):
T (@)Y ()= (Lo —Em) ™ "y (ny), (6.1.15)

where the four-dimensional vector (&, §), & —&2=1, & >0 is determined by
So=1 (o +[B[* + P +|0) =% tr {g g}
&i=3(ay+pd+ay+po)=3tr{g*aoig}
&= +1(ay —p5—ay —Po)=5tr{g* or9}

&=(lof? +|BP — P —10) =5 tr {g* oa9}.

(6.1.16)

6.2 Coherent States

With the second realization of the representation, the vector invariant under the
maximal compact subgroup is Y (1) =1, and acting on it by operators T*(g) we
obtain the CS system

|E> =Y ()= (o —Em) ™1 1A (6.2.1)
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Thus, coherent states are parametrized by points of the upper sheet of the two-
sheet hyperboloid. This system of functions was considered originally (from
another point of view) in [89] and turned out to be very convenient for
considering a number of problems of the Lorentz group representation theory
and of theoretical physics. Gelfand and Graev [84] related this approach to the
horospherical transformation. The so-called horospherical method for the
general case was formulated and complex semisimple Lie groups were con-
sidered in detail.

The CS system has all the properties listed in Chap.5, with slight
modifications. Mention some of them.

2’. Group G acts on the CS space transitively; and this action is given by

TH ey =I¢>,  &=9¢, 6.2.2)
where g is a real 4 x 4 matrix satisfying the condition

g'sg=s, s=diagl[l, -1, -1, —1]. (6.2.3)

3'. The scalar product for two coherent states is given by

sin At
Eny=@a(0) =77,  where (6.2.4)
cosh t=En = Eono —&n. (6.2.5)

4'. In the representation space # * there exists a basis {|/, m)}; its elements
are eigenvectors of the operators

J2=Jt+J?+J? and J5:
PlLmy =10+ D, m), Tyl m>=mll,m) (6.2.6)
1=0,1,2,..., —I<m<l,

Here J, is the operator of the infinitesimal rotation around the kth axis,
k=1,2,3. The expansion of the CS over this basis is

[E>=Y uim(®)|l,m), where 6.2.7)
im

uim(&) =<1, m|T*(g)|0>. (6.2.8)

The state |¢) is normalized, so

IZ |utm(OP =1. 6.2.9)

Note also that
Ui (8) = R} (7) Yim (V). (6.2.10)
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Here v is a unit vector: £ =sinh tv, ¥;,(v) are the standard normalized spherical
functions | ¥, (V) Yy (v)dp(v)= 0w, du(v)= dv Yoo=1.

5’. Functions u},(t, v) are matrix elements of operator T*(g), so they are
eigenfunctions of the Laplace-Beltrami operator for the Lobatschevsky
space

— Auy (T, v) = (P2 + Dut, (z,v), (6.2.11)
where
~ 0? 0
4 =ﬁ+2coth T a+——-““sinh2 z Av
0% 0 1 0?
K 6.2.12
Av=ggz T oot 35+ 5070 307 (62.12)

For representations of the supplementary series
A=io, —l1<o<l1.

6. The zonal spherical function @, (7) is the eigenfunction of the radial part of
the Laplace—Beltrami operator

(;:2 +2cotht j) P,(0)=(F+1)®;(2). (6.2.13)

7'. Funetions uj, (t, v) are eigenfunctions of commuting self-adjoint opera-
tors 4, J? and J; and form an orthogonal system of functions in the
Lobatschevsky space. For class—I representations of the principal series

1 o (5, V)t (3, v) Sin? T dt d(V) = Ni(3) S S 34— ),
du(v) =% av. (6.2.14)

8'. Coefficient N,(4) is determined by the asymptotic behavior of function
Ri(r) at >0

Ri(@)~[ci(Me* +c(—Ae *]e™™ (6.2.15)
It can be easily proved that

M) =N(=D=Z|a ). (6.2.16)

9'. Coefficient Ny(A) defines the Plancherel measure for representations of
the principal series, namely,
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f@= \/g [7Q)®i()du(h),  du(A)=2da, (6.2.17)

where (1) is found from

FH= \/g | @.(7) f(r)sinh? T dr. (6.2.18)

10’. Using (6.2.4) one can easily obtain an expression for generating function
for the matrix elements {Im|T*(g)|I'm’). 1t is easy to see that

E|TH(g)ny=Pi(x), where (6.2.19)

cosht=(& n,)=(& gn) (6.2.20)

7 is the distance between points ¢ and 7,.
Consider now a particular realization of the representation T*(g). It acts in
the space of the square integrable functions on the unit sphere S?={n:n*=1}

T*(g)f (W)= (o —&m) ™ T1f (n,). (6.2.21)

With such a realization of the representation, the vector invariant under the
maximal compact subgroup K=SO(3) is fo(n)=1. Acting on it by operator
T*(g) we get the CS system

fim)=(Eo—&n) "1 A= B (&)= B (1, V). (6.2.22)

1
Not: ber of properties of the functions ®(&)= (), éo=———,
ote a number of properti ions @;(¢) ©, & TP

&=L/ 1-[¢P.

11. At fixed n the function ®7({) is constant on horospheres of the
Lobatschevsky space, which in this case are spheres tangent to the sphere
{¢:[¢|=1} at the point {=n [84]. The horosphere equation is

1 22
_tl—lgl——mz(g_") =(cosh t —sinh 7 nv) =const. (6.2.23)
Therefore the kernel K({, n)=®,({) can be called a horospherical kernel and,
consequently, at the realization of representation T*(g) used, the CS system is
given by horospherical kernels.

12'. Note that

2

1P =P(,n), (6.2.24)

1+[¢—2¢n

|¢n(€)|2 =
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where P({, n) is the Poisson kernel for the ball
{C:[¢)<1}:4,PEC, m)=0, [t|<1, [|n|]=1.
Thus
P, () =P, m" 72 (6.2.25)

13'. At fixed n function &,({) is the eigenfunction of the Laplace-Beltrami
operator A=(1—|{[*)*A (A is the usual Laplace operator for three-dimensional
space) on the Lobatschevsky space

—A®,)=(2+1)D,(0). (6.2.26)

These functions are a natural generalization of plane waves for three-
dimensional Euclidean space.

14’. The orthonormalized basis {|/, m)} which is proper for operators J and
Js, where Jy, J, and J; are infinitesimal operators of the maximal compact
subgroup G =S0O(3), has the form

{Yinm)}, [ Yin(0) Yi (n)dpe(m) =81 Opum» (6.2.27)

15'. Expanding coherent states in this basis |[£) = u,(£)|/,m) and noting
Im

that u;,(£) =<l, m|£), we get an integral representatioh for the function uf,(¢):
Ui (&)= [ du(n) Yim(m) (§o —&m) ™11, (6.2.28)

16’. For zonal spherical function (/= 0, m =0) this representation is simplified
to

d,(7) =—;— g (cosht —sinhtcos §) ™! *i*sin 6 d6. (6.2.29)

17'. The system of functions describing coherent states satisfies the
orthogonality conditions

(2—:53— | ®%(z,v) Py (1, v)sinh? tdrdv=N(1)6(A—1)6(n, n') (6.2.30)
(2:.’:)3 j @i (z,v) ¢:;(T,, v')du(A)dn=(sinh ‘C)_25(1: —1)é(v,Vv) (6.2.31)

du(l)=N"1(A)dA=A2d).

18’. Using these relations we can expand the arbitrary function in the
Lobatschevsky space in functions @2 (t, v)
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f(z,v) =(—2ni)3-,7 [ 74, m)®% (z,v)du(A)dn,  du(A)=A%dA, (6.2.32)
where
7, n)=(—2n1—)3/7 [ f(z,v)®} (z,v)sinh? t dv dr. (6.2.33)

19'. Functions are closely related to a scattering problem. To see this, let us
rewrite the Laplace-Beltrami operator as

2

d d
_4 eothe 4yt
A=zt 2cotht ot ama Ao

2
=(sinh7)! % (sinh7) —1+sinh ™% 7 A,,. (6.2.34)

Hence it follows that functions y(t)=sinht R}(t) satisfy the differential
equation

2
(—j—fiﬁfl) V=) 6239)

which is just the Schrédinger equation with the potential V;(t)=I(/+1)sinh =2 7.
Hence it is also seen that the asymptotic of the function ¥} (7) at T— oo is

Y@ ~a@e* +o(—e (6.2.36)
and the S matrix for this problem is
Si(D=—a()/a(—2). (6.2.37)

Note that the problem considered is intimately related to the scattering problem
of a charged particle in the Coulomb field [90, 91].

20'. To find the coefficients ¢;(4), it is appropriate to consider the 7— oo limit
for the decomposition of @2 (z, v) over the spherical harmonics Y;,,(n). The result
is

{—pp\~1+id _ B
% ( 2"") Yy(m)dn=c,(2) Y, (v). (6.2.38)

Calculating this integral explicitly, one gets

2r(+3)  T(1+id)

r3 Ard+1+id’ (6.2.39)

a(l)=
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21. Thus the S matrix for the scattering problem considered here is

T +id)Fd+1-ik)

S'('l)=r(1 —i)T(I+1+id)’

(6.2.40)

It has simple poles at the points A=im, —i(l+k); m,k=1,2,....
22. Note, in conclusion, that it is easy to get an explicit expression for the
function R} (t), using the integral representation (6.2.28),

R} ()= B,(sinht)'F(a, b, c; —sinh? 1)
a=F(+1+id), b=b(U+1-il), c=I+}. (6.2.41)



7. Coherent States for the SO(n, 1) Group:
Class-1I Representations of the Principal Series

This chapter extends the results of Chaps. 5 and 6 to the case of the group
SO(n, 1) for arbitrary n.

7.1 Class-1 Representations of SO(n, 1)

The group G=S0(n, 1) consists of linear homogeneous transformations of the
(n+ 1)-dimensional space under which the quadratic form

X=x3-x%, x=(x,X), x=(X1,...,%pn) (7.1.1)
is invariant. The invariance of this form is written as
g'sg=s or g l=sg's. (7.1.2)

Here g and s are real (n+1) x (n+ 1) matrices, g’ is transposed g, and s =diag (1,
—-1,—-1,...,-1).

The group SO(n, 1) is noncompact ; its maximal compact subgroup is SO (n).
The coset space X=G/K is the familiar Lobachevsky space of n dimensions. It
can be realized in various manners; realization using the interior of the unit
sphere is the most appropriate for our purpose, i.e., {x:|x| <1}, as well as the
realization in the upper sheet of the two-sheet hyperboloid:

(t=Go.8):  8B-8=1, &>0).

Space X must also be embedded into the group G. The most suitable way is

— _ 50,5
£=(%.9), —>g¢—<¢,,1+(50+1)_1§®€>. (7.1.3)

It is easily seen that (7.1.2) holds, so g.€G.

All the unitary irreducible class-1 representations belong to either the
principal or the supplementary series. Let us consider their structure.

Let us start from the realization in the unit ball D= {x:|x| < 1}. The boundary
is the (n — 1)-dimensional sphere $" ! ={n:n* =1}, and it is easily seen that this
space is homogeneous with respect to the action of the group G. Class-I
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representations of the principal and supplementary series can be realized in the
space of the square-integrable functions { (1)} on $" . Such a representation is
characterized by a real number A and is given by

T*(9) f (n)=(&5 —&°n)°f (n,),  where (7.1.4)
o=—otih 0="21 &=t &=go (715

For representation of the principal series A >0, and the scalar product is given
by

AVY =s"§_ 1 fi(m) fo(m)dp(n), [ du(m)=1. (7.1.6)

For representations of the supplementary series A is purely imaginary: A=iv,
—@<v<g; consequently, ¢ is a real number

—20<0<0, —(m—-1)<o<0. (7.1.7)
The scalar product is given here by a more complicated formula [78]

ilhy=C, [ § (@ —mn) i (m) fom)du(m)du(n') (7.1.8)

C,= VnI(@) (7.1.9)

o (3)r(o-13)

7.2 Coherent States

We define the CS system for representations of class-I by

&> =T*(g)|Vo), (7.2.1)

where |0 is a vector in #°%, invariant under the action of T*(k), ke K, and g, is
given by (7.1.3).

It can be readily seen that in the n representation the function f,(n)=1 plays
the role of |yo). Acting on it by operators we obtain the CS system

fAm)=(&—&n) =)&), &-&=1, n’=1. (7.2.2)

The properties of this CS system are analogous to those of the CS system for the
Lorentz group (Chap. 6). We present here only some of them.
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1. The scalar product of two coherent states is given by
Eln>=<0|T*(a(2))|0) = 2a(2), (7.2.3)

where 7 is the distance between the points £ and #, cosh ©=(&n) = Eyno — &N, a(7)
is hyperbolic “rotation” on “angle” 7 in plane (0, 1).

2. If the representation T2 is restricted to the maximal compact subgroup
K=S80(n), it is decomposed over irreducible components. This decomposition
contains only those representations of the group K which are characterized by a
single integer number /:

Hr=HEDHID. .. DHD. ... (7.2.4)

Therefore in the space of representation one can choose the basis {|/, >}, where y
are numbers characterizing the basis vector in #;*. These vectors are eigenvec-

tors of the operator J? for the group K (J 2= Ju .7,d>,

k<l

J2|l, uy=I(I+n—2)

L. (7.2.5)

The number of vectors in #;* equals the dimension of representation T" of group
SO(n) and is given by

=(21+n—2)(l+n—3)!

a4 I1(i—2)] (7.2.6)
3. Expanding coherent states on basis |/, u) yields

&= uiy (Ol uy,  where (7.2.7)
uiy (£) =<1, u|&> =<1, u|T*(g,)|0). (7.2.8)
4. The state |¢) is normalized, therefore

E | (O =1. (7.2.9)

Note also that
ut,(t, vV)=u},(§)=R}M7) ¥,,(v), &y=cosht, E=vsinht. (7.2.10)

Here v is the unit vector; v*=1, Y;,(v) are standard normalized spherical
functions:

§ Y ®) Yoo @) dp(v) =00 by, | du()=1.

5. Functions uj,(t,v) are matrix elements of operator T(g), so they are
eigenfunctions of the Laplace-Beltrami operator for the Lobachevsky space
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—Aud, (r,v)=(22 + 0P u},(t,v), where (7.2.11)
~ 0 0 1
=—+2¢9cotht —+——— 2.
4 62+ gco Tar+sinh2r (7.2.12)
Here 4, is the Laplace-Beltrami operator on the (n —1)-dimensional sphere
t={vivr=1}.

Hence it follows that the function R} (t) satisfies the equation

2 —_
{ [jz+(n—1)coth dt]+%—a}Rf(r)=|:/12+<n21)2]R,‘.

(7.2.13)

6. Functions R}(7) are related to the problem of particle scattering in
potential ¥(t)=g?sinh~21. To elucidate this point, let us consider a new
function

YH(t)=(sinh 7)™~ D2 RA(7). (7.2.14)

It can be easily seen that it satisfies the Schrodinger equation

[ ; 5+ V,(t)] Yi(t)=1*yt(x), where (7.2.15)

Vi(r)= |:<— -1 +l>2 ——i—] sinh 2(x). (7.2.16)

7. Hence it is seen that y#(n;t)=Cyé(n+21[;7) and, correspondingly,

R} (n;t)=B,(sinh 1) R¢(n+21;7)=B,(sinh1)'®,(n+21; 7). (7.2.17)
8. Solving (7.2.13), we get an explicit expression for the function R} (7):
R} (t)=B,(sinh1)'F(a,b,c; —sinh?1), a=%(o+I+il),

b=}(@+I—il), c=o+I+} (7.217)

where F(a, b, c; x) is the hypergeometric function.
9. The asymptotic behavior of function R} () is of the form

R} () ~[Ci(A)e* + C)(—A)e e (7.2.18)
10. From (7.2.17) we find the following expression for the coefficient C;(1)

20 (o +1+4) (o +ik)

I(e+3)I(e+1+id) Co(A). (7.2.19)

Ci(A)=B,
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11. Functions u},(z,v) form an orthogonal system of functions in the
Lobachevsky space

jj af,,(z, 1)) uf,;,, (,v) (sinh 7)" " 'dr du(v)= Ny(A) OO 6(A—21"). (7.2.20)
Here
du(v)=A"1-dv, j du(v)=1. (7.2.21)

12. Coefficient N,(A) is taken from the asymptotics of function Rf(t) at
T—00:

N(D=5=5 |G- (7222)

13. Function &, (t), the zonal spherical function, is the eigenfunction of the
radial part of the Laplace-Beltrami operator

— 12—+( —1)cothri @, (1)=(A2+0*)P,(7) _n-1 (7.2.23)
dTZ n dr 2 - 0 i\Y)s o= ) . WL
It is normalized by the condition
®,(0)=1. (7.2.24)

14. From the explicit expression

®,(1)=F(a, b, c; —sinh® 1), a=Q;1/1, b=Q;M, c=g+% (7.2.25)
we get
22¢71T(e+3) TI'(iA)
Co(D)= Vx Tet+id) (7.2.26)
_ riap
_on-2 T 1y\]2 | . 2.
No(1)=2""2|'(¢ +3)| [T +iMF (7.2.27)

15. Coefficient N,(A) determines the Plancherel measure for representations
of the principal series, namely,

f@®=a, [ F(A)P:(x)dp(d), (7.2.28)

d 1

,  NQ)=|r@)P/|r P, a=—-—1-~ (722
NGy NO=ITGAP/re+inP, Wﬂﬂp@) (7.2.29)
2

dp()=
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f D) =a, j f(@)P;(7)(sinh7)" " dr (7.2.30)

[ If @ (sinh oy~ de = | | du(d). (7.231)

Consider now the properties of the CS system in the » representation

PH(E)=(E|A, ny=(Eo—Em)2T Q=”;1 (7.2.32)

16. The system of functions @3(¢) is complete and orthogonal

(2 7 | TP dn du(2)=5(4,¢) (7.2.33)
[ a(0) P2 (8)du)=NMA)o(A—2)o(n,n'), du(t)= é. (7.2.34)

(2 n"

17. Using these relations one can expand any function f (¢) on a hyperboloid
in functions @2(¢):

1
S (€)=W [ 7 (A, m)®}(E)du(A)dn, (7.2.35)
where
1 -
(3, m) =2o" § B2 f(©)du(©). (7.2.36)
Moreover
§ 17 G mPdu(@ydn = |£(©)Pdu(). (7.2.37)

18. Averaging the coherent state over the sphere {n:n> =1} yields an integral
representation for the zonal spherical function

@, (t)={ (cosht —sinh tcos 6)°du(6);
(1]

r(3) 1
dp(O)=—— L (sin0y'2d0, o= —g+il,. g=”—2—. (7.2.38)
ﬁr( 5 )

19. Hence one gets at once an expression in terms of the hypergeometric
function,
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&, (1)=(cosh1)"¢**F(a, b, c;tanh? 7);
a=%(—ik), b=%(0—ii+1), c=po+}%. (7.2.39)
Clearly this expression is equivalent to that in (7.2.25).

20. To get the 17— 0o asymptotic behavior, we use a transformation for the
hypergeometric function; the result is

Py()=2"1n"t2T <g> (cosht)™@
I'@i2) . )
J—— 2 h il . h 2 .
[p(i“_g)( cosht)“F(a,b, ¢; cos T)+co:|,
a=t(e—ih), b=3(e+1-i), e=1-il (7.2.40)

21. Hence one gets immediately the desired asymptotics, at 1— o0

o - ray | _... .
wo2ze-1, —12p (7 0t (ni(Az+d0)
D,(1)~2 n~4r <2> —I"(i/l+g) e (e +c.c) (7.2.41)
where the phase shift is given by
6o(A)=arg [ (i1) —arg (o +i4). (7.2.42)

This is just the scattering phase shift for the potential

%(r)=[<g—1>2 —ﬂ sinh~2 7.

22. An expression for the coefficient C(1) can be obtained more simply;
namely, setting the limit 7— oo in the integrand in (7.2.38). The result is

_ T (1—cosb’ 227 (g+%) I(id)
C(i)—g (~—~2 )du(ﬂ)— Vz Terid’ (7.2.43)

23. The expansion of the zonal function ®}(¢), £ =(cosh t, v sinh 1), is
obtained from (7.2.7, 10),

@1 (¢)=[cosht—sinht(vm)]"¢**=Y R}(7) Y, ¥,u(v) Yiu(m). (7.2.44)
1 u
It can be easily seen that

> n—2 1
2 1) Yiu(m)=4,Ci(vm),  a=——=0—3, (7.2.45)
"
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where C7(x) is the Gegenbauer polynomial of degree /. Setting v=n and
integrating both parts of (7.2.41) over du(n), then

- Ci(vn)
2 V() Yy(m)=d, Ok (7.2.46)
where Yoo=1, [ du(n)=1, and d, is given by (7.2.6).
Finally we get an expansion for the horospherical wave
. I+0—3
[cosh t —sinh £ (vm)] ¢ * 4= R¥() (—(“;Q—l)’f) Cx(vm). (7.2.47)
1 -7

24. Let us now take into account the fact that the Gegenbauer polynomials
form the orthonormalized system {Cf(cos 6)} on the interval (0, 7)), with the
weight (sin 6)?%,

(@+)I'T' () 2a)
ValQa+DI(@+%)

From (7.2.47) we obtain an expression for the zonal spherical functions

C#(cos 0)=[ ]1/2Cf(cos 0). (7.2.48)

1 n _
[@resl! [ (cosht—sinhzcos )2+

2)/alr@+H) Qo+l o
- Cf(cos 0) (sin 6)** d6. (7.2.49)

Ri(7)=

25. Now one can easily write an expression for the 7— oo asymptotics of the
adjoint spherical function,

R}(t)~Bie Te®+dycc), (7.2.50)
where
o=arg I'(iA) —arg I'(g+1+iA). (7.2.51)

26. The expansion of the CS at t— oo now takes the form

(1 —cosG)"”“:Co(/D i (I+0—% I'(e+il)I'(o+1—il)

- — Cf(cos6),
2 2 @-D Tle=ihIe+irin s

Co(A)=[2"'T (e +3) TN/ n I (e +iA)]. (7.2.52)

27. Note that at A— oo, t—0, AT =const there is a transition to the flat space
case and our formulae are replaced by those for expansion of usual plane waves.
In particular, exp [i6,(A)]~(—1)'exp [i6o(A)].



8. Coherent States for a Bosonic System with
a Finite Number of Degrees of Freedom

In this chapter the CS system is constructed for a bosonic system with a finite
number of degrees of freedom. The system state is specified with a complex
symmetrical matrix satisfying an additional condition. The exposition here
follows mainly works [35, 94].

8.1 Canonical Transformations

Recall that the basic operators used in describing a bosonic system with ‘N
degrees of freedom are the creation operators a;" and annihilation operators a,
(j,k=1,...,N). These operators act in the standard Hilbert space 5, the so-
called Fock space, and satisfy the commutation relations

[a,a¢ 1=0p, laj, ;]=I[a;",ai1=0. (8.1.1)

We shall consider the transformations preserving the commutation relations,
i.e., the canonical transformations.

The simplest canonical transformations are the displacements a;—a;+a;,
where a; are arbitrary complex numbers, Chaps. 1, 3. Now let us treat the most
general linear homogeneous transformation in the operator basis {a;, a; }:

ai—*5i=uijaj+vika,:', a,'+ —)di+ =l_)ijaj+ﬁikal;+, (8.1.2)
or in compact notation,

a—»d=Ua+Va*, at-at=Va+Ua".
The conditions under which the transformation is canonical are

uut-vvt=l, UV'=VU, U=@wj), V=(;). (8.1.3)
Here and in the following * means the Hermitian conjugation of operators, ~
stands for the complex conjugation, ' means transposition of matrices. The sum
over repeated indices is implied everywhere. These conditions are equivalent to a
condition for the 2N x 2 N matrix

uv I 0
= — — M += = A
M (V U)’ KM™ =K, K <0 —I)’ (8.1.4)
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where 0 and I stand for zero and unit N x N matrices, respectively.
Hence one gets at once an expression for the inverse matrix

M‘1=KM+K=<_;}: _Z> (8.1.5)
and the conditions may be rewritten as

M*KM=K, U'U-VvV=1, U'Vv=V'U. (8.1.6)
Through (8.1.3, 6), a matrix inverse to U exists, so that

vlv=v(UY, VU l=UYV*. 8.1.7)
The last relation is equivalent to the symmetry of the matrices

Z=U"'V and W=VU' (8.1.8)
It follows also from (8.1.3, 6) that

(1-zzH=Uw*ru)™, (@-ww)=UUu") . (8.1.9)

So the matrices 1 —ZZ* and 1 — W* W are positively definite.

The matrices M defined by (8.1.4,6) form a group G with respect to the
standard matrix multiplication. This group is called the real symplectic group;
the conventional notation is Sp(2 N, R).

Note some properties of this group [6, 35, 36].

1. The group G is noncompact (its invariant volume is infinite) so all its
unitary irreducible representations are infinite-dimensional.

2. The group G is not simply connected. In other words, there are closed
paths in the group space which cannot be continuously deformed into a point.
An example is the path corresponding to the transformation a;—exp (27int)a;,
0<t<1, it is closed for any integer nonzero n, but cannot be contracted into a
point.

Splicing together appropriately an infinite number of copies of G, one gets a
simply connected group G, the so-called universal covering of G [36].

As shown in the following, also important is a group G which covers the
group G twice and is called the methaplectic group, the notation is Mp(2n, R).
Weil [92] generalized this group to the case when the real numbers are replaced
by elements of an arbitrary locally compact group.

3. The maximal compact subgroup K of Sp(2 N, R) is the group of matrices of

U
the form k= ( 0
isomorphic to the group U(N).

4. The matrices Z (respectively, W) in (8.1.8), as is readily verifiable, are

representatives of the left (respectively, right) cosets of the group G by the

0 . . . .
l7>’ where U is a unitary matrix, so the subgroup is
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subgroup K. The quotient space G/K is a symmetric space of the noncompact
type [81]. As follows from (8.1.9), it may be realized as a complex homogeneous
bounded domain (the so-called Siegel unit disk [81,93])

{z:1-zZ* >0}, (8.1.10)

where Z is a complex symmetrical N x N matrix, the symbol >0 meaning that
the matrix is positive definite. The group G =Sp(2N, R) acts in the matrix space
as the group of linear-fractional transformations,

9:Z-Z=(U+ZV)"'(V+Z0). (8.1.11)

Turning back to the canonical transformation (8.1.2), note that according to
the Stone-von Neumann theorem [25, 26], the operators 4; and g; are unitary
equivalent. In other words, a unitary operator T'=T(g) exists such that

a;=Ta;T". (8.1.12)

It is easily seen that the operators T'(g) realize a representation of the group
G=Sp(2N, R). It is not difficult to describe also the infinitesimal operators, i.e.,
the corresponding representation of the Lie algebra. Suppose T~ 1+ i¢H, where
H is an Hermitian infinitesimal operator. Then the commutator [H, a;] must be
linear in g;and a;' . This is the case if H is quadratic in g; and a;" . Thus we are led
to the algebra of the operators

Xj=aia;, XV=af'a’, X{=%}(aa+aa) (8.1.13)

which is isomorphic to the Lie algebra of the symplectic group. The commuta-
tion relations are

X, Xul=[X", X*]=0

[X;j, X*]=XFo+ X1o¥ + X¥ 6} + X oF

(X, XF]= X0 0¥ + X;,0F

XY, XF]= — X™*&] — X7*5

[X{, Xf]1=X]oF — Xtof. (8.1.14)

Consider now the infinitesimal symplectic transformations. The matrix given
in (8.1.4) is rewritten as M =1+¢M, and ¢ is an infinitesimal parameter, ¢—0.
The generator of the transformation satisfies the condition

M*YK+KM=0 (8.1.15)
or, equivalently,

M* = —KMK. (8.1.16)
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Hence

- (C 4
=(_ ), A=A, *=-C, 8.1.17
M ( 1 C) C C ( )
where A and C are N x N matrices.

The considered representation T'(g) is unitary; it acts in the standard Hilbert

space 4, the Fock space (Chaps. 1,3). A basis in this space consists of the
vectors

|1y =|ny,. . ..nx>=[ny!n,! .. g7 2 (@)™ . (ax)™]0D,

where the state vector |0) is the vacuum: |0>=]0,...,0), 4;|0>=0.
It is not difficult to see that the Hilbert space is reducible with respect to the
action of the operators given in (8.1.3). Namely, the states with even (odd)
N

numbers n= Y, n; form an irreducible subspace for the representation T+

=1
(the space Jfg‘“’) and, respectively, T~ (the space #57)).

One should have in mind, however, that the above representations are
two-valued representations of the group Sp(2 N, R). To be more precise, they
are (single-valued) representations of the methaplectic group Mp(2N, R)

=Sp(2N, R).

8.2 Coherent States

Now we are in position to construct the CS systems for the representations T*
and T~ . Note, first of all, that for any geSp(2 N, IR) one has the decomposition

T(g)=A exp(—3% finij) exp (04 X7) exp ( _%'ﬂinij), 8.2.1)

where 4" is a normalization factor. In both subspaces #(*) and #(7) there is a
vector |¢@o) annihilated by any operator X;;,

Xij|@0y=0. 8.2.2)
Namely,

lpoy=[0y=[0,...,0) for T* (8.2.3)
and

lpoy=]1,0,...,0) for T~ ; (8.2.4)

in the latter case such a vector is not unique.
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The constructions of the CS systems in both cases are similar; we are
concerned here only with the case of T*. In this case the isotropy subgroup H of
the vector |po) is U(N):

H={g:g=<(l)] 0_)}, UeUN). (8.2.5)

Applying various operators T(g) to the state vector |, ) one gets, as usual, a CS
system {T,|po>} related to the bosonic operators.
As follows from (8.2.1), a CS vector |¢) is defined by

&) = A exp (-3 £;X)|0), (8.2.6)

where ¢;; are elements of a complex symmetrical matrix £, and A is a
normalization factor. Moreover, it follows from (8.2.1) that the CS vector
satisfies

G|&>=T@a;T ' (@|>=0 (8.2.7)
or, equivalently,
(Ua+Va*)[¢>=0, (8.2.8)

where a and a* are columns composed of the operators a;, af:, res CCtiVCly.
J
Hence

(a+&a*)|Ey=0, where (8.2.9)
¢=Uv (8.2.10)

is a symmetrical matrix, and (8.2.6) is valid. Recalling the condition (8.1.3),
UU* —VV* =1, it is clear that the Hermitian matrix (I — £¢*) must be positive
definite. This is just the condition necessary for normalization of the state vector
|&> given in (8.2.6). The set of complex symmetrical matrices satisfying this
condition will be denoted by Sy.

Thus in the case in view a CS is determined by a point in the set Sy. The
normalization factor 4" can be directly calculated:

N = [det (I—EEH)H-, (8.2.11)

The CS system has properties similar to those of the standard CS sytsem
considered in Chap. 1. A few of them are presented below.

The statesin the system are not orthogonal to one another ; the scalar product
is

CElny=[det(1—EE%) det (I —nn*)]H4 [det (1—EF )] 12, (8.2.12)
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Expanding the CS over the standard basis gives

&= § Up(O)|[nD), (8.2.13)

where the sum is over all [n]=(n, ,. . ., ny), such that [n| =Y n;is an even number.
Hence

[Z] Uy (&) Upy () = [det 1 — &+ )] 712, (8.2.14)

Note an integral representation for the coefficient function resulting from

(8.2.13): -

V()= di(2) o exp(—+ Euy0) (82.15)
- = u exp(—z¢jxZjzZk), '
[m] I/W jk“j“k

where the measure is
1 N N .
du(Z)=—y exp [—Z |Zj|2] ITdx;dy;,  zj=x;+1y;
1 1

and |[m|=Y mj is even.

The function Uy, (€) is a homogeneous polynomial of elements of the matrix
¢, its degree is |m| /2. As shown in [35], the polynomial satisfies the following set
of differential equations

(Kij Kim — KimKi) Upny (£) =0, (8.2.16)
where 1<i,j,[,m<N and

1

G
=3 % (8.2.17)

0
i+j;  Ki=

Kij E

The relevant class of functions of interest for our purpose, #y , is the set of
functions analytical in the generalized Siegel disk &y satisfying the set of
equations (8.2.16) and having a finite norm,

1= 'Z ComUm(©, | fI?=% |Coml* < 004 (8.218)

m| =even [m]

where Cp,; are coefficients in the expansion f(&)= Y  CpmUm($)
|m| =even

Because of (8.2.18), the functions are bound by the inequality

I£ @) < | S| [det (T—&E*)174. (8.2.19)

The following lemma is useful.
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Lemma. The entire function exp [(z£z)/2] belongs to the space 5 , if and only if
the matrix

[-¢Er=1-¢& (8.2.20)
is positive definite.

Finally, let me mention a formula showing the action of the representation
T™)(g) in the space Fy,

T (g) f(O)=[det(U+LEM] 2 f(U+LEV) 1V +LD)). (8.2.21)

The CS system for the odd representation 7¢~)(g) is constructed similarly; all
the relevant formulae of this section are easily extended to the odd case.

8.3 Operators in the Space #%")

Let 4 be an arbitrary operator acting in #§ ). Following the general pattern, we
associate a covariant symbol with it

AE O =E|A|Ey, (e =1. (8.3.1)
Consider first the bilinear operators
Xyp=aja, X*=a'qal, X|=%@a+aa). (8.3.2)

The semiclassical limit is pertinent here, so we renormalize the operators, and
rewrite the commutation relations (8.1.1),

1 .
[aj’a:]=h6jka [aj,ak]=[aj+aal:-]=0, |f>=./VeXp <_ﬁ éinU>|0>'
(8.1.1")

A direct calculation shows [94] that the corresponding covariant symbols are
elements of the matrices

A= —REQ-E*0)", A%, B=r L4heA-£'E) e (83.3)

Note that the matrices 4 and B are not independent; the following relations
hold:

_ R _
B—AA=1 BA=4B, (8.3.4)

B*=B, A'=A. (8.3.5)
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The inverse statement is also valid. If two matrices 4 and B satisfy (8.3.4, 5),
and 4! exists, then such a symmetrical matrix £ exists so that 4 and B are given
by (8.3.3) [94].

Further, it is not difficult to see that an arbitrary element of the Lie algebra of
the group Sp(2N, R) is given by (8.1.17), where 4 is complex, 4=A4’, and C is
anti-Hermitian. Substituting there C=iB, and introducing the matrix ¢ by
means of (8.3.3), the manifold Sy = {¢} embeds into the Lie algebra ¢. Evidently,
the image of Sy in ¢ depends on Planck’s constant, and we use the explicit
notation Sy(k). Suppose ixeSy(h); then it is easily seen that

gx(&,&)g ™ =x(9¢, 9%), (8.3.6)

where geG. Thus the manifolds Sy () are orbits of the adjoint representation for
the group G=Sp(2N, R). Now (8.3.4) may be rewritten as

2
[x(& OHP= —<§) I (8.3.7)

where I is the unit matrix.
Note that as i—0, one gets the space of complex unitary symmetrical
matrices,

{re=1, (83.8)

so the manifold Sy (0) belongs to the boundary of the Siegel disk {Z:1—ZZ > 0}.

The manifold Sy is Kéhlerian. This statement means that it is a complex
manifold possessing Riemannian metrics, which may be written in local
coordinates as

dsz—Z—azidz“dE" (8.3.9)
~ & ooz ’ -

where the function F(z,Z) is called the Kéhler potential.
The metrics (8.3.9) is invariant under a transformation group G, if the
potential F satisfies the condition

F(gz,9z) = F(z,2) +a(g,2) + (g, 2), (8.3.10)

where «(g, z) is an analytical function of z (i.e., independent of Z).
Consider the manifold Sy, and let Z be its element. In view of (8.1.10) the
function

f(Z,Z2)=det(1-22) (8.3.11)
does exist, and because of (8.1.11) its transformation is

16Z,9Z)=f(Z,Z)a(g, Z)x(g, Z), where (8.3.12)

a(g,z)=[det(U+ZV)] 1. (8.3.13)
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Therefore

F(Z,Z)=%Inf(Z,2) (8.3.14)
is the invariant Kéhler potential. Hence

ds? =} tr{dZ(0-2Z)"'dZ(1-ZZ)™'}. (8.3.15)

Defining the scalar product (x, y)=tr {xy*} for the N x N matrices, the interval
can be rewritten as

ds*=(dZ,HdZ), HdZ=%KdZK, K=(1-ZZ)™'. (8.3.16)

The explicit form of the Laplace-Beltrami operator on the manifold Sy looks
like

0 __. 0 _
A=2tr {—a—Z (I—ZZ)ﬁ(I—ZZ)}. (8.3.17)
where
RIS
5 ale ..... 2 621N
= . (8.3.18)
1o
2 62“, “““ aZNN

Consider the Hilbert space % (Sy) of analytical functions on Sy with the
scalar product

(f1,/2)=Cn(0) [ 1(2) /(2) [det 1 ~ZZ)]* dun(Z, Z). (8.3.19)
Here k is a parameter, the invariant measure in Sy is

_ dxdy; .
dun(z,7)=[det (1 = ZZ)]"™*D T] %ﬂ 2= X+ (8.3.20)
J<k
and the normalization constant Cy(k) is determined by the condition (f5, f5) =1,
where f,(z)=1. Using the results from [93], one gets an expression for the
normalization constant

r'kc—1)r=2)...rk—N)

vl =2 DI k=) . Te—2N)’

(8.3.21)

The integral in (8.3.19) is convergent for £ >2N, and for k<2 N it is obtained
through the analytical continuation. The resulting expression defines a non-
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negative scalar product on the ray k> 2 N, as well as on certain points to the left
of it,

k=0,1,2,...(N—1). (8.3.22)

Only these values of k will be considered.
The set of functions

f(2)=C.Ddet(1-ZD1™ "2, Z, (eSy (8.3.23)

on the manifold Sy is just the generalized CS system, written in the z
representation.



9. Coherent States for a Fermionic System with a Finite
Number of Degrees of Freedom

This chapter studies the CS system for a fermionic system with a finite number of
degrees of freedom. The system state is specified with a complex skew-
symmetrical matrix. The exposition follows [94].

9.1 Canonical Transformations

We shall consider the Fock space J#; for a fermionic system with N degrees of
freedom. The system contains identical particles subject to Fermi-Dirac
statistics, and its states are described by completely antisymmetrical wave
functions. (A rigorous mathematical approach was given in [6].) The fermion
creation-annihilation operators ¢;', ¢, satisfy the anticommutation relations

{a, ¢t} =aef +¢fa=0n, {g.a}={¢" a}=0. (9.1.1)

Consider linear canonical transformations, i.e., the linear homogeneous
transformations of the operators ¢;, ¢, that do not change the commutation
relations (9.1.1),

~ + ~t — —
ci—»c;=u,-jcj+vikck+, Cx —Cy =Uijj+uk[CI+. (912)

It is easily seen that the following relations are necessary for the transformation
(9.1.2) to be canonical

Uv'+vU'=0, UU"+VV*=L 9.1.3)

Evidently, these conditions are equivalent to the unitarity of the matrix

v v
={_- _), MM'=L 1.
M (V U) (9.1.49)

Hence the inverse matrix is

ut v
1= . A,
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Furthermore, we suppose that U~ ! does exist. Then

v'lv=-v/U?Yy, VUl=—-(UYHYV* (9.1.6)
is equivalent to the skew symmetry of the matrices

Z=U"'W and W=VUL. 9.1.7)

It follows from (9.1.3) that the matrices (I+ZZ*) and (I+ W* W) are positive
definite.

Evidently, the matrices M in (9.1.4) form a group with respect to the
conventional matrix multiplication. This group is isomorphic to SO(2 N, R), the
group of real orthogonal 2N x 2 N matrices. A few properties of this group are
mentioned.

1. The group SO (2N, R) is compact (its invariant volume is finite), so all its
unitary irreducible representations are finite-dimensional.

2. The group SO(2 N, R) is doubly connected : a closed path corresponding to
a rotation by the angle 27 cannot be continuously deformed into a point, while
the rotation by 47 can be contracted. So taking two copies of the group and
splicing them appropriately gives a simply connected group, the universal
covering G, called the spinor group Spin(2N).

3. The group G contains an important subgroup K, isomorphic to the unitary
group U(N); K contains matrices of the form

U o
K=<O U)’ UeU(N).

4. The matrices Z (respectively, W) in (9.1.7) are representatives of the left
(respectively, right) cosets with respect to the subgroup K. The quotient space
G/K is a symmetrical space of the compact type. It is a complex manifold, and the
matrices Z (respectively, W), Z'= —Z, determine a local coordinate system in
this manifold.

The group G acts in the matrix space as a group of linear-fractional
transformations,

g: Z-Z=U+ZV)" ' (V+2Z0). (9.1.8)

Note also that the operators ¢; and c; are unitary equivalent

~ uv
cj=T(+)(g)ch(g)a g=<I7 17>€G5 (9'1'9)

and the operators T(g) form a representation of the group SO(2N, R).
Asin the preceding chapter, the infinitesimal operators of the representation
are quadratic in the operators c;, ¢; . Namely, the operators
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Xj=cc, XV=c¢'ct, Xi=}(if —cfc) (9.1.10)

form the Lie algebra isomorphic to that for the group SO(2N, R). The
commutation relations are

[Xij, sz] = [Xij, Xkl] =0

[Xyj, X*]= XFO! — X[5% — XFo!+ X% 9.1.11)
DX XF1= X} = X85, XY, XF)= = X*8]+ X )

(X7, Xi1=X]{ o — X}d].

Consider now the infinitesimal orthogonal transformations, the correspond-
ing matrices are M=1+igM, ¢é—0. The infinitesimal rotation matrix A7 is
Hermitian, M* = M. Hence

. [C 4

=(_ ), A'=-4, C*=C. 9.1.12

5 4 o

The considered representation T(g) is unitary and acts in the standard finite-

dimensional (of the dimensionality 2V) space. It is the Fock space with the basis
Iny,. . .,nyy=|[n]), where the numbers n; acquire only two values, 0 and 1,

> =1ns,. . ..nx)=(ci)™...(cx)™|0,0,...,0>

and|0)=|0,. . ., 0) is the vacuum state vector, satisfying the conditions ¢;|0) =0.

It is easy to see that the space #% is reducible with respect to the action of
operators of the representation T'(g). Namely, there are two irreducible
subspaces #*) and #4{ ) with the basis vectors corresponding to even and odd
In|=3 n;, respectively, where the irreducible representations T*) and
T act.

The representations in view are the so-called spinor representations of the
group SO(2N, R). To be more precise, they are two-valued representations of
the doubly connected group SO (2N, R), and realize the one-valued representa-
tions of the universal covering group Spin(2N).

