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It is shown how conformal lnvariance relates many numerically accessible properties of the 
transfer matrix of a critical system in a finite-width infinitely long strip to bulk universal 
quantities. Conversely, general properties of the transfer matrix imply constraints on the allowed 
operator content of the theory. We show that unitary' theories with a finite number of primary 
operators must  have a conformal anomaly number c <  1, and therefore must fall into the 
classification of Friedan, Qiu and Shenker. For such theories, we derive sum rules which constrain 
the numbers  of operators with given scaling dimensions. 

1. Introduction 

The  fact that  a statistical system with short range interactions at a critical point  
should be conformal ly  invariant has many  interesting consequences, part icularly in 
two d imens ions  [1]. A simple example  is the mapp ing  of the plane into a finite-width 

strip, f rom which the correlation functions [2] and other quantities accessible to 
numerical  calculat ion may  be determined. They are related to propert ies  of the 
t ransfer  matr ix  along the strip, which we shall denote by e u/?, where a is the lattice 
spacing. In the cont inuum limit, / t  may  be thought of as the hamil tonian opera tor  
of  a q u a n t u m  field theory in (1 + 1) dimensions. 

Two  par t icular ly  useful results of this mapping,  which have already been discussed 
elsewhere [3,2], relate to the eigenvalues E n of /4: for a strip whose width l ~ oc, 
with per iodic  boundary  conditions, 

~'C 
E o - f l  (1.1) 

6l 

277X n 
E,, - E 0 - - -  ( 1.2) 

l 

Eq. (1.1) relates the finite size correction to the lowest eigenvalue E 0 (the ground 
state energy) to the value of the conformal  anomaly  number  c, which plays a central 
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role in the analysis of conformal invariance, and which may be used to label 
different universality classes [4, 5]. Eq. (1.2) relates the energy gaps of the excited 
states (which are the inverse correlation lengths in the strip) to the scaling dimen- 
sions x ,  of the scaling operators of the theory, and gives a very accurate way of 
measuring them [6, 7]. 

In the first part of this paper, we show that conformal invariance predicts a great 
deal more about the structure of the transfer matrix. In particular, matrix elements 
of operators between eigenstates o f / ~  are related to the universal coefficients of the 
operator product expansion. We are also able to determine the form of the 
corrections to the results in eqs. (1.1),(1.2) and to demonstrate the existence of 
universal ratios of their amplitudes. 

In the second part, we exploit the fact that the transfer matrix for an infinitely 
long strip of width l also yields the partition function for a rectangle with periodic 
boundary conditions (a torus) of dimensions l x l': 

Z( l , / ' )  = Tre  - r f t .  (1.3) 

A similar result holds for a parallelogram (see eq. (3.8)) if l ' / l  is generalized to a 
complex number. The condition that Z(l , l ' )= Z(l ' , l )  then implies nontrivial 
constraints on the eigenvalues o f / ~  and their degeneracy, and hence on the allowed 
number  of independent operators with a given scaling dimension in the theory. In 
the general theory of conformal invariance, it is shown that to each scaling operator 

with scaling dimension x corresponds an infinite number of other operators L,,~, 
with dimensions x -  n, which are generated in the short distance expansion of q~ 
with the stress tensor T. Since the scaling dimensions cannot be negative in a unitary 
theory (for example, one in which / t  is hermitian,) there exist so-called primary 
operators for which L,,q~ = 0 for all n > 0. Belavin, Polyakov and Zamolodchikov [4] 
showed that if we parametrize c by 

c = 1 (1.4) 
m ( m + l )  

and m is rational, the set of operators whose scaling dimensions (h, h) (where 
x = h + h) are given by the Kac formula [8] h = hp, q, [l = hb. ~, where 

(p(m + 1) - qm) 2 -  1 
h p , q  = 4m(m + 1) 

(1.5) 

form a finite set of primary operators, in the sense that no more are generated in the 
operator  product expansion. Friedan, Qiu and Shenker [5] showed that in a unitary 
theory with c < 1, m must be an integer > 2, and that the only possible scaling 



188 .I.L. Cardv / Corjbrmallv itwariant theories 

dimensions of the primary operators are given by the Kac formula with 1 ~< q ~< p ~< 
m - 1. Goddard,  Kent and Olive [Sa] showed that these conditions are also sufficient 
for unitarity. Our first result complements the results of these papers. We show that 
in a unitary theory with a finite number of primary operators, c must necessarily be 
less than one, and the theory must therefore fall into the classification of Friedan, 
Qiu and Shenker. 

