
P H Y S I C A L R E V I E W L E T T E R S week ending
16 MAY 2003VOLUME 90, NUMBER 19
Exact Microscopic Wave Function for a Topological Quantum Membrane
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The higher dimensional quantum Hall liquid constructed recently supports stable topological
membrane excitations. Here we introduce a microscopic interacting Hamiltonian and present its exact
ground state wave function. We show that this microscopic ground state wave function describes a
topological quantum membrane. We also construct variational wave functions for excited states using
the noncommutative algebra on the four sphere. Our approach introduces a nonperturbative method to
quantize topological membranes.
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uniformly delocalized on S . We also discuss the excita-
tions of the membrane in terms of the noncommutative
algebra on S4.

with integers m1 �m2 �m3 �m4 � p � 2I. The four
component spinors 

 can be expressed directly in terms
Recently, a higher dimensional generalization of the
quantum Hall effect (QHE) has been constructed by
Zhang and Hu (ZH) [1]. The fundamental fermionic fluid
particles move on the surface of a four sphere (S4) with
radius R, and carry SU�2� gauge degrees of freedom in the
representation I. The instanton density of the SU�2� gauge
field is uniformly distributed over S4. ZH considered the
limit where I ! 1 when R ! 1, such that R2=2I � l2 is
held constant. l defines the fundamental magnetic length
in this problem. This quantum Hall liquid shares many
properties of the familiar 2D quantum Hall liquid, in-
cluding incompressibility, fractional charge, and gapless
edge states. This theory has been further developed in
Refs. [2–11].

Bernevig et al. [8] have recently constructed a topo-
logical field theory for the new quantum Hall liquid. The
configuration space in this problem is CP3, which is
locally the product of the orbital space S4 and the isospin
space S2. The Chern-Simons theory can be defined either
over the configuration space CP3 or on the orbital space
S4. The latter can be obtained from the former through
the fuzzification of the isospin sphere S2. This field theo-
retical study reveals an important class of extended to-
pological objects, including the membrane (2-brane) and
the 4-brane. The membranes wrap the isospin S2 and have
a nontrivial statistical interaction which generalizes the
concept of fractional statistics of Laughlin quasiparticles.

In this Letter, we investigate microscopic properties of
the membranes found in the study of Bernevig et al. We
shall introduce a microscopic interaction Hamiltonian in
the lowest Landau level (LLL), and find its exact ground
state wave function. This wave function is a natural gen-
eralization of Laughlin’s wave function for the 2D QHE
[12,13]. We then show that this wave function describes a
collection of particles forming a membrane, wrapped
around the isospin S2. This wave function is a SO�5�
singlet; therefore, the center of mass of the membrane is
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The importance of the exact membrane wave func-
tion may be viewed from different perspectives. Up to
this point, only microscopic information about the ZH
model is based on noninteracting physics. An elemen-
tary analysis of the boundary degrees of freedom reveals
an ‘‘embarrassment of riches’’ [1,2]. The total configura-
tion space at the boundary is S3 � S2. In the nonin-
teracting limit, isospin excitations are gapless, leading
to massless states with all helicities. In addition, there
is also an incoherent fermionic background. The en-
tropy at the boundary therefore scales like R5, unlike
the R3 scaling one would expect from a conventional
(3� 1)-dimensional field theory. A possible solution to
this problem could come from an ‘‘isospin gap,’’ intro-
duced by the mutual interaction among the particles. In
this case, for energy scales below the ‘‘isospin gap,’’ the
entropy would scale like R3. Our exact membrane solution
in the presence of the interaction indeed suggests this
behavior. Since our membrane wraps the isospin S2, its
internal degrees of freedom behave like a 2D QH liquid
with an incompressibility gap. Beyond the problem of cur-
rent interest, our exact membrane solution gives a new
way to quantize a membrane beyond Polyakov’s path
integral quantization, and could yield valuable informa-
tion about the strong coupling limit of quantum mem-
branes. Finally, two possible interpretations of the elusive
‘‘M theory’’ are the matrix and membrane theories
[14,15]. In our model, these two theories are intimately
related. In the LLL, the fundamental particles can be
described by a matrix model. Our exact wave function
shows microscopically how membranes emerge from a
collection of matrix particles.

