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This paper reviews the theory of anisotropic superfluid phases and its application
to the new A and 8 phases of hquid 'He. It is tutorial in nature and advanced
formal techniques are avoided; even the formalism of second quantization is not
required. After an initial discussion of the Fermi-liquid theory of Landau and its
application to the normal phase of liquid 'He, the idea of instability against
formation of Cooper pairs is introduced. The effective interaction in liquid 'He is
considered. , with emphasis on the spin-dependent interaction arising from virtual
spin polarization of the medium ("spin fluctuation exchange" ). Next, a
self-contained discussion of-the "weak-coupling" BCS theory as applied to
anisotropic superfluids is given, with special attention to the "Ginzburg —Landau"
region close to the transition temperature. Formulas are derived for the specific
heat, spin susceptibility, normal density tensor, and static spin-dependent
correlation properties of superAuids with both singlet and triplet pairing: In the
triplet case the ideas of "spin superAuid velocity" and "spin superfluid density"
are also introduced. After a preliminary comparison of the weak-coupling theory
with experiment, it is shown that feedback effects due to the modification, by
formation of Cooper pairs, of the effective interaction connected with spin
fluctuation exchange can produce results which are qualitatively different from
those of the weak-coupling theory. An attempt is made to reformulate recent
graph-theoretical treatments of this phenomenon in a more elementary language,
and considerations based on possible invariant forms of the free energy are also
introduced. The properties of the so-called Anderson —Brinkman —Morel and Balian-
Werthamer states, which are commonly identified with He-A and 8, respectively,
are studied in detail. Next, the effects which tend to orient the Cooper pair
wave function in a given experimental situation are discussed; in this context the
form of the free energy terms arising from spatial variation of the wave function is
explored. A semiphenomenological theory of the nuclear magnetic resonance
properties is developed and applied in particular to the case of unsaturated cw
resonance; the analogy with the Josephson effect is emphasized. The question of
relaxation and linewidths is also briefly discussed. A partial account is given of
the theory of finite-wavelength collective oscillations, with particular reference to
first, second, and fourth sound and spin waves. The splitting of the A-normal
transition in a magnetic field is considered, with special attention to the possibility
it offers of testing theories of the "spin fluctuation" type. Finally, a brief
assessment is made of the extent to which the current experimental data support
the conventional identification of 'He —A and 8 and the spin fluctuation theory,
and some outstanding problems and possibilities are outlined. Subjects not
discussed include "first-principles" theories of the effective interaction in He

collective excitations in the "collisionless" regime, and the problem of ultrasonic
absorption, "orbit waves, " and the theory of the kinetic coef5cients.
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I. INTRODUCTION

The discovery of the new phases of 'He described in the
accompanying paper by Wheatley (1975)' did not burst
into a theoretical vacuum. Very soon after Bardeen, Cooper,
and Schrieffer (1957) and Bogoliubov (1958) proposed
what is now the almost universally accepted microscopic
theory of superconductivity, it was realized that the phe-
nomenon of Cooper pairing which lay at its base might not
be restricted to electrons in metals but could well occur in
other highly degenerate systems of fermions —in particular,
in liquid 'He. It was quickly appreciated that whereas the
electrons in metals form pairs with relative angular mo-.
mentum zero, in 'He this would be prevented by the strong
hard-core repulsion, and that therefore Cooper pairing, if
it occurred, was likely to be in a state with finite angular
momentum. Such a state would have an anisotropic pair
wave function and hence presumably anisotropic properties.
Moreover, since the 'He atom is neutral, it could of course
not show anomalous electrical conduction properties like
the BCS state of electrons in a superconductor; but it w'ould
presumably show the corresponding anomalous mass Rom
properties, that is, superQuidi&y. Consequently, this pro-
posed low-temperature phase of liquid 3He, at that time

' This paper is throughout referred to simply as "Wheatley. "

completely hypothetical, became know'n as an "anisotropic
superQuid" state.

In the years between 1960 and 1972 the theory of aniso-
tropic superQuidity was developed in some depth, and many
specific predictions were made for the behavior of liquid
'He should it ever enter such a condensed phase. '. %Shen
therefore the new phases 'He —A and 8 were discovered in
1972, it was almost universally assumed from the very
beginning that they were indeed the long-predicted anis-
tropic superQuid phase, and almost all theoretical w'ork in
the last two years has been based on this assumption: that
is, that both the new' phases are essentially similar to the
"BCS state" of electrons in a superconductor, but with the
Cooper pairs forming in a state of nonzero relative angular
momentum.

~ The present author must be one of a tiny minority in
still harboring any doubts at all of the correctness of this
identification (the reasons for such lingering doubts are
touched on briefly in the Conclusion). Nevertheless, the
theory based on it has in many ways proved extremely
successful in accounting for the properties of 'Hc —A and 8,
and no alternative theory has as yet got off the ground.
This review, then, will discuss the theory of anisotropic
superQuidity and its applications to the new phases.

This is very definitely a "tutorial" type of review, and in
writing it I have tried to bear in mind the needs of someone
(e.g. , a starting theoretical or experimental graduate stu-
dent) coming fresh into the topic without any great experi-
ence of theoretica, l w'ork in related areas of many-body
physics. I have therefore tried to use elementary methods
as much as possible, and have rigorously eschewed Green's
functions, diagrammatic perturbation theory, and super-
Quid kinetic equations; nor have I wandered away from the
real a,xis into the complex plane. I have even set myself the
task of deriving all results without explicit use of the second-
quantization formalism (though I do sometimes add alter-
native derivations which use it, for the benefit of those
readers already fluent in this language). This in itself has
the consequence of restricting somewhat the areas which can
be covered, and there are several important topics which
I have made a conscious decision to omit entirely. In par-
ticular no discussion at all is given of first-principles cal-
cu1ations of the effective pairing interaction, nor of the
problems concerned with ultrasonic attenuation: to do more
than graze the surface of these topics without using ad-
vanced formal techniques would, I believe, be pointless.
I have also omitted all discussion of "orbit waves" and
related topics, not so much because they require advanced
techniques but because it seems to me that there are a
number of rather fundamental conceptual difficulties in
this area which have not yet received any agreed resolution.
Finally I have had to leave out any discussion of the kinetic
coefficients, largely because of sheer shortage of time. (This,
in any case, is an area in w'hich the difficulties seem to be
primarily mathematical rather than conceptual. )

The plan of the paper is as follows. In Sec. II I discuss
the Landau theory of a normal Fermi liquid and its applica-

This account is deliberately ultra-brief and nonhistorical. A parallel
review paper by P. W. Anderson and W. F. Brinkman (to be published}
discusses the history of the subject in some detail. A partial bibliog-
raphy of early work, including some less well-known references, is to be
found in Galasiewicz, 1974.

Rev. Mod. Phys. , Vol. 47, No. 2, April 1975



A. J. Leggett: New phases of 'He: Theoretical

tion to normal liquid 'He; this is a necessary preliminary
to discussion of the new' phases, since many of the factors
which differentiate normal 'He from a weakly interacting
Fermi gas also play a vital role in the new A and B phases.
Section III is a brief and rather naive introduction to the
' Cooper instability, " that is, the possible instability of a
normal Fermi system against formation of Cooper pairs;
this is intended mainly to motivate the discussion, which
follows in Sec. IV, of the effective pairing interaction be-
tween quaslpal ticles in He.

Sections V—VII are an account of the standard "weak-
coupling" theory of anisotropic superAuids, that is, roughly
speaking, the generalization of the BCS theory of super-
conductivity to the case of pairing with nonzero angular
momentum. In an effort to make the presentation self-
contained, I have not assumed a previous knowledge of
superconductivity theory (though it will obviously help)
and have therefore started from scratch. It would, of course,
have been possible to refer the reader to the pre-1972 litera-
ture, in particular to the classic papers of Anderson and
Morel (1961) and Balian and Werthamer (1963) for most
of the results, but I have preferred as far as possible to derive
them explicitly. One reason for doing this (apart from want-
ing to make the paper self-contained) is that the pre-1972
papers often tend to concentrate on the behavior at zero
temperature, whereas in the recent literature much more
emphasis has been placed on the region near the critical
-temperature. In view of this I have also tended to focus
primarily on this region, and have for instance included
an explicit discussion of the Ginzburg —Landau theory
(without gradient terms) for anisotropic superfluids and
its derivation from BCS-type theory. In Sec. V the BCS
theory. for the case of spin singlet pairing is presented, in
Sec. VI I derive expressions for the specific heat, spin
susceptibility, normal density tensor, and static correlation
properties for this case, and in Sec. VII I generalize the
theory to the case of spin triplet pairing. Most of the results
of these sections are to be found in the pre-1972 literature,
although there are one or two such as the notion of, and
expression for, the "spin superAuid density" which I believe
had not been explicitly derived.

In Sec. VIII we pause for breath and try to see how far
the theory so far developed fits the experiments on 'He —A
and B. It is clear that the very existence of ~He-A is a
major puzzle. In Sec. IX, therefore, I present the ideas of
Anderson and Brinkman on "spin fluctuation feedback"
which have proved so brilliantly successful in resolving
this anomaly, together with more general considerations on
possible invariant forms of the Ginzburg —Landau free
energy. In Subsection IX.D, I discuss in detail the proper-
ties of the so-called ABM and 8% states, which are now
generally believed to correspond to 'He —A and B, respec-
tively (this could as well have formed a separate section) .

In Sec. X I discuss the various factors which in a practical
experimental situation are likely to determine the orienta-
tion of the Cooper pair wave function, introducing in the
course of this discussion the gradient terms in the Ginzburg-
Landau free energy. This leads on in a natural way (Sec.
XI) to the nuclear magnetic resonance properties, which by
probing the anisotropy and orientation of the wave function
in a rather delicate w'ay have been one of the most valuable
keys to the identifications of the new phases. Section XII

is devoted to the propagating collective oscillations, mainly
those of "hydrodynamic" type w'hich can be treated by
relatively simple techniques: first, second and fourth sound
and spin waves of various types are discussed, but not orbit
waves (see above) . Section XIII deals with the A transition
in a magnetic Geld, and in particular its connection with the
"spin fluctuation feedback" theory. In the Conclusion,
Sec. XIV, I review the status of the "orthodox" identifica-
tion of 'He —A and 8 and of the spin fluctuation theory, and
then make some general comments. An Appendix gives a
formal proof of the formula for correlations in a spin triplet
state established by naive arguments in Sec. VII.D, and
also of the expression for the dipole energy used in Sec.
X.A. The first part of this Appendix is the only part of the
paper which requires some fluency in the technique of
second quantization.

As far as possible I have tried to present basic physical
ideas rather than mathematics (though no doubt some
readers will And this hard to believe as they struggle through
the several hundred equations!) . In particular, I have
usually tended to cut short the explicit discussion of a
problem once it has been reduced to a well-defined mathe-
matical form; e.g. , I have not presented explicitly calcula-
tions of particular "textures", nor of the NMR behavior in
"unusual" geometries (although I have discussed the theory
of cw resonance under bulk conditions, since historically
speaking this has been an important key to the identi6cation
of the new phases) . I have also tried not to duplicate more
than necessary the discussion given by %heatley of the
extent to which existing experimental data fits the theory,
although it is clearly impossible to ignore this topic com-
pletely.

In an effort to ensure that this paper appeared in the
same issue as the experimental review by YVheatley, I have
had to complete it to a tight deadline and to make some
compromises which, given a more leisurely timetable, I
would have hoped to avoid. Apart from tidying up the
notation in some places, I should have liked to rewrite
Sec. III and perhaps also the end of Sec. V, and especially
Subsection IX.C. This last is a source of some embarrass-
ment to me: wishing to give some account of the "sophisti-
cated" spin fluctuation theory of Kuroda and Brinkman,
Serene, and Anderson, I was faced with the alternatives of
presenting it in the diagrammatic perturbation-theoretic
language of the original papers (which might have made it
quite inaccessible to many readers) or of trying to reformu-
late it in more elementary language. Having decided to do
the second, I found a method of approach which seemed to
give just the original results by a much simpler method.
Unfortunately, a few days before the hnal deadline for sub-
mission, I discovered that I had made a trivial algebraic
mistake and that in fact the results of the "elementary"
method as given are cot equivalent to those of the original
papers, although the difference is only an overall numerical
factor. I thick that the source of at least most of the dis-
crepancy can be pinpointed Lsee the remark on Eq. (9.33)$
but I have simply not had time to work this out in detail
before submitting the paper. Such is the nemesis visited by
6eld-theoretic methods on those that scorn them! Although
the subsection in question may be quantitatively quite
wrong, I have decided to leave it in with appropriate
warning signs, as I believe it may nevertheless convey the
basic physical ideas behind the graph-theoretic calculations.
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One major headache for anyone writing a theoretical
review paper ls of course the question of notation. In this
connection my first concern has been to coordinate my ow'n

notation as closely as possible to that of the companion
paper by%heatley, even at the expense of divergence from
other theoretical papers. I have appended a list of symbols
which are likely to cause confusion, with references to the
defining equations, etc. : here I just comment on one or two
of the most troublesome points. d generally denotes a spiv
operator in units of 6: at well-defined points in Sec. VII
and the Appendix, however, the notation 0-; and O.„p' is used
for (elements of) the ith Pauli matrix. I have taken care
always to comment explicitly when this is d.one and hope
it will not cause confusion. ' The quantities S and S(n)
are the actual total spin and differential spin polarization
(see Sec. VII.D), respectively, that is, they are uot in units
of 5. The quantity d(n) is the eornzalised gap parameter
(or order parameter: see Section V.D) . The quantity
y,v(q~) in Sec. II is the genuine dynamic magmetic suscepti-
bility, but the quantity y(qcu) used from Sec. IV onwards
is the dynamic spns susceptibility in units of A, i.e., y,„
divided by y%'. The static quantities x and z,; are every-
where the mugeetic susceptibilities.

Finally, in the context of the spin fluctuation theory and
the A transition, I have distinguished three quantities 6,
6', 6"; all of these have at one time or other been called 6
in the literature. I am very conscious that the notation
could usefully have been tidied up had time allowed.

The figures are meant only to give a qualitative indication
of behavior and should not be taken seriously from a quan-
titative point of view'. %here numerical estimates of quan-
tities in 'He are quoted, unless otherwise stated they are
meant to be appropriate to the melting pressure: generally
speaking, the corresponding numbers at lower pressures
may diGer by factors of order two or three.

I do not regard it as part of the function of a review of
this type to assign credits or priorities, a task for w'hich I
have in any case neither the qualifications nor the incli-
nation. The citation of a particular reference in connection
with a given result is meant only to imply that further
useful information or discussion may be found ther'e, not
that it was necessarily the first paper, historically speaking,
in which that result was presented, %here the discussion
given is self-contained I have often cited references, if at
all, only in connection with whole sections or subsections;
this is especially the case in the earlier chapters dealing
with the weak-coupling BCS theory, the results of which
are by now in some sense standard. Despite this, the choice
of references has inevitably been somew'hat arbitrary. If
any authors feel their contributions have been slighted, I
beg them to attribute it to ignorance, stupidity, laziness, or
haste rather than to downright malicet

II. THE NGRMAL STATE OF LIQUID
'He- FERMI-LIQUID THEORY

A. LandaLI's theory

Between about 100 mK and the onset of the new phases
below' 3 mK, liquid 'He behaves in Inany ways very like a

3 This is done to preserve as far as possible a familiar form of Eq.
(7.32) and related equations.

weakly interacting degenerate Fermi gas. For instance, the
specific heat is proportional to T, the spin susceptibility is
temperature-independent, and the viscosity is proportional
to T '. This is at first sight somewhat puzzling when one
realizes that the mean interatomic spacing is quite com-
parable to the hard-core radius, so that one would expect
collisions to be extremely important. A theory which takes
this into account and nevertheless reproduces the experi-
mental behavior was formulated by I.andau —the theory of
a "Fermi liquid. " This theory is generally believed to give
a very good account of the normal phase of ~He below about
100 mK. In this section I shall brieQy review the main
elements of the theory, concentrating on those points which
are important for an understanding of the new phases. For
a more comprehensive discussion see, for example, Abrikosov
and Khalatnikov, 1960; Pines and Nozieres, 1966 (Ch. i),
or Baym and Pethick (1974).

In a free gas of X Fermi particles of spin ~, the single-
particle eigens'tates are plane-wave states of wave vector
k (momentum Ak) and spin projection 0., = &i~ with
energy e&

——6'k'/2nz. If we impose the usual periodic bound-
ary conditions in unit volume, the ground state is the so-
called "Fermi sea": all single-particle states are filled up
to a limiting wave vector kp ——(37r'X)"'. One defines the
Fermi momentum, energy, and velocity by

Pp = Akp ——A'(37r'X)'~',

vp
—= (de/dp)„, = pp/ns.

ep = Pp'/2+i,

(2 1)

Then the density of states per unit energy and unit volume
(of both spins) at the Fermi surface is given by

de 2 4n Pp' Pp' 3X
de (2vr5)' (de/dp) „v%'v ppvp

jvyps

Pp

(2.2)

The low-temperature static properties are determined en-
tirely by the density of states. For instance the specific
heat and Pauli paramagnetic susceptibility can be written

C„= (~'/3) k~'(dr&/de) T, x = ',p%'(de/d-e), (2 3)

where y =— 2p/5 is the gyromagnetir. ratio of the 'He nucleus
(p the nuclear magnetic moment).

For the purposes for which we shall need. the Fermi-liquid
theory, it is adequate to think of it in the following, some-
what nonrigorous way. %e imagine that each 'He atom
collects around itself a "screening cloud" of other atoms,
thereby becoming a "quasiparticle" with some effective
mass m~. The number of quasiparticles is equal to the
number. of X of 'He atoms; like them, the quasiparticles
occupy plane-wave states of momentum p = Ak and spin
projection &2, and must obey the Pauli principle. Conse-
quently in the ground state the quasipurticles fill the Fermi
sea up to the Fermi momentum, which is still given in terms
of 1V by Eq. (2.1). Excited states are formed by taking a
quasiparticle out of a filled. state and putting it. in an empty
state: we can describe any state by specifying for each
state y, 0. the number of quasiparticles e(yo. ) in that state
or equivalently the deviation Sn(yo. ) of N(yo) from its
groundstate value (see LCij).
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The energy of a single quasiparticle state is just

«(p) = p'/2m*.

Consequently the Fermi velocity and density of states at the
Fermi surface are found from Eqs. (2.1) and (2.2) simply
by replacing m by m*:

Now if the forces in the system are invariant under spin
rotation, the only possibilities for the form of the effective
interaction energy between quasiparticles in states p and
p' are Bn(p) Bn(p') and d(p) ~ d(p'), i.e., the most general
form of the energy is, apart from the constant Eo

~ = Z (p)~=(p) +-, Z lapp)~=(p)~=(p)
pp/

up
——pp/m*, d~/d« = 3X/p». = 3+~*/p.

(2.5)
+t(pp') &(p) &(p')l (2.9)

Were this all that there is to the Fermi-liquid theory, it
would be a trivial extension of the theory of a degenerate
Fermi gas, and one would be able to obtain all properties
by simply replacing ns by m*, and hence the density of
states (2.2) by (2.5).

However, a second very important feature of the theory
is that it introduces an effective interaction between quasi-
particles. Let us suppose for the moment that this inter-
action is spin-independent. Then it can depend only on the
momenta of the two quasiparticles involved, p and p': we
write it f(p, p'). From its definition, obviously f(p, p') =
f(p', p). Then we can write the total energy of the system
in the form

& = & + Z (p)~~(p ) + —: Z f(p, p')& (p )~ (p' ')

(2.6)

(Slightly different formal expressions may be sometimes
found in the literature: as we shall see, however, the end
results are identical. ) An equivalent expression for E may
be obtained by defining the "true" quasiparticle energy
«(p), a functional of the distribution of the other quasi-
particles, as the variational derivative of E. with respect to
N(po):

or equivalently

&= Zf (p)~~(p) + f K(p).~&(p) (2.10)

«(p) —= «(p) + Zf(pp')&~(p'),
p/

K(p) —= Z t(pp') &(p').
p/

(2.11)

The "true" energy of a quasiparticle of momentum Iji and
spin d is therefore, intuitively speaking

-(p, ~) = -(p)+ 'K(p) (2.12)

(there is no need, here, to go into the matrix notation
needed to make this statement precise). The quantities f
and f have the dimensions of energy; it is conventional to
define dimensionless quantities F and Z by multiplying
them by the density of states de/d«. Moreover, we are
generally interested in values of p and y' lying near the
Fermi surface: p ~ p' pF In that . case the invariance of
the system under spatial rotation allows F and Z to be
functions only of the angle 0 between y and p', so that we
ca& expand them in Legendre polynomials:

«(p) =—~&/&&(po) = «(p) + Z f(pp')&(p'o') (2»)
p/g/

E is then given by

(«/d )f(p, p') =—I(p p') = Z Fi& («»~)
E

«/d)f(p, p) =—Z(p, p') =ZZ~(-~) (2.13)

E = Ep+ Q f «(p)Be(pa). (2.7b)
p 0'

If thy interaction is spin-d. ependent we have a slight
complication. A quasiparticle in a plane-wave state y need
not necessarily be in an eigenstate of a-, with respect to the
particular combination of axes we have chosen: it may be
in a linear combination of the states o-, = &2, i.e., it may
have its spin d oriented in some arbitrary direction. A
formal way of dealing with this possibility is to replace
e(po.) by a 2 )( 2 matrix n(p) and the sum over o by a
trace. Alternatively, what is equivalent and perhaps easier
to grasp intuitively, one can completely describe the state
of occupation of the plane-wave state y by specifying the
total number of particles in it, 8(p), and the expectation
value of (components of) spin associated with the state,
o.;(p) . This is equivalent to specifying the four components
of the 2 )& 2 matrix n(p). In fact we have

ae(p) =—Tr»(p) L—= Z SN(p~) 3 ~;(p) = —; Tro,an(p),

where 8.; is a Pauli matrix.

Thus the two-particle interaction is completely described
in terms of the infinite set of "I.andau parameters"-F~ and
Z~. LIn the literature one often finds the alternative nota-
tion F~ = F~', Z~ =—4F~, also, the Landau parameters are
sometimes defined to include an extra factor (2l + 1)
Anticipating somewhat, we quote the result that the 6rst
four parameters at least (Fo, Fi, Zo, Zi) can be found from
experiment: in general Fo is very large and positive, Fj
large and positive, Zo negative and about —3, and Zj
probably near zero. (See below for more details. )

The Landau theory is, then, a semiphenomenological de-
scription of the system which introduces one phenomenol-
ogical parameter, m*, for the single-particle energy spec-
trum and an infinite set for the two-particle interaction. It
shouM be emphasized that it was invented for a specific
purpose, namely to describe the low-erIergy excited states
of the system and hence its low-temperature properties: we
will get nonsense if we try to push it beyond this region.
Moreover, although the "quasiparticle" concept is an in-
tuitively attractive one, considerable care is needed in apply-
ing it quantitatively. For instance, it is true that the total
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spin and momentum of the system are given in terms of the of p and then expand over the Fermi surface in spherical
quantities Bn(p) and d(p) by harmonics, defining

S = & Z &(y), p = Z p&n(y) (2.14) Xl ——g 8n ( P) Vl (y), Sl- =—Z &(y) &l-(b).

J.„.= g —Ku(p). (7)

just as for a gas of free particles, and one might therefore
think that the total spin current (a dyadic) would be given
also by the same expression as for the free gas, namely

(2.20)

Note that Xl and S, are macroscopic quantities.

Then we find using the properties of spherical harmonics,

& = &o+Z (I (p)~ (p)+K(p).~~(y)I o (p~)

= (p) + & K(y),
This however is rot true: there is an asymmetry between
the spin and momentum, which are conserved quantities,
and the spin current, which is not /for a discussion of this
point, see Leggett (1970)).The correct expression is in fact where

(2.21)

, (1+ i'2Zi) &(y) (2.15) Em

B. Molecular fields K(p) = —Z I'l-*(b)Rl- (2.22)

~(y, d) = e(p) —phd H .i

H, l ———y
—'tit —'(dn/de) —'Zo S

(2.16)

(2.17)

so that the term in Zp generates a "molecular field" as in
the Weiss theory of ferromagnetism. (We have inserted
the factor p5 only so that H, i does have the normal dimen-
sions of a magnetic field. ) A similar argument can be carried
out for the term involving Pp, which generates a Hartree-
type field proportional to the number of particles. Let us
consider more explicitly the term involving Ii&, since this
will play an important role in determining some properties
of the superfluid state. If we keep only this term in f( y p'),
we have

~(p) = ~(p) + («/d~) 'Fi Z (p.p'/p -')»(y')
pE

= e(p) + (dn/de) '(F,/pp') y P, (2.18)

Now, a charged particle in a vector potential A/e would
have an energy shift equal to —p. A. Consequently, the
term in P& may be regarded as producing a "molecular
vector potential" proportional to the total momentum P of
the system (we ignore here the factor of e since we are
dealing with neutral particles)

(p) = (p) —P.A-,
A .i ———(dn/de) '(Fi/pr')P. (2.19)

With a view to applications to the superRuid phases, it is
helpful to interpret the "Landau" terms (the effective
quasiparticle interaction) in terms of a set of molecular

fields. Consider for example the term in Zo. If we keep only
this term in i ( p. y'), i.e., put Z( p. p') = Zo, we find Lfrom
Zq. (2.14)j that the quantity K(p) is just5 '(dn/de) 'ZOS
Hence we can rewrite Eq. (2.12) in the form

Q,„=—(dn/de) —'PFl/(2l + 1)gÃlm,

Rl —= —(dn/de) —'pZl/(2l + 1)7Sl (2.23)
I

and hence whenever the macroscopic "polarization"
(Sl ) is produced in the system, then a corresponding

"molecular field" Ql (Rl ) is excited which shifts the one-
particle energies. Note in particular that the "polariza-
tions" are functions only of the total distortion +~„~5n(b)
of the Fermi surface at a given point p, and are hence quite
unaffected if particles are redistributed in energy at any
point on the surface. In particular they are always zero in
thermal equilibrium in the absence of external 6elds.

To sum up: the Landau theory of a Fermi liquid is com-
pletely equivalent to the theory of a free Fermi gas of mass
m*, subject to an infinite set of (generalized) molecular
fields. In practice, one does not know the parameters F~, Z~
of the molecular helds for l & 2, and in actual calculations
they are frequently put equal to zero. It is evident that the
"Fermi-liquid" terms (i.e., the molecular fields) will in
general affect the response to external fields, but not the
thermodynamics in zero field (since then there are no
macroscopic polarizations). Thus, for instance, they have
no effect on the specific heat,

Let us briefly consider a specific example, the spin suscep-
tibility. If we apply a static external magnetic field H,„t,
then, by symmetry arguments, the only polarization that
can arise is the total spin polarization S, and hence we can
neglect all Landau terms except Zp. Then we can proceed
as in the Weiss theory of ferromagnetism: if the suscepti-
bility of the "free quasiparticle gas" (that is, neglecting
all Landau terms) is xo, we can put the actual induced spin
polarization S = p 'M equal to p 'zp times the toia/ field,
that is, the sum of the external and molecular fields. So we
have the equations

XOHtot l, Htotel Hext + Hmoly

One may proceed in a similar way with the other P&'s and
Zg s. Hm, l = p% '(dn/dt) 'Z—QS. (2.24)

In fact, let us sum tIn(y) and d(y) over the magnitudes Solving these for S in terms of H, „we obtain S =
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xH, &, where the true susceptibility g is given by

1 + [y—2@—
2(dye/dg)

—
iZO)xo

(2.25)

all Ii
~ other than Fo are zero. In that case we can proceed

by exact analogy with the static case, writing:

hp(r'l') = —f dr dtx«'&(r' —r, t' —l)hV„...i(rt), (2.30)

xo -'p%'(de/de)

1 + —,'Zo 1 + —,'Zo

I

(2.26)

or using Eq. (2.3) with the real density of states dn/de hv, ...)(rt) = hV...(rt) + hV~(rl),

hV~(rt) = (dn/de) 'Fohp(rt) —= fohp(rt).

(2.31)

(2.32)

C. Dynamical responses
This system of equations is easily solved by Fourier trans-
formation. Let the Fourier transform of yqo be

Very often, it is necessary to deal with situations in which
physical quantities are not constant over the volume of the
system, as assumed above, but vary in space and possibly
also in time. The Landau theory is not competent to deal
wi h arbitrary disturbances, but provided the variation is
su8iciently slow (on a spatial scale large compared with a
atomic spacing, and a time scale long compared to the
inverse Fermi energy), it is intuitively plausible that we
can proceed. exactly as above, that is, describe the system
as effectively a gas of quasiparticles of mass m* subject to
a set of molecular 6elds, which however are now varying
in space and time with the polarizations which produce
them. For instance, the field generated by a spin polariza-
tion density S(rt) is now

xd'(q&u) —= f dr f dt exp[+iq. (r' —r) —i'(t' —t))
&& X~'(r' —r, l' —t) (2.33)

with a similar definition for xq(qcu). Then we find from
Eqs. (2.29)—(2.32)

(2.34)

The function xd'(pcs), the density response function of a
free Fermi gas of mass m* [or density of states (dn/de))
can be straightforwardly calculated by any one of a number
of techniques; it is the so-called Lindhard. function (Lind-
hard, 1954). To zeroth order in q/k~ and &v/e~ it has the
form

H~. ) (rt) = p 'A '(d—e/d—e)
—'ZOS (rt),— (2.27)

x"(v~) = («/d~)f(~) (2.35)

the Hartree-like potential generated by a density Ructua-
tion hp(rt) is f(s) —= [1 ——s ln

~
(1 + s)/(1 —s) ~) + —Arse(1 —s).

(2,36)
VIr(rt) = (dm/de) 'F,hp(rt)—,

and so on.

(2.28)
The true density response function (density fluctuation
propagator) is therefore from Eq. (2.14)

hp(r't') = —f dr dky~(r' —r, l' —l) hV. „(rt). (2.29)

Suppose now that the response function of a free gas of
quasiparticles of mass m* is bio'(r' —r, t' —t) . (We return
to the explicit form of this function in a moment. ) The
situation is now somewhat more complicated than in the
static case, because a space- and time-dependent perturba-
tion will in general induce currents as well as density
fluctuations, and these will then produce molecular vector
potentials proportional to Ii~ which in turn will affect the
motion. It is possible in principle to take these effects into
account, but for simplicity let us specialize to the case where

4 The minus sign is a matter of convention: it ensures that the static
limit of xp is positive and equal to the compressibility.

We can use these equations (and similar ones for the
other molecular fields) to generate the space- and time-
dependent susceptibilities (response functions) of the
Fermi liquid from those of the ideal Fermi gas. Consider
for instance the density response function x~. This is dehned
as follows [see Nozieres and Pines (1966) for a much fuller
discussion): we imagine that we apply a small space- and
time-dependent potential h V, „(rl) to the system. The
induced change in density hp(r l') (t' & l) is then linear in
BV, „and we define xq(r' —r, l' —l) by the equation4

x (v ) = (d/d ) If(&)/[1+ Fof(&))}. (2.37)

We can calculate the dynamic spin susceptibility x,~(pcs)
(spin response function, spin fluctuation propagator) by
an exactly similar technique. For the free gas x,~'(q~d)
differs from xz'(yu) only by a factor i4&%'; proceeding
exactly as above we find

x ~(qu&)
—4iy'A'(de/de) I f(s)/[1+ ~~zof(s))I (2 38)

1

In liquid 'He the parameter Iio is large and positive, while
4ZO is negative and not far from —1. (See below. ) This
means that the expressions (2.37) and. (2.38) are quite
different not only from (2.35) but also from each another.
In fact, since Fo is very large, Eq. (2.37) can be well ap-
proximated by the form

xd, (pcs) = As[so'/(s02 —s')), Xs =—(dn/dq) (1 + F,)
so' = —', (1 + Fo), (2.39)

where E~ is the static compressibility and so is the speed of
ordinary hydrodynamic sound, which in the limit I'0 ~ ~
is identical to that of "zero sound. " Thus the density
Quctuation spectrum of liquid He, especially at high pres-
sures, is very little different from that of an ideal elastic
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However, it is not entirely obvious that this formula should
be taken too seriously, since once we go to higher order in

q/k~ there are corrections to the Landau theory which may
be as important as the correction to Eq. (2.38) incorporated,
in (2.40). At best (2.40) may give us some qualitative idea
of the behavior of g,~ at shorter wavelengths.

FIG. 1. (a) Real and (b} imaginary parts of the dynamic spin sus-
ceptibility x,~(g~) for q (& k~ aud co (& ez/5 (qualitative) .

Quid. By contrast, the spin response function x,~(qto) has
the form shown in Figs. 1(a) and (b), with an imaginary
part which is strongly peaked. at lott frequencies
(1+ 4Z&)vpqj. Although this peak does not resemble a
delta-function of frequency and hence does not represent a
real propagating excitation, one sometimes thinks of it as
representing a sort of quasielementary excitation —a so-
called "paramagnon. "Alternatively, since this strong peak-
ing at low frequencies implies an anomalously long range in
time for the functions x.~ (r' —r, t' —3), one talks of
"persistent spin fluctuations. " Although the existence of
those persistent spin fluctuations in no way invalidates the
Landau Fermi-liquid description of liquid He in the low-
temperature limit, they are believed to play an important
role in the finite-temperature corrections to the Landau
theory Lsee Pethick (1969)j. In a,ddition, as we shall see
later, they may have an important effect in the superQuid
phases. For completeness we mention that if one calculates
x,p'(qto) to the next order in (q/kp)' (but still zeroth order
in to/e~) and inserts it in (the spin analog of) Kq. (2.34), then
for snsall co/qv~ the result is

1 ——,', (q/k~) '
x~(q ) 1+Z(, (/k)) &&4v ( / )

(2.40)

x..= -'v'&'(«/«) o(1 —I) '. (2.41)

If one wants to fit this expression. to the experimentally
observed susceptibility of 'He at high pressures one needs
to take (1 —I) ' as large as 20, and the peak of the spin
density fluctuation spectrum is correspondingly pushed to
very low frequencies compared to v~,q. One then considers
the effects which these very low frequency paramagnons
may have on the properties of the system.

Historically speaking the paramagnon model has had
some importance in drawing attention to the many impor-
tant effects associated with the strongly enhanced spin
susceptibility of liquid 'He (and some metals). Unfortu-
nately the impression is sometimes given in the literature
that it is a rival description to the Fermi-liquid theory and

This concludes our brief and somewhat intuitive account
of the Landau theory. What have we left outP Clearly one
thing that has been left out entirely is any account of the
mutual scaIferieg of quasiparticles.

It is in fact possible to put these collisions in a semi-
phenomenological way, and it is necessary to do so if one
wishes to calculate the kinetic coe%cients, for which colli-
sions are all-important. As a result of collisions, a given
quasiparticle has a finite lifetime: for a typical thermally
excited quasiparticle (e —p ~ k~T, where p is the chemical
potential or Fermi energy), the Pauli principle strongly
restricts the possible collisions and, as a result of the usual
phase-space considerations, the lifetime ~ is proportional to
T '. We may crudely estimate the constant from the trans-
port lifetimes measured experimentally: there we hand ~ ~
0.4 && 10 "T ' sec ('K)2. Thus the uncertainty in quasi-
particle energy, A'/r, due to collisions is small compared
to the Fermi energy ( a few 'K) everywhere throughout
the Fermi-liquid region, and for T & 50 mK it is even small
compared to k&T. Consequently, for almost all purposes
except the calculation of the kinetic coefficients, the collisions
of quasiparticles may be completely neglected. However,
as we shall see in the next section, there is one special class
of collision processes which plays a very special role.

Before leaving the subject of the normal phase of liquid
'He, I would like to comment briefly on the so-called
"paramagnon model. " This model (which has also been
applied. to strongly paramagnetic metals such as Pd) treats
'He as a system of particles with the bare mass nz Pand
hence the free-gas density of states (dn/«)e given in Eq.
(2.2) j subject to a phenomenological repulsive interaction
I —= («/«)0 'I which operates only between antiparallel-
spin particles. In the Hartree —Fock approximation the spin
density fluctuation spectrum has precisely the form (2.38)
but with «/«replaced by («/«)o, vz by ttz, Lgiven by
Kq. (2.1)j and Zo/4 by I. In particula—r the static spin
susceptibility is
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m+/m = 1+ &F, (2.42)

which will be proved below (Sec. VI) as a special case of the
result for a superAuid sy' stem. Finally Z& is in principle
obtainable from an experiment on spin diffusion in a high
magnetic field (Leggett and Rice, 1968; Leggett, 1970;
Corruccini et a/ , 1971).Most o.f these quantities are tabu-
lated in %heatley, Table V.

even that the qualitative successes of the paramagnon
model show that Fermi-liquid theory must be incorrect.
This I do not believe to be true. One may treat the para-
magnon model in either of two ways: either as an inter-
mediate model, that is as a model which gives inputs to
further calculations, the eventual output of which is (or
may be) a Fermi-liquid description, or as a fima/ model,
that is as a particular choice of the parameters entering
Fermi-liquid theory. In the first case there is clearly no
contradiction, but it is not obvious a priori that there will
be any particular relation between the input parameter I
and (for instance) the output parameters no* and Zo.
(There are in fact arguments to show that in the strongly
paramagnetic limit the susceptibility will in fact be rigor-
ously given by Eq. (2.41); if this is true, then a comparison
with Eq. (2.26) gives the relation {1 —I) = {nz/ms*) (1 +
4ZO). g In the second case, we simply have a particular
choice of the Fermi-liquid parameters: in fact, the choice
m* = m, —4ZO ——I~0.95. However, this choice is quite
incompatible with a number of known properties of liquid
3He (specific heat, compressibility, etc.) and must be
rejected; at best, when interpreted in this second sense, the
paramagnon model may give a crude qualitative guide to
some of the magnetic properties. (We shall see, however,
that any attempt to apply it quantitatively even to these
fails disastrously as regards the superfluid phases. ) Finally,
one sometimes finds the quantity I used in the literature
within the context of the Landau theory, simply as an
alternative notation for —Zo/4, and given its "Landau"
value ( 0.75) . For a much more extended discussion of the
relation between. the paramagnon and Fermi-liquid theories,
see Pethick (1969).

Let us conclude by reviewing the information we can
obtain from experiment about liquid ~He regarded as a
normal Fermi liquid. First, there are a number of parameters
which have little to do with the Fermi-liquid description
/atomic ("bare" ) mass, gyromagnetic ratio, Fermi mo-
mentum, etc.$. Secondly, we can also obtain from experi-
rnent a number of the phenomenological parameters which
enter the Landau description. The specihc heat is unaffected
by molecular-fieM eGects, as argued above, and is given by
Eq. (2.3): hence, a specific-heat measurement measures
the quasiparticle density of states dm/de, or equivalently
Lby Eq. (2.5)g the quasiparticle effective mass m*. Also,
several of the Landau parameters F~, Z~ are accessible: Zo
may be obtained (once we have de/de) from a measurement
of the spin susceptibility x, accoidlilg 'to Eq. (2.26), and
Fo in a similar way from the compressibility Lcf. Eq. (2.39)].
Fi is related to m* by the identity ("Landau effective-mass
relation" )

between quasiparticles, but their only effect in the theory
is to give a finite quasiparticle lifetime and finite kinetic
coeScients. However, there is one special class of collisions
which may have a much more profound effect, namely
collisions between quasiparticles of equal and opposite
momentum. As was first recognized by Cooper in the con-
text of superconductivity, these collisions can lead to the
formation of a collective bound state whose properties are
profoundly different from those of the normal state. For a
good discussion of the analogous points in superconductivity
theory, see Rickayzen (1965), Sec. 4.2.

In this section we shall make a first, qualitative attempt
to see why this particular class of collisions is especially
important and to what kind of instability it gives rise, and
to identify the parameters of the liquid which we need to
know in order to treat the problem quantitatively. Then,
having discussed the choice of these parameters in Sec. IV,
we shall return to a more complete treatment of the problem
in Sec. V. It should be emphasized that although the con-
siderations of the present section do bring out most of the
important physics involved, they are not to be taken seri-
ously from a quantitative point of view.

A. Instability of a normal Fermi gas at zero
temperature

Let us first consider, for orientation, the more or less
trivial problem of two identical Fermi particles interacting
through a potential V(r) . Schrodinger's equation is

—(6'/2m) (Vi2 + V'22) +(ri, rg. o i0.2)

+ LV(~ r, —r, ~)
—E'/@(ra, r, :~i~,) = 0. {3.1)

Q'e can take the eigenfunctions of this equation to be a
product of space and spin functions: let us, further, con6ne
ourselves to the case of zero center-of-mass momentum, so
that 4 is not a function of the center-of-mass coordinate.
Then the wave function is of the form.

%(rlr2.'0102) = p(rl r2) X(0102) . (3 2)

(&'/2p) ~'+ V(r) jv'(r) = & v'(r)

where ii —= m/2 is the reduced mass. If we take Fourier
transforms, putting

Because of the antisymmetry requirement, we must either
take p (ri —r2) to be a symmetric function of ri and r2 (i.e.,
an even function of ri —r2) and x(0itT2) an antisymmetric
function of 0-~ and 0-~, or vice versa. The first case corre-
sponds to even orbital angular momentum / and total spin
zero (singlet spin function), the second to odd. i and total
spin one (triplet spin function) . The energy depends on the
wave function of relative motion q (r) (r —= ri —r2), and in
fact Eq. (3.1) becomes

III ~ THE COOPER INSTABILITY

As we saw at the end of the last section, the Fermi-liquid.
description of liquid. 'He does not actually exclude collisions

q (r) = Q yg, exp(ik r),

Vq~. —= I dr expL —i(k —k') .rlV(r) (3.3)
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then we have

(28k —+ ) Pk = —Q Vkk'Pk', gi,
—= 5'k'/2m.

All calculations now go through exactly as above, except
that we must restrict the sums over momentum to states

(3.4) such that k ) k&. Equation (3.8) is therefore replaced by

Turning the sum over k' into an integral in the usual way
(and remembering that we work. in unit volume), we have

(2eg, —E)P, (k) = —L(2~)')-'

4m.k"Vg k k' ) k' dk' (k ) ki;). (3.10)
(28i, —E')qi, ——

t
—1/(2~)'g f d'k'Vkk. qp. . (3.5)

The matrix element Vk~. of the potential is a function only
of

~

k —k' ~' —= k'+ k" —2kk' cosg, where e is the angle
between k and k'. It can therefore be expanded in the form

Vgi, = Q (21+ 1) Vi(k, k')Pi(cos8),

Whether or not Eq. (3.10) has a solution with negative E
depends on the detailed behavior of Vi(k, k'). For the pur-
poses of illustration let us assume the following particularly
simple model potential which is a generalization of the one
used by Bardeen et al. (1957) in the case of superconduc-
tivity

Vi(k, k') = f (dQ/4m) Vqi, ~Pi(cos9), (3 6)

(3.7)

(where k indicates a unit vector along k). The "radial"
function Pi(k) then satis6es the equation

(28~ —&')4 i(k)

= 5—1/( w2)'g f 4 k"V, (k, k')4, (k') dk'. (3 8)

If for given I this equation has one or more solutions for
E' & 0, this indicates that for that / value there exists a
bound state(s) in which the motion in coordinate space is
bounded, i.e., such that y(r) tends to zero as r tends to
infinity. This may or may not be the case, depending on the
precise form of Vi(k, k'), or equivalently on the form of the
coordinate space potential V(r). If V(r) is uniformly
repulsive, then no bound state exists. Even if V(r) is
attractive, a bound state will not exist for any / if it is too
weak. If bound states do exist, the most tightly bound
always corresponds to i = 0 (see, e.g., de-Shalit and Talmi,
1963, p. 35).

This much for orientation. Now let us consider the follow-
ing problem: we take as before two identical Fermi particles,
but now require them to interact in eke presence of a fi, lied
Fermi sea of E —2 other particles, with some Fermi
momentum 5k~. That is, we insist that the two particles
occupy only states with k ) k~. This is the so-called Cooper
problem (Cooper, 1956). The interesting question is now
not whether any states exist with energy less than zero, but
whether any exist with energy less than twice the Fermi
energy: or equivalently, whether we can do better than
simply putting the last two particles into the lowest avail-
able pair of plane-wave states' From now on, therefore, we
shall measure all energies from the Fermi energy e~ ——

A'kg'/2ns, defining

where the Pi(cosg) are Legendre polynomials. We can now
take the eigenfunctions of (3.5) to be functions of k times
spherical harmonics corresponding to given angular rno-
mentum t' and projection m

V;(k, k') = Vi for ki; —Ak(k, k'(kg+6k
= 0 otherwise (3.11)

where we assume, moreover, the inequality Ak (& kp. Then
to a good approximation we can rewrite the density of states
factor as follows:

L(2~)'g —' f 4nk" dk' P(2~)'1—'4~k~' f (dk'/dpi, .) dpi,

L(2~)'1-' ~ (4~kg'/Kii ) f dpi, . ——-', (de/de) f dpi, ,

(3.12)

where we used Eqs. (2.1) and (2.2) Lrecall that de/de is
the density of states for both spins: one often finds in the
literature the quantity X(0), which is the density of states
for owe spin population and hence is equal to 2dm/de). If we
also write

e, = e(kp + Ak) —= (A/nz)kphk (3.13)

then Eq. (3.10) becomes

&c

(2ei, —E)gi(k) = ——', Vi(de/de) Pi(k') dpi. (3.14)
0

In contrast to (3.8), Eq. (3.14) always has a solution with
E ( 0 if Vi ( 0. In fact, we see that Pi(k) has the form

y, (k) = ~/(2. , —Z) (3.15)

and the equation for the energy is obtained by substituting
this in (3.14)

2' E= ——', (de/de) Vi ln (3.16)

4
E~~) = —2e, exp (V«0). (3.17)

(d~/d. ) ~
v,

~

In the so-called "weak coupling" limit, i.e., the limit
(de/de) V«( 1, the solution reduces to

ei, —= Bi, —ep =— (k'/2m) (k' —kp'),
The binding energy is therefore a rnonotonically increasing

(3.9) function of
~

Vi ~. Note that there is no special reason why
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-g/kF

UUUU
FIG. 2. Qualitative behavior of the Cooper-
pair wave function for an / & 0 state. (The
1/r fall-off in the region i/kr « r « b is not
shown) .

B. Properties of the wave function in the Cooper
problem

It is interesting to investigate the nature of the relative
motion in coordinate space. According to Eqs. (3.3), (3.7),
and (3.15) the wave function for relative motion p(r) is
given by

p(r) = g exp(ik r) Vi (k)Pi(k). (3.18)

Now, if we sum the quantity exp(jk r) Vi (k) over the
direction of k for a given magnitude k of k, we obtain just
the wave function for free relative motion of two particles
with total energy 5'k'/m, angular momentum l, and angular
momentum projection m. (See, e.g. , Landau and Lifshitz,
1965, p. 104.) This can be written in the form F'i (r) Ri(kr),
where the radial wave function R~(kr) has the following
properties: at short distances it is proportional to (kr)'
(and hence vanishes at the origin if i & 0), then has its first
maximum at r l/k, and for r&) l/k is proportional to
Lsin(kr —shr)g/kr. Our wave function (3.18) is a linear
superposition of such functions with the weighting factor
Pi(k) given by Eq. (3.15), that is,

v(r) = Vi (r)
A'

R((kr) dk
2el, + E (3.19)

(where we included in the constant A' factors arising from
the conversion of the sum over k' into an integral). The

~
Vi

~

should be largest for / = 0, and hence the most stable
solution may well correspond to 6nite /, in contrast to the
case of Eq. (3.8).

What we have shown, then, is this: If the interaction
between two particles with total momentum zero is attract-
ive near the Fermi surface in any angular momentum
state (that is, if any of the Vi's is negative), then at T = 0
the Riled Fermi sea is uestawe; it is energetically advan-
tageous to take a pair of particles out of the Fermi sea and
let them form the bound state we have discussed. Clearly
if it is energetically advantageous to do this with one pair,
it is even more so to let a great many particles form bound
states; however, because of the Fermi statistics they cannot
do so quite independently, so that we cannot conclude very
much about the actual many-body groundstate from the
solution of the Cooper problem. We need in fact a completely
new calculation, which will be given in Sec. V. Nevertheless,
as we shall see, the pair wave function &p(r) resulting from
the Cooper problem is a surprisingly good guide, qualita-
tively speaking, to the properties of the real ground state
wave function.

angular dependence of the wave function for relative motion
is therefore exactly what we would expect for total angular
momentum / and projection m. The radial dependence how-
ever is more interesting: we see that, crudely speaking, the
range of k values involved is not of order Ak but of order

~

E ~/25m~. Let us define P' —= 25m~/~ E ~: for weak coupling
this length is very large compared to atomic dimensions.
Then for r (& (' the contributions of all the components are
approximately in phase, so that the radial part of q (r) can
be replaced simply by R&(kyar), that is, it is just like the
relative wave function of two free particles at the Fermi
surface with angular momentum l. In particular, it is small
for r(& l/k~, has its first maximum for r l/k~, and for
r )& l/4 (but still r (& $') approaches the asymptotic form
sin(k~r —sl7r)/kr r. However, for r & $' the different com-
ponents of the radial wave function begin to interfere
destructively and as a result the wave function falls o6
faster than r ' as r —+ ~ (fast enough, in fact, for the state
to be bound) . Thus, the state we have constructed is indeed
a bound state and the order of magnitude of the average
separation of the particles is &' = 25m~/~ E ~, which tends to
irifinity exponentially as t/'~ —+0. A sketch of the general
behavior of the wave function for relative radial motion is
shown in Fig. 2.

Although these results were obtained from the rather
artificial model potential (3.11), use of a more realistic
potential with a range in coordinate space of the order of
atomic dimensions (rather than of order (Ak) ') does not
change the conclusion qualitatively provided the attraction
is weak enough; in particular the binding energy

~

E
~

tends
to zero exponentially with the strength of the attractive
potential, while the average separation of the pair P' tends
to infinity. (The reasons for this will become obvious in
the Sec. V.) It should be particularly noted that although
the attraction which is responsible for the formation of the
bound state operates only when the relative separation is
of the order of an atomic separation Lor, in the case of the
model potential (3.11), of order (Ak) 'g, the particles
spend very little of their time within this region. In this
respect the situation is very similar to that of a particle
moving in one dimension and subject to a very weak
attractive square-well potential; as is well known, in this
case a bound state always exists, but the particle spends
almost all of its time outside the well.

C. The transition temperature

If the normal state is unstable with respect to formation
of pair bound states at T = 0, it is presumably also un-
stable at low but finite temperatures. However, the insta-
bility does not persist in the high-temperature limit, since
(apart from anything else) the use of Fermi statistics wa, s
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essential to the proof, and at sufficiently high temperature
it should be equally valid to use classical statistics. At what
temperature, then, does the onset of instability occur?