For  such theories, it turns out that the eigenvalue structure of the transfer matrix 
may be completely determined. The essential results are contained in the character 
formulas for the appropriate representations of the Virasoro algebra, which were 
derived by Rocha-Caridi [9]. We show that the condition that Z(l, l ') be symmetric 
under the interchange 1 ~ l '  may be satisfied as long as the quantities 0~.( p, q;,~, g/), 
defined as the number of operators with h = hr, u and h = h,. q, satisfy certain sum 
rules. 

This is of interest because although the Friedan, Qiu and Shenker [5] classification 
dictates the allowed values of the scaling dimensions of operators, it does not 
determine which operators may actually appear in a given theory. Indeed, there may 
be more than one possible set of operators. For example, both the universality 
classes of the 3-state Potts model [5,10] and that of a "generic" tetracritical point 
[11] have been identified with m = 5. However, not all scaling dimensions allowed by 
the Kac formula appear in the Ports model, and some of the others should be 
doubled. In the tetracritical model, on the other hand, it seems as though all values 
appear. We show that both these examples satisfy the sum rules, and are able to 
exhibit the complete set of primary operators in both cases. In fact, these are the 
only unitary models with m = 5. The general solution of the sum rules, for arbitrary 
m, has however eluded us. 

2. S t r u c t u r e  of the  transfer  matr ix  

We begin by recalling the form of the general two-point function in a strip of 
width l with periodic boundary conditions [2]. In the infinite plane, the two-point 
function of an operator q5 with scaling dimensions (h, h) is 

{,~(~, ~),~(: ' ,  2 ')}  = (~ - ~') 2,,(~ _ z,) =y' (2.1) 

If ~ is a primary operator, under the conformal mapping w = f ( z )  the correlation 
function transforms according to 

{¢(~ ,  s )¢ (z ' ,  s ' ) }  = (S' (z))h ( S ' - T ( T T ) 7 ' ( S ' ( ~ ' ) ) " ( ~ ) ' T ( O ( w ,  m)~(w' ,  m' ) } .  

(2.2) 
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Choosing f ( z ) =  (//2~r)ln z and using (2.1), we obtain the correlation function in 

the strip: 

= 

(sinh ¢r ( w -  w')/I)2h(sinh~r(~- ~ , ) / / )2h  • 
(2.3) 

Putting w = u + iv, w' = u' + iv', this has the expansion, for u > u', 

(2~)2~ ~ a N a n e x p [ - 2 ~ r ( x + N + N ) ( u - u ' ) / l ]  
T N,N=0 

× exp[2~ri(s + N - ~V)(v - v ' ) / / ] ,  (2.4) 

where x = h + h  is the scaling dimension of 0, s = h - h  is its spin, and the 

coefficients a N are given by 

F(x + N) 
aN-- F (x )N!  (2.5) 

On the other hand, the correlation function in the strip may be evaluated using 
transfer matrix techniques. In that case the scaling "operators" ~(u, v) become true 
operators ~ (v)  acting on the same Hilbert space as does the transfer matrix. The 
correlation function may be written 

(ep(u, v)O(u', v')> = Y'~(Ol{)(v)ln, k>e -'£,, E"){"-u')(n, kI{)(v')lO }, (2.6) 
n 

where In, k )  is a complete set of eigenstates of / )  of energy E,, and momentum k 
(quantized in units of (2~r//), so that the matrix elements depend on v and v' as 
eik('' - ~"). Comparing with (2.4), we see that to each primary operator of dimension x 
and spin s there correspond an infinite number of eigenstates of /2/, labelled by 
(N, Jr), with energy E 0 + 2vr(x + N + N) / l  and momentum 2~(s + N + N)/ l .  The 
lowest such state must be non-degenerate, and we denote it by 10). From (2.4) we 
see that 

(OlO(v)lq,5 = (2r r / l )~ .  (2.7) 

Associated with each primary operator 0 is an infinite number of other scaling 
operators in the conformal block [4, 5] of 0. The operators L ,,0 are defined by the 
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short-distance expansion of q, with the (zz) component of the stress tensor T: 

( _ 7 - < )  = "C 
,'t = 0 

(2.8) 

In the same way, the operators /~ ,,0 are defined via the short-distance expansion 
with T. Further operators may be generated by repeated short-distance expansions 
with T and T. The most general operator ~ at level (N, N) has the form 