Let us first recall that the single particle wave function
in the LLL of the 4D QHE problem is given by���������������������������������
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FIG. 1. A graphical representation of the wave function (6),
when the product is expanded. Each particle is denoted by a
circle with p dots, representing a LLL state �p; 0�. Each solid
line denotes a SO�5� singlet bond formed between the spinor
indices of particles i and j.
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of the S4 and the S2 coordinates, as given in Eq. (5) of
Ref. [1]. The degeneracy of the single particle ground
states is given by

D�p� � 1
6�p� 1��p� 2��p� 3�: (2)

A rather remarkable feature is that while higher LL states
are SO�5� symmetric, the LLL states enjoy an additional
SU�4� symmetry, as one can see directly from Eq. (1) .
The SO�5� group is isomorphic to the Sp�4� group, which
differs from the SU�4� group only through an additional
structure associated with the charge conjugation matrix
R. Let 
a, with a � 1; . . . ; 5 be the five Dirac Gamma
matrices satisfying the Clifford algebra f
a;
bg � 2�ab,
then 
ab � � i

2 �
a;
b
 form the generators of the SO�5�
Lie algebra. The R matrix is defined by the following
properties:

R 2 � �1; Ry � R�1 � tR � �R; (3)

R 
aR � �t
a; R
abR � t
ab: (4)

The relation R
abR�1 � ��
ab�� indicates that the
spinor representation of SO�5� is pseudoreal. The R ma-
trix plays a role similar to that of �
� in SO�3�. In the
explicit representation given by Eq. (4) of Ref. [1], the R
matrix takes the form

R � �i
�
�y 0
0 �y

�
; (5)

where �y is a Pauli matrix. The presence of the R matrix
breaks the SU�4� symmetry down to the SO�5� � Sp�4�
symmetry. Since the LLL wave functions do not involve
the R matrix, they are SU�4� invariant. However, the R
matrix is needed to construct wave functions in higher
LLs [16], which are only SO�5� invariant.

Having reviewed the wave functions in the LLL and
introduced the concept of the R matrix, we now present
our microscopic wave function. In the 2D QHE, the � � 1
wave function can be expressed either as a Slater deter-
minant or as a Jastrow-Laughlin type product wave
function. The van der Monde identity relates them exactly.
However, this identity does not hold in higher dimension.
We shall see the profound physical implications intro-
duced by this inequivalence. In Ref. [1], ZH constructed
many-body wave functions by using the Slater determi-
nant and, following Laughlin, by taking odd powers of
these Slater determinants. They showed that these wave
functions describe incompressible quantum liquids.
However, one could proceed in a different way here, by
constructing wave functions using the inequivalent
Jastrow-Laughlin product form. Such a wave function
takes the form

�0 �
Y
i<j

�

�i�R

�
��j��

m; (6)

where m is an odd integer and i; j refer to ith and jth
particles in the system. If we replace R
� by �
�, and
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let 
;� take values of 1; 2, this would transform exactly
into Laughlin’s wave function expressed in Haldane’s
spherical geometry [13]. Our wave function has the fol-
lowing properties.

(1) When m is an odd integer, this wave function is
antisymmetric when particle coordinates are exchanged.
Therefore, this wave function describes a fermionic
system.

(2) The wave function is a SO�5� singlet. This is be-
cause every term in the product, 

�i�R


�
��j�, is a
SO�5� singlet, by virtue of Eq. (4).

Since the wave function involves the R matrix explic-
itly, the symmetry in the LLL is broken from SU�4� down
to SO�5�.

(3) When the product is expanded, the spinor coordi-
nate 
�i� occurs m�N � 1� times. Therefore, the wave
function for the ith particle takes the form of (1), with
p � m�N � 1�. ZH showed that single particle level spac-
ing becomes finite in the limit when p=R2 � 1=l2 is held
constant. Therefore, the number of particles in the wave
function (6) scales like N � p� R2. In other words, the
wave function (6) describes a two-dimensional object.