The most satisfactory way to examine this question is to
examine whether a small perturbation imposed on the nor-
mal-state distribution function will. oscillate or will increase
exponentially; if the latter, then the normal state is clearly
unstable. Standard techniques for doing this have been
developed within the equations-of-motion or Green's-func-
tion formalism (see, e.g. , Thouless, 1960, Arnbega, okar,
1969, for this technique in the theory of superconductivity;
or, with special reference to 'He, Ambegaokar, 1974) . How-
ever, I have not found a simple way to present the essentials
of the method without relying essentially on the second-
quantization formalism, something which as a matter of
policy is avoided in this review. Consequently, I will give
here only a heuristic argument. which, though it does give
all the principal factors entering the criterion for the onset
of instability, cannot in any way be taken seriously and in
fact would (if believed) give a quite wrong numerical result.
It is emphasized, therefore, that the ensuing discussion is
intended pzzrely to motivate the discussion of the effective
interaction in the next section. A quantitatively correct
derivation of the onset (critical) temperature is given in
Sec. V.

What we may do is to try and generalize the "Cooper
problem" of Subsection A in a natural way to finite tem-
perature. This may be done as follows: At zero temperature
the equilibrium normal state has all plane-wave states filled

up to the Fermi energy, and all states above empty. At
finite temperature, on the other. hand, the equilibrium
normal state has some plane-wave states below the Fermi
surface empty and some above it full: in fact, the probabil-
ity of a state with energy ej, (measured, as always, with
respect to the Fermi energy) being occupied is given by the
usual Fermi function

priate spins) are free, are included. Since the probability
of both states being free is (1 —zzI, )' —= L1 —zz(e~ ) $', when
we average the solution with this factor the effect is evi-
dently to multiply the effective density of states by a factor
L1 —zz(ek ) $'. Equation (3.16) is therefore replaced by

" L1 —zz(eg ) j'deI,
1 = ',, (dzz—/d-e) V(

2eg —E (3.22)

where we notice that the integral now runs over energies
below the Fermi surface as well as above, since there will
also be some pairs of states below the Fermi surface which
are unoccupied. Equation (3.22) reduces to (3.16) in the
limit T —+0.

Ke now ask for the temperature at which the energy falls
below the Fermi surface (i.e., below which Z & 0). Putting
E = 0 in Eq. (3.22) and using the fact that L1 —zz( —e) j —=

zz(c), we obtain

1 = —
2 (dN/A) Vt

" tanhPeg/2= —-', (dzz/de) V,
0

While there is nothing wrong with the above calculation,
there is no reason to suppose that anything particularly
significant happens at the temperature defined by this
equation. It is nevertheless amusing (though no doubt of no
deep signi6cance) that it does actually give the correct
transition temperature, as obtained from the methods men-
tioned above, apart from an unwanted factor of ~~ on the
right-hand side. In fact, the equation for the true transition

temperature is

zzy = (expPtA; + 1) P —= 1/kg( T. (3.20)

" tanhPeg/2
1 = ——', (dzz/dc) V(

Clearly we can treat this problem exactly as in Subsection
A, the only difference being that for a specific distribution
of the other X —2 particles the analogue of Eq. (3.4) is now

(2~~ —&)q~ = —Z'V~~q~, (3.21)

where the prime indicates that only those values of k' for
which both the plane-wave states k' and —k' (with appro-

Now, the wave function of the bound state in the Cooper
problem is a linear superposition of components in which
one particle has momentum k and the other momentum
—k (with appropriate spins depending on whether we look
for a singlet or triplet solution) Lcf. Eq. (3.3) $. If we are to
form such a component, then the plane-wave states in
question must be bo/h empty. The probability of this is
simply (1 —zz&)'. We can therefore pose the analog of the
Cooper problem at finite temperature in the following form:
Consider two particles interacting in the presence of X —2
other particles which "block" some of the available states,
the probability of a given pair of states (k, —k) being
unblocked being equal to (1 —zzq)'. At what temperature
does the energy of the resulting solution fall below the Fermi
surface?

= ——,
' (dzz/de) Vp ln (1.14Pc,) . (3.23)

Inverting this, we find that the transition temperature T,
for pairs with relative angular momentum l is given by

IzzzT, = 1.14', exp( —1/Xi),

(Vi ( 0).
X, = -', (dl/de)

~
V( ~,

(3.24)

If the quantity X~ is small we see that the transition tem-
perature is extremely sensitive to V& and very much less
sensitive to e,.

The qualitative conclusion of the considerations of this
section, then, is that the parameters which are likely to
play a role in determining the critical temperature of a
degenerate Fermi system are (a) the density of states at
the Fermi surface and (b) the pairing interaction V(k, k ),

' or more accurately its spherical harmonic decomposition
V~(k, k') given by Eq. (3.6) . To the extent that the simple
model form (3.11) is valid, the latter is parametrized simply
by the two quantities V& and e,. In the next section we shall
investigate what values these quantities are likely to have
in the case of liquid ~He.
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IV. THE EFFECTIVE INTERACTION IN LIQUID
'He

As we saw in Sec. II, liquid He is a strongly interacting
Fermi liquid and its low-lying states (in the normal phase)
must be described in terms of Landau quasiparticles rather
than real particles. Typically, we expect that the quasi-
particle description should be a good one for excitation
energies at least up to k~TI., where TJ is the order of
magnitude of the temperature below which the Landau
theory seems to work well: in the case of liquid. 'He this is

100 mK. On the other hand, we know from experiment
that the superAuid transition takes place only below 3 mK.
Consequently, we would. expect that it is possible to describe
the superfluid (and hence, a pnon, the instability which
leads to it) in terms of (linear combinations of) Landau
quasiparticle states; or, to put it intuitively, that it should
be possible to visualize the Cooper pairing process as taking
place between quasiparticles which can be regarded as fixed
entities whose internal structure is insensitive to the super-
Auid transition. Moreover, the spatial extent of a quasi-
particle is expected, to be at most a few times an atomic
dimension, whereas the smallest dimension occurring in
the theory of Cooper pairing, namely (Ak) ', can be chosen
to be much larger than this (this is in fact automatically
assured by the condition Ak (( k& which we assumed above) .
It should therefore be reasonable, for the purposes of con-
sidering pair formation, to assign to the quasiparticles
spatial coordinates just like real particles. In other words,
all the considerations of the last section (and all the theory
we shall develop in the next few sections) go through un-
changed provided. only that particles are everywhere re-
placed by quasiparticles. The only difference this makes to
the formulas derived is that the real mass m should be
replaced everywhere by the quasiparticle effective mass
m*, or, equivalently, that the density of states des/dc should
be taken to be the real value for the Fermi liquid. The
molecular fields characteristic of the Fermi-liquid picture
do not affect any of the conclusions of the last section, since
at no stage did we consider a state involving any macro-
scopic polarizations. On the other hand, they play an
extremely important role, as we s&all see below, both in
determining the eQective interaction which we need as an
input to the calculations of the last section and in charac-
terizing the response of the superAuid state to an external
field. /For a more extended discussion of most of the above
points, see Leggett (1965)j.

To apply the results of the last section, then, we need the
matrix element V(k, k') Lor its angular momentum decom-
position V~(k, k )j for the scattering of a pair of quasi
particles from plane-wave states k, —k to states k', —k',
where k and k' are near the Fermi surface. In general,
V(k, k') need not be simply a function of

~

k —k'
~

as in
the free-partide case, but since the total system is rotation-
ally invariant it must be of the general form V(k, k', k. k').
Also, the interaction may be spin dependent; but, again,
invariance under spin rotation will constrain it to be of the
form A + Bd. d'. Thus, finally, the most general form of
the pairing interaction for two Landau quasiparticles is

V(k k' a u') = V (k k' k. k')

As we saw, when considering the Cooper instability one
can consider spin singlet arid spin triplet states separately,
and associate them, respectively, with even and. odd 1;
since d. 6' = —

4 for a singlet state and +4 for a triplet,
we have Lfrom Eq. (3.6)j

V&(k, k') = f (dQ/4~) I Vi(k, k': cos8)

gV2(k, k: cos8II i(cos8)

= f (dQ/4~) I Vi(k, k': cos8)

+ 4V2(k, k': cos8) IP~(cos8)

V)(k, k') f V(r) RP(kpr)r' dr. (43)

This is actually correct: see Anderson and Morel, 1961, Eq.
(3.8) (the constants arise from the normalization of the
R~'s, etc.) To get an attractive value of Vi, therefore, we
require that R& should be small in the region of the repulsive
hard-core potential (r & 2.5 L) and, if possible, large in
the region of the attractive van der Waals tail (r & 3 A).
Since R~ behaves as (kyar)' for small r and has its first
maximum at r 1/kp, it turns out that l = 2 and l = 3 are
both good candidates. LA much more complete discussion
of this approach, including the question of the renormaliza-
tion of the potential via high-energy virtual transitions, is
given by Anderson and Morel (1961).g

It is, however, possible to approach the problem of the
quasiparticle pairing potential from a quite different point
of view (see, e.g. , Layzer and Fay 1971; Nakajima, 1973).
Instead of trying to calculate it from first principles, one
asks instead how much information about it can be obtained
from the Fermi-liquid theory and the parameters entering
it. Since we actually need the interaction Vi,k. for all values

The instability of the normal state mill be determined by
whichever of the V~'s is most attractive (negative) for k, k'
near k~. In particular if it turns out that 'the use of the
model form (3.11) is justified, then the critical temperature
T. will be given by Eq. (3.26). Although the use of the
model potential (3.11) at first sight looks somewhat arti-
ficial, we shall see below (end of Section V.E) that in fact in
the context of Fermi-liquid theory it is quite natural.

The actual quantitative calculation of the pairing poten-
tial V(k, k') from first principles, that is, from a knowledge
of the interatomic forces, is an extremely formidable task, 5

and not surprisingly the resulting estimates of 1, have been
scattered through many orders of magnitude. Rather. than
discuss them in detail, let us simply note one qualitative
feature which is common to all. Although we are interested
in pairing between quasiparticles rather than real particles,
we shouM expect that some features of the "bare" inter-
atomic potential might persist in V(k, k ) . Now if we were
to take V(k, k') as simply the bare interatomic potential,
its angular momentum decomposition Vi(k, k') for k, k' near
kp would be just the effective potential felt by two free 'He
atoms with wave vector k~ in a state of relative angular
momentum /. Since the relative wave function of such a pair
is the function R~(k~r) discussed in the last section, it is
intuitively plausible that we should have something like

+ V (k k' k. k') u. u' (4 1)
' For references to some of these calculations, see, e.g., Pstgaard

(I969},I ay&er an@ Fay (&9Na).
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Vi,k ——f dr exp L
—i (k —k') rjV (r) . (4 4)

of the momentum transfer
~

k —k'
~

up to the maximum
value 2k~, while (as we shall see) the Landau theory permits
us to calculate VkI, only for low momentum transfer, such
an approach does not give a complete solution to the prob-
lem. However, it does bring out some extremely important
qualitative features. '

%hat we shall do is to calculate the effective interaction
V,ii(~ r —r'

~) between two quasiparticles at points r and
r' and then take the pairing interaction Vkk to be the Fourier
transform of this quantity t cf. Eq. (3.3)g:

'He atom at point r and time t will produce a molecular
held which in turn produces a spin polarization of the
neighboring liquid. This polarization persists for a fair time
before dying out (cf. Sec. II). If now at time t' a second
'He atom comes by at point r', it will be either attracted
or repelled (depending on its spin) by the liquid polariza-
tion. In this way a (spin-dependent) effective interaction
is generated between the two 'He atoms, which is additional
to the interaction (4.6).

Let us make this more quantitative. According to Eq.
(2.27), the molecular field H, i(rt) generated by a spin
polarization S (rt) is

V.;...a(r) = j fm + 4'd d'I~(r)
k' =—p'/A')

(k —= p/A',

(4.5)

(where in evaluating fi,i, , etc. , we must remember that k
and k' are practically parallel), so that according to Eq.
(4 4)

In doing this, however, we should bear in mind that the
"position" of a quasiparticle cannot be de6ned with accuracy
greater than (say) an atomic spacing, and hence that the
potential defined by Eq. (4.4) is meaningless for momentum
transfers

~

k —k'
~

of the order of k~. For much smaller
transfers, however, the expression (4.4) is meaningful. With
this caution in mind, we note that according to Sec. II two
quasiparticles of momentum k, k' have a "direct" interac-
tion via the Landau term in the Fermi-liquid Hamiltonian

H i(rt) = —y
—'5—'(de/de) —'ZOS(rt),

and hence for a single atom with S(rt) = A'5 at r, t it is
—(yA') —'(de/de) 'Zod —= —(yA') 'lad. Now by de6nition'
of the dynamic spin susceptibility g(r' —r, t' —t), the
magnetization M(r', t') produced at a nearby point r'
at a subsequent time t' is

M(r', t') = y'A' f x(r' —r, t' —t) II(rt) dr dt

(4.8)

SZ = —~Id'. H ., (r'~') = (~A')-'l;d'. M(rV). (4.9)

The molecular field at r', t' is —&0/(y5')' times this, and
hence the change in energy of a second atom of spin d' at
r~t ls

Vii', airect = j fix~+ hi~& d'I =— (d&/d~)

+ Zki & &'l.

Combining this with Eq. (4.8), we find that the total de-
crease of energy when we have an atom of spin d at (r, t)

(4 ~) and a second of spin d' at (r', t') (t' ) t) is

%e emphasize again that this expression is to be taken
seriously only when

~

k —k'
~
((k~.

b,Z = —l 02 d. d'x(r' —r, t' —t) t 0
—= (dm/de) 'Z 0-

(4.10)
However, there is also an i+direct interaction between the

two particles, via the polarization of the liquid itself. To
make the subsequent argument clearer, let us digress for a
moment to the case of the, attractive interaction between
electrons in a metal due to exchange of virtual phonons.
This can be viewed in the following way: Suppose we have
an electron at point r and time t. This will attract the
(positive) ion lattice and create a cloud of positive charge
in the vicinity. The electron will then possibly. move on,
but because of the heavier ion mass the lattice will take
sometime to revert to its original, unpolarized state. If now
at sometime t' while the lattice is still partially polarized a
second electron comes by at some point r', it will be
attracted to the positive charge and its energy will be
lowered. In this way is generated an effective attraction
V(r —r', t —t') between the two electrons at (r, t) and
(r', t').

Just such a phenomenon can also take place in liquid
3He, the difference being that in this case the polarizable
medium is not distinct from the atoms which are attracted.
Consider for de6niteness the case of spin polarization. A

'In the literature the ensuing considerations have very often been
formulated within the language of the "pararnagnon" theory (see
Sec. II.D). However, I believe that to the extent that they are valid
they can (and should) be reformulated in the language of the Fermi-
liquid theory (cf. Nakajima, 1973).

so that this represents an effective interaction between the
particles. (In the "paramagnon" literature, —4I corresponds
to fo )For t.

' ( t the argument can obviously be reversed
so that the effective interaction is just given by x(r —r,
t —t') . So we can write in general

(4.11)

where (bearing in mind that x(t' —t) —= 0 for t' & t, etc.j
x (r' —r, t' —t) =— -', Ly (r' —r, t' —t)

+ X(r —r, t —~') 7, (4.12)

From now on we shall always include a factor of (p5) ' in the def-
inition of g (so that it is genuinely the spin rather than magnetization
response function). We will also drop the subscript "sp" from now on.

This is a slightly delicate point. To see it, note that V, f& is a varia-
tional derivative (cf. Sec. IX.C), i.e.,

aE = 5 ' f dr dr' dt dt' V,ff(r' —r, t' —i) f h Slrt) f 8 S(r't') .

where the factor of ~ is added to avoid double-counting.
Because the coordinate-space potential (4.11) is time-
dependent, the resulting pairing interaction V~I, is a func-
tion of the energy transfer eI, —eI, =—Lo as well as of the
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momentum transfer
~

k' —k
~

—= q. In fact we have

Vi, i,.„„d;..., ———|po a' ff exp( —i(k —k')
~ (r' —r)] expt —ipt(t' —t)]x(r' —r, t' —t) dr dt,

—= —6'd d'2Lx(q~) + x(—q, —~)]
fp—' d. 6' ReX (t7pd) . (4.13)

Several comments are worth making about the result
(4.13). First we note that whatever the sign of the "cou-
pling constant" fp, the mechanism considered always pro-
duces an attraction between parallel-spin particles and a
repulsion between antiparallel-spin ones. Thus it intrinsi-
cally favors spin triplet pairing and tends to suppress
singlet pairing (Berk and Schrieffer, 1966; Layzer and
Fay, 1971).Secondly, let us write out Eq. (4.13) explicitly
using the definition fp

——(de/dp) 'Zp and Eq. (2.38). In
this way we And

Thus, apart from a factor, the indirect effective pairing
interaction for the scattering k —+ k' is just given by the
real part of the spin density fluctuation propagator (dy-
namic susceptibility) x(qrd), where tI = k' —k and
Lo =—e& —eI,. This quantity was discussed in Sec. II.

Finally, just as one often thinks of the lattice polarization
mechanism in metals as "exchange of virtual phonons, "
one may think of the process considered above as equivalent
to "exchange of virtual paramagnons" or "spin Quctuation
exchange" —a name it is frequently given in the literature.

Evidently, the spin fluctuation exchange mechanism in
liquid 'He is only one of a whole class of similar processes:
in fact, there will be one process for each different molecular
6eld parameter. For instance, consider the contribution of
the "molecular field" (Hartree field) associated with density
fluctuations ("exchange of virtual zero sound quanta"). A
density change 6p(rt) gives rise, according to the argu-
ments of Sec. II, to a Hartree-type potential fpttp(rt) P fp =
(did/dp) 'Fp], and by following through an argument exactly
analogous to the one given above for the spin fluctuation
case we conclude that this leads to a spin-independent in-
direct interaction'of the form

V» = fp' ReX—d(%~), (4.16)

where Xd(qpd) is the density fluctuation propagator. As we
saw in Sec. II, in the limit of strong repulsive interactions
(Fp —+ ~) (which is well attained in liquid He, particularly
at high pressures) this quantity may be well approximated
by the form Lcf. Eq. (2.39)]

Vkk', indirect 4 d' tt Zp (dR/dp)

X Re I f(s) /Li + ~Zpf (s)]} (S = cd/'Vying), (4.14)
ReX„(i7pd) —(de/dp) (1/(1 + Fp) )Lc't7'/(c'q' cd') ]
c' = —,'imp'(1 + Fp). (4.17)

where f(s) is the function defined in (2.36). In the limit
&d/q —+0 the function f(s) reduces to 1 and, adding Eq.
(4.14) to the part of the direct interaction (4.5) associated
with the molecular field parameter Zo, we find for the total
interaction associated with Zp (and hence with spin polar-
ization)

V». e»"~ = (dtt/dp) iIF, —[—Fp'/(1+ F,)]
/ Lcpq2/(c2q~ —pt2) ]} (4.18)

Hence the total interaction associated with density Auctua-
tions (adding the "direct" term fp) is

Vi, i,"&'" = (de/dp) '(Zp/(1+ —'Zp)] ei. d' (4.15)

Since Zo is about —3 for liquid 'He, this expression is
attractive and quite large. On the other hand, in the limit
q/&v~0 the function f(s) tends to zero and we a're left
with the "direct" interaction (dec/dp) 'Zpd. tt' which, al-
though still attractive, is considerably smaller.

Thirdly, we want to emphasize an important difference
between the mechanism considered here and the mechanism
of attraction between electrons in metals due to lattice
polarization. In the latter case, the lattice constitutes
essentially an independent system and its motion is very
little affected by what is going on in the electron gas,
provided only that the screening properties of the latter
are not much changed. Consequently, when for instance
the electron gas becomes superconducting the response of
the lattice is practically unaffected. In the case .of the spin
polarization mechanism in liquid He, on the other hand,
the. medium which is polarized is identical to the atoms
undergoing the indirect attraction: therefore, if as a result
of the attraction the behavior of the atoms is changed —if
for instance they form Cooper pairs —the response of the
polarizable medium is automatically affected. This feature
is of crucial importance to the Anderson —Brinkman (1973)
theory of the stability of 'He —A, which we shall discuss
below (Sec. IX).

Although this interaction is repulsive in both the limits
pt/q —+ 0 and q/pt —+0, it is strongly attractive over a wide
range of intermediate frequencies. The same goes for other
types of indirect attraction such as the one mediated by
exchange of transverse current fluctuations. Consequently,
if one is interested in calculating the actual value of the
effective pairing interaction quantitively, it is by no
means obvious that it is a good approximation to limit
oneself to the exchange of spin fluctuations only. On the
other hand, such a goal is probably none too hopeful anyway
(see below) . The special importance of the spin fluctuation
exchange mechanism as distinct from other types of indirect
interaction lies not so much in its absolute value as in the
fact that it is rather specially sensitive to the superAuid
transition when it occurs.

In principle, considerations of the above type drawn
from the Fermi-liquid theory enable us to calculate the
effective pairing interaction Vq~ for smg/l momentum trans-
fer q = k' —k. Beyond this, however, they cannot help
us, since as we have seen it makes no sense to try to use the
Landau theory for large momentum transfers (at least in
its simple form). On the other hand, the parameters Vi
(or Xi) which according to Eq. (3.26) determine the critical
temperature involve integrals over the whole of the Fermi
surface, that is, they involve momentum transfers up to
2k~. Consequently, if we wish to estimate the V~ quantita-
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tively we must either make some plausible extrapolation
of the small-q interaction to higher q /for instance by using
the expression (4.14) but replacing f(s) by the full "free-
gas" susceptibility for q k~), or recalculate Vqk from
scratch. It is difficult to be very sure about the validity of
the approximations involved in either technique, and there
may therefore be something to be said for taking T, (and
hence, indirectly, Vi) as a phenomenological parameter to
be taken from experiment and using all the above arguments
merely to draw qualitative conclusions.

%hat, then, are the qualitative conclusions we can draw
from the considerations advanced in this sections First,
whatever its form and strength in detail, it is obvious that
the spin-fluctuation exchange mechanism will always tend
to favor spin triplet pairing and suppress spin singlet pair-
ing, while for instance exchange of density fluctuations is
independent of spin. Hence we should expect that / = I or
l = 3 pairing is now favored, with / = 2 pairs suppressed.
Secondly, if spin fluctuations in particular play a dominant
role, this would to some extent account for the rather sur-
prising pressure dependence of T, observed experimentally.
The point here is that according to Eq. (3.36) the transition
temperature is exponentially sensitive to the parameter
X& = —

~ (dn/de) Vi. Now we know that (from specific-heat
measurements) de/de changes by a factor of more than 2
between p = 0 and the melting curve; on the other hand,
the fact that the observed T, changes only by a factor of 3
over this pressure interval (Ahonen et gL, 1974}, implies
(unless we choose the cutoff energy e. to have a quite
implausibly small value) that Xi changes very little. Thus,
the change of V~ with pressure must be just such as to cancel
(very nearly) the change of the density of states dn/de
This would be somewhat mysterious if VI,~ were some kind.
of "bare" interaction; however, we see from Kq. (4.15) that
the static limit (co/q —+ 0) of Vi,k '&'" at least is just such as
to cancel the dn/de, leaving only the much weaker pressure
dependence of Zo (this quantity changes only by about
10% over the whole pressure range). Also we see from Eq.
(4.18) that in the limit of large Fo the static Vi,i, ~'""'& is
exactly (dn/de) ', so that the resulting contribution to Xi
is exactly —

~ and completely independent of pressure.

The third conclusion is one which has not been much
emphasized in the literature (cf., however, Layzer and
Fay, 1971; Nakajima, 1973): To the extent that we take
spin-fluctuation exchange seriously as a major contribution
to the effective interaction in 'He, and are prepared to draw
at least qualitative conclusions from the behavior of this
mechanism in the low-q region, to that same extent we must
be prepared for the interaction parameters X~ for the dif-
ferent (odd) l to be close in value. The point is that if we
assume that the interaction VI,I, is strongly peaked in the
region of small momentum transfers, then since with our
normalization the Legendre polynomials Pi(cos8) all tend
to 1 for 8 —&0, it follows from Eq. (3.6) that all the Vi
(hence Xi) for low i are close in value. This may have some
fairly significant implications for quantitative calculations
of the properties of the superQuid phases, although like
most authors we shall ignore it in what follows (cf. Sec.
V.C) .

Finally, a remark on the energy dependence of VI,g . As
we have seen for given momentum transfer q any indirect
interaction corning from virtual polarization effects will be

V. THE WAVE FUNCTIGN GF THE SUPERFLUID
STATE

In Sec. III we saw that if the interaction between quasi-
particles near the Fermi surface is attractive in any angular
momentum state, then below some critical temperature T,
the normal state is unstable with respect to formation of a
bound pair with center of mass momentum zero. However,
the trial wave function we constructed there was obviously
inadequate in two respects: (1) It was not properly anti-
symmetrized —in fact we treated the last two particles on a
quite different footing from the A —2 6lling the Fermi sea.
(2) The binding energy we obtained was only of order 1

not of order E, since we correlated only two particles. %e
must therefore look for a trial wave function which (a)
enables all X particles to enjoy the attractive potential and
(b) is properly antisymmetrized.

A. Nature of the wave function

Let us therefore do the following (in the present subsec-
tion we stick to the case T = 0 and treat a nearly free gas
rather than a Fermi liquid). Considering a given pair of
particles I, 2, we make up for them a wave function
+(ri —ri. oiai) which is correctly antisymmetrized with
respect to the interchange 1 ~+—2 but is otherwise arbitrary.
Then we construct the same wave function for the pair 3, 4,
the pair 5, 6 etc. , so that the total wave function of the
system is

'k = y(I'i —iq.'Oi02)y(r3 —i'«. o30«)y(i'5 —r6. a506) ~. ..

Finally we antisymmetrize the wave function with respect
to interchange of particles between pairs, and normalize it:
that is,

+ = x, Iq (r, —ri. 0.,0i)q (ra —r«. 0.30«)q ~ ~ ~

—&p(X'i —I'3. 0i03)y(I'i —1'«.'o.F04) ~ .}

normallzatlon factor. (5,2)

strongly energy-dependent; the scale of the energy variation
will be Acq, where c is the typical velocity of the excitation
which is exchanged. .Thus, for density polarization (exchange
of zero sound quanta) c is the speed of sound, while for spin
polarization (exchange of paramagnons) c is the "paramag-
non velocity, " i.e., of order n~(1 + «Z, ) . In any case
c is of the order of, or larger than, the Fermi velocity
v~. Let us suppose now that the largest momentum transfer
for which application of the Landau Fermi-liquid theory is
justified is q„' then when we integrate V~~ over the Fermi
surface to get Vi(k, k'), the typical scale of energy variation
of Vi(k, k') will be at least 5v~q. , which we may estimate as
say 0.1e~. The point now is that for liquid 'He the quantity
k~T, is less than IO 'e~, so that the energy variation of the
pairing potential is over a scale very large compared to
kriT. . The same remark applies, a fortiori, to any contribu-
tion rot associated with virtual polarization. Consequently,
for ei„ei. ( &AT, we may approximate Vi(k, k') by a con-
stant t obtained by taking u& = 0 everywhere in the expres-
sions (4,14), (4,17), etc). As we shall see below, this is in
fact sufhcient justification for replacing Vi(k, k ) by the
model form (3.11).
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q (r, —r, : a1a2) = Q exp(ik. r, —r2) x(k: a,a2) . (5.3)

Here, in contradistinction to the case of the single-pair
wave function calculated in Sec. III, k can take values
both below and above the Fermi surface. To satisfy the
"internal" symmetry requirement, y must be an even func-
tion of k if the spin function is a singlet, and a&i odd function
if it is a triplet.

It seems intuitively plausible that for states above the
Fermi surface the behavior of the y which actually gives
the ground state will be something like that calculated for
the Cooper problem t i.e., the q1, of Sec. III7, and in
particular that if the attraction is strongest in a state of
angular momentum /, then the angular dependence of y will
correspond to this.

A trial wave function of the form (5.2) is indeed usually
assumed to be the true ground state wave function of an
anisotropic superfluid (and of a superconductor, which
may be regarded as a special case of this) . In a sense it seems
to represent a Bose condensate Of diatomic molecules of
total momentum zero with a relative wave function y(r1—
12 ~ alo'2) . However, one should be extremely cautious in
drawing quantitative conclusions from this picture. For
instance, suppose that the orbital part of x(k) has the
angular dependence exp+ (p = polar angle of k). It is
tempting to infer that each diatomic molecule" has angular
momentum A, and therefore that the whole system has
angular momentum cVA'/2. But this is certainly incorrect, if
for no other reason than that the eormuE ground state can
actually be represented as a special case of Eq. (5.2), with
x(k) e'~ or indeed any angular dependence we please
(see below) .

The wave function (5.2) is actually not the most general
possible wave function corresponding to pair formation,
since we have taken the center-of-mass momentum of the
pairs equal to zero. More generally, we can write a system
WaVe funCtiOn Of the type (5.2), but With p(r1 —r2. a1a2)
replaCed by a mOre general funCtiOn q (r1r2.. a.1a.2) —= pLr, —
r2 2 ( 1 + 2) ola27 'P(r R alo2) LR 2 (rl + 2) 7' I pa
ticular a state in which the pairs are moving with center-of-
mass momentum A'K is described by the form of q

y(r, R:a1o2) = expiK pR(r: oa1)2. (5.4)

However, for the moment we will assume that the center-of-
mass is at rest and therefore that the pair wave function
depends only on the relative coordinate, as in Eq. (5.3).

The wave function (5.2) is generally believed to repre-
sent very well the ground state of a superQuid Fermi gas.
However, it is somewhat inconvenient to operate with in
practice, since the calculation of any physical quantity will
involve a great many terms of the "exchange" type, that is,
terms coming from the cross terms in the square of the

In this way we produce a trial function for the system which
has all the correct symmetry properties built in. Moreover,
it is evident that if we can arrange the wave function of
relative motion q (r1 —r2. a.1a2) so that particles 1 and 2

enjoy one another's attraction, then the same automatically
follows for particles 3 and 4, etc.

We may expand q in Fourier components:

B. Bcs method

Consider the case in which the pseudomolecular wave
function (5.3) corresponds to spin singlet pairing (S = 0) .
In that case, since there is only one spin singlet state, we
can always write

x(k: ) = x(k)v2 '( t' l —l 't ) (5.5)

where we use an intuitive notation in which t' f indicates
the eigenstate of the spin projections o-&, 0.~ such that o-~ =
—a2 ——21A', etc. We must have X(k) = X(—k) in order to
preserve the antisymmetry. Bearing this in mind, we might
as well rewrite Eq. (5.3) in the identically equivalent form

q (r, —r2.. a.1a2) = QX(k)&2—'Lexp(ik r,)

)& exp( —ik r2) 1' J, —exp( ik—r1) exp(ik r2) f f 7

—= Zx(k)~2 'I(kt')1( —k J, )2 ( kg)1(kt')2I,

(5.6)

where the second form indicates explicitly that the w'ave

function is an antisymmetrized linear combination of
states in which particle 1 is in the plane-wave state with
momentum k and spin up, and particle 2 in that with
momentum —k and spin down. Consequently, when the
system wave function is given by Eq. (5.1) and the pseudo-
molecular wave function is a spin singlet, the single-particle
states (k t' ) and (—k J, ) are always occupied. in pairs or
not at all.

The basic idea of Bardeen et a/. is now to write the system
wave function not as an antisymmetrized product of wave
functions referring to different pairs of particles, but as a
product of wave functions referring to the state of occupa-
tion of different Pairs of si22gle Particle states (k t', —-k J, ).
That is, one writes

+= II c'»
all k

(5.7)

9 For an account of some of these methods in the theory of super-
conductivity, see, e.g., Ambegaokar, 1969.

expression (5.2) . Indeed. , the mere calculation of the normal-
ization constant is not an entirely trivial task.

To cope with this situation a number of alternative
formal techniques have been introduced —the method of
anomalous Green's functions, the method of canonical
transformations, etc.' When used with appropriate caution,
these methods all give the same results (at least to order
X "') for the physically interesting quantities, namely the
expectation values of one- and two-particle operators (and,
more generally, 22-particle operators where 22«X"2). In
this paper I shall use the method originally devised by
Bardeen et al. (195'/) to deal with the corresponding prob-
lem in superconductivity, since this needs considerably less
formal groundwork than most other methods. In this and
the next section I develop the theory for spin singlet pairing,
and in Sec. VII generalize it to the slightly more compli-
cated case of spin triplet pairing.
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where Ci, describes the state of occupation of the pair of
single-particle states (k 1', —k J, ). Let us write the state
of occupation in which both kt' and —k J, are empty as

I 0, 0)q, and that in which both are full as
I

1, 1)q. (States
in which only one of the pair is occupied are not relevant
here, although at finite temperatures we shall have to con-
sider them. ) So we' can write the properly normalized form
of 4g as

which is, of course, automatically normalized provided Eq.
(5.9) is satisfied. The members of this family differ only in
the phase relation between components corresponding to
different numbers of particles: since no physical operator
has matrix elements between such components, this phase
relation cannot affect any physical quantity and all mem-
bers of the family are completely equivalent. If now we
form the linear superposition

C'v = &~ I 0, 0)~ + v~ I 1, 1)~, (5.8)

where Ni, and vl, are arbitrary complex parameters subject
to the conditions

I NI, I' + I
vq I' = 1 (5.9)

(Rg + vgGy~ G g ~ ) I vac),
all k

(5.7')

where
I vac) is the vacuum state. The normal ground state

(filled Fermi sea) is a special case of this wave function,
corresponding to the choice

The first condition ensures normalization, the second that
the state considered is a spin singlet. I Recall that for Fermi
particles the state (—k t', k J, ) is conventionally defined
to be minus the state (k J, , —k 1'- ) .g Equations (5.7) —(5.9)
define the most general "BCS-Like" system wave function
corresponding to singlet pairing at T = 0. Equations (5.7)—
(5.8) may be written alternatively using second-quantiza-
tion notation in the identically equivalent form

2&

4'(X) = (2v) 'i +(8) exp( —i%0/2) d8
0

it turns out that +(A) is precisely the X-particle function
given by Eqs. (5.2), (5.3), and (5.5), with x(k) propor-
tional to vz/uz (cf. Rickayzen, 1965, p. 142)."

From now on we shall use the particle-nonconserving
BCS-like wave function (5.7) . It must then be remembered
that, according to the standard precepts of statistical
mechanics, the equilibrium state at T = 0 is given by
minimizing not the expectation value (H) for the Hamil-
tonian, but (H) —p, (1V), where p, is the chemical potential.
For an open system p is hxed by the environment which
acts as a particle reservoir, while for a closed system p is
fixed by the condition that (X) is set equal to the actual
number X of particles (and p = B(H)/8(X)). The statisti-
cal fluctuations in the particle number are then of order 2P~'.

For reasons which will become clearer subsequently, it is
convenient to express the parameters ul, and vi, entering
(5.7) in terms of a single complex parameter Aq in the fol-
lowing way:

Ng = exp(+g), vg = 0

ug ——0, vg ——exp(iqbg) forIkI(kp, (5.10) (5.13)

where pl, is an arbitrary real number depending on k.

The system wave function described by Eqs. (5.7) —(5.9)
has one very peculiar feature: apart from the special case
(5.10) it corresponds to a superposition of states containing
different numbers of particles. In what sense it can or should
be "taken seriously" is perhaps a matter of debate: clearly
if one were dealing with a truly isolated system it would be
unrealistic, in that one has a presumably inviolable super-
selection rule forbidding superpositions corresponding to
d&.fferent numbers of conserved particles. However, in
practice, in the case of superconductors, one is almost
always dealing with an "open" system in which electrons
can migrate in and out of the system via the current leads,
etc., so that there is nothing particularly unrealistic in
describing this particular piece of metal in a way which
does not conserve electrons. Similarly, in the case of liquid
'He, one may plausibly argue that in all practical situations
the layer of solid 3He which is believed to condense on the
apparatus walls may play the role of a particle "reservoir. "
But in any case, if one feels unhappy with a particle-non-
conserving wave function one may recover one correspond-
ing to a fixed number of particles E by the following trick,
which is due to Anderson (1958):one considers the family
of BCS-like system wave functions 4'(8) given by

where

E~ = + (I b,g I2 + ~g') '~'

The conditions (5.9) are then automatically satisfied. At
this stage the function Aq

—= h(k) simply forms a set of
arbitrary complex parameters characterizing the wave
function: its physical signi6cance wiLL become clearer below.

It should be emphasized that the owly assumption we
have made so far is that the wave function of the system
has built into it a certain type (and only a certain type) of
correlation property, namely the one described. by Eq.
(5.2) . This property may, indeed, be taken as the defining
characteristic of an "anisotropic superfluid" (of which, of
course, the isotropic variety=e. g., a superconductor —is
here regarded as a special case); it is often described by
saying that Cooper pairs form in the system. We have cot,
so far, said anything about what determines the form of the
parameters Nl„vl, entering the wave function: this is the
topic of the next subsection. It is essential to distinguish
between those properties of an anisotropic superRuid which
follow from the basic correlation properties of the wave

+(8) = Q cg(e), cg(8) = ug IO, O)g

+ vg exp(i8) I 1, 1)g (5.11)

'0 The choice vI, ——exp (ip), where qb is the polar angle of k, gives
+(E) an apparent angular momentum. However, in the normal limit
described by Kq. (5.10) this is clearly quite spurious, since the only
ef'feet in this case is to multiply the normal ground state wave function
by a phase factor.
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function, and those which follow from a particular form of
the parameters entering it; this is a distinction we shall
make repeatedly in what follows.

C. BCS solution and elementary excitations at

In this and subsequent subsections we will determine the
optimum form of the wave function, that is of the function
Dk, under the assumption that the kinetic energy ek and
pairing interaction Vkk are some fixed functions, that the
one-particle density of states is not too fast varying near
the Fermi surface, and that the pairing interaction is "weak"
and not too drastically energy-dependent. (These some-
what vague statements will acquire a rather more precise
meaning below. ) This collection of approximations we will
hereafter label the "BCS"approximation.

I et us then consider the problem of finding the ground
state at zero temperature. .We choose a given form of the
pairing energy Vkk for spin singlet states and calculate the
total energies of the state described by Eqs. (5.7) —(5.9),
or rather the quantity (H) —p(1V) =— (K —pX) + (V),
where E is the kinetic energy. Remembering that we meas-
ure all one-particle energies ek from the chemical potential,
we can write,

into (k' t, —k' J, ) . LIf one of the particles, say the one in
(k $ ), scatters with a particle from another pair state
(k"0), we will produce a final state in which some particles
are unpaired, that is, one which is not describable by
(5.7)—(5.9) ."g Now the initial state here is one in which not
only is (k t, —k J, ) known to be full, but also (k' f, —k' $ )
is kmoven to be empty (otherwise, the Pauli principle prevents
the scattering). Hence the appropriate probability ampli-
tude is not just vk but ~kuk. Similarly the final state has
(k 1', ,

—k J, ) empty and (k' t', —k' J, ) full, and the
appropriate probability amplitude is N&vk. We should now
complex conjugate the latter, multiply by the matrix ele-
ment Vkk and sum over all possible values of k and k'
/with the usual factor of 2 which comes from the original
expression for the potential energy i2g,;V(r; —r;) j. How-
ever, there is a slight complication: the potential may
equally well scatter into (k' $, —k' t' ) —= —(—k' t', k' J, ),
and this results in the replacement of Vkk by Vkk + Vk, k..
(Like most of the rather messy points connected with
exchange effects in BCS theory, this one comes out a good
deal more clearly in the notation of second quantization-
see below. ) The final expression is

(V) = Q V,(k.k )uk*vkukuk*,

where
(E —PX) = Q ek((eke+ m ki) ). (5.15)

But if the wave function for the pair state (kt', —k $ )
has the form (5.8), then clearly

(5.16)

V, (k, k') —= —', LV(k, k') + V(k, —k') )
is the even part of V.

If we write

(5.20)

and so we have Pk= Nk &k (5.21)

then Eq. (5.19) becomes

(V) = Q V, (k, k')FkFk*. (5.22)

Evidently, minimizing this term alone would lead to the
conditions (5.10), i.e., to the normal ground state. How-
ever, we have to examine the potential terms as well.

To make the subsequent argument clearer, let us digress
for a moment to a simple one-particle problem with a
potential V(r). The expectation value of the potential is
simply j V(r)

~
P(r) ~' dr, and if we take the Fourier trans-

forms pk and Vk of the wave function and the potential,
this can be written:

kk~

Equation (5.19) may be alternatively derived in the
second-quantized formalism. In this language we have

g ~ ~ ~kk'+k'n +—k'P +—kP+ka
1~~ + +

kk~ ~P
(5.23)

and if we select the part corresponding to antiparallel spin
pairing it is

(V) Z Vk' —

krak'

4'k (5.18)
U = 2 Z Vkk'(Ck't +—k' i +—k iakt

kkl

+ &k &
&—kt &—kt&»).+ + (5.24)

that is, it is a sum of terms referring to scatte'ring from state
k to state k', and each of these is a product of (a) the
matrix element for the scattering process, (b) the probabil-
ity amplitude that the system is in the initial state (pk),
(c) the complex conjugate of the probability amplitude
that it is in the final state (pk *). Note that since we are
dealing with a single-particle problem, the statistics obeyed
by the particle are quite irrelevant here.

Let us now go back to our BCS problem. We first notice
that the only scattering processes we need to take into
account are those in which a pair in (k t', —k $ ) scatters

%hen we take the expectation value of the quantity
ak ~+a k ~+a k~akt, because the states of occupation of dif-
ferent pairs are uncorrelated it reduces to

(+k't rl' k' $ )(+—k $+ki ) (k'&k' )—(Nk &k) = FkFk'

(5.25)

"This is why the presentation given here, which is explicitly based
on a certain assumption about the nature of the superAuid-state mace
fztnction, is completely equivalent to the original derivation of BCS,
which started from a Hamiltonian truncated so as to keep only the
pair scattering terms discussed below.
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By using the anticomrnutation relations of the Fermi oper-
ators, we can similarly write the second term as J" i,P i, *.
Consequently

«& = —;Z Vkk IP.F'*+P kF '*I (5.26)

(5.27)

If we want to find the optimum wave function at T = 0, we
must minimize this expression. Introducing Ai, and Zk as
defined in (5.13) and (5.14), we have

which is identically equal to Eq. (5.22) because of the con-
dition Fk = P

Putting together Eqs. (5.17) and (5.19), we have

«& —.P) = Z2" I "I +Z V.(k, k) .*"'"".

consider these at this point. j We can either (a) break up
the pair, that is, allow only oee particle to occupy the pair
state, or (b) form a pair-state wave function which is of
the form (5.8) but with coeKcients chosen so that it is
orthogonal to the ground state. Let us call these two types
of excitation "broken pair" (BP) and "excited pair" (EP)
states, respectively, the ground state being referred to as the

ground pair (GP) state.

There are two orthogonal broken pair states, which can
be chosen to correspond to a single particle in k t' or —k J, ,
respectively. The kinetic energy is just ek. We lose all the
pairing energy associated with the ground pair state (we
have in fact Fk =—0 for this state). Bearing in mind that
Fk may occu1 1n either of the sums ln tlie expressioll for V
we have for the excitation energy of the excited pair state
(energy relative to the ground pair state)

Esp —Eop = kk —(~k —~k/Ek)

Pk = Nk*~k(=(~-k)~k&&) = ~k/2Ek (5.28) —Re(hk/Ek) Z (Vkk. 2k*/2Ek ). (5.33)

f» I' = —:(1—~k/Ek). (5.29)

With the help of the gap equation, Eq. (5.32), and the
definition (5.14) this becomes simply

The total energy is +BP +Gp +k. (5.34)

(E& —~P'& =- Z k(1 —k/Ek)

+ Z V.(k, k') (ak/2E„) (S,.*/2E„,),
kk~

Ek —= + (Pk2 + ~
gk ~2) U2

(5.30)

As to the excited pair state, one may easily show that
the unique state (apart from a phase factor) which is
normalized and orthogonal to the ground pair state is

@'k&EP& = &k
~
0, 0)k +» ( 1, 1)k'

that is, it is a function of the set of complex variational
parameters 51,.

To minimize the expression (5.30) it is convenient to
use the fact that ~Ak ~'/Ek —= 2hkFk*, and dEk/dAk ——2Fk'
(where the differentiation is to be taken so that Ak and
hk* remain complex conjugates, not at constant Ak*). We
can then rewrite the 6rst term of Eq. (5.30) as

(5.35)

The kinetic energy is therefore 2&k
I

Bk I' = 2&k(1 —
I » I') =

ek(1 + ek/Ek) and the quantity uk*vk —= Fk is replaced by
uk*vk —— Fk. Consequentl—y, the loss of (negative) poten-
tial energy is twice that for the BP states, and we 6nd simply

EEp EQ p —.2Ek

Z ~k(1 —~k/Ek) = const + Z ( —Ek+
I

~k I'/Ek)

const + 2 Z (Pk gLk —J Pk dAk)

= const + 2 I Ak dFk*. (5.31)

Then rewriting the second term of (5.32) explicitly in terms
of FI, and differentiating with respect to Pi,~, we obtain

~k Z Vkk'Fk' = Z Vkk'(~k'/2Ek') (5.32)

This is the well-known T = 0 BCS gap equation. We d.efer
detailed consideration of its properties until we have gen-
eralized it to the finite temperature case. Note however at
once that it defines only an extremum of the energy, not
necessarily an absolute minimum.

The simplest way of forming an elementary excitation
at T = 0 is to change the state of occupation of a single
pair state (k t', —k 1. ) while leaving all others unchanged.
LThere do exist also collective excitations involving a large
number of pair states (Anderson, 1958), but we shall not

So we have two elementary excitations with excitation
energy E~, and one with energy 2Ei,. It is at first sight
tempting to regard the EP state as in some sense equivalent
to double excitation of the BP states, but this temptation
should probably be resisted, for reasons we shall see in
Sec. VI. We shall see below that 61, is usually independent
of the magnitude of k to a good approximation and can
therefore be taken to be a function only of n, the direction
of k; since we have Ek' ——ek'+

~
A(n) p, it follows that

~
h(n)

~

is the least possible excitation energy associated
with the direction n. 6(n) is commonly referred to simply as
the "energy gap, "even though in general it may be complex.

D. BCS theory at finite temperature

The basic assumption of the BCS theory at finite tem-
peratures is the obvious generalization of the zero-tempera-
ture one: the pair states (k t', —k 1, ) are assumed to be
statistically independent and hence to be each d.escribed
by its own density matrix or statistical ensembl. For any
given pair (k t, —k J, ) we have, as at zero temperature,
the four basis states

~
0, 0)k, ) 1, 0)k,

~
0, 1)k, and

~
1, 1)k
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(where
I

1, 0)k is the state with k f occupied and —k J,
empty, etc.). Evidently the "broken-pair" states

I
1, 0)k

and
I 0, 1)k feel nothing of the pairing interaction and have,

as at T = 0, an energy ck. From the states
I 0, 0)k and

I
1, 1)k we can form, as at T = 0, two mutually orthogonal

linear combinations. Let us write these as

assumed independence of the different pair states, we can
put (Akp AklAk'OAk'i ) (Akp Akl)(Ak'OAk i ). Hellce tile
total potential energy is

(V) = Q V, (k, k') (Akp*Aki&(Ak pAki*)

—= Q V,(kk')Fk(T)Pk *(T), (5.42)
4'k, op = u, (T) IO, O&, + vk(T) I1, 1&„,

I uk I' + I
~k I' = 1 (5.37a) where we.have defined the generahzation of Eq. (5.21) to

finite temperatures:
Ck, zp ——vk(T) I 0, 0)k —u (T) I 1, 1)

and define as before

(5.37b)
Fk(T) —= (A*kpAk)). (5.43)

vk(T) =— hk(T)/LI 6k I' + (Ek + ck)']"

uk(T) = (Ek + ~k) /LI ~k I' + (Ek + ~k) ']'" (5.38) Fk(T) = (~-k«»&, (5.44)

Evidently, in second-quantized language we have
I
c.f. Eq.

(5 28)]

Ek(T) —= +Lpk'+
I ~k(T) I']'". (5.39)

Thus, just as at T = 0, the complex parameter bk(T) enters
as a parameter characterizing the trial pair wave function.

At this stage it is convenient to anticipate the result that
in (stable and metastable) thermal equilibrium the energies
of the broken pair and excited pair states are given relative
to the ground pair states by Ek(T) and 2Ek(T), respec-
tively, just as in the zero temperature case. Using this, we
can make the ansatz that the probabilities of occurrence of
GP, Bp, and EP states at temperature T are given by the
Boltzmann distribution

where the brackets now indicate thermal as well as quantum
mechanical averaging. It is now straightforward to calculate
the value of Fk(T) in terms of b,k(T). For the GP state
A~O*Ak& is uk*uk, for the EP state it is —Uk*uk, and for the
BP states it is zero. Consequently, we have

Fk(T) = uk*uk(Pop —Pzp)
= Lhk(T)/2Ek] tanh(PEk/2).

Finally, the entropy for the pair state (k 1', —k J, ) is cal-
culated from the usual expression

Pop ——e ', Pap ——e—' expI —PEk(T) ],
Pzp = e ' expI —2PEk(T)],

n =— f1 + 2 expL —PEk(T)] + expI —2PEk(T)]},

P == 1/kiiT.

(5.40)

Sk = —ks g P„ lnP„= kii(Pop inPop-
n

+ 2Psp lilPBp + Pzp lnPpp),

= ks I
—PEkLtanh(-', PEk) —1]

+ 2 ln)1+ exp( —PEk)]},

Up to this point, as in Subsection 8, our description of
the state of the system is quite general.

It is now straightforward to write down the free energy
as a function of the parameters b,k(T). The kinetic energy
including the chemical-potential term is

(X —pN) = Q }Pop(ek —pk'/Ek) + 2Pzppk
k

+ Pzp(~k + ~k'/Ek) }

= g pkL1 —(ek/Ek) tanh(PEk/2) ]. (5.41)

To calculate the expectation value of the potential energy
let us as before consider a particular scattering process
(k 1', —k J, ) —+ (k' t, —k' J, ). For any given quantum
mechanical state of the system let 2k~ be the probability
amplitude that (k f, —k J, ) is full and Akp the amplitude
that it is empty, and similarly for k'. (At T = 0, the quan-
tities Aki and Akp are equivalent to vk and uk, respectively) .
Then for any given quantum mechanical state the contribu-
tion from this scattering process is V, (k, k') (AkpAk i)* X
(Ak.pAk, ) = V, (k, k')Akp~Ak, Ak.pAk, *, since we have a
thermal ensemble of quantum mechanical states, we must
take the thermal average of this quantity. Because of the

and the total entropy 5 is just the sum of (5.46) over k.