L k,--. L ~,,/~ < . . .  L k;,,,~b, (2.9) 

where k 1 ~< . . .  k,,, k{ ~< . - .  ~< k',,,, and Y'ki= N, Ek~ = N. This operator has 
scaling dimensions (h + N, h + N), and therefore corresponds to an eigenstate I+) 
of / )  of energy x + N + N and momentum s + N -  N, both measured in units of 
( 2 v / l ) .  Since the two-point function between ~ and the primary operator ~ is 
non-vanishing, this eigenstate must be identified with one of those appearing in eq. 
(2.6). However, not all the operators at a given level are independent. Indeed, for 
those operators whose scaling dimensions are given by, the Kac formula, there is 
considerable degeneracy. The number of independent operators at level (N, N) will 
be equal to the degeneracy of the appropriate eigenstate of /4 .  

The correlation function (q~f) is given in the infinite plane in terms of differential 
operators [4] acting on (~4'). This can be conformally transformed to the strip, 
yielding all the matrix elements of the form (0 ]~a[q, ). Only matrix elements involving 
the lowest states [~) in a given block have a very simple form, however. Further 
matrix elements of this type may be obtained by transforming the 3-point function 
to the strip. In the infinite plane the general 3-point function of primary operators 
has the form [12] 

haz23 " 3 1  ' , Xzph, h,~ h, ~,~+1,,; ~,~ -t,,~J,. (2.10) 

where c,j k is the operator product expansion coefficient of O~ in the short-distance 
expansion of ~, and ~j. In the strip one finds 

2 v , .  u I 2 v , ~ l u  2 u3)/I 
' - ~ / J cil/ 'e ~':)/le 

X e 2 v i r , ( V l  ~ : , ) / / e 2 ~ V / s a ( t . 2  r ~ ) , /  (2.11) 

for /~1 )'> /'/2 >~> u3- The same correlation function evaluated in the transfer matrix 
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formalism is 

(O]~, (  vl) leoi)e - >*x,( . . . .  )/l(dPil~Pj( o2)ldPk)e2~rxk(u2 "')/t(~k[~k(V3)]O ) .  (2.12) 

Comparing these expressions, and using (2.7), one finds 

(7)  x' = - -  cijke 2~i( ' ' -s~)v/l  . (2.13) 

Thus the universal operator product expansion coefficients c~j k are measurable in 
terms of matrix elements of operators between low-lying states. In practice, the 

~j will not be normalized, in which case co k may be obtained from operators 

(dPi[~aJ(V)[~ak) e 2'~isk~'/' ( 2 . 1 4 )  

2.1. C O R R E C T I O N S  TO FINITE-SIZE SCALING 

One of the applications of the above result concerns the corrections to the result 
(1.2) for finite values of l. These occur because at a critical point the hamiltonian 
will differ from the fixed-point hamiltonian by terms involving irrelevant operators. 
If we assume that this departure is small, we can write the infinitesimal transfer 
matrix as 

+ Ea, f dv ~j (v), (2.15) 
J 

where the aj are unknown parameters. To first order in the perturbation, 

2~xn Ea, f dv(ea,,Ig#j( )l'/'n) (2.16) E~ - E 0 = T + v . 
J 

Using (2.13) this may be written 

2rrx, ( , x j 2  ) 
E , -  E o =  l 1 + Y ' ~ a j c , , j ( Z r r / l )  + . . . .  (2.17 t 

J 

This shows the typical form of correction to scaling terms, since we may identify 
2 -  XJ with the renormalization group eigenvalue of q)j, For (/)j to be irrelevant, 
xj > 2, and the correction term becomes negligible as as l --+ ~ ,  as expected. Eq. 
(2.17) shows that ratios of correction to scaling amplitudes are universal, and related 
to ratios of operator product expansions coefficients. 
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The conformal block of the identity operator ~ is present in all theories. It 
contains the operators L 21 c~ T and /~ jl c( T. These operators are not allowed to 

appear  in /4 since they are not scalars, but L 2L 211, which has x = 4, is allowed. 
We thus expect corrections to finite size scaling of order l 2 to be present in any 
theory. (These are often referred to as "analytic" corrections, but note that terms 
O(l  1) are not allowed.) On a lattice, non-scalar operators are also allowed. For 
example, on a square lattice operators of spin + 4 will appear. The most relevant 
operators with s = 4 are L 4n and L22~, which both have x = 2 also, and therefore 
lead to O(l 2) corrections. For a self-dual Ising model, these will be no other 

"non-analy t ic"  corrections, since the only other blocks are those of the energy 
density e, which is odd under duality, and the magnetization o, which is odd under 
spin reversal. In other models, there will of course be non-analytic corrections, 

although they may be hard to disentangle [13]. 