9.2 Coherent States

Constructing the CS systems for the representations T*)(g) and T‘7'(g) is
analoguous to that presented in Sect. 8.2. So here I give only some formulae for
the CS system related to the representation T*)(g). The coherent state in view is
defined by

|&>=A"exp (% &,; X)[0), 0.2.1)
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where ¢ is a complex skew-symmetrical matrix, and 4" is a normalization factor.
This state |£) satisfies

(¢ +&eiN)|E> =0, (9:2.2)
and the normalization factor is

N =[det (14 EEF)] 14 = [det (1 —EE)] 14, (9.2.3)

The coherent states are not orthogonal to one another ; the scalar product is

CClmy=[det (I+E&*) det (T+nn )]~/ [det (1+ & m)]*2. (9:2.4)

Expanding CS over the canonical basis gives
X

&> =AY u(O)|[n]), (9.2.5)

[n]

where [n]=(ny,. . .,ny), n;=0,1, and the sum is over all n with even |n|=Y  n;.
Hence one gets

[Z] i1 (&) gy () = [det (T+ E )2, (9.2.6)

In an analogy to Sect. 8.2, one has to consider the space %, the space of
polynomials of elements of the matrix &, which may be expanded over the basis
polynomials

u($)= Z Comhm (£).

|m| =even

Finally, I give the formula describing the action of the representation 7*)(g)
in the space %y,

TM(g) f(&)=[det (U+LN2f(U+EV) ™I (VY +LD)). 2.7

9.3 Operators in the Space #}")

The procedure is quite similar to that of Sect. 8.3. For an arbitrary operator 4,
acting in #% ™), there is a covariant symbol

A &) =<¢ldley,  (gley=1. (9.3.1)
Consider the bilinear operators,

jk + .+ k 1 +
Xp=cjcr, X'=cic¢, Xi=3(cicj—cier). 9.3.2)
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It is suitable to renormalize the operators, so that the commutation relations
contain Planck’s constant i explicitly

{Cj,C;}=h5jk, {Cj, Ck}=0, {Cj+,ck+}=0. (91.1’)

It is not difficult to show [94] that their covariant symbols are elements of the
matrices

A= —RE(I+EYH)L, 4%,
B=he(I+ETE)Let —-z- I, (9.3.3)

and the matrices 4 and B satisfy the conditions

_ k? —
BZ—AA=TI, BA=AB, B=B*, A'=-A. 9.34)

The inverse statement is also true: if the matrices 4, B satisfy (9.3.4), a matrix ¢
exists such that 4 and B are expressed by (9.3.3).
An arbitrary element of the Lie algebra for the group SO(2 N, R) is written as

( C 4 .
R =C, A'=—4, 3.
1<_A —c> C*=C, 4 (9.3.5)

where A is a complex skew-symmetrical matrix, and C is an Hermitian matrix.
Asin Sect. 8.3, it is suitable to substitute C = B, and to express 4 and Bin terms of
¢ and &; the result is an embedding of My into the Lie algebra %. The embedding
depends on A, and the image of My in ¥, evidently, is the orbit of the adjoint
representation of the group SO(2 N, R). In the limit #—0 the manifold My (k) is
reduced to a single point. The reason is that no nontrivial classical limit of the
quantum theory exists in the fermionic case.

Itis remarkable that the manifold My is Kdhlerian as in the bosonic case. The
metric in local coordinates is

2=y T e 9.3.6
T4 0z007° ’ (9.3.6)

where the Kihler potential is
F=Indet(I1+ZZ%). 9.3.7)

The potential F (so also the metric) is invariant under the action of the group
G=SO(@2N, R). The corresponding expression for the metric is

ds* =5tr{dZ(1+Z*Z) 'dZz* (1+ZZ*)"1}. (9.3.8)
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Introducing, as usual, the scalar product (x, y)=tr {xy* } in the matrix space, the
metric is rewritten as

ds?=(dZ,HdZ), HdZ=iKdZK*, K=(1+ZZ*)™. (9.3.9)

The Laplace-Beltrami operator in the space My looks like

A= =2tr {% (1+z*2) % (I+ZZ+)}, (9.3.10)
where
P
Z%:% —a—zal—z 0 ......... . (9.3.11)
_% ......... 0

Consider the Hilbert space %, (My) of analytical functions on My with the
scalar product

(11, 2)=Cn(k) [ 1(Z) £(Z) [det A+ Z* Z)] 2 duy(Z, Z).

(9.3.12)
Here the invariant measure is
_ dx;;dys;
dun(Z, Z) = [det (1+ZZ*)]~ -0 ] L
i<j
Zje= Xje +1Yj (9.3.13)

and the normalization constant Cy (k) is determined by the condition (fy, fo) =1
with fo(z)=1. Using some results from [93] one gets

I'(k+N+1)I'(k+N+2)...T(k+2N)

M=k DI ®+3). . TG +2N—1)

(9.3.14)

Note that from the point of view of the quantization theory (Part II) the
spaces % (My) are of interest for integer k=0,1,2,....
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10. Coherent States for Nilpotent Lie Groups

This chapter considers square-integrable CS systems related to connected simply
connected nilpotent Lie groups. These states are related to the simplest orbits of
coadjoint group representations, namely, to orbits which are linear spaces. In
this case, as for the Heisenberg-Weyl group G= Wy, any coherent state is
parametrized by a point of the orbit.

10.1 Structure of Nilpotent Lie Groups

Let G be a Lie group. Let us consider the sequence of subgroups of this group
G0=GDG13...DGkD..., (1011)

where G,=[G,-,G], i.e., Gy is the closed subgroup in G,_; generated by
commutators of the type aba™'b™!, aeG, beG,_;. It is easy to see that
subgroup G, is an invariant subgroup not only for group G, _, but also for the
whole group G.

Definition 1. Group G is called nilpotent if sequence (10.1.1) is terminated,
G,={e} for all I>k, i.e., higher members of the sequence are trivial subgroups
containing a single element (the unity) only.

For Lie algebra 4 we consider the sequence of subalgebras

%y=9>5%>...0%>..., (10.1.2)

where 9, =[9,_,, %], i.e., %, is the subalgebra in 4, _, generated by commuta-
torsof the type [o, Bl=aff — Po, a €Y, f € ¥Y,_, . Analogously to the case of the Lie
group, the Lie algebra %, is an invariant subalgebra not only for Lie algebra
%.—, but also for the whole Lie algebra 4.

Definition 2. Lie algebra ¥ is called nilpotent if sequence (10.1.2) is terminated,
%,={0} for all/>k, i.e., subalgebras %, contain the zero element only. Note that
a connected Lie group is nilpotent if the corresponding Lie algebra is nilpotent.



120 10. Coherent States for Nilpotent Lie Groups

In the following we shall consider only connected simply connected linear Lie
groups. Such groups are determined completely by the corresponding Lie
algebras. A useful criterion of nilpotence is given by the Engel theorem.

Engel Theorem. Let X be a linear Lie algebra and let each element of X satisfy the
condition x™=0. Then there is a basis in which all matrices x € X are strictly
triangular, i.e., they have zeros on the main diagonal and below it.

Hence, a linear Lie algebra satisfying the condition of the Engel theorem is
nilpotent. Note also that any nilpotent Lie algebra has a nontrivial center and
that the center is necessarily connected.

All unitary irreducible representations of nilpotent Lie groups may be found
by the so-called “orbit method” developed by Kirillov [19,95]. The essence of
this method is a one-to-one correspondence between unitary irreducible
representations of the group and the orbits of this group in the space ¥ *, dual to
Lie algebra ¢ of this group.

10.2 Orbits of Coadjoint Representation

We present here only formulations of those statements necessary for our
purpose. A more detailed consideration and proofs of these statements may be
found in [19,95]. Let G={g} be an arbitrary Lie group, % be the corresponding
Lie algebra and % * be a space dual to %, i.e., the space of linear functionals on %.
Group G acts in space 4 by means of the adjoint representation 4d(g) and in
space ¥* by means of the coadjoint representation Ad*(g).

Space % * is foliated to orbits under the action of 4d(g). Let us denote the set
of orbits of coadjoint representation of group G by O(G)={0}. As shown in
[95], every such orbit has a standard closed nondegenerate G-invariant 2-form
BO, the so-called Kirillov form.

The definition of this form is as follows.

Let &, be a vector field on O corresponding to an element x of Lie algebra 4.
Then for any point fe O

BR(&.(N), &N =S, [x 3D (10.2.1)

Here {f, z) is the value of functional f on element ze€%. Hence it follows, in
particular, that all the orbits O are even-dimensional manifolds.

Recall that the real manifold of even dimensions with a closed nondegenerate
2-form is called a symplectic manifold. Therefore any orbit of coadjoint
representation is a homogeneous (with respect to the action of G) symplectic
manifold.

Hence the orbit can be considered as a phase space for a Hamiltonian system
for which the given group G'is the symmetry group. (A number of such systems is
considered in [19].)
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Actually, the orbits essentially exhaust all homogeneous symplectic mani-
folds, since the following statement holds.

Theorem [19]. Any homogeneous symplectic manifold for which the motion
group is a Lie group G is locally isomorphic to an orbit of coadjoint
representation of group G or of the central extension of this group by means of
the additive group of real numbers.

10.3 Orbits of Nilpotent Lie Groups

One-to-one correspondence between the orbits of the coadjoint representation
and nonequivalent unitary irreducible representations of the group considered
has been established for nilpotent Lie groups in [95].

Let us consider, for example, the simplest non-Abelian nilpotent Lie group,
the so-called Heisenberg-Weyl group W;. This group can be considered as a
matrix group {g} with elements of the form

1 a c
g=|0 1 b]. (10.3.1)
0o o0 1

The Lie algebra ¢ for this group consists of matrices like

0 o vy
0O 0 B (10.3.2)
0 0 0

and space ¢*, dual to ¢, may be realized as the space of matrices of the form

0 0 O
x 0 0 (10.3.3)
z y 0

The coadjoint representation transforms coordinates x, y, z as follows

x—x+bz
g: y—-y—az (10.3.4)
zo2.

So it is seen that orbits of the coadjoint representation are of two types, one
composed of planes, the other of points.

1) The planes are defined by
z=A=%0. (10.3.5)
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These orbits correspond to infinite-dimensional unitary irreducible represen-
tations T*(g) (Sect. 1.1).
2) The points

x=u, y=v, z=0 (10.3.6)

correspond to a one-dimensional representation 7%7(g).

Let us consider now an arbitrary simply connected nilpotent Lie group G. It
is known [95] that any orbit of coadjoint representation is an algebraic manifold
in space ¥*, i.e., it is given by the set of polynomial equations in the space ¥ *,
and any orbit is simply connected. If the dimension of the typical orbit is 2m, then
the set of such orbits is parametrized by r real numbers where the dimension of
the group G is n=2m+r.

Let us note that the orbit to which an element fe % * belongs lies in the affine
hyperplane f+ %+, where Z* is the set of linear functionals vanishing at the
center Z of algebra ¢. This hyperplane depends only on restriction f; of the
functional f to the center of Lie algebra ¥: foeZ*.

It is known as well that a linear subspace of a dimensionality not less than m
must belong to the 2-m-dimensional orbit O. Moreover, sometimes the orbit O is
a linear space. This case is considered below, where O=f+Z*.

10.4 Representations of Nilpotent Lie Groups

The following theorem proved by Kirillov [95] is valid for connected nilpotent
Lie groups.

Theorem. Any unitary irreducible representation of such a group G is monomial,
i.e., this representation is induced by a one-dimensional representation of some
closed subgroup H.

The monomial representation is determined by an element fe %*,i.e., by a
linear functional on the Lie algebra ¢ of group G.

Representations corresponding to functionals f; and f, are equivalent if and
only if f; and f, belong to the same orbit of the coadjoint representation.

Therefore, a one-to-one correspondence arises between the orbits of
coadjoint representation of the group G and unitary irreducible representations
of this group.

This construction is described in brief below.

Let f be a point of orbit O, i.e., an element of space ¥*. Subalgebra %, is
called subordinate to function f if

{LIxy1>=0 (10.4.1)

for every pair x,ye€%,. Furthermore, we assume that the subalgebra %, is
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maximal, and the exponential mapping generates the simply connected group
G,. Recall that for connected simply connected nilpotent Lie groups this
mapping is one-to-one.

We can construct unitary representation of group G as a representation
induced by a one-dimensional representation U/ of subgroup G, :

U’ go—A(go)=exp (i {£,Ingo)). (104.2)

Kirillov [95] showed that such representation is irreducible and that the repre-
sentations corresponding to two different points f; and f; of the orbit are
equivalent. Moreover, it was found that this construction gives all unitary
irreducible representations of the connected simply connected nilpotent Lie
group.

The representations in view can be realized in the space of functions of m real
variables, where m =dim O/2. For the generic orbits this representation depends
on (dim G —2m) real parameters.

We are interested in an important class of representations of Lie groups
introduced in [96], the class of the so-called square-integrable representations
defined as follows.

Let Z be the center of the Lie group G, i.e., the set of elements which commute
with all elements of G. Let us call the unitary irreducible representation T'(g) of
group G in the Hilbert space # square-integrable if nonzero vectors |, ) and
2> exist such that

[ |¥a| (@2 Pdu(x) < co. (10.4.3)

X=G/zZ

Here du(x) is an invariant measure on the homogeneous space X=G/Z and it
should be taken into account that [{y;|T(g)|y,)| depends not on g but only on
x(g), i.e., on projection of element g onto space X.

This definition is a natural generalization of the standard definition of
square-integrable representations.

One should bear in mind that if condition (10.4.3) is satisfied for some vectors
[1> and |y, ), it will, as known, also be fulfilled for every pair |y, ) and |,).

Let us formulate now an important statement proved in [96].

Theorem 1. Let f be a linear functional on ¢, O be the orbit corresponding to it
and T9(g) be the corresponding representation.

The following statements are equivalent:
i) Representation T9(g) is square-integrable;
ii) the orbit O is a linear space, O=f+2*;
iii) the 2-form BY ={{,[x, y]) is nondegenerate on the space ¥4/%.

Two more criteria for the existence of square-integrable representations are
also known [96].

1) Let us define a polynomial P(f) on ¥* according to
P(f)=Pf(B"), (10.4.4)
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where Pf(B)=]/det B is the so-called Pfaffian of the skew-symmetric matrix B
of an even order which is a polynomial in elements of B, as is well known. It can
be shown [97] that the function P(f) depends only on the restriction f; of the
element f to the center & of ¥. It is a homogeneous polynomial function.

The condition that the representation is square-integrable is equivalent to
condition

P(f)+0. (10.4.5)

Hence it follows that if a single square-integrable representation exists, then
almost all irreducible representations (given in terms of the Plancherel measure)
are also square-integrable.

2) Let & be the center of the Lie algebra 4, 2 (%) be the center of the
universal enveloping algebra of the Lie algebra ¢, &(Z) be the universal
enveloping algebra for &.

Proposition[96]. Group G has square-integrable representations if and only if
Z(@9)=%(Z).

Remark [96]. The definition of square-integrable representations can be re-
placed by an equivalent definition: representation T'(g) is square-integrable in
the sense used in [96], if this representation determines square-integrable
representations (in the usual sense) of the quotient group G/G;, where G, is the
kernel of representation T'(g).

10.5 Coherent States

In our case unitary irreducible representations are related to orbits of the
coadjoint representation. Hence the coherent states are also related to orbits.
Thus, the orbit O of the coadjoint representation corresponds to a unitary
irreducible representation T°(g) of group G, and so it is related to a CS system
{|x>} whose elements are parametrized by points of orbit O0=X={x}.

For the simplest case of the Heisenberg-Weyl group the typical orbit is the
2m-dimensional Euclidean space. The corresponding CS system was also
parametrized by points of the 2m-dimensional Euclidean space, i.e., in this case
X=0.

The problem in view is to describe all systems possessing this property.

An exhaustive answer was given in [98].

Proposition. Suppose that orbit O of the coadjoint representation of connected
simply connected Lie group G is a linear space itself. Then representation 7°(g)
admits a CS system which is parametrized by points of O.
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Proof. As noted above, the representation T°(g) is square-integrable. Hence,
from [96] it follows that:

i) O=~G/Z, where Z is the center of G; .
ii) representation T(g) on Z is T(z)=A(z) I, where A(z2) is the character of Z;

i) | [<4[T°(@)lo)Pdux) < o0, X=6/Z

for arbitrary vectors |y, |¢) of the Hilbert space 5. It is evident now that the
action of operators T(g) on the normalized vector |y,) gives the system of
coherent states parametrized by the points of the orbit.

The inverse statement is also valid.

Theorem [98]. Let T'(g) be an irreducible unitary representation of connected
simply connected nilpotent Lie group G and let O be the corresponding orbit of
the coadjoint representation. Suppose that representation 7° admits the CS
system parametrized by the points of O. Then O is a linear manifold in %*.

The proof of this theorem is not too simple [98]. It is based on a lemma which
will be given here also without a proof.

Lemma. Let H be a closed connected subgroup of connected simply connected
nilpotent Lie group G and let A(k) be a unitary character of H={h}.

Suppose that a unitary irreducible representation 7T(g) of group G is
contained in the representation induced by representation of group H with the
character A(h). Let T(g) contain a representation of H with the character A(h)
under restriction of G to H. Then the following statements are valid.

1) Orbit O corresponding to 7T'(g) is a linear manifold in the space ¥ * dual to Lie
algebra ¢ of group G.

ii) Subgroup H is isomorphic to the isotropy subgroup G/ of arbitrary point f
of orbit O.

iii) The representation of group G induced by the character of subgroup H is a
multiple of representation T'(g).

Concluding this section, we would like to restate [98] the theorem formulated
above. In the alternative formulation, the theorem is valid for a wider class of Lie
groups, possibly for exponentially solvable Lie groups.

Theorem. The unitary irreducible representation 7°(g) of simply connected
nilpotent Lie group G admits a CS system parametrized by the points of the same
orbit O of the coadjoint representation if and only if it is a square-integrable
representation of the quotient group G/G;, where G; is the kernel of
representation 7'(g).

Remark. A similar theorem is valid also for compact Lie groups.
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Coherent-state systems related to compact semisimple Lie groups have proper-
ties analogous to those for the rotation group of three-dimensional space
(Chap. 4). The arguments, however, use a more sophisticated technique
[19,70,79].

11.1 Elements of the Theory of Compact Semisimple Lie Groups

Note first of all that any compact semisimple Lie group is a direct product of
compact simple Lie groups [19, 70, 79]. Therefore it is sufficient to consider the
case of a compact simple Lie group.

So let G be a compact simple Lie group, i.e., a compact Lie group with no
closed connected invariant subgroup. Let % be the Lie algebra of group G, {X,} a
basis in 4, ¥°=%+i9 a complex extension of ¥, i.e., the set of linear
combinations of its elements with complex coefficients, H the Cartan subgroup
of G, i.e., the maximal commutative semisimple subgroup in G, # the Cartan
subalgebra in ¢, i.e., the Lie algebra for group H.

Asis well known [70, 79] it is possible to choose a canonical basis {E,, H;} in
Lie algebra, the so-called Cartan basis, for which the commutation relations take
the form

(H), E,]=0,E,, [H;, Hi]=0

[Ev, Eg]l=NypEy1p, if a+feR

[E., Eg]=0, if a+BER and a+p+0

[E,, E—,]=o;H. (11.1.1)
Here

Y°=H°D Y,
aeR
is the so-called Cartan decomposition of the algebra ¥°, E,c¥%,, Hie #
(j=1,...,r;ristherank of %); R={a}isaset of vectors {a=(oy,. . .a,)} inther-
dimensional space, the so-called root system for the Lie algebra #°.
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Compact simple Lie algebras can be completely classified: there are four
series A4,, B,, C,, D, (r is the rank of the algebra), and five exceptional algebras
G,, F,, Es, E;, and Eg [70,79].

Any Lie algebra corresponds to a connected simply connected Lie group G;
all connected (but not necessarily simply connected) Lie groups can be obtained
from Lie group G by factorizing G by its center Z, which has a finite number of
elements for compact simple groups.

Any compact simple Lie group G can be embedded into a connected complex
Lie group G°, which is obtained by exponential mapping from the Lie algebra
%°. The group G° has the following important subgroups.

Subgroups B are obtained by exponential mapping of the subalgebras 4.
spanned on elements E,, H; (xkeR;, Hje #°; R,(R_) is a subsystem of
positive (negative) roots). Subgroups B, are maximal connected solvable
subgroups, the so-called Borel subgroups. Other important subgroups are
subgroups Z . , obtained by exponential mapping of subalgebras & , spanned on
elements E, (xe R, respectively). These subgroups are maximal connected
nilpotent subgroups in G°. Another subgroup of interest in G° is the Cartan
subgroup H°.

As for SU(2), Gaussian decomposition is possible for the complex group G°
(but not for the real group G).

In space G° an everywhere dense subspace G exists, any element of which has
a decomposition

g=Chz=b,z=(b_
(eZ,, zeZ_., heH*, b,eB,, b_€eB._. (11.1.2)

This decomposition is unique and in the matrix realization of group G°, elements
{, h and z are expressed in terms of the elements of the matrix g rationally.

The quotient spaces X, =G°/B_ and X_=B,\G° are compact complex
homogeneous manifolds and the Gaussian decomposition determines a complex
homogeneous structure in these spaces. The action of the Lie group G° on these
spaces is given by

i) for X,

g:{—g{={;, where g{=(hyz,; (11.1.3)
ii) for X_

g:z—-zg=z,, where zg={h,z,. (11.1.4)

Both these spaces are isomorphic to the coset space X =G/H, the so-called flag
manifold. (Here H is the Cartan subgroup of group G.) This isomorphism is
determined as follows. Let us represent the Lie algebra ¢ as an orthogonal sum
Y=+ A with respect to the Killing-Cartan metric. Using the exponential
mapping we can embed space X into group G; X=exp X". The correspondence
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between an element x=expk, k€X', and the element { in the Gaussian
decomposition is

x=expk=_hz. (11.1.5)

We have thus obtained the mapping X— X, which is a generalization of the
stereographic projection.

It is known [99] that all spaces X .. are orbits of maximal dimensionality for
adjoint representation, all degenerate orbits of lower dimensionalities being not
only complex but also Kéhlerian homogeneous manifolds. This means that these
spaces admit a special Hermitian G-invariant metric,

F' (¢, D
oL;00, -

where function F'({, ) is called the potential of Kéhlerian metrics and may be
found from the Gaussian decomposition

dst =hzd(;dC,, hi= (11.1.6)

C+C=C3h323=€3 €Xp (FjHj)Za' (11.1.7)
In the matrix realization, 45 is diagonal and has elements d,,. . ., d,, while
F'=Iné,. (11.1.8)

Respectively, there are r closed G-invariant 2-forms '

wt=%h;7dcj/\d[k, I=1,2,...,r. (11.1.9)

11.2 Representations of Compact Simple Lie Groups

As is well known any unitary irreducible representation of simple compact Lie
group G of rank r is characterized by an r-dimensional vector A=(4,,. .., 4,),
the so-called highest weight: T(g)=T*(g), where /l=z Aw;, w; are simple
weights, 4, — integers.

Correspondingly, in the representation space #* the highest weight vector
|A) exists, i.e., a vector satisfying conditions

E|iy=0, aeR., HlAy=4]a, (11.2.1)

where E, and ﬁ, are operators in %, the representation operators for Lie
algebra %.

In space #* there exists a basis {|u)}, where | ) is the weight vector, i.e., an
eigenvector of all operators H;:
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Hj| ) = |- (11.2.2)

A general representation T*(g) characterized by the highest weight A
=(44,. .., 4,) corresponds to a fiber bundle over X, with the circle as a fiber, with
the connection form

oF
0= (6(, dg;— T d() (11.2.3)

and the curvature form

2F
" oGt

F=Y LF, I=1,2,...,r. (11.2.5)
1

d(iNdl,=db, where (11.2.4)

Representation T(g) with the highest weight 4 may be realized in the space
of polynomials & * over X_, or, what is the same, over the group Z. Namely,

T*9) f(2)=a(z,9) f (z,), (11.2.6)
where quantities a(z,g) and z, are given by the Gaussian decomposition

zg={1hy 2y, (11.2.7)

z,=2zy, alz,g)=a(l)=6{...5" (11.2.8)
The invariant scalar product in & * is introduced by

(f1,/2)=Nd, | /12 f2(2)du (2), (11.2.9)

where d; is the dimensionality of representation 7. In this case representation
T*(g) has a simple “semiclassical” meaning and may be rewritten as [80]

T*(9) f (2)=exp [iS(z,9)] f (z,) (11.2.10)
S(z, g)=f O—g4-0)+5(0,9), (11.2.11)
0
(ap iz, dz)
62
F=Y W F'(z,2)= —In (AT (zz*)|2). (11.2.12)

Here 0 is the connection form in the fiber bundle with base X and a circle as a
fiber, and this fiber bundle is related to the representation 7*(g).
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A similar construction works also for degenerate representations for which
the highest weight A is singular, i.e., (4, ) = 0 for one or several roots «. Then the
isotropy subgroup B of vector |¢/0> is one of the so-called parabolic subgroups;
this means that B contains the Borel subgroup B, i.e., the maximum solvable
subgroup. The coset space X=G¢/B is the degenerate orbit of the coadjoint
representation, but this space is still a homogeneous Kéhlerian manifold [99].
Hence the construction considered above is valid completely also in this case.

11.3 Coherent States

Let us construct the CS system for an arbitrary compact Lie group following
[15]. The case of the SU(n) series was also considered by Gilmore [100].

To construct a CS system one has to take an initial vector |0) in space H#™.
Note first of all that the isotropy subgroup H, for any state | ) corresponding to
a weight vector u contains the Cartan subgroup H=u(1) x ... xu(1)=T1"
[group U(1) enters here r times, where r is the rank of group G] and for general
weight vectors subgroup H, coincides with H.

The isotropy subgroup for a linear combination of weight vectors is, in
general, a subgroup of the Cartan subgroup. Therefore, it is convenient to
choose a weight vector |p) as an initial element of the CS system. And in the
general case the isotropy subgroup H, is isomorphic to the Cartan subgroup H,
and CS is characterized by the point of X=G/H.

For degenerate representation where the highest weight A is orthogonal to
some root a: (4, @) =0, the isotropy subgroup H, may be larger than 7" for some
state vectors |u>. Then the coherent state |x> is characterized by a point of
degenerate orbit of adjoint representation. Indeed, in all cases

Hj|xy=[T(@) ;T @DI>=pwlx>,  |[x>=T(g)|w>. (11.3.1)

Therefore, if we take a state vector |u) as the initial vector |0), then the coherent
state |x) is characterized by a point of an orbit of adjoint representation, and the
orbit may be degenerate.

Making use of the remaining arbitrariness in the choice of the vector, let us
try to take it in such a way that the state [0) would be the closest to the classical
one. As was shownin [67], to this end state [O} must be | ), where pisa dominant
weight, i.e., u is obtained from the highest weight by means of a Weyl
transformation. Then, as shown in [68], the CS minimize the invariant
uncertainty relation

AC,=min, where (11.3.2)

C=Y (H)P+ ¥ (E.E-,+E-.E) (11.3.3)

aeR 4
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is the quadratic Casimir operator and

AC2=<C2>—<Z CH?+2 ) <Ea>“<E_a>>. (11.3.4)

aeR

As

CUE|2y=0,  HjlAy=2;|4)  then

ACy=7*+2(A0) —2*=2(4o), (11.3.5)
where

o=%Y o

Suppose now that T#(g) is a nondegenerate representation of the compact
simple Lie group G with the highest weight 4, i.e., (4, @) +0 for any « € R. We take
the vector with lowest weight | — ) as the initial vector |0) for the CS system. Let
us consider the action of operators H;, E,, E_,(x€ R ) representing Lie algebra
%°, on this state. It can be easily seen that subalgebra #_={H;, E_,}, ae R, is
the isotropy subalgebra for the vector | —A). The corresponding group B_ is a
subgroup of G°.

Taking the lowest-weight vector | —A) as |0), applying operators 7%(g), and
using the Gaussian decomposition g ={hz, we obtain the CS system

|O>=NT*©)I0), (eZ., N=<0[T*(9)|0),

11.3.6
|c>=Nexp( 5 caEa)|o>, (1139

aeR 4+

or, in another form,
[>=D(©)|0>, D) =exp[) (LE,—&E-J)]. (11.3.7)

Note that the unitary operators D(£) do not form a group but their
multiplication law is

D@W@FD@NWGZ%m> (11.3.8)

Note also that these CS are eigenstates of operators
T()H,T ' (9)=H;, Hx)=—1|x). (11.3.9)

Equations (11.3.9) determine the CS up to a phase factor exp (i®). The CS system
constructed has all properties of a general CS system. Some of the most
important are noted below.
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1. Operators T*(g) transform the CS into another one,
T*(g)|x) =e*™9|x,>, (11.3.10)

where ¢(x,g) is a phase shift.
2. The CS are not mutually orthogonal; the scalar product is

CGallad = NiNo<O|T* (6) T(L5)|0) =Ny N> <O| T £2)[0)

=K:(({ QKK T2, (11.3.11)
where

Kl G)=41 T G)- - AF (U G)

and quantities 4; may be found from the Gaussian decomposition. For group
G=SU(n), G°=SL(n, C), quantity 4;is the lower angular minor of order j of the
matrix {}¢,.

3. The CS minimize the invariant uncertainty relation,

AC,=min.

4. The following “‘resolution of unity” is valid

I=dim (7% [ du(Q[¢> <],

du(Q)=Cd?{d"TATe .. A7, o=% ) o, (11.3.12)

where p=%(dim G —r).
5. Using these formulae it is possible to decompose any state |y over a CS
system

>= Y ) culdpy, W= dum Qv |0,

eP(A
P(A)={p:p=i—a,0eR}. (11.3.13)

This expansion is associated with the kernel

Kz(f,ﬁ)=z l//zu(é)lpzu(ﬂ) (11.3.14)

which is an analog of the Bergmann kernel for the unbounded domain. This
kernel determines the Bergmann metrics in this domain as given by the standard
formulae.

6. The CS representation is appropriate for describing the operators.
Namely, we may use

P=[du,(x)P(x)|x)<{x|, Q@x)=<{x|P|x). (11.3.15)
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7. By decomposing the function P(x) over the basis of ““spherical harmonics”
Y;,.(x) on space X, we obtain the Clebsch-Gordan series

T1®T}.=Z T;a

1
PX)=Y cinYim(®),  Pim(x)=] ds(x) Yim(¥)|x) (x| (11.3.16)
AV | Bl Avy = dméT’ AV 5 ,m|A, vy <A, —A;1,0[4, —A),

where {J, v’;l,m[l, v) are the so-called Clebsch-Gordan coefficients.
In the considered case of compact simple Lie groups the property of
analyticity is essential for the following reasons.

i) The homogeneous space X=G/H possesses a complex homogeneous
structure, i.e., group G acts on X as a group of holomorphic transformations [in
the previous example G=SU(2), X=G/H is the two-dimensional sphere
isomorphic to the complex projective space CP*].

ii) The Hilbert sapce # for the unitary irreducible representation in the CS
basis can be identified with the space of holomorphic functions on X'=G/H [for
the SU(2) group it is the space of polynomialsin Z of a degree less than k, where &
is a fixed integer].

In the general case of a compact simple Lie group there always exists a
complex homogeneous (and moreover, homogeneous Kéhlerian) structure, and
the manifold X is a homogeneous symplectic manifold with the 2-form . Hence
it may be considered as a phase space for a classical dynamical system and this
space is subject to the action of the group G, which is a group of canonical
transformations, i.e., those preserving the 2-form w.

From this point of view the coherent states may be considered as localized
wave functions on the classical phase space; this result is well known for the
standard CS relevant to harmonic oscillators.

The inverse problem, namely, the problem of constructing unitary irre-
ducible representations of group G, starting from the structure of the phase space
for group G (the so-called geometric quantization) is treated in [19-21].
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This chapter, following [72, 73], introduces and investigates CS systems for
certain discrete series of representations of noncompact Lie groups, namely, for
groups of motion for complex homogeneous symmetric bounded domains. The
CS systems considered are parametrized by the domain points; they are
expressed in terms of the Bergmann kernel for this domain. Recall the simplest
case, the SU(1, 1) group, considered in Chap. 5.

12.1 Discrete Series

Let G be a connected real semisimple Lie group with a finite center, J# be the
Hilbert space and T'(g) a unitary irreducible representation of group G acting in
space #, T: G—#. Let us recall a few facts from [101, 102].

Definition 1. A unitary irreducible representation 7T(g) acting in the Hilbert
space # is called square-integrable if for any pair of nonzero vectors
|@>, [y e # the function <y|T(g)|p) is square-integrable with an invariant
measure du(g) (this condition is satisfied if it holds for some pair of vectors
l@> and [¢)).

Square-integrable representations are in some respects similar to repre-
sentations of a compact Lie group; in particular, they satisfy orthogonality
relations.

Proposition 1. A constant dr called the formal degree of representation 7'(g)
exists such that if |y), |, [¥'D, |p’> € #, then

g Y| T@le> <Y’ |T(g)le"> dulg)=dr' <y |¥'>{plo">. (12.1.1)

Here du(g) is an invariant measure on G and (¢ |y) stands for the scalar product
of vectors |¢) and [¢).

Remark 1. Obviously, dr depends on normalization of the measure du(g), but if
the measure is fixed, then two equivalent square-integrable representations have
the same degree dr.
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Definition 2. The set of all equivalence classes of square-integrable representa-
tions [denoted by ¢&,(G)] is called a discrete series of representations for G.
The following fundamental statement was proven in [103].

Theorem 1. A connected real semisimple Lie group has a discrete series
of representations if and only if a compact Cartan subgroup exists in
the group G.

Let K be the maximal compact subgroup of group G. It is well known
[81] that the coset space D=G/K is the symmetric space of a nonpositive
curvature.

Let us suppose in addition that a complex structure exists in D, i.e., D is a
complex homogeneous manifold. Then the Cartan subgroup H in G is compact
and is also the Cartan subgroup in K. Note that group K has a one-dimensional
center, i.e., K=K; x U(1).

Thus G has a discrete series of representations. We shall consider only the
case of discrete series realizable in space & of holomorphic functions on D.

For considered noncompact groups all root vectors can be divided into two
sets: noncompact vectors orthogonal to the Lie algebra J¢ of the compact group
K, and compact vectors orthogonal to space .#, the orthogonal complement of
Hiné:. G=A+2.

Proposition 2. [101,102]. The representation of discrete series with a highest
weight A can be realized in the space & if and only if (149, ) <0 for all
noncompact positive roots a [here (A+ g, ) is the scalar product in the root
space].

There is such a normalization of the measure du(g) that the constant dy in
(12.1.1) is given by

I Ate 9

12.1.2
aeR 4+ (Q, 0() ( )

dT=

Remark 2. The expression in (12.1.2) is almost identical to the famous formula
by Weyl for the representation dimensionality for compact Lie groups, the only
difference being that the product is not positive definite, so one must take the
absolute value.

12.2 Bounded Domains

This section presents information concerning the theory of Hermitian symmetric
spaces. For proofs, see [81].

Let G be a connected semisimple Lie group with trivial center and K be its
maximal compact subgroup. Let us consider the domain D=G/K where a
Hermitian structure can be introduced. The the following statement is valid.
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Proposition 3. Any Hermitian symmetric space is a direct product of irreducible
Hermitian symmetric spaces. (A symmetric space is called Hermitian if it admits
a G-invariant complex structure.)

A classification theorem follows [81].

Theorem 2. I) Noncompact irreducible Hermitian symmetric spaces are the
manifolds G/K where G is a connected noncompact simple Lie group with the
center {e} and K is the maximal compact subgroup of G with a nondiscrete
center.

IT) The compact irreducible Hermitian symmetric spaces are exactly the
manifolds U/K, where U is a connected compact simple Lie group with center {e}
and K'is the maximal connected proper subgroup of U with a nondiscrete center.

We shall use the following general theorem [81].

Theorem 3. Any bounded symmetric domain D is a Hermitian symmetric space
of noncompact type.

Using these two theorems and Cartan’s classification of simple Lie groups,
all irreducible Hermitian spaces of compact and noncompact types are
described. The following series of spaces exist (besides, there are two special
spaces corresponding to exceptional Lie algebras).

Series of Hermitian symmetric spaces of classical type.

Noncompact case Compact case
) SU@@/SUP)xSU(@xU(1)  SU(p+q)/SU(p)x SU(g) x U(1)
1)  Sp(p,R)/U(p) Sp(p)/U(p)
III)  SO*(2p)/U(p) SO@2p)/U(p)

IV)  SOy(p,2)/SO(p) x SO(2) SO(p+2)/SO(p) x SO(Q2).

Here SO*(2p) is a subgroup of SO(2p, €) which preserves the form
Zp+12—1 _le_p+1 +... +Z2pz_p _sz_Zp’

SOy(p,q) is the connected component of unity within SO(p,q),
Sp(p,R)e GL(2p, R) and leaves invariant the bilinear form

XAY)=X, Yp+1 =Y, Xpr1+ - . +Xp V2, —Vp X2p.

Finally, Sp (p)=Sp(p, C)NU(2p) is the compact symplectic group.

Bounded symmetric domains corresponding to each of the four series exist,
and groups SU(p, q), Sp (p, R), SO*(2 p), SO, (p, 2) act as analytical automor-
phism groups in the corresponding domains. Cartan [104] discovered these
domains in 1935.

We use the explicit realizations for these domains.

(A) The domain D; with the automorphism group Aut D,=SU(p,q) is
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realized in the space of matrices Z with p rows and g columns which satisfy the
condition

IP-7ZZ*>0, (12.2.1)

where 1P is the unit p x p matrix (Z* = Z’ is the Hermitian conjugate for Z) and
A >0, where 4 is a Hermitian matrix, means that all eigenvalues of 4 are positive.
The group action is given by

Z—7Z9=(A'Z+C")(B'Z+D")™ !, (12.2.2)
where 4, B, C, D are p X p, p X q, q X p and g X g matrices, respectively, satisfying
AAY —BB* =1V, AC*=BD*, DD*-CC*=19,

(B) The domain Dy, consists of complex symmetric p X p matrices which
satisfy

I»—-7Z*>0. (12.2.3)
The automorphism group is Sp (p, R),

Z—79g=(A'Z+B)(B'Z+A4')"* and (12.2.4)

A'B=B'A, AA*—-BB* =L

(C) The domain Dy, consists of complex skew-symmetric p x p matrices, such
that

I»—-ZZ*>0. (12.2.5)
The group Aut Dy, is SO*(2p) and its action is

Z—-7Z9g=(A'Z—-B)(B'Z+A')"!, where (12.2.6)

A'B=—-B'A, A*A-B*B=L

(D) The domain Dyy consists of complex vectors z=(z;,. . .,z,) such that

14|zz’F=22z'>0, |zz'|<1. (12.2.7)

The group Aut (D) =S0,(p, 2) consists of the following transformations

1, i, , /!
zg={[<§ (zz' +1), 3 (zz —1)) A'+:zB ] <1>}

X {(% (zz' +1), % (zz' —1)) C’+zD’}, (12.2.8)
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where A, B, C, D are real 2x2, 2xp, px2, pxp matrices satisfying

det [g ﬁ]=1, AA'—BB'=1®, DD'—CC'=I?, AC'=BD'.

Let D be an arbitrary bounded symmetric domain and G a semisimple group
with the center {e}. Suppose that the elements of G are analytical automor-
phisms of D. It is known that the following invariant measure on D exists:

d[l(Z)=Q(Z,Z_) I—.[ dxjdyj, Z=(Zl,' . -,Zn)a ZED,
j=1

dim¢D=n, z;=x;+iy;, 0(z,2)>0. (12.2.9)

In the following we shall give explicit calculations of the Jacobian for
transformation z—-zg (g9 € G), denoted by £(z).

Lemma 1. The Jacobian can be written as

£ =14.0]"" 4,.,0). (12.2.10)

Recall that the classical symmetric domains are complete circular domains
and that they contain, in particular, the point z =0 (the origin). Since the measure
is invariant,

0(z9,29)=| £(2)| %0 (z, 2). (12.2.11)

Equation (12.2.11) has a unique solution, up to a normalization factor. With the
normalization condition ¢(0,0)=1 we have

0z 2)=| 4.0 (12.2.12)
and it follows from the transitivity condition that
£(@)=|4,.00)7 £.,(0). (12.2.13)

Therefore it is sufficient to calculate £ (0) in order to find Z(z) and ¢(z, 2).
We shall use the explicit formulae for measures and Jacobians for all classical

domains. Note that in [93] only expressions for ¢(z, Z) are given. We formulate

the final results in a lemma. All the necessary calculations are given in App. C.

Lemma 2. The explicit expressions for ¢(z,Z) and (z) are:
for D,

0(z,2)=[det(1—ZZ*)]"@*9
AO= (et BZ DT (12.2.14)
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for Dy

0(z,2)=[det(I—ZZ*)]"®*V

S(2)=[det(B'Z+A4")]"?*V; (12215
for Dy,

0(z,2)=[det(I-ZZ*)]"®~V

F#(2)=[det (B'Z+A)]" %™V, 12.216)
for Dy

0(z,2)=(1+|zz'F —22z")""?
};(Z)={[<% (z2'+1), % (22’ _1)> A'“B'] (1)}—1, (12.2.17)

12.3 Coherent States

In defining CS systems we follow [15]. Consider the transformation in the space
of holomorphic functions on D:

T" ¥ @) =151V (9), 9€G, zeD, (12.3.1)

where k is an integer positive number. It can be easily seen that these
transformations give a representation of group G.
Let us introduce a norm in functional space, given by

v l2=1 ¥ @Pdu). (12.3.2)
Clearly, the necessary condition for representation T* to be unitary is
dw(2)=[e(z,2)] *du(2). (12.3.3)

The space of all holomorphic functions in D with the finite norm ||y ||, forms the
Hilbert space % with the scalar product

Kol>={ 0 @)Y (2)du(2). (12.3.4)
The functional representation of the lowest weight vector, @o(z)=1, exists
?4(2)=T*(9) 90 (2) =% )", (12.3.5)

and @, =exp (ia) @, if and only if g; =g,h, where « is a real number and he H [H
is the isotropy subgroup of vector ¢, (z)]; for details, see [73]. Therefore, every
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state is determined by a point { € D, ¢,(z) = exp (i) Y, (z), and the choice of ¥, (z)
determines the cross section in the one-dimensional bundle with base D, and the
fiber is a circle. Let {e D and g: {—0.

Proposition 4. Explicit expressions for CS in the case of four classical domains
are

Y ()=[BC*, DI [B(*, 2)]"; (12.3.6)
D,

B({*,z)=[det(I-(*Z)]"®*9; (12.3.7)
Dy

B=[det(I-{*Z)]~®*Y; (12.3.8)
Dy

B((*,2)=[det(1—{*Z)]"®~Y; (12.3.9)
Dy

B, 2)=[1+ ) (zz")-28z'] ™. (12.3.10)

These formulae follow immediately from the explicit expressions (12.2.14-17)
for the Jacobians.
Expressions for the normalized measures are

du?(2)=Nedu @), [ dp?(2)=1.

Using results from [93], we obtain the expressions for N :

D

1 (A+p)---(A+p+g—1)! B .
Ne=1m A (tg—1)! , A=k-1)(p+9q); (12.3.11)

Dy

e 1 GHD)!QA+p+D)!QA4p+2)! - QA+2p—1)!
KT gr@rn2 MQ2A+2)!I2A+4)! - 2A+2p—2)! ’

A=k —1)(p+1); (12.3.12)
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D, 11

N 1 Qitp—D!Qitp)! - 2i+2p-3)!
TRrTOR T QN)1Q2A+2) - QA+2p—4)!

A=k —1)(p—1); (12.3.13)
Dy

2P Q+p—1)!1(2A+p)
T Al ’

N A=k —-1)p. (12.3.14)

Note that N; = [Vg(D)] !, where V(D) is the Euclidean volume of domain D.
If we choose measure du”(z) = N,dw.(z), the Y, (z) are normalized:

<l//§|‘//§>=Nk f |l//§(z)]2duk(z)=1. (12.3.15)

D

So, for all four classical domains integral (12.3.15) can be represented in explicit
form

Wy =N BC, O17* [ [BCF, DI [BE™, DY [B(z, 2 )] *dxdy=1

D

| Bi(C",2) Bu(z*, Qdxdy=Bi((", D), (12.3.16)
D

x=(x1,..»%), Y=1,.-.,Vn), Br—see (12.3.18).

There is a more general relation:

j Bk(c+’Z)Bk(Z+,Cl)dxa'y=Bk(C+,C1)a where (12317)
D

Bk(z+’zl)=Nk [B(Zaz+)B(Z;,Zl)](l_k)/2 [B(Z+,Zl)]k‘ (12318)

Relation (12.3.17) indicates that B, is the so-called reproducing kernel. If k=1,
then N, B is the usual Bergmann kernel. Therefore, in general, we call B, the
generalized Bergmann kernels. These conclusions are summarized in the
following important proposition.