Putting together Eqs. (5.41), (5.42), (5.45), and (5.46),
we therefore finally have Lcombining a term from (5.41)
with one from (5.46)]

F —p(N) —= (X —pN) —TS+ (V),
= z I pk —Ek + ( I 4k I'/Ek) tanh (—',PEk)

—2P
—' lnL1+ exp( —PEk)]}

+ Q V,(k, k') I l (hk/2Ek) tanh( —',PEk) ]
kkI

X L(hk'/2Ek) tanh( —;PEk)]}—= ffAk}.

Equation (5.49) is a general expression for the free energy
in terms of Ak(T), given our ansatz (5.42). Because bk is
assumed to be an even function we can replace V,(k, k')
by V(k, k').

To find the form of bk(T) which minimizes the free
energy it is convenient to note that according to Eq. (5.45)
we have

(d/d~k) I
—Ek —2P '»Ll+ em( —PEk)]} = —2pk*.

(5.48)
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Consequently,

F —p(1V) = g {const+ 2(AI,F~* —f F~* dA„) } kBTc 1.14' exp —1/Ala) X(, =———', (de/de) Vg, .

the gap equation has a solution only for T & T, where

+ (V) = g {const+ 2 f Aq dFk*} + (V). (5.49)

Differentiation with respect to F~* then gives the famous
BCS gap equation

This is, not surprisingly, the same formula as was mentioned
in Sec. III for the temperature at which the normal phase
became unstable.

~~(T) = —z V(k, k')L~~(T)/2&k (T)j

X tanhl &E&.(T)/2j. (5.50)

(3) Provided that the next largest value of Xi is not too
close to 7b, ~, (precisely, provided. exp( —1/X&) && exp( —1/74 i,)
for l W g), then for T ( T, the gap function b, (n: T) is
approximately a combination of spherical harmonics corre-
sponding to angular momentum lp'.

Before examining some properties of this equation, it
should be strongly emphasized that in general it defines
only an extremlm of the free energy. In the case of super-
conductivity this does not usually lead to confusion, since
for the model forms of V(k, k') usually chosen there is
only one extremum (other than the trivial one Aq ——0),
which is therefore automatically an absolute minimum. On
the other hand, in the case of 1 & 0 pairing the gap equation
has in general many solutions, and some of them are not
even local minima but are saddle points. This is why we have
insisted on ending an explicit form for the free energy itself
as a function of Ak LEq. (5.47) g: we can then immediately
compare the free energies of different solutions to Eq.
(5.50) a,nd determine the lowest.

The properties of the solutions to Eq. (5.50) are exten-
sively discussed by Anderson and Morel (1961). We simply
quote some of the results:

(1) To the extent that V(k, k') is independent of the
magnitude of k, k', then so is the solution hq(T) . In particu-
lar if V(k, k') has the model form (3.11), then we find

b,g(T) = h(n: T) for kp —hk & k & kp + Ak

= 0 other wise. (5.51)

(2) If in Eq. (3.11) all V~ are positive, no solution to the
gap equation exists. If some are negative, then as in Eq.
(3.26) we de6ne for V& ( 0 the quantity X& = ——,'(de/de) V&,
and suppose that the largest Xi corresponds to i = Q. Then

Moreover if V(k, k') or more precisely its I.egendre decom-
position V&(k, k') is slowly varying over a range of k, k'
large compared to (say) k&T,/vi (i.e., over an energy range
large compared to kaT, ) then hq(T) is also slowly varying
over a similar range, and hence can be set equal to a con-
stant d (n: T) for eq & kaT, to a good approximation. This
condition should be very well fulfilled for liquid 'He (see
the end of the last section). Since the behavior of V~(k, k')
and Ak for Ek)) k~T ls of importance mainly in fixing the
critical temperature (cf. below), it is then quite adequate
for most purposes to replace V&(k, k') by the model form
(3.11),with any choice of e, and V& such that (a) the critical
temperature T, fits the experimental value and (b) the
weak coupling condition e, )) kaT, is preserved. (See how-
ever below, Sec. IX.) From now on we shall usually assume,
for simplicity, the model form (3.11) (see also the end of
Subsection D below) .

A(n: T) —4(T)f&(n), f~(n) = g a&~&~&V~~(n).
m

(5.53)

In this expression the form of fq(n), i.e., the coe%cients
a«&~', may in principle be functions of temperature; how-
ever, in the simplest cases at least it is found that they are
not. In using Eq. (5.53) we shall choose A(T) so that
f~(n) is normalized:

(5.54)

(4) Provided Eq. (5.53) is satisfied, the gap A(T) is of
the general form

A(T) = kaT, (p(T/T, )

and the function f~(n), insofar as it has any temperature
dependence at all, is a function only of T/T, . Thus, once
T, is determined all other parameters of the theory can be
expressed in terms of it. It is for this reason that, in BCS
theory, one often treats T, as a phenomenological parameter
to be determined from experiment rather than calculated.

(5) For any given lp there exist in general several solu-
tions to Eq. (5.50): these may include in general saddle
points and free energy maxima as well as local free energy
minima. In case of doubt the most stable minimum must be
found by going back to the explicit expression for the free
energy, Eq. (5.47). It is of course entirely conceivable that
a form of f(n) which is the absolute minimum at one tem-
perature ceases to be so as the temperature is varied.

(6) In general any function of the form (5.53) with
lo W 0 will have nodes either at points or along lines on the
Fermi surface. In other words, the energy gap for excitations
will be zero at these points (or along these lines). However,
it should be pointed out that Eq. (5.53) is only an approxi-
mation and that mixing in of spherical harmonics with
l & lo will inevitably occur (unless all V& are rigorously
zero for / & lo) even if the actual magnitude of the admix-
ture is very small; it may well be that one eBect of this
admixture is to eliminate the nodes of h(n). (I know of no
general proof that this is so, but pilot calculations in specific
cases seem to point in this direction. ) Even if this is so,
however, there will still be points at which the gap is very
small.

(7) The general form of the "overall magnitude of the
gap" h(T) is much as in the simple s-wave BCS theory;
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it increases as (T, —T)'~' for T near T, and tends to a harmonics of the "wrong" l. Inverting Eq. (5.57) to obtain
constant value 6(0) in the limit T —& 0. We have in fact b, in terms of 4' and inserting in Eq. (5.58) we find
6(0) = akliT, Lcf. (4) abovej where a & 1.75.

We finally observe in passing that provided the gap equa-
tion is satisfied the excitation energy of the "broken pair"
and "excited pair" states can be calculated analogously to
the T = 0 case, and we 6nd for given k

FI+(n): Tl = Fo(T) + A '(T) f (dQ/4w) I%'(n) I'

+ ff (dQ/4~) (dQ'/4~) V(n, n')+(n)+™(n')

+ klI &(T) I/LA(T) j'} f (dQ/4~)
I
+(n) I'+ &(+').

Esp —Eop ——E~(T), EEp —Eop ——2Eg(T) .

Therefore the ansatz (5.40) used in deriving the gap equa-
tion is self-consistent.

At this stage we find the explicit form of A(T): expanding
5.55

Eq. (5.56) in powers of b, and comparing with Eq. (5.57),
we get

E. The Ginzburg-Landau region

Many of the above considerations can be confirmed and
made more quantitative if we consider specifically the
region of temperature near T,. In the case of superconduc-
tivity this is the region of validity of the celebrated theory
of Ginzburg and Landau (1950) and it is therefore often
known as the "Ginzburg —Landau" region.

Let us assume that in this region it is legitimate to treat
the gap 6k as small and to expand the free energy in powers
of it: the results will show that this assumption is self-
consistent. For the moment we will use the model potential
(3.11). Moreover, although we shall treat b,z as an arbitrary
parameter we assume it is a function only of n; and we
assume also the "weak-coupling" condition P», )& 1 for all
T of interest.

We define the (dimensionless) quantity

tallll g p»
A(T) = —', (de/d»)

'
d» = -,'(de/d») 1n(fj9»,),

26

(5.60)

f —= —exp—1 lns sech's ds = 1.14 (5.61)

+(n) = Q ai~Vi (n), (5.62)

where I'~ is a normalized spherical harmonic. Then using
the definition (4.2) of V~ and the addition theorem for
spherical harmonics, we find that the quadratic terms are

(where in the intermediate steps we integrated by parts and
used the condition P», &) 1).

Let us wr~te

&c

+(n: T) =—g Fp.
= ', (de/d») —d»iF~

IleI —&c

F&» = Z lA '(T) + V~} I
«-I'.

lm
(5.63)

= —;(de/d») 6( n)
" tanh~PEI,

2+Ic
(5.56)

{E~=—+L"'+
I ~(n, T) I'7"l

Evidently, we may expand +(n, T) in powers of A(n, T):

W(n, T) = A(T)h(n) + 8(T)
I A(n) I'A(n)

+ &(~'). (5.57)

The precise form of A (T) and B(T) need not concern us
for the moment, but we notice that both are smooth func-
tions of T in the region of interest and that A (T) is positive
and increases with decreasing T, while B(T) is negative.
We now notice that according to Eqs. (5.47), (5.49), and
(5.56) we have

F = Fo(T) + 2 f (dQ/4ir)b. (n) d%*(n)

+ ff (dQ/err) (dQ'/4~) V(n, n')0 (n)%'*(n'). (5.58)

Using Eqs. (5.57) and (5.58) we may expand the free
energy in powers of either A(n) or 4'(n). In the case of a
BCS superconductor the expansion in 6 is conventional,
but for an anisotropic superQuid there are advantages in
using 4'(n) as the expansion parameter, particularly if one
wants to deal with the possible admixture of spherical

Moreover the quartic (and subsequent) terms are always
positive. We see therefore that at sufficiently high T I such
that A '(T) + V~ ) 0 for all lj the minimum of the free
energy always occurs at a& =—0, that is, for the normal
state. The critical temperature below which the free energy
is lowered by a nonzero choice of 4'(n) is given by

A '(T,) + Vi, = 0, (5.64)

+(n) = 4'(T)f(n), f(n) = g a«V&, (n), (5.65)

where f(n) is normalized as in Eq. (5.54). I
Note that since

the relation (5.57) between N(n) and b, (n) is nonlinear,
the function f(n) defined in (5.65) is only approximately
equal to the function f&(n) defined in (5.53)—but see
below. j

With the ansatz (5.65) for N(n), the quadratic terms

where lp is the angular momentum for which V~, is most
attractive (negative) . This just gives back Eq. (5.52) .

Below T, we see that the coefficient of
I at~ I' in (5.63)

is negative, while the coeKcients of
I

a~ I' for l Q lo are
still positive (unless Vi is very close to V«). To a first
approximation, therefore, it is sensible to look for a form
of 4'( n) which involves only the l = lo spherical harmonics:
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in the free energy take the simple form of the problem entirely: consequently, for pairing with
given /, 6( n) /k~T, is a universal function of T/T, Lcf. point
(4) in Sec. V.D abovej.F(.) = EA '(T) —A '(T.)j f (dfl/4~)

I +(n) I'

—A '(T,) (dA/dT) z. (T —T,)

)& f (dQ/4') ( +(n) ~'. (5.66)

As we just saw, to lowest order in T, —T the gap A(n)
is simply a constant times N(n). This is actually a special
case of a much more general situation. Generally speaking,
to the extent that it is legitimate to approximate +(n) by
Eq. (5.65), it is also legitimate to treat N(n) and A(n) as
strictly proportional: i.e., to put f(n) —= fq(n) I cf. Eqs.
(5.65) and (5.53) j; the error in both cases is of order (at
most) (inp, e,) ' (see below). In other words, to the extent
that 4'( n) and 6( n) are given by a combination of spherical
harmonics of a single / value, the angular dependence must
be the same in the two cases. In common with almost all
work on anisotropic superAuids, we shall in the rest of this
paper make this approximation, whether or not we are in
the GI. region.

Fle(n), T} = ~L(T —T,)/T, j f (dO/4~) ~e(n)
~

+ —,'p f (dQ/4') i%'(n) i', (5.67)

(5.68)n = —A —'(T,) (dA/dT)~. T, ) 0,

p==A '(T.)B—(T-,) & 0. (5.69) Let us substitute the form (5.65) in the free energy
(5.67) and define

This is exactly of the form of the Ginzburg —Landau expan-
sion of the free energy for a superconductor, except that in
that case the "order parameter" N(n) is simply a constant
+, and the integral over the Fermi surface is therefore
omitted. Explicit evaluation of the constants occurring in
Eqs. (5.68) and (5.69) gives Ldirectly from Eq. (5.60) $

(5.73)~ =—f (dQ/4~) i f(n) i'.

Then using the normalization condition on f(n) we find

FI+: T} = nL(T —T,)/T, g+'+ -,'~PC'.
(5.70)

The equilibrium value of 0' is therefore

(5.74)
T, (dA/dT—) ~. = ,'(de/de)(—= X(0)j

and )from a comparison of Eq. (5.57) with an expansion
of Eq. (5.56)j

T & T,. (5.75)

Adding the quartic terms from Eq. (5.59), and taking into
account that A(T) and B(T) are smoothly varying near
T„we find the final form of the free energy up to terms of
order

(
e ~'.

B(T,) = +-', (de/de)
d tanh —,'p, e

„d(E') 2E-
I 1 d tanhs

2(dn/de—) (kIiT ) ' ~- ds~
8 sds s

;(dm/—de—)(mk~T. ) ' s7t (3), -

where f(3) is the Riemann zeta-function.

(5.71)
~(T) =0, T&T,
A(T) = 306K "'(k T ) (1 —T/T )"'
(3 06 = L8 '/7f(3) j'").

T&T,
(5.76)

Alternatively, using the definition (5.53) and the form of
free energy (5.72) and putting f~(n) —= f(n), we 6nd for
b, (T)

It should be observed that the particular definition of the
"order parameter" N(n) we have used is not unique: we
can always multiply 4'(n) by an arbitrary (temperature-
dependent) constant, provided we scale the parameters n
and P appropriately. A particularly useful choice is to
multiply +(n) by the factor A '(T.): the resulting quan-
tity, to lowest order in T, —T, is just the gap function
h(n) (cf. Eq. (5.57) j.

which is the same formula as for a BCS superconductor
except for the factor g '~'.

From Eqs. (5.74) and (5.75) we can also calculate the
free energy as a function of T. We 6nd for T ( T, Padding
also the "normal" term Fo which was not written out in
Eq. (5.74) j

In this way we can rewrite the expression for the free
energy in the GL region in terms of D(n):

F(T) = Fo(T) —'(~'/~p) E(T. —-T)/T 3'. (5.77)

FIA(n), T} = —,'(dn/de) I
—(1 —T/T, ) f (dQ/4~)

)& ( D(n) ~'+ ''f(3) (m—k.ii—T.) ' f (dQ/4m-)
~
A(n) ~'},

(5.72)

which is the generalization of the well-known expansion for
a superconductor. LThis expression can equally well be
obtained directly from Eq. (5.58) by expanding in
rather than 4'.j Notice that if we define a dimensionless
gap and temperature 6/k~T, and T/T„ then T, falls out

From this it follows that among possible forms of the order
parameter N(n) satisfying Eq. (5.65), the most stable is
the one which corresponds to the minimum value of ~ PEq.
(5.73) j, that is, the one which maximizes N(T) and A(T).

We would like to remark in passing that the ansatz (5.65)
for the order parameter +(n) is not exact in general. If we
go back to Eq. (5.59), we can easily convince ourselves that
even if all V~ except V~0 are zero or positive, it is neverthe-
less energetically advantageous for +(n) to contain some
admixture of / & lo spherical harmonics, since the fourth-
order term can usually be reduced by doing so. To illustrate
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this, let us consider the case when all V~ except V~0 are zero,
take 4' to be the overall amplitude of the main part of
+(n) (i.e., the lp spherical harmonic), and let x be the
admixture of l ~ lo harmonics. If x is finite, it will give a
positive contribution of order A '(T,)x' to the quadratic
terms in Eq. (5.62): on the other hand, in general the
lowest-order contribution to the quartic terms will be of
order Px+P, which can always be made negative by a suit-
able choice of the sign of x. Consequently, we find

~
x

~

PA(T, ) i
+ ~' and hence fusing Eq. (5.75)j the ratio of

(x~ to ~4'~isof order

I
x I/I +

I

—Ed(»A) /d(»T) 3~. I (T, —T)/T. l
~ Lln(tLp, ) g 'L(T. —T)/T. g. (5.78}

hg ———Q V(k, k') (hg/2pg ) tanhPpg/2. (5.79)

This is a linear equation, and since V(k, k ) has the form
(4.1},its solution must be of the form

a, = a(n) y, (k), (5.80)

where b, ( n) corresponds to a combination of spherical
harmonics of a given l value, and Pi(k) obeys the integral
equation (cf. Sec. III)

Pi(k) = ——;(dl/dp) f Vi(k, k')P((k')

)& (tanhPpg /2/2pg ) der„'. (5.81)

The admixture is therefore very small in the weak-coupling
limit. However, it will be strongly enhanced if some other
V~ is negative and close in value to V~,.

In contrast to%'(n), the gap A(n) can in principle con-
tain only spherical harmonics of one l value lo, if all V~

except V~, are zero. In general the relative mixing in of
spherical harmonics with l W lp is of order (some constant
times)

~
Xt ~, where X~ is the coupling constant for the

spherical harmonic of the interaction V~ (other than V~p)
with the largest magnitude (whether it is repulsive or
attractive). This point is discussed in detail in Appendix
A of Anderson and Morel (1961) for the zero-temperature
case, and. the considerations are obviously similar for finite
temperature; one sees that the relative mixing is propor-
tional to (T, —T) near T,. If we suppose that

~
X~

~
is of

the same order of magnitude as X~ (1nP,p,) ', we see that
the mixing in of "wrong" spherical harmonics in b, (n) will
usually be of the same order as that for 4'(n): hence, as
stated above, if one is going to neglect it in A(n) it is
generally consistent to do so also in N(n), i.e., to make the
two quantities strictly proportional. It should be empha-
sized that it is uheays consistent to do so in the GI region
(unless the X~'s are extremely close).

Finally I would like to sketch a brief justification, in the
framework of the methods of this section, of the statement
that, provided the interaction is slowly varying over an
energy range large compared. to k~T„ then it is legitimate
for most purposes to replace it by the model form (3.11),
with the parameters V~ and p, ())koT,) chosen so as to
reproduce the experimentally observed critical temperature.
First we go back to the gap equation (5.50) and note that
at the critical temperature itself, when h~ tends to zero, it
becomes

F = const. + 2g I 4k dF~~+ g Vwi, FzFw

Fg —= (hg/2Ek) tanh(-', PEg).

This equation is of course quite generally valid, indepen-
dently of the choice of potential. %e define as before the
quantity 4'( n):

(5.83)

The crucial observation, now, is that provided P~(k) is
effectively constant and equal to 1 over an energy range
pp )) koT, (and hence, a fortiori, ))6), we can write to a
good approximation either

F~ = Ih(n)/2LEP +
~
A(n) ~'1"'I tanh-', Pfpg

+ I ~( ) I'7" ("«") (5.84)

Op' simply

Fg ——a(n)P)(k)/2', (pg)& kiiT, ) (5.85)

(or, of course, in the region kiiT, « ea « pp, either of these
expressions). When these are substituted into %(n) and
it is expanded in terms of b.(n) as in Eq. (5.57), we see
that while A (T,) evidently depends on the form of P&(k),
neither dA/dT nor B(T) does so (and, more generally, no
higher coefficients will do so) . Moreover, when we substitute
Eqs. (5.80) and (5.84) into (5.82) and re-express the result
in terms of A(n) and then +(n), it is only the quadratic
terms which will be affected by P~(k), not the higher ones
Pand the temperature dependence of the quadratic terms
is independent of Pt(k) j. Consequently, the only effect of

P~(k) is on the transition temperature itself: in fact, putting
the quadratic term in N(n) equal to zero precisely gives
hack Eq. (5.81) for the transition temperature. Equation
(5.67) still follows, the only difference being that A(T,)
is in general not given by Eq. (5.60) but by a more general
expression involving fi(k). However, when we rewrite the
free energy in terms of b,(n) rather than N(n)-we 6nd as
before that A (T,) drops out of the problem. We conclude
therefore that once given T„ the gap A(n) and hence all
thermodynamic properties (see next section) are independ-
ent of the high-energy behavior of Vi,~, so that we may take
any convenient form which gives the right T,—e.g., the
model form (3.11). An alternative derivation of the cor-
responding result for the zero-temperature case is given by
Anderson and Morel (1961).

One caution is, however, necessary here: although the
thermodynamic properties do not depend on the cutoG in
Eq. (3.11), it is less obvious that this is true for certain

We normalize Pi so that Pt(k) ~ 1 as e~ ~ 0. We do not in
general know the solution of Eq. (5.81) without a detailed
knowledge of V~(k, k'). However, if Vt(k, k'} is effectively
constant over an energy range pp, then evidently Pi(k) will
similarly be constant over this range.

We will now assume that (5.80) is valid at all tempera-
tures below T, Lwith P~(k) independent of Tj and show that
this is consistent. We go back to Eq. (5.49), writing out
(V}explicitly:
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expectation values —e.g. , that of the dipole energy (see
Sec. X below). It may therefore be necessary for certain
purposes to choose an unambiguous value of the cutoff
energy e, LEq. (3.13)j. If so, probably the most sensible
choice is to impose the cutoff at the point where the inverse
lifetime of a (normal) quasiparticle becomes of the same
order as its energy /for a detailed justification of this pro-
cedure, see Morel and Nozieres (1962)j.In the case of liquid
He the resulting value of e„converted into temperature

units, would be of the order of 1 K.

F. Summary

state. Consequently, the pairing process itself produces no
molecular fields and the only modification necessary to the
above theory is the replacement of the real mass m by the
quasiparticle effective mass m* Lor equivalently, the inter-
pretation of (de/de) as the true density of states for the
interacting system j and of the interatomic pairing potential
V(k, k ) by an effective pairing potential between quasi-
particles. Thus the above theory is more or less ready-made
for application to the 'He problem. However, we must
remember that when in the next section we calculate re-
sponses to external fields, it will be essential to take the
molecular fields into account.

The major results of this section which we shall need sub-
sequently are:

(1) At zero. temperature the wave function of an aniso-
tropic superAuid with spin singlet pairing may plausibly
be taken in the form described by Eqs. (5.7)—(5.9). Simi-
larly, at finite temperatures the state of the system is
described by Eqs. (5.37)—(5.40) . The state of the system in
thermal equilibrium is completely described by the set of
variational parameters Ai, (T) .

(2-) In the approximation we have adopted /which is
analogous to that made by Bardeen et aL (1957) for an
isotropic superconductor j the parameters Ai, (T) satisfy the
BCS-like gap equation (5.50) . The solutions to this equation
have the properties (1)—(4) noted in Sec. V.C.

(3) Near the critical temperature T„ to the extent that
we neglect the mixing in of spherical harmonics with l other
than the "dominant" value lo, the free energy can be written
in the form (5.67). The most stable solution is one which
minimizes the quantity a defined in Eq. (5.73).

In what follows we shall often want to distinguish between
result (1) which is a very general ansatz concerning the
correlation properties of the wave function (or statistical
description), and results (2) and (3), which are much more
detailed statements about the actual values of the varia-
tional parameters Ai, (T) appearing in the statistical descrip-
tion Lor of quantities like 4'(n) which give equivalent in-
formation). Recent advances in our understanding of the
new phases of 'He have involved the (partial) abandonment
of (2) and (3) but not of (1).In the next section, therefore,
we shall usually concentrate on expressing physical quan-
tities in terms of the parameters Ai, (T) rather than explicitly
in terms of temperature. The latter we shall only be able to
do after we have investigated (in Sec. IX) the reasons why
the results (2) and (3) probably do not apply to real liquid
3He, and have obtained the corrections to the behavior of
hi, as a function of T It should be. said at once, however, that
the main effect of these corrections is to alter, possibly, the
relative stability of different solutions of the gap equation
for the same l value: apart from this they do not affect the
results of the present section qualitatively. As remarked
above, we will call the collection of approximations leading
from (1) to (2) and (3) "the BCS approximation. "

To conclude, a remark on the appropriateness of the
theory of this section to a real Fermi liquid such as 'He.
We shall see below (Sec. VI.D) that the quantities Qi and
Ri of Sec. II (the spherical harmonics of the "net" deforma-
tion of the Fermi surface), which are zero in the normal state
in equilibrium, remain zero in equilibrium in the superRuid

Vl. THERMODYNAMIC AND CORRELATION
PROPERTIES OF THE ANISOTROPIC
SUPERFLUID

In the present section we shall derive expressions for
some properties of the anisotropic superRuid which are
accessible to experimental measurement, and also for some
which while not so directly accessible are of considerable
theoretical interest. We deal here as in the last section with
the case of spin singlet pairing: the results are, with one
exception, trivially generalized to the case of triplet pairing
which we shall discuss in the next section. For general
reference we recall here the principal result of Sec. V.B:at
temperature T the possible states of a pair of plane-wave
states k f, —k J, are a "ground pair" (GP) state which is
a linear combination of

~
0, 0) and

~
1, 1), an "excited pair"

(EP) state which is also a linear combination but orthogonal
to the GP state, and two "broken pair" (BP) states in
which k 1' and —k J, are, respectively, alone occupied. The
energy of the BP and EP states relative to GP are Ei, (T) and
2Ei, (T), respectively, where Ei, = +L~&' + ( &z ('(T) j' '.

A. Specific heat

The specific heat per unit volume is most easily calculated
from the expression (5.46) for the entropy. "In carrying out
the differentiation with respect to T we must remember that
Ei, is itself a function of T. We find

C„—= T(dS/dT) = g [kii-', P'LE, + P(dpi, /dP) j
)& (Ei, sech'PEi, /2) I. (6.1)

"The alternative derivation of Anderson and Morel (1961) appears
to contain some errors which, however, cancel out in the 6nal result.

Above T„where EI, = el,
—= const. , this expression reduces

to the well-known expression for the specific heat of a
normal Fermi liquid, and is numerically given by Eq. (2.3) .
At and below T, the general behavior is much like that of the
specific heat of a BCS superconductor, with C, jumping
discontinuously at T, and then falling sharply at lower
temperatures, owing to the exponential fall-off of the func-
tion sech pA'q/2. However, there is a significant difference
in the behavior in the limit T~0: in the BCS case the gap
6 is constant and, since E~ & 6, the speci6c heat therefore
falls off exponentially in the low-temperature limit. In the
case of an anisotropic superfluid, however, the gap A(n)
may in general have nodes and the low-temperature specific
heat will then be proportional to a power of T. Evidently,
if all the nodes are point nodes and the gap h(n) tends to
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zero as the nth power of distance from a particular node on
the Fermi surface, then the contribution to the specific heat
is proportional to T&'~")+'. The result for the case e = 1 is
worth quoting explicitly: if we consider the ith node and
choose the axes momentarily so that it corresponds to the
pole, then by a suitable choice of the zero of the polar angle
p we can always write A(n) near the pole in the form

A

k Ff

~
5(n) (' —=

i h(8, y) (' ~ 5s'(a' cos'y + b' sin'q) e'

(6.2)

where hs is the (real) overall magnitude of the gap, at zero
temperature, normalized as in Eq. (5.53). The resulting
contribution to Eq. (6.1) can be evaluated by taking new
variables x =—ho@;8 cosy, y =—hob;8 sing, s = e, and then
transforming to spherical polar coordinates. If all the nodes
correspond to e = 1 (as for instance is the case for the
most popular model of 'He-A —see Sec. IX), then the total
specific heat in the limit T —+ 0 is

FIG. 3. Effect of a magnetic field on the formation of Cooper pairs.
Particles A and 8 cannot form a pair, but particles C and D can (see
Sec. VII.A).

BCS approximation) it turns out that in the limit T~ T,
we have

C, (T~ 0) = $24C'kgb'(de/de) & ' Q a 'b ')Ts L9(T) = c(ksT, )'(1 —T/T, ), (6.6)

where c is some positive numerical constant. Substituting
this in Eq. (6.5) we find

AC„/C„(T.) = 3c/2~'. (6 7)
where l is the Riemann zeta-function.

In the BCS approximation the constant c is 9.3 ~ ' Lcf. Eq.It is helpful to express this as a fraction of the normal
state specific heat at T, :

C„(T 0)/C„(T,) = lt 63/(4)/ 'j(k T./&)'

X Q ri, 'b, 'I (T/T, )'.

/AC. /C~(Tc) jscs = 1.42~ ' ( 1.42.

B. Spin susceptibility

(6 8)

This result does not depend on the BCS approximation,
although the actual value of the ratio (kygT /Ap) may do so.

The above results should probably be taken with a pinch
of salt, since, as we pointed out in the last section, it is quite
possible that the true gap has no nodes, owing to the mix-
ing-in of spherical harmonics with l & l(l. If so, then the
specific heat will be exponential in the low-temperature
limit. IActually not quite, since collective excitations Lsee
Sec. XIIj will contribute a power-law term, whose coeffi-
cient is, however, very small. l Nevertheless, if the mixing
is weak, one may expect that the nodes turn into low minima
of order 6, « k&T„and one may then hope that in the
temperature region b, « k~T && k~T, the above results
may be approximately valid.

In the opposite limit (T—+ T,) we see that the term in
Eq. (6.1) proportional to Es' will give just the normal state
specific heat. The specific heat jump AC„defined as the
difference between C, just below and just above T., is
therefore given by

The spin susceptibility of an anisotropic superQuid with
spin singlet pairing is strongly reduced in low magnetic
fields. To see this qualitatively, we notice that the wave
function of a Fermi superQuid involves the pairing of
particles over the Fermi surface with opposite spin and
opposite momentum. Now imagine that while the system
is in the normal phase we apply to it a weak magnetic field;
the e8ect of this is to split the "up-spin" and "down-spin"
Fermi surfaces as shown in Fig. 3. If now we try to form
Cooper pairs with opposite spin and momentum, then,
crudely speaking, the up-spins in the shaded region are
excluded from the pairing and so the energy of condensation
is reduced. The system then has the choice between main-
taining its original polarization and thus losing condensa-
tion energy, or reducing the polarization so as to allow more
pairing. It turns out that at low fields it is energetically
advantageous to do the second, so the susceptibility is
reduced.

I.et us now consider the eGect quantitatively. We first
neglect Fermi liquid e6ects. If a weak magnetic field H is
applied to the system, the energies of the single-particle
states k $, k |, are shifted:

AC„= skiiP, s P )Eq(dEq/dP) j sech'(sP, EQ)
k est = es+ sp& (~ = v@). (6.9)

= —;(de/de) P—(da /d T) q~. To first order in H the energies of the GP and EP states are
not affected, since they are linear combinations of

~
0, 0)

Lwhere we used Eqs. (5.39), (5.53), and (5.54) j. In Sec. and
~

1, 1). The energy of the BP state ~1, 0) is, however,
IX we shall see that quite generally (independent of the shifted down by st&, and its energy relative to the GP
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state therefore becomes Ei, —~pH. Similarly, the energy
(relative to GP) of

I 0, 1) becomes Ek + —',)(4H. So the prob-
ability of occupation of

I 1, 0) and
I 0, 1) is now

P(1, 0) = m 'expI —P(Ek ——,'pH)g,

P(0, 1) = e ' expl —P(E), + p'IdH) g (6.10)

where the normalization factor e is unaRected to first order
in H and given as in Eq. (5.42) by

e = L1 + 2 exp( —PE),) + exp( —2PE), ) j. (6.11)

Since
I

1, 0) and
I 0, 1) contribute, respectIvely, ~p and

—,'p, to the total magnt:tization while GP and EP contribute
nothing, we have

M = —',„gP'(1, 0) —P(0, 1)g =-,'&'H g -,'P sech'-', PE&,
O.

Tc

,'s'Td(dss/—d ) f (dB/4 ) f d s Pssch-', pxs '-', (4.42. )
0

Thus, the susceptibility yo obtained neglecting Fermi liquid
eRects is

g() = -', p'(de/de) Y(T) —= —', y%'(de/de) Y(T), (6.13)

T(T) == f (dsS/4 ) T(ss T)

T(ss, T) —= f , dsscdh'-;t4Es. (6.14)

The functIon Y(T) is the so-called Yosida function, suitably
generalized to the case of an anisotropic gap. In the normal
case (d44), = 0, E),=—e).) is is of course equal to 1 and we
recover the formula (2.3). In the GL region (near T,) we
call expand Y(ns T) III powers of A(I1) = +f(n)

I"IG. 4. General form of the Yosida function F(T).

"density of the normal component" or normal fraction"
p„/p discussed below.

We now consider Fermi liquid corrections to formula
(6.13). It is evident from the derivation above that the
induced magnetization associated with diRerent bits of the
Fermi surface is in general different, i.e., the polarization is
anisotropic, so that strictly speaking we should consider all

possible molecular 6eld parameters Z~. However, since Ai,

and hence Ei, is an even function of n, only those fields
associated wtth even l in Eqs. (2.20) —(2.23) come into
play. Since we do-not know Z& for / & 1, we shall simply
neglect all the Z& except Zo. It may be shown Lsee Leggett
(1965), Sec. 4J, that this result is exact to lowest order in

(1 —T/T, ) and also (for singlet pairing only) as T —+0,
where it reduces to Eq. (6.13): it seems unlikely that the
error will be very great even in the intermediate region. "
We can then simply use directly the techniques of Section II
to obtain Eq. (2.25), where, however, xo is now the value
calculated for the slperguid phase neglecting Fermi liquid
corrections. Substituting Eq. (6.13) for xo, we get

(6.15) y(T) = 4ry'A'(de/de) $Y—(T) /1 + —', Z()Y(T) g. (6.18)

so that

(6.16)

1 —Y(T) sos ~ 2)4 (1 —T/T ) (6.17)

If furthermore we take A(T) to have its BCS value (5.76),
we get

This formula reduces to Eq. (2.25) in the limit T —+ T, and
to Eq. (6.13) in the limit T —+0; this is quite natural since
all enhancement eRects vanish as the unenhanced suscep-
tibility tends to zero. For Zo ~ —3, the value for real liquid
'He, the difference between Eqs. (6.18) and (6.13) is very
pronounced; in Fig. 5 we show the approximate form of
x(T) from Eq. (6.18) as a fraction of the normal state
susceptibility x„.

At lower temperatures the Yosida function will depend Las
in Eq. (6.14)$ on the specifIc form of the gap function, and
also on whether the BCS approximation is valid: however
its general form is always qualitatively like that illustrated
in Fig. 4 I cf. Anderson, and Morel (1961), Fig. 3g. The
Vosida function is in some sense a measure of the fraction
of the particles near the Fermi surface which are free to
redistribute themselves, or the "eRective density of states
near the Fermi surface"; it should not be confused with the

C. Normal density

The so-called normal density of a superAuid may be
defi.ned as follows. We imagine that the system is placed,
for instance, in a tube and ihe walls are then moved with
velocity v and the system allowed to come to equilibrium.

"The expression obtained if Z2 (but not higher Zg s) is fInite has
been written down explicitly by Wo16e i 1974 (Eq. 26) g.
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pairs are moving uniformly, that is, that the pair wave
function is of the form (we omit spin variables)

y(rirs) = expiK. Rqs(ri —rs), R =— (r, + r, )/2,

(6.21)

C
Xx where cpo is the equilibrium wave function at rest and the

velocity v, of the pairs is dehned by

(6.22)

0

Under these conditions, if the rest of the liquid is also
moving with some velocity v„, we can combine Eq. (6.19)
and. the definition of p, to give

P = pgvg + p~v~ (6.23)

FIG. 5. Magnetic susceptibility of a superQuid with singlet pairing
corrected for Fermi-liquid effects fEq. (6.18}j.

It is then assumed that the Cooper pairs do not change their
wave function when this happens, and the normal density
p„ is dehned as the ratio of the equilibrium momentum of
the system to the velocity v: i.e., for the moment at least,
by the formula

(6 19)

Whether or not this definition of the normal density is
applicable to a specific situation depends, of course, on
whether the assumption that the Cooper pairs do not change
their wave function, i.e., remain at rest, is justified or not.
In many physical situations of interest strong arguments
in favor of this assumption can be given. For instance, if
the tube is bent round to form an annulus then the condi-
tion of single valuedness on the pair wave function y(rirsoios)
implies that the center-of-mass angular momentum asso-
ciated with the wave function is quantized and hence the
Row velocity is quantized also; in that case, it usually
happens that the original wave function corresponding to
zero Qow velocity is highly metastable and the Cooper pairs-
do indeed stay at rest. This, however, is a somewhat delicate
subject (the problem is common to superconductors and
liquid He II as well as Fermi superfluids), and we refer the
reader to the literature (e.g. , I.anger and Fisher, 1967).

We can also define the superguid density p, as the ratio of
the momentum to the velocity of the Cooper pairs when
the rest of the liquid is at rest. Such a situation is realized,
for instance, in "fourth sound" experiments carried out in
narrow tubes where the nonsuperfluid (normal) component
(that is, crudely speaking, the particles in broken pair
states) are forced by collisions with the stationary walls
to remain in an equilibrium distribution appropriate to zero
net Row. Evidently, from Galilean invariance we have the
result

which is one of the basic equations of superQuid hydro-
dynamics. It should be emphasized, however, that Eq.
(6.23) is only valid when the motion of the Cooper pairs
is (at least locally) of the simple type described by Eq.
(6.21) (cf. Sec. X.D below).

To calculate the normal density we proceed from its
definition as follows. If the walls are moving uniformly with
velocity v, then the equilibrium state of the system is
obtained by minimizing not the original free energy Ii but
F —v P {i.e., by minimizing the free energy in the form
of the moving walls). This is equivalent to replacing the
kinetic energy eI, of a particle in the plane-wave state k by
et- —v.p, p —= A'k. The calculation is now very similar to
that for the spin susceptibility. The Gp and EP states have
their energy unshifted, at least to order v. (Here we im-
plIcitly use the assumption that the pairing is still between
states k and —k and not, say, between k + K/2 and
—k + K/2; this is evidently equivalent to the assumption
that the Cooper pairs remain at rest. ) The energy of

~
1 0)

is shifted down by —Kv. k, and that of
~

0 1) up by the
same amount. Omitting most of the intermediate steps,
which are exactly analogous to those for the susceptibility,
we And

P = Q A'k
I P (1,0) —P (0, 1) I = g itskv k—,'P sech' ,'PEi, —

(6.24)

Evidently, for an anisotropic gap (hence Ek anisotropic)
the momentum P is in general not parallel to the velocity
v. The defining equation (6.15) must therefore be replaced
by

P' = Z p*'"'~'

where the tensor superfluid density p~f"' is given by (the
superscript zero indicates that Fermi liquid effects have
not yet been taken into account):

Pa= P Pm) (6.20)
p; "' = Q fi'k;k —'P sech' —'PE~ = —'ftsk~'{du/de) F;.(T)

where p is the total mass density of the liquid. In de6ning
the superAuid density it is understood that the Cooper = Pe*I';;(T), (6.26)
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where I cf. the definition (6.14) $

F "(T) =—3 f (do/4 )m I f d a-', p sech'-', pE&
0

—= 3 dQ +n. e;e,I' n: T (6.27)

and we used Eq. (2.5) to obtain the last form of Eq. (6.26).
For an isotropic system we have Y;;(T) = 6;,Y(T): more
generally we evidently have (regarding Y;; as components of
a matrix Y)

Tr Y(T) = 3Y(T). (6.28)

pooAtot ol & Atotol = Aeat + Amolq

A . = —(F/p')(d /d) —'P. (6.29)

Solving these equations for P in terms of A, t, we find

P= p„A,„„ pno
P 1+ F,pF '(dr&/de) 'p o

Xm*Y (T)
1 + —',FiY(T)

(6.30)

This result is consistent in the normal limit I Y(T) = 1J if
and only if the parameters m* and F1 are related by the
"Landau eRective-mass relation" (2.42), namely

no*/m = 1+ —',Fi (6.31)

which is a well-known result of the theory of a normal Fermi
liquid (Landau, 1956) .

Near T, where Y(T) is only weakly diRerent from 1, it
follows from Eq. (6.30) that the superfluid density tensor
has the form

1.(T)/I = L1 —Y(T)3/(1+ —.'F ).
Rev. Mod. Phys. , Vol. 47, No. 2, April 1975

(6.32)

Evidently the principal axes of F will be determined by the
orientation of the gap function A(n). The factors which
determine this orientation will be discussed in Sec. X.

The result (6.26) is actually inconsistent, since for
Ej, ——

I
tk

I
(normal state) the function Y;;(T) is equal to

6;; and hence the normal density is Tm* rather than the
real mass density Em. This inconsistency is removed when
we consider the Fermi liquid corrections. Evidently a uni-
form motion of all or part of the liquid induces no spin
polarization, nor any change of the total density, so the
only Landau parameters to come in are the F~ with / & 1.
We will only keep F1,' the arguments showing that this is
exact in the limit T~ T, and probably a good approxima-
tion at all T are parallel to those developed in the last sec-.
tion for dropping Z& with l & 0.

To take account of the effect of the molecular field asso-
ciated with F1 we use a method parallel to that used in
Sec. II to deal with Zo. According to the argument above,
imposing a velocity v on the walls of the system has the
same effect on the Hamiltonian as imposing an external
potential A, &. Replacing v by A, & in the definition of the
tensor p„and using Eq. (2.19), we can therefore write in
analogy with Eq. (2.24)

T/ Tc

FIG. 6. Temperature dependence of two diferent eigenvalues of the
normal density tensor (qualitative) .

Since Fi is large for liquid tHe (~6-15), depending on pres-
sure, the effect of the Fermi liquid corrections is to depress
p, /p considerably below its value for a weakly interacting
gas. Near T, we can obtain a more explicit expression for the
anisotropy of P, (T) by expanding 1 —Y(T) in powers of

I &(n) I':

P"(T)/I = fI:1 —Y(T)h/(1+ -:Fi) I f (de/4 )

&& 3~,~, If(n) I. (6.33)

D. Spatial correlations: angular momentum

Let us first briefly consider how the superQuid condensa-
tion changes the equilibrium expectation value of "one-
particle" quantities, '4 that is, those of the form

M&'i = g f(r;, p;, t1;). (6.34)

Since the system remains homogeneous on condensation
(in the absence of boundary eRects, etc. ) the expectation
value cannot depend on r;. It is also intuitively obvious
that in the case of a superfluid with singlet pairing there can
be no dependence on o;, since the singlet spin function is
invariant under spin rotation and any function of o; for a
particular spin ~~ can be written a + g. d;, where g must

"Strictly speaking, one-quasiparticle quantities: x, , etc. should
strictly refer to the quasiparticles. This does not aGect the qualitative
conclusions. "Equilibrium" here means "in thermal equilibrium in the
absence of external Gelds. "

Near T„ therefore, the absolute magnitude of p, (or p„) is
affected by the Fermi liquid terms but the anisotropy is
not. On the other hand, at lower T the anisotropy can be
very much enhanced by the Fermi liquid effects: in Fig. 6
we sketch qualitatively the temperature dependence of two
different eigenvalues of the normal density tensor where
Ii1~ 15. We see that in one temperature region the liquid
can be effectively normal in one direction and almost com-
pletely superfiuid in another t
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transform like a spin vector. In view of this the expectation sation. Let us first consider the case in which M~') has no
value of the quantity jE can always be written in the form momentum or spin dependence:

(M&'&) = g jg(ej, ). (6.35) M&'& = —'Q g(r, —r, ), g(r) = g g(k) exp(ik r).

For instance, if Mo) is the total particle number then
fj, ——1, while if M"' is the total momentum then fq ——Ak.

The expectation value of (riq) is simply Eq. (5.41) divided
by ei,

(eg) = L1 —(eg/Eg) tanh-', PER).

Hence the difference of (M) from its normal state value
(M)„(which can be obtained simply by letting Eq —&

~
eq ~)

ls

The contributions to (M~2&) which arise specifically from
pair formation may be calculated in exact analogy to the
calculation of (V) in Sec. V. (In both cases there are other
contributions, but the most important ones are of the
"Hartree —Fock" type and depend on (nq), so by the argu-
ment above they are essentially the same as in the normal
phase. ) We find

(M&'&) —(M„o&) = Q f&Ltanhspeg (eg/Ep) tanhspEpg.
(Mt2~)(„;„) ——Q g(k —k')FgFg *, (6.41)

(6.37) where Fi, is given by Eq. (5.45). At this stage it is helpful
to define the Fourier transform of Fj,.'

If we transform the sum in (6.37) into an integral in the
standard way and neglect the small variation in the density
of states as a function of e (see below) we find

(M"') —(M "') = ', (dry/de) f-(dQ/4n. ) f degj(n, eg)

F(r) —= QFi, exp(ik r).

Then we find

(6.42)

X Ltanh-', Pe„—(eg/Eg) tanh —,'PE„). (6.38)
(M"&)„„„=f drg(r) i

F(r'j i'. (6.43)

Hence if f(n, e~) is an even function of e~ (in particular, a
constant), then (M&") = (M„u&) identically. If we take
into account the fact that de/de is actually a function of e,
then since the quantity in brackets is appreciable only for
~

e~
~

& h(T), we find a correction of order t f d/de(dm/de) ~

Lgj Xf(h/e~)', where f is a typical value of f(n, ek).
Since (6/ep)' 10, this correction is generally negligible
for most purposes (though we shall see that it is important
for a detailed understanding of the A transition).

An important special case of this result is that all the
spherical harmonics of the deformation of the "net" Fermi
surface, Q~ and R~, (Sec. II.B) are zero in the equilibrilm
superfluid state (i.e., in the absence of external fields) just
as in the equilibrium normal state. Consequently the
generalized molecular fields are also always zero, which is
why we may legitimately treat the condensation of Landau
quasiparticles simply by replacing m by m* and V(k, k')
by the quasiparticle pairing interaction in the method of
Sec. V (cf. Sec. V.F).

Quite generally, we see that only a very few special one-
particle operators /such as E —p2V, Eq. (5.43) j will have
their expectation values appreciably affected by the super-
Ruid transition.

The situation is very diferent when we come to tzvo-
particle operators, that is, those of the form

Consequently, F(r) has the physical significance of a sort
of wave function for the Cooper pairs. One easily checks
from Eq. (5.44) that in second-quantized language F(r) is
given by

F( ) = &~ (R — /2)~ (R+ /2) &, (6.44)

where it i (x) creates a particle of spin-up at x, etc. From Eq.
(5.45) the explicit form of F(r) is

F(r) = Q (Ap/2EI, ) tanh-,'PEg exp(ik. r). (6.45)

F(r) = f(r) F(r). (6.46)

At not too large distances F(r) has the form of the radial
function of two free particles at the Fermi surface with
relative angular momentum l. However, for r &) $e =—

Ae&/~k&T, it falls off exponentially, 's giving a bound state:

r )& $e. $' ~ $o = Ae~/m koT, .

(6.47)

This function has properties very similar to those of the
wave function of the Cooper problem, discussed in Sec. III.

In fact, if hq ——6(T)f(n) as in Eq. (5.53), then we find
approximately (exactly in the limit T —+ T,)

Thus, the size of a Cooper pair is of order $e. For liquid He
the quantity Pe is of the order of a few hundred L."Notice,

hether or not the fall-off is strictly exponential depends on the
way we treat the' cut-o8. Cf. Rickayzen (1965},Sec. 4.8.molecular system wave function (5.2), that such quantities ~6 Defnitions ot $0 digering from Fq. (g.47) by various numericai

might be quite radically a8ected by the superRuid conden- factors may be found in the literature.
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incidentally, that the situation is qualitatively somewhat
diferent at zero temperature: in that case the pair wave
function has a range Kv~/I A(n) I

which is strongly aniso-
tropic (see Anderson and Morel, 1961, Appendix C). The
result (6.47) is qualitatively valid if kIiT is not too small
compared to 2; the more general case will not be discusse0
here.

The maximum value of F(r) is of order 9+(T) (cf. Eqs.
(5.56) and {5.65), which in turn is of order (6/»~) lnP, », .
Thus the change in {M&"

& due to the formation of pairs,
although of order (5/»p)', is multiplied by the factor
(InP, »,)2, which may be fairly large (for 'He it is probably
at least 40) . Certainly, in the limit of extreme weak. coupling
P,», —+ ao) the "direct'" effect of Cooper pair formation

which we have just calculated far outweighs the indirect
effects which arise, for instance, from the change of (Ni, &

and are of order (6/»F)'. Exactly what error is introduced
in liquid ~He by omitting these "indirect" effects is not a
simple question, but it is usually hoped that it is small
(cf. Sec. IX, below).

(6.48)

is evidently of order XD/»~ (for ki;T & 6) rather than
A (0/»~) 2. Following Anderson and Morel (1961)'i we may
regard it as the "number of condensed pairs": the reason
for this identi6cation will become clear shortly.

L= X 'L,.i+L, , L, , =Rxp, (6.54)

where R and P are respectively the center-of-mass co-
ordinate and total momentum operator of the system. The
explicit contribution of the "pair relative angular momen-
tum" (6.51) to the total angular momentum of the system
is therefore of order I, not of order Ã; and to the best of my
knowledge there exists no rigorous argument relating L, ,
to L„i (that of Anderson and Morel (1961) is at best
suggestive). In fact this rather fundamental question ——

whether the total angular momentum of an anisotropic
superfluid is finite and, if so, what order it is in 6/»~ —is at
the moment highly controversial; a definitive answer may
well require the solution of the l ~ 0 pairing problem with
"realistic" {nonperiodic) boundary conditions, which to
the author's knowledge has not been achieved to date and
seems to be a formidable task.

where f(n) is the function defined by Eq. (5.65) which
expresses the anisotropy of the order parameter (or, approxi-
mately, of the gap). If for instance f(n) = h(0) e' @, then
the relative orbital angular momentum is nzÃn, (T). In
general the relative angular momentum is of order ke„ i.e.,
MT(A/»p). LThe above results are derived. and discussed
in more detail by Anderson and Morel (1961), whose I(r)
is identical to our F(r) apart from a factor of 2.j

However, it cannot be too strongly emphasized that this
does mot necessarily imply that the fo/g$ orbital angular
momentum of the system is of order iV(h/»r ), even if the
shape of the system is such that boundary eGects do not
make (L„i) cancel out over the system as a whole (cf. Sec.
X). In fact, the total angular momentum is

(6 49) Vll ~ SPIN TRIPLET PAIRING

(Mt2t &„„,.= f F*(r)g(r, —ih'V) F (r) dr. (6.50)

A particularly interesting case of Eq. (6.50) is the redraft'tie

orbital angular momentum

The expression for the contribution to M(" from pair forma-
tion may be worked out either by analogy with the calcula-
tion of {V& in Sec. V (where we remember that the relative
momentum of a state

I
k T, —k l ) is 2k) or by second-

quantizing M(2' and factorizing the resultant average
similarity to Eq. (5.25). After a certain amount of calcula-
tion we 6nd the intuitively plausible result

In the last two sections we developed the theory of an
anisotropic superAuid for the case of spin singlet pairing,
that is, when the "pseudomolecular" wave function has the
form (5.5) . In this section we shall consider the rather more
complicated case where the pseudomolecular wave function
has the form of a triplet wave function in spin space. (The
question of mixed singlet and triplet pairing is considered
briefly in Sec. VII.C.)