3. Operator content of unita~ theories 

In the last section, we defined a primary operator as one annihilated by the 
lowering operators L,, and f~,, for all n > O. In a unitary theory, in which scaling 
dimensions must be positive, it is possible, given a list of operators in the theory, to 
construct all the primary ones by repeatedly applying the lowering operators. We 
now show that if the number of primary operators so constructed is finite, then the 
conformal anomaly number c must be less than one. 

We consider the partition function for a theory defined on an l × l '  rectangle, 
with toroidal boundary conditions, in the limit that l, l '  ~ ~c with I ' / I  = 3 fixed. 

From (1.3) and (1.1) this has the form 

z ( l , / ' )  = e ('`,, ' : " ' "  (3 .1 )  
I t  

where A is the area. In the limit under consideration, only those energy gaps which 
scale like l ~ contribute. By eq. (1.2), they are given by the dimensions of all the 
independent scaling operators in the theory. The sum over n may be broken into a 
sum over conformal blocks, and a sum over the operators in each block. At level 
(N, N )  in a block, the general operator has the form (2.9). There are P ( N ) P ( N )  
such operators, where P ( N )  is the number of partitions of N into positive integers, 
not necessarily distinct. In general , however, some of these operators may not be 
independent. In a unitary theory, each term in (3.1) is positive. Therefore an upper 
bound on the contribution to the sum in (3.1) from one conformal block, whose 
pr imary operator has scaling dimension x, is 

e 2~,a ~ P ( N ) P ( N ) e  2~(N~x)a (3.2) 
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This is just the square of the generating function for P(N) .  It is equal to f ( 8 )  2, 
where 

f(6) = f i  (1 - e 2 , , ,8) .  (3 .3 )  
n = l  

We therefore have the upper bound on the partition function 

Z ( l , l ' )  <~e-fm+~ca/6f(8) 2 E e-2 ..... ~- (3.4) 
primary 

operators 

Now consider the limit 3 ~ 0. In appendix B we show that f ( 6 )  satisfies the 
inversion relation 

f ( 8 ) = 3  1/2e~8 ~ b/12f(8 1). (3.5) 

As 6 --+ 0, the fact that Z(6)  = Z(6 1) implies from (3.1) that Z(6 1) _ e fA+,c/6a, 
and hence, comparing with (3.4) that 

e -fA+~'/6~ <~ 80Le iA+~/68, (3.6) 

where ~ is the number of primary operators. If ffC is finite, we see that c must be 
strictly less than one. In that case, every primary operator must be degenerate at 
some level, and hence its scaling dimensions are given by the Kac formula. 

This result must be interpreted carefully. It is clearly possible to consider theories 
consisting of several decoupled models, each of which has c < 1. Since c is additive, 
the resulting theory may well have c > 1, yet may appear at first glance to have finite 
0L. This is not so, however. As an example consider the Ashkin-Teller model. This 
consists of two Ising models, each with c = I, with a four-spin coupling between 
them. Consider the decoupling point, where this vanishes. Within each Ising model, 
the magnetization operators O r(1) and 0 ~2) are primary, being annihilated by L(~ 1) and 
L~, 2), for n > 0, respectively. In the composite model, a primary operator is one 
annihilated by L n - L ( ,  1) + L(, 2). It is easy to show that there is an infinity of such 
operators, for example 

o ( 1 ) ( L ( _  1) - L(2))ko(2) (k = 1,2 . . . .  ) .  (3.7) 

While this example may seem somewhat pedantic, it is important to realize that 
away from the decoupling point such primary scaling operators become non-trivial, 
although the number of them remains infinite, consistent with the fact that c 
remains at one. 

Another case occurs if there is some additional symmetry which may relate the 
infinite number of primary operators back to a finite set. This happens, for example, 
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Im ~J 

R~e~' 

Fig. 1. Definition of l and /' for an arbitrary parallelogram. The partition function is invariant under the 
interchange l ~/ ' .  

in supersymmetric theories [5,14, 15], where in addition to the operators L,, we have 
their fermionic partners G,,. Associated with each primary operator is an infinite set 
of other primary operators formed by acting with the G,,. If we redefine the concept 
of primary to refer to operators annihilated by both the L,, and the G,,, then the 
above analysis is modified. Theories with a finite number of such primary operators 
must have c < 3. This is consistent with the result of refs. [5,14, 15]. (The relative 
factor of i for the fermions can be traced to the fact that G] = 0.) 

