Chapter 5

Superconductivity

In this chapter, we will focus on microscopic theory of superconductivity.

5.1 BCS theory

5.1.1 Cooper problem

Cooper consider two body problem with attractive interaction. Fermi gas has stableFfermi surface. The exsitence
of Fermi surface will exert strong restriction to electron scattering. We consider the two electrons scattering
process. This process demands momentum conservation , namly

Ell + Eé = E1 + EQ (5.1)

In virtue of Pauli principle , the process shown on Fig(13.1) is nor permitted . However, we the electrons
on the Fermi surface tend to form process shown on Fig(13.1).
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Figure 5.1: The first pannel shows the scattering of two electron with opposite momentum. The second pannel
shows the general scattering process.

The two electrons with opposite momentum has more scattering space. Hence, the system could be descried
as

H = Ho + H[ = kZEkUCLUCkU - ‘i%cLTCT—k,LCk’ick’T (52)
g )

We consider the wavefunction could be expressed as

| 9) = a(k)eppely, | FS) (5.3)

k

Combing with Eq(5.21) and (5.3), we could be write down the eigenequation
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H|v) = B |¢) = (2e+ Eo)a(k) = % > a(k') = Ea(k) (5.4)

We can slove the A from the consistent equation (5.4)

2
AE = —2hw — 5.5
ooo (- xia) 63
We make consistent equation for Eq(5.4)
ak) __ g/V
Z a(k’) - 2e, + By — E (5.6)
k/
We make summation for k
q/V g [Men 1 g 2hwp — AE
= ~ ——— = =N(0)1 _— .
Zk: %r+Eo—E  N(0) /0 teoe—AE 2 Ol | =g (5:7)

We could summarize from the result (5.5) that it will form bounded state with lower energy than oringin
fermi surface if we conisder two electron on the Fermi surface with attractive interaction. This phenomena is also
call Cooper instablity.

5.1.2 BCS wavefunction

Schrieffer generalize the single Cooper pair to magny body wavefunction. Let’s consider N Coopr pair, the single
Cooper pair wavefunction could be described by (71, r2, 02, 02). The BCS wavefunction could be written into

Upes = A(Y(r1,72,01,02) -+ - (ran—1,72N; O2n—1,02n)) (5.8)
where A is the anti-symmetric operation. We write down the single Cooper pair function

$(r1,r2;01,00) = B 1 — 2 |) ® % (M) = 1))

_ elF(ri—r2) i _
—Ek:x(k) ® ﬁuw 5

= Zx(k)c%ciki | Vac) (5.9)
k

Hence, the many body wavefunction could be written into

| Upes) = N2 ((x(k)ern)e—iy) ® | vac) (5.10)

The wavefunction (8.9) is written at canonical ensemble . We generalize the wavefunction into grand
canonical ensemble

| YBCs) = exp (X(k)CLTCim) | vac) = H(l + X(k)czrcim) | vac) (5.11)
K
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Hence, the many body wavefunction is decomposed into single particel wavefunction product state. Fur-
thermore , we introduce the varitional parameter ug, vy to write the wavefunction into

| ¥pes(@)) = [[(lur | + 1 v | €cict ) | vac) (5.12)
k

The varitional parameter u; and v control the component of superconductivity. The BCS wavefunction
is also coherent state , which means coherence of wavefunction phase.
We could project out the N particle wavefunction from Eq(5.12)

27
bpes(N) = /0 e ¥ ones(9) (5.13)

5.1.3 BCS wavefunction varitation

We have write down the BCS wavefunction on the previous section . The next step is to optimize BCS wavefunction
. We substitute the BCS wavefunction into hamiltonian (5.21)

E = (Ypos | H | $pes) =2 x| vk |” —% g(ky, k) ug, vk, uk, v, (5.14)
k k1,k2

The Eq(?7?) shows that the varitional parameter on channel ki, ks should be matched with phase to gau-
rantee real energy. Now we can introduce the 6, to describe variational parameter, namly uy = cos 0y, vy = sin .