Two particles in a state of total spin j. can occupy any
of three substates corresponding to the three values of spin
projection 5, : in the intuitive notation used in Eq. (5.5),
these are

According to Eq. (6.50) we 6nd

(L,.i&p„„= t'A JF*(—r) ~ (r x V)F(r) dr

and after a little algebra this becomes

(6.52)
Consequently, the pseudomolecular wave function. p (ri —r~ ..
oio2) I Eq. (5.1)j I or its Fourier transform x(k: oio2), Eq.
(5.3)j can be written for spin triplet pairing in the general
form (the normalization of

hatt

is chosen with an eye to
subsequent convenience)

(L,.i)„;,.= —AN, {T)I (dQ/4tr)f*(n) (ii x»t/Bn) f(n),
(6.53)

~7 Our de6nition of e, diGers from that of these authors by a factor
of $: cf. below.

v'(ri r2 ~ oio&) —0't t (ri r2) I T T

+ tt t t(ri —r.) IT l + l T & + v tt(ri —r.) I l l &

(7 2)
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The Pauli principle forces the function p (and hence its
components rpt t, etc.) to be odd functions of ri —r2. Now,
it may happen that by a suitable choice of axes we can
ensure that yt ~ is zero everywhere in space, that is, that
the spin state of the Cooper pair is always a linear super-
position of 5, = +1 and 5, = —1 states. A state of the
system satisfying this condition is called an "equal-spin-
pairing" or ESP state, and its treatment is particularly
simple. %e shall discuss ESP states in the first subsection,
and then go on in Subsection VII.B to treat the more gen-
eral case.

FI~~t, ~kt} = -' Z Lf}~»}+f}~»}j. (7.9)

This leads to two iedepettdent gap equations for the "up"
Rnd down gRps Akt ~ Ak~.

The free energy associated with up-spin states is therefore
—,'gt fI &i, t },where f}Ak} is the functional defined in (5.45).
The down-spin states can be handled in an exactly similar
way, with definitions exactly analogous to (7.3)—(7.8), and
we therefore find for the total free energy

A. ESP states
Provided the pairing interaction conserves spin (which is

the case for liquid ~He to the extent that we neglect the
dipole forces), the treatment of ESP states is an almost
trivial extension of the calculation of Sec. V for the singlet
case. At erst sight at least, the "up" and "down" spin
particles form completely independent and noninteracting
systems, and we can solve the pairing problem for these two
systems separately. let us consider for definiteness the
"up" spins, and proceed by analogy with the BCS method
developed in Sec. U. In analogy with Eqs. (5.7) and (5.8),
we can write a "wave function for up-spin states" in the
form

~»(T) = —2 I (» k')L~~ t(T)/2&~ t(T)3
k~

~ tanh-,'PZ, .t (T) (7.10)

F}+t (n), +~(n), T} = I:(T —T.)/T.j J (d&/4 )

&& l(l +t (n) I'+
I +t(n) I')

+

ipse

(d~/4~) fk(l+t(n) I'+ I+~(n) I') } (7»)

and a similar equation for hk~. Note that because Ak~, hk~
are odd functions of k, only the odd part of the potential
V(k, k') enters into Eq. (7.10). Finally in the Ginzburg—
I andau region we find for the free energy the expression

+t = II c'»
all k

c'» = » t I o o &» +» t I
1 1&»

IN~t I'+ l»t I' = 1,

where however the state
I 1, 1&t,t is now the state in which

the plane-wave states k t' and —k $ (not —k $ !) are
both occupied and

I 0, 0&t, t that in which they are both
empty. Because of the Fermi statistics we must now have

Qk~ = Q

In second-quantized notation Eq. (7.3) reads

et = II (I„+»ta~t+a „+) Ivac&.
al? k

(7.3')

The treatment now proceeds in exact analogy to that of
Sec. V, the only difference being that to avoid cou~ting the
pair of states (k 1', —k f ) twice we must divide both Eqs.
(5.15) and (5.19) (and similar expression at finite T) by a
factor of two. We introduce the quantities At, t(T), Et, t,
I"» and 0't (n: T) Lnot to be confused with the total wave
function occurring in Eq. (7.3)j by the relations analogous
to Eqs. (5.38) (5.39) (5.44) —(5.45) and (5.56), respec-
tively:

As to the BCS-like wave function, it is just the product
O' = Nt'kt (at T = 0): at finite T the statistical matrix is
slIDllRrly fRctorlzed.

In the treatment we have given so far, there is nothing to
correlate Ak~ and hk~. all we know is that both are solutions
of an equation of the form (7.10). We could, for instance
(in the case of / = 1), choose At, t e, + t'tt„. Akt, e„+
At, . In this case we find Lcf. Eq. (7.6)j that Et, t & Et,t,
i.e., for the same wave vector k the excitation energies of
the BP states of up-spin (i.e., where kg is occupied and
—k t' empty or vice versa) are not equal to those of the
corresponding down-spin states (and similarly of course for
the EP states). If, however, it happens that the condition
Ei, t

——Et, t is satisfied for a!1 k (i.e., 6t (n) = a(n)At(n),
where a(n) is a complex number of modulus unity), then
we call the state in question a Neitary (ESP) state. A more
general definition of unitarity will be given in the next sub-
section.

Evidently, almost all the results of Sec. VI carry through
quite unchanged to the spin triplet (ESP) case, provided
we make the replacement in all formulas

Z g(&~) Z —:tg(~~t)+ g(&~t) },

&~t(T) =—+(e~'+
I ~» I')'" (7 6)

Pt, t
=— (a t, tat, t &

= Lht, t (T)/2Ei, t 1 tanhPEt, t/2, (7.7)

4't (n: T) =—Q Iit, t
——', (dtt/de) 6—t (n)

)It: I

tanh~pEt, t de.
2Ek t

(7 8)

»t (T) = ~.t (T)/LI ~„ I + (~kt + .,) j'I',

»t(T) =— (&t t + &t)/LI ~it I'+ (&t t + t)'3'", (7.5)
where g(Et,) is any function occurring in the formulas of
Sec. UI (or of course a similar replacement for functions of

etc.) . There is, however, one important exception,
namely the spin susceptibility. let us consider the case in
which the pairs form in an ESP state "with respect to the
direction of the magnetic field, " i.e., they have 5, = &j.
with respect to the field direction. If we repeat the intuitive
argument of Sec. VI.B which showed that the susceptibility
of a singlet paired superQuid must be reduced, we find that
it now does not work: we now wish to pair a particle in the
state kt' with one in —k t (not —k J, ) and this is still
possible even when the system is polarized by the magnetic
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II (Nk t + vk i i' &+~i-k )+)
all k

X (1k~ + vk~&k& & k~+) —
~
vac) (7.13)

to the number-conserving wave function (5.2). There are
two different obvious possibilities for the generalization of
Eq. (5.12): If we define Ni (8~) and 4'~(8~) analogously
to Eq. (5.11), then we can write either (a)

field (cf. Fig. 3). Consequently, the polarization by~ the
field in no way inhibits superAuid condensation and, con-
versely, formation of the superAuid state does not prevent
the system polarizing just as in the normal phase. Thus the
spin susceptibility of a triplet superQuid in a ESP state with
respect to the field direction is almost identical" to that of
the normal phase. It turns out, as one- might expect from
symmetry considerations, that in bulk samples the pairs
do indeed form along the field axis (see Sec. X below), so
that the conclusion is that the susceptibility as measured
experimentally (by either static or NMR techniques) will
indeed be the. same for an ESP state as for the normal phase
(cf. also Sec. VII.D below).

Looking at the results of this subsection, one might well
conclude that in an KSP-type triplet superAuid the spin-up
and spin-down particles form two completely independent
and noninteracting systems. It is then natural to ask: Does
the relative phase of ski and Aki /or +i (n) and 0'i(n), etc.j
have any physical meanings The answer to this question
depends crucially on how one intends, eventually, to go
back from the number (and spin) nonconserving BCS-type
wave function

wave function which is a linear combieatioe of 5, = 1 and
5, = —1 components —as indeed was assumed in Eq.
(7.2). Clearly the relative phase of the two components
does in general have a physical meaning and we see that
in Eq. (7.14b) the relative phase of Aki and Ak~ has not
been averaged over (although the absolute phases have)
and hence retains a meaning. For reasons which will become
obvious in Sec. X, the moment that .we introduce even a
minute spin-nonconserving force into the problem it is
essential to choose Eq. (7.14b) rather than (7.14a) .

B. General triplet states

In general it is not possible to write an arbitrary wave
function of the form (7.2) as an ESP state with respect to
any set of spin axes. In this subsection we consider the more
general (non-ESP) case, referring the reader to the classic
paper of Balian and Werthamer (1963) for a more thorough
and rigorous treatment.

As a first step, let us consider how we should describe
an KSP state when we transform the spin axes so that the
"pseudomolecular" wave function (7.2) no longer has

p t ~
—= 0 with respect to the new axes. In particular, let us

consider a particular type of KSP state such that originally
&pt t(ri —r, ) = exp(iy)y ~ ~(» —r2), where x is a constant
phase. By a suitable choice of new axes we can always
ensure that now q t ~

= q ~ ~
——0, i.e., in the new axes

~(» —r. :~i~2) = ~«(» —r2) I T l + l T & (715)

+(iV) = +(X,)+(X&),
1 2

+& (8~) exp(iiV~8~/2) d8&,
27l 0

(iV, ~ iV„= ~V)

or (b)

etc.

(7.14a)

This function is very similar to (the Fourier transform of)
Eq. (5.5), and the corresponding BCS-like wave function
obviously involves pairing of the single-particle plane-wave
states

~

kt' ) and
~

—kg ), as in Eq. (5.7). In fact, the
subsequent treatment goes through in exact analogy with
that of Sec. V (including all factors of 2), with the sole
exception that vk, hk, N(n), etc. are odd functions of k and
only the odd part of V(n, n') therefore contributes to. the
gap equation (5.52). Call these functions hk0, +0(n), etc.

1
+(1V) = +& (8)+&(8) exp (iE8/2) d8,

27I 0

8( =8)=8). (7.14b)

"There is in fact a very small change ( & 0.5%) due to the fact that.
in a field the Fermi surfaces are shifted and hence the parameters
which determine the condensation energy may change very slightly.
See Sec. XIII.

These two alternative wave functions correspond to quite
different hypotheses about the nature of the E-particle
state. In (a), we have simply Xi particles condensed into
one pseudomolecular wave function, with spin 5, = I, and
the remaining X~ particles'condensed into a quite inde-
pendent pseudomolecular wave function with 5, = —1.
Evidently, in such a state the relative phase of the two
pseudomolecular functions cannot be meaningful —and in-
deed we see that since both Ot and 0~ are separately aver-
aged over in Eq. (7.14a), the difference of phase between
AI, ~ and Ai, ~ has likewise been averaged over and retains no
physical meaning. In state (b), on the other hand, we have
all % particles condensed into a single pseud. omolecular

Evidently we need a description of the system which
gives both the KSP results and those of the last paragraph
as special cases, but is valid for an arbitrary choice of axes.
Such a description may be,obtained as follows: We treat
the quantities 6&~, 6k~, d&0 as components of a symmetric
2 Q 2 matrix 4 with elementS ~i, t ~, hl, ~ t =—d y t ~, Aq t ~ .'

(7.16)

+k = + (&k '+ ~k~k ) (7.17)

Note however in the unitary case () 6k ~ )
=

~
Ak~ (

in ESP
axes) AkAkt ~ 1 and hence Fk is just a number (cf. below) .
Similarly the quantities Fk, F(r), and 4'(n) are replaced

It is assumed that the components of 6 transform into one
another under transformation of spin axes in a way to be

specified below. Moreover, the "excitation energy" E&
should be replaced by a matrix defined by
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by 2 Q 2 matrices:

Fi, =— (Ai,/2Eg) tanh-', PEk,

F(r) = Q Fi, exp(ik r)

4(n) =—QFi, (7.18)

I for the order of 3, and E, cf., Balian and Werthamer
(1963)$. Now we obtain all scalar quantities such as the
free energy by the simple replacement

Zf{~~I~ -' Trf{~i I (7 19)

where Trf indicates the trace of the matrix function f{Bi,I.
The gap equation retains the form (5.50), but Bq and Pi,
are now matrices, so it is in effect three independent equa-
tions for the three independent elements of A. Notice in
particular, for future reference, that the potential energy
now has the form

(V) = f (dQ/47r) J (dQ'/4n-) V(n, n') ~~Tr{4(n)4t(n') I.
(7.20)

x=x»I T T)+«iI T l+ l T)+xiii l l)
(7.21)

then under rotation of the spin axes F'i, t ~ transforms like
x~ ~, etc. Note that the preservation of the normalization
condition then automatically guarantees that F& F&t under-
goes a unitary transformation, and hence so does hi, hqt.
If the state is unitary, the elements of 6& of course trans-
form like those of Fq. The above choice is compatible with
the microscopic de6nition, in second-quantized language

Fkae = (a—knake)y (7.22)

'~ Note the convention for norIna. lization of X~t.

This formalism is guaranteed, by construction, to give the
correct results for the particular choices of spin axes leading
either to ESP or to "S.- = 0 only" pairing. It is also, of
course, necessary that quantities like the free energy are
invariant under rotation of axes. This will be so if and only
if the matrix 6&-Ai,~ undergoes a unitary transformation
when the spin axes are rotated. (The easiest way to see
this is to notice that the description of the "double-broken-
pair" state in which both kT and k J, are occupied, but
not —kT or —k$, is invariant under rotation of axes,
and hence its energy Z must be an invariant. Since the
energy was Ei, ~ + Ezi in the ESP frame, by our prescrip-
tion it is TrÃq. if this is to be invariant, Ei, must undergo a
unitary transformation when the axes are rotated. ) In the
unitary case this condition is of course trivially satisfied,
since then 6I, AI,t is just a number.

To give a physical meaning to this formalism, one must
know how Ak itself transforms under rotation. Formally
speaking a large number of choices is possible, consistent
with the above requirements. However, by far the simplest
choice is the prescription: The elements of Fk transform like
the amplitudes of the three magnetic snbstates. That is, if we
write a general triplet spin wave function in the form"