3.1. INVERSION SUM RULES 

We now restrict ourselves to the case of unitary theories with a finite number of 
primary operators, so that they fall into the classification of Friedan, Qiu and 
Shenker [5]. It is first necessary to generalize (3.1) to the case of an arbitrarily shaped 
parallelogram. The shape may be specified by a single complex number 8 = l ' / l ,  as 
is illustrated in fig. 1. Toroidal boundary conditions are once again assumed. The 
partition function in such a geometry is given in terms of the infinitesimal transfer 
matrix / t  and the momentum operator k of an infinitely long strip by 

Z(I ,  l ') = T r ( e  ' ) )a~"(e ,~)Im/' (3.8) 

where we have used the fact that / t  and ~: commute, and that e '"z translates through 
a distance a. Inserting a complete set of eigenstates o f / t  and k, 

Z( l ,  l ') = e I '4+'cRe~/6Zexp[- E , R e l ' -  ik,,Im l ' ] .  
t l  

(3.9) 

Thus an operator with scaling dimensions (h, h) will contribute to the sum in (3.9) a 
term e ?,~(h~+~,~*). Now consider the contribution of one conformal block, whose 
primary operator has dimensions (h, h), to the sum. This will be of the form 

X(8)2 (8" ) ,  where 

X ( 6 ) = e  Z , h ~ E d ( N ) e  2 ,~  (3.10t 
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together with a similar expression for ~(3"). Here d(N) is the degeneracy at level N 
of the operator in question, 

Eq. (3.10) has precisely the form of the character formula for the appropriate 
representation of the Virasoro algebra. These formulas have been derived by 
Rocha-Caridi [9]. The result is that, for an operator corresponding to h = hp, q in the 
Kac formula, 3(3) = 3p,  q(3), where 

X p , q ( 3 ) = f ( 3 )  l g p . q ( 3 ) ,  (3.11) 

f(3) is as given in eq. (3.5), and 

( 2vr3 
gp,q(3) = ~ exp 4m(m+ 1) 

k =  oo 

× [ ( 2 m ( m + l ) k + ( m + l ) p - m q ) a - 1 ] ) - { q ~ - q } )  

(3.121 

If we denote the number of primary operators with h = hp, q and h = h~, o by 
~)L(p, q; p, q), then (3.9) becomes 

Z(l,l ')=e -fA+ÈcReS/6 Y~ sAL(p,q;fi,El)Xp,q(3)X~,cT(3*). (3.13) 
P, q ; fi, ?l 

The sum over (p,  q) is over the values 

1 ~< q~<p ~< m -  1.  (3 .14)  

Note that the expansion in (3.12) is very rapidly convergent for Re 3 > 1. However, 
it is actually convergent for all Re 3 > 0. One of the remarkable features of (3.12) is 
that it allows the symmetry of Z(l, l') under l ~  l' to be respected, provided the 
~L( p, q; fi, ~) satisfy certain constraints. These we now describe. 

The first step is to apply the Poisson sum formula to (3.11). This has the effect of 
bringing 3 into the denominator of the exponent. After a little algebra, one obtains 

( 2 ) 1 /2  [ 

gP'q(3)= re(m+ 1)3 ~ m - m ( m ~  

~ (-~r(r2-1))  mrP r~rq 
× exp 23m(m + 1) sin s i n - -  

r=-oo m m + l  
(3.15) 
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Substituting in (3.13), and using (3.5), (1.4), 

Z(8) =esA÷~'<R~ '162tf(8 E 
r e ( m +  1) .,q:s',q 

2~-m (m + - 1 ) s i n  sin , m m +  1 

• r(~ 2 -  1) sin r sin r~rq 
× ~ exp - 2 / ~ m m [ ;  +1)  m + l  " r = - - : ~  

(3.16) 

This is to be equated to 

Z ( 8  ' ) = e  /A+~cRe8 ,/6[f(8 ,)] 2 ~ ~9((p,q;fi,~) 
p,q: P,q 

X 
k= ~ exp 2 8 r e ( m +  1) 

× 
~= ~ exp - 2 8 * m ( m  + 1) 

× [ ( 2 m ( m + l ) k + ( m + l ) f - m g : / )  2 - 1 ]  -{U/--+-U/}')]., 

(3.17) 