1
E=2 Z gsin? 0 — v Z g(k1, ka) sin 01 cos 61 sin 05 cos 05 (5.15)
k k:l,ktg

We make variation for parameter 6

1
2ey. sin 20, — v Z g(k1, ka) sin Oy cos Oy cos b, =0 (5.16)
k/

We solve the consitent equation (5.16) to derive gap function at zero temperature

A = hwexp (_gNl(())) (5.17)

We construct consistent equation from Eq(5.16)

tan 20, = A (5.18)
€k

where A(k1) = 5 3 g(k1, k2) sin 26,,. We sustitute the relation (8.17) into A

hQp 1

1« Ay / /‘ZD 1
A = — — ~gN(0 ——de =2 ——dx 5.19
g V;Qﬁk 9N (0) —hwp VA2 4 g2 0 V14 z2 (5:19)
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5.1.4 Mean field theory

We use mean field theory to deal with hamiltonian (5.21) . We define supercondutor order parameter as A =
£ eyel )
V 2kt Okl

0102 = 01 (02 — (02) + (02)) = 01(02) + (01 — (O1) + (01)) (02 — (O2)) = O1(02) + (01)O2 — (01)(0z)

(5.20)
Hence, we derive effective mean field hamiltonian
g
H = ZEkJCLUCkU — Z Acfkick'r — ZCLTCT—IQ + V Z ‘ Ay |2 (521)
k,o k k
The last term is called condensation energy. We introduce Numbu spinor 1 = (ck1, o & ¢)T
_ i €k —Ayg Ckt 9 2
H = Yl (% 2 () +mp EY (522

where Ey = > e, . We use Bogliubov transformation to diagonalize hamiltonian (5.22) . This part is easy
k

to do. I leave it for somple task.

Brer cosl, —sinf\ [cCrt A 9 1 €k . 9 1 €k
= (% h26, = = =—(1+32 = (1- 2
<ﬁ1—_k¢ sinf.  cosdy cchJ, tanh 20y - cos” Oy, 3 + o sin” 0y, 5 E,

The hamiltonian turns into

H:E}%@M%+mmwmfg B, = /<2 + A2 (5.24)
k

Hence, we could written the gap function into Bogliubov quasiparticle

A= % ZCLTCT_H = % Z(cos 01 Brt + sin Oy Sk ) (cos O iy — sin O B_j+)
k k

= % Zsin&k COSs 9k<ﬂ*kiﬁik¢ — B;Tﬁk7>
k

2

N(0)A [™P tanh Z5:
:g() / andeE

—ﬁwD

hwp t h
2k T,
:gN(O)A/ ne aI; L do
0

hwp
hw hw ZFpTe
= gN(0)A <log 5 kB[:)Fc tanh Qk;:’rc —~ /0 " log wsecthdw)

267}7,0.)1)
=gN(0)Al 2
gN(0)Alog (5.25)
At the critical temperature, the gap is vanishing. We have that kT, = 1.13hwp exp (—m). We can

derive the relation. between critical temperation and superconductor gap . We use the integral identiy (5.28) on
the last step . We could derive the relation between critical temperature and gap function
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A

~ 5.26
T (5.26)
The Eq(5.25) also tells us that the gap function is
A BEy
A= —— tanh —— 2
1% 2}; 5, anh — (5.27)
Claim 5.1 .
log zsech“zdx = log 27 (5.28)
0

We consider the integral below

Proof.

> e de=2" — [ 2l(a+1
/ z%sech’zdr = / dx(eixa = 42/ reees Mﬁ(a) (5.29)
0 0

1+ 672:5)2

The integral (5.28) is equal to

;i(ﬂﬁ;F”m@> = (I'(1)n(0) + /(0) — log 27(0)) = log = —

a=0

5.2 Thermodynamic quantity

5.2.1 Condensation energy

We could find from hamiltonian (5.21) that

_ f f g
H= kz:awckacko — zk: Ac_pyCpt — ZCMCT—M + v Z | Ay |2
=> & (5;2& + Bikﬁfk) (ex — &) + 2 Z | Ag (5.30)
k
The constant term on the (5.30) is just condensation energy

g 2 A?
Eeona = - = | A = . — A2
d zk:(% §k) + v | Ay | Zk:(@k \/5k + A%) + %,
1 A?%)2
v ( BRGEES A2>
hw 2 2
b e+ A /2)
=VN(0 de (e — —L=
<>[MDEG Rk
= —VN(0)A? (5.31)
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We insert the gap function (5.19) on the first line of (5.31), the details about step are given below . The
condensation energy relies on density states and superconductor gap .