(V) = g V(k, k')FI, eFg p
*

~~~aP

—= Z V(k, k')( (7.23)

which is just a factorization of the second-quantized version
of the spin-conserving potential energy operator.

We therefore arrive at the general prescription for dealing
with spin triplet states within the BCS-like approximation:
Starting from the spin singlet formalism, replace A~ by a
symmetric matrix 6& whose elements individually obey the
matrix gap equation obtained from Eq. (5.50) by this
replacement I with Eq =— +(et,2+ Ai, .hi, t)'i'g, and replace
F&, N(n), etc. similarly by matrices as in Eq. (7.18). The
free energy is then obtained by the prescription

gf{b, I ~g —,'Trf{~i,f (7.24)

In particular the free energy in the Ginzburg —Landau
region has the form

F{4(n), TI = nL(T —T,)/T, g I (dO/4') 2 Tr I
4'(n) I'

+ ,'t3 I (d&/4 )—-,' Tr I +(n) I' (7 25)

I
where

I +(n) I' =—4(n) kt(n): in case of ambiguity I
N I4

is to be interpreted as I + I'
I

O' I', etc.g An ESP state is the
special case where axes can be chosen so that 4'(n) is
diagonal for all n. LIn the future we shall refer to these axes
as "the ESP axes" or "the proper axes": they are not neces-
sarily unique (cf. below) .g

We de6ne a unitary triplet state quite generally as one

which of course reduces to Eq. (7.7) in the appropriate
special case. The fact that the elements of F transform like
the magnetic substates, plus the considerations of Subsec-
tion VI.D, make it clear that the elements of Fi, have the
physical significance of the amplitudes of the various S,
components in the Cooper pair wave function. In the unitary
case they can also be regarded as representing directly the
corresponding components of the pseudomolecular wave
function (7.2) .

So far we have been formally considering an ESP state
which is transformed out of the original axes. But, if we
consider any one particular value of k, it is always possible
to choose the axes to make it "ESP" (since any function of
the form (7.21) can be reduced to 5, = &1 components
only by a, suitable choice of axes). Moreover, the spin-
conserving potential scatters 5, = +1 pairs into S, = +1
states only, and so on. Consequently the description devel-
oped above is quite general, and can be applied even when
the "right" axes are different for different k (non-ESP
states). In. fact, one can see quite directly that the form of
the terms in the free energy coming from E —pX —TS
is right; since each k-value contributes independently, it is
possible to choose the spin axes appropriately for each k
(or n), write the contribution to F in the form obtained by
using Eq. (7.12), and then transform the axes for each k so
that the final frame of reference is uniform for all k. As to
the potential terms, one can check that these are given cor-
rectly by Eq. (7.20) Lwith the definitions (7.18) and (7.22) j
by writing (V) out explicitly:
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which satisfies the condition

Bg.3,i,t = c(n)1 (or 4'(n)4z(n) = c'(n)1), (7.26)

where I is the unit matrix. For such a state the excitation
energy matrix E~ ls a number, w'hlch Ineans tl1at although
the "spin axes" of the condensate may vary over the Fermi
surface, the excitation energy of a HP state for any particular
k value is independent of spin. There is no special connection
between the ESP property and the unitary one: states can
be easily written down which have both properties, either
one separately, or neither. In the unitary case we can define
the function (a number, not a matrix)

I
~

I
(n: 2 ) =—+ V(n: T) ~z(n: r) yiz, (7.27)

4(n) = +f(n), f(n) =Z«
I (dD/4zr) 2 Tr

I f (zz) I' ==1,
K =—j (dfl/4zr)-' , Tr

I f(n) I' (7.28)

I where we note that the elements of the ma, trix f(n) must
all be linear combinations of spherical harmonics of the
same l, but not of course necessarily the same combination j,
then the problein reduces to finding the form of f which
rninirnizes ~. Evidently, the optimum value of ~ is j, and
this is attained if and only if

I f(n) Iz = const. = 1. This
condition can never be met by an ESP state for any odd
/ value. In fact, we easily verify that for / = 1 the minimum
value of ~, is given by (in the ESP axes)

zz~ + zizz

f(n) = (3/2)'"
0 zz„+ zzz,

(7.29)

which is then the energy gap for excitation of a HP state,
independent of its spin. Fortunately it appears that a
description of 'He-A and 8 can probably be given in terms
of unitary states only, at least as regards the behavior to
zeroth order in the external magnetic field.

At first sight the introduction of non-ESP states has
merely complicated the notation without changing anything
qualitatively. However, at least in the case of l = jI. pairing
there is one interesting and important consequence. To see
this, let us consider the problem of minimizing the free
energy (7.25) in the GL region. If we write in ana, logy with
Eqs. (5.65) and (5.73)

Although the matrix notation developed in the last sec-
tion for general triplet states is quite concise, it is not as
convenient as it might be, principally because the transfor-
rnation properties of the matrices un. der rotation of the spin
coordinates are somewhat complicated. A much more con-
venient notation, which replaces the matrix description by
a vector one, was developed by Balian and Werthamer
{1963)and is commonly used. in recent papers.

Let Q =—Q p be any of the symmetric inatrices Fj„F(r),
4'(n), h(n), or f(n) introduced in the last subsection (but
not Ei„which has somewhat different transformation proper-
ties) . From the elements of Q we can form a complex vector
Q by the prescription

Q = —~z g (uzi) pQ p,
aP

(7.31)

where the components 0.~, 0-~, c-3 of the vector d are Pauli
matrices. Inversion of Eq. (7.31) gives after a little algebra

Q-p = z Z (~'~~) p-Q' =—z Z (~'~.)- pQ', (7.32)

which can be of course be taken straight over to the triplet
case with the definition (7.28) of ~j it follows that the BW
state is 20% lower in free energy (of condensation) than
any ESP state, and is in fact the absolute free energy
minimum for / = 1 pairing. It can be shown (Balian and
Werthamer, 1963) that this last result holds at all tem-
peratures below 7;, not just in the Ginzburg —Landau
region: the degree of stability however decreases somewhat
with tempera. ture, falling to 12% at zero temperature.

For / & 3 it is not possible to get ~ = 1 even with the
help of non-ESP states. Nevertheless it seemsvery probable
(cf. Barton and Moore, 1973) that the best state is still
non-ESP: generally spealung, the more components of f
one is allowed to use, the more uniform the function I f(n) I'
can be made over the Fermi surface. It is also interesting
to observe that any pure-l ESP states apparently must have
nodes of

I
6

I (n) (or the eigenvalues of D(n), in the non-
unitary case) where it is very easy to construct non-ESP
states, even for l & 1, for which

I
h(n)

I
is everywhere finite.

We will postpone consideration of the thermodynamic
and correlation properties of general triplet states until we
have introduced a concise and useful notation in the next
subsection.

of any state of a similar form (including of course one in
which the T T and l L elements are equal). The resulting
value of i~ is 6/5. On the other hand, if we allow also non-
ESP states we have, for instance, the possibility

or explicitly

(-Q. + zQw

Q. Q. + 'Q.)
(7.33)

zzg + zzzy

f(n) =
n.

zzz + zmy

(7 30) We notice that we have the relation.

-'. TrQQ'=—IQ I" (7.34)
which corresponds to I(f(n) I' = 1 and hence ~ = 1. This
is the famous "Balian—Werthamer" (BW) or "isotropic"
state: the function

I
6 I (n: T) is constant over the I'ermi

surface, just as in the 3 = 0 HCS state. Since the free energy
in the GL region is proportional to z ' Lcf. Eq. (5.77),

I
In the literature, various forms of the «ansf«mation

(7.31) differing by overall factors and/or complex conjuga-
tions may be found. We shall see that such factors do not
affect any of the physical results. J

Rev. Mod. Phys. , Vol. 47, No. 2, April 1975



A. J. Leggett: New phases of 'He: Theoretical

4' p(n) = +i g (a.;02) ed;(n)
i=1

(7.35)

In general we shall denote the transform of any matrix
Q generated by Eq. (7.31) simply by the vector Q—e.g. ,
we write F(r), I (n), etc. However, we shall reserve for the
transform of the normalized quantity 4'(n) —that is, f(n)
as defined in Kq. (7.28)—the notation d(n): then accord-
ing to Eqs. (7.28) and (7.32)

axes for the given n uniquely, but for a unitary state they
are clearly dered only up to a rotation around the axis of
d(n).

(2) In a nonunitary state the Cooper pairs at point n
have a net average spin, in the sense that the expectation
value of (S) with respect to the spin function (7.38) is
finite. In terms of d(n) it is given by

(S) = id(n) x d*(n) +'. (7.40)
and by definition we have

I (dn/4~) I d(n) I2 =—1. (7.36)

This notation is not universal: one often uses d(n) for the
transform of either A(n) or +(n). For unitary states (for
given n) all those quantities are strictly proportional, i.e.,
the vectors are parallel and diBer only by an overall factor;
for nonunitary states they may not be strictly parallel, but
the error involved in taking them to be so is at most of the
same order as that introduced by the mixing-in of / ~ lo

spherical harmonics. %e shall therefore always make this
approximation in what follows.

What is the physical significance of the vector d(n) 2

From Eq. (7.34) we have

—:Tr I +(n) I' = +'
I d(n) I' (7.37)

+( i .: n) = + ~~(n) I t T ) + + ii(n) I T l + l t' )

+ + i i(n) I l l ) (7.38)

so that the magnitude of d(n) is evidently a measure of the
total amplitude of condensation of the Cooper pairs at
point n on the Fermi surface, irrespective of spin. Secondly,
in the case of a ursitary state we may easily verify that d(n)
must be a real vector apart from an n-dependent phase
factor, so that we can. associate with it a unique direction
in spin space. To see the physical significance of this direc-
tion, we write out the spin wave function of the (triplet)
Cooper pair explicitly in the form

However, it should be emphasized that this does cot in
itself imply that the total spin polarization associated with
this point on the Fermi surface is finite: see subsection
VII.D.

(3) While the second-orcler term in the GI. free energy
(7.25) is proportional to

I
d(n) I' (and hence simply gives

N' when integrated over the Fermi surface), the fourth-
order term is given by

—:Tr
I +(n) I' =

I I d(n) I' —(d(n) «*(n) )'I'I"
(7.41)

(where the second term is positive, since the cross product is
purely imaginary). Consequently, the quantity K, which
determines the overall magnitude of the fourth-order terms
LEq. (7.28) j is now written as

~ =—l («/4 ) Il d(n) I' —(d(n) && d*(n))'I. (742)

(i.e., d;(n) = e;). (7.43)

Evidently, the second term is zero for a unitary state.

(4) To the order of approximation we are working to
throughout, the components of d(n) must be composed of
spherical harmonics corresponding to the same / value.

(5) The BW state has, according to Kq. (7.30), the
simple description

and then verify explicitly that for real d(n) we have the
operator relation

(6) The quasiparticle energy matrix Eq can be written
in terms of A (n):

d(n) S+(~i02..n) —= 0, (7.39) &. =+I ~'+
I &(n) I'+'d (&(n)»*(n))l'"

where S =— di + d2 is the total spin operator for the pair.
This leads to the important conclusion that in a unitary
state the pairs at any given point on the Fermi surface are
condensed into a spin state which is an eigenstate of the
spin projection along some axis with eigenvalue zero, and
d(n) represents this axis. (For instance, in the case 4'

~ ~
=.

—+~~, 4 ~ ~
= 0, we have the pairs condensed into an

eigenstate of 5 and 5 such that 5 = 1, 5 = 0.)
A number of other properties of the vector d(n) follow

from the definition (7.35) /for further details see Mermin
and. Ambegaokar (1973)j.

(1) For an ESP state (in the "proper" axes) the vector
d(n) always lies in the xy plane for all n. More generally,
if for given n the "ESP axes" are chosen, then d(n) lies in
the xy plane. For a nonunitary state this defines the ESP

(7.44)

showing that, as expected, in a nonunitary state the BP
eigenstates correspond to quasiparticle spin along or against
the direction of the "pair average spin" (S).

(7) Finally, in the vector notation, the gap equation for
a Neitary state takes the simple form

X(n) = I (dD'/47r) V(n, n')e'(n'),

%'(n) —= + d(n) —= ~(n) ~ -', (de/de)

d.,(tanh-, PZ, /2@~), Z~ =—~i e~'+
I &(n)

I

g'I'

(7.46)
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D. Thermodynamic and correlation properties
of triplet states

All those thermodynamic and correlation properties of
superAuids which do not explicitly involve the spin coor-
dinates, such as the specific heat, normal density, and rela-
tive orbital angular momentum, may be obtained for the
general triplet case by a simple generalization of the corre-
sponding expressions given in Sec. VI for the singlet case.
All we need to do is to replace quantities such as A(n), Eq,
4'(n), etc. by matrices as in Subsection VII.B and to make
the substitution

Z~ZkTr
k k

(7.47a)

If the expression involves only Ez (as in the case of specific
heat or normal density) and the state is unitary we have
the even simpler prescription: keep the same expression but
with Ek now given by

Dor a nonunitary state, some matrix notation is still strictly
necessary in (7.46), but in almost all physically realistic
cases the error introduced by using Kq. (7.46) instead of
(7.44) is probably negligible).

As a kind of footnote to this section, it is worth remarking
that the formalism developed in this and the last subsection
can be extended to apply also to the case of mixed singlet-
triplet pairing by introducing a scalar quantity do(n) which
describes the singlet part of the wave function and treating
it on a footing similar to d (n) . We refer to the original paper
of Balian and Werthamer (1963) for the details. However,
to the author's knowledge no-one has ever produced a case
in which the absolute energy Ininimum as calculated from
BCS-type theory corresponds to mixed singlet —triplet pair-
ing (although there are plenty of free energy extrema which
do); and while it is conceivable that in more general theories
such a state might be the stable minimum, there seems
at present no experimental evidence which requires this
hypothesis.

F& kFt

FIG. 7. Even differential polarization of the Fermi surface cannot
inhibit parallel-spin pairing.

S(n) = x(n)H, S(n) —= +So~
I~l

=——;h(dn/de) j de~a~, (7.49a)

where, as in Sec. II, dk is the spin of the particles in the
plane-wave state k —= p/5 in units of 5. The total spin S
is just the average of S(n) over the Fermi surface La factor
of 4~ is incorporated in the definition (7.49a) j and so x is
related to z(n) by

The spin-dependent properties Of a general triplet super-
Quid are somewhat less trivial to calculate. I-et us start
with the spin susceptibility and neglect for the moment
I'ermi-liquid corrections. We will treat the Cooper pairs
for the moment as having a definite spin configuration, i.e.,
treat d(n) as fixed independently of the weak external field

(but see below) . Now let us consider a given point n on the
Fermi surface, and ask what is the differential susceptibility
associated with this point, that is, the quantity x(n)
defined by (for the moment)

E~ = +Le~2 + i &(n) i2ji(2. (7.47b)
g = j (dn/4~)x(n). (7.49b)

Notice in particular that for the BW state (i A (n) ~2 = Lg)
all such expressions reduce exactly to the corresponding
results for a simple BCS superconductor. In particular the
relative specific heat jump at T, has the BCS value 1.42,
and the normal density is isotropic and given by the original
form of V(T), calculated by Yosida (1958) (with the
appropriate Fermi-liquid correction) .

The expression for the orbital angular momentum is now

(I...i) = i5n, .', Tr j (dQ—/4~) I f—~(n) Ln x (8/Bn) J f(n),
=— —iSn, g j (dQ/4m-) d;*(n)Pn x (8/Bn)) d;(n),

n. =—j dr
( F(r) (', (7.4S)

where the vector F(r) is defined from F(r) as above. We
notice that the 8% state, for example, has identically zero
relative angular momentum since the angular momentum
associated with the "up" pairs is exactly cancelled by the
"down" pairs (and the S, = 0 pairs have no angular
momentum) .

cc (ce) = -', v'd'(de/d ) f d e,'d ecch' ,'ddd--
,'y'FP(dn/de) Y(n: T) =—x—F(n:T), (7.50)

To obtain X(n) we argue as follows. Suppose that in the
ESP axes for the point n, the field I is along the s axis. Then
we can apply the argument of Subsection VII.A: for even
the differentia/ polarization of the Fermi surface as in Fig. 7,
provided that it is symmetric as in the figure, does not a6ect
the possibility of f t' or J, J, condensation (it merely
shifts the "local" chemical potentials from the original
value p„so that ~, must now be measured from I, W ,'pAH-
for up and down spin particles, respectively, in all formulas) .
Consequently, the susceptibility with respect to the ESP
s axis is equal to the normal value y . On the other hand,
it clearly cannot be equal to this if the field is along any
arbitrary axis: for instance, if the state is unitary we can
always choose the field along the direction of d(n), in which
case (with respect to this axis) only 4'~ i(n) is nonzero.
In this case we can apply exactly the same arguments as in
the case of singlet pairing and obtain Lcf. Eq. (6.13)j
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x, (n) = x„F(n:r), x.u(n) = x*.(n) = x (751)

Moreover, the fact that these equations must be true for any
choice of the y and s axes implies that x„,(n) =—x,„(n) —= 0:
and the argument leading to Eq. (7.50) plus the fact that
x(n) must be symmetric implies that all other olf-diagonal
components are also zero. A generalization of Eq. (7.51) to
an arbitrary set of axes now leads to the result, valid for any
unitary state,

x;,(n) = x„
X fB;; —L1 —F(n: T) j(d;*(n) d;(n)/i d(ri) I'j}

(7.52)

where F(n: T) is defined as in Eq. (6.14), with the replace-
inent (7.47b) .

The differential susceptibility must therefore be a torso~
quantity which reduces to x„along an ESP s axis, i.e., for
the direction(s) perpendicular to d (n), while for the
direction along d(n) (in the unitary case) it reduces to
x„F(n:T). Let us consider for a moment a unitary state
and take d(n) arbitrarily along the x axis. Then for any
choice of the y and s axes we must have

are nonzero. Notice that for an arbitrary state (unitary or
not) we have

Tre = 2 + F(T) & 2. (7.55)

In particular, the susceptibility of the BW state Ld(n) = ng
is isotropic and given in the approximation Z& ——0 by the
formula

xsw/x
= (1+ —,'Z.) L-; ~ -', F(r) j/f1+ —,'Z, L=;+ —',F(r) j}.

(7.56)

(2' = o) = 3(1+ -'Zo)/f1+ —:(3'+I'—.Z~) }.
Xn

(7.57)

This formula is plotted in Fig. 12 of Wheatley (1974) for
Zo —3. Actually, since the SYV state has a variation of
d(n) over the Fermi surface, the induced differential
polarization S(n) is not uniform and hence Z2 (but not
higher Zi's) does come into the result. At T = 0 the full
corrected formula is (Czerwonko, 1967)

x;; = x.f~;; —j (dn/4~) L1 —F(n: T)]
&& «Ld'*(n) d'(n)/I d(n) I'j} = x-e"(&), (7.53)

where we have trivially taken the real part for reasons which
will become clear. Equation (7.53) is a general expression
for the susceptibility of a Nnitary state. It has not, as far
as I know, been demonstrated for general nonunitary states
Lthe proof given by Bahan and Werthamer (1963) assumes
the unitary conditionj. Indeed, Takagi (1973) finds a
much more complicated formula for the susceptibility of
nonunitary states; however he shows that to lowest order
in the departure from unitary (i.e., in I d & d* I/I d P)
Eq. (7.53) holds. Fortunately, the only nonunitary states
we shall be interested in for present purposes are the ones
occurring near the 2 transition in a magnetic field (see
Sec. XIII) and the susceptibility of these is so close to the
normal values that the difference can be neglected for most
purposes (cf., however, Sec. IX.C below).

Fermi liquid corrections to formula (7.53) never involve
the odd Z~, since the polarization of the Fermi surface is
always symmetric. If we neglect the even Z& for / & 2, we
6nd

x = x-(1+ —,'Z, )Le/(1+ -',Z,e) j. (7.54)

This formula is exact in the limit T —+ T„even if higher Z~
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(the complex conjugation is necessary because even for
unitary states d may contain a complex overall phase
factor) . This formula has a simple interpretation: the
second term essentially subtracts o8 the contribution of the
Cooper pairs, which is proportional to 1 —F(T), when
the field is parallel to d, i.e., the pairs are in an S, = 0 state.

Integrating Eq. (7.52) over the Fermi surface, we obtain
for the total susceptibility uncorrected for Fermi-liquid
eGects the result

Evidently, Z2 has to be very large to affect the result
substantially.

According to Eq. (7.53), the susceptibility of a triplet
state (even an ESP state) is in general anisotroPic This.
"susceptibility anisotropy" has been the subject of a certain
amount of confusion (generated not least by the present
author) in the last two years, so we shall try to discuss its
meaning briefly. What we have calculated above is the
susceptibility "at constant d(n), " i.e., under the condition
that the spin state of the Cooper pairs does not change in
response to the weak external field. Now in general it zvi/5

change, if the sample is allowed to come to complete
equilibrium: for instance, if we take an ESP state and apply
a field which is not perpendicular to the plane of d(n),
then a bulk sample will simply rotate the spins of the Cooper
pairs so that the new plane of d is perpendicular to the field
(and the susceptibility, therefore, will be given by the
normal value). More generally, a bulk sample will tend to
adjust its Cooper pair spin state in any given external
6eld so as to maximize the susceptibility. The experimentally
measured susceptibility, therefore, will generally be the
largest eigenvalue of x;, Lnote that in view of Eq. (7.55)
this cannot be smaller than the expression (7.56) g. This is
true even if the measurement is done by NMR techniques,
provided only that the Hamiltonian is invariant against
totu/ rotation, that is, simultaneous rotation of spin and
orbital coordinates Lcf. Leggett (1973b)j.

On the other hand, it would be incorrect to assume there-
fore that the anisotropy of the susceptibility has no physical
meaning. There may well be other factors which help to
determine the orientation of d(n), particularly in restricted
geometries (see Sec. X) and if they are dominant the meas-
ured susceptibility will indeed by "at constant d(n) ":
more generally, the anisotropy of the susceptibility will
help determine the equilibrium state. Moreover, the finite-q
susceptibility (cf. Sec. IX) will be truly anisotropic, in the
sense that it will genuinely depend on the orientation of the
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measuring field relative to the "external" field, if any. In
this respect the situation is very similar to that in an
isotropic antiferromagnet: there, a static uniform external
magnetic field will always tend to set the axis of the "stag-
fered magnetization" N perpendicular to the field so as to
rnaxirnize the susceptibility, and if we then apply a uniform
small measuring field perpendicular to the external one, all
that happens is that N rotates so as to be perpendicular to
the sum of external and measuring field. Such an experi-
rnent therefore always measures the susceptibility perperi-
dicu'lar to the axis of ¹ On the other hand, a finite-q probe
would induce a different response for the measuring field
parallel and perpendicular to the uniform one. The only
difference in the case of the triplet superQuid is that "bulk"
factors which in an antiferromagnet usually destroy the
isotropy (crystalline anisotropy, etc.) are usually absent
here.

One property of a triplet superQuid which has no analog
in the singlet case is a quantity we might call the "spin
superQuid density. " To dehne this quantity, let us first
consider an ESP state in the "proper" axes. Then, at least
so long as there are no spin-nonconserving terms in the
Hamiltonian, the "up" and "down" spin Cooper pairs
may be regarded as independent systems for most purposes.
In particular, we can imagine a situation in which they are
flowing independently in opposite directions, so that (by
symmetry) the total mass current is zero. In such a state the
up and down order parameters have equal and opposite
spatial variations of phase:

Evidently, in the quasiequilibrium state of "spin counter-
flow" described by Eq. (7.60) the spin current should be
proportional to the quantity A: we expect an equation of
the for111

J;.» = (5/2m) p;, .esp'"fI;~,

Vs) = —Va ) = Vsp~

J sp —J sp —0

J ~" = —J "= (&/2m) J ~

(7.63)

Then comparing Eq. (7.62) with the definition of the ordi-
nary superQuid density tensor when only superQuid is

moving (J = y,v, ), we clearly have simply I cf. Eq. (6.22) g

where the factor of 5/2m has been inserted for subsequent
convenience, and where the "spin superQuid density" p'I'"
is a fourth ra-nk tensor.

To evaluate p'I'" let us first neglect aO Fermi-liquid
effects, that is, consider a superQuid gas of particles of mass
m (not m*). Then let us start with an ESP state in the
"proper" axes, and let QI, be given by 61...v,~, as above:
that is, we suppose that the up and down spins are moving
uniformly in counterQow. Now since the two sets of spins
form two completely independent systems, we can associate
with each its own superQuid velocity v, and mass current
J: using the subscripts 1', J, to denote the up and down
spins, respectively, we obviously have

4'~ ~(n: R) = +t ~(n: 0) exp2imv. , R/5

+q~(n: R) = +~~(n: 0) exp —2imv„. R/5. (7..'8)

Here R is the center-of-mass coordinate of the pairs, and
the variation is assumed to be slow on the scale of a correla-
tion length. Comparing these formulae with Eq. (7.33), we
see that the vector d(n) is rotating uniformly around the
s axis as a function of R, with the phase gradient related to
&sy by

v„= —(5/2m) Vq,

Sd, = (2m/5) ....d;a,.&R.. (7.60)

Here Roman subscripts refer to spin space and Greek sub-
scripts to coordinate space: we will use this conveiition
hereafter whenever there is a danger of confusion. The
dyadic QI, has the dimensions of a velocity, and in the
special case considered above we evidently have Qg

~a, z&sp, .
The spin current dyadic O'I' is defined by the continuity

equation

85;/Bt + (8/Bx )J, 'p = 0. (7.61)

which is reminiscent of the definition of the ordinary super-
Quid. velocity for a simple superQuid. Clearly we can now
consider more general states of an arbitrary (not necessarily
ESP) superfluid, in which the system of d vectors as a
function of position is rotating uniformly around some
arbitrary axis with some phase gradieiit: and we can define
a dyadic quantity Q; such that for small spatial increments
BR we have (sums over repeated indices are implied)

Suppose now that our state is unitary and d lies along the

y axis at the point in question. Then clearly the above argu-
ment goes through for any choice of the x and s axis, so
that we must have for i, j = x or s

pij, cx p
= ~ij pn p y p psI"~ —= 0

~' -~"'" = I (&* —d'*d /I d I') 9-~ —&-~(&)j
=— p f (dn/4 ) (6;; —d,*(n) d, (n)/I d(n) I')

~ 3u epL1 —V(n: T) g

where as above Lsee Eq. (7.50) j
(7.66)

de~i2P sech' —',PEq. (7.67)

From the form of Eq. (7.66) it is intuitively plausible
that it shouM. apply more generally to all unitary states of
a superQuid gas, whether or not they are ESP. This is in.

fact correct, although we shall not prove it here
I

a proof
can be constructed by defining a "spin normal density" and

On the other hand, suppose that we riow let Qg, be given by
8I„„~,~,„.This means that the system of d vectors is rotating
around the y axis: but this rotation has no physical signifi-
cance (since all the d's are along the y axis) and hence
cannot correspond to any physical currents. Consequently,
p@, p'I' =—0, i = x, y, s. Putting these results together and
writing them in a rotationally invariant form, we therefore
find for any unitary ESP state of a superQuid gas the result
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calculating it in a way analogous to the calculations of p„
in Sec. VI, with separate consideration of each pair state
(k, —k)j.

The question of Fermi-liquid corrections to Eq. (7.66)
is considerably more delicate than in the case of x or p„,
since the spin current, unlike the spin density or mass cur-
rent, is not a conserved quantity. First, we have to remem-
ber that for a Fermi liquid, according to Eq. (2.15), the
second part of Eq. (7.63) has to be multiphed by a factor
of (m/nt*) (1 + ii2Zi) . Secondly, there is the by now
standard molecular-field correction: this is actually slightly
cumbrous and, since the existing evidence indicates that
the factor Zi/12 is rather small for 'He, we shall put Zi = 0.
In that case the only effect of Fermi-liquid corrections is to
multiply Eq. (7.66) by (nt/no*). If we compare the result-
ing expression with (6.33) and (6.31), we see that near T,
(only) we have for an ESP state in the "proper" axis the
relation

of a vector d' as in (7.31). Then we may easily verify, by
direct calculation, the relation

—'(o"('&o"(') + o"('&o "&) = -'(6"
i

d' i' —2 Red. '*d ')

(~") = —:f «Zg'(r) I~' IF(r) I'
i2

—2 ReP,*(r)F'(r) I, (7.74)

where the notation F(r) is as explained in Subsection C
above.

(where the factor of 1/4 comes from the fact that o» is the
component of a spin vector in units of 5). Consequently,
by analogy with the spin-independent result (6.46) we have

(T~ T.)

p„.t&'&'" = (nt/nt*) p t&'(=I/nt*) (T~ 0). (7.69)

Finally, we consider the problem of spin-dependent
correlations in a triplet superAuid state; First, we see that
"one-particle" averages of the form

&~")) = Zf(r', p', &;)
i=1

(7.70)

can be written for a uniform state of the system in the form

(~(") = Z If»&n»)+ g» «»)l (7.71)

(this result is actually not affected by the inclusion of a
finite Zi) . However, as T —+ 0 we get rather

E. Summary

Since it appears very likely that a good description of
'He —A and 8 can be given, for most purposes, in terms of
unitary states alone, we assume in this summary that we
are dealing with such states. (For the nonunitary states
which occur near T, in a magnetic field, see Sec. XIII).

In a unitary triplet state, a Cooper pair can form in any
linear combination of the three spin states i f f ), ( $ $ +
J, g ), ~ J, J, ), as in Eq. (7.2), with amplitudes q~)(r, —r,),
etc. The Fourier transforms- of the amplitudes, FI,~~ etc. ,
can be regarded as the components of a symmetric matrix
P», t) Pand can be expressed as the "anomalous averages"
of annihilation operators a» according to Eq. (7.22) j.
This matrix, P», or equivalently the matrix 4'(n) —=

g&»~F», can be expressed in terms of an over-all amphtude N
and a normalized complex vector d(n) by the relation
PEqs. (7.35) and (7.36)j

and treated in analogy with the discussion of Sec. VI.B.
Evidently, the expectation value (7.71) will be changed
very little from its normal-state value unless f» or g» is
strongly varying near the Fermi surface. In particular, the
total spin S of the system Pand even the differential spin
polarization S(n) defined in Eq. (7.49a) j will remain
rigorously zero in the approximation of a constant density
of states, emn if the superfluid state is non+nit(Jry That is, .
the "spin of the Cooper pairs" d(n) X d*(n) bears no
direct relation to the differential spin polarization S(n):
the existence of a finite d 6* indicates only that the
up-spins (say) are more correlated than the down-spins,
not that there are more of them.

As to the spin-dependent two-particle correlations, most
operators of interest can be written in the general form

+.&)(n) = +i g (~,~,).t&d;(n),
i=1

dQ—
I d(n) I' = 1,

4m

where d(n) satisfies the conditions d(n) = —d( —n) and
(for a unitary st.ate) d(n) x d~(n) = 0, (i.e., d is real
apart from an over-all phase factor). The quantity

~
d(n) ~2

then gives the relative number of Cooper pairs forming
at point n on the Fermi surface, and the direction of d(n)
gives the axis with respect to which they are in a state of
spin projection zero. In a similar way the gap 6» = A(n)
is a matrix and its elements AI„p must individually obey
the gap equation (5.52), i.e.,

~(2) —)- Q g, .(r r )~.(k)~.(t)

= g~;. (r~ —«) = g;;(« —ra)

g*~ (r» —r))

(7.72)

6», p(T) = —g V(k, k') ' tanhPE» (T)/2,, ~»,-t(T)
»I 2E»& T

(7.76)

) h(n) ~' —= B,(n)ht', n),

(7.77)

(where h, t number particles and i, j Cartesian components where the (scalar) excitation energy E» is given by
of spin in units of h) . We can argue as follows (see Appendix
for a more general and rigorous derivation): Consider a ~ —+(~ 2+ i t), (ni i2ii(2
system of two particles, described by the triplet wave func-
tion (7.21), and express the amplitudes x &), etc. , in terms
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where the unitary condition guarantees that
I A(n) i2 is

a c number, not a matrix. In analogy to Eq. (7.75) we may
write the matrix Z(n) in terms of d(n) and an "over-all"
gap ~(T)

(7.78)

so that

I ~(n) I' = ~'
I d(n) I'. (7.79)

F{d(n), %', TI = n[(T —T,)/T, ) @'+ —',P~+', (7.80)

where n and P have the same values as in the spin singlet
case Lsee Eqs. (5.70—74) j, and ~ is given by Eq. (7.42)
(with d x d* —= 0)

dQ—
I d(n) I'. (unitary states)

4x'

In terms of the over-all gap 6 Eq. (7.80) is rewritten ex-
plicitly I

cf. (5.75) and (7.79)j
F{d(n), 6, TI = -', (dn/de) {—(1 —T/T, ) ZP

+ —;~ —,'I-(3) (~k T,)-2.~4I (7.82)

a form which is of course equally valid for singlet states,
with a then given by Eq. (5.76) .

All properties of a triplet-paired superfIuid which do not
involve the spin (e.g. , specific heat, normal density, pair
relative angular momentum, etc.) are obtained trivially
from the corresponding formulas for the singlet case (Sec.
VI) by simply taking

I
A(n) I' and E~ in these formulas

to be given by Eq. (7.77) or (7.79). LThus, they involve
only the magnitude of d(n), not its directionj. The spin
susceptibility and "spin superfluid density" do however
depend on the direction of d(n) according to Eqs. (7.53),
(7.54), and (7.66). In particular, in the ESP case Ld(n)
coplanar for all ng the "experimental" susceptibility is
unchanged from the normal state value.

Finally, in the l = 1 case the thermodynamically stable
state Lthe BW state, Eq. (7.30) g is non-ESP, and there is
reason to believe that this feature also applies for 1 & 1.

VIII. INTERLUDE: PRELIMINARY INDENTIFI-
CATION OF 'He-A AND B

Although not all of the results discussed in the previous
sections had been written down explicitly before the new
phases of liquid 'He were discovered in 1972, they were all
more or less implicit in the earlier work. This is therefore
a good point at which to interrupt the theoretical develop-
ment and ask: How far does the theory developed so far

LTo be quite rigorous, the d(n) entering (7.78) has a slightly
different n-dependence from that entering (7.75), as in
the case of f(n) in the singlet case (cf. Sec. V.E) . As usual
we neglect the small corrections due to this. j

In the GL region the free energy can be written in terms
of d(n) and either N or 6 by combining Eqs. (7.25) and
(7.41)

explain the experimental data available on 'He? In par-
ticular, if 'He —A and B are anisotropic superfluids of the
general type discussed, how far can we identify theme

In this section we shall refer to the companion paper of
Wheatley for the experimental data and concentrate on
those quantities for which the theory has already been
developed, in particular the phase diagram, specific heat,
spin susceptibility, and normal density. Let us start with
the spin susceptibility. The susceptibility of 'He —A is very
nearly equal to that of the normal liquid and is tempera-
ture-independent within the accuracy of the experiments:
since both spin singlet pairing and non-ESP triplet pairing
would result in decreased susceptibility Lcf. Eqs. (6.13)
and (7.53) j, we must conclude that if 'He —A is an aniso-
tropic superAuid at all, it must be in an ESP triplet phase.
As to the B phase, its susceptibility is decreased but appar-
ently remains finite as the temperature tends to zero (in
fact, it appears to be tending to a value about one-third
of the normal state value) . This rules out both spin singlet
pairing Lwhich would give y = 0 at T = 0, cf. Eq. (6.13)j,
and ESP triplet pairing (which would give y = y„). So we
can draw our first conclusion: Both the A and 8 phases
correspond to triplet pairing, the A phase being ESP and
the B phase non-ESP.

A second important conclusion follows from the fact that,
apart possibly from the kink near the PCP (which remains
a mystery, see Leggett, 1974b) the B—normal (B—N) phase
coexistence curve appears to be a continuation of the
A—normal (A—N) coexistence curve in the P—T plane.
More generally, the thermodynamic and susceptibility
measurements seem to imply that the A and B phases have
the same transition temperature over a wide range of
pressure (see Wheatley, Sec. IV) . This indicates that the
two condensed phases result from the same instability of
the normal phase. Referring to the results of Sec. III, then,
we see that they must correspond to pairing with the same
(dominant) i value: this must of course be odd, since they
are spin triplet phases.

Now we immediately encounter a substantial difFiculty.
Suppose for instance we assume that the l value is 1. Then,
referring to the results of Sec. VII.B, we see that according
to the theory developed there the non-ESP BW state
should always be more stable (in zero magnetic field) than
any state of the ESP type. How then can the A phase, which
is indisputably of the ESP variety, be stable at allP At
erst sight one might try to resolve the difhculty by assuming
a higher / value, say / = 3 or 5. However, explicit calcula-
tions seem to indicate (cf. Barton and Moore, 1973) that
this does not improve the situation: the most stable states
for any l value seem to be of the non-ESP type.

Putting this difhculty aside for the moment, let us examine
how well the quantitative data fit the theory. First, the
specific heat. As predicted, this has a substantial jump across
both the A—N and B—N transitions, and then falls rapidly
in both cases as the temperature is lowered. This is in quali-
tative agreement with the theory. However, the actual
relative magnitude of the jump at T, which according to
Eq. (6.8) should be not more than 1.42, is actually between
1.6 and 1.9. Secondly, the spin susceptibility20: according

~ Note incidentally that the low temperature limit of the suscep-
tibility, while in at least rough agreement with Eq. (7.56}, is nowhere
near the value ( 0.1x„) which would be obtained by inserting the
"pararnagnon" value Z4/4 = —I = —0.95 (cf. Sec. II.D).
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to Eq. (7.54) we find quite generally in the limit T —+ T,

(8 1)

According to the considerations of Sec. VII.D, we will
always measure the maximum eigenvalue of X. hence, from
Eq. (7.55), we find

~ 2.5~ ' & 2.5.- (8.2)

For the l = 1 BW state (and indeed any state in which the
5, = 0 component is populated equally to the other two)
the inequality is an equality. The experimental value of
4.7 for x /x„ is in serious violation of Eq. (8.2). Finally,
the superQuid density: according to the theory this is in
general a tensor quantity, but according to Eqs. (6.32)
and (6.28) the slope of its average value p, near T, is given by

IX. SPIN FLUCTUATIONS, FEEDBACK EFFECTS,
AND "STRONG COUPLING"

ps T Tc = (1+—,'Fi) 'I"(T/T, ) ~ 0.33 a ' & 0.33.
P

(8.3)

The experimental value is more like 0.6. Note that even if
we assume we measure the maximum eigenvalue (which is
actually unlikely, see Sec. X.) the estimate (8.3) is in-
creased only by a factor of 6/5.

One prediction of the theory-which appears in reasonable
though not perfect agreement with experiment is that the
pressure dependence of x/x and p„/p for given reduced
temperature T/T, (p) should be given entirely by the varia-
tion of the Landau parameters Zo and Ii&, respectively.
In particular, near T, they should vary as (1 + 4Zo) ' and
(1+ —',Fi)—', respectively. If anything the two quantities
seem to vary less than expected with pressure. Generally,
we see that the absolute values of all three quantities
bC/C„, bx, and p, are larger than predicted, very consider-
ably so in the case of the last two. However, the ratio of the
slope of p to that of p, near T, is relatively well predicted by
theory (see Wheatley, Sec. IV).

In the next section we shall discuss the beautiful idea of
Anderson and Brinkman (1973) which goes, at least, a
very long way towards resolving the difBculties encountered
in this section.

The specific mechanism originally considered by Anderson
and Brinkman (1973) and subsequently in more detail by
them and others (see below) is the modification of the part
of the effective pairing interaction associated with virtual
spin polarization of the medium (or "exchange of spin
fluctuations" ) as described in Sec. IV. However, while it
seems probable that this is quantitatively the most impor-
tant "feedback" effect, it is clear that in principle we cannot
exclude modification of other parts of the interaction —e.g. ,
that due to exchange of transverse current Auctuations,
which will certainly also change in the superQuid state.
Moreover, one can show that feedback effects of all types
vanish in the "weak coupling limit" keT,/ei —+ 0. If there-
fore we keep them, it is not obvious that we should not also
keep other types of effect which would also vanish in this
limit Pand, of course, also effects which are proportional
to (say) (in/, e,) '). Such effects have become known gen-
erally as "strong coupling" effects. (The eAects which are
usually called "strong coupling" in the theory of supercon-
ductivity are one particular type, namely the variation of
the pairing interaction with energy over a range k&T,.)
To a certain extent it is possible to take them into account
quite generally (at least in the GL region) by a technique
based on analysis of the possible forms of the free energy
as a function of the order parameter. It turns out that these
forms can actually be labelled by a small number of param-
eters, and that depending on the values of those. parameters
di6'erent types of state may be the stable free energy
minimum. One can then try to determine the values of the
parameters from some microscopic model, e.g., by assuming
that the oe/y important strong coupling e6ect is the feed-
back associated with spin fluctuation exchange. However,
there are certain conclusions which can be drawn even
without a detailed knowledge of their values.

In the first subsection we shall outline the physical basis
of the theory along lines similar to those of the original
AB paper. In the second, we explain the principle of the
technique based on general forms for the free energy. In the
third, we review the results of recent more sophisticated.
treatments of the spin fluctuation exchange process. Finally,
in Subsection D we describe and discuss the states which are
most widely believed to correspond to 'He —A and B.

A. Spin fluctuation feedback —the physical idea

As was pointed out in Sec. IV, in the normal phase of
liquid 'He there is an effective "indirect" interaction be-
tween quasiparticles due to virtual spin polarization of the
medium:

The basic physical idea of the Anderson —Brinkman (AB)
theory is that the formation of the superAuid state modifies
the pairing interaction between quasiparticles, and that the
precise nature of the modification depends on the particular
kind of superQuid state formed. Crudely speaking, if for a
given kind of state the relevant part of the pairing inter-
action is weakened (made less attractive) this will decrease
its condensation energy below the BCS value, while if the
pairing interaction is strengthened the condensation energy
will exceed the BCS prediction. As a result, a state which is
unstable in the BCS approximation may become the stable
ground state (or free energy minimum) once such "feed-
back" e8ects are included.

(9.1)

This interaction depends only on the relative spin orienta-
tion of the quasiparticles, not on the absolute orientation.
Now, when we go over into the superQuid state the static
susceptibility p, as we have already seen, is modified and
becomes in fact a tensor in spin space according to Eq.
(7.53) . Evidently, the dynamic susceptibility x (r —r,

t) is likewise modified. Following through an argument
exactly similar to that of Sec. IV, we now obtain an effective
interaction (where summation over repeated indices is
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implied)

V,H(r' —r, f' —f) = fo'—o,cr ~ fy, ; (r' —r, 3' —j)

+ X, (r —r', &
—&')3 (9 2)

the change in the free energy AIi the expression:

AF = X(dm/de) (kIIT,) 'd.'—

X L(Red; d, ). (8;; —(2 Red;*d, ))g (9.7)

so that the interaction now depends on the absolute orienta-
tions. LThere is nothing paradoxical in this, because the
orientation of the Cooper pairs —or the vectors d(n) —now
dehne a special set of axes. We shall return briefly below to
the question of why it is reasonable to use here the "suscep-
tibility at constant d(n)"—cf. Sec. VII.D.j

In order to see qualitatively the kind of effects which this
anisotropy of the interaction is likely to have, we shall make
a drastic approximation, which is similar though not quite
identical to the original AB paper: We replace the chaege
of tllc II1'tel ac'tloII (9.2) which ls both 110111ocal II1 t1111C

(retarded) and may depend on the directioII of r —r', by
a simpler interaction of the form

(9.3)

where Bx;; is the change of the static susceptibility tensor
(we recall that the dynamic spin susceptibility 3C(r —r',
t —i') is defined with an extra factor of (y5) ' relative to
the experimental static 3C, see Sec. IV), and g is some func-
tion whose range and strength can be fitted so as to repro-
duce as closely as possible the true expression (9.2).

Now according to Eq. (7.4) the change in the expectation
value of the potential energy of the Cooper pairs due to the
change in the interaction is

—2 ReP;*(r)F;(r)j}. (9 4)

The integral can be converted
I using the fact that the com-

ponents of d(n) are spherical harmonics of one / value only,
and the decomposition theorem for spherical harmonicsj
into the form

gie2 I (dn/4~) IS;; I d(n) I' —2 Re d;*(n) d;(n) I, (9.5)

53C;; = ——,'y'5'(dn/dc) (1 + —,'Zo) —'—,'| (3) (~kIIT,) '6'

X f(dQ/4w) Re d;*(n) d;(n). (9 6)

We combine Eqs. (9.5) and (9.6), express 4' in terms of
13y (5.68) q

Rllcl ilsc tllc definition $0 = (dB/d6) Zo
(see Sec. IV). Then we finally get for A(V) and hence for

' The extra factor of —, arises because V ff is a variational derivative.
See subsection IX.C below.

where gg is the appropriate spherical harmonic decomposi-
tion of g(r) over the Fermi surface. As for the quantity
6X,;, it is given by Eq. (7.53) and (7.54). In particular, if
we specialize to the region close to T, and approximate
the function I 1 —I'(n: T) g by its asymptotic value
a'1 (3) I A(n) I'/n-'kII'T' we find

where ( ), indicate averages over the Fermi surface,
repeated indices are summed over, and the constant E is
given by

X = (7/32~') g(3) g, l -;Z,/(1 ~ -',Z.) 12(ingP...)2. (9.S)

The point, now, is that the factor in square brackets is rot
of the same form as the average (7.42) which determines
the most stable state in BCS theory, and may favor a
diferent type of state. The first term is always just 1,
because of the normalization of d(n), and therefore always
contributes a repulsive energy which for given 6 is indepen-
dent of the configuration. The second term, however,
favors states which are as anisotropic as possible in spin
space. To see this, let us compare the "most isotropic" state
for / = 1 pairing, namely the BW state d(n) = n, with the
highly anistropic ESP state (the so-called axial or ABM
s'tate scc 13clow) glveI1 by (fol cxaIIlplc)

d, (n) = (3/2)'"(e„+ As, ), d„(n) —= d, (n) —= 0.

(9.9)

We see that the term is the square brackets is + 3 for the
BW state but —1 for the state (9.9). Consequently, the
spin fluctuation feedback effect, in this approximation,
disfavors the BW state and favors the state (9.9), and if
the constant E is large enough this effect may outweigh
the effect of the BSC fourth-order terms Lthe integral
(7.42) j which favor the BW state. That the (attractive)
pairing energy due to exchange of spin fluctuations is
reduced in the BW state is not surprising, since the suscepti-
bility of this state and hence the "strength" of the spin
fluctuations is reduced from the normal state values.

What is at first sight more dificult to understand in-
tuitively is that the pairing energy is actually increased
in the ABM state (9.9). The reason is as follows: in the
normal state, there is a chance of finding a given pair of
particles with antiparallel spins, and this will give a repulsive
contribution to the energy due to exchange of spin Quctua-
tions. Now in the ABM state all Cooper pairs are in a spin
state with S = 1 but 5 = 0. In such a state the correlations
of the y and s components of spin become more positive
(i.e., the pairs form with parallel o.„and o.,) but the correla-
tion of the x components is megati~e, i.e., the pairs have
x component of spin antiparallel. The part of the potential
energy arising from exchange of spin fluctuations then has
a positive contribution from the y and s components but
a negative contribution from the x components. The BCS
approximation correctly est~mates the attractive y and s con-
tributions, but it overestimates the repulsive x contribution
because the interaction is proportional to x, (o. '"o, ), and
x„ is reduced from its normal-state value Lcf. Eqs. (9.6)
and (9.9)j.

The quantitative importance of this mechanism depends,
of course, on the value of the constant E and hence of g~.
Since the ansatz (9.3) is anyway only a crude approxima-
tion introduced to illustrate the physical mechamsm in-
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volved, we will not discuss the value of g~ which might be
thought plausible at this point. It is, however, worth men-
tioning that any reasonable estimate of g~ will result in the
cancellation of the factor Pln(/P, e,.g' and introduce at least
one factor of (k~Tc/e~), and that the factor in X involving
Z~ is large for 'He ( 10). This is important, because one
might well ask why modish. cation of the spin susceptibility
shouM be so much more important than, say, that of the
normal density' The latter will certainly aA'ect that part
of the "indirect" interaction between quasiparticles which
is associated with exchange of transverse current Ructua-
tions. (One may in fact show that. it will tend to favor states
which are as orbitally anisotropic as possible. ) However,
while other factors in the experession for the appropriate
constant E' are much the same as in X, the factor involving
Zo will be replaced by a similar one with ~~Zo replaced by
—,'F~. Since Ii~ is large, this factor is then of order 1 rather
than 10, and the effect associated with the normal density
would therefore be expected to be only of order 10% of
that due to the susceptibility modification.

B. The generalized free-energy approach
The approach based on generalized forms of the free

energy was pioneered by Anderson and Brinkman (1973)
and Mermin and Stare (1973). Subsequent work has been
done by Brinkman and Anderson (1973), Mermin and
Ambegaokar (1923b), Mermin (1973), Mermin and Stare
(1974), and Barton and Moore (1974a,b); in this section
we will discuss the principle of the method and some results,
referring the reader to the above papers for details of the
derivations Lsee also Ambegaokar (1974)g.

I-et us consider the GI. region and imagine that we expand
the free energy as a functional of the parameter cL(n)
Lor d(n) $ up to the fourth order in d. As we saw in Sec. VII,
in the BCS approximation the expansion has the simple
form

triplet states. I For the case of spin singlet pairing the d-wave
problem has been solved completely by Mermin (1974);.
however this unfortunately seems unlikely to be relevant
to 'He. f We take the quantities d(n), & (n) and note that
for 3 = 1 pairing they can be written in the general form.

d, (n) = ad.;n., a;(n) =- v3hd. ;e .

There are nine complex quantities d, so that the order
parameter has, in a sense, 18 real degrees of freedom.
Nevertheless, the number of invariants which can occur in
the free energy is limited. In fact, there is only one second-
order invariant

IO = dpi d~~:= ~ (9.13)

(as usual, summation over repeated indices is implied) . For
the fourth-order invariants we have five possibilities (cf.
Ambegaokar (1974)):

I& =
I Z da" I ~ I~ = dp' dpi d~'dpi I3 = d~' dp~' d~idpi

I4 —= (Q ~
d, ~~')'(—= 1), I5 —= d;*dp, *d;dp, .

Ig ——
~

(d2).„~', I, = (d,*d;*). ~ (d~d, )„,
I3 = (d,*d)- «**d)- I4 = ((Idl')-)'=—1

I5 = (d,*d ).. (d,*d,),,

The free energy is the written in the form

(9.15)

Using the fact that the average of d,~(n)d, (n) over the
Fermi surface, which we write (d;*dg) is just d;*d;, we
can write the invariants alternatively as

F = —~(1 —T/T. )%'+ —,'«pe'
', (dn/de) I

—(1 —T—/T ) 6' + -', «PD'i (9.10)

F = —n (1 —T/T, )+' + —,
' (P a;I,)P%'4

P = —,'1-(3) (~k T,)-2,

~ =—j («/4 ) I I d(n) I' —Ld(n) «*(n) 3'I (9.»a)

= —:(«/«)l—(1 —TIT ) ~'+ 2(Z ~'I')P~'I

(9.16)

F =gcI; (9.11)

More generally we can conceive that Ii can be a more com-
plicated functional of d(n). However, the invariances of
the Hamiltonian impose some strong constraints on the
form of this general functional: F must be invariant against
rotation in spin space and in ordinary (orbital) space
separately and also of course gauge-invariant, i.e., invariant
against multiplication of all d(n) by the same uniform
phase factor. For an order parameter which is restricted
to be composed of spherical harmonics of given l, there is
only a hnite number of invariant combinations I;. We can
therefore write the free energy in the form

d„(n) = A„„n„, (9.17)

regards the quantities A„„as forming a 3 & 3 matrix, and
writes (apart from trivial variations for the quadratic term
and equivalent forms for the traces)

F = — (1 —T/T, ) ~r~t~ ~ P, ~
~r~a ~'+ P, (rr»t)'

+ p, Tr(AA. ) (AZ)*+ p, Yr(AAt)'

+ pg TrAAt (»t) *, (9.18)

Lfor P, see Eq. (9.10a)). An alternative notation to be
found .at least equally frequently in the literature writes

In what follows we will discuss the case of P-wave pairing,
which has been studied in most detail among the spin . +1 ply w pa& +3 ps) +4 ply +5 p4 ~

where A and At are, respectively, the transpose and Hermi-
and the coe8Rcients c; then form a parametrization of I .
Depending on the values of the c,, different states will be

~ tian conjugate of the matrix A. comparIson o qs.
9.15 and 9.jI.7 and 9.18 gives the correspon ences,

stable.
apart from an overall factor
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We have chosen to define the parameters entering the
free energy in terms of the expansion of the normaLised
order parameter d(n), or equivalently the normalized gap
parameter: alternative conventions are of course equally
possible and often used in the literature. The only effect
is to multiply all the a s by a common overall factor relative
to n. All considerations which follow in this section relate
only to the relative magnitudes of the fourth-order coef-
ficients a, .

The BCS expression (9.10) for the free energy of a P-wave
state may be easily verified to be a particular case of Eq.
(9.16) corresponding to the values

2D ABM

II
I2
I3
14
I5
~Et OS
p ~

'1
3
1
3
1
I
3

~S5

-'$Ã

I
1
2
1
2

1
2
2$
0

0
0
1
1
1
2$
—$5'

1
1
1
1
1
3$
—$8'

TABLE I. Values of the five fourth-order invariants for the four
unitary P-wave extrerna of the free energy.

a2 = a4 ——a5 ———a3 ———2ai =—2s(s =—3/5).
(c) The "axial" or "Anderson —Brinkman —Morel" (ABM)

(9 2o) state

By comparison the naive spin Quctuation model result
(9.7) gives a contribution 5a; to the a; which we can express
in terms of s and a single parameter 6' in the form Lcompare
Kq. (9.7) with (9.15)g

Say = 8~ = 0, 6a3 = —6a4 ——6u5 = —sb .

We already know that if 6' is suKciently large (in fact, if
6' ) 4) then the BW state is not the most stable. We are
therefore led to ask how far one can analyze the stability of
various P-wave states using the quite general form of free
energy (9.16). Since we have essentially to find minima
in an 18-dimensional space, the problem is not at all trivial.

I

At the time of writing, indeed, no complete analytic
solution of the problem has appeared. We refer the reader
to the papers by Mermin and Stare (1974) and Barton
and Moore (1974a) for extended general discussions, and
from now on shall restrict ourselves to the very much
simpler problem (Mermin and Stare, 1973) in which the
states of interest are restricted to obey the "unitary"
condition d(n) x d*(n) = 0. It should be emphasized
that there is no a priori reason to expect this condition to
hold, but it appears probable (fortunately) that the states
actually occurring in liquid 'He in zero magnetic field are
ln fact unitary.

i.e., d(n) = n. (9.22)

(b) The "two-dimensional" (2D) or "planar" state

For I' states with the unitary restriction, then, the follow-
ing results can be proved /for a proof see Mermin and
Stare (1973) and Ambegaokar (1974)g: There exist exactly
four classes of states which can be extrema of the free
energy (9.16), states within a given class transforming into
one another under rotation of the spin and/or orbital
coordinates (which, of course, does not affect the values of
the five invariants). We write down a typical representive
of each class, arbitrarily normalizing d; for convenience as
above so that g, j d; i' = 1.

(a) The "isotropic" or "Balian.—Werthamer" (BW) state
I Eq. (7.30) or (7.43)j

d„= —id„= 1/v2, all other components zero i.e.,

d, (n) = (3/2)'I'(e„ + ie,), d„(n) = d, (n) = 0.

(d) The "polar" or "one-dimensional" state

(9.24)

dzz = ~) all other components zero. i.e.,

d, (n) = &3+„d.(n) = d„(n) = 0. (9.25)

Substitution of the forms (9.22)—(9.25) into (9.14) enables
us to construct a table (Table I) of values of the five fourth-
order invariants for each of these states. (Io and I4 are of
course 1 by definition for each state. ) We give also the
fourth-order BCS free energy, Fsas, from Kq. (9.20) and
the spin fluctuation free energy I",& as calculated from the
naive model of the last subsection )see Eq. (9.21)$.

We verify directly from Table I that the BW state is the
most stable within the BCS approximation, but that when
the "naive" spin-fluctuation energy F,g is added the ABM
state is more stable if 6' & ~. It can also be verified that,
quite independently of any particular microscopic rr.odel
(i.e., for quite arbitrary values of the parameters a;), the
"two-dimensional" state is never the stable free energy
minimum. This is a somewhat surprising result, which
could scarcely have been anticipated on any simple intuitive
grounds. The polar state can in principle be the absolute
minimum, but only if the non-BCS contributions to the
free energy are at least comparable to the BCS ones. Of the
unitary I' states, therefore, the BVf and ABM states seem
the ones most likely to be realized in 'He and it is these
which are commonly identified with 3He-B and 'He-A,
respectively. (It should, however, be emphasized that up to
this point we have presented no direct evidence either that
these phases are P-wave phases, or that they are unitary. )
In Sec. IX.D we discuss them in somewhat more detail.

I.et us assume for the moment that the new phases of 'He
are indeed P-wave phases (unitary or not) . Then for any
given pressure P and temperature T the constants a, (P, T)
are fixed, and we can write the GL free energy in the form
Pcf. Eqs. (5.77) and (7.41)j

d., = (1/W2)S. ,(1 —S;,), i.e., d, (n) = (3/2)'I ~.,
dy(n) = (3/2)"'e„, d. (n) = 0.
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where however (( is no longer given by (7.42) but by the a change in (V) according to the formula
more general expression

5

)( = Q a;(P, T)I;. (9.27)
d(V) —fff V;;(r' —r, V —t)d(a;(rOa (rY) ) dr dr'dV

(9.30)

t).(T) = 3.06)(—'/2(ki) T,) (1 —T/T ) '/2 (9.28)

The I; here are constant for any given state but different
from one state to another (cf. Table I). The magnitude of
the gap 6 is then given, for T near T„by the same expression
as Eq. (5.76), namely,

Let us Fourier transform both parts of this expression, using
the variables g and co in the standard way. Since V;, is given
by Eq. (9.2), and the Fourier transform x;;(qo)) satisfies
the relation La general one for response functions involving
Hermitian operators, cf. Nozieres (1964), p. 42/ x;;(—q,—or) = x;;*(qa)), the Fourier transform of V;; can be written

and the specific heat jump is given again by V,;(q, ~) = —f;2 R.ex;;(q, ~) . (9.31)

AC./C = 1.42a '.

There is now no reason why ~ should not be less than one,
and hence the specific heat jump can be larger than the
BCS value. Since quantities like the susceptibility p and
the normal density p„are determined near T, for any given
state by the value of 6', they too depend only on ~; in fact
they differ from their "weak-coupling" values by a factor
K~gg K.

On the other hand, the Fourier transform of (o.;(rt) o;.(r t') )
can be related to the imaginary part of x;, (q, o)) by the
fluctuation-dissipation theorem:

((r;(r, )(—q, —o)) = Imx, ;(q, o)) Lexp()85o)) —1j '.
(9.32)

Consequently, using the symmetry property z,; quoted
above and a little algebra we can rewrite (9.30) in the form

Thus, the experimental quantities we have discussed so
far give information only on the particular combinations
of a s which appear in ~ for the difierent states-. However,
we can in principle obtain information on different com-
binations —see especially Sec. XIII.below.

d(v) = —(de f (d /2 & «x (0 )d(«x'(0 )

)& coth(-', )85o)). (9.33)

(Actually, it is probably necessary to replace Imx;, by the
C. Spin fluctuation feedback —more sophisticated unenhanced value Imx;; so as to avoid double counting of
treatment" the enhancement effect: cf. Introduction. )

The treatment given in Subsection IX.A for the feedback
effect shows up the qualitative nature of the effect, but
it is based on the ansatz (9.3) which is not quantitatively
valid. To obtain more reliable results one must work out
more accurately the modification of the true (time-depen'-
dent) effective potential and its effects. Calculations which
in effect do this have been carried out by Kuroda (1974a,b)
and by Brinkman, Serene, and Anderson (1974) (referred
to throughout this subsection as BSA); see also related
work by Tewordt (1974a,b)." The physical basis of the