Proposition 5. Let D be an arbitrary symmetric domain. Then the system of
coherent states is defined by generalized Bergmann kernels.

Remark. The Bergmann kernel, as well as generalized kernels, exist also for the
bounded homogeneous nonsymmetric domains. In all these cases CS systems are
defined in terms of generalized Bergmann kernels. Unlike the case of symmetric
domains, for generic domains there are no discrete subgroups I with a finite
volume u(I'|D) of coset space I'|D. Actually, Siegel [105] has proved that if
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u(I'|D) is finite, the group G is unimodular, and according to Hano [106] this
group can act transitively only in a symmetric domain.
Now let us consider general properties of the CS systems.

1. The scalar product of two states is
W Ye> =Nl BEL, L) BE )7
x | [B(L{,2) B, () [B(z,z )] " dxdy
D

=[B({, L) B, G172 [BE, )T (12.3.19)

2. A restriction on the growth of the kernel can be obtained directly from the
Schwartz inequality:

IB(*,2)|<[B{*, O B(z,z*)]*2. (12.3.20)
3. Let us consider the action of group G on the CS system:
T(9)y(2)=T(9) [B(L", D17 [B(( ", 2)]*

=[BC*, DI 2 [B(*, z9) ) A4 @] (12.3.21)
T(9) Y (z) =exp [ia(g, O)]Y4-1(2).

4. Let P; be a projector on state |y, >. Let us consider integral | P,du((), where
D

du(Q) is the invariant measure on D.
From Schur’s lemma and from the invariance of du({) we obtain the
resolution of unity,

| Pau()=C, (12.3.22)

where 1 is the unit operator.
Let us apply (12.3.22) to vector |@). The result is

fCQYdn)=Cup,  CO=<lo>. (123.23)

Substituting | = |1/ and taking the scalar product (12.3.23) with |y, gives an
expression for C;

Ce={ |<|vod Pdu@)={ [BC*, D1 " de dn=Ni . (12.3.24)
Hence, finally

| Pdp®(©)=1,  du®(©)=Ncdu(0). (12.3.25)
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5. It is easy to find an explicit expression for C; in terms of the representation
formal degree dr. Setting |@) =|p">=|y>=|¢'> =|o) in (12.1.1) gives

[ <ol T(@)Wo) Pdu(g) = | <Wo| T (@0 Pdu(k)du(l)
= [<Wolyr> P du(k)du (L)
=C [ [<Yol¥d PduQ)=dz?, (12.3.26)

where C is a constant.
Here du(k) is an invariant measure for the compact Lie group K. Now from
(12.3.25) and relations

Ck=Nk-ls C1=Nf1, N1={VE(D)]_1
we obtain dT=Nk/N1 . (12327)

Remark. This normalization differs from that used by Harish-Chandra [103]; it
is more convenient for our purpose.

6. Now let us consider the transformation of the highest vector under the
action of the compact subgroup K< G. Group K contains U(1) which is its
center, K= U(1) X K. Let us consider a transformation re U(1): z—exp (—ip)z
(factor exp (—i@) corresponds to the choice of the representation with the
highest weight). Then

T(Kolo> =0y,  T()|Yo> =exp (—iknp)[yo>, (12.3.28)

where n=dim¢D, k is a number determined by the representation.

It follows from (12.3.28) that vector |f,) transforms like a function
[P(zy,. . .,z,)]", where P is a homogeneous polynomial of degree n which is
invariant under the group K,. Actually, let 4 be an element of the Cartan
subgroup H<G. Then T(h)|yo) =exp [i(A9)]|¢o), and comparing this formula
with (12.3.28) we see that

i=—k Y B,
2

where P. is the set of all positive noncompact roots.
7. It is known that any function holomorphic in D could be expanded into a
power series

l//((zl" .. ,Zn)=z cml//m(zla' .. ,Zn),

where i, is homogeneous polynomial of degree m. For domains Dy, Dy;, Dy, the
decomposition for CS can be obtained explicitly. Using identity

det A=exp(tr{ln4}) (12.3.29)
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and (12.3.7-10) we get

Y (2)=[B(",DI"**[B((*,2)]*, where (12.3.30)
[B]*=exp [kr i ;i— Sw(z1,. . .,z,,)], Sp=tr{(C*Z)"}, (12.3.31)
m=1

r=p+q for D), r=(p+1) for Dy, r=(p—-1) for Dy.



13. Coherent States for Real Semisimple Lie Groups:
Class-I Representations of Principal Series

This section is concerned with certain non-square-integrable CS systems. The
systems in view are related to class-I representations of the principal series for
groups of motion for symmetric noncompact spaces. The present exposition
follows that of [107, 108].

13.1 Class-I Representations

Let G be a real connected semisimple Lie group with a finite center. It is well
known [109] that such groups have series of unitary irreducible representations
(UIRs) for which there exists a vector |, in the Hilbert space # invariant
under the action of the maximal compact subgroup K < G. The representations
are called class-I.

For the class-I representations of the principal series we may use an explicit
realization in terms of the induced representations. The constructions take the
following form.

It is known [79] that the group elements have Iwasawa decomposition,
G=KAN, where K is the maximal compact subgroup, 4 is an Abelian non-
compact subgroup and N is the maximal nilpotent subgroup. Let M be the
centralizer of 4 in K, i. e., the set of elements of K commuting with all elements of
group A. Let B be a subgroup G containing elements of the form M AN, E be the
coset space B\G=M\K and du(¢) the normalized K-invariant measure in =,

[du(@)=1.

The class-I representations of the principal series are considered to be
induced by representations of subgroup B, which are trivial on M.

Recall the construction of the induced representation. Let us consider
L,(E, du), the space of square-integrable functions f(£),

1717 =F /()P au(€) < co. (13.1.1)

In each coset corresponding to an element {€Z=B\G we choose a group
element g,. Now any element of group G may be written as g=>bg,, and the
action of the group on the homogeneous space Z(g:¢—¢,) is given by the
decomposition

geg=bg,, n=¢,, b=nam. (13.1.2)
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The action of an operator T'(g) is defined as

T(9)f (&) =a(& 9) (&), (13.1.3)

where a(£, g) is a function called a multiplier, and £, is determined from (13.1.2).
It can be easily seen that a necessary condition for operators T'(g) to form a
representation of group G is a functional equation for the multiplier a(¢, g)

(&, g291) =&, g2) 2(&,,5 91)- (13.1.4)
Equation (13.1.4) is fulfilled if

_(duE)\?
a(é,g)—<dﬂ(5)> x(@), (13.1.5)

where y(a) is the character of group 4, and the element ac 4, a=a(&,g) is
determined by (13.1.2). If yx(a) is a unitary character of group A, then
representation T'(g) is unitary and irreducible [109]. For the rank-r symmetric
space X =G/K the representation is defined by r real numbers A=(4,,...,4,).
(The rank of the symmetric space G/K is, by definition, the number of
independent metrical invariants for a pair of its points. This number is equal to
the dimensionality of subgroup A4 of group G [81].) This is a class-I represen-
tation. As shown in [110], all representations of principal series are irreducible. It
was also proved there that for all spaces of rank-1 every class-I UIR belongs
either to principal or to complementary series obtained from principal series by
an analytic continuation in A.

In other words, a K-invariant function exists in the representation space, i.e.,
a function f,(¢) satisfying the functional equation

T (k) fo(&) = (&, k) fo(&) =10 (&) (13.1.6)
Let us now introduce a new function 7(¢) defined by

F©=£o(E)T (). (13.1.7)
Setting it into (13.1.3) we get

T(9)](€)=8( )] (¢, (13.1.3)
where the multiplier &(¢, g) is

a0 =220 o) (13.1.8)

and it evidently satisfies (13.1.4).
It can be easily seen that for all ke K

a( k)=1. (13.1.9)
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Hence it follows that &(&, gk)=a(&, g), i.e., function &(&,g) depends only on
coset x€ X=G\K corresponding to element g:

&(&,9)=B(, x(9)). (13.1.10)

13.2 Coherent States

It follows from (13.1.3,9) that function y,(£)=1 is invariant under transfor-
mations of subgroup K. Acting by operator T(g) gives an expression for CS in
the & representation

T(@vo(§)=0a( 9)=B( x(9), x(9)=mng. (13.2.1)

Here : g—x(g) is a mapping of elements g to corresponding cosets x. Thus, the
coherent state is determined by the kernel B (&, x), where xe X and £eZ.

Let us now turn to properties of these kernels. First of all we shall prove the
following proposition.

Proposition 1. For fixed ¢ € & the kernel &, A|x) = B(¢, x) is constant on orbits of
a group N, which is isomorphic to the group N present in the Iwasawa
decomposition G=KAN and having the fixed point, ¢, Ny=h:Nh; *.

Proof. Let us fix a point ¢ € £ and consider function f;(g) = T*(g)¥o(£) =8*(£, 9)
which depends on element g. Suppose that H; is a isotropy subgroup for point &.
Setting n=¢ in (13.1.2) gives

H:=g; By, (13.2.2)

i.e., group H; is conjugated to the group B=NAM. Similarly, the nilpotent
component N, of group H; is

It can be easily seen that the point £ is intact under transformations of this
subgroup.

Let h be an element of N.: h=g; 'ng., ne N. The function &*(¢,h) is
completely determined by a(¢, g) present in decomposition (13.1.2). Moreover,

geh=9g:9; 'ngs=ng;. (13.2.4)

Therefore, a(&, h) =e (e is the unity element of G). Thus, we have proved that for
heN;

& h)=1. (13.2.5)
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Hence it follows also that for he M;, M,=g; ' Mg,
& h)=1. (13.2.6)

Finally, for he A;=g; ' Ag,, h=g; 'ag;

8*(&, By =fx(h)=f(a). (13.2.7)
Next we consider an arbitrary element of G. Now g=g.k, so
&H(&, 9) =8¢, gxk) =8*(E, g5). (13.2.8)

Introduce the notations y=x;,, he N and write
h™'g.=g,ky, g.=hgki, kiekK (13.2.9)
Because of the functional equation (13.1.4),
8*(¢, g =a*(¢, hg k1) =a*(¢ hg,)=a*({,g,), so (13.2.10)
HO=y5@), y=x, heN; (13.2.11)

It is remarkable that when # runs throughout the whole group N;, x, moves
along the orbit of this group in space X. These orbits are called the horospheres of
the maximal dimensionality in the symmetrical space X, or the horocycles.
Hence, Proposition 1 can be formulated in the following equivalent form.

Proposition 1'. The kernel (£, A|x) which describes the coherent state |x) is
constant on horocycles of group N;.

It is natural to call these kernels horospherical kernels. This relates the CS
method for the considered case to the horosphere method developed by Gel’fand
and Graev [111] and considered in detail for symmetric spaces by Helgason [112].

Let us consider in more detail how CS systems relate to horocycles in the
symmetric space.

13.3 Horocycles in Symmetric Space

By definition, horospheres of maximal dimensionality in space X, also named
horocycles, are orbits of subgroups conjugated to the subgroup N. Sometimes
the term is also applied to horospheres of lower dimensionalities, i.e., nongeneric
horospheres, but we will not consider them here. Let us consider some properties
of horocycles.

Proposition 2. Let Q={w} be a set of horocycles, then Q=G/MN.
The proof is given in [112].
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Proposition 3.
1. K\G/K=A/W,
2. MN\G/IMN=A X W,
where W is the Weyl group of the symmetric space: W= N(4)/M, N(A) is the
normalizer of 4 in K.
Any horocycle may be presented in the form

w=ka) 'wy, woy=Nxe, kxo=x0

(xo is the origin of space X)), while the elements k and mk determine the same
horocycle and the element a is unique. Hence quantities £ and a determine
horocycle w unambiguously. Thus, one can introduce the horospherical system
of coordinates. The element £ = is called the normal to horosphere w, and
element a is called the complex distance from the horocycle wj.

All symmetric spaces have been completely classified by Cartan (the results
are presented in [81]). We consider only the important case of Hermitian
symmetric spaces, i. ., symmetric spaces having a complex structure. It is known
[81] that these spaces can be realized in the form of bounded domains in the n-
dimensional complex space, C".

An arbitrary Hermitian symmetric space is a direct product of irreducible
Hermitian symmetric spaces. It is also known that the number of nonequivalent
types of horospheres in such a space is equal to 7 (r is the rank of the space) and
that this space can be realized as a bounded symmetric domain in C”.

First let us consider rank-1 symmetric spaces.

13.4 Rank-1 Symmetric Spaces

By definition, the rank of symmetric space G/K is the number of independent
metric invariants for any pair of its points. This number equals the dimensio-
nality of subgroup 4 of group G. As is well known [81], there are three series of
rank-1 spaces and an exceptional rank-1 space.

I) There is the real n-dimensional hyperbolic space (Lobatschevsky space),
X!=50(n,1)/SO(n), where SO(n,1) and SO(n) are the groups of the real
unimodular matrices leaving invariant the forms x?+ ... 4x2 —x2,, and x}
+...+x2, respectively.

II) There is the complex hyperbolic space, of real dimensionality 2n:
X'=8U(n,1)/SU(n) x U(1), where SU(n, 1) and SU(n) are the groups of the
complex unimodular matrices leaving invariant the forms |z,[>+ ... +|z,
—|za+1[* and |z32+ . . . +|z4% respectively.

IIT) There is the quaternion hyperbolic space of real dimensionality 4n:
XM=8p(n,1)/Sp(n) x Sp (1), where Sp (1, 1) and Sp (n) are the groups of quater-
nion unimodular matrices leaving invariant the forms |g; >+ . . . +|gu* —|gn+1/*
and |q,[*+. .. +|g.*, respectively. Here |g| is the norm of the quaternion g.
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Recall that quaternion algebra is associative but not commutative. This is the
algebra over a field of real numbers whose basic elements ¢, e, , e, and e; satisfy
the following multiplication law:

cy=eo, €=—ey, ee;=eco=e;, i=1,2,3
€16 = —e381 =863, €,63= —e36,=€;, €36;= —ee3=¢e;. (1341)

Thus, an arbitrary quaternion q is of the form g = %, + qe, where ¢ =(¢*, ¢*, ¢°),
e=(ey,e5,e3) and ¢*, «=0,1,2, 3 are real numbers.

Let §=q%,—qe be a quaternion conjugated to g. The norm of the
quaternion is |g* =g =(¢°’ +¢>.

IV) There is a two-dimensional hyperbolic space over the algebra (nonasso-
ciative) of the Cayley numbers (octonions) of real dimensionality 16:

XV=F}/S009),

where F} is the real form of the exceptional simple group F,, SO(9) is the group
of orthogonal unimodular 9 x 9 matrices. (Valuable information on the algebra
of Cayley numbers and the geometry of this space may be found in [113].)
Note that all three series of symmetric spaces may be realized in a unified
way, namely, in all three cases one may assume that G= {g} is the group of

. AB . . . . .
matrices g =<C D>’ where A is a n X n matrix, Bis a n x 1 matrix, Cisa 1l xn

matrix and D is a 1 x1 matrix, and the matrix elements are real numbers,
complex numbers, or quaternions, respectively. In this case the matrix g must
leave invariant the form |x;[* + . . . +|x,[* —|x,+1[*, where x; is real, complex, or
quaternion, respectively. This implies certain conditions on the matrices 4, B, C
and D, in particular,

DP-3 [cP=1,  [DE-Y |BP=1.

1 1

Thus in all three cases the symmetric space X =G/K may be treated as a set of
vectors x=(xy,. . ., X,) satisfying the condition

[P+t <1, (13.4.2)
while the space &= B\G is a set of unit vectors £é=(&,,...,¢&,),
&+ ... +|&2=1. (13.4.2)

Group G is realized in space X (correspondingly, in space E) as the group of
linear-fractional transformations,

g: x-x'=x,  xi=(A4ixj+B;)(Cjx;+D)~ L. (13.4.3)
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Space X'V is the hyperbolic Cayley plane, i.e., it may be considered as a set of
vectors x =(x,, X,), where x; and x, are the Cayley numbers (octonions). Recall
that octonion algebra is noncommutative and nonassociative, but alternative,
that is to say, any pair of its elements generates an associative subalgebra. The
basis of the Cayley algebra consists of eight elements ey, ey, . . . , e;. The norm of

7 7

an element x=x%,+)Y X' is given by |x]?=xx=xx=(x"?+) (x')>, where

1 1
x%=x%,—) xe;is the element conjugated to x. Elements of the Cayley algebra
may also be represented as pairs of quaternions x=(g;, ¢,). Then the multipli-
cation law is

(91,92) (91, 95)=(9191 — 3592 9291 +9291)- (13.4.4)

It can be easily seen that function a(¢, g) = (du(&,)/du(£))* > **, where A’ isa
real number, satisfies the functional equation (13.1.4) and, consequently, is the
multiplier for the class-I representation of the principal series.

Calculating  du(&,)/du(f) we get
dﬂ(ég)

(@) —|Giet DI (13.4.5)
(&, g)=|C;&;+ D™, A=—20A', where (13.4.6)
20=dim X+ —1 (13.4.7)
0 for X}
"
q= ; tf;’i ;ﬂ (13.4.8)
7 for XV

The number g in (13.4.5,6) can be expressed in terms of internal cha-
racteristics of the symmetric space. To this end, let us consider the structure of
space X in more detail. In view of the Iwasawa decomposition, Lie algebra ¢ for
group G has the form of ¥= 4"+ o/ + A, where A", o and A" are Lie algebras
for subgroups K, 4, and N, respectively. For the case in view, &/ is one-
dimensional: o/ =R H. It is well known that one may choose a basis X} and X},
in the nilpotent subalgebra A" so that

[H X]=aXi,  i=1,2,....p

[H, Xi]=2aX]., j=1,2,....,q. (134.9)

The elements of algebra X form a root subsapce %, corresponding to root ;
respectively, %,,={XJ,}. The numbers p=dim %, and g=dim %, are called the
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multiplicities of roots « and 2«. Comparing (13.4.8) with the calculated numbers
g for spaces X}, X', XM and X'V, one sees that ¢’ =¢. Moreover, (13.4.7) may be
rewritten as

Q=§+q- (13.4.10)

To conclude this section, Table 13.1 collates certain characteristics of
symmetric rank-1 spaces.

13.5 Properties of Rank-1 CS Systems

To get an explicit expression for CS in the & representation, one can apply
operator T(g) to the function fo(¢)=1 and use (13.4.6). The result is

CE AP =yY2(&)=(1 = [xP)e™ 2|1 —x&| e, (13.5.1)

where )Eé=i x:&;.
Another 1form is more convenient in a number of cases
YHE)=HNE)=|xo—X&|7°*i*,  where (13.5.2)
xo=(1—=]xP)72,  xX=(1-—|x)""x (13.5.3)

In the latter form, any CS is determined by a point of hyperboloid {x:|xo|> —| %
=1}, and the function H}(¢) is the kernel of an integral transformation mapping
functions on hyperboloid {x: |xo|* — |[¥* =1}, f(xo, X), to functions on the cone
{&:|&[> —|£[> =0}. One should bear in mind, however, that in cases IT and III the
action of groups SU(n, 1) and Sp (n, 1) on the corresponding hyperboloids and
cones is not transitive. Note also that for 1— 0o, t—0 and At =const the space is
flat. Then the coherent states are just the plane waves.

The CS system is overcomplete and nonorthogonal and has a number of
remarkable properties, presented below.

1. Every state |x) is normalized to unity

Cxlxy = W2|> = [ |y i) Pau€)=1. (13.5.4)

This is true, since the representation T*(g) is unitary.

2. The system {|x)} is complete. This is true since representation T*(g) is
irreducible.

3. The operator T*(g) transforms any CS into another CS

THg)xy=|x'y,  *'=x,;. (13.5.5)
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This fact can be easily verified via a direct calculation.
4. At fixed ¢, the function Y} () is constant on horospheres

1 -

—1——|T|2 =const, (13.5.6)

or, equivalently, |xo—X&[*=const. Thus, the kernel <& A|x> can be called
horospherical, and the CS method is closely related to the horosphere method
developed in [111].

5. The kernel

1_ 2 \ e
P(x,é)=|¢£<¢)|2=(|T_L%|lz> (135.)

is the Poisson kernel for the symmetric space X=G/K. Thus
YAHE) =|P(x, O)2HF, A= —20k. (13.5.8)

6. Atfixed ¢, the function y£(¢) is an eigenfunction for the Laplace-Beltrami
operator 4, for the symmetric space X ={x:|x[*<1},

—4Y3(©)=(*+A)¥(%). (13.5.9)

Moreover, these functions are constant on horospheres which are analogs of
hyperplanes in Euclidean space. Thus, CS are a natural generalization of the
plane waves {n, k|r)=exp (iknr), |n|=1, for the Euclidean space.

7. The CS are not orthogonal to each other. Calculating their inner product
gives

[y =<0|T* (9:) T(9,)|0> =<O| T(1)]0) = @5(), (13.5.10)
where

h=g;'g,=kia(0)k,,

cosh? t=[(1 —[x])) (1 =|y)]" |1 —xy[? (13.5.11)

and t=1(x, y) determines the distance between points x and y in space X.
Using (13.5.11) it is easy to get an expression for the metric in symmetric
space X=G/K:

ds* =dr? + sinh? T [dE,dE; — (E,dE) (dE;¢)]
+} sinh? 2¢(§,dE) (dE; &), (13.5.12)

x=¢tanht; [EP=1.
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8. Function
2,@=<0[T 9|0y, g=kia(k, (13.5.13)

determines the inner product in the CS space. It is called a zonal spherical
function and plays an important role in the theory of symmetric spaces [114]. It
may be also determined by the integral

&,(0)=0|x)=[ ¥2(&)du(), |x|=tanh<. (13.5.14)

An integral representation for the zonal spherical functions is obtained directly
from (13.5.14). For space X}

®,(t)=[ [cosht—sinhtcos 0] ¢***du(f), where (13.5.15)
V]

)= L@+ D2) 0 gyo-140, (13.5.15")

au(6) VT G2)

In other cases

T2 n

®,(t)= | [ [(cosht—sinhtcosfcos p)?
00

+sinh? 7cos? §sin? @] ¢TI du(0, @) (13.5.16)

where
1
2p<aizi_

2
au(, p)=——7~—7x
Vxr(2)r(4
2 2
These functions are even @,;(—1)=®,(t) and are normalized by condition
@,(0)=1; further, ®_,(7)=P,(7).

9. The zonal spherical function @,(7) is an eigenfunction for the radial part
of the Laplace-Beltrami operator on symmetric space

(sin 0)? 1 (cos 0)(sin ¢)? " 1d0 dep. (13.5.16")

dr? d
The solution of this equation is known, so one has an expression for the zonal
spherical function in terms of the hypergeometric function [114]

2
—(d—+pcoth T %+2q coth2t d%) D,(1)=(0*+4%) D,(7) (13.5.17)

®,(t)=F(a,b,c, —sinh®7). Here (13.5.18)

. i
g2ttt emid o ptgtl

5 5 > (13.5.19)
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10. The Laplace-Beltrami operator is a self-adjoint operator. Therefore the
zonal spherical functions are orthogonal (at A>0 and 1’ > 0)

Z &,(0) () du(t) =N(A) 5L 1),

du(t)=(2 sinh 7)? (2 sinh 27)dz. (13.5.20)

Hence clearly also [ |®;(t)]?du(r)= 0, i.e., the CS system considered is not
]

square-integrable.

11. The normalizing coefficient N (1) in (13.5.20) is determined by the 7— oo
asymptotic behaviour of function &,(7)

D, (1) ~[c(A)e*+c(—A)e *]e™ ", é(A)=c(—4), 1> 0 (13.5.21)
In view of (13.5.20,21)

N@)=2r|c(A)]* (13.5.22)

Taking the asymptotics of the hypergeometric function in (13.5.18) we obtain

c(d)=2e-iap(2FaH! _ray (13.5.23)
2 (e \p(e LA
2 st

Equation (13.5.23) for coefficient ¢ (1) is a particular case of a general formula by
Gindikin and Karpelevic [115].
’ [IrQA)P

Further,
F<p+q+1>
2 o 1 iA\P|./e+id
"“(z*zﬁ) N

12. Let us consider the space of functions f(7) satisfying the condition

N().)=2p+2q+1 T

5. (135.24)

:J? |f @)Pdu(z) < . (13.5.25)

Functions ®,(z) are a complete system in this space and the completeness
condition is written as

Oj? &,(1)P,(r)du(A)=(2sinh 1) "?(2 sinh 27) "6 (7 —1’),
0

du(A)=[2x|c(A)P11dA. (13.5.26)
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13. Equalities (13.5.20, 26) enable one to write an expansion over the zonal
spherical functions for any function, satisfying condition (13.5.25),

f@=[FA)P:(x)du(2), (13.5.27)
where the coefficient f(A) is determined by the integral

F0y=1{ :0f @du(). (13.5.28)
0

14. An extension of the Plancherel formula is valid

[ UOPaum=1 (7P (13.5.29)

15. Functions describing the coherent states are also mutually orthogonal:

JHOYE (&) dux)=N@A)d(A—A)3(¢, &), (13.5.30)
where

x=gtanht, [%]=1, du(x)=du(®)du(®), [du®@)=1. (13.5.31)
Besides,

FHHOWEE) (&) du(a) =8 (x, x'). (13.5.32)

The delta functions 6(&, ') and d(x, x’) here are nonzero only for ¢£'=¢ and
x'=x, and satisfy

[6(& ENdu(E)=1, [o(x,x)du(x)=1. (13.5.33)

Equality (13.5.32) follows directly from the identity

FUREWE(©)du(&)=a(z(x, x) (13.5.34)

combined with completeness for the zonal spherical functions (13.5.26).
The completeness (13.5.30) stems from Schur‘s lemma. Note, by the way,
that by integrating (13.5.30) over du(£’) we get the orthogonality (13.5.20).
16. With (13.5.30, 32) one is able to expand an arbitrary function f(x),
satisfying the condition

§ 1f )P dux) < oo, (13.5.35)

over the CS system. The result is

=7 DYHE) du(&)dn(A) (13.5.36)
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FED)=[PHE)f(x)du(x) (13.5.37)
and the Plancherel formula holds
[P du(x)=[|1(& D du(&)du(a). (13.5.38)

17. Thezonal spherical functions are closely related to the quantal scattering
problem in a potential ¥(t). To make this fact evident we substitute a new
function

¥,(t)=(2sinh 1)?2(2 sinh 2 7)¥2 P,(7) (13.5.39)

into (13.5.17). For function ¥,(t) we get an equation which is the Schrédinger
equation with potential V()

2
[ _j—rz + V(r):| ¥,(t)=A*¥,(tr), where (13.5.40)
a b
V= sinh? © + sinh?21’

AL e e

The corresponding asymptotic behavior of function ¥,(tr) as t goes to
infinity is

W, ()~ [c(A)e* +c(—A)e™ 5], (13.5.42)

18. The scattering in potential ¥ (z) is determined by the so-called scattering
matrix [116]. Here

S(A) = —c(A)fe(—A). (13.5.43)

Using expression (13.5.23) for ¢(A) then
. 0—il p 1 i

. o+il p 1 1A\’
F(—ul)l“( > >F<4+2+2

Itisremarkable that functions c(1) and S(A) are meromorphic and that c(4) have
no zeros (and no poles) in the lower half-plane of A. This fact means that there are
no bound states (no discrete spectrum) in this problem. In upper half-plane,
function c¢(A) [and respectively the scattering matrix S(4)] has zeros and poles on
the imaginary semiaxis A=ik, k>0. These poles arise since potential V(1)
decreases too slowly at t—oo (as an exponential), and no bound states

(13.5.44)

S(A)=—272




13.5 Properties of Rank-1 CS Systems 159

correspond to them. As for the zeros of ¢(A) in the upper half-plane, in all cases
except for SO(n, 1) for odd n they correspond to bound states (discrete spectrum)
for compact symmetric space dual to space X, according to Cartan [104].

19. Since representation T*(g) is restricted to the maximal compact
subgroup K, it can be decomposed over irreducible representations of this group.

Let K be a set of all UIRs of group K, and K, be a set of representations
involved in the decomposition of representation T#(g). It is known that any
representation which belongs to K, is present in this decomposition only once.
From the Frobenius reciprocity theorem [109] it follows that K, contains only
those representations of group K which contain the identity representation,
being restricted on subgroup M.

Itis seen from Table 13.1 that the problem is reduced to a consideration of the
group restrictions: SO (n)—>S0O#n —1), SU(n)—-»SU(@n —1), Sp(n)—Sp(n—1) and
SO(9)—SO(7), respectively. Recall that any representation of a rank-v compact
simple group is determined by v integer nonnegative numbers /,,. . ., /,. Making
use of the result presented in [70], we get the following results:

Incase ]I  Ko={(0,...,0)};

Incase I  Ko={(4,0,...,0,1)}; (13.5.45)

Incase Il Ko={(;,L,0,...,0)};
Incase IV Ko={(};,1,0,0)}.

20. Any coherent state |x) can be decomposed over representations which
belong to Ko If we use notation |/, m) for the basis function of representation D,
present in Ky, <€[ I,m)=Y,,(&), where [ is the set of the numbers characterizing
the representation and m is the set of the numbers enumerating the functions
transformed by representations D;, then we get an analog of the plane-wave
decomposition,

>=Y Pun(x)|I,m), (13.5.46)
Im
Y2E) =Y Poum(X) Yim(©), (13.5.47)
Im
B,1m(x) =<1, m|T*(g)|0). (13.5.48)

From the normalization condition for |x) one gets the condition

Y |um@)P =1, IleK,. (13.5.49)
Im

21. Note that (13.5.48) is equivalent to the integral representation

Poim () =] Yimn(E)Y2(£)dn(2). (13.5.50)
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It may also be shown that
D1u(%)=D,,(1) Y1(X), x=Xtanhr. (13.5.51)

Expansion (13.5.47) now takes the form

Y26 =IZ D31(7) Yim(%) Yim(£)
=IZ Du(0)a Yzoqffl), a=d/Y(1), (13.5.47")

where x = x tanh t and d is the dimensionality of representation T; of group K.
The explicit expression for d; is given by the well-known Weyl formula.

22. Functions @;,,,(x), which are the matrix elements of the operator T*(g),
are eigenfunctions of the Laplace-Beltrami operator 4, for the symmetric space

_Alelm(x) = (92 +)~2) Qllm(x), (1 3552)
& 0 0
= _— 2 — + -. — —
Ay=(1—|x]?) (8xi632i xif 5= ax,->‘ (13.5.53)

23. Functions &,(7) (the so-called associated spherical functions) are
orthogonal to each other

| $u@) (1) du()=N(B)S(A-1). (13.5.54)

24. Coefficient N;(4) in (13.5.54) is determined by the asymptotics of @;,(7)
at 700

®,,(1)~ [C(A)e* + C(— e~ *]ee. (13.5.55)

Here C,(A)=)/d,e®Pc(A), Ny(A)=27|C,(A)]?, where d; is the representation
dimensionality.
25. Functions @,,(7) are a complete system. The condition of completeness is

H r _ 1 —
§ B 0V D)= s 6 =),
di

26. An arbitrary square-integrable function f(t)

Z | @Pdu(z) < o
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can be expanded over the associated spherical functions @;,(7),

f@=] (D) Du()dw(2), where (13.5.57)
f(W)=[ 4(x)f(x)du(zr) and (13.5.58)
§ 1f @Pdp@)={ |AADP dum (). (13.5.59)

27. Function
¥,,(t)=(2 sinh 7)?2(2 sinh 27)"2 & ,(7) (13.5.60)
satisfies the Schrodinger equation with the potential

aq b,
sinh®>t  sinh?27

—1 2 -1 2
(G ROl

—1\ 1
bi=4 [(12+512—> _Z]‘ (13.5.61)

Here coefficients a; and b, are eigenvalues of some operators —A4; and —4,
acting on the sphere |x|=const.

Hence it follows that the asymptotics of function @,(7) have the form of
(13.5.55), and @;,(t) and C;(4) are obtained from @, () and c(4) by substituting

V(@)=

pop+2(h—h), q—oq+25. (13.5.62)

In conclusion, note that some results similar tio those presented here can be
also obtained for symmetric spaces of arbitrary rank, considered in Sect. 13.6.

13.6 Complex Homogeneous Bounded Domains

As already mentioned in Sects. 13.3, 4, any irreducible Hermitian noncompact
symmetric space can be realized as a complex homogeneous symmetric domain.

It is known [93] that there exist four series of such domains (the so-called
classical domains) and two exceptional domains which will not be considered
here. The classical domains are the coset spaces G/K:

D\, p>q G=SU(p,q, K=SU@p)xSU@QxU(); (136.1)
D! G=Sp(p,R), K=U(p); (13.6.2)
DU G=S0*(2p), K=U(p), (13.6.3)
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where SO*(2p) is a subgroup of SO(2p,C) group leaving invariant the
Hermitian form

Z1Zp+1—Zp41Z1+ .-
DY G=S04(p,2), K=SO0(p)xS0(2), (13.6.4)

where SO (p, 2) stands for the connected component of the identity transforma-
tion within the SO(p, 2) group.

All these domains are irreducible Hermitian symmetric spaces except for the
type-IV domain at p=2. Table 13.2 presents the main characteristics of the
classical domains. Note that the dimensionalities of spaces D and £ are related by
dim E =dim D —r, which follows from dim (G/K)=dim [G/(MN)], here r is the
rank of D (recall that space Z is defined in Sect. 13.1).

Table 13.2. The main characteristics of classical domains

D dim D dim A r
pe 2pa pi=e 4
Dlll p +p p p
D P’-p rP-p—pp21 [p/2]
DN 2p 2p—2 2

Two realizations of classical domains are known: a bounded realization (like
a unit disk) and an unbounded realization (like the upper half-plane).

The bounded realization has been described in detail [93]. For our purpose
the unbounded realization is more convenient. We consider only the most
important class, namely, the tube domains.

Recall that a homogeneous domain D is called the tube domain if it can be
represented in the form

D={Z:Z=X+iY,XeR", YeV"},

where V"< R" is a convex self-adjoint homogeneous cone.
The tube domains belong to the four classical series, and in addition there is
an exceptional domain:

) D,,=SU(p,p)/SU(p)x SU(p) x U(1); (13.6.1")
I) D!=Sp(p,R)/U(p); (13.6.2)
II) D3,=S0*@4p)/UQ2p); (13.6.3)
IV)  DY=50,(p,2)/SO(p) x SO(2); (13.6.4")

V)  DV=ER/E¢ x SO(2). (13.6.5)
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Here EX is a real form of the exceptional group E,, ES is the compact form
of the exceptional group E¢, dimgDV=27, and the rank of domain DV is
equal to 3.

It is known that the possibility of representing a domain D in tube form is
determined by the structure of its root diagram. Domain D has tube form if its
root diagram is of type C, and cannot be realized as a tube if the root diagram is
of type BC, [117].

To obtain explicit formulae for the kernels describing CS, one should
find the character y*(a) of representation T*. Note the geometrical meaning
of element aeAd; it characterizes the complex distance between parallel
horocycles.

Proposition 4. [112]. Let x, be the origin in D, and w,=Nx, be a horocycle
parallel to @, and xew. Then element ae A defining the complex distance
between horocycle w, and w may be found from

x=a(x)n(x)x,, x€ew. (13.6.6)

Gel'fand and Graev [111] proved this statement for the coset space of a complex
group. Their proof can be also applied to our case, since the family of horocycles
is transitive with respect to the action of group G.

We turn now to explicit calculation of the complex distances and relevant
subgroups for the four series of the classical tube domains. Some general results
will elucidate the structure of the calculations.

Proposition 5. Any analytical automorphism of a tube domain with fixed infinity
point has the form

Z—AZ+B, (13.6.7)

where A is an affine transformation of the cone ¥ on itself, and B is a real vector.
Group G, of the affine transformations of cone ¥V acts as follows

g: Y-Y' =AYA*, Y, Y'eV, geGy, (13.6.8)
where A belongs, correspondingly, to (notations taken from [81])
1. SL(p,©)xR*  for D;
2. SL(p, R)xR™* for D", (13.6.9)
3. SU*2p,R)xR* for D™;

where SU*(2p, R) x R* is the group of the real quaternionic matrices, R* is
the multiplicative group of positive real numbers. Further,

4. SO(p—1,1)x R* for D',
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Note that any element Ye V can be represented in the form
Y=AY A", (13.6.10)

where 4 € Ny, N, is the maximal nilpotent subgroup of G,, and Y, is a diagonal
matrix with positive elements.

Note that the cones associated with the domains of the types D', D", D™, D'V
can be described as:

I) the cone of positive-definite complex Hermitian matrices for D';

II) the cone of positive-definite real symmetric matrices for D';

III) the cone of positive-definite Hermitian-quaternion matrices for D';

IV) the cone of positive-definite ‘“Hermitian” 3 x 3 matrices containing
Cayley numbers (octonions) for DV; i.e., matrices of the form

o« ¢ b
c B al,
b a vy
where «, B, y are real numbers, a, b, ¢ are octonions, and a, b, ¢ are conjugated
octonions.
Finally, note that for the D'V the cone is the set of vectors
{J’:()’u' .. ,yp): y% _y% e —,Vf,>0,}’1 >0}

Let us consider classical tube domains in more detail. We shall use the
following notations: 4* : the matrix Hermitian conjugated to matrix 4, 4>0:
for a Hermitian matrix 4 means that all its eigenvalues are positive; 4A??: a
matrix with p lines and ¢ columns; 4®: a matrix of order p.

13.6.1 Type-I Tube Domains

We will study these domains in some detail. They are defined as
D,=SU(p,p)/SU(p) x SU(p) xU(1) or
D\={Z:Z=X+iY, X" =X,Y*=Y,Y>0},

where G=SU(p, p)={g} acts on D as a group of fractional linear trans-
formations:

g=<‘é f;) : Z—Z'=(AZ+B)(CZ+D)™, detg=1, (13.6.11)

where 4, B, C, D are matrices of order p.
Some useful facts concerning the structure of the group G and its Lie algebra
% are given below.
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1. The maximal compact subgroup K = {k} is isomorphic to SU(p) x SU(p)
x U(1). Its Lie algebra ¢ consists of the matrices

a5
~ ~ 13.6.12
(_B A) (13.6.12)

where A*=—A4, B* =B, tr A=0.
2. Exponential mapping of the matrix in (13.6.12) leads to an expression for a
matrix ke K

_1((4+D) +i(4-D)
2 (11(,4 -D) (4+D) )’ (13.6.13)
where A*A=D*D=1,detAdetD=1.
3. Subgroup 4 consists of matrices
A 0
a=<0 A_l), (13.6.14)

where A4 is a diagonal matrix with nonnegative elements.
4. Subgroup M (the centralizer of 4 in K) consists of the following matrices:

(T 0
m=(, T), (13.6.15)

where T is a diagonal unitary matrix with det T= 4+ 1. Correspondingly, M
=U)x ... xU1)((p—1)times).
5. Subalgebra 4" consists of matrices

n=<g _j+>, (13.6.16)

where A is an upper triangular matrix with zeros on the diagonal and B is an
Hermitian matrix.
6. Group N is produced as the exponential mapping of the Lie algebra A"

({4 4B
N-{(O (A+)_1>}, (13.6.17)

where A4 is an upper triangular matrix with unities on the diagonal, B, is an
Hermitian matrix; N is the semidirect product of two groups N; and N,, where

4.0 1 B
Nl={<0 (A+)‘1>}’ N2={<o 1)} (13.6.18)
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Group N, acts on the cone ¥V in the natural way
n:Y-Y =A4AYA". (13.6.19)

Its action on the cone is not transitive. It seems natural to call the orbits of this
group the horocycles @, in the cone. Group N, acts as the translation group.
So, horocycle w of the whole symmetric space can be represented by

o={X+iY,Yew,, XeS}, S={X;X*'=Xx}. (13.6.20)

7. Let Z=X+1Y be a generic point in domain D. It can be easily seen that we
can transfer point Z into point i Y by a transformation belonging to group N, and
by applying a transformation of the group AN, transfer it into point Z,=il.
Therefore Z=X+idA*, Y=AA*. Matrix Y is positive definite and it can be
represented unambiguously in the form 4Y,4*, where 4 is a complex matrix
with unities on the diagonal, Y, is a diagonal matrix with y;; > 0. The elements of
matrix Y, determine the complex distance between matrix Y and the standard
horocycle passing through point Z, =il. It is not difficult to obtain the following
expression for the elements y;;:

_ Ap-j+l(Y)
Yij= 4,0 (13.6.21)

where 4;(Y) is the principal lower angle minor of the jth order, 4,(Y)=1. The
values y;; are positive according to the Sylvester criterion of positive definiteness
for matrix Y, and the cone V is defined by inequalities

y11>05- . 'sypp>0- (13622)

13.6.2 Type-II Tube Domains

The approach we use is essentially the same as for type-I domains with some
evident modifications. So it is sufficient to describe the matrix realization of
domain D" and to formulate the final results

1. Dy=Sp(p,R)/U(p)
and in the tube realization
DY={Z:Z=Xx+iY},

where X and Y are the real symmetric matrices of order p, and Y is positive
definite. Group G=Sp (p, R) acts as a group of the fractional linear trans-
formations (13.6.11). Matrices 4, B, C and D satisfy the following conditions:

A'C=C'4, B'D=D'B, A'D-C'B=L (13.6.23)
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2.Let Zy=il, Z=X+1iY. Asinitem (7) of the previous section, Y=4A4" (4 is
a real upper triangular matrix with positive elements on the diagonal).
Alternatively, Y= A4 Y,4’, where 4 is the upper triangular matrix with unities on
the diagonal, and Y, is the diagonal matrix with elements y,,,...,y,,. Then
A p—jt1 ( Y)
JJ Ap - ( Y)

13.6.3 Type-III Tube Domains

Domain D3} of type-III, see (13.6.3), is a tube. Its realization is
DN—{Z: Z=X+iY,X"=X,Y* =Y, Y>0},

where X and Y are the matrices of order 2p satisfying the supplementary
condition

ZJ=J'Z, where (13.6.24)
jo
0j (0 —1
= 1_<1 0)‘ (13.6.25)
J

Itis convenient to construct all the 2 p x 2 p matrices of p? blocks of 2 x 2 matrices
representing quaternions

9=4"%0+q't1 +¢* 12 +¢°13,  where (13.6.26)
(10 (0 i (0 -t (710

To= 0 1 ) 1= —l O ’ 2= 1 0 ) 3= 0 1 ’

W=—u, k=123 (13.6.27)

Elements 14, 1, (k=1,2,3) provide the familiar basis for noncommutative
associative algebra with division over the field of real numbers.

As usual, we can define the conjugate quaternion § = ¢°t, —g*t, and the norm
N(9)=3q=93=(¢°)* +q*q". It is easy to verify that

jai =4 (13.6.28)

The complex-conjugate quaternion is defined as g, =q2+ g*t, where ¢* is the
number complex conjugate to g*. Now ¢* =¢%7, — gkt

Let X =(x;,) be the p X p quaternionic Hermitian matrix, satisfying condition
(13.6.24). Then

X=JX'J"1=(x). (13.6.29)
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Since X* =X, then x;, = X, = x,; and consequently, both matrices X and Y are
real quaternionic and Hermitian.

Positive definite matrices Y(Y>0) form a cone V in the p(2p—1)-
dimensional real linear space. The affine transformations of V are

Y-Y, =AYA". (13.6.30)
As Y belongs to the cone V, the following condition applies:
AYAY=JY{J 1=J(AYA")J !
=JAY'A'J 1=JAJ'YJA'J .
Hence 4 must satisfy
JAJ '=4=4", (13.6.31)

i.e., it is real quaternionic but not necessarily Hermitian. The real quaternionic
matrices form a group SU*(2p) x R*, which is the group of affine trans-
formations of the cone V.