b 2 | A2/9 = % o9r2 41 e 0
uds:AZ z? +2 = T2 g = A2 de:A2_. 1+<_D)
—hwp VEZ+ A2 ~tep /14 a2 o V1+a? A A

~ 2(liwp)? <1+ 1 (hﬁD)Q) (5.32)

5.2.2 Specfic heat

Firstly , Let us review the statistial mechanics. The free energy for fermionic system is given by

F=— 2}; % log(1 4 e~%ex) (5.33)

The entropy could be obatained from free energy as

or 0 0
S=-o5=> o7 (ksTlog(l+e Pery) = %:7 kpTlog(1 — fi))
*—Zk (1= fr)log(l — fi) + frlog(1 — frx) =T Lo
B k) 108 k k 108 k 1— fp OT

= _ZkB (1= f)log(L = f) + filog fi) (5.34)

k
The capcity could be derived from entropy

_ 05 _ fr Ofe\ N Of

Cv=Tgr = ﬂ—ﬁ 2ﬂ(log1_fk65>ﬁ ng
=- BQZ& af’“ <£k + %%) (5.35)

We consider the sin freedom, then the entropy need to multiply by factor 2. The specific heat on the (5.35)
consists of two part. The first part is just specific heat of normal metal when the temperature T is near critical
temperature T,

hwp
afk FpT  x2e® Too gp2ew 272
EpT >

(5.36)

We calculate the integral on the (5.36)
2

/0+m(1xj—e;)2:/0 dﬁ”He_z Z/ zle " dx ==T(3)n(2) = T (5.37)

At the critical temperature, the second term gives the specific heat between superconductor state and
normal state.
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A2 A?
o= 2 Y gt = N0 | = keNO G

T=T,

(5.38)

We can see that the specific heat is not continuous at T, . Hence, this is second order phase transition. At

the low temperature region T' < T,, We neglect the second term

+oo A0 00 .2
ces_akBﬁZ( afk) & = 29N Oks | 2o =22 O gy | e

— 00 — 00

A2(0) 27A(0)\"° _aw
=2 N kBT .
7 (0)( T ) e o (5.39)
5.2.3 Gap function dependdence on temperature
We start gap function (5.27) directly
hwp t h V oo n+oo n—+oo A T 2
1:N(O)V/ anb 3¢, / Z . Z/ __A@mE
0 3 w2 +§2 = w2 +52 (w2 +¢2)2
he tanh 1 Bhe n+°° fiw T)?
=N(0)V —2 —de —
) /0 € © = B/ w2 +52)
hw tanh 1 h n—+oo +o00 2
— N(O)V / tanh o Phe p 3 / AT
0 € = B (w2 4 €2)2
2hwp [ AXT)\EX 1
= N(0)g |1 - 5.40
(0)g [Og kT (WBW ;) (n+1)2 (5:40)
We use the integral () on the last step . We substitute (5.25) into (5.40 )
T.-T
A(T) = 7kpTy | —orr 5.41
(1) = who Ty | on (5.41)
The Fermionic distribution function could be expressed into Poisson summation ,namly
Z (5.42)
W ,B iwp, — €
where the wy, is he Matsubara frequency (7.19) .
Be ef—1 = 1 1 2e
D N ER | f(=e) = f(e) ﬂnz_: iwp +&  dwp—¢ 6 Z w2 +e2 (5:43)
+oo 1 1 +oo 1‘_0'5 1
——dr = = —— = —-B(0.5,1.5) = — 5.44
/O aQ+a22™" 2/0 Atz2 320519 (5:44)
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5.3 Susceptibility

5.4 Single particle tunneling

If we consider two system connected each other, the system could be described by

H=Hr+ H;,+ Hr (545)

The tunneling hamiltonian could be described as

Hp = Z qucchqL + h.c (5.46)
k
The current is defined as *
I o 2e o~ T t 4
= 5 kz kqCkR,oCqL,0 (5.47)
.q

Claim 5.2 .