two approaches appears to be essentially equivalent, and
the crucial formula for the spin-Auctuation feedback modi-
fication to the free energy is common to both (apart,
apparently, from an overall factor of 2) LBSA Eq. III.5 =
Kuroda (1974b), Eq. (3.3)g; actual numerical results are
slightly different but do not lead to qualitative discrepancies.
Both calculations use the technique of analytic continuation
in the complex plane; in the following, we shall use a rather
more elementary approach (see Introduction).

The effective interaction V;;(r —r', t —t') is a t)ariationat
derivative of the potential energy (V) with respect to
variations in the spin density at points r, f and r', I,'. That
is, a small chuege in the quantity (o;(rt)o.;(r't') ) produces

Let us now imagine that we write

x' (q ) = B' x-(q ) + Bx' (q ), (9.34)

&v.i = —-'*r.' Z f (d /2 & «dx;(e ) «dx;(a~)
q 0

)& coth(-;Pro)). (9.35)

where x (qo)) is the (isotropic) normal-state dynamic
susceptibility, and consider the change in (V) as a functional
of Bx,;(qo)). The first-order term in Bx contains simply
Rex„(qo)) ImBx;, (qo)); this is precisely the term we would
have got by allowing (a;(rt) a;(r't') ) to change but keeping
V(r' —r, t' —t) at its normal state value, that is, by
making the ordinary BCS approximation. This term is
already handled in the weak-coupling free energy. The
second-order term in Bx is proportional Lbecause of the
differential form of Kq. (9.30)j not to ReBx ImBx but to
J ReBx (II (ImBx): since the real and imaginary parts vary in
the same way (e.g. , with 6), this is equal to ~~ReBx ImBx.
Consequently, the spin fluctuation feedback correction to
(V) and hence to the free energy P is

Now if we neglect all molecular-field parameters except
Zo/4 (the quantity called I by BSA and—Kuroda), we
can express the true susceptibility tensor x;;(qo)) in terms of'2 See Introduction.

2a The important paper ot Tewor(it et ((t. ig974) arrive(i, in iina] the "f«e-suP«Quid-gas" suscePtibility tensor X'd (qcu) by
version, too late for discussion here. an argument exactly similar to that leading to Kq. (2.38).
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In fact, if we define a tensor g =—g,, (qu) by

x (q, ) —= -'(d~/d~)g'(q~)

then we have Lcf. Eq. (2.38)j
x = -'(d~/d')f g(q~)/C. 1 + -'Zog(V~)3}.

of uncertainty in the actual magnitude of LF,g, but clearly
whatever (reasonable) assumptions we make C will in-
crease strongly as the system tends towards the ferromag-
netic instability (Z, -~ —4). The integral over ~ will, on
dimensional grounds, contribute a factor proportional to T.
Finally, using the fact that kF/@~2 is of order 5'e~' '(de/de). ,
we obtain a result of the general form

Now it is found by a detailed exam. ination of the form of
x;io(pcs) that most of the contribution to the integral (9.35)
comes from regions where it is only slightly changed from
the normal state value, i.e., 6x,;(qw) « z(q~). Moreover,
in almost all of these regions we have cv & T„A/v~ && q &&

k~, and hence ~ &&v~q. In that case we can replace the
normal-state value of g, g~(q~), by its static value g~(q) —=

gii (q, 0). With these approximations we get

».i = :e'I L—~a—/(2 )'i (des/2z )

Rcbx, IO(q(v) 1mb'; (qcv)

-'Zog~(q) j' (9.38)

|ix;,'(q, M) = —,
' (dm/de) (6'/A'vi;q. kiiT) f;;(A'co/kIIT, q, l d.;}),

(9.39)

where q is a unit vector along q, and f;; is a dimensionless
function which falls off fast for f&co && k~T. The integration
over the magnitude of q in Eq. (9.38) can then be per-
formed; if we define the dimensionless factor:

C =—k~ ' I fdV/L1 + —:Zog~(V)3"},

where e is 2 for the BSA—Kuroda calculation and 4 for
'tllc calculatloll leading to Eq. (9.38), then C evidently
depends on the specific assumptions we make about the
way in which g~(q) falls off at high q; this cannot be ob-
tained fi'onl Landau tllcoly (cf. Scc II) Rnd. is 'tllc solllcc

This is almost but not quite equivalent to BSA's Eq. (III.5)
or Kuroda's (3.3); the difference is that they have the
expression t 1 + 4Zog~ (q) j in the denominator only squared,
not to the fourth power. SSA also apparently have an
overall factor of 2 Pcf. their Eq. (IV.5) $. Replacement of
Imx by Imago in Eq. (9.33) (cf. above) would remove the
major discrepancy. In any case, as we shall see, it affects
only the overall magnitude of the corrections, not their
form.

The problem therefore reduces to the calculation of the
quantity By,; (qcv) (or its continuation in the complex
plane) as a function of the d; (or more generally as a, func-
tion of d(n): note that so far we have nowhere assumed
P-wave pairing) . The calculation, which is analogous to the
calculation of the frequency- and wave-vector-dependent
conductivity in the theory of superconductivity, is straight-
foreward but tedious; it is carried out, for unitary states
only, by both Kuroda and SSA for T near T, and also by
SSA for T = 0. %e will just quote the principal features
of the results for the region near T, : Over most of the region
which contributes appreciably to the integral (9.38),
Bx;,'(q, o&) can be written up to terms of order 6' in the
form (for P-wave pairing)

AF, I = const. (diI/de) (kiIT. ei;) '64C Id;}

aF, I = ,'(dn/de) ,'—(ga;I, )-P-A'

(9.42)

%hile the absolute values of the a, 's are subject to some
uncertainty, the calculation should give their relative values
fairly accurately, at least for the unitary states which have
been explicitly considered. BSA quote the results (where
a; = a, I, I& and ai ( 0)

al. ai'. as'. a4. as ———1:—0.5:—7.0:+2.0:—5.5. (9.43)

Then according to Table I the spin fluctuation corrections
to the BW, 20, ASM, and polar states are, respectively,
proportional to —~10, ——',', —~~~, —12. Kuroda, in (1974a)
finds for these contributions values in the ratio 0, —0.3,—1.05, —1.2 Phut in (1974b) apparently finds a negative
spin fluctuation contribution to both ABM and BW states j.
It is interesting that all calculations appear to give the,
same ordering of the spin fluctuation contribution to the
free energy of the four states, and that (contrary to the
result of Sec. IX.A) the free energy of the BW state is now
reduced by spin fluctuation effects (or at least not increased) .
Apart from this feature the ratios of the a;. 's are not greatly
different from those obtained in Sec. IX.A. As to the ab-
solute magnitude of the spin fluctuation eRects relative to
the SCS terms, PSA And the result"

'48SA calf. the quantity de6ned by Eq. (9.44) B. Note that it is
minus the 5 de6ned by Anderson and Brinkman (4973). Cf. Sec. XIII.

where the value of the constant depends on detailed assump-
tions about g~. (q) and on the details of the ~ integration,
etc. , and where C is a dimensionless function of the d s
of order unity. (BSA incorporate a factor of 6 in the
definition of the d„;.) The important features of this result
are: (1) If compared with the BCS fourth-order terms,
Eq. (5.75), the spin fluctuation terms contain a factor
kIIT,/e~, that is, they represent a genuine "strong-coupling"
effect which would vanish in the hmit T,/ei; —& 0. (2) How-
ever, the small factor kIIT, /e~ can be compensated if C is
suKciently large, i.e., in the limit of large enhancement of
the susceptibility. It is this feature (the large enhancement)
which distinguishes the particular feedback eRect associated
with exchange of spin fluctuations from other feedback
effects, e.g. , that associated with transverse current Auctua-
tions. (3) The coefficient of d in Eq. (9.41) is proportional
to T '. On the other hand, the coefficient of the BCS
fourth-order terms, Eq. (5.75), actually goes as T ~ (al-
though we have replaced it by T, ') . Hence the importance
of the spin Auctuation terms relative to the 8CS ones
decreases as T falls below T,.

The quantity C in Eq. (9.41) can be written, of course,
in the form corresponding to (9.16), i.e.,

R'ev. Mod. Phys. , Vol. 4I7, No. 2„Apr'il 3,975
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AF, t(BW)
F...(BW) —F.«(ABM)

iI'ks t.
)

„,
(

Z /4 )'i' (9.44)

The BW state is given by Eq. (7.43),

d(n) = n-
I
i.e., d, (n) = e., etc.j

or by any state related to this by a relative rotation of the
spin and orbital coordinate axes, i.e.,

where n is a parameter used to characterize g~(q), which
would be —, in the free quasiparticle gas approximation.
Note that apart from ihe factor involving Zo, which was
expected to be large in the nearly ferromagnetic limit, the
numerical factor multiplying k&T,/ep is unexpectedly large.

A word of caution: both the calculation outlined here and
the graph-summation procedure of BSA and Kuroda take
into account only some of the most obvious effects con-
nected with the modification of the spin-fluctuation spec-
trum. Even if modification of other responses is neglected,
it is not at all obvious that the assumption implicit in
the above calculation —namely that the effective potential
can be treated as a classical quantity, neglecting the quan-
tum correlations between V;; and the operator 0, (rt) 0, (r't')
in (9.30)—is a valid one. Equally, there may be other kinds
of corrections, e.g., to the quasiparticle effective mass,
which are possibly of the same order of magnitude (cf.
Kuroda, 1974b). Moreover the calculations consider only
unitary states, and it is not entirely clear what error, if any,
this involves in the values of the a s for general states.
This is of some importance since we wish subsequently
(in Sec. XIII) to use the general strong-coupling theory
to discuss the (nonunitary) Ai and A2 states.

Note: some further types of correction to the BCS model
from spin fluctuations have now been considered by Tewordt
et al. (1974). Their result for the ratios of the a s is in
general diferent from Eq. (9.43); see their Eq. (41).

Rote added in Proof: The conjecture made in the text
that Imx;, in Eq. (9.33) should be replaced by Imx, ;to& to
avoid overcounting is almost certainly correct. The factors
of 2 by which the various calculations disagree however
remain baffling.

D. Properties of the BW and ABM states
As we saw in Subsection 8, provided the non-BCS con-

tributions to the free energy are not too large compared
with the BCS ones, the stable state (in zero field) of an
anisotropic superAuid with P-wave pairing will be either
the BW state or the ABM state, and it is these states which
are commonly identified with 'He-B and 'He-A, respectively.
We shall discuss later how far the evidence supports this
assignment; in this subsection we'shall review the theoretical
predictions, for these states, as to those thermodynamic and
other quantities which have been discussed so far (NMR
properties are discussed in Sec. XI) . In each case the overall
magnitude of the gap, h(T), will be taken as a phenome-
nological parameter: near T„as we have seen, it will be
proportional to ~ '"(1 —T/T )'" where ~ is defined by
(9.27) (and is possibly pressure-dependent). In each case
we must remember that there is actually a whole class of
states which transform into one another under rotation
and/or inversion of the spin and orbital coordinates, and
which are degenerate in the approximation, always made so
far, of neglecting weak "orienting" effects (for these, see
next section) .

d'(n) = d(8n) —= Rd(n) —= 8n, (9.46)

where 8 is a rotation matrix. "LNote that overall rotation

of the spin and orbital axes together does not change the
form of d(n). j It has a strictly isotropic energy gap:

I ~(n) I' = ~'. (9.47)

Its spin-independent thermodynamic properties (expressed
in terms of 6) are therefore exactly the same as those of a
BCS superconductor: in particular the specific heat at low
temperatures is exponential and the normal density is

iso tropic:

Pn, aP = ~ePPnp

p /p =—I'(6', T) (1 + —,'F )/L1 + ',F I"(b,', T) j, —(9.48)

(1+—:Zo)i:l+lI'(~', T)j
1+ —'ZoL-,'+ —,'Y(A' T)3

(9.49)

Near T, we can use the fact that 1 —F'(T) xi (3)~ &/
k~'T' together with formula (6.5) for the specific heat
jurnp in terms of 6', to predict relations between the specihc
heat jump, spin susceptibility change dx/x = 1—
x(T)/x„, and superfluid density p, —= p —p

(1+ -'Zo) (~x/x-) = (1+ 3Fi) (p./p)

= 2(1 —T/T. ) (aC/1.42C„) (T~ T.). (9.50)

We refer to Wheatley (Sec. III and V) for a comparison
with the experimental data on 'He-B.

The above properties are independent of the choice of the
rotation B. The "spin superfluid density" (Sec. VII.D)
however does depend on A. The simplest way of expressing
the result is to assume that we simply choose a new set of
orbital axes so that (9.45) is preserved: these are rotated
relative to the old ones (which coincided. with spin coordi-
nate axes) by 8 '. Then, from Eqs. (9.45) and (7.67)
we find for all T (under the assumption that Zi = 0 but

"The notation is somewhat condensed here: R is allowed to act in
either spin or orbital space as appropriate. "Rotation" here and subse-
quently includes "improper" rotations, i.e., operations involving in-
version of the coordinates.

where I (dP, T) is the Yosida function defined by (6.14).
(We write it explicitly as a function of h~ to emphasize that
while its functional form in terms of 6' and T is given by
(6.14), the resulting temperature dependence may be dif-
ferent from that given by BCS theory. )

The spin susceptibility of the BW state is isotropic and
given if we neglect Z& by Eq. (7.56):
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including the effective-mass correction, cf. Sec. VII.D) near T. we have Pcf. Eq. (9.50)g

= 3L1 —I'(2) ((b;; —e;~;)~. n& )..mm*p
= D —I'(T) j(b''b-~ —sP'~-i +b'-~'~ +b'i'~'-) j

p p'/p = —'(1+ 3Fi) '(dC/1. 42C„)

X (2b., —i.&,) (1 —&/&.) (9.54)

(9.51)

(the primes indicate that the orbital coordinate system has
been rotated). For any given direction in orbital space p'&'"

therefore has two eigenvalues of 54L1 —I'(T) ](m/m*) and
one of —;L1—F (T)g (m/m*) .

Finally we notice that the relative orbital angular
moni entum of the BW state is zero, according to Eq. (7.48) .
This is a result of cancellation of the angular momenta due
to the up and down spin pairs. Clearly, however, the
magnitude of relative angular momentum is not zero; in
fact it is 5. The magnitude of total spin is also S. (The
pairs form with I. = S = 1.) For the original state (9.45),
L and 5 are coupled to give" J = 0, but for more general
states of the form (9.46) J does not always have a unique
value.

x;;/x- = (b;; —d;d;)

+ d'd.-I (1+ —&o) I'(&)/L1+ u'oI'(&) lI. (9.55)

As remarked in Sec. VII.D, the experimentally measured
susceptibility usually corresponds to the maximum eigen-
value of y, that is, x„(cf. however Sec. XIII). The spin
superfluid density may be conveniently written in the form

Thus, near T„ the eigenvalues are in the ratio 2:2:1, the
small eigenvalue being associated with motion along the
direction of l. At lower temperatures the superfluid density
may be a good deal more strongly anisotropic (cf. the dis-
cussion in Sec. VI.C and Fig. 6, which is in fact drawn for
the ABM state).

From Eqs. (7.53) and (7.54) we find for the spin sus-
ceptibility

Turning now to the ABM state, we recall that a typical
state is of the form

Pij,aPSP
= (* —d'd') I&, l

' (9.56)

d~(n) = (3/2)'~'(my+ ieg), d„(n) = d, (n) = 0

(9.52)

(where the zero indicates that p,/p is not corrected for
Fermi-liquid effects, that is, is calculated from Eq. (6.26).
Near T, the right-hand side is just (b,; —d;d;) times the
true superfluid density.

or Lcf. Eq. (7.33)jg, „(n) = g„(n) = (3/2)i12g(„
in, ). In this state all the pairs, wherever they may be on
the Fermi surface, are in the same spin state, namely that
corresponding to S = 1, 5 = 0. The orbital wave func-
tion, on the other hand, corresponds to angular momentum
5 around the x axis. Obviously, a general ABM state can
have d along any axis and the orbital angular momentum
along any axis: if we represent the latter by a unit vector 1,
therefore, we can formally write the general ABM state in
the form

d(n) = (3/2)'12d(ni n+ in, .n), (9.53)

where d is now a real unit vector and e&, e2 are two arbitrary
mutually orthogonal unit vectors. We then have l = ey
e2. It is convenient to express the properties of the ABM
state in terms of the unit vectors d and l.

The superfluid (or normal) density is anisotropic, the
principal axes of the tensor p, being determined by the
vector 1 and any pair of axes perpendicular to l. In particular

' This may be seen by direct inspection of Kq. (7.30) .
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Since (to the extent that we neglect mixing-in of / & 1
spherical harmonics) the gap has two nodes, the specific
heat at low temperature is not exponential but proportional
to T: in fact, it is given by Eq. (6.4) with the factor
g; u; 'b; ' equal to ~4. However, as pointed out in Sec. VI,
this result should probably not be taken too seriously, as
in reality mixing-in of l & j. harmonics may well wash out
the nodes.

d (n) = &3+, (9.57)

or any state obtained from this by rotation of the spin
and/or coordinate axes. This is very similar to the ABM
state except that the pairs do not have a finite relative
orbital angular momentum. The eigenvalues of the super-
fluid density tensor near T, are in the ratio 3:1:1.

X. ORIENTATION AND "TEXTURES"

Up to now we have been neglecting small terms in the
Hamiltonian such as the dipole energy, and also have im-
plicitly considered a uniform system, so that any effect of
the boundaries is neglected. The Hamiltonian is therefore
invariant with respect to rotation of the spin and orbital
coordinates separately as well as with respect to gauge
transformation, and as a result, the considerations about
the free energy developed in Secs. V and IX do not define
a unique thermodynamic state but rather a class of states
which transform into one another under these transforrna-
tions. On the other hand, we have already seen that some
physical properties of the system, e.g. , the superfluid density
tensor, depend on which particular state we select. The
question therefore arises, which one of the (so far) equivalent
states in a given class is in fact the true stable thermo-

Finally we note again that the ABM state possesses
a finite relative orbital angular momentum, of order
(iVS/2) (6/e&). This angular momentum is evidently di-
rected along 1.

For completeness we should also mention briefly the
third unitary state which can be stable, the so-called "polar"
state:
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Fmagn = 2X~jIfiHj = /X'~ +»magna (10.1)

where x;, is given in terms of the vectors d(n) by Eq. (7.53)
and p„ is the normal state susceptibility. For the 8% state
y is isotropic whatever the orientation, so an external mag-
netic field by itself has no orienting effect. For the ABM
state, on the other hand, insertion of Eq. (7.53) into (10.1)
gives Lcf. Eq. (9.55)j

dynamic stateP Or equivalently, how does the system
"orient" the wave function of its Cooper pairs'. To study
this question we need to consider the small terms, so far
neglected, which break the invariance under spin and
spatial rotation (gauge invariance remains unbroken so
long as particle nuinber is strictly conserved) .

The symmetry-breaking (orienting) effects usually con-
sidered are those associated with: (1) magnetic fields, (2)
the dipole forces, (3) walls, (4) currents, (5) electric fields.
(There may well be other more subtle effects which have so
far escaped detection or theoretical discussion. ) Crudely
speaking the first orients the spin of the Cooper pairs, the
last three their relative orbital angular momentum, and
the dipole force orients the spin relative to the orbital
angular momentum. In Subsection A we shall discuss (1)
and (2), in Subsection 8, (4) and (5) and in Subsection C,
(3); for the sake of concreteness we usually consider
explicitly the ASM and BW states. In the last subsection
we shall discuss how the system behaves when the various
effects are in competition.

A. Magnetic fields and dipole forces
The effect of the external magnetic field is rather simple:

it tends to orient the spin quantization axes d(n) in such
a way that the eigenvalue of the susceptibility tensor cor-
responding to the direction along the fieM H is a maximum.
We have in fact quite generally for the external field con-
tribution to the free energy, Ii

pairs to this expression is

Fr ' —3 rFr
HD ——,y 6

r3
(10.5)

Since (all components of) the pair wave function F(r) fall
off as r —+ 0 or r —+ ~, there are no divergences in this ex-
pression. After a little algebra we find quite generally (see
Appendix)

HD ——(2~y'P/3) e' f (dO/47r) f (dQ'/4m-) Id*(n) .d(n')
—3q d*(n) q. d (n') I (10.6)

q =—(n —n')/I n —n'
I

and for the case of a pure P-wave state this reduces further
(see Leggett, 1974a, Appendix) to

&D = -'~~'&'+' f (dfl/4~) I3 I
n. d(n) I'

I d(n) I' I

(10.7)

For l & 1 states we get the same expression but with the
constant in front replaced by ~y'A'/l(l + 1) (see Takagi,
1974a) .

Actually, the above derivation assumes that the dipole
energy of two quasiparticles is of the form (10.4), which is
not entirely obvious. It can be shown however that any
effects connected with the renormalization of the dipole
energy by the "dressing" process which turns a real particle
into a quasiparticle merely have the effect of multiplying
Eq. (10.7) by some factor (R'), (see Leggett, 1947a). We
shall see in the next section that the experimental NMR
result suggest that {R'), is close to 1; it may in fact be iden-
tically 1, although this has not been proved to my
knowledge.

gP (AB M)

= 2x-i 51 —I'(T) j/L1+ —:ZoI'(T)jI (d.H) ' (1o 2)

Let us define a quantity g& (T) by

gD(T) =——;(~y'A')+'(T) (R') (10.8)

At low temperatures this energy is of order ~~ y„H'
5 )& 10 ' ergs/cm' gauss', while for T near T, we have
approximately

This quantity is a measure of the possible contribution of
the Cooper pairs to the dipole energy. At low temperatures,
it is of order y%'(k~T, ) (de/de)'(jnP, e,)', and near T, we
have explicitly»,.'"'" = L -'(1 — I .)I( + —.'~.)3x 0'

= 5(1 —TIT,)x„a'
~ 5 )& 10 i(1 —TIT,) ergs/cm'gauss', (10.3)

gn(T) = ', $9 3m'%—'(k. T )'j(R') «(de/de)'~

&& (ln 1.14tL..)&(1 —T/T, )

10 '(1 —T/T, ) ergs/cm', (10.9)

where we used Eq. (9.29) to estimate ~ for the A phase
(if it is assumed to be ASM). Evidently, the effect of this
energy is to force d into the plane perpendicular to H.

The dipole energy of the system has the standard form

dg dg 3dy ~ (ri —r)) d) (ry —r()
Hn ———',y'5' g

ra
I

(10.4)

According to Eq. (7.74), the contributiori of the Cooper
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where we took for definiteness eo 0.7'K. (For a possible
justification of this estimate, see Leggett, 1972.) It is
interesting that, at least in the simple model we are using
throughout, quantities like gz&(T) whicli are essentially
expectation values over the Cooper pair wave function do
depend on the cutoff energy e„ though only logarithmically.
It is not entirely clear whether a proper calculation of the
normalization constant B' wouM cancel this dependence or
not. Notice that gD(T) is roughly equivalent to the energy
due to susceptibility anisotropy, Eq. (10.3) in a field of the
order of 50 G; near T, this "characteristic field" is approxi-
mately temperature-independent.
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Substituting Eq .(10.9) in (10.7), we find for the dipolar
free energy

gp~; = const. + gri(T) f (dQ/47r)3 /n d(n) f', (10.10)

where the constant is independent of orientation. Evidently
the effect of Apd;~ will be to push d(n) as nearly perpen-
dicular to n as possible. For the ABM state we easily And
apart from an orientation-independent constant,

gP . (ABMl Sg (T) (d, l)'2 (10.11)

Ap+ip = 5gli(T) jR~~Rps + R~SR~s + R~SRp~ j

= const. + -,'gi)(T) ( (TrR)'+ Tr(R') I, (10.12)

where we took into account that R pR p = 1. Now for a
rotation around an axis u through an angle 0 we have,
independently of ~,

TrR = (1+ 2 cos8), Tr (R') = (1 + 2 cos 28)

(10.13)

and hence, again omitting an orientation-independent
constant

so that the dipolar energy tends to force 1 to lie along d, and
hence to lie in the plane perpendicular to the external
magnetic field.

The effect of the dipole forces on the BW state is some-
what more subtle. Before considering it explicitly, let us
briefly note that for the "2D" state, Eq. (9.23), the dipole
energy is clearly minimized by a rotation of (9.23) through
90' around the s axis; this leaves d(n) exactly perpendicular
to xl for all points on the Fermi surface and hence must
minimize the positive-definite second term in (10.10) .
Clearly this result can be generalized: if within a giv'en
plane we start with d(n) n, then the dipole energy is
minimized by a rotation of 90' around an axis perpendicular
to this plane.

Returning now to the BW state, we first notice that
inversion of the coordinate system will not change the dipole
energy; hence in writing down the general BW state (9.46)
we can confine ourselves to the case of a pure rotation. If
we represent 8 as an (orthogonal) rotation matrix in the
usual way, then we find from (10.10) (apart from the con-
stant) with summation over repeated indices as usual
implied

this degeneracy, i.e., to determine which direction ~ will
actually takeP In a magnetic 6eld there is: one can argue
that the field will tend to depress the number of 5, =—0 pairs
relative to the 5, = ~I pairs, i.e., to reduce d, relative to
d and d„. In that case it is more important. to get the
orientation of d(n) relative to n right for the xy components
of d than for the z component, which is slightly smaller;
hence, we would expect 4 to lie along the s axis (cf. the
comments above on the 2D state: the xy components of
the BW state are exactly the same as those of the 2D state,
apart from normalization). Since the relative depression
of the s component is expected (by analogy with known
results on depairing in superconductors) to be of order
LIJH/A(T) $', we expect an extra energy tending to orient ~
of the form

~p'-:" ' ——gD(T)Ll/~(T) j'(~ H)'. (10.16)

B. Currents and electric fields

1t was long ago recognized (Glassgold and Sessler, 1961)
that the fact that the superQuid density of an anisotropic
superQuid is itself in general anisotropic implies that Row
of the superAuid component alone, or a relative counterHow
of the superAuid and normal components, would tend to
orient the Cooper-pair wave function. The simplest way of
producing a counterflow is to establish a thermal gradient
across the sample, so that two-fI. uid convection takes place
jus't as 111 supcrfluld Hc (scc, c.g. , Kllalatillkov', 1965) .
Very probably, such a situation -has been produced in-
voluntarily in some experiments with 3He. A Row of the
superQuid component alone can occur in a narrow channel
("superleak") in which the normal component is clamped
by viscous forces.

Since the temperature dependence of gD(T) is approximately
the same at that of 6'(T) we find the remarkable result that
Ap' is temperature-iedepeedent to a first approximation.

A quantitative calculation of this effect has been carried
out by Engelsberg, Brinkman, and Anderson (1974), by
adding to the general free energy expression (9.16) terms
explictly representing the magnetic field and dipole energies,
and finding the values of the d; which minimize the total
expression. They fi.nd using weak coupling values of a s
that the 0-orienting energy is of order 10 " 'K/atom G,
i.e., 4 X 10 "ergs/cm' G'. This is several orders of
magnitude smaller than most of the other orientational
energies we shall meet in this section; however, it is generally
believed that it is the principal factor determining w for the
BW phase in bulk.

Apq;i, w' = i;gii(T) I cos8 + 2 cos'8l. (10.14) In liquid He the kinetic energy of counterfl. ow is given by

80 —= cos '( —4) 104'. (10.15)

We therefore reach the result that the dipole energy of the
BW state is minimized by a rotation, around any axis cb,

by the "magic angle"

&SlOW = gP8& 8 ~ 2Pn&m ~ (10.17)

In 3He we may easily derive the appropriate generalization
of this (cf. Subsection D below):

Clearly the arbitrariness of the rotation axis ~ leaves a
large degeneracy in the problem. 7 Is there any way to break

~ In the literature the vector u is often denoted n. Since we have
used n above with a di8erent sense, we avoid this notation.

+flower

=. gPaP &sa'4P ~ gPaP &na'4P.

Assuming that there is no mass flow (which is true in
typical experimental counterflow situations) we can elimi-
nate v„by putting P = 0 in (the generalization of) Eq.
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(6.23), thereby obtaining

»flow 2p(ps/pn)np&8~&sp ~ @pap &sa 4p'(7 ~ Tc) 1

AFii "B ———const (1 v )' (10.20)

where the la,st expression applies only near I', . In most
experimental situations it is v, which is fixed (e.g. , by the
condition that it is equal to the critical velocity): therefore
the Row energy is minimized (at any temperature) by
minimizing the component of p, along the direction of Row.
In a "superleak" the situation is identical except that in
Eq. (10.19) the coefTicient is p pi' at atl temperatures.

For the ASM state using the fact that the eigenvalue of p,
corresponding to the direction of 1 is always the least of the
three, we evidently have apart from an orientation-indepen-
dent constant (where v, is a unit vector along v, )

Apart from passing heat currents through the liquid, it
should be possible to orient bulk superQuid 'He by applying
an electric field (Delrieu, 1974). The basis of the rnechan-
isiIi envisaged is that the electric held induces on each He
atom a sm'all but halite electric dipole moment, which
because of the very short characteristic relaxation time
associated with the electronic processes responsible may be
assumed to be always in the direction of the electric held.
These electric dipoles then experience a dipole interaction
given by a formula identical to (10.4) except that pd is
replaced by the induced electric dipole moment y = oE
(n = polarizability of 'He atom). Thus the spins of the
atoms are not involved. Then using Eq. (6.43) and. following
through a derivation analogous to the one above for the
dipole energy, we hnd apart from an orientation-indepen-
dent constant

».i = —(4~'/~') ~'gD(T) f(dfl/4 )3(ri E)'
I d(n) I'

(E = unit vector along E) (10.23)

where the constant is of order ~pe, '. More specifically, near
T, we find from Eq. (9.54)

= —i'0 IL1 —I'(T) 3/(1+ 3Fi) I ~ '(l.v.)
= —A (v, ) (1 —T/T, ) (1.v, ) '

A ~ 10 'v'erg sec'/cm'. (10.21)

DF'ii, w& —gi&(T) )pi, e,/5(T) g'(~ v,)' (10.22)

which may be comparable to the magnetic orientation
energy in weak fields Lnote that the critical velocity for
SHe-3 seems to be about 0.5 cm/sec, that is, about ten
times larger than in 3He-A (see Wheatley) j.

Qualitatively similar remarks apply to orientation by spin
convection currents (spin counterflow, cf. Sec. VII.D); we
shall not work out the results in detail as it may not be
easy to produce well-dehned macroscopic spin currents in
pr'choice. .

If we assume that critical velocities in 3He-A are of order of
magnitude 0.05 cm/sec (cf. Wheatley, Sec. VII), then the
maximum orientation energy due to Row near T, is com-
parable to that due to a field of the order of a, few gauss,
and is about two orders of magnitude smaller than the dipole
energy. At lower temperatures the Row orientation eA'ect
becomes somewhat more important rela. tive to held effects
(by a factor of order 20) because the factor (1+ ~Zo) X
(1 + i3F,)

—' which occurs in their ratio near T, Lcompare
Eqs. (10.3) and (10.21)g no longer occurs at lower tem-
peratures.

For the 8% state the superAuid density is isotropic, and
consequently, a heat current has no direct effect on the
orientation. However, just as an external magnetic held
tends to depopulate ("depair") the S, = 0 component of
the wave function and therefore makes it adva, ntageous for
the rotation vector ~ to lie along the field, so a heat current
will tend to depopulate the component L, = 0 along the
current direction Lto an extent of order (p~v, /6)'$ and
therefore to orient w along the current direction. Hy analogy
with Eq. (10.16) we expect the orientation energy to be of
the form

For the ARM state we find from Eq. (10.23)

» (ABM) —+ (4~2+2/~2) g (T) i (l.'E) 2 (10.24)

indicating that 1 tends to lie perpendicular to E. Since we
already know that the combined effects of susceptibility
anisotropy and the magnetic dipole energy force 1 to lie
perpendicular to H, we see that in the presence of crossed
electric and magnetic fields 1 and d will be forced to lie in
the unique direction (apart from a sign) perpendicular to
both. This seems to be the most promising way of producing
a well dehned single "domain" in bulk superAuid 3He-'A

(Delrieu, 1974) .

For the 8% state the e6ect of an electric heM should be
very small indeed: because of the form of AF, i LEq. (10.23)j
this energy plays no role at all in determining the axis or
angle of rotation 8 discussed, in Subsection A above, and
while there is in principle a depairing effect associated with
the electric field which will tend to orient ~, an electric
field of the order of 40 000 V/cm is equivalent to a magnetic
field of only ~50 G.

%e would like to emphasize that all the bulk orientation
energies we have considered in this section and the last one
usus, lly are extremely small compared to the "gross" con-
densation energy differences between the A and 8 phases;
the latter are typically of the order of a few ergs/cm3 (cf.
Wheatley Sec. IV), while the orientation energies we have
been considering are rarely greater than one-thousandth of
this at fields of less than 1 kG. (The wall energies we shall
be considering in the next section are by contrast quite
comparable to condensation energies but act only over very
small regions. ) However, it should perhaps be pointed out
that extremely near the critical temperature the orientation
energies, which generally speaking are proportional to
(1 —T/T, ), will outweigh the A—3 condensation energy

(where we neglect the fact that R' may not be the same for
electric as for magnetic moments).

The factor 4a2E'/p' is approximately equal to 1 when
F ~ 40 000 V/cm, so that for fields of this order the electric
dipole energy is compa, rable to the magnetic dipole con-
tribution.
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difference, which varies as (1 —T/T, )'. The most obvious
example of the effect of this is of course the "profound
effect" of a magnetic field on the phase diagram near the
PCP (Wheatley, Secs. III and IV). This results, inter alia,
in the interposition in a magnetic 6eld of a thin slice of
A phase between the X and B phases below the pressure of
PCP (see Wheatley, Fig. 1) . In this connection it is amusing
to note that for very low external magnetic fields (much
less than 30 6) the dipole energy (10.10) will be more im-
portant than the external field energy (10.1) and will

actually favor neither the B% nor the ABM phases, but the
normally unstable "2D" phase (9.23)." Consequently, if
the temperature is lowered in zero (or very small) external
magnetic 6eld af pressures below the PCP, we expect not
the series of transitions N —+ A —+ B but rather X —+ 2D —+

B (the second transition probably occurring continuously) .
Although it is unlikely that this behavior will be directly
visible, it might-have some interesting implications for some
of the "memory" effects which can be observed in super-
heating and supercooling (Osheroff, 1973; Wheatley, ch.
XI) . At higher pressures we expect N —& 2D —& A ~ B.

C. Walls

So far we have neglected the boundaries of the liquid
'He, whether they be solid walls, free surfaces, or, possibly,
an interface with a 4He-rich solution. If we consider for
de6niteness a solid plane boundary, it is intuitively plausible
that the Cooper pairs near the wall should tend. to orbit
in a plane parallel to the wall rather than one perpendicular
to it, since in the latter case they will bump against it.
Consequently, one might naively expect that in (say) the
ABM state the 1 vector would orient itself perpendicular to
a wall (and more generally, perpendicular to a boundary of
any sort).

This conclusion has been con6rmed in an elegant calcula-
tion by Ambegaokar, de Gennes and Rainer (1974, here-
after Ambegaokar et al. , 1974). Their approach, which
relates the equation obeyed by the order parameter when
it is varying in space to the current —current response func-
tion in the normal state, requires more advanced formal
techniques than are assumed in this review, so we shall
not try to reproduce it here. One can get some idea of the
physics behind the argument from the following considera-
tions (which however are a considerable oversimplification):
Consider the ABM phase, and imagine a Cooper pair ap-
proaching a perfect plane boundary which will reAect the
atoms specularly (Fig. 8). In the bulk liquid the phase of
the pair wave function is fixed as a function of the relative
position vector r, —r2 of the pair (and is constant as a
function of the center-of-mass position, since there is
assumed to be no net current). For 5-wave pairing this
phase is independent of the direction of r& —r2, but for
I'-wave pairing it is a function of direction: in fact since
the angular dependence of the wave function is of the
form sing exp(+), where 8, qr are polar angles measured in
a system with I along the s' axis, it follows that the phase is
unchanged if the component of r& —r2 along 1 is inverted
but in general changes if either of the components perpen-
dicular to 1 is inverted. Suppose now that our particles are
on paths which, if the mall were not there, would take them

This was pointed out to me by K. Maki; quantitative calculations
confirming this conclusion have been done by S. Takagi (unpublished) .

FIG. 8. Effect of specular re-
Aection on the phase coherence
of a Cooper pair ('for explanation,
see text}.

I
/

I

p)

to I'~ and I'~. If they are in the correct "bulk" wave func-
tion, they should arrive there with the correct phase of their
relative wave function. On the other hand, since the wall
rejects them specularly, they will in fact arrive instead
respectively at I'&' and I'2', the "rejected" positions. This
means that the component of r& —r2 perpendicular to the
wall is inverted, while those parallel to the wall are un-
changed. If 1 is perpendicular to the wall this does not
matter, since then only the component parallel to 1 is
changed and, as we have seen, this does not affect the phase
of the relative wave functions; the unreQected and rejected
waves can therefore continue to interfere constructively and
no harm is done. On the other hand, if 1 is parallel to the
wall a component of r~ —r2 perpendicular to 1 is changed
and the particles therefore arrive with an incorrect phase
of their relative wave function; that is, the unreffected and
rejected waves interface destructively and the total am-
plitude is reduced. In fact Ambegaokar et a/. find that for 1

parallel to the wall the amplitude of the pair wave function
tends to zero at the wall, resulting in a loss of condensation
energy, whereas for 1 perpendicular it remains the same as
in bulk. For diffuse reQection the wave function is reduced
for both perpendicular and parallel 1, but more so in the
parallel case. The general conclusion, therefore, is that 1

will tend to be anchored perpendicular to the wall. One
finds that the distance over which the pair amplitude is
depressed near the wall in "unfavorable" cases is of the
order of the temperature-dependent coherence length(s)
$(T) (see next subsection). The same general conclusions
are expected to apply for the behavior near a free surface
(Privorotskii, 1974) .

As in most other orientation problems, the question of
the favored orientation for the BW state near a wall is a
good deal more complex than .the corresponding problem
for the ABM state. It is, indeed, fairly obvious that the
character of this state must change somewhat as we ap-
proach the wall, since some of the angular momentum com-
ponents will be suppressed more strongly than others. This
problem has been discussed by Brinkman, Smith, Osheroff
and Blount (1974; hereafter Brinkman et al. , 1974) on the
basis of Ambegaokar et al. 's results for the ABM phase.
They introduce a trial wave function of the form

(10.25)
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where s is a unit vector normal to the wall, R is an arbitrary
rotation matrix specified by an angle 0 and an axis u as in
Subsection B, and f(r~) is a function of the distance ri
from the wall which tends to 1 as ri —+ 0 (i.e., as we ap-
proach the wall) and to zero as r~ —+ ~ (far into the bulk
liquid) . The form (10.25) automatically guarantees that the
component of the BW wave function corresponding to
angular momentum parallel to the wall is suppressed as we
approach the wall; in fact in the limit as we approach the
wall the wave function essentially becomes of the "2D"
type. Brinkman et al. (1974) find that the rotation angle 8
is essentially independent of r, and in the absence of an
external magnetic fields the axis ~ lies perpendicular to the
wall. In the presence of a magnetic field H there is a "field-
dependent surface energy, " since owing to the effect of
suppression of one angular momentum component the sus-
ceptibility becomes anisotropic. As a result, for H in the
plane of the wall and large the axis u no longer lies perpen-
dicular to the wall: in fact it makes an angle of cos '(1/5'~')
with both the normal to the wall and the field.

In connection with calculations of wall energies one point
should be emphasized: although the wall may in general
strongly distort the bulk Cooper pair wave function Lcf. Eq.
(10.25)j involving an energy comparable to the condensa-
tion energy, this distortion takes place over a distance of
the order of the temperature-dependent coherence length (s)
$(T) to be introduced in the next section. Generally speaking
(except very close to T,) these lengths are of the order of the
pair radius $0 Av~/~kT„ that is, a few hundred L Lcf.
Eq. (10.29) belowj. Beyond this distance the wall has no
loriger any distorting effect on the pair wave function,
but it does have an orienting effect: that is, beyond a distance
~$o from the wall the pair wave function is as in an infinite
bulk medium, but its orientation is (at first) that which is
most favorable from the point of view of the wall energy:
e.g., for an ABM state 1 points perpendicular to the wall.
As we go further out into the bulk liquid, the orientation will
in general gradually change in accordance with bulk orienta-
tion effects, but as we shall see in the next section the scale
of the variation is generally very much larger than )o, in
fact sometimes of the order of mm. Therefore, generally
speaking, to take the effect of the wall into account it is
adequate simply to impose the boundary condition that the
orientation at the wall is the "most favorable" one.

As a footnote to this section, it should be pointed out that
although wall energies, like bulk orientation energies, are
usually a small perturbation on the "gross" free energy
difference between the ABM and BW phases, they may
have a large effect when one is very near the A—B transition.
In particular, in a thin slab geometry, the effect of the walls
on the phase diagram is expected to be qualitatively like
that of a magnetic field (Privorotskii, 1974; cf. Wheatley,
Fig. 1).
D. Gradient energies: "Textures"

%e have now found rather a large number of different
effects which will tend to orient the superAuid phases.
Evidently, there will be circumstances in which they are in
competition. For instance, if we imagine a situation in
which there exists in the ABM phase a heat current and
also a magnetic field parallel to it (say, both along the
s axis), then the magnetic field will want d to lie in the
xy plane, the heat current will want 1 to lie along the z axis,

In a simple BCS superconductor the gradient energy has
an extremely simple form provided the variation of the
order parameter in space is sufficiently slow (see below).
In fact, if we write them in terms of a spatially varying gap
h(r) (we could of course equally well use the order param-
eter N(r), but this is the conventional choice) we have
(see, e.g. , de Gennes 1966, Sec. 6.2)

aZ, „., = j dr~
~
Vz(r)

~

. (10.26)

By using the fact that superQuid Aow with velocity v,
corresponds to the variation A(r) ~ 6 e px(2i mv, r/A), .
and that such a Row introduces an extra energy ~p,v,', we
can find the coe%cient y:

y = (A'/Sm') (p,/6')

(2M'/Sm) (m/m*) L7i (3)/4n-'j (AT.) ' =—yo,

(10.27)

where the second expression is valid in the limit T ~ T„
and we used Eqs. (6.32), (6.16), and (2.42) (which of
course assumes translational invariance). In a situation
where 6 is varying in space, the rest of the GL energy is
obtained by treating FI A(r) } obtained from (the 5-wave
version of) Eq. (5.75) as a "local" free energy and integrat-
ing it over space. Thus the total GL free energy is

Foi, ——j dry '(dn/de) (
——(1 —T/T. ) ~

b, (r) ('

+ ',0 I
~(r) I'} -+ ~ I «(r) I'3

LP =—,'i (3) (vrksT, )——'j. (10.28)

Clearly we can define a characteristic length $ =—L2y/
(dn/de) (1 —T/T, ) g'~' from the coefficients of the first and
third terms; this has the significance of, the length which
the order parameter needs to recover its bulk value after
being depressed, e.g., by the presence of a wall (cf. De
Gennes, 1966, Chap. 6) . It should be carefully distinguished
from the quantity $0

= A'vp/~k&T, which has the significance

but the dipole forces will try to orient d parallel to 1. This
particular example has been studied in detail by Takagi
(1973), who shows that a number of different equilibrium
configurations are possible depending on the relative
magnitudes of the energies involved. Similar considerations
should apply to any case in which bulk energies are in
competition.

A rather more difficult problem arises when the wall
orientation effect is in competition with bulk eRects. Such
a situation would arise, for example, near a wall in a mag-
netic field perpendicular to the wall. Clearly in general in
such situations the equilibrium orientation will be a function
of position; near the wall 1 will be perpendicular to the
wall (hence parallel to the magnetic field), but as we go
into the bulk liquid it will gradually rotate so as to be per-
pendicular to the field. To study these effects in detail one
must investigate gradient energies, that is, the energies
which arise when the order parameter is varying in space
(either in magnitude or orientation). In what follows, we
shall always assume that the variation is over a scale long
compared to the quantity $0: Aip'/~kliT, which is effec-
tively the "size of a Cooper pair" (cf. Sec. VI.D).
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of the radius of a Cooper pair, which is eo] significantly One often also meets the alternative expression, which is
temperature-dependent. Using expression (10.27) for p, we equivalent to within the divergence mentioned above:
have

Ap„,g' ——Q I ', EI,—
~

div A„(' + —',AT
~

curl A„~'I,

(dn/de) (1 —T/T, ) J (10.33)

cVA' nz & 7i (3)
(1 —T/T, ) '"

4m(de/de) m*i 4m'(k T )'
= $71 (3)/48 j"'(Al p/mkiiT. ) (1 —T/T, )

=—const. &0(1 —T/T„) —'~'

/where we also used Eq. (2.5) j.For a BCS superconductor
without Fermi-liquid interactions the expression (10.26)
for the gradient terms is actually valid (for sufFiciently
small gradients, that is (o

~

Vd
~
((6) at all temperatures

and not just in the GI. region; however, y is then a function
of T and is not. equal to yp. If Fermi-liquid interactions are
introduced it seems probable that one needs different
coeKcients, for T far from T„ for amplitude and phase
variations of the gap.

In the case of an anisotropic superQuid things are some-
what more complicated, since the order parameter is a more
complicated object and, correspondingly, the superQuid
density is a. tensor. We will treat the case of I'-wave pairing,
which is the only one which has been discussed extensively
in the hterature (de Gennes, 1973a,b; Wolfle 1974a;
Ambegaokar, de Gennes and Rainer, I974; Brinkman,
Smith, OsheroA and Blount, 1974; Brinkman and Smith,
1974) . Let us introduce the quantity

(10.30)

so that 8; is in fact the expansion of &(n). (In the literature
this quantity is often called d„; or A„;; in the latter notation
one should note that p labels the spiv indices and i the
orbitaL ones, in contrast to our notation in which n labels
orbital indices and i spin ones). If one wants to construct
an expression which is of second order in the spatial gradients
of the d; and has the correct invariance properties under
gauge transformations and spin and spatial rotations, there
are only three possibihties (8 —= 8/Bx, etc.):

(a) 8~8~~8pdpq & (b) B~dp,'B~dp~ ~ (c) B~ijli81id~~

where A„ is the vector with components 2„, (—= if;, cf.
above). A comparison of Eqs. (10.32) and (10.33) under
the assumption a = c leads to the relations

+L 2('vi + v2 + v3) ~ (10.34)

The coefficients p, can be related to the super Quid
density p ~'. To do this, we notice that in the special case in
which we assume a uniform variation of the phase of all the
components of d.„;, that is, put

d;(R) = Ad, expi(2mv, R/A), (10.35)

~~grad = gPnP '4n&sP (10.36)

A comparison of this expression with the one obtained by
substituting Eq. (10.35) in (10.32) leads to the relation

p p' ——(8m'/A') (vid, dp, ~ + v28 p+ v3dp~d, *)6' (10.37)

Lwhere we took into account the normalization of the ~f;,
Eq. (9.12)j. On the other hand, an explicit evaluation of
Eq. (6.32) for p q' in terms of d; leads, using (6.27), (6.15)
and the prescription

~
f(n) (' —+

( d(n) ~' for triplet states
Pcf. Subsection VII.Eg to

P-~' = 521 —I'(T) j(&-~+ ~-4'*+ 4A.**)(1+ 3~i) '~.

(10.38)

Comparing (10.37) and (10.38), and using formula (6.16)
for F'(T), we conclude (but see note at end)

the resulting state corresponds to a uniform superAuid
IIow with velocity v„and consequently from the definition
of the superfluid density tensor, I cf. Eq. (10.18)j the
gradient energy must reduce to the form

AP ~ = vi(B d ~Bye ) + vy(8 dp Bdp,)'
+ v3(i)d@A4i ) = vlii' + v2f + v8~. (10.32)

These three are actually 'not quite independent, in the sense
that (c) can be written as (a) plus a term of the form div S.
This divergence is often neglected in the literature, presum-
ably on the grounds that when integrated it will give a
surface term which vanishes if the boundary conditions
derived in the last section are applied (this follows from an
examination of the concrete form of S) . However, it is not
completely clear that this neglect may not lead to subtle
errors in some circumstances. In particular, it may change
the expression for the local mass current (cf. Wolfle, 1974a) .
If wc keep this term, then we can evidently write the
gradient energies in the form

vi = v2 = v3 = s(A'l8~*) P'/(&~T. )'X7f(3)/4~'3
(10.39)

where yp is the coefficient which would arise for an 5-wave
(BCS) superfluid. (Cf. Eq. (10.27) above. j Equivalentl
we have from Eq. (10.34)

A. y ——,EL, —~~p.1 6 (10.40)

Since K~ and El, are not equal we have a different
"bending energy" corresponding to bending of the vector
components A„of the order para'. eter perpendicular and
parallel to their directions (or, equivalently, the energy
associated with a given gradient of d; along the direction n
is not equal to thc cncrgy associated w1th thc same giadicnt
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in a transverse direction) . So we can define iveo characteristic
lengths"

Er 1/2

(dm jde) (1 —T/T, )

EI, 1/2

(de/de) (1 —T/T. )
(10.41)

where the constant is of order one. Patton (1974) estimates
the coeKcient of (1 —T/T, ) 'i' to be (s)'i' X 124 A.

The gradient terms in the free energy in the OI region
can be written, then, in the simple form

~psrad = s'Yo(c}n4Apdpi + ~Api~udpi + tiadAt}priai )
—= ssyo Q {3

~

div A„~' +
~

curl A„~'}. (10.43)

It is important to realize that although we derived. the
coeKcients in (10.43) by considering simple superfiuid flow,
which corresponds to a simple variation in space of all d;
by the same phase factor. , the expression (10.43) is ap-
plicable to much more general situations. Some examples
of other types of variation we may want to consider are:
(1) A variation of the overall nzagnitude of d (i.e., 6) in
space. This corresponds to a spatial variation of the actual
number of condensed pairs: one might for example have to
consider such a situation in the presence of very strong
thermal inhomogeneity. (2) A rotation of d in spin space
only, without change of magnitude. This corresponds to
"spin counterAow" or more generally superAuid spin cur-
rents Lcf. Sec. VII.D and Vuorio (1974)$. (3) A rotation
of d, in orbital space only. In the ASM phase this would
correspond to a change (rotation) of the vector 1 in space.
This situation is in some ways the most interesting of all,
and is generally believed to give rise to the so-called "orbital
supercurrents" (Anderson and Morel, 1961; de Gennes,
1973a; Wolfie, 1974a; Ambegaokar et a/. , 1974). However,
there are a number of questions concerning this type of
situation which seem to Inc still uIlcleaI', so I shall Ilot
discuss it in detail here (cf. Introduction) .

From Eqs. (10.41) and (10.40) and (10.27) we have

(7 ——( /&3 = (3/5)""L7f'(3)/48)"'(A'tp/~k T,)

X (1 —T/T, ) '" =—const. . &s(1 —T/T„).
(10.42)

"spin superfluid density" p,; psp'" LEq. (7.62) $. This is true
if there are no Fermi-liquid effects, but as pointed out in
Sec. VII.D, in the presence of such effects it is true Owly in
the GI region. Therefore, if we apply Eq. (10.43) at arbi-
trary temperature we reach a contradiction. Nevertheless,
it is probably valid for purposes of order-of-magnitude
estimation.

Using the expression (10.43) for the gradient free energy,
we can in principle solve the problem of the behavior of
the space-dependent order parameter d„;(R) Lor d(n: R) j
when there are competing orientation effects. %hat we
have to do is to write down the sum of the bulk orientation
energies and the gradient energy, impose the correct
boundary conditions (e.g. , for the ABM state, 1 near a wall
must be perpendicular to the wall; if the liquid is in a wide
tube and known to be Aowing, far from the walls, with
velocity v„ then far from the walls 1 must be parallel to v, ;
etc.), and minimize the whole expression with respect to
d, (R). Since all terms are quadratic in the d;, this gives
a set of simultaneous linear second-order di fferential
equations which can in principle be solved to give the com-
plete behavior of d, (R), and hence the complete position-
dependent orientation of the anisotropic superAuid. Such
a program has been carried out, for example, by de Gennes
and Rainer (1974) for the A phase fiowing in a narrow
tube, and by Brinkman ei al. (1974) for the somewhat more
complicated problem of the 8 phase oriented by walls and
by a magnetic fl.eld. Vfe will not try to reproduce the details
of those calculations, but want to comment on one important
general point which emerges: whether we are talking about
the A or the 8 phase, very close to a wall it is always the
wall which determines the orientation, while if we go out
su%ciently far into the bulk liquid obviously the system
will have "forgotten" the wall and taken up the orientation
determined by bulk effects. The question then arises, what
is the order of magnitude of the "healing length" E, such
that for distances from the wall larger than E, we have
essentially bulk behaviors Evidently, this is determined
by the competition of the bulk orientation effects, whatever
they are, and the gradient energies. In fact, we can get the
order of magnitude E,, from the following argument: Suppose
that the healing length is of order R. Then the spatial
derivatives of the d; are of order 6/R, and accordingly the
gradient free energy per unit area is of order psR(b/R)'
}sA'/R. On the other hand, if the bulk orientation energy
per unit volume is AFb, by allowing the orientation to differ
from the value preferred in bulk over a distance of order R
we have increased the free energy per unit area by an
amount of order PAFb. The total added free energy is
therefore

Before we apply Eq. (10.43) it should be pointed out
that it has been d.erived above only for the .GI. region
Pand, strictly speaking, only then under the assumption
that the allowed invariants are restricted to those in Eq.
(10.31)j. I do not believe it is more generally valid, even
if po is allowed .to depend on temperature. To see that this
is so, we can substitute in it a form of variation correspond-
ing to "spin superQow" rather than ordinary superAow:
we then reach the prediction that there is a unique and
temperature-independ ent relation between p q' and the

2 This de6nition is the same as that of Ambegaokar eg gl. , j.974
Ltheir a is in fact just (de/d~} (1 —T/T, }g.

(10.44)

and the value of R„which is found by minimizing this ex-
pression, is given by

R, ~ (yean'/AFs)'".

Since, from Eq. (10.27), y&&bs is of order (i''/m) (p,/p), we
have generally

fP 4 erg'j /2 Cm 1/2

(10.46)
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It., ~ 100(1 —T/T ) 't'H ' cm G. (10.47)

A more quantitative analysis by Brinkman et al. (1974)
reduces this estimate (in eRect) by a factor of order four
or five The. result is still a macroscopic length if H is not
too large: hence, one reaches the somewhat surprising
conclusion that for liquid 'He-B (if it is indeed a BW phase)
contained in a typical experimental sample chamber
(dimensions 1 cm) in fields of the order of a few G and
not too near T„ the orientation should be determined
principally by the walls! While the quantitative details of
the above argument clearly cannot be trusted too far, the
conclusion that the characteristic healing length is propor-
tional to H '(1 —T/T, )'t' should be independent of them.
One can then see that at high fields the fraction of the liquid
which has an orientation differing substantially from the
bulk value is proportional to H '.

When the orientation of the Cooper pairs is changing
over lengths very long compared to the pair radius, in the
way described above, we say the liquid forms "textures"
(de Gennes, 1973a; the name comes from liquid crystal
theory) . Depending on the geometry of the sample chamber,
the field, etc. , different types of texture may be stable
(cf. Brinkman et al. , 1974); in some there may occur
singularities. For instance, if we consider the ABM phase
in an infinite cylinder (with field, etc. equal to zero) then
it is clearly impossible on topological grounds for the vector 1
to be everywhere perpendicular to the walls and at the
same time continuous everywhere in the bulk liquid. If,
however, one is allowed to introduce lines parallel to the
cylinder axis on which 1 is not defined, there is no problem.

Such a line is known as a "disgyration" and is somewhat
similar to the vortex cores well known in the theory of
type-II superconductors or liquid 4He. The study of this
and other types of singularity in the textures of an aniso-
tropic superfluid is still in its infancy (cf. de Gennes,
1973a; Fujita and Tsuneto, 1974) .

~ De Gennes and Rainer (1974) assume that v, can be as large as
1 cm/sec in small capillaries and thereby 6nd a vaIue of E, of 2 X
10 4 cm.

For the ABM phase the bulk energies AF~ are usually of
the order 10 3 ergs/cm3 and hence the healing length is of
order 10 3—10 ' cm (or more) .'o /Note that if, for instance,
it is possible to choose a configuration which satisfies the
wall boundary condition and minimize either the external
6eld energy AF g„or the dipole energy AFd p but not both,
then the system will already orient itself near the wall so
as to minimize the larger of AF g„and AFd;~, so that it is
the sesaller of the bulk orientation energies which enters
the estimate (10.46). Thus the above estimate is valid
even in very high magnetic fields. ) We notice that for the
ABM phase the healing length for given field, etc. does not
depend substantially on temperature near T„since both
p,/p and AFq are proportional to (1 —T/T. ).

For the BW phase we may consider specifically competi-
tion between the wall orientation of the rotation axis eo and
its orientation in bulk by a magnetic field H. Using the
estimate of the bulk orientation energy made in subsection
A, i.e., about 4 && 10 "H' ergs/cms G' (with no temperature
dependence near T,), we find

Note: the argument used in this subsection to obtain the
p s PEq. (10.39)j cannot exclude an extra "antisymmetric"
term 8y, such that 5y& ——0, 5yi ———8p3. LSuch a term
would give zero contribution to (10.32) when the spatial
variations is of the form (10.35) g. This problem has
recently been studied in detail by M. C. Cross (unpublished)
who concludes that the extra term vanishes under the
normal assumption of "particle-hole symmetry" (i.e., if
we neglect the variation of the density of states near the
Fermi surface) and more generally is at most of order
(T,/ei ) ' Cf. ,. P. W. Anderson and W. F. Brinkman. ,
Lecture Notes of the 1974 Scottish Universities Summer
School (to be published) .

XI. NUCLEAR MAGNETIC RESONANCE

Considering the substantial amount of theoretical work
which had been done on anisotropic superfiuids before the
experimental discovery of 'He-A and B in 1972 (cf. Chaps.
V—VII) it is somewhat ironical that it should be an area
which had attracted virtually no theoretical attention at all,
the nuclear magnetic resonance properties, which has
turned out to provide some of the most fruitful opportunities
for the comparison of theory and experiment. There are a
number of reasons for this. On the experimental side, NMR
experiments are possible in a wide variety of experimental
geometries, do not put any constraints on the cooling
technique, etc. , and moreover, can be carried out with
extremely high precision. On the theoretical side, it turns

. out that while experiments on the static susceptibility are
sensitive to the behavior of the Cooper pair spins, and ex-
periments on the superQuid density to their orbital behavior,
NMR experiments are sensitive to the correlations between
spin and orbital motion, which involve as it were many more
degrees of freedom and therefore show up as an increased
richness and complexity of the NMR behavior.

In the theoretical literature two main approaches have
been taken to the study of NMR phenomena. One is based
on the microscopic equations of motion or Green's functions
(Maki and Ebisawa, 1973, 1974a,b,c; Takagi, 1974a;
Combescot and Ebisawa, 1974); generally speaking the
equations of motion must be solved by some approxima-
tion, e.g. , the generalization of the raridom-phase approxima-
tion to the superfluid case (or by an equivalent assumption
about the regularity, etc. , of quantities occurring in the
Green's function). Such methods have the advantage that
they automatically permit the study of the linear behavior