We now proceed to equate coefficients of powers of e 1/a and e l/a*. The fact that the 
exponents of the leading terms agree is a check on the validity of the result in (1.1). 
The first sum rule comes from these terms, which correspond to r, ? = +_ 1 in (3.16), 
and k = k = 0 ,  p = q = p = q = 1 i n ( 3 . 1 7 ) . T h e r e s u l t i s  

wp . vrq rrF t m ( m  + 1) 
~)L(p,q;/~, Y/)sin-- sin sin = (3.18) 

p,q:~9,0 m m + l  m + l  8 

where we have set ,c9L(1,1:1,1)= 1, corresponding to the fact that the identity 
operator should appear just once. 
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It would appear  that an infinite number of other constraints follow from equating 
the non-leading powers. It is part of the magic of (3.12) that this is not so. First note 

that values of r and fi in (3.16) such that 

0 (mod m ),  or (3.19) 
r, ~ -  ( m o d m  + 1), 

do not contribute to the sums in (3.16). Thus we may run these sums from zero to 
infinity, including a factor 4 on the right-hand side. Now we use the following 

Lemma. The square of any integer r 2 such that r is not divisible by m or m + 1 

can be written uniquely as 

r 2=  ( 2 m ( m  + 1 ) k ' +  (m + 1 ) p ' -  mq') 2, (3.20) 

where the integers (k ' ,  p ' ,  q ' )  satisfy 1 ~< [q'[ ~<p' ~< m - 1. 

We shall refrain from giving a general proof. The case m = 3 is illustrated in fig. 2. 
The lemma implies that the sums over r and ~ can be converted into sums over 

k ' ,  p ' ,  q '  and ~:', fi', ~ '  of the form 

L exp 28m(-m+l)[(2m(m+l)k'+(m+l)p'-mq')2-1] 
] ~ t =  ¢C 

×(-1)(P+l)(P'+q')sinVrPP'sinm m+l~rqq'+ { q ' ~  _ q , } )  , (3.21) 

with a similar expression for the sum over ~. This now has almost the form of (3.17). 
The sums over k are seen to be redundant, and we end up with a finite number of 

constraints which we call the inversion sum rules: 

Y'. ~'C(p,q: f i , ? t ) ( -1 )  (p+q)(p'+q')+(~+v)(V+v') 
p,q;p,71 

~rpp' . rrqq' rrfip' . rr@' 
× sin sm sin s m - -  

m m + l  m m + l  

= ~m(m + 1 ) ~ L ( p ' ,  q ' ;  fi ', g/'). (3.22) 
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q' 

-22 

-23 -19 

- I T  -13 

- I O  

k'---I 

2 

I 5 

I I 

7' II 

14 

k,'-- o, 

26 

25 29 

31 35 

38 

p' 

k I= I 

Fig. 2. I l lustration of the lemma for m = 3. The values of 2m(m + 1)k' + (m + l ) p '  mq'  are shown. 
The blocks correspond to different values of k'.  Eve~, integer not divisible by m or m + 1 appears,  

regardless of s ign, just  once in this table. 

3.2. S O L U T I O N S  TO T H E  SUM RULES 

Eq. (3.22) may be written in a matrix form 

M~L= "~,  (3.23) 

where M is a direct product of two ½m(m-1)× ~2m(m-1) matrices. We are 
interested in eigenvectors of M with eigenvalue one. In general, this eigenspace is 
multidimensional, so there is a whole manifold of solutions. However, we require 
only those in which the ~ ( p ,  q; fi, g/) are non-negative integers. This Diophantine 
nature makes the enumeration of the solutions difficult. 
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One solution which may always be found is 
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C~( p ,  q; f i ,  ?1) = 6p.p6q, o . ( 3 . 2 4 )  

This corresponds to the case of all possible scalar operators being present in the 
theory, and no others. Presumably such theories correspond to the generic multicriti- 
cal points in the sequence of models of Andrews, Baxter and Forrester [16], analysed 
further by Huse [11]. He showed that each model could be associated with a value of 
m, and he identified exponents corresponding to all scalar operators with dimension 
x < 1. Presumably all the other scalar operators will then be generated in the 
operator product  expansion. The first sum rule (3.18) shows that no other operators 
may then appear in the theory, because each term in (3.18) is non-negative. 