We will not present here explicitly the properties of the domains, since they
are similar to those of domains of types I and II.

13.6.4 Type-1V Domains

All type-IV domains are tubes. The domain can be realized in the form
DY={Z:Z=X+iY,XeR?, YeV},
where the cone V is fixed by inequalities
Vi—yi—...=y5>0, >0, (13.6.32)
or, with another metric:
2y Y—Yi—...=¥51>0,  y;>0. (13.6.32")
The affine transformations of this cone are
y—Ay. (13.6.33)

Here A isareal p X p matrix, satisfying A’ EA = AE (1is a positive number), where
matrix F is

E= - (13.6.34)

-1
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for the cone (13.6.32) and
0 1

(13.6.34")

for the cone (13.6.32').

Evidently, the group of affine transformations of the cone is SO(p —1,1)
x R*. The group 4 is a two-dimensional group. It contains dilatation y;— iy;
and the hyperbolic rotation of the (1, p) plane

yi=y;cosht+y,sinht
Yp=yisinht+y,coshz.

In the metric of (13.6.32')
X =2(x1Xp 41+ X Xp42) + X5+ ..+ X3

Elements of group A are matrices of the form

Ay 0
0 i 0 0
a=| 0 I, 0 (13.6.35)
A0
0 0 0 A

The group transformations are
XAy Xy, xp+1""11_1xp+1
XA Xz, xp+2"’)~2_1xp+2-
Lie algebra o/ ={a} is represented by the diagonal matrices

0 0
0, O], (13.6.36)
0

—

S O R

where « is a real diagonal 2 x 2 matrix.
To describe the Lie algebra % of group G, we use an equation for its elements :

A'E+EA=0. (13.6.37)
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It is suitable to represent 4 in block form

Ay Ay Az J2
A= A21 A22 A23 }q . (13.6.38)
Ay Az, Ay [ }2

R =

2 q 2

Hence, condition (13.6.37) is rewritten as follows:

Asz=—Ai1, Ayp=—A4y, An=-—Ap. (13.6.39)

13.6.5 The Exceptional Domain D"

Besides the “classical” tube domains, an exceptional domain exists in €C?7. It is
DV =E®/EE x SO(2), where ER is the real form of the exceptional simple group
E,. This space can be represented as

DV={Z: Z=X+iY},

where X and Y are Hermitian 3 x 3 matrices whose elements are Cayley numbers,
and Y is positive definite (¥ > 0). Matrices Y form a convex self-adjoint cone in
space IR?’. The rank of DV is 3.

13.7 Properties of the Coherent States

As shown above, the coherent state is given by the horospherical kernel
YO =(EAx), xeX, (€&

For tube domains, it is suitable to use the unbounded realization of space
X=G/K.

Let ¢ (¢) be a K-invariant function on Z, N a maximal nilpotent subgroup
leaving invariant the point & ={oo}, and ¢=(¢;,. ..,0,)=%), &, where o are
positive roots of the symmetric space. As shown in [108],

CEor 2z =Y (o) = n Vet (&), (13.7.1)

Here pis the rank of domain D, y; are diagonal elements of matrix Y, which were
given explicitly above.
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Using the group-theoretical properties of the multiplicator &@*(z, &) one can
obtain an expression for the function ¢, 4|z} for an arbitrary ¢ [108].
Here are some properties of a CS system.

1. The horospherical kernels ¥/} (¢) are the eigenfunctions of the Laplace-
Beltrami operator on symmetric space X=G/K

— APz () =+ (0. (13.7.2)

The kernels are constant on the horocycles of space X. Therefore these states are
a natural analog of the plane-waves system for the symmetric space which has a
nonzero curvature.

2. The natural orthonormal basis in the space of the unitary irreducible
representation of class-I consists of zonal spherical functions on X.

3. Function |y(¢)P is the Poisson kernel for space X.

4. The CS system {|x)} is complete but not orthogonal

(x| yy=2*(), (13.7.3)

where t=1(x, y) is the complex distance between points x and y in space X.
Function @,(7) is

@,(7)=<0|T*(9)/0) (13.7.4)
or, equivalently,
@,(0)=<0x) = Y (&)du(®). (13.7.4)

5. The explicit expression for this function is known only for symmetric
spaces of rank-I [114]. However, the asymptotic behavior at t— oo is known for
the general case. Namely,

®@,(1)~ Y. c(sAd)exp[(isi—@)(x)], 1—00 (13.7.5)

seW

where W is the Weyl group of space X, and function c¢(4) is defined by
c(A)= exp [(—e+id) H(@)]dp(A). (13.7.6)
N

Here measure du(n) is normalized so that

| exp[—20H@)]du(7)=1, i.e., c(—ig)=1. (13.7.7)

Function H(g) is determined from the Iwasawa decomposition

g=n(g)exp(H(g))k(9), neN, HeAd, kek (13.7.8)
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It follows from the Bruhat decomposition [112] that space NMAN is dense in G,
and element 7 in (13.7.6,7) is determined by g unambiguously, as g =rnamn.

6. The explicit expression for function c¢(1) was obtained by Gindikin and
Karpelevich [115]:

I(li) (ma ma/2 (’1’ (X))
cH=—=, 1IW)= B|—, +—]. 13.7.9
D=1 O I T ey (1379)
r
Here B(pu, v)=%%) is the beta function, R* is the set of positive roots of

symmetric space X, m, is the multiplicity of root «, and (e, ) is the standard
scalar product in the root space.

7. The set of functions corresponding to the CS system is complete and
orthogonal,

[ P2V (€ dp(x)=N5(A—1)5(&, &) (13.7.10)
[ FHEOWE () du(&) du(R)=N;5(x, x"). (13.7.11)
Here functions d(x, x"), 6(&, &') are normalized to give identities
[ 60k, x) f(x)du(x)= f (x),
6NN auE)=1(©), (13.7.12)
du(A)=|c(A)Pdi,  Ny=|c()| 2N,
and c¢(4) is defined in (13.7.9).

The proof of (13.7.10) stems from a generalization of Schur’s lemma [109].
Relation (13.7.11) follows from completeness of the system of spherical
functions.

8. Let us now turn to decomposition of representations 7(g) into irreducible
components when restricted to the maximal compact subgroup K. It follows
from the Frobenius reciprocity theorem [109] that the decomposition contains
those and only those representations of group K which, being restricted to
subgroup M, contain the identity representation. Thereby the problem reduces
to that for compact groups.

We should note in conclusion that the results and calculation methods
relevant to classical domains of the tube type are also valid for other complex
homogeneous domains.



14. Coherent States and Discrete Subgroups:
The Case of SU(1,1)

This Chapter considers the properties of completeness for subsystems of the CS
system which are related to the discrete series of representations of the group
G=SU(1,1)/Z,, where Z,={I, —1} is the center of SU(1,1). The presentation
follows a previous work [118].

14.1 Preliminaries

Group G=SU(1,1)/Z, is the group of motions of the Lobachevsky plane and the
coherent states considered correspond to the points of this plane, as shown in
Chap. 5.

An appropriate realization of the Lobachevsky plane is the unit disk
D={{:|{|<1}, and the CS system relevant to the representation T*(g) of
discrete series of group SU(1,1) is the set of functions (Chap. 5).

Y@= —[(P)( —{2)72* (14.1.1)

These functions belong to space % for representation T%(g), i.e., the space of
functions analytic inside the unit disk D={z:|z| <1}, and satisfy condition

| flli<oo, where (14.1.2)

I71&= lf) |f @] du(2),

okt (14.1.3)
duk(z)=—n— (1 —|zPy** 2dxdy, z=x+1iy.

It can be easily verified that functions

| I'(n+2k) _
_f;,(Z)— mz, n—0,1,2,.. . (1414)

constitute an orthonormalized basis in space % . The expansion of a CS in terms
of the orthonormalized basis is

Ue@)=(1 — ¢ iof.,(c)f,.(z). (14.1.5)



174 14. Coherent States and Discrete Subgroups: The Case of SU(1,1)

The CS system is overcomplete and a question arises as to what are complete
subsystems of this system. To answer this question let us try the following trick.

Let > be an arbitrary vector in the Hilbert space corresponding to the
function ¥ ({),

YO =¥ @Y ()duz)=1—[L ¥ (). (14.1.6)
Inview of (14.1.5), Y ({) € %, i.e., itis analyticin the unit disk D= {{: |{| < 1},and
[ (©|#=f duOW P =¥ |? < 0. (14.1.7)

Hence a subsystem of states {|(,>} is complete if the set {{,} has a limiting point
within the disk D. Such a subsystem remains complete even after removal of a
finite number of CS.

The following proposition is also useful.

Proposition 1. The subsystem {|{,>} is not complete if and only if {{,} is the set of
zeros of a function f({) € %, which is not identically zero.

Indeed, if a system {|(,>} is not complete, a vector |y exists in the Hilbert
space which is orthogonal to all vectors of the system. The function correspond-
ing to it, Y ({) € %, vanishes at the points ,. Inversely, if ¥ ({) € % and ¥ ({,) =0,
then the vector

k—
=21 fau a - epro ol (14.1.9)

belongs to the Hilbert space and is orthogonal to all the vectors |{,.

The simplest subsystems {|{,>} are related to discrete subgroups of group
G=SU(,1)/Z,. LetI'= {y,,} be a discrete subgroup of G and let {, be some point
in the domain D.

Definition. The set of states {|(,>}, where {,={o-7,, is called a subsystem of
coherent states related to subgroup I'.
We now turn to the question of completeness of such subsystems.

14.2 Incompleteness Criterion for CS Subsystems Related to
Discrete Subgroups

To prove the criterion of incompleteness for the subsystems in view we will make
use of the theory of automorphic forms with respect to the discrete subgroup I.
[A detailed treatment of the properties if discrete subgroups of group SU(1,1)
[or of the group SL(2,R) isomorphic to it] and the corresponding automorphic
forms can be found in [119-121] cf. Sect. 14.5.] We restrict ourselves to those
discrete subgroups for which the fundamental domain I'\D has a finite area (in
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general, I'\D is not necessarily compact). It is well known that in this case the
fundamental domain can be taken as a polygon with a finite number of sides
which are segments of geodesics. Vertices of the polygon lying on the boundary
of the domain D ={z: |z| =1} are called parabolic vertices. Let us denote by £ the
set of the parabolic vertices and let D* =DU 2.

Definition. An automorphic form of weight m (mis an integer) is called a function
fw(2), analytic within the disk D, satisfying the functional equation

Jn(@rn) = (Buz +8,)*" fu(2), veT, (14.2.1)

and regular in the domain D* (this means that it must have a definite limit at
every parabolic vertex z,,

lim (z —z,)*™ fu(2)

as z—z, from the interior of domain I'\D).

An automorphic form f,(z) is called parabolic if it vanishes at all the
parabolic vertices.

The set of automorphic forms of a weight m is a finite-dimensional vector
space. We denote by d,(I') and d, (I') the dimensionalities of spaces of
automorphic and parabolic forms, respectively. Let m, be the least value of m for
which d,,(I') > 2 (respectively, mg for d, (I') >2). If for this I" the domain I'\D is
compact, then d,(I')=d, ('), my=mg , and every automorphic form can be
considered as parabolic.

Theorem 1. Suppose {|{)} is a CS system of the type (7%, |0)). A subsystem {|n>},
[n>=1C.>, n=Co"n> va€T related to a discrete subgroup I' is incomplete if
k>mg +1/2.

Proof. Note, first of all, that in this case there exists a parabolic form f,,:(z) of
a weight mg which vanishes at an arbitrary point {, of domain D and thus
vanishes at all points ,.

In accordance with Proposition 1, we can consider the case where the
function f£,; ({) belongs to space %. For arbitrary m function |f,,({)* satisfies

[ fn(CrmP =Bal +8*™| fu( O (14.2.2)
In view of identity
IBC+af =1 =[P/t =[P, (14.2.3)

function |f,,({)]* can be represented in the form

[fmOF ==t 2" Fu(L, D), (14.2.4)
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where F,,({, {) is a nonnegative I-invariant function: F,,({y,, Cy,,) F,( D). So,if
the form f,,({) is parabolic, function F,,({, {) is bounded within the fundamental
domain, and, therefore, throughout the whole disk D.

The norm of function f,4({) is given by integral

2k—1 2—om ~
| fos O3 = [ LA =[PP Fog (0 D). (142.5)
D
It can be easily seen that this integral converges when k > (mg” +1/2). Thus, the
proof of Theorem 1 is completed.

Remark 1. If k < (mg +1/2), the integral in (14.2.5) diverges. The boundary case,
k=(mg +1/2), requires a more careful analysis. Now

T 1||fmo [i=] a*LA =[P Fog €D

=r{ PLA—[(P) 2R (GO Y (1 =|6P). (14.2.6)

It is known, however [Ref. 121, p. 181], that if area Sr of the fundamental
domain I'\D is finite, the series Y. (1 —|(,[*), where {,={o7a, diverges. [The proof

of this statement is quite simple if the fundamental domain I"\D is compact. If it
is noncompact but has a finite area one can use Hedlund’s results [122] on the
distribution of the points {, near the boundary.] Thus, for k <(mg +1/2) the
integral in (14.2.5) diverges.

Remark 2. Suppose group I is given so that the area of the fundamental domain
I'\D is infinite. Then the system of states {|{,>}, {,= (o7, is incomplete. Actually,
one can show [121] that the series ) (1 — |¢4*) converges for any {, € D and that a

n
function exists analytic and bounded in D, which has zeros at the points {,.

Remark 3. The method used here to prove the incompleteness of the subsystem
of CS is applicable also to CS subsystems for the groups of motion of
homogeneous domains, Chap. 15.

14.3 Growth of a Function Analytical in a Disk Related to the
Distribution of Its Zeros

To prove the criterion of completeness of subsystems {|{,>} we use a theorem
concerning the lower bound of the growth of functions analytic in the disk
{z:]z] <1}. An analogous theorem for entire analytic functions is well known [123].
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Let M(r) be the maximum modulus of function f(z) on the circle |z|=r,
1/2

Ml(r)=[21—nj |f(re') d(p:l , and n(r) be the number of zeros of f(z) in the
disk {z:|z| <r}. Suppose that the limit v=1lim (1 —r*)n(r) exists and that v=0.

r—1
The numbers ©=iim ln M())/in [(1 ~) '] and 7, =lim 11(111—1‘—412())‘1']

terizing the growth of function f(z) as |z|—1 are called genralized types of

Sfunction f(z).

charac-

Theorem 2. The following inequalities are valid for v>0:

v v
125, 1125. (14.3.1)

Proof. Dividing f(z) by az", if necessary, we get a function f(z), that is £(0)=1.
From the Jensen formula

— j In |f(re'?)|dp= j @dt (14.3.2)
one gets

In M(r)zj' %’) dt. (14.3.3)
0

On the other hand, because of the generalized inequality between the
arithmetic and geometric means,

2n
In Ml(r)=% In |j§11? (f) |7 et do]

N

>L T in |Fere)do= f@dt (14.3.4)
2w

Because of the definitions of the quantities v, t and 1,, for any numbers &> 0,
& >0, and 6> 0, a radius ro <1 exists such that

In M(r)<(t+¢) In <1i—r2>’ In M;(r)<(t;+¢) In <$>,

V=0 (14.3.5)

n(r)zi_r2



178 14. Coherent States and Discrete Subgroups: The Case of SU(1,1)

for every r>ro. We can now rewrite inequalities (14.3.3,4) as

>>1n M(r)>ro ”(’) 25 (1 ::é) (143.6)

1 "o n(t) —6. (1-1%
(1 +81)1n< >>ln My(r 2 (1 _rz)' (14.3.7)

If r tends to 1 in (14.3.6,7) and v> 0, then (14.3.1) results.

(r+.€)ln(1 !

14.4 Completeness Criterion for CS Subsystems

Consider a subsystem of coherent states {|(,>}, {,={oVn, ya€I of the type
{T*, |0>}. Denote by n(r) the number of points {, within the disk of radius r,
whose non Euclidean area is S(r) = nr?/(1 —r?). We assume that a lower limit for
the density of points {, exists, i.e., that

i 2O Ly 2 =Y
1—»1 S0 7 l_{l}r (1—=r*)n(r) (14.4.1)

Theorem 3. If k < (v+1)/2, the CS system {|{,)} of the type {T*,|0>} is complete.

Proof. As already shown, it is sufficient to prove that integral
1

L=[ |[FQPU —[tPP*~2du(@) =2m [ M3G) (4 =P 2rar
D 0

diverges for any function f({) with zeros at points {,. According to Theorem 2, in
this case the generalized type of function f'(z) is t; > v/2. Hence for any § > 0 there
exists o<1 such that M2(r)>(1—r*)"©"?9, if 1>r>r,, and therefore the
integral I, diverges for k <(v+1)/2.

For subsystems of coherent states related to discrete subgroups with compact
fundamental domains, one can use the results of [124]. As was shown, limits do
exist for the sequence {,={oyy,

v _.on(r) —— n(r)__1_
PR Se) S0 S (1442

where Sris the area of the fundamental domain. Equation (14.4.2) remains valid
also for a noncompact fundamental domain with Sy = oo, following from the
results of [124, 125]. (Thus, Theorem 4 holds also for that case.) Theorem 3 and
(14.4.2) lead to Theorem 4.

Theorem 4. Subsystem {|{,>} of the type {T*,|0>} is complete if S; <7/(2k —1).
The proof is evident.
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Remark 4. Thus, the criterion of completeness suggested in [15] for subsystems
of coherent states related to discrete subgroups is justified in the present case.

When group I' admits an automorphic form with one zero in the
fundamental domain, one can choose the automorphic form f,,,({) (mo=m/2.Sr)
as f({). It turns out that 21 such groups exist; the next section is devoted to
finding these groups.

14.5 Discrete Subgroups of SU(1,1) and Automorphic Forms

First, we present necessary information concerning discrete subgroups of group
SU(1,1)/Z, [119-121]. We restrict ourselves to groups with a finite area of their
quotient space (the fundamental domain) I'\D. It is known that in this case the
fundamental domain is a polygon with an even number of sides 2n: the sides,
grouped in pairs, are equivalent with respect to the action of group trans-
formations. The vertices of the polygon are joined in cycles of vertices which are
equivalent to each other. The sum of the polygon angles at the vertices of a given
cycle is 27/, where [ is either a positive integer or co. If /=1, the cycle is called
accidental, if /= oo the vertices of the cycle lie on the boundary of domain D and
the cycle is called parabolic, while in all other cases the cycle is called elliptic and /
isthe order of the cycle. Let ¢ be the total number of cycles. If equivalent sides and
vertices are considered to be the same, a Riemannian surface is formed. The
genre p of this surface is found by

2p=1+n—c. (14.5.1)

The set of numbers (p, ¢; 1y, b, . . ., 1) is called the signature of group I'; the area
of the fundamental domain is completely determined by the signature of the
group, and with our choice of the invariant measure

duQ)=0—[(P)2dtdy, (=¢+in

the area is

Sr=7t[p—1+1 5 (1 _l>]. (14.5.2)
2.4 i

It is noteworthy that this invariant measure differs by a factor from the standard
invariant measure duo(z)=y ?dxdy, z=x+iy in the upper half-plane {z:z
=x+iy, y>0}, du duo.

Itisseenin (14.5.2) that the area S cannot be arbitrarily close to zero and it is
possible to show [126] that the minimal value of S = /84 is achieved for a group
with signature (0,3; 2,3, 7). If the fundamental domain is not compact, i.e., group
I' contains parabolic elements, then Sy>n/12; Sr=mn/12 is relevant to the
modular group I'=(0,3; 2,3, o).
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It is also known that the signature of the group can be arbitrary if p>2. If
p=1, condition ¢>1 must hold. For p=0, one of the following conditions
must be satisfied: i) c>5; i) c=4and ) /]! <2;iii) c=3,) ;! <1. Let us con-
sider now the automorphic forms defined by (14.2.1). Dimensionalities of spaces
of automorphic forms of weight m are

0 for m<0

1 for m=0
)=y for m=1 (14.5.3)

(2m—1)(p—1)+g1 [m<1—11—>—’ for m>2.

i/

Here p is the genre of the fundamental domain, [m] is the integral part of
number m, and g, >p is the number of holomorphic differentials on the
Riemannian surface I'\D. With this, the number of zeros of f,,(z) inside the
fundamental domain is given by Poincaré’s formula [127] (here presented
slightly differently)

N=2mS/n. (14.5.4)

Note that if some elliptic or parabolic vertices are present, this number is not
necessarily integral.
Further, comparing (14.5.3,2) we find that

N>d,+p—1 (14.5.5)

and the equality takes place only when numbers m//; are integers, including zero.

In the following we are interested in automorphic forms for which d,,(I") >2.
Let my, be the minimal weight of the forms. Which values are allowed for this
number ?

I) For p=2, my=1, as seen from (14.5.3).

II) For p=1 the result depends on C,, the number of parabolic cycles
a) C,>2, then my=1,

b) C,=1, then my=2,

¢) C,=0 and I'=(,1;2), then my=4

d) C,=0 and I'=({,1;l), =3, then my=3,

e) C,=0, ¢>2, then my=2.

III) For p=0

)hl. (14.5.6)
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Using the notation
N 0= 2m0 S T / T,

one can see, following (14.5.5), that No>p+1, so N, can be equal to unity only
for p=0. Hence d,,,=2 and the value of m, is determined by (14.5.4):

A ¢ 1 -1
m0=2—Sr=|r; <1 —l—j>—2] . (14.5.7)

Let / be the least common multiple of all finite /;. Then (14.5.7) can be rewritten as

-1
my=1 [Z (l —;)—21] so that my<I. However, m, must be divisible by all
j J

finite lj,Jso it must coincide with [, mo=1.

Table 14.1. Signatures of discrete subgroups satisfying (14.5.8)

my,  Signature of I’

1 (0,3; 00, 00, 0)
2 (0,3; 2, 00, 0), (0,4; 2,2,2,00), (0,5;2,2,2,2,2)
3 (0,3; 3,3, 0)
4 (0,3;4,4,4), (0,3;2,4,0), (0,4;2,2,2,4)
6 0,3; 2,3, ), (0,3;3,3,6) (0,3;2,6,6), (0,4;2,2,2,3)
8 0,3;2,4,8)
10 0,3;2,5,5)
12 0,3; 3,3,4), (0,3;2,3,12), (0, 3;2,4,6)
18 0,3;2,3,9)
20 0,3;2,4,5)
24 0,3;2,3,8)
42 0,3;2,3,7)

Thus Proposition 2 has been prooved.

Proposition 2. If a group I' of signature (0, ¢;/,...,1/,, 00,...,00) admits an
automorphic formf,, (z) with a single zero in the fundamental domain, then m is
the least common multiple of numbers/,, J,,. . ., /. and, moreover, it must satisfy
condition

mo(c—2) =Y ’—';£=1. (14.5.8)
1 Y

It is not difficult to show that (14.5.8) has solutions only for ¢=3, 4 and 5 and
that the number of solutions is finite. Correspondingly, there are 21 discrete
subgroups I', all of which are listed in Table 14.1.



15. Coherent States for Discrete Series and Discrete
Subgroups: General Case

This chapter considers the property of completeness for those subsystems of the
CS system considered in Chap. 12, which are relevant to discrete subgroups of
the groups of motion for bounded homogeneous domains. It is helpful to
consider first some properties of automorphic forms for discrete subgroups.

15.1 Automorphic Forms

Let us consider a bounded symmetric domain D (Chap. 12), a discrete subgroup
I of automorphisms of this domain and suppose that the quotient (denoted by
I'\D) is compact. We suppose that I" acts on D effectively and there are no fixed
points (yx=x for some xe D, yeI, only if y=e). In this case I'\D is a compact
complex algebraic manifold. It has been proved in [128] that discrete groups with
this property do indeed exist. Recall the definition of the automorphic form.

Definition 1. A holomorphic function f: D—-C (C is the field of complex
numbers) is an automorphic form of weight m with respect to I' if for any pair
zeD, yel

[ (v2)=f (2), 15.1.1)

where J,(z) is the Jacobian of mapping z—yz at point z.

Automorphic forms of weight m constitute a vector space over € which is
usually denoted by H°(D, I', m). The dimensionality of H°(D, I', m) in our case
was calculated by Hirzebruch [129]. The result is

0, m<0
. o )1, m=0
dimH°(D,I'ym)= . m=1 (15.1.2)

(=1)"dim T*y(I'\D), m=>2.

Here n=dim¢D is the complex dimensionality of domain D, g, is the
dimensionality of the space of holomorphic differentials of degree /on I'\D; T*is
the finite-dimensional representation of group U with the highest weight A,
Im=(m—1) Z B, where P, ={p} is the set of all positive noncompact roots of

Lie algebra {4‘”’ Further, Uis the maximal compact subgroup of G¢, and G°is the
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simply-connected complex group corresponding to Lie algebra %°. The so-called
arithmetical genre of the manifold I'\D is x(I'\D)= ). (—1)'9, (note that
1=0

x('\D)+0).
Using Weyl’s formula for the dimensionality of representation T* gives
explicit formulae for dim H°(D, I',m) at m>2 for all four types of domains:

. m(p+q)—i—j
I) DY dimH°(D,I',m)=(—1)*"(I'\D) [ —————
) ( )=( )x(\)li} Py
0<i<p-—-1, 1<j<gq; (15.1.3)
1) D" dimH°(D, I, m)
2m—1)(p+1)+i+j

=(=1)Pe*2y(r\D) TI e ; (15.1.4)
O<i<j<p i+)
1) D™, dim H°(D, T, m)
2 _ _1 . -
—(-npe-vagrp) [ 2D DE, (15.1.5)
0<i<j<p-1 i+
IV) DV, dim H°(D,I',m)=(—1)"x(I'\D) [CE, -1+ Ck,]. (15.1.6)

15.2 Completeness of Some CS Subsystems

Let us consider a subsystem of coherent states associated with a discrete
subgroup I' of group G which satisfy the conditions listed in the previous section,
that is, subgroup I' acts effectively in domain D and there are no fixed points,
while the quotient space I'\D is compact.

Let {,eD be a given point in D. Let us consider the CS subsystem {|/,,»}

Il//m>E||//(m>a Cm=VmCa ymer (1521)

The next lemma indicates whether this subsystem is incomplete.

Lemma [73]. Subsystem {|y,>} of coherent states of the type {T*,|0)} is
incomplete if and only if a holomorphic function ¥ ({) € % exists such that

Y (n)=0.

Let |y) be a vector which belongs to the representation space %. Let us
consider function (y | Y. Itis evident from (12.3.6) that function {y/|y, ) can be
written as

YU =[BE T2y (0), (15.2.2)



184 15. Coherent States for Discrete Series and Discrete Subgroups: General Case

where function ¥ ({) is holomorphic in D. The norm of vector ¢ is
W= ¥ @l =N | IBE O+ ©OPagdn,

so Y ({) € F.

If the system is incomplete, then a nonzero vector |y ) exists orthogonal to all
vectors {|y,,»}; meanwhile it follows from (15.2.2) that ({,)=0. The inverse
statement can be proved as easily as the former.

Now we will construct function v ({) for which y({,)=0, at {,=7,lo, y.€T.
Suppose ¥({) is an automorphic form with respect to discrete subgroup I
(Sect. 15.1) and let y({o)=0.

If dim H°(D, I’y m) > 2, then such a form does exist. Indeed, let ¥, ({) and
¥, ({) be the automorphic forms of weight m. Then ¥ ({) =c; ¥; () + ¥, ({)isan
automorphic form and it is possible to choose the constants ¢; and ¢, so that

¥ (£n)=0.

Consider an arbitrary automorphic form of weight m, f (z). The norm of f7is

1112 =N f, |f @Pe(z, 2)! *dxdy. (15.2.3)

Because of (15.1.1)

lf G2 =|7,@|*"|f @)

so |f @) =|F[*|e(z, 2)|", where ¢(z, %) is defined in Sect. 12.2, o(z,Z)>0 and
F(yz,32)=F(z, 2).
Hence, the norm of function f is equal to

£ Z=M | ez, 2)"**|F(z, 2)]*dx dy. (15.2.4)

This integral converges if m<k —1, so here the function f(z), f({,)=0,
f©@ $ 0 does actually exist. Hence the system under consideration is incomplete.

Let my be the least m for which dim H°(D,I’,m)>2. It follows from
(15.1.3-6) that dim H°(D, I'ym) >2, if m>2. On the other hand, g,>1, so that
my=1, if g,>1, and m=2 if g,=1.

We are now in a position to formulate the final result.

Theorem. The subsystem of coherent states {|y/>} isincomplete if k > mq+1. Itis
seen from this theorem that the subsystem of CS is incomplete, as a rule. The
sufficient condition is k> 3.



16. Coherent States and Berezin’s Quantization

A quantization method proposed by Berezin [22,130,131] is described in this
chapter. The method can be applied to homogeneous Kéhler manifolds. Its
advantage as compared with the standard method of geometric quantization is
that it incorporates the correspondence principle.

Quantization is a procedure of constructing a quantum system starting from
a classical mechanical system. It is required that the quantum system obtained
must go over into the original classical one in the limit #—0, where £ is Planck’s
constant. This requirement is called the correspondence principle. Evidently,
many quantizations satisfying this requirement may exist.

This quantization concept is interesting from the point of view of pure
mathematics since it is a fruitful source of important ideas and construc-
tions. For example, the method is exploited in the so-called geometrical quanti-
zation approach developed by Kirillov and Kostant (see [19-21] and refer-
ences therein) and gave rise to some new results in the theory of group rep-
resentations.

Quantization is well known for the case of the standard phase space of a
classical system with n degrees of freedom ; the phase space is the linear real space
R*={(p,q)}, p=(p1,. . .,py) is the momentum vector, g=(q;,. . .,q,) is the
coordinate vector.

The Hilbert space of states of the quantum system is the space of square-
integrable functions {y(x)} of n real variables, x=(x,. . ., x,). Operators p;and
gx corresponding to the classical momenta p; and coordinates g, are represented
as

.0
GV =xb (), ()= —ih %

Every classical quantity f'(p, ) corresponds to a “quantum observable”, i.e.,
an operator f'(p, ) obtained by replacing the classical variables p; and g; by
operators p; and g;. However, due to noncommutativity of operators p; and g,
one should, in general, fix the ordering of these operators inf (p, ¢). The ordering
proposed by Weyl [14] has a number of remarkable features.

The conventional quantization procedure is applicable only to classical
systems with standard flat phase space with the canonical Cartesian coordinates
Dj»> qx- The approach does not work, however, for systems with curved phase
spaces, for example, for a rigid body rotating around a fixed point.
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An apparently adequate quantization procedure was proposed and de-
veloped by Berezin [22,130] for the case where the phase space is the
homogeneous Kéhler manifold. This construction can be represented suitably in
terms of the CS related to this phase space.

16.1 Classical Mechanics

Classical mechanics is introduced as a pair (#, w), where .# is a manifold and @
is a skew-symmetric tensor field of rank two whose components @’ (x) written in
the local coordinates x’ must satisfy the condition

_ '™ o™ o’
w}k ___+wlk +wmk o
ox* ox* Ox*

0. (16.1.1)

(Hereafter we use tensor notations. In particular, summation is implied over
repeated indices.) Let us consider the set of differentiable functions on .#,
F (). It is a commutative and associative algebra with respect to the usual
addition and multiplication; besides, this set is the Lie algebra determined by the
Poisson brackets

oty L 99
{fig}=0"() 75 =5 (16.1.2)

The fact that the Poisson brackets (16.1.2) define the Lie algebra, i.e., that the
Jacobi identity

{£{g.n}+{g{nf}}+{r{f9}}=0 (16.1.3)

is valid, is equivalent to condition (16.1.1). This can be easily checked by a direct
calculation. Hence it follows that condition (16.1.1) is independent of the choice
of a coordinate system in M.

If the tensor field w(x) is nondegenerate, i.e., det|w’™|=+0 at all x, then
it is possible to consider the inverse matrix wj and the corresponding external
2-form

=y (x)dxI Ndx*. (16.1.4)

It is not difficult to verify that condition (16.1.1) is equivalent to the
statement that form o is closed. Thus, the manifold .# is provided with a
symplectic structure. One should bear in mind, however, that some important
mechanical systems do not fulfill the requirement that the field w’* be
nondegenerate.

We present here several examples of symplectic manifolds .#.
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1. # = R?, the two-dimensional plane with coordinates p, g;

12

o= —a?=1, o''=@?=0

{f,g}=a—f % ¥ % (16.1.5)

2. M=S"xR!, the two-dimensional cylinder. The coordinates will be
denoted by p, ¢, where 0 <g<2mn, — o0 <p < c0. The differentiable functions on
M are periodic in g with the period of 2. Tensor w and the Poisson brackets are
the same as in the previous case.

3. M=S*xS!, the two-dimensional torus with coordinates 0<g <2,
0<p <2z The differentiable functions on .# are periodic in both variables with
the period of 27. The Poisson bracket is given by (16.1.5).

4. M = S?, the two-dimensional sphere. The measure on S2, invariant under
rotations, is

du(8, p)=r*sin0dO Ndo,

where r is the radius of the sphere. The same expression may be taken for the
2-form w. Thus, one gets the following expression for the Poisson brackets in the
spherical coordinate system:

(Y
Vol=zae (% 3630 a<p>‘ (16.1.6)

It ismore convenient, however, to work with complex coordinates on S 2 instead
of spherical angles. The complex structure is introduced via the stereographic
projection

z=x+iy=rcotgei"’. (16.1.7)

The external form w is now written as

—i <1+ﬁ _Zd ANdz (16.1.8)
w—2i 2 2 1.
and the Poisson bracket is
_oif14 2<3_f 99 _of %
{f’g}‘2‘<1+7 oz 3z 0z 0z) (16.1.9)

5. M =2, the Lobachevsky plane given by a disk of radius r with its center
at the origin of the complex z plane. The Lobachevsky plane has an external
closed 2-form which is invariant under the group of its motions; this form
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coincides with the invariant measure,

L (1Y gna 16.1.10
o= 7 2 : (16.1.10)
The corresponding Poisson brackets are

i 2PV (9 99 _of 99
{fig}=2i (1 ~ 2 ) \5 75 52-). (16.1.11)

6. Suppose that ¢ is an arbitrary Lie algebra, C}/ are its structure constants,
i, J, k=1,...,n. The manifold to be considered is the space ¥* dual to ¥: .#
=%*. The Poisson brackets are defined by the tensor

oV=Cx*. (16.1.12)

Condition (16.1.1) follows from the Jacobi identity for the Lie algebra [132]. This
general construction incorporates examples 1, 4, 5 above.

a) Let Lie algebra % be the familiar Heisenberg-Weyl algebra. The standard
basis in ¥ is e, e,, ¢y, while

[elae2]=e()s [el,e0]={e2,e0]=0. (16113)

The coordinates in IR corresponding to ey, e; and e, will be denoted by
r, D, q SO

12 21

W =—-w " =r.

The Poisson brackets have the classical form

(g ¥ o
{f.9}=r (5 % 7 ap)‘ (16.1.14)

b) Let us consider Lie algebra of the SO (3) group and introduce the standard
basis e;, e,, e; with the commutation relations

[ei, ej]=¢ijex, (16.1.15)

where ¢; is the usual totally skew-symmetrical tensor. Now the Poisson brackets
are

{f.9}=eux'0;f0ug, O f =%. (16.1.16)

With the spherical coordinates

x'=rsinfcosp, x*=rsinfsing, x*=rcosf
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we obtain

1 <6f dg of 6g>

rsin @

{ra}= 90 3o d¢ 00

Thus, at fixed r the Poisson brackets (16.1.16) for functions fand g coincide
with (16.1.6) up to a factor. The Lie algebra of a three-dimensional Lorentz
group similarly leads to the Poisson brackets for the Lobachevsky plane
(16.1.11).

16.2 Quantization

The following general definition was given by Berezin [22].
Quantization of classical mechanics (#, ) is defined as an associative
algebra o with involution, possessing the following properties.

1. A family A4, of associative algebras exists with involution such that

a) parameter 4 belongs to a set E on the positive real axis with O as a limiting
point (O does not belong to E),

b) algebra « consists of functions f (k) taking values in 4,, A€ E. Involution
and multiplication in algebras « and A4, are in the usual correspondence:

) (D=1 B,

where ¢ and ¢ are involutions in « and A4, respectively,

ii) (fi% f2) ()= fi()x f2 (),

where % and x are multiplication operations in « and A4, respectively. In the
following multiplication and involution in algebras « and A4, are denoted by the
same symbols.

2. A homomorphism ¢ exists of algebra « onto the algebra A(.#) of the
differentiable functions on .# with the usual operations of addition and
multiplication. The homomorphism must have the following properties:

a) for any two points x;, x, € 4 there is a function

f(x)e@(a) such that f(x,)* f(x2)
b) for any functions f(x), g(x)

) (% (fxg —g*f)>=i{<p(f), ?(g)},

where x stands for multiplication in « and { , } are the Poisson brackets in 4 (#).

9 o(f)=0(f),
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where f—f“ stands for involution in « and the bar is the complex conjugation.
Parameter 4 is called Planck’s constant.
Let us consider a particular but important case of quantization.

Special quantization. This is a quantization which has some additional proper-
ties.
3. Algebra A, consists of differentiable functions f(x), x€ .#.
4. Algebra « consists of functions f'(h, x), such that f (k, x) € 4, for fixed .
5. Homomorphism ¢: «—A(#) is given by

@(f)=lim f (h, x).
h—0

A consistent theory is now available only for special quantization. Note also
that all the special quantizations investigated up to now have the following
additional properties.

6. Algebra A, contains the unity that is the function f,(k, x)=1.

7. There is a trace operation in algebra A4,

tr(f)=C [ f(x)du(x),

where du(x) is a measure in the manifold .#, and C is a number.
Note that if the tensor field w"(x) is nondegenerate, i.e., the closed external
2-form exists on .#, then on .# there exists also a natural measure

du(x)=Ca™?.

With slight over-simplification one can say that the quantization procedureis
a correspondence between functions f (x) on the phase space .# of the classical
system and operators Fin Hilbert space 5, and this correspondence must satisfy
the correspondence principle.

A possible way to solve the problem is as follows.

Suppose we have an overcomplete system of states {|x)} parametrized by
points x of manifold .4, and the system satisfies condition

J by Cxldux) =1,

where |x)<x| is the pro_]ectlon operator on state |x), du(x) is a measure in
manifold .#, and 1 is the identity operator. A natural way to determine an
operator corresponding to function f(x) is to define it as an integral
F={|x><{x|f(x)du(x). The problem is to insert a constant 4 in such a manner
that the correspondence principle is satisfied.

The problem has been solved at present for the case where phase space ./ is a
homogeneous Kéhler manifold.

The group of motions G of manifold .# has a discrete series of represen-
tations T*(g), where k is a parameter. As shown in Chap. 12 a CS system {|x>}
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exists related to the representation of view. Let du(x) be the G-invariant measure
on manifold # and h=k1.

It was found that the construction considered above satisfied the correspon-
dence principle at #—0, and, therefore does solve the quantization problem. For
simple cases we will consider the construction in more detail.

16.3 Quantization on the Lobachevsky Plane

Take the model of the Lobachevsky plane as a unit disk
D={z:|z|<1}

in the complex z plane. The space of functions analytical in domain D is provided
with the scalar product

A g)=<%—1> [ F(@9@) (1 —[z)"du(z, 2), (16.3.1)
where
1 dzndz
ap(z, 2)=5— a=FP?

is the invariant measure in the Lobachevsky plane. All the functions with a finite
norm

I 2= <o (16.3.2)

are elements of the functional space &%, which we consider now. [Note that
factor %—1 in (16.3.1) is related to the normalization condition (fo, fo)=1

for fo(z)=1.] Functions

fi@)=(1)"1" [(%) . .<%—1 +l>]l/zz‘ (16.3.3)

constitute an orthonormalized basis in space %,. The kernel defined as an infinite
series

Ky (G, Z)=;ﬁ(2)f,(f ) (16.3.4)

reduces, after a simple calculation, to

Kl 2)=(1-L)7 " (16.3.5)
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It is easy to see that at a fixed , this function belongs to space %,. Let us denote
by |{> the state in the Hilbert space corresponding to this function. For an
arbitrary state | /> determined by a function f(z) € %,

ZH>=r©. (16.3.6)

Comparing with the results presented in Sect. 5.2, one sees that the system
obtained coincides with the CS system for the discrete series of representations
T*(g), k=(2h)~".

16.3.1 Description of Operators

Let A be a bounded linear operator in %,. The corresponding function exists

_<41D

A D= , 16.3.7)
CO="cts
which is called the symbol of this operator. Note that function
o _ <&l
A, M= — (16.3.8)
@ iy

depends on variables ¢ and 7 analytically and coincides with A(¢, &) at n=¢.
Therefore function A(,#) is the analytic continuation of A4(&, &) and is
determined by it completely. Thus clearly a one-to-one correspondence exists
between the operators and their symbols. In particular, the symbol A(z,Z)=a
=const corresponds to operator 4 =al, where 1 is identity in %,

The action of operator 4 on a function is given by the following integral
involving the symbols

AN e)= (——1)1A( c)f(o( 'Cg)ljhdmc,c‘). (16.3.9)
There is an integral representation for operator 4

A=[ A DIy <C|du), and (16.3.10)

4@ )= (——1)fA(c E)(—%ifc‘;—))m @0, (16311)

Multiplication is defined as follows. If A = 4, - A,, the symbol of 4 is given by the
integral

(A=) =[EP)
A(z,2)= (——1)[:41(2 DA (L, )(m

1/h )
) du(0).  (16.3.12)
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16.3.2 The Correspondence Principle

Equations (16.3.11, 12) imply the significance of the operator T}, whose action in
functional space is defined by integral

—z7 DO\
@mnEn=(3-1) 1760 (( sy o (163.13)

Let us investigate the h—0 asymptotics of function
(Ph(z7 Z_) =(Thf) (Z, Z_)’

where f(z,Z) is assumed to be a continuously differentiable function.
We start from the point z=0,

(1) ©0,0)= (——1> JFEGOHU =D au, D). (16.3.14)

Function (1 —¢0)'* is localized near the origin at A—0. Since

(%—1)5(1 (O auE, )= <——1)§(1 —x)m=2g _q
the result is

+O0(h). (16.3.15)

62
@) (0,0=10,0)+h

To obtain the asymptotic behavior of function (7}, f) at an arbitrary point z of
domain D it is helpful to change the variables

(on, (=1 (16.3.16)

Transformation (16.3.16) is a motion in the Lobachevsky plane, so the measure
du(¢,?) is conserved. Therefore

(Thf)(z2)= (——1> § £, 7)) (4 =) ™ d(n, 7), (16.3.17)

where

(-2 (-2
ACGD= f(1 — 1_25)
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Note that
*f _ 2 f
a_c.a_z-(=(=o_(1 ZZ) 5262"

while the operator

2

0
=(1 =27 ——
A=(1-z2) 3295

is just the Laplace-Beltrami operator for the Lobachevsky plane. Thus, using
(16.3.15) yields the #—0 asymptotics for function T, f

(T ) (z,2)=f(z,2)+hAf (z,2) +o(h). (16.3.18)

Th_e corresponden_ce principle follows from (16.3.18): substituting
A1(2,0) 42 ((, 2)= f((, () in (16.3.12) gives

A(z,2) =4, (z, 7) A3 (2, 7) + h(1 —z22)? % %2-+o(h). (16.3.19)

Hence we have verified that the correspondence principle does hold; first,

lim (4% A,) =4, (2, 7) 4, (z, ), (16.3.20)
h—0

and the second term leads to the commutator

04, 04, 04, 04,

_ =(1-22P 7 == ==
(Ayk A4, — A% A1) =(1 —z2) (52— 0z 0z aZ_>

=i{d,4,}. (16.3.21)

lim 1
h—0 h

16.3.3 Operator T, in Terms of the Laplacian

Operator T, commutes with the group transformations

f(z,2)~f(9z,92),

where g is a motion in the Lobachevsky plane. Hence it must be a function of the
Laplace-Beltrami operator 4.
Explicit calculations in [130] lead to the following expression for 7j,:

a0 A -1
TFE) (1 - 1+ +(l—1)h]) ' (16.3.22)
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16.3.4 Representation of Group of Motions of the Lobachevsky Plane in Space &,

Transformation of the group elements in the space of symbols has the form
(7,4)(z,2)=A(92,92), 9€GC. (16.3.23)

It can be easily seen that this transformation is an automorphism of the operator
algebra A4,. Since it is known that all automorphisms of the algebra of bounded
operators in the Hilbert space are internal, a bounded operator U, must exist
which generates the automorphism of (16.3.23),

2|U,AY,-: |2y _<Z|A|g2)
z|z> <97l97)

=A(gz,92). (16.3.24)

It can be easily seen that Uj is a unitary operator times a factor.