of the system Lthat is, essentially the behavior which shows
up in the unsaturated continuous-wave (c.w. ) resonance)
over a wide range of variation of parameters such as external
field and collision time; in particular, they enable an account
to be given of the damping of the c.w. resonance. However,
these methods are formally very complex, and because of
this (and perhaps also for deeper reasons) it has not so far
proved possible to generalize them to deal with nonlinear
phenomena, which from an experimental point of view are
at least as interesting as the c.w. behavior. The second
method was a semiphenomenological approach based on an
adiabatic (Born—Oppenheimer) type of approximation
(Leggett, 1973a, 1974a; Engelsberg, Brinkman, and Ander-
son, 1974; Maki and Tsuneto, 1974a; cf. Anderson, 1973).
While this method is certainly not valid for arbitrary values
of parameters such as collision time, it seems fairly well
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established that it is valid at least as a first approximation
for the values which actually occur in liquid 3He-A and B;
moreover, it can handle the nonlinear phenomena just as
easily as linear ones, and is formally a great deal simpler
than the microscopic approach. The main drawback of this
approach is that it has not so far proved possible to in-
corporate in it a consistent account of relaxation effects
(see however Subsection F below) .

In this section I shall use the second, semiphenomenologi-
cal approach, as being more consistent with the spirit of
this review. I shall concentrate on the derivation and dis-
cussion of the basic equations rather than on their applica-
tion to specific experimental situations, since the latter has
been extensively discussed in the companion paper by
Wheatley (Sec. VIII). Moreover, since I have presented
many of the ideas to be discussed here rather more fully in
two other papers (Leggett, 1973b, 1974a), I shall often
refer to these papers for details of the argument.

A. Dipole forces and broken spin-orbit
symmetry

Let us start by considering the implications of the earliest
discovered %MR anomaly in the new phases of 'He—the
observation that the ordinary c.w. resonance frequency in
'He-A shifts away from the Larmor value Ml. = QHp, by an
amount which (as we now know) may be of the order of
at least several tens of kHz in low external fields (see
Wheatley, Sec. VIII). It may easily be seen that no such
shift is possible if we take into account only forces which
conserve the total spin 5 and its components. For in-that
case energy eigenstates of the system in an external 6eld Hp
may be labelled by total spin 5, projection of spin, 5,
(along the field axis), and a whole set of other quantum
numbers which we collectively label m; and since only the
external field (Zeeman) energy depends on S„we can write

E(tz S 5 ) = Eo(e, S) —pH05

(where y is the gyromagnetic ratio). But a weak rf field
perpendicular to the s axis has the effect of changing 5, by
&A (according to the usual selection rules) and so we see
from Eq. (11.1) that it must gain or lose an energy equal
to pAHp, i.e., the resonance frequency is exactly equal to
WHO = (ur, . (For a more formal version of this argument, see
Leggett, 1973b.)

Consequently, it is essential to invoke some force which
does cot conserve total spin. The most obvious candidate is
the interaction between the nuclear magnetic moments,
which was already mentioned in Sec. X in connection wj.th
orientation, LIt is also conceivable that an induced interac-
tion between nuclear spins due to polarization of the
electronic shells might play a role (Anderson and Varma,
1973), though so far there is no direct evidence for this.
If such an interaction does exist, it should presumably have
the same symmetry as the dipole forces and the remarks
below would apply equally to it.jThe dipole force is actually
extremely small, in fact, the order of magnitude of the
interaction between two neighboring 'He nuclear magnetic
moments is ~10 ~ K in temperature units, and the field
induced by one nuclear dipole at the site of its neighbor
is of order 1 G, corresponding to a precession frequency of
about 3 kHz. It is therefore at first sight somewhat myste-

rious that it should have such large effects, especially at
temperatures as high as 10 "K.

The reason for this is essentially as follows (for a very
much more extensive discussion, see Leggett, 1973b): If we
have a pair of particles, say a diatomic molecule, subject
to spin-conserving forces, then the total spin S and relative
orbital angular momentum L are separately conserved and.
moreover, classically speaking, may point in any direction
relative to one another without affecting the energy of the
system: the analogous quantum-mechanical statement is
that the energy is independent of total angular momentum
quantum number J. If now we switch on the weak nuclear
dipole forces, then provided that there is no accidental
degeneracy with respect to I, in the original system, we
may to a good approximation assume that both

~
L

~
and

~
5

~

are still conserved; however, they now precess around
one another as in the well-known vector model of atomic
physics, and the total energy now depends on the direction
of L relative to S, i.e., on the total angular momentum J.
In fact, classically speaking, the nuclear dipoles prefer to
lie end-to-end rather than side-to-side, which means that L
tends to lie perpen'dicular to S:correspondingly, in quantum
mechanics (for 5 = 1) the state with J = L lies lower
than either of the states J = I.& 1. However, the splitting
of the levels is dearly of the order of the nuclear dipole
energy, that is, of order 10 7 K. Now, if we take a statistical
ensemble of such pairs of particles at a temperature T))
10 7'K, evidently all the states J = L —1, I, L + 1 will
be almost equally populated; that is, any correlating effect
of the dipole force will be completely disrupted by thermal
fluctuations.

The reason why this argument does not work for an
anisotropic superAuid is that because of the "Bose-con-
densed" nature of the system wave function (5.2), all pairs
of particles are forced, at least at T = 0, to have the same
relative wave function y(ri —r2, 0;0,). (At T W 0 those
particles which form Cooper pairs must satisfy this condi-
tion. ) This means that all Cooper pairs must have the same
value" of J. Once this condition is imposed, the thermal
fluctuation energy is no longer competing with an energy
of order 10 7'K but rather with one of order 10 ~ K & X„
where E, is the total number of condensed particles in the
system. It is therefore unable to prevent the dipole forces
from selecting that orientation of the pair wave function
(within a given class, e.g., the class of ABM states or of
BW states) which minimizes the dipole energy. This situa-
tion (which was already implicitly assumed in the discus-
sion of Sec. X.A) is a particular case of a more general
property which I have elsewhere called "spontaneously
broken spin —orbit symmetry" (Leggett, 1973b).

The upshot of this argument is that the anomalous
%MR behavior must be closely associated with the nuclear
dipole orientation energy (10.10). We will. use this expres-
sion in the following: as will be seen, the orientation-
independent constant does not affect the results.

"„Or more strictly the same linear combination of eigenfunctions
of J, since because of the nonlinear nature of the BCS equation the
Cooper pair wave function need not correspond to a de6nite J-value.
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B. The adiabatic approximation"

It is by now well established experimentally that a
"longitudinal" ("parallel" ) vibration, that is, a vibration
of the component of magnetization parallel to the external
field, can occur in both 'He-A and B, and that at least for
small vibration amplitudes (as in c.w. resonance) its
frequency is essentially independent of the (constant)
external field (Wheatley, Sec. VIII; cf. Osheroff, 1K4).
This may reasonably be interpreted as meaning that in
such a case the only function of the magnetic field is to
establish an orientation for the eqnilibrilm state, and that
it has no subsequent effect on the motion (since it cannot
exert a torque on the component of magnetization parallel
to itself). This then is a particularly simple situation, and
for concreteness we shall refer explicitly to such a case in
the ensuing argument, although all considerations are in
fact quite generally valid.

The observation which is the key to the construction of
a sensible semiphenomenological approach to the longitu-
dinal resonance (and more generally to the NMR proper-
ties) is that the resonance frequency, though unexpectedly
large, is still small compared to almost any other charac-
teristic frequency in 'He. For instance, the normal state
relaxation frequency 7. ' may be estimated to be of order
100 MHz (cf. Wheatley, Appendix) and the "gap fre-
quency" 6/h is also of order 100 MHz except close to T„
whereas the maximum value of the (A-phase) longitudinal
resonance frequency is of order 100 kHz. This means that
it is reasonable to assume that any variable which is not
conserved (or very nearly conserved) will come to equilib-
rium in a time short-compared to a period of the vibration.
In that case we may hope to describe the system entirely
in terms of the "quasi-conserved" variables. For present
purposes, there are two sets of quasi-conserved variables of
interest: the components of the total spin S, which woiild be
rigorously conserved were it not for the dipole forces, and
which therefore change over a characteristic time of the
order of the period of the vibration, and the magnitude
and orientation of the set of ~ectors d(n) which describe
the Cooper pair wave function. The question of the con-
servation of d(n) is somewhat delicate: suppose for instance
that we start with a particular member of the cia,ss of
states which happens to be thermodynamically stable for
the values of pressure and temperature in question e.g. ,
we start with the ABM state with a given orientation of I
and d. Then any attempt to change the basic nature of the
state —e.g. , to perturb it so that it becomes more like the
2D stat" — will clearly produce very large restoring forces,
so that this possibility can be neglected for present pur-
poses. On the other hand, it can be ~orated —or more gen-
erally reoriented —at a very much lower cost in energy, in
fact at the cost only of the dipole energy. One can say,
therefore, that the basic nature of the state is rigorously
conserved to all intents and purposes, while its orientation
is quasi-conserved, that is, it changes only over a time of
the order of the longitudinal vibration period. As we shall
see below, this second conclusion is not quite correct under
all circumstances; nevertheless, this does not invalidate the
method to be used, as we shall see.

"A more extensive discussion is given in Leggett, I9/4a, Sec. 4.

The conclusion of these considerations, then, is that we
can construct a theory of the longitudinal vibration in terms
of the variables 8 and d(n), or more accurately the ori cata
tioe of d(n). What we must do is to express the energy in
terms of those variables alone, find. the kinematic relations
between them, and then apply the standard techniques of
quantum mechanics to work out the equations of motion.
The underlying philosophy is very similar to that used in
the Born —Oppenheimer theory of molecular vibrations:
there, one actually has a very complicated problem involving
all the electronic coordinates as well as the nuclear ones.
However, the period of the molecular vibrations is known
to be very long compared to characteristic electronic relaxa-
tion times, and. one therefore assumes that the electrons
adjust adiabatically to the motion of the nuclei. Then the
electronic degrees of freedom can be eliminated from the
problem, and we can describe the vibrational motion purely
in terms of the nuclear coordinates and momenta. However,
the nuclei now move in an eRective potential which is
provided, image~ alia, by the electrons. In just the same way,
in the NMR problem, we assume that all degrees of freedom
other than S and the orientation of d(n) —e.g. , the normal
quasiparticle distribution function —can adjust essentially
instantaneously to the motion of the quasi-conserved
variables, S and d, and that their whole e8ect is to provide
an effective potential for this motion.

It should be emphasized that this adiabatic assumption
is only a first approximation and cannot be expected to hoM
to arbitrary accuracy. In particular, while it should be
adequate to describe the gross features of the 'He NMR
behavior, by its very construction there is no room for
irreversible relaxation processes, and it cannot therefore
say anything about the damping of the resonances (cf.,
however, Subsection F below) . In fact, if r is a characteristic
relaxation time (say, the relaxation time of normal quasi-
particles), and cvD is the frequency of the longitudinal
resonance, the adiabatic approximation is equivalent to the
assumption arav- —+ 0, and we would expect the importance
of corrections to it to be measured by the magnitude of
cv~r (cf. Subsection F below). If we estimate ~ from the
normal-state relaxation time, then we always have cv~r &
10 ', but as we go down into the superQuid phases we
expect that the normal-quasiparticle relaxation time in-
creases quite rapidly, and therefore the corrections become
relatively more important. It is therefore not altogether
surprising that the B-phase longitudinal resonance appears
to be quite highly damped. However, we should not expect
this damping to increase indefinitely as we lower the tem-
perature, since presumably it is associated with the normal
component; at zero temperature there is no normal com-
ponent and we expect no damping. Consequently, if we
lower the temperature suAiciently the adiabatic approxima-
tion should improve again.

Although the above considerations were developed with
specific reference to the longitudinal vibration, clearly they
apply more generally. True, in the case of more general
(e.g., transverse) motion in an external field Ho, the
characteristic period of the motion is ~~ —=yIIo rather than
~~ and one might therefore at 6rst sight suspect that the
corrections to the adiabatic approximation would be of
order ~zr (which is not always small) rather than cur&r

However, all the eRects we are going to consider are as-
sociated with the dipole forces, and. as we shall see below
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BnId(n) I = g, (T) J3 ~n d(n) ~'(dn/4 ),
gi& = -'7ry'P+'(T) (R') (11.2)

As for the S-dependent energy, this can be obtained directly
from thermodynamic considerations:

H(t) —= Ho+ H, i(t),
(11.3)

where H (t) is the total external magnetic field, which we now
allow to be a function of time since we may want to include
the rf field, H, i. The susceptibility x here is the "experimen
tel" susceptibility, that is, the quantity which would nor-
mally be measured in a static magnetization measurement
(cf. Sec. VII.D) (see below). The total adiabatic Hamil-
tonian (for a P-wave state) is then

Il IS, d(n) I = —:V'X-"S'—VS H(&)

+ gD f 3
~

n. d(n) ~2 (dn/4 ) (114)

and we claim that this Hamiltonian will describe the XMR
behavior to a first approximation.

In connection with expression (11.4) at least two ques-
tions may be raised. The first concerns the role of the orbital
coordinates. Evidently, the dipole energy (11.2) depends
on both spin and orbital orientation, e.g. , for th~ ABM
phase it is proportional to —(d 1)' PEq. (10.11)j. What
should we assume about I, or more generally about the
orientation of the orbitaIt' wave functions At the beginning
of the XMR experiment the orbital wave function will
presumably have its equilibrium orientation, which is
determined by various (possibly competing) effects, includ-
ing the dipole energy, as described in Sec. X. Now one
may argue intuitively that because of the large moment of
inertia ( mjo') associated with the orbital motion of
a Cooper pair, this quantity will be dificult to change and
may be assumed to be held constant during a typical XMR
experiment. Another way of putting this is to say that since
the typical fluctuation frequency of 1 /the frequency of an
"orbital wave" (cf. Anderson, 1973; Wolfle 1974a) J is on
any account very small compared to a typical longitudinal
resonance frequency, the orbital angular momentum has
no time to follow the spin vector d during this period of
vibration and is eGectively 6xed in space.

The second question —which has caused a certain amount
of confusion —is connected with the anisotropy of the sus-

(Subsection E) the importance of the dipole forces relative
to the external field is of order (cuii/u&1, )'. Consequently we
guess that at high ~L, the correction is not of order col.v.

but rather at most of order (~&/cur, )'&sir, which is always
small. This guess is strongly confirmed, at least in the case
of c.w. phenomena, by the results to be reported in Sub-
section F) .

%e must now write down the Hamiltonian as a function
of S and d(n) in the adiabatic approximation. Since it is
only ihe orientation of d which is varying, we need only the
terms in the energy which depend on the orientation, namely
the dipole energy. This has already been written down for
a P-wave state LEq. (10.10)j:

ceptibility. As we saw, the susceptibility in the superHuid
state is actually a tensor- y.,; with axes depending on the
orientation of the d(n) $Eq. (7.52) j. Should one not,
therefore, replace the x 'S' in Eq .(11.2) by (g);.; 'S~S;
and express the ma, trix g ' in terms of d(n) P If so, this
would give terms in the Hamiltonian which couple S and
d(n) directly. This procedure is quite possible and straight-
forward (Engelsberg, Brinkman, and Anderson, 1974;
Leggett, 1974a) and in the most general case gives results
which are not identical to those obtained from Eq. (11.3)
as it stands. However, it can be shown (Leggett, 1974a)
that the corrections vanish in all the following cases: (a) any
state in the hmit T —+ T„, (b) lo. ngitudinal resonance in
any state, (c) high-field effects in any state, (d) the BW
state and, more generally, any state with isotropic suscepti-
bility, (e) the ABM state and, more generally, any state
with d(n) = df(n). This covers the overwhelming niajority
of cases of practical interest; in particular, the conventional
identi6cation of the A phase as ABM and the 8 phase as
BW on the basis of their NMR behavior can be carried out
entirely on the basis of results obtained close to T., so that
there is no question of corrections from susceptibility
anistropy invalidating these identi6cations. Moreover, if the
identi6cations are correct and ~He-A and 8 are indeed,
respectively, ABM and 8% phases, no corrections are
needed under any circumstances. "I shall therefore assume
that Eq. (11.3) does not need to be corrected. for suscepti-
bility anisotropy for any case of practical interest.

+»(n) =f(n)i —d. +~d. i, +»(n) =f(n)Id +~41
(11.5)

where d is a real unit vector. I et us introduce the angle 8
used by Vfheatley:

cos8~ dy = sing.

3' I find the statement in the abstract of Engelsberg, Brinl~man, and
Anderson (1974a} that Eq. (11.3} should be corrected for the ABM
and BW states by replacing x by the "correct temperature-dependent
susceptibilities, " somewhat confusing. Provided that x in (11,3) is
correctly interpreted as the "experimental" susceptibility (which is
temperature dependent in the HW state but not in the ASM state},
the results obtained from Eq. (11.3) agree mith those of the above
authors.

C. A-phase longitudinal resonance

To obtain equations of motion from the Hamiltonian
(11.3), we need to supplement it with the appropriate
kinematic relations between S and d(n) —that is, in
quantum mechanics, by the commutation relations, or
equivalently, in classical mechanics, by the Poisson brackets.
In the present subsection we shall consider for simplicity
the A-phase longitudinal resonance, obtain the kinematic
relations for this case in a rather intuitive way, and briefly
discuss the equations of motion which result; in the next
subsection we rederive the kinematic relations in a rather
more rigorous rpanner. As far as possible in this subsection
we follow the notation of %heatley.

If we assume that the A phase is of the ABM type Lor
more generally that it is described by d(n) = df(n) j, then
in the ESP axes we have according to Eqs. (7.33) and (7.35)
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Then the Cooper pair wave function can be written, apart
from an overall phase factor, in the general form

+(n:o'io2) = f(n) Iexp( —2i8)
~ f f ) —

~
J, J, )I (11.7)

so that we see explicitly that the spin part of the wave
function is a linear superposition of 5, = +1 and 5, = —1

components, with a de6nite phase relation Aq = x —20
between them (cf. the end of Sec. VII.A) . If, with Wheatley,
we choose the orbital angular momentum vector 1 to lie
along the x axis at the beginning of the experiment, then
provided the dipole energy is the dominant factor in
choosing the orientation d will also lie along the x axis in
equilibrium„ that is, the equilibrium value of 0 is zero.
However, we are also interested in situations in which it
deviates from this value.

Evidently, if the pairs are in a Cooper pair wave function
of the form (11.7) the total s component of spin 5, is not
a good quantum number (cf. the end of Sec. VII.A). We
should in fact expect that 5, and 0 are in some sense
conjugate variables. To obtain the exact kinematic relation
between them we may argue in the following somewhat
nonrigorous way: Imagine for the moment that 5, rep-
resented an orbital angular momentum, and that correspond-
ingly d was a vector in ordinary coordinate space. We know
that in classical mechanics the Poisson bracket of two
dynamical quantities A and 8 is given in toms of the
change of A under an infinitesimal transformation generated
by 8 Lsee, for instance, Kibble (1966), Chap. 13.6). But
the s component of angular momentum generates an in-
finitesimal rotation around the z axis (Kibble, toc. cjt )i.e., .
8 changes to 8 + M. Hence the classical Poisson bracket of
5, and 0 would be simply 1. Making the transition to
quantum mechanics in the standard way, we find for the
commutator:

dS,/dt = —~~X sinb, q (11.13)

(11.14)

One can interpret these quations as describing a sort of
Josephson eRect between the particles in. the up and down
spin bands. (See Leggett, 1974a; Maki and Tsuneto,
1974a.) Just as in the Josephson case we have two bulk
systems (the bulk superconductors) which to a first ap-
proximation are noninteracting, so here we have two
systems (the up- and down-spin bands) which are com-
pletely noninteracting to the extent that spin is conserved.
The weak dipole interaction however drives Cooper pairs
between the up- and down-spin bands, just as the weak
tunneling processes drive them, in the Josephson case,
across the junction between the bulk super conductors.
Equation (11.13) corresponds to the Josephson equation
for the current across the barrier (i.e., the rate of change of
the difference in the number of particles on the two sides).
As to Eq. (11.14) let us suppose that we start with S, =
II, = 0 and suddenly apply a field Ho. Then the rate of
change of Ap immediately subsequently is given by

The first of these equations corresponds to Eqs. (8.2) and
(8.13) of Wheatley's paper (bearing in mind that for the
case considered S x H = 0) and the second is equivalent
to his (8.12) under the conditions envisaged there. We refer
to Wheatley for a discussion of the consequences of Eqs.
(11.11)—(11.12) and a comparison with experiment.

It is instructive .to rewrite the equations of motion in
terms of the phase difference Ay = m —28 of the "up"
and "down" spin components of the Cooper pair wave
function Pcf. Eq. (11.7) $. We have

LS., 8] = —.X d(Aq)/dt = 2yHO (11.15)

Hn = 35'(T) (d.l)' —= ——',X—cos'8, X —= —,'gii(T).
(11.9)

Consequently, the complete adiabatic Hamiltonian (11.4)
becomes

H = H(5„8) = ~~y'x 'SP —yS,H, (t) —~iX cos'8,

(11.10)

where we have assumed that the fieM H(t) is always along
the s axis and that consequently the x and y components
of S remain zero. From Eqs. (11.10) and (11.8) we easily
obtain

dS,/dt = BH/88 = —X sin8 co—s8

d8/dt = BH/85, = —yLH, (t) —yS,/x j.
(11.11)

(11.12)

This commutation relation, together with the adiabatic
Hamiltonian (11.4), gives a complete description of the
problem of longitudinal resonance in the ABM phase.
)If the derivation of (11.8) seems inadequate, see the next
subsection. g

To derive the equations of motion we first rewrite the
dipole energy explicitly in terms of 8, using Eqs. (10.11)
and (11.6). We have

d(aq)/dt = —2(hp/A'). (11.16)

It is interesting to notice, however, that the second term on
the right-hand side of (11.14) has no direct analog in the
Josephson situation. It corresponds to the fact that when
pairs Row from the down band into the up band, they push
up the chemical potential in the latter. The corresponding
term in the Josephson situation is inversely proportional
to the relative capacitance of the two bulk superconductors
and hence is usually negligibly small; however, in this case
there are of course capacitance and screening ef5ects
associated with the junction itself, which give rise among
other things to the "Josephson plasma resonance" (see,
e.g. , Josephson, 1969). In this respect and others, an im-
portant difference between the Josephson eRect and the
longitudinal resonance in 'He is that in the former case we
have a real "geographical" transport of partides across a

which is precisely the analog of the Josephson phase equa-
tion d(Aq)/dt = 2eV/A', since just as 2eV is twice the dif-
ference of chemical potential across the Josephson junction
so 2yAIIO is twice the difference Ap of chemical potential
between the up- and down spin bands. Indeed, more gener-
ally this diRerence is &A'(H —&S./x), so that quite gener-
ally Eq. (11.14) can be written
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The correct expression for the matrix N p(n) is"

(—d. + id„d,
+.,(n) = +)

l

physical barrier, and the parameters entering the equations
depend, inter alia, on the detailed properties of the junction
itself (size, geometry, etc, ). On the other hand, in 'He,
the "transport" is only in spin space (between two "inter-
penetrating" superfluids) and all parameters entering
(&, x, etc.) depend only on the thermodynamic state of the
bulk system.

d. +id„)
(T„+iT.

—$T

—iT,

T„—iT.)
(11.23)

lIt is worth remarking, incidentally, that experimental
obser'vation of the prediction that if a field hH much larger The dipole energy is given in the (1974a) paper in the form
than (X/7t) "' is suddenly turned oR, then the resultant ring- LEqs
ing of the magnetization is at a frequency 2yhH PMaki and
Tsuneto 1974a; see Wheatley's discussion of his Eq. (8.32)j H 2 s J(dp/4 ) f (dp//4 ) ITt(n) T(n)
would constitute a rather satisfying direct test of the
assumption that superfluidity in 'He is a consequence of the —3q T (n) q T(n') l q —= (n n')/~ n
formation of Cooper pairs (and not, say, quadruples, which
would give a ringing frequency 4yhH) .

D. General equations of spin dynamics

T,(n) —= (2ir6) ' f d%'h(n —n') T, (k') —= —,'Kg T,(&),
IA: I

T'(&) = Z ~-k-(~s~')-p~kp,
aP

(11.17)

(11.18)

where (as in Eq. (7.31)) the o; are Pauli matrices. On the
other hand, in the present paper we have de6ned, in Kqs.
(7.22) and (7.18),

Having explored the physical nature of the anomalous
magnetic resonance behavior ln He 1n one particularly
simple case, let us now go on to consider the general case.
The ensuing discussion follows fairly closely that given in
Leggett (1974a)'4 and it may therefore be helpful to com-
ment on the relation between the notations used here and
in that paper. In both cases we denote by S the actual total
spin angular moment of the system, i.e., it has the dimen-
sion of 5. In the (1974a) paper, a vector operator T(n) is
defined by Eqs. (2.2) and (2.18) of that paper, i,e.,

Hn =- -,'& (Z ),.J(dn/4 ) I3 i
n T(n) i' —

( T(n) i'].
(11.25)

Using Eq. (11.22) we see that this agrees with the expres-
sion (10.7) of the present paper. However, since it is
precisely the NMR behavior which has provided the most
solid evidence in favor of the E'-wave hypothesis, we shall
use for the present the more general expression (11.24) in
terms of d(n):

HD ——-' y%'+'(T) J(dQ/47r) f (dQ'/47r) Id*(n) .d(n')

—3q d*(n) q. d(n') I. (11.26)

The total spin operator S has the explicit representation

Si = s~ g +ka o'up &kp
kaP

(11.27)

Since the ak 's in Eqs. (11.18) and (11.19) are actually
quasiparticle operators, it is necessary to multiply the
integrand of (11.24) by some renormalization factor
E'(~ n —n'

~) Lsee Sec. VII of (1974a)g. If we assume a
pure I'-wave state, then it is shown in the Appendix of
(1974a) that Eq. (11.24) including the renormalization
factor can be rewritten in the simpler form (where we
trivially complex conjugate a real quantity)

Fkap = (+—ka+kp)y

O' P(n) =—g Iik P,
}kj

(11.19)

(11.20)

(where o. pi'& are matrix elements of the Pauli matrices o).
As in (1974a), we find the commutation relations of S and
T(n) directly from the definitions {11.17)—{11.18) and the
standard Fermi commutation relations obeyed by the

and by inverting (7.35) Pcf. Eqs. (7.31)—(7.32) j we have +ma s:

d'(n) = ——+-'Z (. ')- +- (n).
aP

(11.21)
LS;, T;(n) j = ice,;st, (n)

LS;, Tgt(n) j = iAe,p, Tkt(n),

(11.28a)

(11.28b)

Consequently, d(n) as so far defined is given in terms of where s;;s is the standard Levi-Civita symbol. Also we have

T(n) by the relation as usual

d(n) = —(i/5) e i(T(n) ).- (11.22)
LS;, Syg = ihe,;i,Sp, (11.29)

~ Throughout this subsection and the next, this paper is generally
referred to simply as "1974a."

3' Equation (2.13) of the (j.974a) paper contains some sign errors.
This does not affect any of the subsequent results. Note also that in
(1974a), the notation d(n) is used for the value of (T(n) ) inequilib-
rluIQ.
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(11.35)

(11.36)d(n) = d(n) x yIH(t) —yS/yINow we have so far been regarding d(n) as an expecta-
tion value. However, to obtain its equations of lrlotlon we
must treat it as a quantum-mechanical operator, i.e., take
away the brackets in Eq. (11.22). Since d(n) is a macro-
scopic quantity, once we have got the equations of motion
we can treat it as a classical variable. (We could, of course,
equally well proceed by calculating the classical Poisson
bracket of S and d—see last subsection. ) If then we treat
d(n) as an operator, we obtain from Eq. (11.28)

where the "dipole torque" RD is given by

Rri = —I (dQ/4ir) i d(n) )& LSHii/M(n) $ + c.c, i.

Equations (11.35)—(11.37) have been derived urider the
assumption that the adiabatic approximation i=':~. good
description and that the effects of susceptibility anisotropy,
if any, can be ignored. LFor a more general set of equations
which take the susceptibility anisotropy into account and
a, discussion of when it can be neglected, see I eggett
(19'74a), Sec. 6. It is to be emphasized that it can ahriuys
be neglected in the limit T —+ T, .t To the extent that these
assumptions are valid, Eqs. (11.35)—(11.37) should afford
a description of the spin dynamics, linear or nonlinear, of
any triplet superAuid, whatever the nature of the pair
wave function. In the next section we shall consider some
specific applications.

L5;, d;(n) j = I'ffe;pdi, (n) (11.30a)

(11.30b)L5, , d, t(n) j = Me;,td„t(n) .

From (11.30) it follows immediately that S coniniutes
with dt(n) .1(n') and therefore any term proportional to
this will have no eRect on the motion (in the present ap-
proximation, in which we neglect the terms arising from the
communication of the d, 's among themselves —cf. above).
We can also verify that for the case d(n) = df(n) Eqs.
(11.30) with (11.6) give back (11.8).

It is also possible to calculate the commutation relations of motion36:
the 1; among themselves I see Eq. (2.26) of (1974a) j.
However these are not actually needed. for purposes of
NMR cRlciilatioIls pcf. tile dlscusslon 0I1 p. 27 of (1974R)).

In view of the importance of Eqs. (11.30), it is worth
pointing out that they can be obtained quite directly,
without explicit use of the second-quantized expression for
T(n), simply from the fact that d(n) is a vector in spin
space and must therefore transform as such under rotation
of spin coordinates. Since it is precisely the total spin
operator S which generates such rotations
exp(intro S/6')iP), when the rotation is described by a small
vector 8~ we must have the relation between the new value
d'(n) and the old one d(n)

d'(n} = exp(ibro. S/A') d(n) exp( —ik). S/A') (11.31)

so that the change M(n) —= d'(n) —d(n) is given (for
Bro —+ 0) by expanding this expression in Bto:

M (n) = sA
—II Sro. Sd (n) —d (n) 5re. Sj

On the other hand, we also obviously have by the usual
formulas for transformation of vectors under rotation

M(n) = Sto ~ d(n). (11.33)

The adiabatic Hamiltonian is given by Eq. (11.4)

H f S, d(n) I
= -',y'x '5' —yS.H(t) + Hri

The expressions (11.32) and (11.33) are compatible only
if (11.30a) holds; (11.30b) then follows simply by Hermitian
conjugation.

E. Some applications

8; = (N') 'L5;, Hg&)
—= Rii;, (11.38)

RD; = (N) 'LED;, .E(5}g = (iA') 'LRI&, , 5,$y'X '5-

(11.39)

with summation over repeated indices imphed and E(5)

Once we have Eqs. (11.35)—(11.37), their apphcation to
specific cases is essentially a matter of mathematics, so
that in accordance with the spirit of this review I shall not
go into it in much detail. In fact, since the application to
the ABM and B% states has been discussed fairly exten-
sively by %heatley, I shall mainly concentrate on examining
the extent to which the XMR evidence can be used to
support these identifications for 'He-A and 8, respectively.

I.et us first consider the case of unsaturated c.w. resonance
under the condition that the dipole energy is a minimum in
the equilibrium configuration. (This is not necessarily
always true, since as we saw in Sec. X. there may be other,
competing orientational effects; however it should certainly
be true in the limit of "bulk" samples. ) In that case the
solution of Eqs. (11.35)—(11.37) can be carried out in a
straightforward way by linearizing around the equilibrium
configuration; the requisite algebra is given in (1974a),
Sec. 5, but it is instructive for present purposes to derive
the result in a slightly different way. %e consider first the
motion in zero magnetic field and write down the equations
of motion (11.35)—(11.36) in quantum mechanical form:

'~ Note that H(t) here is the total external fIeld {including any rf

where we want to keep for the moment the general expres- contribution), in contrast to the notation of (l974a) but in agreement
with that of Wheatley. Equation 4.j.4 of $974a has a sign wrong

for H&. APPlying the commutation relations in the first term on the right-hand side (but subsequent formulae have
(11.29) and (11.30), we obtain tllc genelal equRtloIls of the correct sign).
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defined by (11.3). Combining these we find

S; = —(A') —'LLS, , Hg) j, S;gy'g 'S;. (11.40)

by the precession in the held: in fact the equation of motion
of the deviation of the spin from its equilibrium value, S,
can be found by adding to Eq. (11.41) the standard term
arising from precession:

This equation is generally true. For small oscillations we
can linearize it by taking the double commutator equal to
its value in the equilibrium configuration, which we denote
by the subscript "eq." In this way we obtain

(11.41)

S'+ ~r, x O' = —O'S' ((sr, =—WHO) . (11.47)

Solution of this equation leads to the longitudinal oscilla-
tion, as above, and two elliptically polarized transverse
(perpendicular) oscillations with frequencies given by

where the elements of the tensor Q,,~ are given by

&4' == ~'x '@ 'LP';, H~3, S,j., (11.42)

oP = —,'L(col,'+ 0,'+ Qy') W I ((ul,'+ 0,'+ 0„')'
—40.,'0„'I '~' j,

This tensor has a simple physical interpretation: as we
noted above, the operator exp(j8u. 8/A') generates an
infinitesimal rotation B~ of the spin coordinates, and there-
fore the change in the dipole energy under such a rotation is

where 0 ', Q„' are the eigenvalues of A in the xy plane. If
and only if one of these eigenvalues, say 0 ', is zero, then
one of the oscillations has zero frequency and the other a
frequency which for gl/ values of Ho is given by

BHD = HD —IID

= exp(ibco S/A)H ieixp( —Q~. S/A') —HD. (11.43)

If the dipole energy is to be a minimum in the equilibrium
configuration (though not otherwise) the term linear in B~
must vanish: the terms quadratic in b~ give

BHD = 6—'lb~. SHi)bra S ——'(a~ S)'Hri ——'HL&(B~. S)'l
= -', A-'LLS;, H~g, S;g„a(v,av;. (11.44)

Comparing this with Eq. (11.42) we see that we have

Q;P = y'x '(O'Hri/Bco, B~;), (11.45)

0;P = 4n.y4x '+'(T) Re f (dQ/47r) f (dQ'/4n)

&& LZ (n —n') {q d*(n)q d(n')b;, —q d*(n)q;d, (n')
—(q ~ d*(n))'(q & d(n')) Il". (11.46)

However, for many purposes it is more convenient to rep-
resent D in the form (11.45) . We see that it represents a sort
of matrix of restoring forces for S. In fact, the solution of
(11.40) in the general case gives three linearly polarized
oscillations with frequencies given by the eigenvalues of the
tensor Q; the problem is in fact completely equivalent to
that of a three-dimensional anisotropic harmonic oscillator.

Now consider what happens when we apply an external
Geld Ho. If the field and the dipole force dominate the
orientation, as we have assumed, then one principal axis
of D can be chosen to lie along the field direction (say the
s direction). We then find that the oscillation along this
axis (i.e., the longitudinal or parallel resonance) has a
frequency co' = 0,'(=—0„') which is independent of Ho.
However, the two oscillations in the xy plane are mixed

where the second derivative means the change in H~ under
an infinitesiinal rotation B~. (Rv, is of course equivalent to
M, where 8 is the angle used in Sec. XI.C.) The explicit
expression for 0;, is given in (1974a) and is somewhat
cumbrous: in the most general case it is (in the present
notation)

~2 —~2H 2 + Q 2(T) (11.49)

d(n) = xf(n), (11.50)

where f(n) is an arbitrary function such that
~ f(n) ~' is

invariant under rotation around the x axis Pand of course
such that the dipole energy is actua. lly a minimum rather
than a maximum in the state (11.50) j. The simplest case
of (11.50) is of course the ABM state (9.52): let us call
the general state of the form (11.50) "ABM-like. "37 (It is
conceivable, but not very probable, that there are also
non-ABM-like states which satisfy the above constraints. )
The experimental evidence on 'He-A, therefore, strongly

'7 A more precise definition of an "ABMI'-like)" state has been
given by Takagi (1974b).

For details of the spectral weight of the resonances, etc. ,
see (1974a). Notice carefully that even when a mode has
zero frequency, it may absorb some of the spectral weight
in the Kramers —Kronig relation, so that the observed weight
in the finite-frequency mode, Eq. (11.49), may give an
apparent susceptibility less than that measured by static
methods (never, under the conditions we are at present
considering, morc but see below).

The above results enable us to put some fairly tight
constraints on the nature of 'He-A and 8 in the light of the
observed XMR c.w. behavior alone. Consider 6rst the
observations in 3He-A. It is now fairly well established (see
Wheatley) that Eq. (11.49) holds at least down to very
low fields. This implies that one of the eigenvalues of A'
in the xy plane is zero; and this in turn implies, via (11.45),
that the dipole energy is invariant under (small) rotations
of the spin coordinates, i.e., of the vector d(n), around a
certain axis in the xy plane. Moreover, the experimentally
very well established fact that the shift in the square of the
transverse frequency Pi.e., 0„'(T)j is numerically equal to
the square of the longitudinal resonance frequency 0,'(T)
implies that small rotations around the Y and s axes change
the dipole energy in the same way. Clearly these constraints
are satisfied by any state for which d(n) is of the general
form
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(82H /8~ 2) &g ABM (T)

(O'Hn/8(u ') Bw = 2gD (T) (8'/88') icos8

+ 2 cos28I„,2,(4
——3gnBw(T),

(11.51)

where it should be remembered that according to (10.8)
gD(T) is proportional to %2(T) for the two phases. From
Eqs. (11.51)—(11.52), (11.45), and (10.8) we get the ratio

(~Bw/f1&BM) =
2 (x@BM/xBw) (+Bw /+2. BM') (11.53)

In the GI. region, the ratio of %2 can of course equally well
be replaced by the ratio of A2. As discussed by Wheatley,
the ratio of the longitudinal resonance frequencies observed
at the A—B transition at the melting curve agrees well with
(11.53) if we assume +~BM = 4 Bw and use the experimental
melting-curve values of the susceptibilities. However, near
the PCP, N2 or 62 is proportional to x ' LEq. (9.28) g and
~ should be the same for the two phases at the equilibrium
transition (see Sec. IX.B); moreover near T, we have
QBw QABM = X . Hence the theory predicts quite un-
ambiguously a value of (5/2) 't2 for the ratio of the longitu-
dinal resonance frequencies in the limit as we approach the

' An effect corresponding to this has been seen in 'He-'8: see Osheroff,
1974.

suggests that it is ABM-like, though not necessarily ABM
(see also below) .

Turning now to the d.ata on 'He-B (see Wheatley), we
recall that no substantial transver'se shift is observed in
bulk (for the small shifts which are observed, see below)
while there is a definite though somewhat broad longitudinal
resonance, at least on the melting curve and close to T,.
This implies that Q ' = 0' = 0, but that 0,' is 6nite. In
other words the dipole energy is changed by a small rotation
around the s axis but not by small rotations around the
x or y axes. This would be expected if (as is the case for the
BW phase, see Sec. X.A) the dipole energy in zero Geld is
minimized by a rotation of given angle around an arbitrary
axis ~, and a field tends to orient this axis parallel to itself:
a further rotation around the s axis then shifts the angle of
rotation 8 from the "magic" value cos ' (—4) and so costs
appreciable dipole energy, while a rotation of d(n) around
the x or y axis is equivalent (to lowest order only) to
reorientation of cb without a change in 0, and therefore costs
only the very small orienting energy (10.16) . Consequently
Q ' and Q„, and hence the transverse resonance shift, though
not strictly zero, would be extremely small and proportional
to Ho'." Thus, the experimental c.w. resonance data on
'He-B are consistent with the hypothesis that it is a BYV
phase. However, there do exist other states which are not
of the BW type which also have the property 0 ' = Q„' = 0,
0,2 Q 0 (see Barton and Moore, 1974a,b; Moore et al. ,
1974), so that the B-phase c.w. data alo22e are perhaps not
quite unambiguous evidence of identification.

If we assume that 'He-A and B are indeed, respectively,
the ABM and BW phases, we can easily obtain the ratio
of the longitudinal frequencies in the two phases by com-
paring the way in which the dipole energy varies under a
rotation around the z axis in the two cases Pcf. Eq. (11.45) j.
From Eqs. (10.11) and (10.14) we find

PCP. The substantial discrepancy of the experimentally
observed ratio from this value (see Wheatley) is perhaps
the most serious objection, at present, to the identification
of 'He-B with the BW phase.

I-et us now turn briefly to the nonlinear behavior. The
nonlinear longitudinal resonance behavior in the ABM and
BW phases has been studied theoretically by Maki and
Tsuneto (1974a) and by Maki (1974a), respectively. We
have already discussed the 'He-A longitudinal r'esonance in
Subsection C, above; here we just note that a unified
treatment of both phases (and indeed a quite general
phase) can be obtained if we write generally

H(S„8) = —'pe —'S,2 —yS,H, (t) —Hn(8)

Ls„8] = —i5,

(11.54)

(11.55)

where HD(8) is the dipole energy as a function of angle of
rotation around the s axis, and is given explicitly for the
ABM and BW phases by Eqs. (11.9) and (10.14), re-
spectively, i.e.,

HB (AB M) — 2' (T) cos28

HD&Bw& = -4gD{T) (cos8+ 2 cos'8).

(11.56)

(11.57)

2+(gH )2 H max H min (11.58)

Using Eqs. (11.58), (11.51), and (11.52), one may relate
yhH to the value of the linear longitudinal resonance
frequency. Vfe And

(PAH, /Q)~BM = 1,

(11.59)

(The two values in the BW case correspond to the fact that
the function (11.57) has two maxima of different height as
a function of 8.) For a discussion of the experimental situa-
tion, see %heatley, and for a more detailed discussion of
the ringing behavior, Maki and Tsuneto (1974a) and
Maki (1974a) ."

"It should be stressed, however, that no theory of the nonlinear
longitudinal resonance which incorporates relaxation effects as yet
exists. Consequently, the significance of discrepancies between theory
and experiment in this area is not yet entirely clear.

Equation (11.55) may be derived from the more general
Eqs. (11.30) for an arbitrary state.

If we consider an experiment of the type described by
%heatley; in which a part AH of the external held is sud-
denly turned off and the subsequent "ringing" behavior
observed, we can use the conservation of energy to determine
the value(s) of AH at which the ringing frequency drops

. to zero. Evidently, the criterion for this to happen is that
the extra spin energy created by the turning-off should be
just sufIicient to carry 0 from the initial value to a value
corresponding to a 222agim24222 of Hn (8) (cf. Wheatley's
discussion of the "pendulum" analogy). In other words,
the critical value(s) AH, satisfy
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More general studies of the nonlinear dynamics of the
BW phase have been carried out by Maki and Hu (1974)
and by Brinkman (1974). In particular, the latter has
derived the very useful form of Eqs. (11.35)—(11.37)
quoted by Wheatley (8.9)—(8.11). LThese equations may
be obtained by starting from the equation d(n) = An,
expressing the matrix 8 explicitly in terms of ~ and 8,
di fferentiating the result with respect to time, and compar-
ing with Eqs. (11.35)—(11.37); in doing the last it may be
helpful to take dot and cross products with n and integrate
over the Fermi surface. g

There are a number of other interesting applications of
Eqs. (11.35)—(11.37) which there is no space to discuss in
detail. Brinkman et al. (1974) carried out a detailed analysis
of the c.w. transverse NMR in the 8 phase, assuming it to
be BW: they used their theory of textures in the 8 phases
(cf. Sec. X.D) from which it follows that the characteristic
axis ~ is slightly disoriented from the external field axis
and hence the results quoted above must be modified. In
fact, one predicts a range of small transverse resonance
shifts, in agreement with the experiments of Oshero6 and
Brinkman (1974) . Oshero6 and Anderson (1974) have
applied the theory of the c.w. longitudinal and transverse
resonance in 3He-A near the A transition (see Sec. XIII and
Wheatley Sec. IX) and find excellent agreement with their
experimental results. LFor more details of the theory, see
Takagi (1974b).g Finally Takagi (1974c) has studied the

. c.w. NMR behavior in situations in which the equilibrium
conhguration does not. minimize the dipole energy by i.tself
(cf. Sec. X.D). He finds that the behavior of the ABM
phase under these conditions is very anomalous, with the
possibility of more than one transverse resonance line,
negative shifts, and in some cases an integrated. absorption
which gives an apparent susceptibility greater than that
measured in a static experiment. It is conceivable that these
results may be relevant to some of the anomalous experi-
mental results obtained in restricted geometries, which is
precisely the case in which the dipole energy is most likely
not to be a minimum in equilibrium (cf. Sec. X.D) .

I would like to close this subsection with a general remark.
The fact that the NMR behavior, both linear and nonlinear,
of the A phase is in very good agreement with that predicted
for an ABM phase, and that there is also overall agreement,
though with some exceptions, between the 8-phase experi-
ments and the predictions for the 8% phase, is often taken
as conclusive evidence for the corresponding identifications
of 'He-A and B.However, it should be pointed out that what
the NMR experiments actually explore is the dependence
of the dhpole energy on rotations of the spin coordhnates; that
is, the most general quantity they can in principle measure
is the quantity Ha{81(n) }, where 8 is an arbitrary rota-
tion. Consequently, if we can find other phases which show
the same dependence of the dipole energy on rotation,
then at least from the point of view of the NMR experi-
ments alone they will be equally good candidates for
'He-A and B. We have in fact already pointed out that
the 2-phase data clove prove at most that the A phase is
"ABM-like, " not that it is ABM. I return to this point in
the Conclusion.

F. Relaxation and linewidths
In the theory developed in this section we have so far

relied entirely on the adiabatic approximation described in

Subsection 8: as was pointed out there, this assumed that
all variables except the "quasi-conserved" ones LS and the
orientation of d(n) j take their "instanteous" equilibrium
values, i.e., that the relaxation to the state which for given S
and d(n) is the equilibrium state is essentially instanteous.
Such an assumption clearly cannot give any irreversibility
or relaxation. If we make an analogy with the propagation
of (ordinary hydrodynamic) sound in a normal system, we
see that the adiabatic approximation is analogous to the
assumption that the particle distribution at any point in
the liquid has its equilibrium value for the given local
values of density and Quid velocity. Such an assumption
is valid only in the limit cur —+ 0, where co is the sound-wave
frequency and r the characteristic time for relaxation of the
particle distribution to its local equilibrium value. If we
allow now for a finite value of r, we get a damping which is
of order o'er. Correspondingly, we would expect that in the
present case the damping in low fields would be of order
~&'r, where era is a typical d.ipole frequency —e.g. , the
longitudinal resonance frequency. On the other hand, for
~D &( &Ho —= o&r, (where Ho is the external field) we would
expect, as argued in Subsection B, that the damping of the
transverse resonance is of order at most (cubi/cur, )'cuir

It has so far not proved possible to work out the correc-
tions to the adiabatic approximation which are necessary
to take proper account of the damping (cf., however,
below) . However, a calculation of the c.w. resonance
phenomena which does so has been developed within the
framework of a microscopic approach by Combescot and
Ebisawa (1974) . They use a kinetic-equation method
similar to that developed by Betbeder-Matibet and Nozieres
(1969) for superconductors, and take relaxation into account
by assigning to the normal quasiparticles a phenomenological
temperature-dependent relaxation time r(T) . The result of
their calculation is that the ABM longitudinal resonance
has a finite linewidth h~~~ given by

g~)(&»M& = {Q~BM'(T) r(T)/(1 + i~ZO) gf(T), (11.60)

where Q.&&M2 is the longitudinal resonance frequency
squared (or equivalently the shift of the squared transverse
frequency, since as we saw above these are identical for the
ABM phase) . The function f(T) is given by

(11.61)

l
note that it differs from the Yosida function, Eq. (6.14),

by the factor of (ei/Ej, )~ in the integral/. Evidently f(T)
tends to 1 as T —+ T„and falls off with decreasing T faster
than the Yosida function. For the transverse resonance
Combescot and Ebisawa found a width

LO~iiM (T)r(T)/(1+ 4ZD)g

&& {~»M'(T)/{:fl»M'(T) + (vHo)'j}f(T) ~ (11 62)

where the denominator in the second factor is just the
observed shifted resonance frequency. The expression
(11.62) reduces to (11.60) as Ho ~ 0, as it clearly should;
we notice that the damping for large II'o is actually of order
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~ii4r/(yH, )2. Finally, they found for the BW longitudinal to nonlinear as well as linear phenomena. This I hope to do
elsewhere. "

'(T) (T) t:2f(T) + ~(»j
(2+ I (T)) L1+ —.'Z. (-:+ -'. I'(T))0'

where I"(T) is the Yosida function, Eq. (6.14). In com-
paring these results with the experimental data one must
remember that apart from this "intrinsic" linewidth there
may also be an "extrinsic" apparent linewidth due to texture
eIIfects which orient diferent parts of the sample differently,
and therefore give a range of frequency shifts which vill
add up to look like a broad line (see in particular Brinkman
et al. , 1974).

A second microscopic calculation of the linewidth in the
ABM phase has been given by Maki and Ebisawa (1974)
using Green's-function techniques. Although they also
incorporate relaxation by putting in a phenomenological
quasiparticle lifetime, the results they obtain differ from
those above in that Q~iiM'(T) in Eq. (11.60) and the first
factor of (11.62) is replaced by a factor which is only weakly
temperature dependent near T,. Hence whereas for instance
Eq. (11.60) predicts that Ace~~"sM is proportional to (T, —
T) near T„the Maki —Ebisawa, calculation predicts that it is
nearly temperature-independent. It is not clear why the
two methods give such different results.

I would like to conclude by speculating briefly on. how
the results found by microscopic methods relate to the
adiabatic approximation developed in the rest of this section.
I.et us consider for definiteness the A-phase longitudinal
resonance. At first sight it is tempting to incorporate the
damping phenomenologically by putting in a relaxation
term in the equation of motion of S. and/or 8, directly.
However, I do not believe this is likely to be correct; the
direct relaxation of 5, should be essentially given by the
ordinary longitudinal relaxation time T», which is ex-
tremely long (of the order of minutes), while the direct
relaxation of 8 is forbidden because of the coherent nature
of the superfluid state (see Leggett, 1974a, Sec. 4). Rather
I believe one should visualize the relaxation mechanism as
follows: Although the equation of motion (11.13) is an
equation for the total spin S„which is carried by both
Cooper pairs and normal quasiparticles, it. is actually only
the Cooper pairs which "tunnel" between the up and down
spin bands. Now when the pairs tunnel, the number of
pairs in (say) the up spin band is thrown out of equilibrium
relative to the eurlber of up spiv normal quas-iparticles, and
the "instanteous" dependence of the spin polarization energy
H(S,) on S, is not given simply by the terms written down
in (11.10), that is by p'x 'SP —pS,II, (t), but by a some-
what different expression. However, after some time 7- the
number of up spin pairs will have come into equilibrium
with the number of up spin normal quasiparticles, and
thereafter Eq. (11.10) is justified. .It seems very probable,
then, that the irreversibility and hence the damping arises
in the process of equilibration of the pairs and the normal
component within a single spin band. If this picture is
correct, it should be possible to make it quantitative and
to formulate thereby a theory of damping which is applicable

A very substantial fraction of recent theoretical work on
the new phases of 'He has been devoted to the study of
collective oscillations4' (Maki and Ebisawa 1973, 1974a,c;
WOW, e 1973a,b, 1974b; Combescot 1974a,b; 8rinkman
and Smith, 1974; Maki j.974a,b; Maki and Tsuneto 1974b;
Serene I973; Saslow 1973; Putterman 1973:cf. also Ander-
son, 1973; de Gennes, 1973a,b). Unfortunately, the situa-
tion with respect to comparison of theory and experiment
seems at present much less happy here than in the case of
the %MR behavior: broadly speaking, those phenomena
which are easiest to observe experimentally (such as the
ultrasound absorption near T,) seem most difficult to
calculate theoretically, and vice versa. In this section we
shall give a fairly brief and qualitative discussion of this
subject, concentrating on the physical description of the
various possible modes and obtaining quantitative results
only when it is particularly straightforward to do so with
the help of the concepts already discussed. A very useful
general survey of this topic, at least as regards the spin-
independent oscillations, is given by Wolfle (1974b), on the
basis of kinetic-equation techniques.

At first sight it is possible to classify collective oscillations
of an anisotropic superfluid into (a) "density" type oscilla-
tions in which the Cooper pairs Row as a whole without
changing their spin or orbital configuration, (b) "spin
waves" in which the pairs change their spin configuration
but not their orbital state, and (c) "orbital waves" in which
the orbital configuration of the pairs varies but not their
spin. On closer inspection this classihcation is less clear-
cut than it seems, for several reasons: (b) and (c) are
coupled not only by the dipole forces but, in the BQ~ state
at least, by the peculiar property of the latter state that
there is no physical distinction between spin and orbital
rotation (see Brinkrnan and Smith, 1974, and below),
while (a) and (c) are strictly separable, if at all, only in the
long-wavelength limit. Nevertheless, the above classifica-
tion makes some sense as a first approximation. I shall
devote the first subsection to (a) and the second to (b):
oscillations of class; (c) will not be discussed explicitly here
(cf. Introduction) .

In normal liquid 'He two kinds of density wave are
known to exist: ordinary ("first") sound, in which the
liquid is always in local thermodynamic equilibrium, and
the peculiar mode known as "zero sound" (Landau, 1957)
which is a "collisionless" collective mode corresponding to
a, pole of the density-fluctuation propagator (2.37) (which
is of course calculated neglecting collisions). If the charac-
teristic quasiparticle collision time is 7., then hydrodynamic
(first) sound exists for cur (( 1 and coliisionless (zero)
sound, for cur)) 1: in the intermediate region (~r 1) the

' See A. J. Leggett and S. Takagi submitted to Phys. Rev. Letters.
4' Hy "collective excitations" in this section we always mean co]lec-

tive excitations with fInite wavelength I'i.e., propagating waves) as
distinct, say, from the uniform longitudinal magnetic resonance.
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behavior is complicated and we get strong absorption. LFor
a detai. ed discussion, see, e.g. , Abrikosov and Khalatnikov
(1959), Pines and Nozieres (1966) or Baym and Pethick
(1974)j. For real liquid 'He, especially at high pressures,
the repulsive quasiparticle interactions are so strong that
the velocity of zero sound (and in fact the quasiparticle
distribution) differs only by less than one per cent from
that of first sound Pcf. Eq. (2.39)j. The "zero sound"
referred to so far is what is often called the "longitudinal"
variety, which is the only kind which corresponds to a den-
sity Quctuation. At high pressure other kinds of zero sound,
corresponding to Quctuations of the transverse component
of current, are predicted theoretically to exist (see Baym
and Pethick, 1974) but have not to date been observed
experimentally.

If we now turn to the isotropic superQuid liquid 4He, there
are apart 'from ordinary first sound a number of special
wave modes which can propagate in the hydrodynamic re-
gime. (Some of them may also have analogs in the collision-
less regime, but the theoretical situation here is not entirely
clear. ) If we put the liquid in a narrow tube (of dimension
small compared to the viscous pentration depth) then the
normal component is clamped by the walls, but an oscilla-
tion of the density and pressure in which only the superQuid
component moves is still possible: this is the so-called
fourth sound and its velocity is given. by

In the normal phase the compressibility is given from
Landau's Fermi-liquid theory by

K, = (de/de) (1+ Fo)—'. (12.5)

LSee, e.g. , Pines and Nozieres (1966); this is an exact
formula which does not imply neglect of the higher F&'s.j
In the superQuid phase the compressibility is unchanged,
at least to order (6/e~)'; the argument for this is analogous
to the argument (see Sec. VII.A) showing that the experi-
mental susceptibility of an ESP phase is unchanged. Then
using Eqs. (2.5) and (2.28) we find that below T, as well
as above the first-sound velocity is given by

ci2 = —,'i)p'(1+ Fo) (1+ igFi). (12.6)

Next let us consider fourth sound. Clearly in this case we
cannot take over expression (12.1) directly, since the super-
Quid density p, for an anisotropic superQuid is a tensor
quantity. To discuss this mode quantitatively we start from
the continuity equation:

Bp/Bt + V.P = 0, (12.7)

where P is the mass current (momentum) density. Under
hydrodynamic conditions we have from (6.20) generalized
to the anisotropic case I cf. (6.25) g:

«' = (p./p)ci', (12.1)
jP p ni) (n) + p ps~ (8) p si) ia)

P(rt) = p,v, (r, t) + p„v„(r, t) = 0. (12.2)

where c4,& are, respectively, the velocities of fourth and first
sound. Secondly, it is possible for the superQuid and normal
components to Qow relative to one another in such a way
that there is no mass current, 4' i.e., for all r and t we have

where in writing the second equality we took into account
that the normal component is clamped by the walls (v&") =
0), and where as always summation over repeated indices
is implied. Combination of (12.7) and (12.8) gives in the
limit of small oscillations (v&') ~ 0)

Such a mode involves no density or pressure variation but
does involve temperature oscillations: it is of course the
so-called second sound. Its velocity is given by

c2' = (p,/p ) (TS'/pc. ), (12.3)

ci2 = X/mK, (=—p/m'K;) . (12.4)

4' This is true to the exten't that the coe%cient of thermal expansion
is negligible —an approximation which is very good for 4He (and should
also be good for 'He).

where 5 is the entropy per unit volume and c. the specific
heat. Finally we have ibid sound, a wave which propagates
on the surface of the superfluid. )For an extended discussion
of these various modes and a derivation of their velocities,
see, e.g. , Khalatnikov (1965).g

The spin-independent oscillations of the superQuid phases
of liquid 'He are expected to combine the complexities of
behavior of normal 'He and of superQuid 4He, as well as
exhibiting a number of phenomena which have no analog
in either. I.et us first examine the hydrodynamic region
cur (( 1 (note that this region gets smaller as the tempera-
ture falls below T„since the normal-state collision time is