To proceed further, we have examined low values of m. The analysis is simplified 
by the fact that, because of the periodic boundary conditions, only operators with 
integer spin may occur. That is, ~ / ( p ,  q; fi, ?/)= 0 unless hp, q -  hp, q is an integer. 
Also, for the partition function to be real, 

~ ( p , q ;  fi, ~) = 9 L ( p , q ;  p , q ) .  (3 .25 )  

This considerably restricts the dimension of the space to be searched for solutions. 
m = 3. In this case the allowed values of h and h are 0, ~ ,  5,~ and there are no 

non-scalar integer spin operators. Truncated to the space of scalar operators, the 
matrix is 

:(i 2) M = 1 , ( 3 . 2 6 )  
2 

from which it follows trivially that the only solution is of the form (3.24). The three 
primary scalar operators are the unit operator, the energy density and the magnetiza- 
tion operators of the Ising model. 

m = 4. Once again there are no non-scalar integer spin operators. The truncated 
matrix is 

1 
m = - -  

5 

t 2t t 2t '  t '  t '  
2t 0 2t 0 2t '  2t '  
t 2t t 2t '  t '  t '  

2t '  0 2t '  0 2t 2t 
t '  2t '  t '  2t t t 
t '  2t '  t '  2t t t 

(3.27) 

where t = sinZ(l~r) = ~(5 - ~/5) and t ' =  sin2(27r) = 1(5 + v/5). Because v~- is irra- 
tional, this leads to a system of 12 equations. It is straightforward to show that the 
only solution is once again of the form (3.24). This case has been identified with the 
universality class of the tricritical Ising model [5]. 
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m = 5. This case is more interesting because there exists the possibility of 
non-scalar  operators,  corresponding to (p ,  q; p, q) = (2, 1; 3, 1), (3, 1; 2, 1), (1, 1; 
4, 1), (4, 1" 1, 1); that is (h,  h) = (~ ! ! " , , ~ ), ( g, ; ), (0, 3), (3, 0) respectively. The resulting 
t runcated 14 × 14 matrix has as its elements rational multiples of t or t'. This leads 
to a system of 28 equations, which we shall refrain from giving in detail. They 
simplify to 

9~( (1,1;1,1)= ~ (2,1;2,1)=~:)~ (3,1;3,1)= 9"t (4,1; 4 , 1 ) -  a, 

9~ (2, 2; 2,2)  = ~:YC(3, 2; 3,2)  = 9~(4, 2; 4, 2) = 9~(4, 4; 4, 4) - f ,  

9~ (3,3;  3,3)  = 9~ ( 4 , 3 ; 4 , 3 )  - i ,  

9~(3, 1 ; 2 , 1 ) =  9~ (4,1:  1 , 1 ) = k ,  (3.28) 

where 

a=k+f ,  
5a = 3 f +  2i + k, 

i = a + k ,  

5k = a -  3 f +  2i. 

Since a is normalized to 1, the crucial equation is (3.28). It has two solutions, leading 
to the two possibilities 

a = f =  i = 1, k = 0, (3.29) 

o r  

a = k = 1, i =  2, f =  0. (3.30) 

The  first possibility (3.29) corresponds to the solution (3.24). This model has been 
identified with a generic tetracritical point [11]. (In field theory this corresponds to a 
scalar field with a ~8 interaction.) The second solution (3.30) is the universality class 
of  the 3-state Ports model. This is so, because some of the known scaling dimensions 
have been already identified [5, 10], and it was observed that operators correspond- 
ing to q even are absent. This means f = 0. Also, the magnetization operators were 
found to correspond to q = 3. Since in the 3-state Potts model the order  parameter  
has two components ,  we would expect to find i = 2. The complete list of scaling 
dimensions of primary operators is then 

") 7 7 (0 ,0) ,  (~, ~), ( s ,  s),  (3 ,3 ) ,  energy; 

1 ~ ~,  1~ ) × 2, ( 3' ~) × 2, magnetization ; 

(} ,  57), (7,  }),  (0, 3), (3 ,0 ) ,  chiral. (3.31) 

All previously found operators [5] appear in this list. 
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4. Summary and further remarks 

In the first part of this paper, we have completed the program begun in ref. [2]. 
We have shown how all important universal properties of conformally invariant 
two-dimensional theories, including critical exponents and operator product expan- 
sion coefficients, may be related to numerically accessible properties of the transfer 
matrix of a finite width strip. The value of these results will lie in the investigation of 
new models, rather than in reproducing already known results. The multicritical 
points in the models obtained by Andrews, Baxter and Forrester [16] whose 
exponents do not [11] appear to fit the Kac formula are of the first type. 