The density operator on the tunneling process is defined as

2e
I'= _E% ZquCLRJCqL,o
k,q

We can use motion equation to write down the current operator

d(Nrp) 1
e i elh[ L, ]
2e
= _f Z qu [CEkgCLkg, quCgRchkG + quc},ko’cha]
kqo
2 7o 4
= *f\f kz chk‘R,o'chvo (5 8)
»q

According to fluctuation theorem , we need to evaluate the response function of current operator.

G(7) = —~(T-A(1) AT(0)) (5.49)
Accoring to Wick theorem
G(r)=— Z TrqThr o (Tc%k(T)ch(T)ckk,ch/ + Czk(T)CRq(T)CTLk,CRq/>
k,q;k'.q'
== | Trq I [Gr(a; 7)Gr(k, —7) + Gr(k, T)GL(g, —T)] (5.50)
k.q

We transform it into Matsubra representation

1Tou can refer to Claim (5.4)
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s 6 .
G(iwy) = /0 e G(T)dT = — Z | Trg |2 /0 dr |Gr(q,7)Gr(k,—7) + L — R]e'“""

k.q

(5.51)

- Z | Thq |2
k.q

> G(q,pn +wn)G(k,pn) + L — R

5.5 Cohenrence factor

5.6 Electromagnetic response

5.6.1 Linear response

In this section we discus the eletromagnetic response to superconducotr. We use linear response theory to study
paramagnetic curent and diamagnetic current. The gauge potential is coupled into kinetic energy term

; N2
H= / ddwa(I)% (fihV+ SA) b(z) + / By (@) (@)l @)V (@ — ) )v(z) (5.52)
The hamiltonian relying on vector potential A is just

ieh
me

H = /dw(x) (A-V+V-2) v(a) = ins / @ (3) (A-V + V- 4) v(a) (5.53)

On the momentum space, we derive the hamiltonian (5.53)

1 R R 1 o . I :
H, = giﬂB /d31/JT(x) (A -V+V- A) Y(x) = iiuB/dBm 021671’“1’ch (A(q)e“”C Veg,e2® 4V - (A(q)elqmcbelk”))
K1,k ko
N - q .
=—up y_ Alq)- (k+ i)c,tﬂck(k) (5.54)
k,q

The hamiltonian (5.54) could be viewed as perturbation . If we use Feymann diagram to express the (5.53),
then it turns into

k+q

Figure 5.2: Electron souples with photon at vertex . Every vertex contributes to factor upg

Furthermore, we consider take Columb gauge V - A= 0, then the perturbation hamiltonian (5.54) becomes
into

1 Lo
Hp =55 > (G- Alg)) (Clmcm - Cik¢0—(k+q>¢) (5.55)
k,q
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In the superconductor region, we use Bogliubov particle formalism to discuss problem . Hence, we substitute

the Hamltonian (5.55) with Bogliubov particle operator «y, to discuss problem

;
(Ck+qTCkT ¢ k¢c—(k+q)¢)

3o Z
= —7[1,3 Z E |: Uk4qQpy gt — Vg (k+q)¢)(ukakT — kaZT_kJ') (k +q— —k T—)\L)}

1 Lo
_ *5#3 Z Z(/{ A { U 4qUk + vk_,_qvk)(ak_i_ﬁozm — O‘ITc-i-in‘ki) + (—uk+qvk + ukvk+q) (ak-l-qT Lk T Okt (k-‘rq)i)}

k,q,0 k,q
(5.56)
The current j(r) could be derived from (5.54).
(5.57)

oH e? " - -
= v v ) = =T Ay = 5 ;
J(r) SA() = omi (l/f Y — (V) 1/)) mCQUJ Y = j1(r) + ja(r)
The first term called paramagnetic current , which exists on noraml metal but vanishes on superconductor
i 5.55),namly

The second term called diamagnetic curent. We could drive the paramagnetic current from (