expected to get longer). We expect first of all jirst sound,
with a velocity determined in the standard way by the
static compressibility E,

(12.9)

To proceed further we need the equation of motion of the
superQuid velocity v&') —= v, . For present purposes we will
assume that as in superconductors and in liquid 4He it is
determined by the gradient of the chemical potential p.

av, /at = —m 'Vp. (12.10)

(Physical arguments leading to this conclusion can be given
along the lines indicated by Khalatnikov (1965) for 'He. )
Finally we use the relation, valid in local thermodynamic
equilibrium

vp, = (a)ti/c)p) Vp = (mK, )
—'Vp. (12.11)

Combining Eqs (12.9)—(12.11) and noting that p/m2K, =
ci2 LEq. (12.4) g we finally obtain

a'p/at' —ci2(p t)'/p) (8'p/c)x Bxp) = 0. (12.12)

(12.13)

If we assume a wave propagating in the direction specified
by unit vector q, then according to (12.12) its velocity is
given by
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For the BW phase p. is isotropic and we simply recover
(12.1) . For the ABM phase, on the other hand, the fourth-
sound velocity is anisotropic, depending on the angle 0
between q and the pair angular momentum vectors: in fact
near T, we have from (9.54)

(12.14)

where p, =—3 Trp, is the "average" value of the superAuid
density. For lower temperatures c4 may be more dramatically
anisotropic because of the strong Fermi-liquid corrections
(cf. Sec. VI.B) . Whether or not it will be possible to see this
anisotropy experimentally is somewhat doubtful, since in
the narrow tubes necessary to observe fourth sound the
vector 1 will tend to be anchored perpendicular to the walls
and the fourth sound must of course be propagated parallel
to them; one would therefore tend to expect to observe in
practice the ~alue of c4 corresponding to 8 = 7r/2. For a
discussion of the experimental situation we refer to
%heatley.

Turning now to second sound, one might intuitively
expect that in the same way as Eq. (12.1) for fourth sound
was generalized to (12.13), the formula (12.3) would
similarly be valid provided that p,/p„was replaced by
(p,/p„) pq jp. It turns out, interestingly enough, that this
is true only in the limit T—+ T„according to the calculations
of WolRe (1973b) the quantity 5 should also be replaced
by a quantity which depends in general on the direction
of q. The physical reason for this is apparently that the
hydrodynamic equation for the entropy Row in an isotropic
superAuid, namely,

)8 = +~vn

must itself be replaced, in the anisotropic case, by a tensor
equation. We refer to WOjfle (1973b) for further details.
I Evidently, however, one still expects Eq. (12.3) to be valid
for the BW state. g The order of magnitude of c~ should be
given correctly by (12.3): we note that it is 10 'v&.

Second sound may also be quite highly damped (Takagi,
1974d) so that it may not be an easy matter to see it
experimentally.

We now ask briefly what happens in the "collisionless"
limit ~r )) 1? As we saw, in the normal case we get zero
sound in this limit. On the other hand, at absolute zero we
expect the superAuid to behave like an ideal elastic Quid
at uQ frequencies much less than the "gap frequency"
6/5, so that it presumably sustains a sound wave (the
analog of the "Anderson —Bogo}iubov" mode of an isotropic
neutral superRuid) whose velocity is given by Eq. (12.4)
and hence by (12.6) . (This result is derived for the BW state
by Czerwonko (1967).) One expects that. there will be some
kind of smooth transition, in the region 0 & T & T„
between these two types of limiting behaviour. Wolfe
(1974), (1973b) has studied the question of sound propaga-
tion. in the collisionless regime in.detail and obtains results
which appear to confirm this expectation: his calculated
values of the sound velocity for the ASM state drop back
from the zero sound value co towards the first sound value c~

as the temperature is lowered below T„ in agreement with
the experimental behavior (see Wheatley, Sec. X). The
relevant calculations are somewhat complex and I shall
not attempt to summarize them here (see also Ebisawa
and Maki, 1974; Serene, 1973). Still jess shall I try to

(35;/Bt + (a/ax )J; '& = 0 (12.16)

where J; '& is the spin current dyadic (we recall that
Roman subscripts label spin coordinates and 6-reek sub-
scripts spatial ones). As in Sec. VII.D, we introduce the
"spin superfjuid velocity dyadic" Q, defined by Eq. (7.60),

ad;(n)/ax. = (2m/5)e, p,d, (n)Qi, . (12.17)

describe the theoretical work on the absorption of ultra-
sound near T„a subject which is complex in the extreme
and where a comparison of theory with experiment has so
far been hindered not only by its intrinsic difhculty but by
uncertainty as to the probable orientation of many experi-
mental samples, (see the above references).

B. Spin waves
Surprisingly enough, the theoretical situation with regard

to spin waves —a kind of excitation which has no direct
analog in other known superAuids —is in many ways rather
clearer than with respect to oscillations involving the density
(or superfluid density). One reason for this is that in many
cases (though not all) it is possible to assume that the
"spin" and "orbital" degrees of freedom decouple to a 6rst
approximation. A second reason is that under suitable
conditions we may essentially forget about the normal
components, so that spin waves are the analog of fourth
sound rather than of second, first or zero sound. To see this,
we divide the liquid into four "components" —the up-spin
Cooper pairs (5 $ ), the down-spin pairs (5 J, ), the up-spin
normal component (1V $ ), and the down-spin normal com-
ponent (X J, ) . The propagation of a spin wave will involve,
locally, the Row of spin currents, that is, counterAow of
5't and Xt' against 5$ and XJ. Now, the Row of Sf
and 5$ is rnetastable for reasons of the kind discussed in
Sec. VI.B; but the flow of X t' and X f is not, and there
is no reason why collisions between these two components
cannot bring them both to rest (since, if they are moving
in counterRow, they possess no net momentum, there is no
conservation jaw inhibiting this process). Consequently,
after a time of order of the quasiparticle collision time 7.,
the up and down normal currents will have effectively
annihilated one another; and if the period of the oscillation
is long compared to r(a&7-(( 1) then the normal component
is effectively at rest and can be ignored. This argument
would not work for oscillations involving a net mass current
(or heat current) since then X 't and X $ would be Rowing
parallel and the conservation of momentum prevents their
being brought to rest by collisions between them. For the
moment, therefore, we shall simply ignore the normal
component, assuming that cur(( 1; corrections to the for-
mulas derived are discussed brieAy below, as is the "collision-
less" limit Mr)) i. For a more detailed discussion of the
topic of spin waves we refer to Combescot (1974a,b), Maki
and Tsuneto (1974b), Maki (1974b), Brinkman and
Smith (1974), and Maki and Ebisawa (1974): cf. also
Vuorio (1974).

If for the moment we set the external field equal to zero
and ignore the dipole forces, we can give a discussion of spin
waves which almost exactly parallels the one given above
for fourth sound. We have, first, the conservation law
(7.61) (valid to the extent that the system conserves total
spin):
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According to the definition of the "spin superRuid density, "
Eq. (7.62), we have under the condition that the normal
component is stationary the relation

J; '& = (5/2m) p;;,.p'~'"n, p. (12.18)

aS~/at + (5/2') p;; psi".."(aQ,p/ax ) = 0. (12.19)

We must now find an equation of motion for A. To do this,
we interpret Eq. (11.36) as a local equation, i.e. we put
(since H =—0)

ad(n:rt)/at = —(y'/y)d(n:rt) ~ S(rt) (12.20)

and taking the spatial derivative of this equation (in the
limit of small oscillations) we have

In the argument that follows we consider the limit of small
oscillations, i.e., S ~0. In this limit all space and time
gradients of d, p'&'" etc. , are themselves proportional to S;
hence, whenever we get such gradients multiplying 5 itself
the resultant term is proportional to 5' and can be neglected
by comparison with terms of order 5. This consideration is
used several times in the ensuing argument.

Substituting (12.18) in (12.16), we find in the limit of
small oscillations

of course replaced by l cL(n) ~2 as usual for a triplet state).
LEquations (12.24) —(12.25) need some correction if the
Landau parameter Zi is different from zero. jNear T, (only)
we can obtain a simple relation between the spin wave
velocity c, (q) and the fourth sound velocity c4(q): from
(12.6), (12.13), (9.54) and the Landau effective-mass
relation (2.42) we have

c.'(q) = L(1 ~ —,'Z, )/(1 ~ F,)jc. (q). (12.26)

LOne can actually show that this relation is not affected
by a finite Zi. cf. the comment on (7.68) .g On the other hand,
for T~ 0, we can use the fact that p, = p to obtain Eq.
(12.26) but with the right hand side multiplied by m/m*.
This factor comes in the last resort from the fact that the
spin current carried by a quasiparticle is proportional to
m/nz* times its mass current Lcf. Eq. (2.15)j. The result
(12.25) agrees with that of Combescot (1974b), Kq. (14);
it agrees with that of Maki and Tsuneto (1974b) LEq. (15),
neglecting the dipole term 0& j only in the limit T —& T,
or lf Pj = Oq 1Ã = Rs

For the BW phase we have, according to Eq. (9.51), the
following expression for the spin superAuid density in a
system of axes (~, n') in which the orbital coordinates have
been rotated relative to the spin ones through the rotation 8
occurring in its definition, Eq. (9.46)

(a/at) (ad, /ax ) = —(y'/X) e;,I,d, (aSg,/ax ). (12.21) p p"'/p = ( l *)(1—I'(T)3Ea. a p

Comparing this with the time derivative of (12.17) (again
in the small oscillation limit) we find

aQg /at = —(y%/2nzx) (aSI,/ax )

Using Eq. (2.26) for the normal-state susceptibility x„and
also Eq. (2.5), we can rewrite (12.23) in the form

a'5;/at' ——;vp'(m*/m) (1 + ~zo) (y„/y)

x (p;;:.p"'"/p) (a'5,/». »p) = 0. (12.24)

From the form of (12.24) and the form of the spin superfluid
density p;;. p'i"" PEq. (7.66) j it is obvious that in general
for spin waves propagating in a given direction q there is
more than one eigenfrequency, corresponding to different
directions of the spin polarization. For the ASM phase
we find, by using Eq. (9.56), that the principal axes are
the same for all q, namely an axis along d and two arbitrary
axes perpendicular to it: for the axis parallel to d we find
co —= 0 and in fact, we can easily convince ourselves that no
spin wave can propagate with this polarization. Spin waves
polarized in any direction in the plane perpendicular to d
are degenerate and have frequency

and finally, from (12.19) and (12.22)

a'5/aP —Lp%'/g(2m)'jp p' '"(a'5/ax axp) = 0.

(12.23)

—5(&'~~ p + ~*- f»p + f'p a~- )j (12.27)

By inserting this form into Eq. (12.24) we see that the
spin wave eigenmodes are polarized parallel and perpendic-
ular to q' —= 8q. For the velocities c,

~ ~, c,i we find

c.ii' = kc.i' = -A~~'(1+ -'Zo) (x-/x) L1 —I'(T) j.
(12.28)

cs
~ [ /c4 = csg /2c4

2 I1+ 3piI'(T) } I1+ 4ZOL3 + 3I"(T)j}
(1+~0)(1+ 3pi)L3+ SI'(T)3

(12.29)

It is interesting to note that these "spin waves" can equally
well be regarded as "orbital waves" (Brinkman and Smith,
1974) since, for the BW state, it is a meaningless question
whether the particles have changed their spin motion while
leaving their orbital motion unchanged, or vice versa.

This agrees with the results of Combescot (1974b) Lhis
Eqs. (19) and (20), with ~0 ——0$ and of Maki (1974b).
It disagrees with that of Brinkman and Smith (1974)
Ltheir Eqs. (13) and (14)4'j by a factor of 2 even near T„
and also by factors of the order of m/m* at lower tempera-
tures. Lcf. the comment on Kq. (10.43), above j. According
to Eqs. (9.49), (9.48), (12.6), and (12.13) we have the
relation, valid at all temperatures (if Zi, Z2 = 0)

oP = 3i'~'(1 + —,'Zo) (6 p
—F p(T)) j jp, (12.25)

4' Note that their dehnition of p, includes a factor of m ' as compared
where I' p(T) is defined as in Eq. (6.27), (but with

~
d (n) I2 to ours.
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When we introduce an external field and/or the dipole
forces, the situation becomes morc complicated. It can be
handled simply by adding to Eq. (12.24) for 8'5, /BP the
appropriate terms from (11.35). Evidently, in the ABM
state, one spin wave mode must tend as q

—+ 0 to the
longitudinal resonance frequency Q~. This mode has in
fact always a polarization along the external held and the
simple dispersion relation

where 7 is the normal state relaxation time. On the other
hand, the neglect of dipole terms in Eq. (12.33) is in
general only legitima. te provided ~ && coii(T) where con(T)
is a typical dipole frequency Lcf. (12.30)g. Consequently,
we normally44 have well dehncd spin waves with approxi-
mately linear dispersion only in the frequency "window"
given by

su~(T) && M = c,q&& ~ '$1 —V(T) j.
cu' = QP+ c,2(q)q'. (12.30)

J '& = (5/2m) p". p'i'"0 p+ J (12.31)

There is a single transverse mode whose frequency is given
siinply by adding (WHO) to 'tlie light-hand side of (12.30)
(Combescot, 1974b): thus, as q tends to zero its frequency
tends to the shifted transverse resonance frequency, as we
might expect. For the 8% phase the complete disperson
relation, including both dipole and external field terms,
has been discussed by Brinkman and Smith (1974), al-
though they point out that an approach based on the
above lines may not be entirely realistic in a held since
the normal component motion is no longer completely
diffusive (i.e. , because the number of normal up-spin and
down-spin particles is not equal, a spin current will be
associated with a mass current which will be conserved).

Finally we briefly consider the question of corrections
due to the diffusive Row of the normal component. These
can be handled in a phenomenological way by generalizing
Eq. (12.18) to include a "normal" spin current Jl"'

This restriction may make it difficult (though not necessarily
impossible) to see spin waves experimentally; the trouble is
that since')i) (T, —T)'~'but L1 —V(T)g (T, —T),
we cannot go too close to T„and if we do not then we have
to excite waves of a wave vector q such that q

' is generally
rather small compared to a typical sample size. LSee
however the discussion in Maki and Tsuneto (1974b).g

One may also ask whether spin waves can be propagated
in the opposite, "collisionless' limit, cur » 1. Since (unlike
zero sound) a "collisionless" spin wave does not exist in
the normal phase, one would intuitively guess that no such
wave could be propagated until the normal component has
become negligibly small compared to the superAuid com-
ponent. The question of spin waves in the collisionless limit
has been studied by Combescot (1974a) using kinetic
equation techniques analogous to those of Wolfle (1974b)
for density oscillations; his formulas for the spin wave
velocities seem to contain imaginary parts which are large
unless the normal component is small, which would conhrm
the above guess.

The normal spin current may be taken to obey a diffus'. on
type of equation:

J, &"& = —D(85;/Bx ), (12.32)

uP —c,~g2 —saug2 = 0, (12.33)

where c, is a typical spin wave velocity (which may of
course be anisotropic in general) . Evidently, a well defined
propagating wave will exist only if the imaginary part of
the solution of (12.33) is small compared to the real part:
this requires the condition

q « c./D or a& « c.2/D. (12.34)

If we work near T„substitute for D the normal state value
—'i~'(1+ -,'-&o)~ and use (12.2~) «(12.28) w«nd the
criterion $or spin waves to be well defined to be roughly

~r « 1 —I'(T) —(~*/~) (p./p),
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where D is the spin diffusion coefhcient: to estimate orders
of magnitude we may take this equal to its value in the
normal phase at T.. (Actually, in the superfluid phase D
will be a fourth-rank tensor quan. tity, but for present
purposes we can neglect this complication. ) If we insert
(12.32) in (12.31), the effect is to add to (12.24) a term
of the form D(B/Bt) V'5, —(where |72 operates in coordinate
space) . If therefore we assume a disturbance of the form
exp(iq r), its frequency is given by an equation of the
general form

Xlll. THE A TRANSITION IN A MAGNETIC
FIELD

The transition from the A phase to the normal phase
(hereafter called simply the A transition), and in particular
its behavior in a magnetic held, at the moment appears to
be one of the best-understood features of the behavior of
'He in the new phases. "Since the theory is rather straight-
forward and has bccn discussed and compared with thc
experiments by Wheatley (Sec. IX), I shall only comment
on it rather briefly. General references on this subject
include Ambegaokar and Mermin (1973), Mermin and
Ambegaokar (1973), Brinkman and Anderson (1973), and
Takagi (1974e). Subjects which will not be discussed here
include the possible effect of critical fluctuations (Patton,
1974) and the behavior of the kinetic coefficients (Seiden,
1973, Soda and Fujiki, 1974, Shahzamanian 1974) (cf.
Shumeiko, 1972) .

A. General considerations and thermodynamics
I.et us consider a weakly interacting Fermi gas which

(in zero field) will go superfiuid with angular momentum /

at some critical temperature T, and let us for the moment
suppose that for some unknown reason it will form an ESP
state rather than (say) the BW state. If now we apply a
magnetic held II to the system in the normal phase, the
effect is to enlarge the up-spin Fermi sea at the expense of

44 In certain special cases, however, we may be able to neglect the
dipole forces for the mode in question, in which case the lower limit does
not apply.

"With the exception, to some extent, of the ultrasonic attenuation:
see references in last section.
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T,I = 1.14m, exp —1/l1II, T~i = 1 14'.~ cxp —1/XI1,

(13.1)

the down-spin one. Although this does not RRect the
possibility of forming parallel-spin Cooper pairs (provided
the ESP s axis coincides with the axis of the field, of course),
it does nevertheless alter the situation because the density
of states at the up-spin Fermi surface is increased and that
at the down-spin Fermi surface correspondingly decreased.
Now we SRW in Sec. VII,A thRt Rs R first approximation the
up and down spins could be regarded as two completely
independent and noninteracting systems (cf. below), and
therefore they should have independent transition tem-
peratures which depend on the density of states in the
s tandard wRy:

We already know that the gaps AI (n), 61(n) are diferent:
according to Eqs. (13.3) and (7.33) Lputting Q = g(n)
and using the fact that cL(n) is just proportional to d(n) j
we find

a, (n) = a,f(n), a, (n) = S, exp(is@)f(n), (13.4)

where AP is an arbitrary phase corresponding to the pos-
slblhty of rotatlllg d 111 flic xy plRIlc Lthls sy1111Iictly will of
course be broken by the dipole forces as in the ordinary
A pllasc: cf. Scc. XI.C7' so tllRt, thc state 1s cllR1Rctellzed
by two real quantities At, A~ which are in general unequal.
If we have a P-wave ABM state, then the orbital wave
function is of course given by (e.g.)

f(n) = (3/2)"'(e„+ in, ). (13.5)

(13.2)

d(n) = df(n).
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(13.3)

and (de/de) I„, is the density of states of both spins which
would correspond to a Fermi surface at the position of the
up-spin Fermi surface, etc. In writing down Eqs. (13.1)
RIid (13.2) (which wc shall usc foi quallta'tive plllposcs
only) we assumed for simplicity that e, and VI are not
RGected by the shift in the Fermi surface. We see from
(13.1)—(13.2) that the up spins actually form Cooper pairs
at a higher temperature than the down spin pairs, so that
between T,t and T,~ we have only the up-spin particles
paired while the down-spin particles remain normal. It is
therefore extremely natural to interpret the experimentally
observed Ai and A2 transitions (see Wheatley) as corre-
sponding to the onset of pairing of up- and down-spins,
respectively.

One might at this point object that we already know that
for some purposes (e.g., the nuclear magnetic resonance,
see Sec. XI) it is quite illegitimate to treat the up- and
down-spin particles as forming two noninteracting system:
in fact thephase coherence between the 5, = 1 and S. = —1
Cooper pairs is quite essential. This is true, but the energy
involved in the phase coherence is the dipole energy, which
is small compared to the other energies associated with the
Ai —A& splitting except in extremely low fields ( & 10 G; S.
Takagi, unpublished) . Hence the dipole forces cannot play
a significant role in determining the amplitude of the forma-
tion of up- and down-spin Cooper pairs: all they can do is
to orient them once they are formed, just as in the usual A
and B phases.

If the above interpretation of the A~ and A~ transitions
is correct, then we expect that in the "Ai" phase (between
Ai Rnd Ag) wc llRvc tlic up-spill gRp AI (cf. Scc. VII.A)
finite while d ~ is zero. Below A&, h~ grows continuously from
zero and at large distances from the transition (T, —T ))
T.i —T,2) the two gaps are nearly equal and we can
electively apply the theory of the A phase as developed in
the rest of this paper. Just below the A2 transition, however,
we have A~ & d~. Thus, both in the A~ phase and imme-
diately below A~, we are dealing with rIoelrlitary ESP
phases. It is natural to suppose that the orbital wave
function of these phases is the same as in the A phase
proper, that is (assuming the latter is "ABM-like" )

The fact that dI W 61 means that the vector d in Eq. (13.3)
is now intrinsically complex (as we expect for a nonunitary
state, cf. Sec. VII.C) . In particular in the Ai phase (Ai = 0)
we must have according to (7.33), ~E + id„—= 0, so apart
from a phase factor

d = (1/V2)(x + iy) (13.6)

(where x, y are unit vectors in spin space) . It is interesting
to notice that for a phase of this type the dipole energy
Lwhich for complex d is proportional to —

~

(d. l) ~', cf. Eq.
(10.10)g is minimized if 1 lies in aey direction in the xy
plane, so that we have degeneracy with respect to rotation
of d (or 1) around the s axis. We can immediately conclude
that no longitudinal magnetic resonance can exist in the A~

phase. (This conclusion would also follow from the Joseph-
son analogy: to get a Josephson effect bo/h bulk metals
have to be in the superconducting phase. ) This observation
may also have something to do with the very dramatic
dift'erence in the anisotropy of zero-sound attenuation at
Ai and A2 recently observed at Cornell (D. M. Lee, private
communication) .

Indeed, one can see on thermodynamic grounds alone
that there must be a jump in susceptibility at T,. For any
second-order phase transition we have the magnetic
analogue of the Ehrenfest relations (since magnetization 3f

The fact that the up-spins go superAuid before the down-
spins has a rather interesting effect on the spin susceptibility.
If we start with the system in zero field in the normal state
and apply a field H, then just enough down-spin particles
will migrate into up-spin states to make the chemical
potentials pt, p~ equal, and as a result we will get a magneti-
zation M' = xH, where x is the usual Pauli susceptibility
given by Eq. (2.26). Now, when we reach T,i (i.e., T,I)
and up-spin pairs begin to form, the up-spin chemical
potential pt is reduced, relative to its normal-state value,
and some extra down-spin pairs migrate into the up-spin
band. This process stops when we reach T,2, singe after
that the two chemical potentials pt„p~ decrease together;
however it is not reversed and the net result is that for
fixed external field the magnetization (and hence the sus-
ceptibility), though temperature independent, is slightly
greater than the temperature-independent normal-phase
value. (For further details, see Takagi, 1974e.)
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and entropy 5 show no discontinuity across the transition) . an expression is4'

Ay = —(BT/BH) ... A(BM/8T),

A(BM/8T) = —(8T/(3H) „, (hc„/T), (13.7)

where the subscript indicates that the derivative is to be
taken along the coexistence curve and 6 indicates the dis-
continuity of quantities across the curve. Combining these
equations, we get

~x = (aT/aH) ...(~c./T). (13.8)

B. Landau-Ginzburg free energy: spin
fluctuation effects

As we saw above LEq. (13.4)), the up- and down-spin
gaps in a state of the type described will have the simple
form

At(n) = A~f(n),

(~~ ~ ~~)

a„(n) = a, (n) exp(isa),

(13.9)

Applying this relation to the A& and A& transitions separately
and using the experimental fact that the specific heat jump
has the usual sign across each separately, we see that y
must increase on going from the normal to the A phase. One
can check that the formulae derived by Takagi (1974e)
from the Landau —Ginzburg free energy (see next subsec-
tion) satisfy (13.8) (although some care is needed in
defining x in the Ai phase).

F I ~~, ~i I = 4&(0) i
—(1 —TIT.) (~~' + ~P)

—g. -', yA;(k T,) 'H(bt' —6,') + —',P(k T,) '

X (~t'+ ~,') —P~(kiiT. )-'~~'~, 'I, (13.12)

where we have chosen notation to agree as closely as possible
with Wheatley's. Here the dimensionless quantities q, P, and
8 are phenomenological parameters (but see below) . Notice
that the last term couples the magnitudes of the up and
down gaps (but not, of course, their phases, since in the
absence of spin-nonconserving forces gauge invariance with
respect to transformation of up- and down-spin wave
functions separately forbids this —cf. Sec. VII.A). For the
form and temperature dependence of At and A~ which
minimizes this free energy, and the resultant expression for
physical properties such as specific heat and susceptibility
jump, we refer to Wheatley (Sec. IX). The upshot of the
calculations is that q, P, and 5 can all be obtained47 from
experiment, 5 in particular being measurable with great
precision from NMR expreiments (see Osheroff and
Anderson, 1974, and for the theory also Takagi, 1974b).

Now, the interesting thing about this result is that P
and 8 (though not q) can be related to the parameters g;
occurring in the general expression for the free energy,
Eq. (9.16) (provided of course, that we assume that
'He-A is indeed a P-wave ABM state). In this way we can
measure a new combination of the a; s and obtain&ster alia,
a check on the validity of the spin-Ructuation theory. Since
the derivation does not appear in the literature as far as
I know, I will outline it briefly.

where 6@ is an arbitrary phase. If we were to substitute this Since d(n) is just the normalized version of the gap
form in the BCS free energy obtained from (5.72) by the cL(n), we have from (13.3) and (7.33)
prescription (7.12) we would get

FiA), 6)I = ——,'(de/de) (1 —T/T, ) (6t'+ 6i')

+ (21/160) l (3) (m-kgT, ) ' (de/de) (At4 + A)4) .

(13.10)

However, if there is a magnetic field present then, as we
have seen, both (dm/de) and T, are slightly different for the
up and down spins, the shifts being symmetric around the
zero-field values and proportional to H. If therefore we
interpret T, in Eq. (13.10) as the zero-field transition tem-
perature, and neglect terms of order II64 which would
give higher-order effects, we must add to (13.10) a term of
the general form

F' = —const. H(A~' —AP).

d. ( ) = (») '(~ —~)f( ),
d„(n) = (—i/26)(b, t+ A~)f(n), d, (n) = 0

L~' —= (~t'+ ~~')/2)

Furthermore we have for the ABM state (e.g.)

f(n) = (3/2) '~' (n„+ ie,) .

(13.13)

(13.14)

(dd;), =—0

«'*d;), = (4~')-'I~'-6;. (~~ —~i)'+ ~..h;.(~~+ ~i)'

Consequently we find for the averages of products of d s
and their complex conjugates over the Fermi surface:

+ (B,,B;„—8; 8;„)(6 ' —6„')}. (13.15)
Note that the resultant expression L(13.10) plus (13.11))
does not couple the up and down spins at all, as of course it Now using (9.15) we find for the five invariants (recall that
should not.

However, we already know (Sec. IX.) that the BCS
form of the free energy is not likely to be a good approxima-
tion for 'He. I.et us therefore look for the most general free
energy as a function of 0 t and h~ which contains terms up
to quartic and has the correct symmetry properties. Such

4' The P introduced in Eq. (13.11),which is used only in this section,
should not be confused with the P used in Secs. V—IK for the coeKcient
of 4'4: the two diA'er by a constant.

4" Note, however, that the sign of q cannot be obtained from any
simple thermodynamic experiment. For the BCS model it is positive,
but one cannot be sure that this will be so more generally.

Rev. Mod. Phys. , Vol. 47, No. 2, April 1975



A. J. Leggett: New phases of 'He: Theoretical 405

I.-=(I (d'&-I')'= o,

I —= (d,*d;*), ~ (d;d;). = 0,

3 = (d; d, ). (d, d;).
= (»')-'I (~t'+ ~t'+ 6~'~t') —(~t' —~t')'}

((d()..—= 1,

I5 —= (d,*d;), ~ (d;*d;),

(8~) I(~t +~) +6~t~t)+ (~t ~k) }.
(13.16)

Hence, using (9.16) (written in terms of 6 rather than N)
we have for the fourth-order terms in the free energy

in their definitions summation over repeated indices is
implied!)

(1973), which is equivalent to our definition of 8' from
(9.21); since in the BSA theory AP. t(BW) is negative,
b" as defined by (13.19) is positive. If we define a quantity s
which measures the BCS free energy as in (9.20), and
write the spin-fluctuation contribution a;~,f) in the form

C;(Sg~ = SA, (13.21)

then from (13.18), (13.20), and Table I we find

~ = -L(2- +- +-.)/(4+-. +-.) j,
&" = —p(~i + O.4) + ~2 + ~3 + ~5). (13.22)

%e see, therefore, that while in the naive spin-fluctuation
model )with values of the n, 's given from (9.21) g we have
the relation [

8"
~

= 2
~

8
~
(=

~

8'
~) this relation is not

general. However, if one takes the BSA values of the ratios
of the cx,'s from (9.43) and fixes the overall magnitude so as
to give b the experimental value 0.25 (see Wheatley) then
it turns out that the relation 6" = 26 is still obeyed to a good
approximation. In fact if one inserts the BSA values from
(9.43) one finds the general relation between 8 and 8" to be

+ 2(«+ ~a+ 2~3) ~t'~p}, (13.17)

where P is defined by (9.10a). Comparing (13.17) with
(13.12) and using the fact that cV(0) —= ~i («/de), we find
the correspondence '

& = 2(7/8~')I(3)(«+ «),
~ = —I1+ I:2~3/(«+ ~5)3}- (13.18)

The total specific heat jump from the normal phase to the
A~ phase measures the combination 2/P (1 —5) (see
Wheatley); from (13.17), this is just proportional to
(as + «+ a5) ', in agreement with the results of Sec. IX
Lcf. Eqs. (9.29), (9.27) and Table Ig. However, the ratio
of speci6c heat jumps across A~ and A~ separately, or
(better) the NMR shifts, enable us to determine 8 (see
Wheatley). For the BCS model of course have 8 = 0; for
the "naive" spin-Quctuation model of Sec. IX.A we find
from Eqs. (9.20) and (9.21) the result

1 —~ = (1 —(21/40)a"j/L1 —(7/80)~"j,
5" = 808/(35 + 7B) (13.23)

Lcf. Wheatley, Eq. (9.12) and Osheroff and Anderson,
1974). Hence for 8 = 0.25 we find 8" = 16/29. Note how-
ever that we have implicitly assumed that the BSA values,
which were calculated on the assumption of unitarity, are
also valid for nonunitary states fcf. Sec. IX.Cj.

XIV. CONCLUSION

In this section I want to consider briefly how well the
generally accepted theories of 'He-A and B fit the existing
experimental data, and then to comment on some open
problems and possible further lines of investigation. In the
6rst part, however, I shall not attempt to duplicate the very
full discussion of %heatley, but just concentrate on what
seem to me to be the key points of confrontation between
theory and experiment.

8 = b'/2,
A. How firm is the identification of 'He-A and B?13.19

where 8' is the parameter introduced in (9.21), which also
has the signi6cance of the spin-fluctuation contribution to
the free energy of the BW state relative to the difference in
BCS free energy between BW and ABM (see Table I).
(Brinkman and Anderson (1973) ca!! this quantity 8 and,
assgmieg the naive spin-fluctuation model, use it directly
in the free energy (13.11);note that it divers from our 8 by
a factor of 2).

Let us finally consider what happens if we have a more
sophisticated theory (whether of the spin-fluctuation type
or any other) which produces arbitrary values of the a, 's.
We can then define a quantity b" by Eq. (9.44):

—:AP8t (BW) /PPsos (BW) —Psos (ABM) g. (13.20)

This is the de6nition of their 8 used by Brinkman, Serene,
and Anderson (1974). Note carefu!!y that it differs by a
sign from the definition used by Brinkman and Anderson

The currently "orthodox" belief about the new phases of
liquid. ~He is that (a) both new phases are "anisotropic
superfluids" that is, phases whose pair wave functions are
essentially of the type described in Secs. V—VII of this paper,
(b) both correspond to pairing with angular momentum /

equal to 1, (c) 'He-A is the ABM phase and 'He-B the
BW phase. Let us 6rst ask whether this set of beliefs as a
whole is compatible with the experimental data.

The 6rst point to make is that the data on 'He-A taken
by themselves appear, at least qualitatively, entirely com-
patible with the hypothesis that it is the ABM phase.
Such a hypothesis is in excellent agreement with the c.w.
NMR data, and the agreement of the nonlinear ringing
behavior with the predictions of Maki and Tsuneto (1974a;
see Sec. XI.C and Wheatley, Sec. VIII) t'hough not perfect,
is still impressive; the remaining discrepancies may well
be due to the relaxation effects which are not accounted for
in the theory. Again, the data on the superfluid density
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appear to agree at least roughly with Eq. (9.54), and the
discrepancies may be due to the effects of geometry which
at present are not well understood. Moreover, while the
origin of the anomalous fluctuations in %MR absorption,
ultrasound absorption etc. in 'He-A (see the end of
Wheatley's Sec. X) is at present unclear, it would be natural
to associate them with the variations of the anisotropy
axes, i.e., of the vector 1, which as we have seen is pinned in
bulk only by currents and hence presumably is somewhat
susceptible to large fluctuations, (cf. Anderson, 1973) .
A further satisfying piece of evidence is the excellent agree-
ment of theory and experiment on the A transition in a
magnetic field, (see Sec. XIII). The theoretical predictions
foi' k111ctlc coeKc1ents Rild ill tl Rsound Rbsol ptloll (sec
references in Secs. XII and XIII) also appear to be at least
qualitatively compatible with the ABM hypothesis.

Turning now to ~He-B, one can say that most of the data
on this phase taken by itself is compatible with the hypothe-
sis that it is the BW state. The main difficulty seems to lie
in the static susceptibility, which as discussed in detail by
Wheatley (Sec. III) appears to 6t the theory well on the
melting curve but not so well at lower pressures. The
quantitative discrepancy at T = 0 is particularly worrying
since at T = 0 the theoretical formula (9.49) is not sen-
sitive (directly at least) to spin fluctuation effects LV(T) —:
0 independently of such effectsj: in fact, it requires only
that the "Fermi-liquid-unrenormalized" susceptibility of the
BW pllRsc 1s 3+~ (whicll 1s R direct coilscqilcilcc of the sym-
metry of this phase), that the Landau parameter Z, is
not unduly large Lcf. Eq. (7.57)j and that the parameter Zo
is not diBerent in the superQuid phase from its normal-
phase value. It is conceivable that this last assumption
needs re-examining in the light of the unexpectedly large
effects of spin fluctuations (cf. Tewordt et al. , 1974) .
Leaving the susceptibility aside, the c.w. %MR data are
in excellent agreement with the theory for the 8% phase,
and while the failure so far to observe the predicted double
dip 111 tllc 1loiililleai I iilglng frcquciicy (scc scctlori XI.E,
and Wheatley section IX) is a little disappointing, it is
perhaps too early to become seriously worried, since here
again the effects of relaxation are large and ill-understood.
The same remark applies to the failure to observe a well-
defined ringing behavior at lower pressures except very
close to T,. The superAuid density, spin susceptibility and
specific heat appear to be in rough though not perfect
agreement with Eq. (9.50). Finally the data on kinetic
coeKcients and ultrasound absorption, though not well
understood, are at any rate not obviously incompatible
with the identification of 'He-8 as the 8% phase.

One should of course also remark that the quantitative
success of the spin Quctuation model in predicting various
experimental quantities on the assumption that He-A is
ABM and 'He-B BW (see next subsection) may itself be
regarded as strong evidence for the correctness of this
assumption. However, it is perhaps relevant to point out
that in this model it is the spin structure of the Cooper pair
wav'e function, rather than its orbital structure, which is
essentia Lcf. Eq. (9.15)g so that it is not entirely obvious
that (say) l = 3 states with spin structures like those of
the ABM and BW phases might not give very similar
results.

A fairly direct and severe test of whether the 8 phase
is indeed 8% would be a measurement of the low tempera-

ture specific heat: this should be given accurately by the
same formula as for a BCS 5 state, since the gap is isotropic,
whereas all other anisotropic superAuid states, even the
"BW-like" ones with equal numbers of 5, = +1, 0, —1

pairs, have anisotropic gaps (although not necessarily with
nodes, cf. Sec. VII.B) and hence a specific heat which tends
to zero slower than the BCS expression.

Undoubtedly, the principal difficulty in the orthodox
identification is the failure (Wheatley, Sec. IX) to observe
the predicted ratio, namely (5/2)'i', of the linear parallel
(longitudinal) ringing frequencies in the B and A phases
near the PCP. (As discussed by Wheatley, the c.w. experi-
ments on the melting curve do give good agreement with
the theory. ) Unlike most of the other discrepancies which at
present exist between experiment and theory, this one occurs
in an area where neither theory nor experiment appears to
have much room for maneuver: the theoretical prediction
essentially relies only on the symmetry of the pair wave
functions of the ABM and BK phases, while it seems difficult
to explain away the experimental result in terms of mis-
orientation (cf., Wheatley, Sec. IX) . At the time of writing
this discrepancy remains a major puzzle.

Let us therefore briefly ask how plausible are alternative
identifications of 3He-A and 8. The first constraint is that
in view of the nature of the phase diagram (Wheatley, .
Sec. IV) it is dificult to avoid the conclusion that the A
and 8 phases result from the same instability of the normal
phase. However, even if we assume that the A phase is
a conventional anisotropic superfluid with given (odd) f,
it does not gltomgticagy follow that the 8 phase is also
a conventional anisotropic superAuid with the same / value
but a different form of pair wave function: it could con-
ceivably, for instance, be a more sophisticated type of
condensed phase in which the Cooper pairs underwent
a further type of correlation not allowed. for in BCS-type
theories, (e.g. , so as to form some kind of quadruple). At
6rst sight the linear and nonlinear %MR behavior would
appear to settle the matter conclusively in favor of the
anisotropic superAuid's; however, it is quite conceivable
(and indeed in my opinion probable) that even for more
sophisticated types of condensed state this behavior will
be a function only of the dependence of the dipole energy
on relative rotation of the spin and orbital coordinates
(cf. Sec. XI). In that case, any given anisotropic superfluid
state may be only a particular case of a much more general
class of condensed states having the same XMR properties.
It is clearly inappropriate to pursue this speculation here,
since very little concrete theoretical work has been done
along these lines, but it may be worth bearing in mind if it
should turn out to be increasingly difficult to 6t the 8-phase
data to the anisotropic superAuid model.

If then we confine ourselves to conventional anisotropic
superItIuid states, what are the alternatives to the orthodox
identifications? This question has been considered by
Barton and Moore (1974a,b), Mermin and Stare (1974),
and Moore et al. (1974). The strongest constraints are
imposed by the XMR data. It turns out that once one
assumes that the l-value is the same for the A and 8 phases,
it is perfectly pssible to find alternative models for the two

' The observation of a parallel ringing frequency of 2~AH in the
limit 4II —+ ~ (cf. Sec. XI.E and Wheatley, Sec. VIII) vrould indeed
exclude certain types of hypothesis about (e.g.) quadruple formation,
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ACii/1. 42C„= ~ilaw !
= L1+ f(~i+ ~4) + 5(~2+ ~3+ ~5) g ',

6 = —L(2~3 + ~4 + ~5) /(4 + ~4 + ~4) j,
where the last equation is just (13.22) rewritten.

(14.2)

(14.3)

49 It is of course also possible to consider the slope of the A—8 transi-
tion curve (see Brinkman eg al. , 1974; Kuroda, 1974b; Osheroff and
Anderson, jI974}. However, to the extent that one takes seriously
Wheatley's Eq. (4.2) for the thermal differences of the two phases,
this will be entirely determined by the difference in the specific heat
jumps at T, (the coe%cient n is pressure independent and hence
presumably arises only from the BCS terms' ). This appears to be also
true for the model of Brinkman et af.. (1974), at least if the effect of
the sixth order terms is neglected. .

phases separately, but the results for quantities which
relate them, e.g. , the ratio of longitudinal ringing fre-
quencies, are in no better and often worse agreement with
experiment than those arising from the oithodox identi6ca-
tions, (unless one assumes I ) 5, which is conceivable but
aesthetically unappealing). At the moment, therefore, one
must conclude that the case for the orthodox identifications,
though not quite cast-iron, is at least very strong. Most
theorists will probably hope that the annoying %MR.
anomaly somehow goes away I

B. How good is the spin fluctuation models
Undoubtedly, the qualitative idea of spin Quctuation

feedback has been a major advance in our understanding
of 'He-A and B—indeed, one can say it is the only important
qualitative departure from BCS theory which has so far
emerged. from study of the new phases. I.et us however
brieQy ask: assuming that they are indeed the ABM and
BW phases, how rigorously can we test the model with
existing and. obtainable experimental data?

It is probably helpful to frame the ensuing discussion in
terms not of a single parameter 8' or 8" but of the contribu-
tions of the spin Quctuation feedback process to the coef-
ficients a; of the five fourth-order invariants, normalized in
terms of the BCS contributions —that is, the u, 's defined
in Eq. (13.21). Theoretical calculations (see Sec. IX.C)
in general aim to produce accurate ratios of the o. s but
usually take their overall magnitude as a phenomenological
parameter. They will, of course, be functions of pressure
and also temperature: in the ensuing discussion, however,
we shall consider only regions close to the second order
transitiori, so that the n s can be treated as depending on
pressure only. The discussion will then be applj. cable to
any calculation of the n s, whether or not it uses the spin
Quctuation model. We d.o not write out the pressure depen-
dence explicitly in what follows.

At present, then, there are three quantities" which are
in principle measurable for T near T, which will give in-
formation on the n s: the specific heat jumps across the
A—N and 8—N transitions (including transitions from super-
heated phases), and the parameter 8 which describes the
splitting of the Ai—A2 transitions (see Sec. XIII). Note
that both the first two can be deduced for a/l pressures from
thermodynamic and magnetic measurements (see Wheatley
Sec. IV), though the values obtained above the PCP
pressure are presumably somewhat less reliable than those
below. Using Eq.s (9.29), (9.27), (13.21) and Table I we
have

~C~/1 42C = ~»M ' = Lf + —,'(~3+ ~4+ ~:))-',
(14.1)

If for instance we take the results of Brinkman e] al.
(1974) for the n, , Eq. (9.43) and insert them in (14.1)—
(14.3) then if we put ni =——y we get

ACg/1. 42C„= (1 2 —6 3y)

DCii/1. 42C„= (1 —2y) (14.5)

(14.6)

These predictions may be compared with the experimental
data on AC~ and ACii (cf. Wheatley's Figs. 5 and 16) and
on 8 (Wheatley, Sec. IX, Osheroff and Anderson 1974:
note again that the 6 of the latter authors is what we have
called 6", and see Sec. XIII for the relation between the two
parameters) . It should be noted that the difference in specific
heat between the two phases is extremely sensitive to small
errors in 8 in the region 5 ~ —„'.

C. General comments

Turning to more specific matters, one woul clearly like
to know whether the complicated nature of the anisotropic
superQuid will produce new kinds of quantization rules,
Rnd. what eRect these will have on structures such as vortices,
disgyrations, and perhaps other more complicated. sin-
gularities. Will there be other kinds of transport than the
usual two-fiuid type known in 4HeP (cf. Graham, 1974).
Will the fact that the relation between heat current and
normal-Quid velocity is a tensor relation lead to a.nomalous
types of thermal behavior?

At a more specific level still, R theory of NMR relaxation
which will cover nonlinear phenomena as well as linear ones
is urgently need. ed. In another direction, there is plenty to
be done in the area of microscopic feedback theories: for
instance, it should be possible to estimate quantitatively
the effect of feedback mechanisms not associated. with spin
QuctURtlons, Rnd Rlso to give Rn Unambiguous Rnswer to the

If we assume that the new phases of liquid. 'He are indeed
anisotropic superQuids, as is by now almost universally done,
then what are the main unsolved problems' It seems to me
that one of the most urgent concerns the question of the
existence and magnitude of a macroscopic angular momen-
tum (in the A phase). As was pointed out in Sec. VI, it is
not a simple matter to deduce this from the relative angular
momentum of the Cooper pairs; and since the feasibility
and meaningfulness of a whole class of experiments wiH

depend on the answer, the question is an urgent one. To
answer it one may well have to take into account the effect
of boundaries in R much m.oI e sophlstlcRted w'ay thRIl ls
usually done. This question is in a sense one aspect of a more
general problem in the theory of Rnisotropic superQuidity
(and indeed. superconductivity) namely: What is the rela-
tion between Cooper pairs and ordinary diatomic molecules?
Can one make a smooth transition between them by va, rying
the pairing potential in a suitable ways Does it make sense
to distinguish between the process of formation of Cooper
pairs and the process of their "Bose condensation"2 Al-

though some aspects of these questions can be said to be
understood, the general situation is still very far from
clear.
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question, how far the Landau parameters are changed in
the superAuM phase by feedback effects. Many questions
concerning spin and "orbit" waves, and more generally the
propagation of disturbances involving the orientation of the
Cooper pairs, remain unclear although progress in this
direction seems likely to continue to be rapid. The same
goes for studies of the NMR behavior under anomalous
conditions. A possibly less attractive area to theorists, but
one which is nevertheless interesting and experimentally
important, is the complex of phenomena associated with
superheating, supercooling, and "memory" effects (Osheroff,
1973, Wheatley, Sec. XI). The list could no doubt be ex-
tended almost indefinitely.

One might also ask whether, from our understanding of
anisotropic superAuidity in 3He, we can predict it elsewhere'
One obvious candidate is dilute 'He —'He solutions, although
it is at least equally possible that if superHuidity occurs in
this system, it will be in an 5-wave state (see, e.g. , Ostgaard,
1974). Another more speculative possibility is a monolayer
of 'He floating on liquid 4He (C. W. Woo, private commu-
nication). However, perhaps the most promising type of
candidate is a strongly paramagnetic metal such as Pd; one
might hope that spin fluctuation exchange would be at least
as important a mechanism of attraction here as in 'He and
that consequently "triplet superconductivity" (i.e., super-
conductivity with S = 1, odd / pairing) might occur.
However, there is an experimental dif6culty here: anisotropic
superconductivity is predicted theoretically (Balian and
Werthamer, 1963) to be very much more sensitive to non-
magnetic impurities than the isotropic variety, and the
lower T, for the pure metal the smaller the impurity con-
centration which will destroy it. It is a challenging problem
to try to predict T, and hence estimate the required purity.
One should also mention that the sub ject of anisotropic
superRuidity has also been discussed in the context of
astrophysics with a view to its possible occurrence in
neutron stars: however, comparison with experiment is of
course somewhat more dificult in this case, and there are
substantial differences from the ~He problem.

%hat is superAuid 'He good forP Of course, it combines
the complexities of liquid, -crystal anisotropy and superAuid
behavior, but the whole is not necessarily greater than the
sum of its parts and it is not yet clear whether this combina-
tion in itself will give fundamental new insights. It is also
our first magnetic superfluid, and this (as stressed by
Wheatley) may give interesting applications. To give just
one example, if one passes 'He through a superleak when it
is in the Ai phase (where only one spin species is paired) the
emerging liquid should have its spins totally polarized~
Another conceivable, though probably remote, possibility
is that, because the orienting energies, especially for the
B phase, are so fantastically tiny, it might be possible to
arrange by a-suitably ingenious geometry to reduce them
right down to the thermal energy k~T. In that case one
might expect to see a sort of macroscopic Brownian motion
as the Cooper pairs axes undergo thermal fluctuations. But
perhaps the most fascinating possibility is that just as
superconductors can be used to test rather fundamental
aspects of the laws of physics (e.g. , the "physical reality of
the vector potential", see Mercereau, 1969), so the spin
degree of freedom in superQuid 'He would allow us further
tests of the basic tenets of quantum mechanics. This how-
ever at the moment must be highly speculative.
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APPENDIX A. PROOF OF EQ. (7.74)

Consider a general quantity of the form

M~'~ = -', g g,, (rp —r[)a"+~0.'" (kw 1) (A1)

where k, / label different particles and i, j Cartesian com-
ponents of spin in units of A, and where the function g;,
obeys the relation

gij(A rt) = gq;(ri —rr). (A2)

gee want to show that the contribution to the expectation
value of M(') from the formation of Cooper pairs can be
written

—2 ReF,*(r)P;(r) I, (A3)

where F(r) is given in terms of the anomalous averages
(a z azz) or (f (r)fo(r') ) by (7.22), (7.18), and (7.31):

F(r) =———', i Q Q (a2d) q(a g ugp) exp(ik. r)

—= ——',~g (a, i1) ~Q (R —r/2)p&(R+ r/2)), (A4)

where we assume for simplicity that we deal with a homo-
geneous state of the system where the second expectation
value is not a function of R.

%e start by introducing the spin density

o, (r) —= g a,&"b(r —rg).
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In terms of this M~'& can be written Hence, writing 0- for the transpose of the matrix o-, we have

M~@ = —', j dr j dr' P g;, (r —r') 0,(r) 0;.(r') —Eo, (A6)
~ /

A j/i l'K p Kb (%20 b) (0 l02) pb = Tra K'l&2&j&2&b

where Ep, which we do not write out explicitly, subtracts
off the "unwanted" terms which would add terms with
k = I to (A1) . Now we second-quantize 0.,(r):

But we also have if j = 1, 2, or 3

020~02 = —a~ (A17)

a'(r) = 2 Z4-'(r)a-blab(r), (A7) and hence

where the 0 b' are elements of Pauli (not spin) matrices. '

Substituting in (A6) and commuting the terms so that
the creation operators stand in front, we find as usual
that the terms arising from the commutation cancel Ep and
we are left with

M&2~ = —' P P P j dr j dr'g, ;(r —r')
ij aP y5

A.,jl, l = Tra—,ala;ob, ——2(8;j82i —B,bf'l, l
—B,lb,7,). (A18)

Substituting this in (A13) we find

(M~2& &,.;„=—', Jdrg, , (r) A gl, lFl,*(r)F l(r)

= —„' f drg;;(r) f8,, ~
F(r) ~2 —2 ReF;*(r)F;(r) I, (A19)

&& - ' .9-'(r)A'(r')4 (r')4 (r)
where we used the condition (A2). This agrees with (A3),

(AS) gFD
By a change of variables this can be written (from now on

APPENDIX B. THE DIPOLE ENERGYsummation over repeated indices is implied)

M"' = s f dR f drg'j(r) ~-b'0»'

&( p "(R + r/2) p~t (R —r/2) pb (R —r/2) pll (R + r/2) .

We now define $cf. (6.44) g

F..() -=«.(R- /2&~, (R+ /»&,

where we assume, as always, that the anomalous average
does not depend on R. Then if we work in unit volume as in
the text, we find that the contribution to 5I~'& from forma-
tion of Cooper pairs is

(M&. -- = —:f «g' (r) -2',b'F,-*(r)Fbb(r)

According to (A4) and (A9) we have

A case of particular interest is the dipole energy (see
Sec. K.A) . To obtain this, we substitute

g'j(r) = (v'&'/r') (&' —3&'r') (r —= r/r). (81)

Then we find from (A19) the contribution of the Cooper
pairs to the dipole energy:

Hn ———-'2y'6' f drr 'fl F(r) I' 3
I
r F(r) (82)

Hn ———-'y%2 g g Fl„*Fi;;X,(lr —lr')"
ij kkb'

We take Fourier transforms (in unit volume as usual).
Since the pair wave function falls off exponentially as r —+ ~,
we need not worry about boundary eBects and can irn-
mediately write down the result Pcf. (7.18)g

F(r) —= —2i(02d)-bF-n(r) (A11)
E,j(lr —k') —= E;j(q) —= f dr exp(iq. r)r—'(8; —3r;r;).

(B3)

F b(r) = i(ol,o2) p F2(r). (A12)

Consequently (A10) can be written

and by the prescription (7.32) of the text this can be in-
verted to give As we shall see below, E;; depends only on the direction

of g, not on its magnitude, and we can therefore immediately
perform the sum over the magnitudes of k and k'. using
(7.81) and (7.46) we find

HD ————',y'5'+' j(dQ/4 ) f (dQ'/4 )E';;(q) d;*(n) d;(n')

(M &pairs = 8 f drglj (r) aajb ayb (&l&2) ay*(aia2) pb

X F.*(r)Fl(r).

Consider now the quantity

[q —= (n —n')/
~

n —n'
[ g.

(A13) To evaluate E';j(q) we choose axes so that the s axis is
along q: then by symmetry all off-diagonal components are
zero and we have (since TrE —= 0)

Aijbb rrab rr» (&202) ay (&la2) bby

K = Eyy ———2E„=——~Ip,

Io = f dQ j r ' dr exp(iqr cos8) (1 —3 cos29),

(B5)

where summation over the Greek indices is of course implied.
Now for any Pauli matrix a.l (with 0 = 1, 2, 3) wehave

~002 ny = 20k ya-

= 87I- ds s 3 sins z' — 3 s' coss —sins s

= + (S2r/3) (B6)
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~ = +L ~'&'/~(~+ 1)j«'&..~" f(«/4 )

&& I3 In d(n) I' —
I d(n) I'I (89)&"(q) = —(4~/3) (h' —3i4) (87)

(the integral is convergent and with suitable caution can of l) the double integral can be reduced to a single one:
be integrated by parts). Generalizing (85) to an arbitrary
set of axes„we obtain

and substituting this in (84) we hnally obtain

II = + (2'/3) y'5'+' f (dQ/4 ) f(dQ'/41r) I d*(n) .d(n')
—3q d*(n)q. d(n') ) (»)

(note the change in sign), where (R ), is a suitably weighted
average of the renormalization factor. For the case l = 1
this is proved in the appendix of I.eggett, 1974a: a more
general proof has been given by Tal. agi (1973),'0 who
shows that (R'),. is given explicitly by

(&')- =- L~(~+1)/2 1f ~*~( ) 'U(& )I', (810)

Equation (88) is quite general, except that, as discussed
in the text, the integrand may have to be multiplied by a
fRC'tol' E(Q) to tRk. c 111to Rccou11't quRslpal'tlclc 1c1101111R11ZR-

tion eGects.

where

R'(q) = (3/47r) f drR(r)r j'2(qr). (811)

In the case of pure-l pairing (i.e., when d(n) is a combina-
tion of spherical harmonics V~„, belonging to a single value

y& here is just the usual function occurring in the expansion
of a plane wave in angular momentum components, i.e.,
the spherical Bessel function (Messiah, 1965, p. 488) .

LIST GF SYMBGLS51

Symbol

&i(sf)

C„or C„(T,)

Meaning

coeKcient in expansion of 4 (n) in terms of A(n)

coeft~cient of invariant I, in fourth order GL free energy

contribution to above from spin fluctuation feedback

coefIicient in expansion of 4'(n) in terms of A(n)

normal state specific heat at T,

speed of ordinary ("first" ) sound

speed of second soun(i

speed of fourth sound

spin diA'usion coe%cient

normalized gap function or order parameter

elements of expansion of d(n)

unit vector along d(n) for ABM state

=—Ad;

density of states (of both spins) at Fermi surface

Definition or First use

12.4, 12.6

12 1 12-13

12 31 12.32

energy of broken-pair state relative to ground pair (quasiparticle 5.14, 5.39, 7.47b
excltatlon cllcl'gy) .

excitation energy of spin-up quasiparticle

quasiparticle excitation energy matrix

free energy

spin-independent Landau parameters (=—P;, P„')

(anomalous average)

Fourier transform of above ("Cooper pair wave function")

5.21, 5.28, 5.43, 5.44

6.42, 6.45

I For the case E2 —= 1 the proof is also given in Takagi, j.9T4a.
5'This list does not include standard symbols nor those that are used only very locally. Where several equations are quoted, it generally

means that the defInition is progressively extended.
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Meaning

matrix forms of above

Definition or first use

7.i8, 7.22

vector representation of above tsee (7.31)$

f(n)
f(n)

gn(T)

H or H

I;(i = .1, .5)

or J. '

EI„Ez

normalized gap or order parameter for singlet states

matrix version of above for triplet states

dipole coupling constant

Hamiltonian

external magnetic field

five P-state fourth order invariants

spin current dyadic

Fermi wave vector

static compressibility

coefficients of gradient free energies

unit vector along direction of angular momentum in ABM state

quasiparticle effective mass

—= —', (de/de)

direction of quasiparticle wave vector k on Fermi surface
(=—k/I & I)

"number of condensed pairs"

Fermi momentum

rotation Inatrix for BW state

renormalization factor

"healing length"

dipole torque

total spin angular Inomentum

differential spin polarization of point n on Fermi surface

measure of a s in BCS theory (= 3/5)

11.4

9.14, 9.15

2.1

2.39

10.33, 10.34

13.11

V.C

11.37

2.14

7.49a

9.20

Vgg~ or V(k, k )

&SP

F(n, T)

—= ~/yves (Sec. II only)

critical (transition) temperature

coeKcient in 8CS wave function

quasiparticle pairing interaction

coe6icient of expansion of above in spherical harmonics

spin superAuid velocity
I

Fermi velocity

superQuid velocity

normal velocity

coefFicient in BCS wave function

(generalized) Yosida function

differential Vosida function

2.35

4.2

7.58

2.5

6.23

6.14, 7.50
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Symbol

F(T) or F;;(T)
Zo, Z1
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Meaning De6nition or first use

matrix of weighted averages of above 6.27

spin-dependent Landau parameters (Z, = 4I—in "paramagnon" 2.13
language)

+0

coeKcient of 4' in GL free-energy

spin fluctuation term in a, relative to BCS terms (—= 5/3a, &,y&)

' —= 1/k~T

,

coeBFicient of 4'4 in GL free energy

(in Ch. 13 only) coe%cient of b, t4+ 3 ~'

:l-(3—)( ~ T.)-'
—= 1/k~T,

coe%cient of gradient term in GL free energy

5.67, 5.68, 7.ii
13.20

3.22

5.67, 5.69, 7.ii, 7.25

13.12

9.10a

10.27

y, (i = 1, 2, 3) coeKcient of gradient term in GL free energy (for anisotropic case) 10.32

gyromagnetic ratio

(Sec. X only): coeS.cient as above

(Sec. XIV only): —= —a& in BCS theory

coefFicient of At'A~' in GL free energy

2.16

10.26

13.12

measure of spin fluctuation contribution to a s in "naive" theory 9.21

b,~ or h(n)

hg, or Z(n)

&(n)

[~(n:T) [

6 or A(T)

AC, or AC

~c~,a

1.(3),|(4)

borg;;

measure of spin Auctuation contribution to a, s in BSA theory

change of y;; from normal-state value

gap parameter

matrix form of above for triplet states

vector representation of above

magnitude of gap for unitary triplet state

overall magnitude of gap parameter

contribution in free energy from spin fluctuation feedback

change of g; due to spin fluctuation feedba, ck

phase relation between up and down-spin Cooper pairs

specific heat jump across normal —superAuid transition

values of above for A and 8 phases

Levi-Civita symbol

energy of single (Landau quasi-) particle plane wave state

cutoff energy for model potential

=—1.14

Riemann zeta-function

—= (de/de) 'Zo

coefFicient in GL free energy in magnetic field

angle of d

see (7.53)

parameter proportional to fourth order GL free energy

dimensionless coupling constant

9.44, 13.20

9.3

5.13, 5.38, 5.51

7.16

7.31

7.27, 7.47b

5.53, 7.78, 9.12, 13.13

9.35

9.21

11.13

6.5

14.1, 14.2

7.60

3.9, 5.15

3.13

4.10

13.12

7.53

5.73, 7.28, 7.42, 9.10a, 9.27

3.24
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Symbol
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Meaning

chemical potential

413

De6niti:on or 6rst use

$0

8(T)

b, b.

p;;" or p„

p, orp,
spinpij, ap

d or 0,

OaP

0 (rl r2 01&2)

xv'

x' '

x -'

x(r' —r, t' —t)

also, in (6a) only —= yK

—= 5w p/~k~T, (~ pair radius)

temperature-dependent correlation length

temperature-dependent correlation length (for anisotropic case)

total mass density

normal density tensor

superQuid density tensor

"spin superQuid density tensor"

quasiparticle spin in units of 5 (also used, with comment, in Sec.
VII and Appendix only, for Pauli matrix)

components of Pauli matrix (see above)

quasiparticle relaxation time

"pseudomolecular" wave function

static magnetic susceptibility

static magnetic susceptibility tensor

values of above uncorrected for Fermi liquid e6ects

dynamic spin susceptibility in units of A'

Fourier transform of above

6.47

10.29

10.41

6.20

6.25, 6.30

6.33

7.62

7.31

(II.D), (XI.B)

2.25

7.52

2.24

9.36

4.13

esp(q) ~) dynamic magnetic susceptibility, i.e., above )&y%' (Section II 2.38
only)

0'(n: T)

+(n)
+(T) or +

D or QA,

A' or 0;,2

ESP

total wave function of system

order parameter (—= g Fq)
I&I

matrix form of above

overall magnitude of above

Larmor frequency (—= WHO)

characteristic dipole frequency

spin superQuid velocity dyadic

NMR tensor

see Sec. VII.A

5.2

5.56

5.65, 7.35

(XI.A)

(XI.B)
7.60

11.42, 11.46

unitarity, unitary state see (7.26)

SW state

ASM stale

ESP axes

see (7.30), (IX.D)

see (9.9), (IX.D)
see Section (VII.B) and (VII.C)
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