Now we will show that the mapping g— U, determines an irreducible
representation of group G. Let A be a bounded operator, commuting with all
the group operators U,. Because of (16.3.24) its symbol 4(gz, gz) is independent
of g and since the action of group G in the Lobachevsky plane is transitive, it must
be a constant

A(z,Z)=a=const.
Therefore, the operator must be identity times a factor
A=adl.
Thus, we have got a proof that the representation g— U, is irreducible.

Using (16.3.9) we can also get an explicit expression for the action of
operator Uy:

U ) @)=¢f <%i—j_—§> (Bz+m) ™,

g=<; g) | —|BR=1, |f=1. (16.3.25)

The unitarity of transformation (16.3.25) can be verified directly. To get an
explicit expression for the symbol of the operator U,(z,Zz), (16.3.1, 6) are
combined. The matrix element is

z|U, |2y =¢e(a+ Bz + Pz +azz) ™" so (16.3.26)

RS 1—z7 1h
U,z 2)= P —3<a+ T Ez+azz‘> . (16.3.27)
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16.3.5 Quantization by Inversions: Analog to Weyl Quantization

Some elements of group G can be represented as point inversions. If a point ( is
the inversion center, the complex plane transformation is

—(1+Dz+2¢
—20z+1+¢C
so the matrix of the group element is of the form
gt <—(1 +0) 2¢ )
1=\ -20 a+)

The symbol of the inversion operator denoted by U,; obtained by
(16.3.27) is

9. 0z= (16.3.28)

Qe OV (L 2™ e

U B _; s Z)= 2 — =
Qe ((1 2D =20 1-2 1-2
times a constant factor ¢, |3| =1. This factor will be fixed in such a way that the

symbol is just given by (16.3.29).
Function

a(z,z)=tr {AU,;} (16.3.30)

is called the Weyl symbol of operator 4. If the operator can be represented by
means of the integral

.~ (1
A =<Z_ ) [ d(z,2)U, :du(z, 2), (16.3.31)
function d(z, Z) presented here is called the covariant symbol of operator A.
The relationships between symbols 4 and a, and d and 4 are integral trans-
formations,

a(z,2)=(Sid) (z,7) (16.3.32)
A(z,2)=(S5)d) (z,Z), where (16.3.33)
(Snf) (2, Z')=<% - 1) [FCDUE T2, 2)du(L, D). (16.3.34)

Equation (16.3.32) is obtained from the integral for the trace of the product
tr {48} ={ A(x) B(x) du(x)
and from the symmetry relation

Uh(C, C_y Z7Z_)= Uh(za Z_, C, E)
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To relate symbols a and d one has to know the operator S, as a function of the
Laplace-Beltrami operator 4. (In fact, operator S, commutes with all operators
of the group representation, so it is a function of 4.)

Berezin’s calculation [130] leads to the explicit expression

] -1
S"=,1=_£ (1 i (1+21h) [11(21-1)}:1) ' (16.3.35)
Comparing (16.3.22, 35) yields
T,=S,S;, where (16.3.36)
w y -1
S’:=,I=1o (1 i n+QI+DAr A +2lh)> ‘ (16.3.37)
With (16.3.36, 11)
d=S8,4=S;S; a. . (16.3.38)

16.4 Quantization on a Sphere

If I=h""' is an integer, quantization on a sphere is closely analogous to that for
the Lobachevsky plane; this is discussed here.

It is appropriate to map the sphere on the complex z plane by means of
stereographical projection. The invariant measure on the sphere is replaced by
the measure on the z plane

dzNdz

16.4.1
27 ( )

du(z,2)=(1+z2)"?

The functional space %, to be considered is that of holomorphic functions f(z)
with the scalar product

o, g)=<%+ 1) [ 7@ g@) (1 +22)"du(z, 7). (16.4.2)

Note that function f(z) € % must be a polynomial of a degree less than A™1;
otherwise, the integral defining the norm || f||2=(f, f) diverges.

. . . 1 .
Therefore, dimensionality of space % is | 1 +Z . Functions

f@2=0+)M, (16.4.3)

which are the elements of the functional space %, correspond to vectors |{) of
the Hilbert space with the norm (| = (1 +{{)*/*. Thus, we get a CS system for
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the rotation group of the three-dimensional Euclidean space discussed in
Chap. 4. Note that if the quantity A~' is not an integer, function f{(z) is
multivalued and, therefore, it does not belong to space %,.

We present now some more formulae for the symbols of operators in space
.. The covariant symbol of operator A4 is the function

A0
&9

taken at { =z. Function (16.4.4) is the analytic continuation of the symbol and,

therefore, there is a one-to-one correspondence between covariant symbols and

the operators.
The operator action in the functional space is given by the integral

A= ( +1)1A< :)(

A(Z’z-)=

(16.4.4)

14z

1/h
] CF) du(,0). (16.4.5)

Hence the symbol for the operator product 4=4,4, is

1 [ a+2Da+z) T
A(Z,D=<7l+1> I Al (Z, E)AZ(C, Z) [W:I d#(C, D (1646)

The relation between the different types of symbols is given by the integral
transformation

A(z,2)=(T,A)(z, 2)

1 e o [ 1+20)(1+(2) 1h
— ' — 2 2 ) du . 16.4.7

As for (16.3.22), operator T, can be expressed in terms of the Laplace-Beltrami
operator

- 2 4
_knl <1+h (1 +kh) [1+(k+1)h]>' (16.4.8)

The asymptotic formula, like (16.3.18) for the Lobachevsky plane, is valid also
for the sphere. Hence one verifies the correspondence principle.

The relationship using the representation theory for the groups SO(3) and
SU(2)is established by analogy to the case of the Lobachevsky plane. The action
of operator U, in the functional space is given by

G, NH(@2)= f<ﬂ +ﬁ>(a+ﬂz)”" g=<_; g) P +|BP=1, (16.4.9)

where 2! is an integer.
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It is well known that the whole set of unitary irreducible representations of
the SU(2) group is exhausted by these representations, up to equivalence
transformations.

16.5 Quantization on Homogeneous Kihler Manifolds

The construction of quantization considered in Sects. 16.3,4 for the simplest
manifolds is extended to a more general class of manifolds, namely, to the
homogeneous Kihler manifolds [22].

The main relevant definitions are as follows.

Let .4 be a complex manifold and z/ are local coordinates of a point on this
manifold. Suppose a metric exists on .4,

ds*=gdzidz*,  jk=1,...,n, (16.5.1)

such that det(g;) +0 and the 2-form corresponding to this metric

w=gdz’ Ndz* (16.5.2)
is closed,
dw=0. (16.5.3)

The manifold possessing this property is called Kéhlerian and metric (16.5.1) is
called the Kéhlerian metric.

Clearly, the Kéhler manifold is symplectic. Therefore, a classical mechanics
given by (#, ) is established on the manifold. In the local coordinates the
Poisson bracket is

. of 6g Oof Og

= E — —— — - . .
{rg}=ig (621 oz* 0z7 9z* (16.5.4)

Evidently, since the 2-form is closed, a function F(z, Z) (the potential of the

metric) must exist such that

*F

gJE:W. (16.5.5)

Let us consider the Hilbert space %, the space of functions analytical in .# with
the scalar product defined by

(L9 =ch) [ F(2)g(2)exp [ —% F(z, z‘)] du(z, 2), (16.5.6)
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where

n dz"/\dz
(e, ) =0 =det(g) T1

(16.5.7)
27i

Constant /4 in (16.5.6, 7) and in the following plays the role of Planck’s constant,
function c(h) is to be determined below.

Suppose we have an orthonormalized basis on space %, { f(2)}. Then the
following theorem holds.

Theorem 1 [22]. 1) In each coordinate vicinity the series
L,(z,2)=Y £i(2) £i(2) (16.5.8)
k

converges absolutely and uniformly.
2) Function L,(z, 7) is independent of the choice of the basis {£(z)}.
An important estimate,

|L(z, O < Li(z,2) Lu(C, D), (16.5.9)
is a consequence of the Cauchy inequality. Using another notation,

Dr(z)=L,(z,0), (16.5.10)
one has with (16.5.6)

c(h) | |®2)?exp [—% F(z, z‘):| du(z, 2)
=;ﬁ@ﬁ@emmb. (16.5.11)

Hence @(z) € %,. Because of (16.5.10, 8),
(s P)=r(© (16.5.12)

for any f'(z) € %,. Therefore the set {®,(z)} is an overcomplete system of vectors
in space %,.

Using this system we define the covariant symbol A (z, 7) of operator A4 as the
diagonal value (z={) of function

<D ]A|Dp

Az, ()= (o jop (16.5.13)

which is defined in space 4 x 4.
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By analogy with Sects. 16.3, 4,
AN@=ch) A Df O Ly D) eXp[—%F(C, C_)]d#(C, O (16.5.14)

Lz, {) Li(,2)

(ko) (e D) =ch) | 41 DAL 2) x PP

x {Lh(C,DeXp [—% F(, C')]}du(c, O (16.5.15)

trd=c(h) [ A(z,7) {L,,(z, Z)exp [ -% F(Z, z-)]} du(z, 2). (16.5.16)

Note that according to (16.5.14) operator A is reconstructed from A(z, )
which is an analytical continuation of 4(z, 2), i.e., the covariant symbol of the
operator. Therefore there is a one-to-one correspondence between operators and
their symbols. Thus, algebra A4, can be the algebra of covariant symbols of
bounded operators.

The correspondence principle can be proved only under an additional
assumption that the manifold .# is homogeneous. So we suppose that .# is a
homogeneous Kéhler manifold, G is the group of its motions and F(z, 2) is the
potential of the Kéhler metric on .# which is invariant with respect to G. It is
supposed that the potential F(z, Z) exists globally on a set .# obtained when a
submanifold .’ of a smaller dimensionality is removed from .#. Respectively,
functions f(z) € %, are also defined on .#. Since the metric generated by potential
F(z,?) is invariant under the group transformations,

F(gz,92)=F(z,2)+ Y (g9,2)+ ¥ (9, 2), (16.5.17)

where (g, z) is an analytic function of z at fixed g, defined on .# N g.#. Equation
(16.5.17) determines function (g, z) up to an imaginary part: a more detailed
treatment may be found in [22]. It was also shown there that with function
¥ (g, z) one can construct a unitary projective representation of group G. The
representation operators are given by their action in the functional space %,

(T,f) (2)=exp [—% lﬁ(g‘l,Z)]f(g“Z)- (16.5.18)

These operators are unitary and form the projective representation of the local
Lie group Ug, i.e., the representation in a vicinity of the unity element of group
G. This representation can be continued to the unitary projective representation
of the whole group G.

The existence of this representation is essentially used in the proof that the
quantization considered satisfies the requirements formulated in Sect. 16.2.
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The case considered here is the manifold .# =D, a complex homogeneous
bounded domain in €". Here D is the Kéhler manifold relative to metric ds* with
potential F(z, 2)=1n K(z, Z), where K(z, {) is the Bergman kernel of this domain
(Chap. 12). Now, the elements of the functional space %, are functions analytical
in D, and the scalar product is

(ff)=ch) 15) |/ @ [K(z, )] *du(z, 2), (16.5.19)
where
?1n K\ du(z,?
d,u(z,z')=det< azigz'f> ’“‘LT([f 2. (16.5.20)

du;(z,7) is the Lebesque measure of domain D. Functions L,(z,{) and
@5(z) = Ly(z, {) are defined by (16.5.8). Algebra A, is the algebra of covariant
symbols of bounded operators acting in &, ; algebra &/ consists of functions
f(h|z,2),0<h<1,which are elements of 4, (at fixed #) and are continuous on the
whole set of variables A, z, Z.

Theorem 2 [22]. Algebra & is the quantization which satisfies the correspon-
dence principle.

The proof of this theorem is not presented here. Note only that in the process
of proving it, the following properties of the complex homogeneous bounded
domain are essentially used

?nkK _
1) det ol =AK(z,2); (16.5.21)
2) Ly(z,2)=plK(z, 2)]'", (16.5.22)

where A=A(D), u=u(D) are constants depending only on the domain D.

In concluding this section, explicit formulae for the operator 7, which relates
covariant and contravariant symbols are presented. The operator acts in space
%, as given by (16.3.13) (for the explicit form of operator T, see [22]). The
following theorems have been proved in [131].

Theorem 3. For the complex homogeneous bounded symmetric domains,

Laplace-Beltrami operators 4, of order 2k, k=1,2,. .., exist, whose eigen-

values which correspond to the unitary irreducible representations T'(g) of

calss-1, are given by

1

Sy= Y. xtk. (16.5.23)
i=1

Here / is the rank of the domain, and x; are parameters which specify the

representation [if the representation T'(g) is finite-dimensional, the quantities x;

are components of vector (4+ @), where 2 is the sum of positive roots of the Lie
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algebra, and 4 is the representation highest weight]. In the case of a bounded
domain, T(g)=T*(g) is a unitary representation of principal series, and x; are
arbitrary real numbers.

Theorem 4. The eigenvalues of operator T, corresponding to the irreducible
representation of class-I for spaces of noncompact type are

1 — —

I F(l—%+ixk>l"<i—v—2—l—ixk>
- — — , (16.5.24)
D=7 (-7 o)

where A=v/h, I'(z) is the Euler gamma function, ¢; are the components of ¢
which are:

t(ﬂ‘;xla*' ~,xl)=

ptq+1 .
for D, 91=+—1, 1<j<p; q<p;
—1
for DY, o=b-T= 1sj=p;
2p+1
for D o= 5 1<j<|?|; (16.5.25)
2 2
p—1 1
for Dll,v, Qj=—2—, QZ=§-
The numbers v are
p+q for D},
p+1 for D}
"S2(p-1) for DN (16.5.26)
p for D}’

Theorem 5. The eigenvalues of operator T}, for the manifold .# of the compact
type are

t(=A3ixy,. .., ix), (16.5.27)

where t(4;x,,...x;) is the function given in (16.5.24), which corresponds to
the dual (in the sense of Cartan) noncompact space, A>0 is an integer, and
X, =my + 0, my are the components of the representation highest weight.
Note that Theorems 4 and 5 enable one to express operator T}, in terms of the
Laplace-Beltrami operators 4,,. For symmetric spaces of rank-1, see [131].
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Physical Applications






17. Preliminaries

The purpose of this part is to show the facilities of the CS method for some
concrete examples. This chapter presents basis principles in order to explain the
relevance of CS to the description of certain physical systems.

As noted in the Introduction, the CS method is now widely exploited in
different domains of physics, and it has helped to solve a lot of problems. Since
space is limited, I am, of course, not able to give an exhaustive exposition, so
present instead some selected problems, which illustrate the CS method. Some of
these problems could be solved by other means, yet the following shows that the
CS method considerably simplifies the solution. Another advantage of the CS
method is that it enables solutions of problems quite different in origin and
statement to be unified. Note, that a number of applications of Glauber’s
coherent states [7, 8] have been considered in [9, 10, 13].

Some problems, beyond the scope of this exposition, have been solved using
the CS method. These are listed below.

1.The superfluidity of weakly nonideal Bose gases was derived originally by
Bogolubov [133]. The problem can also be solved easily with the CS method
[12,134,135]. The superconductivity of weakly nonideal Fermi gases can be
considered along the same lines [136].

2. A soft photon cloud around a charge particle has been described and the
infrared divergences eliminated from quantum electrodynamics [137-139].

3. Spin waves in the Heisenberg model of ferromagnets have been described
[140].

4. An approximate quantum description of localized field configurations
(solitons) has been proposed [141-143].

S. The SU(N) gauge lattice field theories were formulated [144].

6. States similar to the lattice CS (Sect. 1.5) have been used [145] to describe
the ground states of a two-dimensional electron in a periodical magnetic field.

7. Long-range collisions of classical charged particles scattered on hydrogen
atoms have been described [146, 147].

8. The Dicke model of two-level molecules and the transition to the
superradiative phase have been treated [148-151]. This approach has been also
extended to n-level molecules [152, 153].

9. Generating functions for invariants of SU(N) were obtained [154].

10. An algebraic classification of dynamical systems where the coherence of
generalized CS is preserved has been given [155].
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11. It is shown [156] that a crucial concept in theory of solitons, the z-func-
tions, is related to CS for an infinite-dimensional Lie algebra GL(c0) which can
be realized in terms of bilinear products of fermion operators.

12. The CS method has been applied to calculation of partition functions by
means of the graph methods [157].

13. Basic ideas of using generalized CS in theoretical nuclear physics have
been presented [158].

Some authors have also investigated overcomplete systems of states different
from those I consider, e. g., the work by Barut and Girardello [16], and the series
of works by Nieto (references may be found in [159]). In [160-162], overcom-
plete systems, which are related to the Fermi operators and the Grassmann
variables, have been investigated. These systems differ from those considered in
Chap. 9. Some CS systems related to superalgebras have been also considered
[163].

We now briefly review applications of the CS method to cases where the
system Hamiltonian has a dynamical symmetry group G.

The simplest case important for applications concerns the systems where the
Hamiltonian H is a linear combination of generators X, of a unitary irreducible
representation of the corresponding Lie algebra:

H=Y I'X,, Xi=X,, Hk=h (17.1)
k

Here the operators X; satisfy the standard commutation relations
[Xi, Xi]1=Cii Xom» 17.2)

where CJj are the structure constants of the Lie algebra & of the corresponding
group G; the coefficients 4* in (17.1) are, in general, time dependent: #*=#*(¢).

Such a situation takes place in a number of interesting physical systems, some
of which being treated in Chaps. 18-26. Here a general description of such
systems is presented.

The starting point is the fact that a unitary irreducible representation T'(g) of
the group G corresponding to the Lie algebra of (17.2) acts in the Hilbert space of
the system states. Respectively, generators X, are transformed by the adjoint
representation of G,

T(9) X, T~'(9)=A4k(9) X:. (17.3)
This transformation does not change the structure of the operator H,
B=T(@)HT '(g)=h*X,, where

R =Ak@g)H. (17.4)
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The problem in view is the nonstationary Schrédinger equation
., d
ih E|T(z)>=H(t)|'I’(O)>. 17.5)

An important property of the system stems from (17.1)

|#(©0)>=T(g()| 0. (17.6)

Clearly, if at a moment ¢, the system state |¥(%,)> was CS and related to the
representation T'(g), it remains CS at any moment. This fact makes it possible to
solve a number of problems relevant to (17.5). Here we consider problems of
three types.

1. The Hamiltonian (17.1) is time independent. We must find its spectrum
and the eigenfunctions.

One can use the unitary transformation (17.4) and fit a group element g to set
a simpler form of H. For instance, one can make H an element of the Cartan
subalgebra. For a compact Lie algebra this is always possible.

Now the spectrum {£,} and the eigenfunctions {®,} can be found at once.
The spectrum { E, } coincides with the spectrum { £, }, and the eigenfunctions { ¥, }
are related to {¥,} by a unitary transformation

|#,>=T"(9)| . 17.7)

Hence it is seen that if when constructing a CS system one chooses |‘f’0> (the
ground state of Hamiltonian A) as an initial vector in the Hilbert space, then the
ground state of the Hamiltonian (17.1) is a generalized CS.

2. The Hamiltonian (17.1) is time dependent but at — + o it tends to some
limits sufficiently rapidly so that asymptotic states | ¥4 ) exist.

Now the evolution operator U(t, t,) is

U(t, 10)=T(g(2, 1)), (17.8)
and an S matrix exists
S=U(o0, —0)=T(gy). (17.9)

The probability of transition from a state |m) at #— — oo to a state |n) at #— + oo
is the matrix element T, squared,

Wom=Tum(90)* = <n| T (g0)|m> . (17.10)
3. The Hamiltonian (17.1) is a periodical function of time,

H(t+1)=H(?). 17.11)
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Now there are states for which

|, (t+1)> =exp (—i%) %,(1)>, (17.12)

the so-called states with a definite quasienergy; their properties have been
considered in detail in [164-167]. The evolution operator of the system U(t, ¢,)
can be written as

U(to+1, to) = T(go) =exp (—it#[h), (17.13)

where the operator # has the form (17.1). Thus, the spectrum of the operator 5#
gives the quasienergy spectrum for the problem in view.

Let us now turn to concrete examples.
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Some nonstationary problems for quantum oscillators are solved quite simply by
means of the CS method. In the cases considered the quantum problems are
reduced exactly to the corresponding classical problems.

18.1 Quantum Oscillator Acted on by a Variable External Force

This problem has been solved by Feynman [56] and Schwinger [55]; the relation
of their approaches to the CS method will be explained below.

The time evolution of the system concerned is governed by the Schrédinger
equation

. d
i W@)=EHo+H)W (),  where (18.1.1)
Ho=} (P’ +*¢)=w(a*a+}) (18.1.2)
is the free quantum oscillator Hamiltonian, and
! (a+a”) (18.1.3)

Hi= /0=~ =

describes the action of the external force f(¢). Here p and g are momentum and
coordinate operators, a and a* are bosonic annihilation and creation operators.
We set hi=m=1.

First, employing the unitary transformation

(1)) =exp (—iHon)|J (),
we reduce the Schrédinger equation (18.1.1), and the equation for | (#)) is
i % J@0)y=H|J)>  where (18.1.4)

H,(t)=exp (iH,t) H, exp (—iH,t)
1

Vio

=—f() [aexp (—iwt)+a™ exp (iwt)]. (18.1.5)
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It is convenient to rewrite (18.1.4) as

2 F@>=10a* ~BOaFO),  where (1816

i .
B@)=—7=f()e
V20
Since the Hamiltonian H,(t) is a linear combination of operators of the Lie

algebra W, (the Heisenberg-Weyl algebra), the evolution operator S(¢), defined
by |[¥(1)>=S()|¢(0)), is an element of the group representation 7'(g)

S®)=T(g(t)=exp [-ip(®)]D(y(1)). (18.1.8)

In particular, it follows that if the initial state was a CS of group W;, it remains
coherent for any moment of time. Thus, the solution |$(t)> is

(18.1.7)

[V (0)> =exp [—ip®)]|x(2)>. (18.1.9)
In this state the expectation value of the operator a is
Plal>=a(). (18.1.10)

The ¢ derivative of the expectation value is calculated from (18.1.6)
t
a=p, a(t)=oo+[ B(t)dt'. (18.1.11)
(4]

For small t=At, (18.1.6) gives
[ (2 +42)> ~D(B(2), A0)|P (1)) (18.1.12)
Using T'(t, a)|> =€'|f +«), one gets from (18.1.9)
¢=Im {Bo}=Im {dux}. (18.1.13)

Clearly, (18.1.11) is the classical equation of motion in presence of the external
force, and (18.1.13) shows that ¢ (¢) is equal to the doubled area encircled by the
radius vector as the point moves in the phase plane, namely,

!

o()=; | pds,

do

and the phase in (18.1.9) has a simple semiclassical meaning.

The result is especially simple if the force f(¢) tends to zero rapidly enough as
t— + 00. Then the limits . and ¢ exist, and a useful concept is the transition
probability from a state |m) at t— — oo to a state |n) at z— + co. The probability
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is given by
W= Km|S|n>> =|<m|D (y)|n)[? (18.1.14)
and writing here the explicit expression for D,,, yields

n<

! - _
Won=—3 PP exp (= P)IL" (PP (18.1.15)
where
y= | ﬂ(t’)dt’=———l/;— [ f(t)exp (ior)ds, (18.1.16)
— W -

it is the Fourier component of the force f(¢), times a factor.

In particular, if | (¢)>—|0) as t— — oo (i.e., the oscillator was in its ground
state from the very beginning), then the force f(¢) induces the transition to a
coherent state, and the excitation probability to the nth level is given by the
Poisson distribution

W,=e™¢ ¢

L. e=ht (18.1.17)

The second example is as follows.

18.2 Parametric Excitation of a Quantum Oscillator

The parametric excitation of a quantum oscillator is the excitation of an
oscillator resulting from a change of its parameters, the mass m=m(t) and for
the frequency w=w(f). The generic case of variable m(z) and w(¢) is easily
reduced to m=const, as t'=[[dt/m(t)] and @'=mw, yielding a quantum
oscillator with variable frequency [168-170].

The problem we are concerned with has been considered in detail in
[171-174]. Here we propose a solution using the CS system for a discrete series of
representations of SU(1, 1) (Chap. 5). This method is quite straightforward and
illuminating.

The Schrédinger equation for a quantum oscillator with variable frequency is

i dit @)y =HOW () where (18.2.1)
_P_ @) _ 0
H(t)—7+ 3 7, p——1a—q (18.2.2)
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and we set i=m=1. Let us rewrite it as
. d
i~ W@>=@K)y()), where (18.2.3)

QK =Ko —, Ky — K, =1 (BK, — BK - —iyKo)

1(p? 1
K, =2 <;Oi woq2>, K, =2 (pq +4qp) (18.2.4)
(1) \? .
Qo,1=wo o +1|, ©,=0, K.=K +iK,. (18.2.5)
0 -

Evidently, the operators K,, K; and K, satisfy the commutation relations
(K, Ko]= —iKo, [K;,Kol=1K;, [Ko, Ki]=iK; (18.2.6)

(for an arbitrary value for the frequency w, present in the definition of operators
K;), and according to Chap. 5 are generators of representations of a discrete
series of the SU(1,1) group with k=1/4 and k=3/4.

Thus, the Hamiltonian is linear in the generators of the Lie algebra of the
SU(1,1) group, and the solution of the Schrédinger equation is

Y =exp [—ip®IC®>, [¢|<1, (18.2.7)

where |{(¢)) is a CS relevant to the representation of discrete series of the SU(1, 1)
group, with k=1/4 or k=3/4.

As in the preceding example, we substitute (18.2.7) into the Schrédinger
equation (18.2.3) and get differential equations for { and ¢:

{=B—BC>—iyt (18.2.8)
i¢p=k(BL—PL+iy). (18.2.9)

Note that the { plane, which is the phase plane for the problem, is the
Lobatschevsky plane here. Equation (18.2.8) describes the motion of a classical
system (oscillator) on the phase plane. The quantum state |{(¢)) is just governed
by the classical motion. The phase shift ¢(¢) is exactly equal to the area (in
Lobatschevsky metrics) encircled by the radius vector {(¢). Both these facts arise
since the “semiclassical approximation” gives the exact answer in this case.

Though this result is valid for an arbitrary time dependence of w(¢), two cases
are of special physical interest.

A) The quantity w(z) attains its limits at — + oo sufficiently rapidly. In this
case there are asymptotic states |n), at t—+ o0, and there is a transition
probability W, between states |m) _ and |n) + . Suppose, for simplicity, that the
limiting Hamiltonians (H, and H_) coincide. Then
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a B
W =|<m|T (go)|n)[%, go=<le &> |o|* —|B[>=1. (18.2.10)
Using the expression for {m|T|n) from [171], we get finally
ol
rm+my (/1= |oz|2 (18.2.11)

B) Next consider the case of periodical time dependence
o(t+T)=w(?).

The Schrodinger equation has solutions with definite quasi-energies:

[e(t+T)>= em(—l )Ilﬁa(t)) (18.2.12)

To find the quasi-energy spectrum first consider the evolution operator of the
system

and use it to construct the unitary operator
S=U(to+T, to). (18.2.13)

Write the latter as an exponential
S=exp(—% Tﬁ), (18.2.14)

where H is an Hermitian operator. The spectrum of this operator is exactly the
spectrum of quasienergies.

The operator S is a finite transformation of the SU(1,1) group, and the
operator H belongs to a representation of the corresponding Lie algebra, so

H=h(QoKo — 2, K; — 2, K;). (18.2.15)
A unitary operator U transforms H—UHU™ to a standard form. Different

physical situations arise, depending on the vector Q=(2,, 2, 2,). Each case
corresponds to a certain orbit of the adjoint representation of the SU(1, 1) group.

1a) Let

=Q Q7 —Q2>0, 0,>0. (18.2.16)
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The unitary transformation H—H'=UHU" leads to the form
H' =hQK,. (18.2.17)
The quasi-energy spectrum is discrete; it is bounded from below and has the form
e, =hQ(k+n). (18.2.18)

The ground state of the Hamiltonian is a coherent state relevant to the
representation T* of the discrete series of the SU(1,1) group.
1b) Let

Q?=QR-QF-Q2>0, 0,<0. (18.2.19)
Now H'= —hQK,. The quasi-energy spectrum is discrete and bounded from
above

&,= —hQ(k+n)

2) Let

Q2 —QF —Q2= —12<0.
The operator H can be reduced to
H'=—hiK,. (18.2.20)

The quasi-energy spectrum is continuous and occupies the whole axis:
— o0 <e< + o0. The classical motion is unstable here.

3a) If Q2=0, Q,>0, then A’ =hQ,(K,—K;), and the spectrum is con-
tinuous and bounded from below, 0 <& < 0.

3b) Finally, if Q2=0, Q, <0 then

H' = —hQy(K, — K;). (18.2.21)

Here the spectrum is also continuous and bounded from above, — o0 <& <0. For
a classical oscillator, Cases 3a and 3b correspond to the boundaries of the
instability domain [175].
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18.3 Quantum Singular Oscillator

18.3.1 The Stationary Case

The singular oscillator is a system described by the Hamiltonian

H=H0+V,
1 d2 x2 + 1 2,.—2
Hy=— Sata=atats, V=gx (18.3.1)

(using the units A=m=w=1) where

1 d 1 d

a=—ﬁ <x+a>, at =—‘/—_£ (x —2;>

are the usual annihilation and creation operators.
First we show that the operator H generates the algebra SU(1,1). One can
easily verify that the operators

B =@V —¢*/x*, B,=a*—g*/x* satisfy (18.3.2)
[H,B;1=2B;, [H,B,]=—-2B,, (18.3.3)
[B:, B |=4H. (18.3.4)

Thus, the operators H, B," and B, are generators of the SU(1, 1) Lie algebra.
It follows from (18.3.3) that if Yz(x) is an eigenfunction of the Hamiltonian

H‘/’E=E‘//E,

then B, ¥ and B,y are also eigenfunctions of H with the eigenvalues (E+2)
and (E —2), respectively. Thus, B, (B,) is a raising (lowering) operator. As for
harmonical oscillators, one can find the spectrum and eigenfunctions of the
Hamiltonian algebraically without solving the Schrédinger equation.

Actually, the wave function ¥, of the ground state, i.e., the state with the
lowest energy, satisfies

Bo=0, so that (18.3.5)

2 A
l//0=cox°‘exp(—7>, a=5+<z+2gz) . (1836)

The equation

Ho=Eolo (18.3.7)
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shows that
Ey=a+%. (18.3.8)

For an arbitrary state the wave function ¥, is obtained from ¥, by the n-fold
application of the raising operator B,

Yn(X)=cu(BS YWo(x), E,=2n+E,. (18.3.9)

Such algebraic generation of the wave functions and energy spectrum is
important since it can be applied to the system of N interacting particles where
it is impossible to find all solutions of the Schrédinger equation in the con-
ventional way.

Note the relationship of the operators H, By and B, to the standard
generators K,, K; and K, of the SU(1,1) algebra:

H B} _ B
K==, K+=K1+iK2=——22—, K_=K1—1K2=—72. (18.3.10)

The Casimir operator

+ +
LLEL L (18311)

1
A e

i.e., the operator commuting with all the generators of the SU(1, 1) Lie algebra,
is obtained by substituting the explicit expressions for B,, B, and H,

Co=k(1 —-k)=F -} a(a—1).
Hence
k=% G+o). (18.3.12)

This means that the whole set of the wave functions transforms by an irre-
ducible representation of discrete series of the group SU(1,1) T;' (9); where
1 1
=7 (2+3).
Using the standard method, namely, applying the lhs and rhs of (18.3.4) to
the wave function ,, gives

Bz+|lln=—2|/ (n+1)(n+tx+i—) l//,,+1 (18.313)
Byyy= —2)/n(nta+h) Y. (18.3.13')

The phase factor (—1) is due to a special choice of the phase factor in the wave
functions ¥,,(x).

Applying the operator (B, )" to the wave function of the ground state Y, one
has
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hi=C T(x+)
" V/n'T(n+a+%)

The wave function ¥,(x) contains the factor x* exp (—x?/2). Separating the
latter we introduce new operators

2
A =x""exp (g)Bf [x" exp < —%)]

d? d 1
[dx2+2( 2x> a+4(x2—a—§)} (18.3.15)
d2
A; =x""exp (;)Bz [x“ exp(—?)_] (dx2 2 — x d) (18.3.16)
H=x"exp (;)H[x" exp (—);i)]

2
=%["£72”2 <%—x) E‘i-+2a+1]. (18.3.17)

Evidently, the operators 4,, A;" and H are also generators of SU(1, 1), and the
commutation relations are the same as in (18.3.3,4).

The equation Hy,= E,{, is reduced to the usual equation for the Laguerre
polynomials (defined as in [176])

(B2 )"Yo(x). (18.3.14)

& d
[dx2+2(——x> dx+4n]L:-*(x2)=0. (18.3.18)

From (18.3.13,13’) we obtain the recursive relations for the Laguerre
polynomials

A L) = —2(n+1) L273(x?) (18.3.19)
AL = 2+ a—H LIZHE). (18.3.20)

Hence we get an expression for the normalized eigenfunctions of the Hamil-
tonian

[ 2(n)) e . x2
Yn(x)= Totatd L3 (x?)x exp(—;). (18.3.21)

Note that as g—0, a—1 and the wave functions are reduced to the oscillator
wave functions. However, only the oscillator functions vanishing at r=0 are
obtained in this case. So, for g—0, E,—[2n+(3/2)] and the energy spectrum is
different from the oscillator energy spectrum on the whole axis, being the energy
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spectrum in the Hilbert space L*(0, o) with the boundary condition y(0)=0,
i.e., for the oscillator problem on the halfaxis. At g +0, the spectrum is that of the
oscillator problem on the halfaxis, shifted by AE=a—1.

The wave functions ¥,(x) form a basis {|n)} in the Hilbert space # of the
square-integrable functions on the halfaxis 0 <x < oco0. The CS system {|(>},
|¢|<1 in this space is (cf. Chap. 5)

~ [Tn+20)
I>=0 —|C|2)k§ T+ DIk {"|m). (18.3.22)

The CS |C> can be defined as a state annihilated by the operator

K_=exp ((K)K_exp(—({K,)=K_ —2(Ky+{*K, (18.3.23)
R_|ty=0. (18.3.24)
Hence
o V2oa-ep 1+¢
<x|C>—¢c(x)—F(‘2'5 A=0PF x* exp( 1= sz),
2k=a+%. (18.3.25)

Comparing this expression with that in (18.3.22) gives the generating function
for the Laguerre polynomials

(1—C)“““’eXp<C 1) ZL“(x)C" (18.3.26)

=0

18.3.2 The Nonstationary Case

Suppose the quantum singular oscillator has a variable frequency. The
Schrodinger equation for the system is

i % [¥(@)>=H@®|y (), where (18.3.27)

H(t)——[p2+w2(t)x2]+ , 00)=wy=1. (18.3.28)
Equation (18.3.27), just as in Sect. 18.2, can be rewritten as

i % [V (@®)>=(RK)|Y (1)), where (18.3.29)
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(RK)=Q0Ko — 2, K; — £, K; ,

Qo,1=wo [(?)Zi 1], Q,=0, (18.3.30)

0
and the operators K, K; and K, are given in (18.3.10, 2).

Thus, all the results obtained in Sect. 18.2 are still valid for this case. In
particular, the Schrédinger equation has the following solutions

[W(@y>=exp [-ipM]L(®)>, [¢|<1, (18.3.31)

where {(¢) and ¢(¢) satisfy the classical equations (18.2.8,9).
If the frequency tends to its limits rapidly enough, as t— + oo, then the

transition probability from state |n, w-) to state [m, w4 ) is
W= |{m, 04|S|n, -,  where (18.3.32)
cosh % sinh % .
S= T"(go), go= , tanh? 5=Q, (18.3.33)

T
inh - h—
sinh5  cosh >

Here g is the reflection coefficient for the potential barrier [116]
kX (x)=2[E—-U(x)]= 0*(x).

Using the explicit formula [83] for the matrix elements of the representation
T*(g), we obtain the final expression:

m! F(%—oc—n) o g\2mmn £\2m+n+a)+1
Won=Tom —m) 1Pt TG —a—m)y \"203 cosh 5

2

. (18.3.34)

1
X |F(m+oc+§, m+1, m+1—n; —sinh? %)

Here F(a,b;c; x) is the hypergeometric function.
For a periodical time dependence of w(¢), the quasi-energy spectrum has the
same structure as given in Sect. 18.2.



222 18. Quantum Oscillators

18.3.3 The Case of N Interacting Particles

Consider the system of N interacting particles [177] described by the Hamil-
tonian

H =H0+V
Hy=— i R A (183.35)
o= ad TN T "
4 =g2 .zk (xj—xk)_z.
Jj<

Since we are dealing with translation-invariant solutions of the Schrodinger
equation Hy = EY, it is suitable to introduce translation-invariant variables

1 N
L=x-X, X== ¥ x, j=12....N. (18.3.36)

Jj=1

The variables £; are not independent,

iM=

&;=0. (18.3.37)

J

Let us also introduce translation-invariant differential operators, called
formal &; derivatives

0 o0 0 g _1 N o9 0
%" N P ;a——_ , (18.3.38)
From (18.3.36, 38) we find
0 1
6_éj Ee=0u -5 (18.3.39)
One readily gets
== Z (x;—x0* = Z . (18.3.40)

J<k
Taking account of this identity, the Hamiltonian (18.3.35) is
N a 2 1 N 62 1 N
+5 + 2
<ax> 3 Loamty LU+ LG

(18.3.41)

The first term in (18.3.41) is inessential for translation-invariant states so we
drop it. Let us introduce translation-invariant operators b;” and b, proportional
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to creation and annihilation operators

a N N
b= b;=0. 18.3.42
o1 =(omsg) om(ovsg) Sor-fe 18342
Here
1
b, b]=[b)", b 1=0, [bj,bf]=2<5ik—l—v->- (18.3.43)
The Hamiltonian (18.3.35) can be expressed in terms of b; and by
H=Hy+V
{1/ N (18.3.44)
Ho=5<z b1+b}+N—1>, V—— z (éj ék)z
Jj=1 j¥k

In analogy to the one-particle case, we introduce the operators B, and B,
R R 1 x
B2 =x Z (b_’ ) - V, BZ =x z bj -V. (18.3.45)
2 = 2 5

It can be easily verified that the commutation relations are the same,
[H,B;1=2B,, [H,B,J=-2B,, [B,,B;]=4H. (18.3.46)

Hence B, and B, are the lowering and raising operators, respectively.

Let us show that (18.3.46) hold when the potential V(x) is an arbitrary
homogeneous function of degree (—2). The third relation in (18.3.46) stems
directly from (18.3.45). To prove the second relation it is suitable to make a
transformation:

2
H=exp (§>Hexp <—%>, By=exp (;)Bz exp <-;)

under which b;——-, b, »2¢&; ———, while the first relation can be proved with

J afl 6{1
X 7’2 r2 - r2 r2
H=exp ( —7>H exp <7>, B =exp <—7>B2+ exp <?>
0 0
.,
where b; FE 2ék+6€k

Equation (18.3.46) shows that the SU(1,1) Lie algebra arises even in this
more general case. The Casimir operator C,, as given in (18.3.11), is again the
identity times a number,

E
Cy=k(1=k), k=7°, (18.3.47)
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where E, is the ground-state energy. Hence we obtain the set of normalized wave
functions

_C YTCR ., 18348
W= Vit & (18:3.48)

which are transformed according to the irreducible representation T;' of the
group SU(1,1). The ground-state wave function is Yo = Z exp (—r?/2), s0 B, ¥,
=0 and we get an equation for Z:

N 2
1 Z %EZ——VZ 0. (18.3.49)
J

Clearly, Z is a homogeneous function of £;. Let its homogeneity degree be o/,
then Hy,= EyY, leads to

_ N-1 «
E<Nliy pB N1 ® (18.3.50)

A specific feature of this set of wave functions is that all functions are

Yn(8) = @n(r)¥o(&) =Z exp (—;) @n(r)- (18.3.51)

To verify this fact, we employ new operators A,, A, and H which act on
functions ¢,(r) (cf. (18.3.15-17).

r2 r2 1 6 0 10Z
J J J

r? P\ 1 62 10Z 0
—7-1 B P
A,=Z exp<2>322exp< 2) 7 Ej 2 +§ zaz, 65, (18.3.53)

8 2 P
—7-1 Z __
H=Z exp<2>Hexp< 2)

1 o 02 10Z\ 0
iy lis(12)L
2 ; 0&? ) 0&; ) 0¢;
The action of these operators on the functions depending on r only is

equivalent to that of the corresponding operators in (18.3.15-17) with the
replacement a—a’+ (N —2)/2, x—r. Thus, the normalized wave functions are

+E,. (18.3.54)

j

n.F( 5 +oc’> 2\ peN=3
Va(E)=N, Zexp(—T)L,, 2 (A). (18.3.55)

N-1
F<n+T+ex’>
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If ¥V is an arbitrary homogeneous function of degree (—2), the function Z
and its homogeneity degree are not known. For the potential (18.3.35), Z= D",
NWN-1 .
D=T] (&—¢&), 0= —(T—l o, and the functions (18.3.55) are reduced to those
Jj<k
obtained in [177]. The operators 4," and A4,, acting on ¢,(r*), give recursive
relations (18.3.19, 20) for the Laguerre polynomials.
We have obtained the simplest series of wave functions for the many-body

problem. Note that the arbitrary wave function has the form

'pnp(é)=zexp <_;> (Dnu(r) P#(f), (18.3.56)

where P,(¢) is a homogeneous function of degree .
The equations for ¢,,(r) and P,(£) can be easily obtained from the
Schrédinger equation

H '/’nu =Euy ‘/’nn .

Namely,
—-—N_2+oc’+u
1 o, 2 do,,
P J— —_ E .
2 dr r " +(Eo+ 1) om
=E,¢,, hence (18.3.57)
N-1
n!F<T+a’+y>
Ouu(r) =N, N1 LEN=I*u2), (18.3.58)
F<n+T+a’+M)
E=2n+po+Eo. (18.3.59)

The equation for P,(¢) is

1Y 2 1 X oz a
[5 > 3547 L 5 a_g,] P.(&)=0. (18.3.60)

i=1 i=1 .
When operators 45 and A4,, (18.3.52,53), are applied to the function
@nu(r) Pu(£), they produce recursive relations for ¢,,(r). There are no simple
recursive relations for P,(&).