This wave function can be represented graphically. We
associate each particle with p dots, representing a sym-
metric spinor state of the form of (1). We draw a solid line
representing a contraction between the ith and the jth
particles through the R matrix. The resulting graphical
representation forN � 4,m � 1; 3 is depicted in Figs. 1(a)
and 1(b).

(4) In order to see what kind of two-dimensional object
is described by the correlated wave function (6), we
borrow from Laughlin’s plasma analogy.

RQ
idXi �

dnij�0j
2 can be interpreted as the partition function of

a classical gas, living in the six-dimensional CP3 con-
figuration space. The Boltzmann weight for this classical
gas is

j�0j
2 �

Y
i<j

j��ij�j2m � e
m
P
i<j

logj��ij�j2

; (7)

where ��ij� � 

�i�R

�
��j�. Since the wave function
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involves only pairwise correlations, we see that the clas-
sical gas interacts via a two-body potential only. m can be
interpreted as the effective inverse temperature, � �
1=kT. Using the tensor identity

R 
�R!� � 1
4�
!��� �

1
4


a

!


a
�� �

1
4


ab

!


ab
��; (8)

we obtain the explicit form of the pairwise potential

j��ij�j2 � 1
4 �

1
4Xa�i�Xa�j� �

1
4F



ab�i�n
�i�F

�
ab�j�n��j�;

(9)

here Xa�i�, with X2
a � 1, describes the coordinate of the

ith particle on the orbital space S4, and n
�i�, with
n2
 � 1, describes its coordinate on the isospin space
S2. F


ab is the Yang-Mills field strength of the SU�2�
instanton over S4, explicitly given by Eq. (19) of Ref. [8].

From the sign of the second terms in Eq. (9), we see
that the gas particles interact via an attractive interaction
on S4. This is in direct contrast to Laughlin’s plasma,
where the gas particles interact via a repulsive interaction
on S2. Therefore, at low temperature, our gas particles
have a natural tendency to cluster to the same point on S4.
However, over every point on S4, there is also a large,
internal isospin S2 for the gas particles to ‘‘live.’’ From
the sign of the third term in Eq. (9), we see that the gas
particles repel each other on the isospin S2, just like the
case of the Laughlin plasma. From these observations, we
see that our gas particles cluster to the same point on S4,
but uniformly fill the isospin S2 like a 2D QH liquid.
Viewed from the whole CP3 point of view, the gas par-
ticles form a 2D membrane, wrapped around the isospin
sphere S2. The center of mass of the membrane is a point
on S4, and our wave function consists of an equal weight
linear superposition of the center of mass position over
S4. Therefore, the ground state is a SO�5� singlet.

Having exhibited the key properties of our wave func-
tion and its classical plasma analog, we now present a
microscopic quantum interaction Hamiltonian for which
it is an exact ground state. Our construction follows
closely Haldane’s pseudopotential formalism [13]. Since
every particle is in the �p; 0� irreducible representation
(irreps) of SO�5�, the total SO�5� quantum number of a
pair of particles i and j is generically given by

�p; 0� � �p; 0� �
Xp
k�0

Xk
l�0

�k� l; k� l�: (10)

On the other hand, in our wave function (6), there are
already m SO�5� singlet contractions between the par-
ticles i and j. Therefore, the total SO�5� quantum number
between these two particles in our wave function can be
contained only in �p�m; 0� � �p�m; 0�. Based on this
observation, we introduce the projector Hamiltonian in
the LLL as H �

P
i<jHij, where
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Hij �
Xp

k�p�m�1

Xk
l�0

$�k� l; k� l�Pij�k� l; k� l�; (11)

where Pij�k� l; k� l� is a projection operator onto the
SO�5� irreps �k� l; k� l� between a pair of particles i
and j and $�k� l; k� l� > 0 is the interaction parameter
in a given channel. This Hamiltonian operates fully
within the LLL and is positive definite. Since a pair of
particles in our wave function cannot have any of the
SO�5� irreps specified in (11), it is annihilated by all
projectors. Therefore, we have proven that our wave func-
tion (6) is an eigenstate of the Hamiltonian (11) with zero
eigenvalue. Since the Hamiltonian is also positive defi-
nite, our wave function must therefore be a ground state.
Our experience leads us to conjecture that this is also a
unique ground state in the spherical geometry.