1
"“BZ (k2 + @)’ (Ck+qTCkT Cori® (k+q)¢)
|: Ug4qUL + ”k+qvk)(o‘k+qﬁaﬂ ak-ﬁ-qlaki) + (—uk+qvk + ukvk+q) (0‘1];+q¢0‘—k¢ — Q& (k+q)i)]

Jalr) =
= gm0+ )
2
k,q,0 k,q
(5.58)
We use the first perturbation to calculate the paramagnetic current. If we put the perturbation (5.55) into
superconductor hamiltonian (5.21) . We use the first perturbation theory to calculate the superconductor ground
state up to first order
L H | Q
off | H | 20 (5.59)

| Q) =| Q>0+§l:|z>0 o
i . Hence, the

The BCS is the vaccum of Bogliubov particles

where | Q) is the BCS ground state.
paramagnetic current only contributed by second term. The state | )¢ is defined as
(5.60)

| 1) = O‘Z+qTO‘T—k¢ | ©2)
The BCS ground state | 2) doesn’t contribute to paramagnetic current. It requires to immendiate state

to | I) to carry current. We substitute current (5.58) into (5.59)
(5.61)

Gty = 3 [ 2 e
l

(L] Hy [ Qo [ 41(r) [ Qo
E, — E,

|

the Eq(5.61) could be simplified into

Combing with (5.58,5.60 )
—Uk4qUk + UkVktq)’ (7 + 7
2

SIS gy
i) = oy 3 (et

If we consider the contributon brought by spin freedom , the current will become

' } (5.62)
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- 1 9 (—’U,k+2’l]k,1 +’LL]€+1’U]C+£)2 = = = o
Ji(r)y =2-p 2 2 z 2—k(k- A(q))e'?" 5.63
(1(r)) = 2- sz: AR (k- Ag)) (5.63)

1 - -
((Hy| Q)= —§MB(7<? - A(Q)) (—Uk+qUk + UkVk+q)

. 1 oL o (5.64)
{11 51(r) [ Qo = 5Bk - AD)(—tk+qvk + urviiq)e?”
Let’s analysis the current direction . The term (k - A(q))k could be viewed as two rank tensor
(k- A(q))k ~ ku(kpi + kyJ + k) (5.65)

The current requires to preserve invariant under mirror reflection about zy, 2z, yz plane, thereby the current
propagate along x direction .

- 2212 (1 [T ! N © (—UpyaVp_ g + UpyaVpya)? o
jiry =20 (4 / cos? pdg / sin® 0 cos 0 ;0) / (Cuergviog g Vrs)” 7 (5.66)
T Jo -1

m2c —o0 £k+% + fkfg

We use (5.23) to calculate the Eq(5.66)

2 1 €kt g Ep—4a Ep—4g €kt g 1 AQ
—Up1 9V + Upy 4V g) =—|(1+ 2)(1 — 2) + (1 — 2)(1 + 2 - =
( T2 MR 4 << fk+g)( fk—g) ( fk—ﬂ)( 5k+g) 28k 98k-1
_ 1€kt g&—g —Errglh-g — A? (5.67)
2 Errali—1
We discuss current for the normal metal cases and superconductor cases.
o Normal metal
e Superconductor
5.7 Electromagnetic asorbtion
The elctromagnetic asorbtion perturbative hamiltonian reads as
q
AH = (k+ i)A(q)cL+qck (5.68)

k.q

The vector potential is time reversal odd . 2 Hence, this is case-II response . The initial state is BCS
ground state. The final state is connected with Bogliubov particle creation operator aiay . We can writen down
real part of optical conductivity with Fermin golden rule *

Ro(w) = 2% Z | N(kolK'a") [> (1 = f(Ex))(L = f(Ew)) — f(Er)f(Ew)) 6(hw — Ey, — Ey) (5.69)
kok!