Thus, every new solution of (18.3.60) determines a new series of solutions

'/’nu(é) =Z €Xp ( _§> (Pnu(r) Pu(é)
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For potential (18.3.44), Z=D* and (18.3.60) is reduced to the equation
obtained in [178]

62P 1 0 0
—— | 55— | P.=0. 18.3.61
YoEt L Ty, <ac,- aa) g (18.3.61)

It was shown in [178] that (18.3.61) has polynomial solutions, i.e., u=mis an
integer, and P,,(£) is completely symmetrical under coordinate permutation. As
seen from (18.3.59), the equidistant spectrum is a result of the fact that the
solution is a polynomial. The symmetry of P,,(£) indicates that the number of the
solution g(m) of degree m is equal to the number of completely symmetrical
harmonical polynomials of degree m, which, in turn, is given by the number of
solutions of

m=3n3+ ‘e +NnN,

where ns,. . ., ny are nonnegative integers.
Hence we obtain an expression for the generating function of g(m),

1
a-=)...0-%"

Now one can easily show that the degeneracy f(s) for an energy E;= Ey+sis
equal to the number of solutions of the equation (for nonnegative integers)

(18.3.62)

G()= io g(m) 1" =

S=2n2+3n3+ N +Nnn.
The generating function for f(s) has the form

1
aA-)...1-

The explicit expressions for f(s) and g(s) at small N are given in [177].

The N-particle problem reduces now to finding all solutions of (18.3.61). The
solution of this problem is discussed in [177].

To conclude this section, note that using the invariance of the system of N
interacting particles with respect to the SU(1, 1) group makes it possible to solve
also the problem with a variable frequency, where Hamiltonian H, in (18.3.35) is

F()= 20 fm)m= (18.3.63)

N 2
Ho= _% z %2‘ ﬁ T (=) (18.3.64)

i<k

As can be easily verified, the results of Sect. 18.2 can be extended to this case as
well.
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18.4 Oscillator with Variable Frequency Acted on by an External
Force

Let us consider an oscillator with variable frequency w(¢) acted on by a force
f(?). The Schrédinger equation is

L woy=] -2 Z it e —rox [ue (18.4.1)
1ZV= T3 52t |y -+

The time dependence of w(z) and f(¢) are arbitrary with the natural boundary
conditions,

f@)-»0 at t->+o0 (18.4.2)
- at (> —o0

5 18.4.2’

w(t)_){au at t— + 00 ( )

the limits w. can differ.

Here the Hamiltonian H(¢) in (18.4.1) is a linear combination of the
operators Ky, K;, K, given in (18.2.5) and of the operators p, x and I. These six
operators form a basis for a six-parametrical Lie algebra, which is associated
with the so-called inhomogeneous symplectic group I Sp (2, R). Thus, just as in
the preceding case, a solution of (18.4.1) exists which is CS for the group I
Sp(2,R),

[ (0)>=exp [—ip(D]IL(), 2(2)), (18.4.3)
where CS |{, « is given by
|ty =Nexp [{a*?+aa*]|0), |¢|<1, and (18.4.4)
N=(1~-[()7"* exp { —%|af}

is the normalization factor.
Let us find the transition probability W,,, from the state
into the state |m, w,) at 1— + oo

n,w-)att— —oo

Won=|<m, @+|U(c0, —o0)|n, 0>, (18.4.5)

where U(t,, ) is the evolution operator. The generating function for W,,, can be
easily obtained using CS:

H(z,2)=Y % (m, 4 |S|n ) % (18.4.6)

m
1
m
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Omitting details, the final result [173] is

H(zy,2;)=(1—0)""* exp {—% (1-}/ecos 2¢)
+4 [ e (B -2 +2)/1—0z12,]

+)/v[)/1-ee *z —(ei"’—l/ée‘i“’)zz]}, (18.4.7)

The parameters g, v and ¢ involved here are determined as follows.
Let &(¢) be the solution of the classical equation of motion for the oscillator
with variable frequency

E+a?(1)E=0, (18.4.8)
where the initial condition is
E(t)~e*t  at - —o0. (18.4.9)

The parameter ¢ is determined by the t— + oo asymptotics of £(¢)

2
a2l )~ et —geT O, o 4o, (18.4.10)

Q:

¢y

Here 0<p<1 and g is determined completely by the form of w(z) and is
independent of the external force.
The parameter v=|d|* represents the excitation induced by the external force
and is given by
i

%er

The phase shift ¢ has the following form

d=

_Of @) f(@)ar'. (18.4.11)

_01+0, _
)

B, (18.4.12)

where d;, 6, and f are the phases of complex numbers ¢, , ¢, and d, respectively.

Calculation of the probabilities W,,, is reduced now to expanding the
function H(z,, z,) in Taylor series; the coefficients can be expressed in terms of
the Hermite polynomials of two variables. According to [176], these polynomials
are

lell Zgz

Hyn,(¥1512)- (18.4.13)

exp [ i a;j(y:z; —% Zizj)]= >

i,j=1 nin |/ 10!
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In our case
[a..]=< Ve - 1_Q>, n=yrd-oer (18.4.14)
T \yi-e e =~/ ~)/ee")

(note that @> =1, a ™! =a). Finally, the expression for the transition probability is

W= ” |Hm,.(y1,y2)|2 exp [—v(1 =}/ cos 2¢)]. (18.4.15)

For the simplest values of m and n, W,,, are given here explicitly:

Woo=)/1—@ exp [—v(1 =}/ cos 29)],
Wio=v(1—0)Woo, Wor=v(1—2}/@cos2¢+v?*@) Woo,
Wi =(1—0) [(1 =) +2v(1 —v) /@ cos 2¢ + 0] Weo - (18.4.16)

If one of the variables zy, z, is set at zero in (18.4.13), the generating function
is reduced to that for standard Hermite polynomials. Hence, if at z— — oo the
oscillator was not excited (n=0), the parameters W,,, are expressed in terms of
the Hermite polynomials,

W _VY1-e w2l g l/2v(1 —g)e™*
mo = 2™ [ m 41/5

2

exp[—v( —]/E cos 29)].
(18.4.17)

A similar formula holds for W,,:

I/V()n = ”/2

2"n '

(1/5 (1/512 o —e""))

xexp [—v(1 —]/5 cos 2¢)].

(18.4.18)

It is seen from (18.4.17,18) that W,,+ W,,, in general, while for vanishing
external force v=0, and the probabilities W,,, are symmetrical under m«n.

General principles of quantum mechanics state that the probabilities W,,, are
symmetrical only if w(—t)=w(?). As is seen from (18.2.11), in fact, the
symmetry W,,,= W,,, arises for an arbitrary time dependence of w(t). The reason
for this additional symmetry can be understood by relating ¢ to the reflection
coefficient from a one-dimensional barrier. To this end, we construct a linear
combination of &(¢) and &(¢) with the following properties:

e+ Re”*! at t——o0

. 18.4.19
Del®+! at -+ o0 ( )

&LO=EM+RE(N= {
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Hence it is seen that &;(¢) coincides with the wave function of the one-
dimensional Schrédinger equation if ¢ is replaced by x, and w(¢) by k(x), while
coefficients R and D stand for the amplitudes of reflected and penetrating waves.
Comparing (18.4.19 and 3.10), then

D RD

=]——_|—RF, Ca =‘1T|RF, Q=|R|2. (18420)

¢y

Thus, the solution (18.4.19) corresponds to the incident wave falling to the
barrier from the left. The time inversion — —¢ corresponds to replacing it by the
wave falling from the right. Denoting the reflection coefficients for the two waves
by ¢ and ¢/,

Wmn(Q) = I/Vnm(Q ,)~

Since ¢ =g’, [116], the probabilities W,,, have an additional m«sn symmetry.
Clearly, from (18.4.15), W,,, are symmetrical also at ¢=0. If v+0, and

o(-H=0@), f(-D=f@), (18.4.21)
such a symmetry exists if
cos 2¢9=)/0, (18.4.22)

as shown in [174]. Now the variables ¢ and ¢ are no longer independent, and the
probabilities W,,, are determined by two parameters ¢ and v.
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Problems of particles in homogeneous variable electromagnetic fields are quite
appropriate for the CS method. Spin precession in a variable magnetic field and
the creation of particle pairs (bosons or fermions) in a homogeneous electric field
are considered as examples. The quantum problems are reduced exactly to their
classical analogues, as well as the oscillator problems.

19.1 Spin Motion in a Variable Magnetic Field

Consider a neutral particle with spin j and magnetic moment y in a variable
magnetic field H(¢). The time evolution of states of such a system is determined
by the Schrodinger equation

i % [W(t)y = —A@)I W ®>=i(al, —al- —ibJ) (1), (19.1.1)
where

y=-j’,f J, J=(J, T, J), A=tH,

(19.1.2)
a= _%(Al —i4,), = —A4,,

and J; is the operator of infinitesimal rotation around the axis x;, J. =J; +iJ,.
For the vector H (¢), assume only that it tends sufficiently rapidly to some limits
at — + o0 so that at r— 4 oo the asymptotic states |y *) exist.

It has long been known [179, 116] that the problem for a particle with an
arbitrary spin can be reduced to that for spin-1/2 particles. Using the spin CS
makes it possible to obtain the solution in the simplest way.

Substituting into (19.1.1) the wave function

W (@))=exp[—ip®IL (), we get (19.1.3)

i £ KOy =1HO 410>, (19.1.4)
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On the other hand, the explicit formula for CS shows that

{40 =G+ )0, (19.1.5)
J-|C>=C(j—Jo)IC>, and (19.1.6)
{ .
< k= [1 TP @ 2 +|c|2)] IC(t)>+( c) o+l ®>. (19.1.7)
Hence we find equations for {(¢) and ¢(¢):

C=a+al?—ibL, (19.1.8)
A E . 1 2
1;(p— 1C+1[1+|C|2 7 A+ )1+C+aC (19.1.9)

Note that an equality results from (19.1.8),

& A +lP=al+a) @ +ep), (19.1.10)

It can be used to get
ip=j(—Ca+{la—ib). (19.1.11)

Thus, the quantum problem is reduced to a simpler problem, i.e., to solve
(19.1.8, 11). Mapping the { plane to the unit sphere, we get from (19.1.8) the
following equation for the unit vectors:

n= —[a(?),n]. (19.1.12)

Thus, the complex { plane (or the sphere S2) takes the place of the pase plane for
the classical dynamical system. However, unlike the conventional classical
dynamical systems, the invariant metrics on the plane { are not Euclidean.

If a()—0, b(t)—const, as ¢ goes to infinity, |{(s)]?*—>e¢=const because of
(19.1.8). Hence one gets at once an expression for the transition probability from
the initial state [0)=|j, —j) into a final state [m)=|j, —j+m)

__ @p! Q"
m_n’I!(Zj--m)! A (19.1.13)

The general formula for the transition probabilities is
Won=|23,(O), (19.1.14)

0 . .
where u=m—j, v=n—j, o=tan? 5 and 2;,(0) are the known representation

matrix elements.



19.2 Boson Pair Production in a Variable Homogeneous External Field 233

As an example, consider the case of an external magnetic field
H(t)=Hy+ H,(t)=Hyes + H, (e; cos wt + e, sin wt), (19.1.15)

which is the sum of a constant magnetic field directed along the z axis and the
field H,(¢), rotating in the (x,y) plane with an angular velocity w. Equation
(19.1.8) can be easily solved, giving

()= iw, sin Qtexp [i(w —w)?]
" 2Qcos Qt —i(w —w)) sin Q¢

In the simplest case j = 1/2 we get an expression for the “spin-flip”” probability

where (19.1.16)

w? sin? Q¢

—_— 19.1.18
(0—w))*+ ot ( )

Wi -1()=

Note that the spin-flip probability depends on w resonantly and acquires the
maximum value (W=1) only at w=0w.

19.2 Boson Pair Production in a Variable Homogeneous External
Field

An interesting quantum effect in classical external field is pair production of
particles and antiparticles from a vacuum. This phenomenon has been studied in
a great number of theoretical works, references may be found in [180].

This section conside the group-theoretical aspects of the problem of boson
pair production in a variable homogeneous electric field. This problem has been
considered in [181]. In the simplest case of a scalar particle, the problem reduces
to that of a quantum oscillator with variable frequency [181, 182]. The problem
of a quantum oscillator with variable frequency has been already considered in
Sect. 18.2.

19.2.1 Dynamical Symmetry for Scalar Particles

Let us first consider a scalar charged particle with mass m in a homogeneous
electric field E(¢). It is described by the wave function ¢(r, t) which satisfies

p+[p—AOPo+m*ep=0 (19.2.1)

(hereafter we use the units A=c=e=1), where p= —iV is the momentum
operator, A(t)= —[ E(t')dt’ is the vector potential and the point stands for
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the time derivative. It is seen immediately that a solution of the type
o(r,t)=exp (ipr) po(¢) exists and @, (?) satisfies the equation for the one-
dimensional classical oscillator with variable frequency

B0 () + 0 (£) 9o (£) =0. (19.2.2)

t
Here ?(1)=m*+n*(t), n(1)=p+ [ E(t')dt’ is the classical momentum of the
— ©

particle at a time moment ¢, p is the particle momentum at — — 0o [assuming
that E(z) falls fast at — + 00, so that =(¢) and w(¢) have definite limits, =, and
w+, respectively, as t— + o0].

After the second quantization, the function ¢(r, ) becomes the Heisenberg
operator

[a,(t) €7+ b7, (t)e ™ P"] (19.2.3)

p(r, t)= ! [} ar
T VP )

which satisfies (19.2.1) while the operator d,(t) and b, (¢) satisfy (19.2.2). At an
arbitrary time, the operators 4,(¢) and 67 ,(¢) are related to the operators 4, and
b p corresponding to the free motion at t— —oo, by means of the unitary
transformation

bp(1))=S5" (D, S (1) =up(1) 3y +0,(1)b7, (19.2.4)
bt ()=S"*(t)b*,S(t)=0,(t)d, + i, (t)b7,.

The functions u,(¢) and v, (¢) satisfy (19.2.2) and the boundary conditions: at
t— — 0, uy(t)~exp (—iw-t), v,(t)—0. The transformation (19.2.4) is speci-
fied by the matrix

!’ !’
g'= <“p Up)
= —=r |
Up Up

Note that as the transformation S(¢) is unitary, the transformation (19.2.4)
is canonical, i.e., it preserves the commutation relations. Hence it follows that
lup* —|vp[*=1 and therefore the set of all transformations is the group
G=SU(1,1). Here, as seen from (19.2.4), each g () corresponds to two operators
S(t) and —S(¢), and therefore operators S(¢) belong to a representation of a
group G which is the double covering of the group G.

One should bear in mind that if w, +w_ the system of stationary states for
t— + oo does not coincide with that for t— — 0co. However, transition from states
corresponding to frequency w_ to states corresponding to frequency w; is given
by an operator R of the same type as S. The matrix element of transition from an
initial state y_ (t— — 00, w=w_) to a final state Y, (t— + 00, w=w,), is given
by a matrix element of the operator T=RS. Therefore, without loss of
generality, we assume in the following that w_ =w.. Thus, the operator T
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performs a transformation of the type (19.2.4) in which «’ and v’ should be
substituted for

u=exp [i(o +a;)/2] cosh % and v=exp [i(a; —z)/2]sinh %

and the transition probability W depends on a single parameter 1= lim t(¢)
t— + o0

cosh ? sinh %
(19.2.5)

W=[Y+|T@W-DP 4o T
sinhz coshi

Equality (19.2.4) also describes the distribution of pairs of charged scalar
particles created in a gravitational field of homogeneous expanding universe.
Since the theory of this process may be found elsewhere [183—185], we present
here only an expression for the effective oscillator frequency

1§ 3[4\
2(Nen? k2 () —= 242 (2] 2.
*(t)=m*+k*(t) 2 g+16 <g> (19.2.6)

Here —k?(¢) is the eigenvalue of the Laplace operator

0

V| =g°‘ﬁ6a63, aa=é?‘ 5

g*# is the spatial part of the metric tensor in a synchronous coordinate system

(9% =1, g°*=0), g=det g,
To study the group structure of the problem, consider infinitesimal operators
of representation T'(g). They are

K.=a*'b*, K_=ab, K,=%(a*a+b"b+1) (19.2.7)
and satisfy the standard commutation relations of the SU(1,1) Lie algebra
[Ko,Ki]=1K:, [K-,K:]=2K, (19.2.8)

(in the following, for simplicity the subscripts of a, and %, are omitted).
It can be easily checked that the operator

_K.K_+K_K,

G, 3

-K2 (19.2.9)

is an invariant operator (Casimir’s operator), commuting with the operators
K., K_ and Kj. Substituting in (19.2.9) the explicit expressions for K, K_ and
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K, results in
Cy=k—%(@*a-b*b). (19.2.10)
Thus, for states
@)y
[/m!n!

for which (m —n) is fixed,

0,05,

|m, ny=

C,=const=k(1 —k)

and, as follows from Bargmann’s work [83], the states {|n+no, n)} are a basis for
irreducible representation T* of discrete series of group SU(1,1).

The matrix elements of these representations are known [83], and in the
simplest case n, =0, k=1/2 where the initial state is a vacuum

2
T12(0,052=(1 —g)¢", o=tanh? T _P (19.2.11)

VV,,=|<n,n 3 lulz

The parameter ¢ has simple physical meaning, namely, it coincides with the
reflection coefficient from a potential barrier of the form w?(x), as was argued in
Sect. 18.4.

Consider the states appearing during the system evolution. Let the state be a
vacuum at the initial moment of time, i.e., a|y(0)> =b|y(0)> =0. Then at an
arbitrary moment of time |y (¢)) =S(?)|(0), and this state satisfies

(SOaST O ®>=0, (SObBST MY (®)>=0.

Thus, it is now appropriate to consider the transformation inverse to (19.2.4). It
is easy to verify that it has the form

=SaS* =ita—vb™

‘f (19.2.12)
b=SbS* = —va* +ab.

Because of conditions a|y (¢)y =0, by (£)> =0,
W (®)>=exp[—ip®]|{(2)>, where (19.2.13)
I>=)/1-[(Pexpb*ah)0,05, (==, |¢|<1. (19.2.14)

u

It can be easily seen that the states () are generalized coherent states for the
representation T2 of the SU(1, 1) group.
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19.2.2 The Multidimensional Case: Coherent States

Turning to the pair production of bosons with spin s, note that arguments like
those of the preceding section lead to a canonical transformation for N=2s+1
degrees of freedom
&i= T+a,-T=Aijaj + Bijbj+
5i+=T+bi+T=Cijaj+D,~jbj+. (19.2‘15)

The time dependences of the coefficients 4;;, B;;, C;; and D;; are determined by
equations for the Heisenberg field operators ¢,(r,?) and can be essentially
different for different spins.

It can be easily seen that to make the transformation canonical, i.e., leaving
the commutation relations intact, one should impose the following conditions:

AA* —-BB*=1, DD*-CC*=1, AC*=BD". (19.2.16)

These conditions can be rewritten as MEM* = E, where

A B I 0
M=<C D), E=(O —1>’ (19.2.17)

so the transformations (19.2.15) are elements of the group G=SU(N, N). It
follows from (19.2.17) that the inverse transformation matrix is

AT -C*
M '=EMYE, M_1=(—B+ D*) (19.2.18)
and the conditions
ATA-C*C=1, D*D—-B*B=1, A*B=C'D (19.2.19)

must also be fulfilled.
The operators T(g) represent the group G which covers group G doubly. It is
convenient to unite the infinitesimal operators of this representation in a matrix

ta. atht
N=(Z'aa’ Z'b i ) (19.2.20)
i%j ivj

It can be seen immediately that the operator
C,=tr(NENE) (19.2.21)

is an invariant operator (Casimir’s operator), i.e., it commutes with all the
infinitesimal operators. The eigenvalues of C, can be found easily with the
commutation relations. The result is

C2 = (a,-+a,~ _bi+bi)2 —(a;'ai _bi+bi) —(N2 —N) (19222)
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(summation in repeated indices is implied). Thus, for states {|m,n)}, |m,n)
=|my,...,my, ny,...,ny) such that m —n=> m;—) nj=const, the operator
C, is identity times a constant,

C,=[(m—ny —(m—n)—(N*—N)]L (19.2.23)

It can be shown that higher-order Casimir operators C, are also constant in this
case. Hence it follows that the set of states {|m, n)} with m —n=const forms the
basis of an irreducible representation of the SU (¥, N) group. The G=SU(N, N)
group contains the compact Cartan subgroup K=SU(N)® SU(N)® U(1) and
thus, according to Harish-Chandra [186], has a discrete series of representations.
Specifically, the representation we deal with is of this type.

Let us consider in more detail the case where the initial state is the vacuum
| (0)> =|0,0), a;|0,0) =0, 4;|0, 0> =0. For any time ¢ the state [y(¢)) is given by

v (0)y=T(g@)¥(0)y=T(9)|0,0) (19.2.24)
and satisfies

aly(®y=0, b|y(®))=0, where (19.2.25)

=TaT*, b;=ThT*. (19.2.26)

Calculating the operators g; and b; gives

d;=Ajja;—C;b;

Bi= —(BY)ya" + (D), (19.2.27)
Equations (19.2.25) have the solution

[W(@)>=exp[—ip®I(®)>, <L[{>=1, where (19.2.28)

|¢>=Nexp (¢;;a;i" b;f {=A4*)"'C*=BD}, (19.2.29)

N=[det(1 (O] (19.2.30)
Matrix elements of the operator T(g) are obtained from (19.2.29),

ik ”’ . (19.2.31)
{ns} iJ

The sum is over all integers n;; satisfying the conditions

Y n;jj=m;=const, Z n;; =n;=const. (19.2.32)

j
Asin the preceding case, the states {|¢ >} are generalized coherent states. Such
a state is represented by an element of the coset space G/H, where H is the
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stationary subgroup of the vector |o). In our case |o) =0, 0), G=SU(N, N),
H=SUWN)®SUNN)® U(1), and the coset space G/H is realized by complex
N x N matrices { under the condition that the matrix 1 —{*{ is positively
definite.

The set {|{>} has all properties specific to CS. This is an overcomplete system
(completeness of some subsystems of such systems have been considered
previously [73]), and its states are nonorthogonal to each other. That is, the
scalar products are

> =Idet (1 =T D12 [det (1 —L" L)1
x [det (1 )7L (19.2.33)

The following relations also hold:

a a0 =Cyad b1 (19.2.34)

b bt [0 =Cuai bif |0 (19.2.35)

ahi|0> =0 +Culiyai b;F[C). (19.2.36)
The action of the operator T(g) on the CS |¢) is given by

T(9)|{> =exp(ip)|{’>,  where (19.2.37)

{'=(4{-B)(—-C{+D)~! (19.2.38)

@=2k arg [det (D —C{)]. (19.2.39)

The matrix element <n|T|¢) is
<n|T|E)=[det (1 —nn)]'2 [det (1 —£E )2
x [det(D—CE+n*B—n*AE)] 1. (19.2.40)
Hence we get a generating function for the matrix elements in the canonical basis,
2 <m,n|T(@|m',n" ) TT CCoi EXmiy
=[det(D—CE+n*B—n*AE)] 1. (19.2.41)

Here CJ, are coefficients in the expansion of CS [(),

[L>=N Y TIChlHmny, Y nj=m;, Y nj=n. (19.2.42)
] :

{n.;} ij

Now we are in a position to calculate the transition probabilities

W,=Y [<m,n|T

{m,n}

0,00, Y m=Y n=n. (19.2.43)
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Let us consider the operator

S=T"RT,

(19.2.44)

where T is the canonical transformation of (19.2.15), and R is defined by

R*a;R=e"";;, R*bTR=e“b}.
The operator S is also a canonical transformation:
S*a;S=4;;a;+ B,;b}'
S*bS=C;ja;+ Dbt
The calculations give
A=e"%4"4-€°C*C, B=e®A*B—ePC*D,
Ct=—e "B*A+e®D*C, D=—-e “B*B+eD*D
and the vacuum-to-vacuum matrix element
<0,0|S]0,0y=<0,0|T*RTI0, 0
is obtained taking account of (19.2.45),
{m,n|R|m’',n'> =TT S pm;Opme 2"
The result is

0[S[0> =Y |<m,n|T|0,0)Pe 2=y W,e2".
n=0

On the other hand,
0|S|0y=N=|det D|2> and
|det D|=|det (D*D —e~ 2B B)|

=|det D|*|det (I —e~2"%¢*{)|.

Finally, the generating function for the transition probabilities is

det 1-{70)
det (I-10*()

This expression can be rewritten as

G@)=) Wua"=

?(t)=W0exp< g?k ), Sk=_tr{(C+C)"}.

(19.2.45)

(19.2.46)

(19.2.47)

(19.2.48)

(19.2.49)

(19.2.50)

(19.2.51)

(19.2.52)

(19.2.53)

(19.2.54)
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Note that { *{ is a Hermitian nonnegative definite matrix, so it can be reduced to
diagonal form. Let g;, 0<g; <1, be the eigenvalues of this matrix. It is seen that
the probability W, of n-pair production is determined by N numbers g;, and the
generating function for the probabilities W, is the product of N generating
functions for the one-dimensional case.

19.2.3 The Multidimensional Case: Nonstationary Problem

Let H(¢) be a time-dependent Hamiltonian, linear in the infinitesimal operator of
representation 7'(g),

H=Aijai+bj+ +/Lja,~bj+ Cija;'aj +Dijbi+bj,
ct=C, D*=D. (19.2.55)

Solutions of the nonstationary Schrédinger equation with the Hamiltonian
(19.2.55) have the form |y (2)) =exp[—ip(®)]|{(¢)>. To calculate the time
derivative of |{) we use

dit (det A)=det Atr (A4™1). (19.2.56)
Hence one gets a useful relation

d 1 +ry—1 d + +7+

— > =}tr [(1 =L — (A =L OND +Luad bi" 0. (19.2.57)

dt dt

With (19.2.34-36), we obtain equations for {(¢) and ¢(¢):
i{=(4+{4"{+C{+(D), (19.2.58)

¢=Aulu —% tr{(1-{7)7! dit (1-C*0}. (19.2.59)
In view of (19.2.58)
i 4 (100 =~ DAL A1)
+(1={TODT-DTA-LTY) (19.2.60)
so that (19.2.59) is reduced to

p=%tr{4*{+{"4}. (19.2.61)

Equations (19.2.58, 61) determine the evolution of { and ¢ completely.
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In the simplest case, 4 and 4—0, C and D—const, as ¢ goes to infinity. Then,
because of (19.2.59),

{(t)=exp(—iCt){@exp (—iD™t). (19.2.62)

So all eigenvalues of the matrix { * { have definite limits, g;— 0{”), which determine
the pair production probability according to (19.2.53).

Thus, the pair production probabilities are functions of 9, ,. . ., gy, Which are
obtained from the solution of (19.2.58). The time dependence of the coefficients
A, Cand D is determined by the original equation for the field operators as in the
one-dimensional case.

It is noteworthy that (19.2.58) can be simplified in some cases. For instance, if
the homogeneous electric field has variable magnitude but fixed direction (say,
along the z axis) the particle spin projection on the z axis is conserved. Therefore,
the canonical transformation (19.2.15) couples only @; and b;". Thus, the
problem is essentially one-dimensional. However, the time dependence of the
transformation coefficients can be more complicated than in the one-dimen-
sional case.

19.3 Fermion Pair Production in a Variable Homogeneous
External Field

This section considers group-theoretical aspects of fermion pair production in
variable homogeneous external fields. We show that the SU(2N) group, where
N=2s5+1, s being the particle spin, is the dynamical symmetry group of the
problem. At an arbitrary moment of time the system states are CS associated
with a representation of the SU(2N) group. The pair production probability
is given by the modulus squared of the representation matrix element. For a
spin-1/2 particle the presence of dynamical symmetry enables the problem to be
reduced to the more simple one, of spin motion in a variable magnetic field
[182,187-189]. In this section the results of [187,190] are given in some detail.
For other problems related to calculating the pair production probability, which
are beyond the presented exposition, see [180, 189].

19.3.1 Dynamical Symmetry for Spin-1/2 Particles

Let us consider a charged spin-1/2 particle with mass m in a homogeneous
electric field E(¢). It is described by bispinor y(r, t) which satisfies the Dirac
equation

W=Hy, H=[p—A@)]a+mp, (19.3.1)
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t
(using the units h=c=e=1) where 4 (t)= — [ E(t')dt'is the vector potential, , f

are the standard Dirac matrices, p= —iV is the momentum operator and the
point stands for the time derivative. It can be easily seen that the solution of
(19.3.1) is of the form

Y (r, t)=exp (ipr)yo (2).
Hence the equation for y,(¢) is
o= [m()a+mPBlso. (19.3.2)

t
Here n(f)=p —A()=p+ | E(t')dt’ is the classical particle momentum at a time
moment ¢z, p is the particle momentum at #—» — oo [ we assume that E(¢) falls
sufficiently rapidly as — + o0, so that z(¢) has definite limits # , ]. In a number of
special cases (19.3.2) can be reduced to a more simple form, though this cannot
be done in general.

1a) #=E(t)=E(t)n, where the unit vector n is invariable. Then n=p,
+(mn)n, pyn=0, and (19.3.2) becomes

iWo=(QyJ; +Q3J3)¢, where (19.3.3)
Q=2)pt+m?, Qy=2mn, (19.3.4)
Ji =07 (pa+mp), Jy=%na (19.3.5)

With an extra operator J,=iQ;!(p.a+mp)(nx), the set J; satisfies the
standard commutation relations of the SU(2) Lie algebra: [J;, J;]1=1kim Jpu-
Consequently, (19.3.3) is similar to the equation describing the motion of a
spin-1/2 object in a variable planar magnetic field,

H(1)=2()=(2:(1),0,25(2)).

In particular, with the exact solution of the Dirac equation given in [191], one
can get a new exact solution of the spin precession problem for a magnetic field of

the type
H(t)=(c,0,a+btanhyr).

Note that besides J; the Dirac matrices can be used to construct operators K;
generating another SU(2) Lie algebra and commuting with the operators J,. For
pL=const, one can work with another reference frame in which p, =0, =(¢)
=(0,0, n(r)), since the operators

K= —% 03 B, K2=% wouzf,  Kz= _% %303 (19.3.6)
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satisfy the same conditions. The operators K;, K, and K3 commute with the
Hamiltonian, so they are conserved quantities. Therefore a particular solution
of (19.3.2) with =(¢) =(0, 0, n(2)) exists, which is an eigenfunction of the operator

K= —% o0, . This fact has a simple physical explanation: the conservation of

K; is associated with invariance of the Hamiltonian H with respect to rotations
around the third axis.

b) Let p, =0, =(t)=(0, 0, (?)) and the particle has an anomalous magnetic
moment u. Here the Dirac equation is

o= [m(t)as +mpP +ipsi(t) Pos 1o, (19.3.7)
or, equivalently,

io=(2J)yo, where (19.3.8)

Q=2(m, p,n), J=1(pAiPas,as). (19.3.9)

Thus, in this case SU(2) is also a symmetry group.

¢) For homogeneous expanding Universe the Dirac equation can be reduced
to the same form [184].

2a) Suppose the electric field vector E (¢) =7 (¢) lies in a fixed plane, e.g., the
plane (x;, x,).

Consider the operators M;, N;

i 1
M;+N, =3 (p3o3 +mp)ay, M2+N2=Z (P33 +mp)oy

i (19.3.10)
M;+N;= =7 %1%, £=|/p§+m2,
M, —N1=%‘°‘1, M, —N;=%a,,
(19.3.11)

1
M;—N; =% (p303 +mp).

It can be easily verified that [M;, N;]=0, and the operators M; and N; satisfy the
standard commutation relations for the SU(2) Lie algebra. Now the Dirac
equation (19.3.2) is as follows:
Wo=R(M—N)yo, where (19.3.12)
Q=2(my (1), 12 (1), £). (19.3.13)

Consequently, the dynamical symmetry group is SU(2) x SU(2). Now
Yo (1)=S(2)Yo(0), S(2)=S;(2)S,(¢), and the operators S;(¢) and S, (?) satisfy
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i$;=(@M)S;, iS;=—(2N)S, (19.3.14)

with the initial conditions S, (0)=1, S,(0)=1.

Again the problem is reduced to the spin motion in a variable magnetic field
H(t)= £ £2(¢). In particular, if the electric field intensity is a uniformly rotating
vector in the plane x;, x, [n;(t)=mncoswt, m,(t)=nsinwt, n3=0], the pair
production probability is given by the formula for spin-flip probability obtained
by Rabi [192]. Note that K3 = —io,a, /2 is an operator commuting with the
Hamiltonian, since the problem has the symmetry plane (x;, x5).

b) Let the particle have an anomalous magnetic moment y, p; =0, and the
vector E(?) lies in the plane (x;, x;). The Dirac equation is

i¢o=(91M—92N)lﬁo, (19.3.15)
where the operators M and N are given by (19.3.10, 11) with p;=0, and

Q, =2(ny + iy, My — pity, m) (19.3.16)

Q,=2(my —ptiy, mp + psty , m).

As in the preceding case, K3 = —ioy, /2 is conserved.

¢) Let the particle have an anomalous magnetic moment y, and the electric
field is E(¢) = E(¢)n, where the unit vector n is time independent and directed, for
instance, along the axis x;. The Dirac equation is reduced to

io=(2,M —2,N)yy, where (19.3.17)
M-N=%}((ma),a3,B), M+N=53(—iosp,if(na), —i(na)as)

(19.3.18)
Ql=2@1+#ﬁ3’n3,m), 92=2(pl—.luﬁ3’n3,m)- (19’3’19)

Now the conserved operator is K3 =i(an,)asf/2.
3. In the general case of arbitrary E(¢) there is no additional integral of
motion, and SU(4) is the dynamical symmetry group.

19.3.2 Heisenberg Representation

Up to now y(¢) was not considered as a quantized field. After the second
quantization, the bispinor Y(r, t) becomes a Heisenberg operator

7 1 A i + —ipr
l//(r, t)=(71;)3T 6=zj:1 j dap / zn_p [ap,(t)u,,,e‘”'+5p¢,(t)v,,,e P ]
(19.3.20)
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Here ¢,=]/p*+m’, up, and v,, are bispinors which are eigenvectors of the
operator Kj: 2 Kyup,=0uUps, 2 K30p,=00ps; Gps, dps(bps,bps) are the crea-
tion-annihilation operators of the particle (antiparticle) with momentum p and
the K; eigenvalue (6/2). The operator ¥ (r, t) satisfies iy = [# (¢), /], which is
equivalent to (18.2.1), and the Hamiltonian operator #(¢) is obtained in a
standard way from the nonquantized operator . '(¢). The time evolution of the
Heisenberg operator y(r,t), as well as dps and Epa, is given by a unitary
transformation

e (D=8 ()4, S(t), b, ()=5"()b;,5(),

which conserves the commutation relations. As the equation for V(r,?) is
linear, the transformation of the operators d,, and b}, is also linear. Besides, in
cases 1 and 2 o is conserved, and the subscripts po in a,, and b,, can be omitted,
so

a()=A'(t)a+B' )b*, b*(t)=—-B'(t)a+A4A'()b". (19.3.21)

As the transformation (19.3.21) is canonical, |4'[*+|B'|*=1, the transfor-
mations of (19.3.21) belong to SU(2), and operators S(¢) realize a representation
of this group.

One should bear in mind that two systems of states stationary at t— + oo
do not coincide in general. However, the transition from one system to the
other is given by an operator R of the same type as S. The matrix element for
the considered transition from an initial state ¥_(z— —o0) to a final state
¥4+ (t— + ) coincides with the matrix element of the operator T=RS. The
operator T determines the transformation of the type (19.3.21) in which one
should replace 4’ and B’ for

A=exp [i(@; +¢;)/2] cos (6/2)
and
B=exp [i(p; —@,/2]sin (6/2).

In this case the transition probability W depends only on a parameter

0= lim 6(z)
t—+ oo
0 .
cos 7 sin 3
W=K¥s|T@W- P go= 0 ol (19.3.22)
—sin 5 cos 3

Equation (19.3.22) also describes the charged pair distribution of spinor particles
created in the gravitational field of homogeneous expanding Universe.
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Let us consider the infinitesimal operators of the representation T'(g),

J.=a4%"b*, J_=bs, Jy=%1@Gra+b76-1). (19.3.23)
They satisfy the standard commutation relations for the SU(2) Lie algebra

[Jo, Jel=xJy, [J-,Ji]=—-2J,. (19.3.24)
The operator

A

> +J3 (19.3.25)

G

is an invariant (Casimir’s) operator. With the explicit expressions for J,, J_
and Jo,

C=3[1—(@*a-b"by]. (19.3.26)
Thus, for states [0,0) and |1,1>=b%a*|0,0), C,=3/4 and for states |0, 1) and

1,0), C,=0. Consequently, states |0, 0) and |1, 1) realize the spinor representa-
tion of the SU(2) group, and the pair creation probability is

W =|<1,1|T(g)|0, 03> =sin? (6/2),
B

g=<_g /I)’ |BP =sin? (6/2).
In other words, the pair creation probability is equal to the spin-flip probability
induced by magnetic-field variation.

Let us consider the evolution of the system states. Initially the vacuum was
[ (0)>, where |y (0)> =5y (0)> =0. At a moment ¢, |y (£)> = S(¢)|(0)) and the
state vector satisfies

SOES* O ®Y=0, SOBS* ()Y (t))=0. (19.3.28)

(19.3.27)

We are led to a transformation inverse to that of (19.3.21) and it can be easily
verified that it has the same form,

;§=sizs+ =A4a—Bb* (19.3.29)
b=SbS™ =Bi* + 4b.

In view of the conditions 4|y (£)> =0, 5]y (£)> =0 we conclude that
[ (0)) =exp[—ip@)]|C(2)), where (19.3.30)
IL>=+[¢P) " Y2exp (ath)|0,0), (=B/A. (19.3.31)

The states |{) are generalized coherent states.
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19.3.3 The Multidimensional Case: Coherent States

If the fermion spin is s, arguments analogous to those in Sect. 19.2.2, lead to
canonical transformations for N=2s+1 degrees of freedom,

ﬁi= T+ﬁiT=Aijéj +Bijbj+’

b =T*b}T= Cya;+ Db} (19.3.32)

It is easy to see that this transformation is canonical, i.e., conserves the
commutation relations, if the following conditions hold

AA*+BB*=1, DD*+CC*=1, AC*=-BD" (19.3.33)

or, equivalently,

B
MM™* =1, where M=(g D>' (19.3.34)

Clearly, transformations (19.3.32) belong to the group G=SU(2N), and the

operators T(g) realize a representation of this group.
Besides, it is seen that the inverse transformation matrix is

+ C+
M l=M", M—1=<B+ D*) (19.3.35)

and the following conditions must be fulfilled
AtA+C*C=1, D*'D+B*B=1, A'B=-C'D. (19.3.36)

It is suitable to combine the infinitesimal operators of the representation T'(g)
in a single matrix

N
N=(Zf&’f‘1 ;ffg; ) (19.3.37)
i%j iYj

A direct test shows that

C,=tr {NN} (19.3.38)
is an invariant operator (Casimir’s operator), as it commutes with all infini-
tesimal operators. With the help of the canonical commutation relations, the

expression for C, can be written as

Cy= — (a6, —b; b;y* + (a4, — b b))+ (N* —N)L. (19.3.39)
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Thus, for the states

{'m,n>}, 'm,n>='m1,...,mN,n1,...,nN>,

m=0,1, n=0,1, m—n=) m;—) nj=const,
the operator C, is the identity times a constant,
C,=[—(m—n)*+(m—n)+N?*-N]L (19.3.40)

It can be shown that the higher order Casimir operators C, (p=3,... 2N +1)
are also reduced to constants. Thus, the set of states {|m, n)} with (m —n=const)
forms a basis for an irreducible representation of the SU(2 N) group, namely, the
representation given by the Young diagram [17¥].

Note that the isotropy subgroup of the state vector |yo) is Go=SU(N)

x SU(N) x U(1). Consequently, according to [15] the representation in view can
be realized in the space of functions analytical on the coset space M =G/G,.

Let us analyze the simplest case where the initial state is the vacuum:

[(0)> =10,05, a;|0,0>=5,0,05>=0. For >0 the state [(£)>="T(g(t))|0,0>
satisfies

Gl @Dy=0, bly@))=0. (19.3.41)
Here

G=TaT*, b=ThT". (19.3.42)

Thus, we arrive at a transformation inverse to that in (19.3.32),

G=Aa,+Cib,  bi=Bja’ +Djb;. (19.3.43)

ij%j

It can be easily verified that the solution of (19.3.41) is

(0> =exp [—ipOIC@®),  LOL®>=1, (19.3.44)
where

|¢> = A exp (i 6|0 0) (19.3.45)

{=—A")"IC*=BD™', N =[det(1+(TD] 12 (19.3.46)

Expanding the exponent in (19.3.45) into the Taylor series yields an
expression for the matrix elements of the operator T(g)

nn—1)

1
<m,n|T(@))0,0>=4" Y (-1) * Fepls,,jc,.m...c,m (19.3.47)

P,P, M
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where ¢p= +1 is the parity of permutation P, and

'm,n>=O,...,151,0,...,1i",...,0,...,1jl,...,1jn,...>.

The summation here is performed over all permutations of indices iy ,. . . , iy,
jl L ’jn'

P(iy,. .., i)=(i1,...,0y) (19.3.48)

Pj(il,' .. ,jn)=(iia' .. ,j;l)‘

The state |{) is a generalized coherent state. It is given by the point { in the
coset space G/Go, where G=SU(2N), G, is a isotropy subgroup of [fo). In the
present case,

Wo>=[0,0>, G=SUQR2N), Go=SU(N)xSU(N)xU()
and the coset space consists of the complex N x N matrices.

The system {|{>} , just as the usual CS system, is overcomplete and the states
are nonorthogonal :

Glly=[det(1+{ ()] P [det (1 +LT L)1 P det (1 +LC). (19.3.49)

The following relations for the infinitesimal operators of the representation
T(g) are useful:

g a0y =C;a¢ 6510, (19.3.50)
Bl bi|y=Cua B |0, (19.3.51)
abi|0> = —Cul0> +Luliéit b 1. (19.3.52)
The action of the operator T(g) on the coherent states |() is given by

T(g)|> =exp (i@)|Cy, (19.3.53)

where

{,=(4{+B)(Cl+D)"! (19.3.54)
p=argdet (C{+D). (19.3.55)

It is now easy to get an explicit expression for the representation matrix element,

n|T@)|E> =[det (1+n*m)] 12 [det (1+&FE)]712
x det (D + CE+n*B+n* AE). (19.3.56)
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Hence one gets the generating function for the matrix elements of the operator
T(9)

Y <m, n|T(g)|m’, 0"y Couy (1) Cowrw (£) =det (D+ CE+n*B+n*AE). (19.3.57)

Here C,,,(&) are the expansion coefficients of the coherent state |¢) in the
canonical basis,

€y =det (1 +E7E)] ™2 Y. Cpon(&)|m, m). (19.3.58)

Now we are in a position to calculate the transition probabilities,

W,= Y, [Km,n|T(g)[0,0)

{m,n}

:, Y m=) n=n. (19.3.59)

Consider S=T*RT, where the operator T corresponds to the canonical
transformation (19.3.32) and the operator R determines another transforma-
tion

R*4R=e "G, R*b}R=e"b}. (19.3.60)
The operator S corresponds to a canonical transformation,
S*a,S=A,;d;+ B;;b;', (19.3.61)
S*bitS=Cijé;+ Dybj.

After necessary computations
A=e"P4"4+e°C*C, B=e“4*B+e°C*D (19.3.62)
C=e""B*4+e°D*C, D=e “B*B+eD*D.