Second, we showed that unitary models with a finite number of primary operators 
(in the narrow sense defined by Belavin, Polyakov and Zamolodchikov [4]) have 
c < 1. This result partially fills a gap in the line of reasoning which picks out those 
models in the Friedan, Qiu and Shenker [5] classification as being special. For these 
models, we showed how the character formulas of Rocha-Caridi [9] give the partition 
function in an arbitrarily shaped parallelogram, once the number of operators with 
given scaling dimensions are known. Exploiting the symmetry of the parallelogram, 
we then derived sum rules which must be satisfied by these numbers. It is remark- 
able how the scaling dimensions allowed in the models in the Friedan, Qiu and 
Shenker [5] classification enable this symmetry to be realized. An arbitrary list of 
scaling dimensions would not have this property. This is another argument pointing 
to the special role of degenerate theories. We note that the symmetry of the 
parallelogram, which corresponds to the invariance of Z(6)  under the modular 
group, has recently been exploited to limit the possible gauge groups in heterotic 
string theories [22]. 

Finally, we obtained all solutions of the sum rules for m = 3, 4, 5, and showed that 
only the models which have been previously identified (Ising, tricritical Ising, 3-state 
Potts, and generic tetracritical point,) are in fact allowed. We gave for the first time a 
complete list of primary operators for these models. Solution of the sum rules for 
larger values of m will require greater effort or sophistication. However, it would 
appear that the number of solutions should grow with m. This points to the 
existence of as yet unexplored models, even with c > 1. However, it is important to 
realize that existence of a solution to the sum rules does not imply existence of a 
corresponding model, since the sum rules are only a necessary condition for the 
model to be consistent. 

The sum rules form a more severe constraint on a theory than closure of the 
operator  product  expansion and crossing symmetry, which in some cases does 
determine the operator product expansion coefficients [17]. For example, in the case 
m = 3, the operator product expansion closes with the operators ~ and e, the energy 
density. However, the sum rules show that the magnetization o must be included to 
get a consistent theory. Once the solution of the sum rules is obtained, the expression 
(3.16) gives the shape dependence of the free energy at criticality in an arbitrary 
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parallelogram. It would be interesting to generalize this to other quantities such as 
the susceptibility. 

This work was supported by the National Science Foundation under grant no. 
PHY83-13324. 

Appendix A 

Several interesting properties of a model in a finite width, infinitely long strip can 
^ 

be obtained approximately if the infinitesimal transfer matrix H is truncated to a 
finite set of low-lying states. The simplest case is to consider just two states, which 
will be a reasonable approximation for some quantities if the gap to the first excited 
state is small, followed by a larger gap to the second excited state. Such is the case 
for the Ising model, which has gaps of ~ / 4 1 , 2 ~ : / l  to the lowest excited states [2]. In 
general, if the magnetization operator has scaling dimension x, in the truncated 
basis 

/ ) =  2wx( 0 l  0 0)1 ' (a .1)  

w h e r e / )  is subtracted so that E 0 = 0. An external magnetic field h corresponds to 
adding a term 

It is trivial to diagonalize the sum and obtain the h-dependent part of the free energy 
per unit area: 

~'x ~x 2 ~h2 
f = ~ - -  ~ + (A.3) 

From this follow the susceptibilities X ~ ' ) =  - O'f/c)h"lh_o. In particular 

X (2) __ (2 ~r/ l  )2, (l/~rx). (A .4) 

and the dimensionless coupling constant [18] 

g = - _  _ (A.5) 

Using eq. (2.3) it is possible to show that the corrections to (A.4) are in fact O(x2). 



J.L. Cardy / Conformally invariant theories 203 

Both X (2) and  g have been measured [19,20] for the Ising model, showing good 
_ _  1 agreement  with the above crude estimates, if we take x - ~. 

Appendix B 

We derive the inversion relat ion (3.5) for f ( $ ) .  This can be written, using the Euler 

pen tagona l  n u m b e r  theorem [21] as 

f ( 3 ) =  ~ e -~8(3"2+~)-'~". (B.1) 

App ly ing  the Poisson sum formula, one obtains  

f ( 3 )  = (33)-1/2e("/12)(~ ~ ') ~ e-~( '+1)~/38cos~(2r+ 1)7r. (B.2) 
r =  - - o o  

Since 

cos ½(2r + 1 ) r r =  ~½v~- 

l O ,  

( - 1 ) " ,  r =  3n 

( - 1 ) " ,  r = 3 n -  1 (B.3) 

r = 3 n + l ,  

the sum over r may be rewritten as a sum over n. After  a little manipula t ion ,  this 

has the same form as the sum in (B.1), with 6 replaced by d 1. 
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