Having shown the exact ground state wave function (6)
of the interacting Hamiltonian (11), we now proceed to
discuss the excited states. Following Feynman’s construc-
tion of elementary excitations with liquid helium [17], we
try to construct variational states of the form

� �
Y
i

F�Xi; ni��0; (12)

where F�X� is a single particle wave function over S4. In
Feynman’s case, he simply took F�x� to be plane waves,
and his wave function describes the center-of-mass mo-
tion of a correlated quantum liquid with finite momen-
tum. In our case, one could use the spherical harmonics
over S4 for F�X�:

F�X� �
X

L�l1;...;l5

fLXL; XL � Xl1
1 X

l2
2 X

l3
3 X

l4
4 X

l5
5 : (13)

Here l1 � � � � � l5 � l, and fL is chosen such that F
belongs to the fully symmetric traceless tensor represen-
tation �l; l� of the SO�5� group. We argued earlier that the
membrane wave function �0 is a SO�5� singlet, which
means that the center of mass of the membrane has the
lowest SO�5� angular momentum on S4. The more general
wave function � given in (12) describes higher angular
momentum of the center of mass on S4.

However, there is a serious problem with the function
F�X�. Since Xa � �


a
,F�X� depends on both �

 and 
.
But Eq. (1) shows that the single particle wave functions
in the LLL can involve only 
 but not �

. The solution of
this problem is provided by Girvin, MacDonald, and
Platzman [18]. One simply needs to use the projection
of Xa in the LLL, which is

Xa �
1

p


a

@
@


: (14)

The effect of Xa operating on a SO�5� singlet bond
formed by R is to turn it into a vector bond R
a.
After the projection, Xa’s become operators and no longer
commute with each other; in fact, they satisfy the
196801-3
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noncommutative algebra outlined in [1]. As a conse-
quence of the noncommutativity, F�X� does not only
give the fully symmetric traceless tensor representation
�l; l� of the SO�5� group, but includes all SO�5� irreps in
the series 5 � 5 � 5 . . . . A physical interpretation of this
result is that because of the noncommutative geometry in
the LLL, the center-of-mass degrees of freedom are
coupled to the internal membrane degrees of freedom.
A full calculation of the variational energies for the wave
function (12) with F given by (13) and (14) will be
carried out in the future, possibly with the assistance of
numerical calculations.

However, even without explicit calculations, we can
anticipate the result based on our experience with the
2D QHE. We argued before that our membrane wrapping
the isospin S2 is made out of a 2D QH liquid, which has an
incompressibility gap. Therefore, it appears likely that
our quantum membrane does not have the ‘‘spike insta-
bility’’ of a classical membrane [15], where arbitrarily
long spikes can be created at low energies. This picture
has important implications on the relativistic edge dy-
namics of the 4D QH liquid. In the noninteracting prob-
lem, the entropy at the edge scale like R3 � R2 � R5,
since the internal isospin excitations are gapless. In this
work, we have seen that interaction can introduce a high
degree of correlation. In the strong coupling limit, there
are no free particle excitations, only correlated membrane
excitations. Furthermore, the membranes wrap the iso-
spin S2 by forming a 2D QH liquid, which has an incom-
pressibility gap. In this case, for energies below the
incompressibility gap, the effective entropy at the edge
would scale like R3. This effect gives a mechanism of
‘‘dynamical dimensional reduction.’’ Different internal
membrane excitations appear as different helicity states
in the (3� 1)-dimensional world view. Therefore, higher
196801-4
helicity states would naturally acquire an energy gap, as a
result of the interaction and quantum correlations built
into the membrane wave function. However, we do not yet
know a natural mechanism within our framework to gap
only states with helicities greater than three. Nonetheless,
we believe that the exact membrane wave function repre-
sented in this paper provides a key step towards under-
standing the strong correlation effects in the 4D QHE
model.
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