Let us find the matrix element

£0,0/S T*RT

0,05>=<0,0

0,0>.
Because of (19.3.60)

{m,n|Rjm',n"y =™ T Opnm;Onn; (19.3.63)

so that

<0|S|0> =Z Km, an 0, 0>|2e_2i""=2 W, e~ 2in0, (19.3.64)
On the other hand

<0|S|0> =N =|det D|, (19.3.65)
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|det D|=|det (D*D+e~2B* B)|
=|det D]?|det (I+e~2¢* (). (19.3.66)
Finally, the generating function for the transition probabilities is

detI+#*0)

FO=1 W= det(I+070)

(19.3.67)



20. Generating Function for Clebsch- Gordan Coefficients
of the SU(2) Group

This chapter shows that using coherent states enables the generating function for
the Clebsch-Gordan coefficients of the SU(2) group to be obtained easily [193].
The method considered can also be used in a number of other cases.

Recall from Chap. 4 that polarizational states of a particle with spin j can be
described by polynomials f(z) belonging to the space #;, i.e., polynomials
satisfying the condition

I£12=ff@Pdw(z) <0, z=x+iy,

dy ()= J D (4 41y r2dxay. (20.1)

The standard basis in space #; is the set of functions

. / 2)!
f}"(Z)=C’j"zl+#, Cju= GT%'J();?FW, —jS#S]. (202)

Likewise, the functions

Jinsions @15 22) = fiin (21) fion, (22)s 1S <ji, —L<me<j (20.3)
form the basis of space

1= ®F

Here % ;, is the space of polynomials f(z;,z,) of two complex variables,

satisfying the condition

1£125=F |f 1, 22)Pdu,j, (21, 23) < 0
du,hjz (z1,22)= dllh (z1) d#jz (z2)-

(20.4)

Here, as for space %;, a vector in space %;, ;, describes a spin state of a two-
particle system with spins j; and j,.
Note the well-known fact that the space &, ;, is decomposed as a direct sum,

Fiiin= (‘B Fi, | =hl<i<ii+i, (20.5)
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where space #7 consists of those vectors of &, ;, which transform according to

representation 77 of the SU(2) group. Note also that there is a vector with the
lowest weight, fj=f; _;, in space 7, which satisfies the conditions

Ffi=jG+0f  Lfi=—ifs (20.6)
or, equivalently,

J_fi=(01+02) fj=0, J3f;=(2101+2,0,) fi= —Jf, 0;=0/0z;. (20.7)
Here

Ji=JM+J®,  Jo=Jtid,.
Equations (20.7) can be easily solved, giving

=Cilzs—2),  k=ji+jr—j, 0<K<2jmn. (20.8)

The action of operators exp ({J ;) on this function gives the system of coherent
states

Fe, 2= fi i 22, O =exp (LU4) £ (21, 22)

=D(21 _22)j1 +J'z”j(1 +Czl)jl—jz+j(1 +C22)J'2—j1+j’ (209)
where
=< Q@i+ D12 21! )1/2 20.10)
Ur+2 =N Uy =+ G =+ G+ 2+ + D! )

This expression for f;, ;,i(z1, 22, {) was obtained in [193]; it is the generating
function for the Clebsch-Gordan coefficients of the SU(2) group:
f.;'ljzj(zl »2252)

=Z Z Z (CJ'ZJMCJ'le—lulcj'zzjz u;)llzz{l —”1Z£Z_uzzj—” <]1 11 ;j2 ,u2|j.u'>, (20~1 1)

H1 M2 M

where
{JitsJa ﬂz'jﬂ>

is the Clebsch-Gordan coefficient.
Let us look at some examples taken from [193].

1
f¢,¢,0=l‘/‘§‘ (z2—21),  figa=U+zz)(1 +22,),



20. Generating Function for Clebsch-Gordan Coefficients of the SU(2) Group 255

fisa=Vk@-2)(+zz1),  fraa=(1+2zz) (1 +22)),

fran=V/i@—z)(A+221),  frsa=( 42201 +22), (20.12)

[ 2j . )
Jiti-+= _‘“2]._{_1 (z2—z) A +zz)P 7Y, figea=1+2zz)Y (1 +225),
1

fl,1,0=V—g (z2—2z1)%  fi1a=(z2—z1) (1 +2z1) (1 +z23),

Sfra2=01+zz)* (1 +22,)°.
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This chapter gives an exact mathematical formulation and proof that in
representations of a compact Lie group G specified by large quantum numbers
the generators of the corresponding Lie algebra ¢ can be replaced by c-numbers
[194]. This is an extension of the fact that if the angular momentum is large
(j—o0), the angular momentum operators J,, J,, J, can be replaced by the
following c-numbers;

Je—jsinfcosp, J,—jsinfsing, J,—jcos0.

Let us start with the group SU(2). In this case generators of the Lie algebra are
reduced to c-numbers as j goes to infinity. In other words, the “classical spin
vector’ appears, which is represented by a point on the two-dimensional sphere
S2. In this connection, Fuller and Lenard [195] considered a sequence of
spherical harmonic representations of SO (n) and showed that the limiting space
is the Grassmann manifold G(n,2), i.e., the manifold of all oriented two-
dimensional planes in the real n-dimensional space R".

Simon [194] presented a method of finding such spaces in the most general
case. His idea was to use the coherent states. In the classical limit we get the orbits
of the coadjoint representation of the Lie group, while different orbits are
involved for different representations. For instance, for the vector representa-
tion of SO (4) the §% x S2 space applies, while for the spinor representation of the
same group the S JS? space applies.

Let us now formulate and prove the Simon theorem. We suppose here that
the reader is familiar with the main concepts of the theory of compact Lie groups
[70].

Let G be a compact simple Lie group and T; = T be a fixed representation of
group G characterized by a highest weight 4. Denote by Ty and #* a
representation of G and the space of this representation characterized by the
highest weight NA. Let ¢, for fixed N be a copy of space #™ labeled by the point
oe A, where A is the finite subset of lattice Z*. Let = @ H#N.

aeAd

Define an operator S,(X) in space #," (xe A, Xe ¥, ¥ is the Lie algebra of
group G) as the tensor product of a generator X of the Lie algebra in the
representation Ty = TN* corresponding to the point a. All the other points of the
set A correspond to the unit operator in the tensor product.

Let Xi,. .., X,, be a fixed basis in the Lie algebra ¢, and H be a multiaffine
function of |A|m vectors S, ; (x€ A, i=1,. .., m, signifying that the function is a
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sum of monomials, and the degree of the variable S, ; in every monomial is zero
or one). The operator H(S,(X;)) is determined unambiguously, since each
monomial contains only commuting operators.

Now one can evaluate the quantum partition function of the operator H, as
given by

Z§(B=dy'""tr {exp [~ H(BS.(X)/N)1}, (1.1

where dy is the dimensionality of space H#V.

Let us find the corresponding classical partition function. Let O* be an orbit
of the coadjoint representation of group G passing through point 1€ % * and du
be a G-invariant measure on the orbit such that u(B = 0*) is the group measure
for the set {xe G|Ad*(x)1e B}. Let O, be a copy of O* corresponding to the
point ae A and 0= @® O,. Then the classical partition function is

a

Zy(p= | exp[—H(BL(X)]IT du(L). (21.2)

A
OII

Simon [194] proved the following theorem, which is a generalization of the
Lieb theorem [82].

Theorem. Quantities ZJ () and Z(p) given in (21.1,2) satisfy the following
inequalities:

Za(B)<ZG(B)SZa(B(1 +aN™1)), (21.3)

where a=2(4, 8)/(4, A), Ais the highest weight of the fundamental representation
of the group G, d is the halfsum of positive roots of the Lie algebra ¢, (4, d) stands
for the Killing-Cartan inner product of vectors 4 and J in the root space.

Remark. The lower bound in (21.3) is valid also when 4 is not a fundamental
weight; perhaps this is also valid for the upper bound.

Proof. Let |¢) be a vector in space # which corresponds to a maximal weight 4
and P(1)=|p) {¢| be a projection operator on state |¢)>. Note that {¢|X|p)
= NA(X). Moreover, since N/ is the maximal weight, any unit vector |y in #"
such that (y|X|x>=NA(X), Xe# (# is the Cartan subalgebra of the Lie
algebra %) must have the form |y» =exp (iy)|¢), because the weight space is one-
dimensional. Further,

(T(9)9|X|T(g)@)=N(Ad*(g))(X), so (21.4)
T(9)P()T(9)~ ' =P(%) (21.5)
if and only if Ad* (g)A=41.



258 21. Coherent States and the Quasiclassical Limit

Let /e O* and ge G, where Ad*(g) =1 Introduce an operator,
P()=T(@PNT(9)™" (21.6)

It is easy to see that P(/) does not depend on the choice of g, provided that
Ad*(g)A=1. Note that
tr [Xy P())] = Ni(x), (21.7)
as
tr [XyP())]=tr {X/NTN(g)P('D TN(g)_l}
=tr {[Ad (g7 ") Xy]P(1)} =NA(Ad (g~ ) X)
= N(Ad*(g) 1) (X)=NI(X). (21.8)

Moreover, if du(g) is the Haar measure on G, and p=dy[i, then

[ P(hdu()=1, since (21.9)
OA

§ P()du()=dy | T(g) P()T(g)™*du(g)=c, (21.10)
OA

as a consequence of Schur’s lemma. Calculating the trace of the operators in
(21.10) yields (21.9). Let I={L}e O™, P({l,})=® P(l,); as a consequence
of (21.9) *

| P() ® dul)=1, (21.11)
oW o

so that {P())} is the set of projectors to the coherent states. According to
(21.7), the symbol of operator H(SS,(X;))/N is exactly H(pL,(X;)), so that the
lower bound in (21.3) is a consequence of inequality (1.6.11). It is possible to
prove as well [194] that the contravariant symbol of the same operator is
H((1 +aN"Y)1,(X})). Thus, the upper bound (21.3) is also a consequence of
inequality (1.6.11).

Remark. Note that the Lieb theorem [82] is a special case of this result for
G=S0(3).

Example 1. Let us consider the spherical harmonic representations of the
SO(2n) group. These representations correspond to orbits passing through the
point

10 (21.12)
0 0
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and the orbits are the Grassman manifolds G (2#, 2) of 2-planes in the (2n)-space.
Then (4, 6)=(n —1) (4, 4) and the theorem gives the result of [195] for the SO (2n)
group. A similar calculation leads to the result of [195] for the SO(2n + 1) group.

Remark 2. Let us consider the spinor representation for the SO (2n) group. Then
A=(w;+ ... +w,)/2, where w,,. .., w, are fundamental weight vectors for the
Lie algebra of SO(2n), and the orbit passes through the point

c 0 0
0 o
1 (21.13)
2 ) )
0 g
0 1 .
where o= 1 o) The orbit is
O={}M|M'= —M,M'M=MM'}, (21.19)

i.e., 0={2K|Ke O} is the set of antisymmetric orthogonal matrices. A direct
calculation indicates that

3, )J(A, N =n—1.

Thus, if Z, is defined in terms of O, then

Zy (§>szé”(ﬁ)szd (-’; <1 +”—;,_1>> (21.15)



22. 1/N Expansion for Gross-Neveu Models

This chapter considers a class of quantum field theoretical models — the Gross-
Neveu models - following [196]. These are models of an N-component fermion
field in two-dimensional space-time with (/)? interaction; a number of exact
solutions can be found for equations of motion in these models. Following
Berezin [94], we show that the parameter 1/N is analogous to Planck’s constant,
so obtaining some classical Hamiltonian systems as N— oo. The phase space is,
however, nonlinear and the Poisson brackets are not canonical. The symmetry
group for these models is SO(2n). It is remarkable that the constructions in this
chapter are mainly algebraic and therefore the results obtained slightly depend
on particular features of the models.

22.1 Description of the Model

The original Gross-Neveu model [197] is given by the Lagrangian
2
=il b+ S Gl a=013k=1,...,N. @2.1.1)

Here and in the following, summation over repeated indices is implied ; the field
¥y is a two-component spinor. It is suitable to use the Majorana representation
of matrices

Yai Y0=0, Y1=loy, (22.1.2)

where o, and g, are the usual Pauli matrices. We use in the following

1
¢k=—5 O +ixr®*)

7

and a 2 N-component field
=0t Lt 2 LN, p=12,0 2N (22.1.3)

Here each component is a spinor: y*= {34}, a=1,2.
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The fields y4 are operators, and they satisfy equal-time canonical anti-
commutation relations

{6, 13O} + = 1y Bapd (x — ). (22.1.4)
Correspondingly, the Hamiltonian has the form

H=%[dxdyd(x—y) [Hy,,(x,y) + Hy,x(x,y) —g°Q*(x, y)], (22.1.5)
where the operator densities Hy, H, and Q are given by

Hy(x,y)=91;(x,y), Hay(x,y)=D5(x,)

Q(x,J’)=(p12(x,J’)= _¢21(y’ )C), (2216)

1
¢aﬁ(x9 y) = Z [Xy(X), Xlﬂl(y)]’

bracket stands for the usual commutator. The functions H; and H, are
antisymmetric when the variables x and y are interchanged

Hl(x’y)= _Hl(y9x)s

(22.1.7)
HZ(x’y) = _HZ(ya x)'

Note that in the classical limit (A—0) the Clifford algebra (22.1.4) is reduced to
the Grassmann algebra, while (22.1.6,7) are not changed.

Because of (22.1.6,7), the model is invariant with respect to global
transformations belonging to the SO (2 N) group. On the other hand, the bilocal
operators ®,4(x,y) in (22.1.6) belong to the infinite-dimensional orthogonal
algebra 4. Hence it follows, in particular, that the Heisenberg equations for the
operators ®,4(x,y) form a closed system,

Hl,t(x’y)-i-Hl,x(x,y)+H1,y(xsy)

=§ [Q(x,»)Q(y,»)+Q(»,»)Q(x, )
—Q(x, x)Q2(y, x) —Q(y, x) Q(x, x)] (22.1.8)
Hz,t(xay) _HZ,x(x’ y) _HZ,y(x’ y)
2

=% 120.920,)+20.5)20.)

—Q(x, y)Q(x, x) — Q(x, x)Q(x, y)] (22.1.9)
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Qt(an’) +Qx(x9 y) _Qy(xs y)

2
=% 1206, 0) Hy(x,9) + o (5, 9) 2(x, %)

—Q(y,y)Hy(x,y) —H (x,)Q(y,)] (22.1.10)

It is suitable now to replace the continuous variables x and y by discrete ones
nand m:n,m=1,..., A; in the final results the continuous variables are easily
recovered. The anticommutation relations (22.1.4) become

{Xg(n)’ X;(m)} += héuvéaﬂémn (221 N 1)

and the algebra generated by bilocal fields @,4(m,n) is the Lie algebra of
SO0(24).
The next step is to introduce the Fock representation

aﬁ=—llfz i) —igm)],  (@)* =V1—£ Di(m) +ixs(n)],
(at, ap} =0, {at, (@'} =h6ubm, aj0>=0. (22.1.12)

Respectively, we substitute ®,5(m,n) for another set of SO(2N)-invariant
operators

Apn =71f [(ar‘::) * ay _at‘lt(al’:l) * ]9 B, =%_ anal,

B,=t(@)" (@)t or Bi,=-Bn=%(d)"@)" (22.1.13)

The operators are skew-symmetrical in the subscripts, B,,= —Bu., B
= —B,!,, and they generate the Lie algebra of SO(24):

h
[Anma Akl] =§ (Anl(smk _Akménl)s

h
[Anm: Bkl] = 5 (6nlBkm + 5nkBml)s (221 14)

h
[ana BI:’;] = 5 (5nkAlm - 5mkAln + 5mlAkn - 5n1Alm)~

Using the matrix notations

A = [‘Amn]’ B= [an],
B*= [Bm*n] = - [Bntn]’
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one has

At=4, B'=-B, (B*)=-B*, and (22.1.15)
Q=[Q(m,n), Hy=[Hi(mn)], H,=[Hy(m,n)],

H{=-H,, H;=-H,. (22.1.16)
The two sets of the SO (2 N)-invariant operators are related by

A =}[Q+Q'+i(H, +H,)],

B =}[Q-Q'+i(H, —H,)], (22.1.17)

B*=%[Q'—Q+i(H, —H,)].

Now the Fock space & defined by (22.1.12) can be decomposed over irreducible
representations of the Lie algebra ¥ =S0(24). For example, the subspace %
spanned by arbitrary linear superpositions of states

BB .. .|0), (22.1.18)

invariant with respect to the global transformations SO(2N), form an irre-
ducible representation space for the Lie algebra SO(24). Actually, a space
containing states which transform according to an irreducible representation of
SO(2N) is also an irreducible representation space for SO(24).

Let us consider, for example, the quadratic Casimir operator of the Lie
algebra SO(2A) and show that this operator can be expressed via the Casimir
operators of the Lie algebra SO(2N). Evidently, for SO(24)

C,=4tr[4*+%(BB*+ B*B)]. (22.1.19)
On the other hand, the quadratic Casimir operator for SO(2N) is

Q*=%$Q"Q"™, where (22.1.20)

0" =1- ¥ L), 2] (@2.1.21)

A direct computation shows that
C,=H*NA(A+N-1)+ Q% (22.1.22)

A similar result is valid also for higher Casimir operators Cy, Cg, Cg,. . ., they
can be expressed in terms of

quQvu, quQleleQeu, L
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All states of type (22.1.18) are annihilated by Q2 (singlet states); the
eigenvalue of C, which is specific for irreducible subspace %, is reduced to

Co(F)=NA(A+N —1). (22.1.23)

Following [94], we shall now show that the classical limit occurs in subspace %,
as N goes to infinity. To this end, we replace the discrete basis (22.1.18) in % by a
system of generalized coherent states

|z> =exp (Z z,,,,,,B,I,,,>|O) (22.1.29)

(Zm,n= —Zn,m are complex numbers), whose properties have been considered in
Chap. 9.
Let H=H(Ay, (By)", By) be an operator containing only

AN _L i (ab)*ak, By _L % akak
’ N n=1 ’ N r=1

Bl =y ¥ @) @

Such operators will be called admissible. The subspace %, is invariant under the
action of an arbitrary admissible operator. Take an admissible operator Hy and
evaluate its covariant symbol

<Z|ﬁN|Z>
(lzy

Evidently, the symbols of the operators Ay, A5, By are independent of N.
Furthermore, it can be easily seen that

Hy(z,7)= (22.1.25)

HN(z,z')=H(z,z')+-1A7 Hy(z, 2), (22.1.26)

where Hy(z,7) has a definite limit as N—oo. In space % the Heisenberg
equations are

h dAy . 4 h dBy . &

= — ——=[Hy, By]. 22.1.27

— L =[Ay, By (22.1.27)

The corresponding equations for the symbols of the operators are obtained using
the results of Chap. 16,

dA 1 dB 1
h 71;={H,A}P.B.+N On, K —E= {H3B}P.B. +N Ry, (22.1.28)
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where the Poisson brackets have a noncanonical form (due to the nonlinearity of
the phase space in classical limit)

{(hhea=5 | L -2 5 -2

of

a_(I zz) o (= zﬂ] (22.1.29)

In the limit N— o0, (22.1.28) become the classical equations of mechanics on the
manifold .# (Chap. 9) with the Hamiltonian A~ H(z, 2).

Thus, the limit N— oo is equivalent to the usual quasiclassical limit. The role
of Planck’s constant in such a limiting process is played by the quantity k=N 1.
The resulting equations of motion are

dA 2i<aHB+aHA+ 6H+A 6H>

. N\ea T 7e B
a5 » 6H3+6_HA BaH Aa_H (22.1.30)
dr OB 04 0B 04

and coincide completely with the classical equations of motion.

22.2 Dimensionality of Space #,=#, in the Fermion Case

The Gross-Neveu model was introduced originally in a space ## which has a
larger dimensionality than that of #,. The question is, which information is lost
when passing from #} to 5, . As suggested in [94], the quantity we are concerned
with s the ratio of dimensionalities of spaces # and # for fermion systems with
a finite number of degrees of freedom (z+1). Then

dim #=2"*1, dim #=2NC*+D, (22.2.1)

According to a general relation given in [94]

. _ GV |
dim # = C(0) (22.2.2)
C,(N) are defined Sect. 9.3. Using (9.3.14) we get
dim F= I'(N+n+1)...I'(N+2n) T (1)L (3)...I'2n-1) 2223)

IT'(N+1)...T(N+2n—-1)T'(n+1) I (n+2)...I'2n)’
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It is convenient to transform this expression to

N
o _(n+k)(n+k+1)...2n+k—1)
dm A=T1Te =" 5 " kt2m-2 (22.24)

Clearly,
_, @n42s—D!(s-1)! (n+9)!2s)!
—y-n , Tygsg =2t 222.5
T (n+2s—DI(s+n—1)1" 21 (n+29)!s! ( )
and applying the Stirling formula yields
In (dim &) =nN1n2—cln2n+0(1). (22.2.6)

Thus, the leading term in the N— oo asymptotics of dim # is just dim .
Hence it is plausible that for large N no significant loss of information occurs if
Hy is substituted for .

22.3 Quasiclassical Limit

Turning back to the Gross-Neveu model, evaluate the symbols of operators,

<z|dlzy
{22y

Here |z) is the CS of (22.1.24).

As shown above, the quantum dynamics tends to classical dynamics as
N— o0, so the operators can be replaced by their symbols. According to Chap. 9,
the matrices 4, B and B* can be written as

_ (z|B|z>

z|B*|z>
z|z) ° '

B*(z,0)= {z|lz)

A@z,7)= (22.3.1)

B(z,2)

a=n|-Freee| mmnmi-goree

B —he* [NT— (€)™ (2232
Thus the effective Hamiltonian for the singlet states acquires the form

H=H,(, ¢, h,N).

In the limit N— oo new variables are appropriate,

¢=)/Ni,  Er=)N, (22.3.3)
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where { and {* can be considered as ¢ numbers and, following [196], the limit is
A=hN[-$1+("(], B=hN[I-{{"]?¢,
B =RNCY[I-=CC ]2, (22.3.4)

The corresponding Heisenberg equations (22.1.27) become the usual Hamil-
tonian equations

_%Ho
ar

0H,
o,
We have obtained a c-number Hamiltonian system associated with the singlet
sector of the Gross-Neveu model. Note that Planck’s constant 7 and the

parameter N are involved as a single combination AN.
Restoring the continuous variables x, y instead of discrete m, n, one gets

i(,= if = (22.3.5)

Hy(x,y) + Hy x(x, )+ Hy (%, )
=g’ [2(»,»)Q2(x,y) —Q(x, ) Q(y, x)]
H, (x,y) —H, x(x,y) —H, (%, y)
=g’[Q(,») 2y, x) —2(x, x) 2(x, y)]
Qi(x, )+ Qx(x, ) —2)(x, )
=g*[Q(x, x) Hy(x,y) —Q(y,y) Hi (%, y)].

(22.3.6)

However, since one deals with the subspace %, there are some additional
restrictions consequent to the fact that A (2 4 —1) independent real generators of
the Lie algebra SO(24) are parametrized by the A(A —1) real elements of the
antisymmetric matrix {. So there are A(24 —1) — A (A —1) = A2 real constraints
contained in the identities

2
A2+B+B=<f’2ﬁ> I, BA=A'B. (22.3.7)

These conditions have already been discussed by Berezin [94].
The respective conditions for the bilocal quantities are

[dz[Q(x,2)2(p,2) — Hi (x, 2) Hy (2, )] = (AN (x —),
[dz[2(z, )Q(z, y) — Hy(x, 2) Hy (2, y)] = (AN )*6 (x — ),
{dz[H,(x,2)2(z,y) + Q(x, 2) Hy(z, )] =0,
Hi(x,y)=—H\(y,x), Hy(x,y)= —Hy(y, %)

(22.3.8)
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Equations (22.3.6, 8) are still too complicated, and their general solution is
not immediately obvious. So it is useful to indicate a relation between the system
in view and that considered by Neveu and Papanicolau [198], and a more general
system studied by Zakharov and Mikhailov [199].

The system (22.3.8) is related to the symplectic group Sp (2n, R). Let
quantities #* and v® be transformed according to the (2n)-dimensional represen-
tation of Sp (2, IR). The system investigated in [198] is described by

w U =g*(Wbo,) 0",  of —vi= —g? (o)t (2239)

where the matrix

Iy
[sab]=[e“”]=< —(I)N 0 > (22.3.10)

lifts and lowers the indices. A simple calculation shows that the bilocal fields
hy(x, y, ) =u'(x, Dug(p, 1), ha(x,p, )=0"(x, )0a(p, 1),
o(x, p, t)=u(x, 1)v,(y, 1) (22.3.11)
satisfy (22.3.6). Therefore, we can use the results of [198] to obtain solutions of
(22.3.8). One should bear in mind, however, that not all solutions of (22.3.9)

satisfy (22.3.6) with the additional constraints (22.3.8). The simplest example is
the plane-wave solution for the Sp (2, IR) group. Then

. 1. ——/(cosf 1 sin ¢
“ g Wtk <sin 0)’ ”"_5 o+l <—cos 0>’

1 —sin 6 1 cos 6
a_ l/ _ =_ l/ - 22.3.12
v g o~k < cos 0>’ Oa g o —k <sin 0>’ ( )

0=yt —kx, o =|/k*+(ug*?>.

Here
o +k .
hy(x,y; k)= ’; 5— sin [k(x—)],
wk—k .
hy(x,y; k)= 7 sin [k(x —y)], (22.3.13)

o (x,y;k)=p cos [k(x—y)].

These h,, h, and  satisfy (22.3.6) identically, but not the constraints (22.3.8),
which hold for the following superposition of fields:
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kdk sin [k )]

H,

kdk .
Hy(x,y)=—hN | T sin [k(x —y)], (22.3.14)

Q(x,y)=hNug? j COS [k (x—»)]

Moreover, (22.3.6) are fulfilled if the parameter u satisfies an integral equation

I dk 1
p=hNug? 5 SERY ek

Besides the trivial solution (up=0), (22.3.15) has a well-known solution of the
superconductor type with u=0.

It is not difficult to get now the ground-state energy setting the bilocal fields
(22.3.14) into the energy functional (22.1.5). The calculation employing the
energy-gap given by (22.3.15) leads to

(22.3.15)

© dk k2+m2/2
—L(2kN) j ,  m=ug?,
2n VK +m?

where L is the system volume.

As expected, the ground-state energy depends only on a single dimensional
parameter m which takes the place of the dimensionless coupling constant. For
the trivial solution m=0, (22.3.16) is reduced to the standard sum over the Dirac
sea of negative energy states for massless fermion excitations. The integral in
(22.3.16) diverges as k— 00. The divergence can be eliminated, as usual, via the
standard regularization. The excited states can be considered along the same
lines.

Equation (22.3.9) have soliton-type solutions. We will not present here
explicit formulae for the single-soliton solution since it can be found in [196].
The multisoliton formulae can be obtained using the technique described in
[199].

(22.3.16)



23. Relaxation to Thermodynamic Equilibrium

This chapter gives two examples of application of the CS method to problems in
non-equilibrium statistical physics. It describes the evolution toward thermo-
dynamic equilibrium for quantum systems with equidistant energy spectra (the
quantum oscillator and a spinning particle in a magnetic field) set in thermostat.

23.1 Relaxation of Quantum Oscillator to Thermodynamic
Equilibrium

We shall follow here [200,201]. The evolution of a quantum oscillator is
described by a kinetic equation for the density matrix ¢. This is the simplest
model revealing statistical properties of a coherent light beam propagating in a
weakly absorbing medium [202-209]. The problem in view is also important
because it is a rare example of a problem in nonequilibrium quantum statistical
mechanics which admits the exact solution.

23.1.1 Kinetic Equation

The state of a quantum oscillator posed in a thermostat under temperature 7T is
determined by a density matrix satisfying the following equation (for a
derivation of this equation see [200, 204, 210]):

0= —1y[(v+1)(a*ao—2apa* +oata)

do

- (23.1.1)

+v(aato—2a*oa+oaa®)], ¢

Here a and a™ are the annihilation and creation operators for the oscillator, y is
the oscillator damping factor in thermodynamic equilibrium, and

v=¢/(1=&)=[exp (hw/kT)—1]1"1, E=exp(—haw/kT). (23.1.2)

The kinetic equation (23.1.1) is contained, in essence, in the famous paper by
Landau [211] (for v=0). Actually, Eq. (31) in his work can be rewritten as
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G=5 (DgD* ~ DD +DB g —eB* D), (23.1.3)

where D is the dipole moment operator, D ¥ its positive- and negative-frequency

parts. Retaining in (23.1.3) only the resonance terms and taking into account the
equalities which hold for a one-dimensional oscillator,

Dt =e(h/2mw)?e*a*, D~ =e(h/2mw)?e " *a,

D*=Fio’D*, (23.1.4)

we see that (23.1.3) does, in fact, coincide with (23.1.1) for v=0,
y=2(2w?/mc®)/3. This equation can be obtained also from the general theory of
relaxation of quantum systems [210]. A simple derivation, whose advantage is an
obvious transition to the classical limit, has been presented in [200]. It is
noteworthy that (23.1.1) can describe not only damping but also linear excitation
of the oscillator (in a medium with negative temperature). To this end, one
should change the sign of y and take v< —1. Note also that (23.1.1) is a unique
equation which satisfies the following general requirements:

1) linearity in g;

2) hermiticity (¢* (£)=0(?));

3) conservation of the norm (tro(z)=1);

4) the one-photon absorption approximation, i.e., the restriction to a pair of
operators a and a* in (23.1.1).

Because of the correspondence principle, the constant y is just the damping
factor for the classical oscillator.

Following [200, 201], let us consider a few methods for solving the kinetic
equation (23.1.1).

23.1.2 Characteristic Functions and Quasiprobability Distributions

The density operator ¢ may be given not only in terms of its matrix elements g,,,,
but also by the characteristic functions y;(#), which are determined as follows
(Sect. 1.7);

An(m)=tr (ge™’e ™),

Xo(m)=tr (g ~1),

Xa(n)=tr (ce ~"e™"). (23.1.5)

Here

0 for k=N

wm=exp(—anPanm), ox={% for k=0 (23.1.6)
1 for k=A.
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In terms of functions y, (1), (23.1.5) looks like

. 1 ) .
K= — 7{ ”’a L+ @+adnl? xk], J=12; n=n+in, (23.1.7)

The general solution can be found at once [200, 201],

xe(m, )=exp [—(v+0)|nl*qlxx(p**n,0), where
p=exp(—1), g¢g=1—exp(—1), 7T=YL

(23.1.8)

Equation (23.1.8) for y,(n,t) has also been obtained in [205]; there the
starting point was not (23.1.7) but a model of a damped oscillator [202] with an
approximated integration of the Heisenberg equations for the operator d(z).
Clearly, the model is equivalent to the kinetic equation (23.1.1).

Now let us describe the oscillator state using a quasiprobability distribution
Wi (o). It is related to the characteristic functions y,(#) by the Fourier
transformation

W)= § 10 exp (1) P, (23.19)

Evidently, Wy(«) coincides with the weight function in the integral represen-
tation of the density matrix

=[ P(@)|a) <ofd?a,  Wy(a)=P(0). (23.1.10)

Furthermore, W, (a)= W (a) is the Wigner distribution [212] (the density in the
phase space) and, finally, W,(a)=n""Q(x), where Q(x)=<alg|o). (A more
detailed discussion of properties of functions W, («) can be found in Sect. 1.7).

As shown in [200,201], the quasiprobability distributions W, (x) satisfy the
Fokker-Planck equation

oW _ 1

—_ AW, W), wh

ot @ SUCAr P LSS (23.1.11)
A= —3yn,  By=3y(v+a)dy, a=oy+in.

The solution of (23.1.11) is [200, 213]

21 (o 1 | —a'p" 2
Wi(a, t) = d*a' Wi (a',0) o exp a0ro) ) (23.1.12)

A few remarks on the time evolution of the quasiprobabilities W, (o, ¢) are not
out of place.

1) The complex amplitude in the « plane undergoes a damping proportional
to p'/2. Besides, for v+ 0 fluctuations in the system increase due to its interaction
with the thermostat.
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2) As t goes to infinity,

exp (——Lﬁ) (23.1.13)

v+ 0y

Wi, t)=7r(v+ o)

independently of the initial distribution.
3) For an arbitrary initial distribution W, (a, 0), the expectation value <{a;)
and its dispersion D;;= {(o; —{a;)) (a; —{e;>)) are changed as
(1)) =p**<:(0)> (23.1.14)
D;j(t)=p() D;;(0)+3 q(t) (v+0,) d;;.

Here {a; +ia, ) is universal for all k and is equal to tr (¢4), while the dispersions
D;; are different for different &, and are simply related to each other,

If the initial distribution W, (a, 0) was Gaussian, it retains its functional form in
the relaxation process, and its parameters are given by (23.1.14).
Let us reproduce some examples given in [201].

1) Suppose the oscillator was in thermodynamic equilibrium at =0, with
temperature T, different from the thermostat temperature 7"

0mn(0)=(1—=E0)E00mn,  So=exp (—hw/kTy). (23.1.16)

Then

2
Wi(o, 1)= o ) 1@ =p®)vo+4q()v, (23.1.17)

T ( oy

i.e., at any moment of time W, (a,?) is Gaussian. Therefore, distributions of
populations W,(¢) retain Planck form at any time, and the oscillator tempera-
ture varies from T, to T, according to

a()=pt)vo+q(t)v. (23.1.18)

Note that this result was obtained in another way be Schwinger [214].
2) The initial state was a superposition of a coherent state |0 and the Planck
state, with a given parameter v=v,. Then

1 o — poco|2>
—_— _exp|— , 23.1.19
2(uton P ( More: (23.1.19)

p(@®)=p@)vo+q@)v. (23.1.20)

Wi(a, t)=
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3) Suppose that at ¢ =0 there was a superposition (following Glauber [7, 8]) of
the Planck distribution and the coherent state averaged over its phase. Now

I (2 plaoc0|>
°\ p+to exp(_la|2+p(t)|oc0|2>

W, (s, )=
K D= ey p+ 0y

(23.1.21)

where I, (x) is the Bessel function.
4) There were exactly N quanta in the initial state ¢(0)=|N) {N|. Then

(@ —p+a)* ( Jo?

Wi(a,t)=
k(1) n(gv+o )" ! qv+oy

) Ly(x) (23.1.22)

where Ly(x) is the Laguerre polynomial, and

plaf
(qv+ak) P—gqv—o01)’

(23.1.23)

23.1.3 Use of Operator Symbols
To obtain explicit formulae for the occupation functions W,(t), let us use the
symbol of the density operator g,

R(@, By=exp [5 (|of* +| B[] ] B- (23.1.24)

Now
2123
(m!nhi2’

s0 R(zy,Z2,) is a generating function for the matrix elements g,,,(¢). In terms of
R(z4, 2,) the kinetic equation (23.1.1) is [200, 201]

oR R { ( oR _ OR _

2, - “DR|.

o [(v+1)62162'2 <v+> 1 T2, )”(Z‘ZZ )R]
(23.1.26)

It is suitable to employ the function R(z,, Z,) in a more complicated case where
the relaxation occurs in the presence of an external force [200,201]. Then the
density matrix satisfies

R(z1,22;0)=Y Qma(?) (23.1.25)

%f: —i[V, 0] _% [(v+1)(a*ag—2aga* +ga"a)

+v(aato—2a*ga+aa™)], where (23.1.27)
V=—f(t)x=—Qw) ?[f(t)e™"a+ f(t)e"a"], (23.1.28)
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and (23.1.26) is extended to

aR 0*R 1 OR 0
[( + ) 02102, (V+ >( 3z 1'|'22 6R>+V(Z152—1)R]

W[f(t)e""‘" (i—zl> f@e (a%—z‘zﬂ R (23.1.29)

It can be shown that for arbitrary initial conditions (23.1.29) has the following
solution

R(z,2;; t)=§ du(() du(()G(z1, 22545 C2|Z)R(C1 , 650, (23.1.30)

where the integration measure is
du(Q)=n""exp(—[([)d*. (23.1.31)

The Green’s function is given by

1 F(z1,25;0, 00t .
Oles 22300, =y e {22 6020 )} with (231.32)

F=qvz:2,+q(v+ 1) {0 +p"2 (218 + 2,0, — 00 —05)
+vzy +0Z, — o] (23.1.33)

The notations used are

p=exp(—y1), g=1—exp(—y1), (23.1.34)

o(t)= [£()exp [—% (t—t/)+ico0t’—’ dr

i
|/2w0 0
(v(2) is the complex amplitude for the forced classical oscillator excited by the
force f(1)).

In principle, (23.1.30) is the solution of the evolution problem for an
arbitrary initial state. To get the populations of different levels, W,(¢), and
nondiagonal elements of the density matrix g,,(¢), one has to expand the
function in powers of z; and z,.

Note that the evolution of the density matrix §(), given by (23.1.30), can
be described as a result of three consequent transformations of the initial
matrix ¢(0).

1) One transformation involves a relaxation at zero thermostat temperature
and f(¢)=0. This process corresponds to contraction of the complex amplitude
in the « plane by a factor of p~'2. The corresponding Green’s function is
obtained from (23.1.32,33) with v=v=0.
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2) Another transformation involves an increase in the Gaussian fluctuations
of the amplitude (at f(¢f)=0 and not taking the damping into account). The
Green’s function which corresponds to this transformation is obtained from
(23.1.32) under the substitution p—1, g—0, gv—>v[1 —exp (—7?)], v—0.

3) The third is a unitary transformation

0-8'=DW)4D (v), D(@)=exp(a* —ia), (23.1.35)

i.e. a shift of the complex amplitude by a vector v(¢). The transformation
is formally identical to substituting for ¢(¢) the oscillator with no damping
under the external force [the damping factor y enters D(v) only via v(z),
(23.1.34)].

Note that transformations (1) and (2) are nonunitary, a fact specific to any
relaxation process.

We now turn to some examples.

1) The initial symbol is

1
7,:0)= 23.1.3
R(z4,2,;0) 5o ex T+v (23.1.36)

<V0212-2 ‘oz, + &22 - |a’2)
where vy >0, o is an arbitrary complex number. This density matrix corresponds
to the characteristic function

xn () =exp (—voln|* —an —am), (23.1.37)

i.e., to a superposition of the coherent state |o) and the Gaussian noise, which is
the Planck distribution with the parameter

vo = [exp (hwo/kTo) —1]7".

As shown by Glauber [7, 8], a superposition of two states corresponds to a
sum of electromagnetic fields generated by independent sources. So the example
given in (23.1.36) is relevant to the case common in quantum optics, where an
input field consists of a coherent signal with a random thermal noise superposed.
Substituting (23.1.36) in (23.1.30) yields

_ 1 UzyZ, + Bzy + Bz, —| B
R(zl,zz;t)=1+u exp< 172 11+u 2—|f] , (23.1.38)
where
p=pvo+qv, B=PB)=pPa+v(t). (23.1.39)

Comparing (23.1.38 with 36) reveals the invariance of the state’s form during
its relaxation process, while only the parameters f and u are varied. Here u(z) is
the mean energy of the oscillator which undergoes relaxation in the absence of an
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external force, and B(¢) is the fluctuation amplitude of the classical oscillator
with the initial condition f(0)=o.
Explicit expressions for populations stem from (23.1.38),

W) =—"— exp < L ) L, < Jﬂi). (23.1.40)

A+pm*t 1+p 1+p

Here L,(x) is the standard Laguerre polynomial. (Note that L,(x) >0 at x<0.)

2) Setting a=0 gives the formulae describing relaxation of the Planck
distribution (with a parameter v, and an initial temperature 7). Here B(¢) =v(z).
If we neglect the relaxation now, u(t)=v, and y =0 must be inserted in (23.1.34)
forv(t). After these simplifications, (23.1.40) transforms into a formula obtained
by Schwinger [214].

3) In a particular case v,=0, the formulae of Sect.23.1.1 describe the
relaxation of the coherent state |« (here u=gv). An especially simple result is
obtained for zero thermostat temperature (v=0): §(¢)=|B(1)><{B(?)|, i.e, the
oscillator is in a coherent state | 8(¢)) at any time moment. This is the only case
where the relaxation conserves a pure state, in spite of interacting with a
dissipative subsystem (the case in view has vacuum fluctuations of an
electromagnetic field). This fact indicates once more a quasiclassical nature of
coherent states.

4) With a=v, =0 the oscillator is in ground state, §(0)=|0><0|. Equations
(23.1.16,17) are still valid for the matrix elements, where one has to set u=vq,
B(t)=v(t). The Poisson distributions are for W,(¢) at v=0,

n

W,,(t)=e“£~|, A=A =@ (23.1.41)
Feynman [56] obtained this formula for an oscillator without damping. It is
remarkable that for v=0, taking damping into account does not change the form
of the distribution (23.1.41) and is manifested only in the value of the amplitude
v(t). This is not the case for v=0.
5) If the oscillator has N quanta in its initial state, §(0) =|N ) { N|, the problem
is more cumbersome to treat. Calculating integral (23.1.30) [200,201] leads to

[ +91 | ( P —ﬁ)(z‘z—v))
A+ Y g +v) (1 +qv)

= = |12
X eXp (q”lzﬁfz; ;FVUZZ [l > (23.1.42)

R(Z1,Zz;t)=

In the general case, the expression for W, (¢) derived from (23.1.42) is rather
complicated. Let us look at some simple examples.
a) Setting z; =z, =0 in (23.1.42) gives the ground-level population

_lga w1 [oP ( __phP )
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b) For v=0 (zero thermostat temperature) the expression for W,() is
simplified essentially [200, 201]:

n<!N!

N
—a—4 sk N—km
W=e"" X v P A

L7 (A)]*, where (23.1.44)

n<=min(k,n), n.=max(k,n), m=lk—n|, A=)}

¢) The generating function for the populations W,(¢) at v=0 is

2
Gu(z, =3, Wa()z"=(1 —p)e ¥ Ly ( - f’f‘;c) (=1-z

(23.1.45)

23.2 Relaxation of a Spinning Particle to Thermodynamic
Equilibrium in the Presence of a Magnetic Field

Let us consider a particle with spin s and magnetic moment y=gs under the
action of a homogeneous magnetic field H. The system has (2s+ 1) equidistant
energy levels, E,,=hwym, wg= —gH. For definiteness, we shall suppose that
the gyromagnetic ratio is negative, g <0; then m= —s at the lowest level and
m= +s at the highest level. If the system is in contact with the thermostat at
temperature T, its state is described in terms of the density matrix ¢(¢), and the
relaxation due to the magnetic dipole radiation proceeds according to an
equation proposed in [215,216]

6= —3y[(v+1)(S+S-0—25-0S: +0S:S-)
+v(S-S+0—2S,0S-+0S-S))], (23.2.1)

where y is a constant describing the system-thermostat interaction, and vis given
by the Planck formula

v=[exp (hwo/kT)—1]71, (232.2)

S; =8, +iS, (the z axis is along the magnetic field H). This equation is adequate
also for relaxation in a system of N identical two-level atoms confined in a region
whose size is less than the wavelength (the Dicke problem [150]). As every atom
can be in one of two states, it is suitable to introduce the “‘energy spin” operators
[150], which are just the usual Pauli matrices ¢ . , o,. The atoms do not emit their
spontaneous radiation independently, since they are interacting because of the

1 X .
radiation field. It can be shown [150] that the total “spin” <s=§ Z ai> is
i=1
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conserved in the relaxation process. In other words, the states with different
values of s decay independently and have different specific lifetimes. In this
interpretation m=(n, —n_)/2, where n.. is the upper (lower) level occupation
number, and |m|<s< N/2.

Another physical example is depolarization of positive muons in condensed
media. This phenomenon has been considered in [217-219]. As the magnetic
moment of u* is small compared with that of an electron, the direct interaction
of the u* spin with the medium can be neglected. The hyperfine splitting in a
muonium is fwe~0.1K, so that at room temperature v>1, (v+1)~v. Taking
this dact into account, we write the following equation for the density matrix
[215,216]

6= —i[V, 01+ W(Ro+0oR—S_0S, —S.0S_), (23.2.3)

where V=7%hw,SS,—g.SH, S is the electron spin, S, the muon spin,
R=(S,S_+S_8,)/2, W=wy.

Kinetic equation (23.2.3) describes an effect of a medium with infinite
temperature. A direct comparison shows that the equation for the muonium
density matrix used in [217-219] does actually coincide with that in (23.2.3),
though written in another form. The constant W was interpreted there as the
probability of muon spin flip.

Note an important property of (23.2.1): if at the initial time moment =0 the
density matrix satisfied three fundamental requirements,

A) tr{o}=1 (normalization),
B) ot =0 (hermiticity),
C) <¥|e|y)> =0 for any state vector |y (nonnegativitivity),

then they are satisfied at an arbitrary time moment, ¢>0. Only the third
requirement (C) is not trivial here; the corresponding proof can be found
in [215].

Now we turn to the simplest case where the thermostat is at zero temperature
(v=0). Equation (23.2.1) is reduced to

é=%}'{[s_,QS+]+[S—Q, S+]}- (23.2.49)
The density matrix is determined by its symbol P(n)=P (6, ¢),
0={ du,(n) P(m)|n)<n, (23.2.5)

where the integration measure is dy,(n)=(47) " *(25+1)dQ2(n), and {|n)} are
the coherent states for the three-dimensional rotation group. For simplicity,
suppose also, that P(n)=P(0), i.e., the density matrix is independent of the
azimuthal angle. Then using the decomposition of unity

[ duy@|my<n|=1,
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one gets an equation for the function P(6;¢), which is of the type obtained and
investigated in [148, 149]

a%— [sin6 P(6;1)] =% {[ssin 0+%sin 6/(1 +cos 6)]sin 6 P(6; 1)}

2
+a% [ (1 —cos 8) sin 6 P(6, 1)). (23.2.6)

This is just the Fokker-Planck equation on the unit sphere S?={n:n*=1}
for a function f(0;¢)=sin6 P(0,t). The first term on the rhs of (23.2.6) is a
displacement responsible for motion of the distribution as a whole; furthermore
the distribution expands due to the diffusion coefficient D(6)=(1 —cos )2,
which has its maximum at § =0 and vanishes at § = . The combined effect of the
displacement and diffusion is an expansion of the distribution on the sphere and
amotion of its maximum to the pole 8 =0. As ¢ goes to infinity, the density matrix
tends to g=|s, —s){s, —s|- The position of the distribution maximum 6,,,
satisfies the differential equation

% Omax = —75 510 Opngy (23.2.7)
which has the solution
tan % Opmax (f) =tan 3 0,,,,(0) exp (—yst). (23.2.8)

Suppose now that the angular momentum is very large, s> 1. Then in the first
approximation (23.2.6) for £ (0, ?) is

0

ofjor=y 7 (ssin6f). (23.2.9)

This equation is easily integrated by means of characteristics, with an initial
condition f(6,0)= f,(0):

S (6, t)=(coshyst —cos O sinh yst) . (23.2.10)
fo(2arctanexp (yst) tan 3 6)).

One can verify that the function f (6, ¢) is normalized correctly for all times. For a
particular initial condition

v =sin 6 6 (cos 6 —cos b,),

one has

cos 0, cosh yst +sinh yst)

f(0,1)=sin0o (cos 0 ~ cos 0, sinh yst + cosh st
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Turning back to the exact equation (23.2.6), the variables can be changed as
suggested in [149],

f(0,1)=2%*1sinO(1 —cos 0) 2¢*Vh(z, 1), z=cot®(}6).
(23.2.11)

The equation is transformed to
0h/0t=[1+2(s+1)z])0h/0z +z (1 +2)8*h/dZ>. (23.2.12)
This equation with an initial condition A(z, 0) =hy(z) has been solved in [149]:

tanh no

F(s+¥+io,s+3—io;1; —2)
cothno

hz, =2 | daa{
0
xexp { —[0% +(s+3)*1t}
x [ F(s+¥+io;s+5—io;1; —2)hy(z') (1 +2)*dz’,
0

where F(a,b,c; x) is the standard hypergeometric function; tanh in braces
stands for integer s, and coth stands for half-integer s.

For special initial data, there is a solution with separable time dependence,
h(z,t)=P(z)exp(—At):

Di(z,)=(1+2)" 3T F(s++o, —s+ito, 1+20;(1+2)7Y),

where o= [(s+%)? —A]'/2. Note that the square root in the definition of ¢ can be
made unique by cutting the complex A plane from (s+%)? to + oo along the
positive real axis and requiring that g be positive for real positive (s+%)*> — 4.
Consequently, Re {¢} >0, if Im {1} +0.



24. Landau Diamagnetism

In this chapter, following [220], we use coherent states to obtain Landau
diamagnetism [221] for a free electron gas.

We shall start from the retarded Green’s function for the harmonic oscillator
in CS representation. The units to be used are i=1, k=1 (k is the Boltzmann
constant), and throughout the chapter the oscillator energy is referred to the
ground level Ey=hw/2, unless indicated otherwise.

By definition, the retarded Green’s function is

B, 1)=<a)|B(t)>=<ale™ B>, (24.1)

t=t—1t'>0, H=wa"a is the oscillator Hamiltonian. Since () =a exp (—iwt?),

G(o,t

G(a,t

B,t)=exp <&Be‘““ —M) (24.2)

Note that (24.2) is much simpler than the well-known expression for the Green’s
function in coordinate representation.
Equation (24.2) leads directly to an expression for another Green’s function

Gl B)=iCal(E—H) "By = [ &G (o, 2|8, 0)
0

i (o> +18P) E  E|
— = exp (_—2_—>¢<_25’ 1= aﬁ>. (24.3)

which is also much simpler than the corresponding Green’s function in
coordinate representation. Here @(a,b|z) is the confluent hypergeometric
function.

The hypergeometric function in (24.3) has poles at E=nw, n=1,2,3,...
which determine the oscillator energy levels. Actually,

1
E—-now’

Gl B)= 20 U@ ¥n(B) where 4.4)

wn(oz)=—(Ji eIz, (24.5)
n!
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The temperature Green’s function
2+ 2
{ale ™ /T|By =exp <5C,Be_“’/T —M) (24.6)

is obtained from (24.2) by substitution t7—i/7, hence giving the partition
function for the oscillator

d*a -

One application of these formulae relates to the magnetism of free electrons.
Here, w=es#/mc is the electron cyclotron frequency in magnetic field #. Let us
consider a unit volume of electron gas in a homogeneous magnetic field #
directed along the z axis. To calculate the partition function it is appropriate to
use here a representation (o, p,, p,) for the wave functions. The result is

2 1/2
zﬂ:% (m—’;> (1—e~@m)~1, (24.8)

The first factor in (24.8) is due to the degeneracy of the Landau levels in p,,
the second and the third factors result from integration over p, and . Hence
we obtain an expression for the free energy, adding the ground-state level
Ey=w/2,

F=§— T Z,. (24.9)

The magnetization is

F e (1 T 1
__OF_ e (1 T 1 \ 24.10
M=% mc<2 w+e“’/T—1> (24.10)

For small @, M is proportional to the magnetic field s, and one gets the familiar
expression for the magnetic susceptibility

1 [e\?
= T <%> . (24.11)

Up to now we have worked within classical statistics. For a strong
degeneracy, where the de Haas-van Alfen effect takes place, one should bear the
Fermi-Dirac statistics of electrons in mind. It is appropriate to write the basic
formula of quantum statistics

Qo=-TY In {1 +exp [(u—E,)/T} (24.12)
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by means of a contour integral

etfd B

31 sin (WfT)” 24.13)

QQ==jg%Kﬂ)
L
as suggested by Rumer [222]. Here

mw m -Be e
Qu(B)=-TYe =T [5ge 7 (-7 (24.14)

is the classical partition function and the contour L is a vertical straight line in the
B plane intersecting the real axis on the interval (0, 1/7).

In the presence of single-particle excitations in the system, function Q(8)
has poles on the imaginary f axis. The contribution from such a pole f=in/wto
Qq contains an oscillating factor exp (in/w). The integrand in (24.13) has branch
pointsat f=0and = oo [so that one should make a cut (— co < $<0)] and poles
at the points

2mis

Bs= T (24.15)

For high temperature one can close the contour L in the right half-plane, thereby
getting the conventional formula for Qq.

For weak fields, where u > /2, the contour L can be closed to the left, giving
the pole contribution,

mo © m eﬂ(n-%) _%%i_

. o\72 08 |:(27ISM/‘U)_§]
-z s; (—1y (’;) sinh 2 75T/ w)

p=2mis/w

(24.16)

This expression varies periodically with the field intensity s# (the de Haas-van
Alfen effect), that is an effect of analytical properties of Green’s functions.

The electron spin has been neglected in (24.14). To take it into account one
should add a factor exp (— Sguga ) due to the spin energy in the magnetic field
(ug is the Bohr magneton, o= 11/2), and sum up over spin projections.
Consequently, a factor 2 cosh (gfw/4) appears in (24.14), and a factor
2 cos (ngs/2) in (24.16).

For very weak fields w <y, and all the terms in the sum in (24.16) oscillate
fast, so that Q... —0, leaving only the left cut contribution which leads to Landau
diamagnetism. As w—0,

3/2 2.2
ch(ﬂ)z—T<2rnTﬁ> (1—ﬁ ;"!/4+...>, 4.17)
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hence (at 7—0)

BH j T2 42 3/2
Qoo+ [ oW Tl A” [(m VT g,
2if sin (nfT) 6 2np
2 202 3/2 up
_ MB‘# m € dﬁ
=o+—¢— (27:) {3mpm (24.18)

The contour integral equals l/;[' 3), and

BH#? (m N2 [u 1B A2
R — —=0 . 24,
Qor Qo+ 3 o - o+ 8 (24.19)
The second derivative over # gives
2
=12 (24.20)
4p

Account for the electron spin leads to an extra factor of 2 in y, and to addition of
the Pauli paramagnetism; the resulting expression is

X = Xaia+ Xpara

(24.21)
M L

Xdia 2/1 ’ Xpara 2# .
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In this chapter, following [223] and using coherent states, we derive nonlinear
corrections to the electromagnetic field Lagrangian, the Heisenberg-Euler
correction [224].

Let us consider a spinless relativistic particle in constant electric & and
magnetic H# field. Suppose that (€3¢ )+ 0. Then a reference frame exists, where

§=(0,0,¢6), #=(0,0,5). (25.1)
The particle state is characterized by a generalized momentum
H,,=p,,—eAu, [1,,1,]=ieF,,, pv=0,1,2,3, (25.2)

where A, is the electromagnetic field potential, and F,, is the electromagnetic
field tensor. In our case,

[, ]=ie#, [H,,,]=ieé. (25.3)

It follows from (25.3) that the operators II, can be expressed in terms of
boson operators

e leA
H1=\/g(a+a+), H2=—i\/e7(a a'),

\/— b-b"), Ho—\/— (B+5").

To find nonlinear corrections to the electromagnetic field Lagrangian it is
convenient to use the proper time method which reduces the problem to that with
the Hamiltonian

(25.4)

H=p-IN}=p*+e# (a*a+aa™)—e&bb+b*b"), (25.5)

where u is the particle mass.
The resulting electromagnetic field action functional acquires a correction

W'=—itr{In G}, (25.6)
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where G=(p> —I12)~! is the Green’s function for the scalar particle in the
external electromagnetic field. In our case this quantity is given by

W'=—itr {In[(1?—M*)"}=—i tr{? ‘i—sexp (—SH)}
0

=—i| i—se“‘zs tr {exp [s e€(bb+b*b™)

0

—se# (a*a+aa™)]}. (25.7)

The trace in (25.7) is calculated over all particle quantum numbers, so the
degeneracy of the Landau levels should be taken into account. Therefore there
are additional factors of e #L,L,/2n and e&L,T/2n, which are due to the
degeneracy of transverse and longitudinal components. Here L,, L,, L, are the
sizes of the region where the external field is present, T is the time period during
which the field is nonzero. The action W’ turns out to be proportional to the
four-volume L,L,L,T, as it must be anticipated for a constant and homo-
geneous field. The coefficient at the four-volume is just the desired Lagrangian
correction,

e e€ X ds __,
o _; &t @ @ s 2 +12
£ ey (j; e {exp [se€B* + ("))

—seH (aa* +a*a)]}. (25.8)

The symbol tr{ } here stands for the trace over variables relevant to the
operators a and b, and it can be calculated easily. The first factor is

tr{exp[—se# (a*a+aa*)]}= i exp [—se# 2n+1)]
n=0

=[2 sinh se #] 1. (25.9)

To calculate the second factor we make a transformation diagonalizing the
operator (bb+b*b")

bb+b bt =iUB b+bb*)U™!

i (25.10)
U=exp [§ n(b*b* —bb)].
Thus we obtain
tr {exp [se€(bb+b*b*)]}=tr {Uexp [ise€ (b b+bb*)]U '}
! (25.11)

“2sin (se&)’
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The final expression for &’ takes the form

1 ds eH el

= —su?, 25.12
TN sinh (se %) sin (se&) (2512)

@'=

This expression should be regularized by subtracting the first terms of the Taylor
series in &2 and #2 from the integrand

1 ds seH se& e2s? )
l= —_— —1—'—‘ éaz_%Z —S‘t‘
< 1672 I3 [sinh (se #) sin (se&) 6 ( )]e
(25.13)
For weak fields the fourth-order correction in & and  is obtained
4 2 2\2 2
2= et 1(E%—H#7) +4(£’Jf’) (25.14)

1672 360 u*

A correction to the electromagnetic field Lagrangian due to the interaction with
spin-1/2 particles can be obtained analogously. One should take into account
only two additional factors. First, because of the Fermi statistics the sign in
(25.6) must be changed, second, a factor 1/2 appears in the square of the Green’s
function,

Wip=itr{lnG}=itr{ln[m+yl] '} = —tr{ln[m -7, (25.15)

where m is the particle mass.

The quantity (yII)>=I1?+e0,,F,, contains a term with ¢,,F,, which
commutes with the operator I12. Therefore the spin projection trace gives a
factor 2 cosh (se #°) for the magnetic part and a factor 2 cos (se&’) for the electric
part.

Hence we get an expression for the Heisenberg-Euler Lagrangian [224],

, 1 ©ds|[ sest se& est I
Zin= 8n? (j; [tanhse,# tanse& +— (%= |7
(25.16)
For weak fields, the familiar expression is reconstructed,
4 éaz — H2)2 7(& 2
o= I LTEA) @5.17)

872 45m*

Note that the integrands in (25.13, 16) have poles at the points s, =nn/eé, so the
Lagrangian has an imaginary part, indicating a vacuum instability with respect
to the particle pair production.
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Synchrotron radiation is quantum radiation of a charged particle in a
homogeneous magnetic field, or, which is the same, a radiative decay of the
Landau levels. So this effect can be described by calculating the mass operator
for the particle in a homogeneous magnetic field [225, 226]. As shown in [223],
which we follow in this chapter, using coherent states simplifies the calculations
substantially.

Asin Chap. 25, we consider a relativistic charged particle in a homogeneous
magnetic field. Here the longitudinal components of the momentum are
conserved, and they can be replaced by their eigenvalues,

I =(l,, I1,)=(E, 0). (26.1)

The transverse components are expressed in terms of boson operators, as in
Chap. 25,

m=/f§f(a+a+), M= i /‘f;_’f(a_w). (26.2)
The particle mass operator in the magnetic field is given by
M= (TET do@in -t exp lisTT -k —isi®) Q1T —k) (26.3)
“en | ' P g ' '

The exponential operator factor must be transposed to the extreme right. As the
operators IT, and I, do not commute with this operator, they are transformed to

Hl—)Hl(S)=(H1 —-kl)COSZS&}f—(Hz —kz)sinzsef+k1,

(26.4)
Hz—)Hz(S) = (H2 —k2) cos2seH + (H1 _kl) sin 2Se% + k2 .
Restricting ourselves to the leading terms in (k/E), we obtain
4 (d*k = . .
=G f? (j; dsITII (s) exp [is(IT —k)* —isp?) (26.5)

I (s)=I1*+I?(1 —cos 2ses#’) +ieH sin2se .
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On the mass shell,
m*=p?, Mi=E?*—;2 (26.6)

Further, for a weak magnetic field and a relativistic particle

el <y’ <E?, (26.7)
then
2 147, oo E2
=‘(1—26:I_l)‘4 jd k j ds (1 +2 ya sin? se%) exp [is(IT —k)? —isu?).

(26.8)

As the operator M is just an exponential of a quadratic form of the operators a
and a™, it is suitable to represent the operator by its symbol

M () = o M]or),
where | is the standard Glauber CS

oy =exp ( _¥> exp (aa™*)|0).

Using formulae from Sect. 1.2, and retaining only linear terms in the
exponent, then

{ Blexp [is(IT —k)* —isp*]| By =exp (—2iskoE+2iNk), (26.9)

where the vector N has transverse components only,

N=l/_|_m7f (sin2se#, 1 —cos2seH#, 0). (26.10)
Since

|B?=<Bla*a|By =(E*— > —eH)[2e#, then (26.11)
2 212

|N|=(E—e;f—)~— sin (se#), and (26.12)

42 (d*k =

M(ﬁ)=<ﬂ|M|B>=(7n—l;r f 2 5 ds (“‘2—5“‘ Se%)

xexp [21(Nk —sEky)]. (26.13)

Furthermore, in view of the optical theorem, the decay probability W} of state
| B> is proportional to the imaginary part of the mass operator,
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Wy = —% Im {W(B)}, (26.14)
so that
42 dk % E2 .,
Wp=——% _[2(0(2 7 fds( Z s seH
x cos (2 Nk —2 sEw). (26.15)

Integration over the angles of the photon emission leads to

| d@cos (2 Nk —2 sEw) = % [sin QwEs +2 No)

—sin QwEs —2 Nw)). (26.16)

Note that in the case of a weak electromagnetic field, the main contribution is
due to the region se #~pu/E<1 in the integral over s. Expanding over this
parameter gives

2
IdQcos(sz—ZEsw)=% [Sln(4wEs)—smcoEs ( +(se‘}f) )]

E? 3
(26.17)
The spectral distribution of the radiation is
e2 2 © E2
dw= ( )d §ds [1+2—2—(se2?)2]
4n? 2
2 2 2
[sm wFEs (Z‘Z +Sze ;f )—sin4wEs] or (26.18)
2 (u)? © dx " X\ =
== — — |- 26.
dw n<E) dw[g S (1+2x)sm§(x+3 5| (26.19)

where
E=(wp®)/(e HE?).

This formula was originally obtained by Schwinger [226], but in a more
complicated way.

Retaining the terms of order , one can get corrections of order y =eE#/u®
which are of quantum nature.
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A “classical entropy” of quantum-mechanical systems, as introduced in [227],
has a natural definition in the framework of the CS method. Some inequalities
for this quantity are easily proved by this method.

The classical entropy of a quantum system, S, is a useful concept proposed
by Wehrl [227], who also investigated some of its properties (a review was given
in [228]). Wehrl conjectured, in particular, that S°'>1. This statement was
proved later by Lieb [229].

Let us start from the simplest quantum system with one degree of freedom;
let p and ¢ be the canonical momentum and coordinate operators. As is known,
the system state is described by means of the density matrix, that is a nonnegative
operator with unit trace. The corresponding quantal entropy of the system is

S9(8)= —tr{§Ing}, 7.1)

while the classical entropy for a phase space distribution g(p, g) is
dpdq
=—|—=polnp. .
S(@=—] - elne (27.2)

One would suppose that the A—0 limit of the quantal entropy is just the
classical entropy. This is not the case, however, since the quantal entropy is
always >0, while the classical entropy can be negative, oreven —o0. Asshownin
[228], this is due to the fact that the classical phase space distribution can be
confined to an arbitrary narrow domain with an area less than 27h. Moreover,
such a distribution is incompatible with the uncertainty principle and cannot be
realized in a real physical system. At best, one would deal with a quantal state
characterized by the least possible uncertainty 4pAq localized near a phase space
point (p, g), i.e., the coherent state |a), a=(2 k)~ (g +ip).

By definition, the classical distribution is

0(@)=<a|dla), (27.3)

and classical entropy is

S"'=S(o(x). (27.4)
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The function g(«) satisfies the following conditions:

) 0<o(®<t,
ii) g(a) is a continuous function,
iii) g(a)—0 as Ia'—)oo.

Hence it can be concluded that

i) in agreement with the uncertainty principle, the distribution ¢(p, 9)=0(x)
cannot be confined to a domain of an area less than 27k;
ii) an important inequality holds,

S>> g, (27.5)

Actually, as the function s(x)= —xInx is concave for positive x, then

S gloy) = <o S(@)|o), so (27.6)
2 d2
S=| % S(e(@)=] —no—( <a|S(@)|ey =tr {S()} =S5"(0). (27.7)

Furthermore, because the function g(o) is continuous, the equality $°' =S
would imply S(<a|é]e))=<a|S(d)|a> for all «, and as the function s(x) is
strongly concave one would conclude that every |o) must be an eigenvector of g,
an impossible requirement. Note that the minimum of S is zero (it attains the
minimum at any pure state), while the minimum of S is never zero.

Another important property of the entropy S is that it is a monotonous
function. Let d;, be the density matrix for a quantum system in the Hilbert space
L*(R)®L*(R), and |oy, 0,) =0y » ® |t . By definition,

lez(“u ) =<0y, OC2|QA12’°51 » 02, (27.8)

and the symbol g5, (a;) corresponds to the density matrix §; =tr, §;,. Wehrl
[227] proved an inequality

S12=S(0f3 (a1, %)) 2 S(0f) =S (27.9)

Note that this entropy property, which is desirable from the physical point of
view, is not in general fulfilled for quantal entropy.
Wehrl [227] also advanced the following hypothesis.

Hypothesis. The minimum of S is 1 (and is independent of %). This minimum is
attained only for density matrices of the type §=|a) {«|, where |a) is the usual
Glauber coherent state. Lieb proved this statement in [229], so it will not be
reproduced here. Here we present only the following lemma.

Lemma. If a density matrix ¢ provides a minimum of S, then =Y 4;|y;><{¥i].
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Proof. Let §=Y A|y;> (Y|, where A;>0and ) 1;=1. Clearly, ¢°'(z) =) 4i0:(2),
and g;(z)=<z|Py|z), where P,= |:/1l) (n/zl| As the function s(x) is concave,
S(e°(2)) =Y, 4:S(0i(2)), and the equality is attained, if and only if g;(z) =¢;(z)
almost everywhere for all i and j. Suppose g; is the projection to a state vector
Y;€ L*(R). Let us consider a function fi(w)={y;(x)exp(—3x*+wx)d>x,
w=g+ipeC. Evidently, f;(w) is an entire function of w, and if g;(z) = g;(2) al-
most everywhere, then | f;(w)|=|f;(w)| for all w, so that f;(w) = f;(w) exp [10(W)],
where 6(w) is real and analytical at the points at which f;40. Consequently,
6(w)=const. As the Fourier transform is unique, y; = fy;, where | |=1 almost
everywhere, so Py, =P, , in contradiction to the initial assumption.

Extending Wehrl’s hypothesis, Lieb [229] advanced a stronger hypothesis for
spin CS.

Let {|n)} be the set of spin CS. Then the spin density matrix corresponds to a
function ¢ (n)=<n|¢g|n), and

S(@)=S(¢"(n)), where (27.10)

S(f)= = f(m)Inf(n)dy;(n),
dp;(n)=4n)"1(2j+1)sin0dbde.

(27.11)

Even in this case $°! is monotonous, and $°' >S9 It can be easily verified that
since {n'|P,|n"y =(cos36)*/, where 0 is the angle between n and n’,

SR =2j/Q2j+1). (27.12)

Hypothesis [229].
S (@™ =2j/(2j+1). (27.13)

The validity of this statement for j=1/2 can be proved easily [229], but no proof
is known for arbitrary j.

Another inequality for entropy, written in terms of one-particle distribu-
tions, was obtained by Thirring [230].

Let ¢ be the density matrix for a system of bosons or fermions. A one-particle
density matrix is associated with g,

o= |m'><mltr (Gan, an), (27.14)

and one can define a one-particle phase-space distribution, (g, k)
=tr(oagnaqy)- Here the vectors |m)eL?(R) are elements of an ortho-
normalized basis, and |q, k) ~g(x —q) exp (ikx), with a function ge L*(R), is a
complete set of state vectors,

[ lg, k> <q, k|dPq d*k/@2m)* =1
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Let a; = d®xa(x) f*(x) and a¥ = d*xa™ (x) f (x) be the annihilation-creation
operators for the state given by function f (x). Then the entropy of the whole
system is bounded by some one-particle expressions.

Theorem.
S(@)=—tr(¢lng)< —tr[g;Ing; +(1F0) In(1F4y)]
=S;(0)< —[ [elng+(1 Fo) In(1 Fo)]ld’qd?k/2n)>. (27.15)

The function in the integrand is g(g, k). Here the symbol tr stands for the trace of
operators in space L2(R?), and the alternative signs correspond to Fermi (Bose)
particles.

Remarks. 1) The quantity N=tr {Ql} is the average particle number. As
n,<1 for fermions, operator inequalities 0<g,<1/N arise. Respectively,
| e(g, k) d*qd*k/(2m)* =N, and 0 < o(g, k) < 1/N. Thus both contributions to S;
are positive for fermions.

2) The theorem asserts that the product states have the maximal entropy
compatible with the given one-particle distribution. Thus absence of correlations
leads to maximal chaos. The quantity S; is not given just by the one-particle
density matrix, it differs from —tr {g, In g,}, but holes described by the density
matrix (1 —g) also contribute to it.

3) It is a consequence of Klein’s inequality that the density matrix
01={exp [—B(h—p)]+1} ! maximizes S, for fixed tr { ;} and tr { ¢, }. Similar-
ly, for fixed integrals

| h(g,k)o(g, k) d>qd*k/2m)* and | o(q,k)d>qdk/27)?,
the densities
0r,5(g, k) =(exp { —B[h(g, k) —pl} £ 1) 7"

maximize the integral for S.
These inequalities have been used in [230] to construct a simple derivation of
the Hartree and Thomas-Fermi theory.



Appendix A
Proof of Completeness for Certain CS Subsystems

It was proven in Sect. 1.4 that the CS subsystem {|oy )| is complete if and only if
there is no entire function y (&) such that y () =0 and [ |y (0)]* exp (—|af*)d%a
< 0.

The relevance of Example i) in Sect. 1.4 was evident. Let us prove the
statement of Example ii) : system {|o>} is complete if the point set {a} does not
contain the origin =0, and

Y] 2= (A1)
k

at some positive e > 0. This statement is a consequence of some general theorems
concerning a relation between the order of an entire function and the distribution
of its zeros in the complex plane.

Recall that the order A for an entire analytical function f(z) is the number

i In [In M (r)]

A=1lim

ro® Inr ’ (A2)

where M(r) is the maximum of modulus of the function f(z) on the circle |z|=r,
lim=1im sup is the upper limit. Respectively, the number
— InM
p=iim 220 a3

r— oo

is called the type of the function f(z).

Let {a,} be a sequence of zeros of the entire function f(z). To characterize the
sequence {a,}, the so-called convergence index 4, is introduced. The definition is
that for arbitrary small positive numbers ¢ and & the series Y |o| ™*7° is

’—11+6

k
converging, while the series Y |0y is diverging. The series Y |o|~*' may be
k

either converging or diverging.

From the theory of entire functions [231], it is known that the order of an
entire function with zeros at some points {«} is no less than the convergence
index of the sequence {o}: A> 4.

Condition (A.1) means that A, >2. Therefore the order A for the func-
tion f(z) with zeros at the points {0} is above 2:4>1,>2. Clearly, here
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[/ exp (—|z))d*z= o0, so the CS system {|oy)} is complete. Correspon-
dingly, at 4; <2, as well as at 4, =2, the CS system is incomplete if the series
Y |ow] 2 is converging.

If, however, 4, =2 and the series Y |o|? is diverging, then to find out whether
the subsystem is complete, one must have more specific information on the
distribution of zeros a; in the complex a plane [231]. Here it is not difficult to
construct an entire function of 1=2 with zeros at the points o;. According to
Theorem 9.1.1 in the book by Boas [232], the type u for such a function f(z) must
satisfy the inequalities

1. N
w23 lm == ad
”256—? lim —rz—, (AS)

where N(r) is the number of points of the set {0} within the circle |z| <7, lim =lim

inf is the lower limit, lim =1im sup is the upper limit. Hence, the CS system is
complete at 4, =2 and under any one of these conditions:

O

lim =57>1, (A.6)
}i_r?o N—r(zrl>e. (A7)

Let us consider now Example iii), where the points form a regular lattice in
the o plane:

{ou} = {otmn =mw; +nw,}, (A.8)

where the lattice spacings @; and w, are linearly independent, Im {w,®, } +0,
and m and n are arbitrary integers.
Note, firstly, that for a regular lattice with cells of an area S

— N(r) =
tim N =fim T0-% 43
Now condition (A.6) leads directly to the first part of the theorem in Sect. 1.4.
Next consider the lattice with S > 7. To prove the second part of the theorem,
it is appropriate to construct an entire function belonging to the space # and
vanishing at the lattice points a,,. The last condition is fulfilled by the
Weierstrass ¢ function [47]:

2
o@=aJT (1 _aoc ) exp l:“i-l-% (aa > ] (A9
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The product here is over all integers excluding the factor withm=n=0. It is well
known [47] that the order of the ¢ function is A=2. It may also be shown that
such a number v exists, that the type u of the function 6(x) =exp (—vo?)a(a) is
the minimal possible at the given zeros {o,,} and is given by

1:
,u=§—§. (A.10)
It was found that this function satisfies
|6 (@) =0(a, &) exp 2p|af*), (A.11)

where g(a, &) is a doubly periodic function with the periods w, and w,. It is not
difficult to see that at S > the integral /= [ |/ |* exp ( —|z[*)d?z is convergent. In
this case the function & («) determines a state vector W) € # orthogonal to all the
states |»» and therefore the system {|o,,»} is not complete. Thus the second
part of the theorem is proven. The relation (A.11) also shows that at S==
integral [ is divergent for any entire function, having zeros at the points a,,,. So
the CS system {|a,,p} is complete at S=m.

Note further that if a state |ot,,,» is removed from the system, we get a
function &;(et) =(at —Otpgn,) "> 6(2) instead of &(x). So in this situation the
completeness problem is reduced to investigating convergence for the integral
(38]

o, 0
Tnon =] ﬁf & (A12)
mono

Note, first of all, that since the function g(e, &) is periodic, integral I,,.,, is
reduced to Iy, :

d?a _
Imono=100=j W Q(a’ a)' (A13)

Here g is a nonnegative double-periodic function, all zeros of which are at the
lattice points, a,,, =mm; +nw,. Let us estimate the integral I,,. To this end, we
calculate the integral in (A.13) over the domain that is a union of nonoverlapping
disks of a radius ry, with centers at y,,,,, coinciding with centers of the lattice
cells o(2)*0, aeD,,,:

d?o i
IOO>ZI Jmna Jmn= j Wg(a’a)a
m,n Dmn
(A14)

Dy = {02 ot = Yyun| <70}

Evidently,
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QoTry ry 0o
> > R
(l'ymnl ""'0)2 4|’Ymn|2

where g, is the minimal value of the function ¢(a, &) in the domain D,,,. Hence

- (A.15)

7"’(2)90 1
4 mZ Yol

and I, ., =Ipo = 0. Thus the CS system {|«,,,» } remains complete after the state
is removed.

Suppose that two states, say |tp,, > and |0, >, are removed from the CS
system. Again we have to investigate the integral

(A.16)

o(a, @)d?a

j |(x _amxml2 'a — Omany (A.17)

>

It is not difficult to see that the integral is converging, so the system becomes
incomplete if any two states are removed from it. This concludes the proof of the
theorem.



Appendix B
Matrix Elements of the Operator D(y)

First of all, we deduce (1.6.36) for the matrix elements of the operator D(y). The
generating function is given by (1.6.34)

G p= ZDWV“ —
=exp (—[y[*/2) exp @B+ &y —B7). (B.1)

Expanding in powers of & and f yields

&n1+nzﬁn1 +n3,ynz( _?)"3
ny !n2 !n3!

P St D

G=exp (—3y) X

ninan3

_ 12 =mpn B.2
exp ( 7|V|)m§m m ! m—ny)(n—np)! g ®2
so that
min (m,n) m—ny »)yr—m 2
"M (—Y) 1
=1/m!n! 2 ) B
Dr=l/mint 3 i —m i =) P ( 2 *7

Consider first the case m=n+k>n. Then

(s & (B!
Drn= m! °xp (_5 |}|2>yk ,,20 (m—n)'n'(n+k—n))!’ (B4)

Looking at an expression for the Laguerre polynomials (see, €. g., the definition
in [233])

L (= F'(n+k+1)
L,’:(x—z;o 5T (=) T(k+s+1)’

(B.5)

one gets at once

n! 1 _ _
Dpp=_|— exp (—— |v|2>v’” "Ly "(yP). (B.6)
m! 2
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A similar formula holds for m<n:

m! 1 mYyYi—m n—m
D= /;1—! eXp<—§ Iviz)(—v) Ly (P (B.7)

Note that (B.5) for the Laguerre polynomials is meaningful also for negative k.
The corresponding symmetry relation is

1 1
;!_Lm-,l‘-k(x)=(m+k)' (—%)*Lo(x). (B.8)

Thus (B.6, 7) are equivalent. Note an inequality

(+)

le 2742 Lx(r)| < at (n+k)>0 (B.9)

resulting from the unitarity |D,,,|<1.

Next we write the matrix element (m|D(y)|n) in the Fock-Bargmann
representation. Starting from the antinormal form of the operator, D(y)
=exp (3|y]*) exp (—7ya) exp (ya™*), we get the following integral representation
for the matrix element

712
e’ [du(z)e 1 er=rzgmzm, (B.10)

{m|D)ln> = —l/—~

Comparison with equality (B.6) leads to an integral representation for the
Laguerre polynomials:

PLAGE) = & f du@)er e B11)

Introducing the polar coordinates in the integral, z =g exp (i), and integrating
over ¢, then

x—k/Z X 0
j dtettntk2 g, (21/tx) (B.12)

Li(x)=

Multiplying both sides of (B.11) by ", summing over n, and calculating the
integral, one obtains the generating function for the Laguerre polynomials

Y " LE(pR) =y ke [ du(z)e I R gre e 2 (B.13)

n

Y L x)=(1 —1) " Ve A0 i<, k0. (B.14)
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Another variant of the generating function is obtained by setting k=m —n in
(B.11), and then calculating the sum over n with the factors ", and the integral
over z. The result is

Y L (x) = (1 +1)me . (B.15)

n

Still another integral representation for the Laguerre polynomialsis obtained
by using the Fock-Bargmann representation and (1.3.25) describing the action of
the operator D(y) in this representation,

LGP =] du@e om0 (316

This integral representation may be also rewritten as
Dyt ien() = (2) P +1(2) oz —7) 727772, (B.17)

where the following notation is used
Zn
e
n!

Qn
z)= =——c¢
It is remarkable that ¢@,(z) is the eigenfunction of the Hamiltonian operator for
the two-dimensional harmonic oscillator.
Let us consider the case of n> 1. In this asymptotic the function ¢,(z) has a
sharp maximum, determined by the condition

_lz)2

2 ez gine, (B.18)

o=}/n. (B.19)

In other words, the function ¢,(z) is nonzero mainly near the circle of the radius

Q=W. The corresponding geometrical structure on the complex z plane is
shown in Fig. B.1 for n>1 and m> 1. Two situations should be studied sep-
arately:

i) y>1/;_z. The circles |oz|=]/_n; and |oc—3’z|=l/; intersect, so there is no
exponential smallness in D,,,(y) provided that

bl =)/n<)/m <|p|+)/n; (B.20)

i) |y| <l/; Now D,,,(y) is not an exponentially small quantity if

Yn=pl<)/m<pl+)/n. (B.21)

Both conditions are combined to give

/n =Dl <y/m <)/n+hl, (B.22)
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3)

Fig. B. 1. At m,n> 1 integral (B. 17) is contributed mainly by vicinities of points A and B in
the complex z plane

meaning that the quantities l/;, l/;; and |y| must satisfy the inequalities as
sides of a triangle. Under these conditions, the m>1, n>1 asymptotic for
Wyn=|Dma(7)|?, averaged over the oscillations, is given by

_— r’+q (p—p1)* +(gq:1—9)?
Wmn—i—ij'dpdqcs( 5 —m ) 3 —n

_ (B.23)
a=(q+ip))2, a—=(q,+ip)/)/2.

Finally, the matrix element D,,,(y) may be calculated also by coordinate
representation. Hence we get the integral

[ dx e ¥FVH,(x) H,(x)

2
=)/m 2™ 2 1 (i)™ exp (%) L) (B.24)

In conclusion we present some other useful formulae. The matrix element in
view may be transformed to

{m|D(x)|n) = _1___ {0]a™D (&) (@*)"|0)>
Ym!n!

1

m'n!

930
T TR (7 ~25) \a) 0 (=l (B.25)

2
exp (%) {Ola™e~*e*" (a*)"|0)>

-3
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The generating function for the matrix elements squared is obtained using
(B.10),

F(u,v;7)=Y u""[Km|D®)|n)>[
=ell? j.e_(""2+“’Iz)e‘”_"”e’”_ﬁye““”e””“dy(a)d/,t(ﬁ). (B.26)

This integral is easily calculated, yielding

P - a —v))_ B.27)

F(u,v57)=(1—uv) " exp (y]) exp( T



Appendix C
Jacobians of Group Transformations
for Classical Domains

Let us consider the first type of domain. Any element of this domain is a matrix
with p rows and ¢ columns which satisfies the condition

1P —zz* >0.
The group G acts in the following way
zozy=z-g=(Az+C"Y(B'z+D")~ 1.
It can be rewritten as
zy(Bz+D")=(A"z+C").

Differentiating this equality and substituting z=0 gives

dz;-D'=[4'—C"D)"'B')dz (C.1)
J,(0)=[det (4 —BD~'C)}*[det D]". (C.2)
Since
det [4 —BD~1C]=det [A B] (det D)1 (C.3)
C D
4 B —(ptq)
and det c D =1, then J,(0)=[det D] . (C.9

It can be easily seen that the transformation g, translating z to 0 is

A, 0O | oA
= h .
9. [O Dl] |:Zi @ | where (C.5)
Af Ay =(1-zz1)"",  DfDy=(-zz)"". (C.6)
Finally

J,(z2)=[det (B'z+D’)]"+9, (C.7)
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The calculations for the domains of the second and third types are analogous

yielding (12.2.15, 16).

The case of the fourth type of domain should be considered separately. The
domain Dyy consists of p-dimensional vectors z=(z;,...,z,) satisfying the

conditions
1+|zz'P=222'>0, |zz/|<1.

The group action in this domain is

{[(% (zz'+1), % (zz' —1))A’+ZB'] (f)} z;

={<% (zz' +1), % (zz' —1)) C'+ZD/},

(C.8)

where A, B, C and D are real 2 x 2, 2 X p, p x 2 and p x p matrices, respectively,

which satisfy the conditions

A B
det[c D]=1, AA'—BB'=1%, DD'-CC’'=1®, AC'=BD'.

Differentiating (C.8) and substituting z=0 gives

1
Kdzli=<Dij 3K cibj)dzj, where

1 1 1
K=§(1,i)A( i>, ci=Cia( i), b= (1,i);By;.

Therefore the desired expression for the Jacobian is

detD . 1 . _ 1
Jg(O)=2—I-<-p—J;T [(1,1) A (_i>—(1,1) BDIC (—i):l'
Using the identity

det (o —axb)) =1 —(a, b),

(C.11) is transformed to

(1,i)(4) ! (1)
J,(0)=K"?det D 1 .

(1.i) (4) (_i)

For any 2 x 2 matrix

(C9

(C.10)

(C.11)

(C.12)



Jacobians of Group Transformations for Classical Domains 307

1
)™ (1) 1

= , therefore (C.13)
1 det 4
(1,i) 4 (_i> )
1 detD
HO=15 Geta (C14)

In our case then

A B .
det c D—dethet[A BD™'(C]
detD
= N1= h C.
det Ddet(4") detd’ ence (C.15)
JO—1—1(1 —i) 4’ N (C.16)
O=g=|7 ¢ i/] - '

The group transformations translate 0 into the point z=Q2K)™1(1, —i)C".
Calculating the value of 1+|zz'|> —2 2z’ we get a useful identity

(A +|zz'> =22z =|K]| 3, (C.17)

and, immediately, we get (12.2.17) for ¢(z, Z). The expression for J,(z) results
from a similar calculation:

Jg(z)={[<% (zz' +1), % (22’ —1)) A/+zB’] (f)}_p (C.18)



Addendum
Further Applications of the CS Method

Abundant information on various applications of the CS method is contained in
a volume by Klauder and Skagerstam [A1]. An introductory review presents an
exposition of properties of coherent states; it is followed by a vast collection of
reprints from original papers related to the CS method.

It is not out of place to mention here a number of works in addition to those
cited in Chap. 11, which cover the following applications of the CS method:

1. A description of soft-photon clouds around charged particles and an
elimination of infrared divergences from quantum field theory [A2,A3]. A
similar problem was considered in quantum gravity [A4].

2. Application of the CS method to the theory of magnetism [A5-A9].

3. Analysis of the measurement process [A10-A14]. In particular, a limit, due
to quantum effects, on the sensitivity of a gravitational wave detector is
considered.

4. Application of the CS method to thermodynamics, in particular to the
calculation of partition functions [A15, A16].

5. Coherent states in nuclear physics [A17-A20].

6. Coherent states and path integrals [A1, A21].

7. Application of the CS method to quantum field theory and elementary
particle physics [A22-A31] (and a lot of other works).

8. Construction of multi-dimensional wave functions by means of classical
trajectories [A32] and description of collision processes [A33] in chemical
physics.

9. Biological applications. Description of long-range forces between human
blood cells [A34] and the long-range phase coherence in bacteriorhodopsin
macromolecules [A35].

10. Resonance radiation field interaction with two-level atoms in the frame-
work of the Dicke model. The calculation of the phase transition into the
superradiative state is simplified considerably by means of the CS method
[A36,A37].

11. An approximate description of the interaction of a charged particle witha
strong quantized radiation field. A derivation of the Schrédinger equation for
the charged particle in a classical radiation field has been performed [A38] by
means of a CS subsystem related to von Neumann’s lattice (cf. Sect. 1.5).

12. Some applications of the CS method to the description of superfluidity of
a weakly non-ideal Bose gas [A39, A40].
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13. Coherent states in the theory of radars [A41].

14. Description of the quantum Hall effect [A42].

15. Fermion coherent states in nuclear physics (time-dependent Hartree-
Fock theory) [A43].

16. A problem in non-equilibrium statistical physics: description of spin
relaxation [A44].

17. Application to plasma physics, in particular to the Vlasov equation
[A45].

18. An approach to Landau diamagnetism [A46].

19. Description of the Nielsen-Olesen vortices in quantum field theory using
the CS method [A47].

20. Theory of a system of N identical subsystems, where N goes to infinity
(the 1/N-expansion) [A48].

In conclusion, I should mention some works dealing with overcomplete
systems of states, different from those treated in the present book. A
“continuous representation” of quantum states has been considered by Klauder
[3,27,28] and Berezin [A49], based upon the resolution of unity and some
properties of continuity. In general, systems of states arising in this approach are
not necessarily related to a group structure, and their properties can be quite
different from those of the generalized coherent states exposed here. A particular
case of the continuous representation is the system proposed by Barut and
Girardello [16], which is not subject of a natural action of the related Lie group
SU(1,1). Another system of this type has been considered recently [A50]. A
generalization of coherent states for quantum motion in general potentials has
been proposed, and uses a method which is an analytic complement to the group
theory point of view [A51] (and references therein).
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