2F _ A
- ot *
3The two Bouliubov particle energy meets with frequency §(fiw — Ey, — Ej/)
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At the zero temperatue, the Eq(5.69) could be written into

EFE

271'
Ro(w) = 2 N%(0) N2/ dE/ OB e (! = u'VP8(h — B = ) (5.70)
The coherence factor could be calculated as
1 1 Ek’ Ek’ 1 AQ
wo' — w'v')? = wv? + w0 — 2wy’ = ~(1+ )1 -y S+ Eya -y _ 2
( ) ( &k 5 fk) 2( 9% ) S’ 28k
1 / z
:_(1+5k5k . A )
2 Skl Sk
1 ELEK! A2 )
==-(14+ = 5.71
2 < Skl Sk (5.71)
%er, e lies on Fermi surface.
Hence, we could written down the optical conductance for normal metal
2m <o
Rop(w) = f?N (0)N*hw (5.72)
We consider the relative radio at region w > 2A
( w) /"M E(E — hw) — A?
R
on(w) Tw — A% /(hw — 2A)2 — A?
_ _1
_ 7/ y(m y) 1 dy
SRy e N e
1 (72 —(@—y)® - +a2®—ay
-2 ), 1 i
3 \/xQ—Z\/(x—y)Q—Z
1
1 /’_7 z2 — i
=— (5.73)
zJy (z—y)*—;
where z = g—z,y = 2}2
We simplify the Eq(5.73) into elliplitic function
1/”‘5 ylx—y) -1 by L /x‘é ylz—y)— 3
TJs \/952—1 (z—y)?—3 zy/z2— 73 V(@—y)?— %
z—2 1.2 1 2 _ 1
1 = — & — — &
_ / gt Gt ) it (5.74)
zy/z2 — 173 (z—y)?—13
1\? 1
Let y =2 — (m— 5) cos? 0 + Zsin20
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1 1\ o

— 5 — Z) sin @ cos 6
l
2

\/i/ \/ — 1) cos?0 + 1 sin” 0 [\/((x —%;2_—%;11) cos? 0 _%\/((16_3)2_%1) COSQG]

1, 3

1 1 1 !
=———(@-52-7)Ga* -2
xW-N 3)a ) Plo—ar =

5.7.1 Green function method

ed
To calculate conductance , we calculate the curent-curent correlation function II,,,,. The vertex function is ﬁ@%
. 62 85k+% 85k_, A
My o) = g7 512 525 Zﬂ ( + 4,1(v + 02)) G, 1)) (574)

where G(k,iw,,) is the Nambu-Gorkov green function. We use the Matsubara summation to calculate the
trace part

— 0,€k4q — Aoy Wy, — 0.6 — Aoy
iwy, iwn

1 1

Z wn +vn)+ azsk+q + Aoy)(iw, + 5k03 + Aoy)
B i(wn +vn))? — €k+q A?][(iwy,)? — &3 — A?]

i(wn + Vn))(iwn) + EkEhtq + A2
T B+ Z ( i(wn, + vn))? = ryy — A[(iwn)? —€f — AQ})

_ §k+q(£k+q — i) + exEryq + A

Ehrg [(Errqg —vn)? — fl%]

f(€k+ ) + gk(fk + 11/1'7,) + €k5k+q + A2
&k [(§k +ivn)? — §I%+q:|

f(&k)

 Ehrg(Ehrg +ivn) + epErrg T A®

& (€ — ivp) + xEppq + A2
N (I - R GO LY (1 (&) (5.75)
k+q \Sk+q n k & [(gk —iv,)? — €k+q:|
We consider the zero temorature limit, the polarization (5.74) will become
) &2 O¢jra Ocp_a +ivy) + epehpg + A2 —ivp) + EREprg + A
M (g, ivn) — S 31:2 o §k+q€(fk+&€ J)riy ;21?22] n & (&k ). k k+z (5.76)
K ©w v k+q k+q n k gk |:(§k - lyn)2 — §k+qi|

R)

s

1 1 1 - 1
[(fk —v—ie — &ppg)(§p — v —ie + §k+q)} - |:2€k+q <(€k —v—ie—&ptq) (Sr—v—ic +€k+q))]
= 9% (0(v + Ektrq — &) — OV — &k — Ektq))
k+q

(5.77)

Cx

1 N 1 - 1
[(§k +vtie = &pyg) (& + v +ie+ §k+q):| - [2€k+q <(§k +vtie—E&pyg) (G tvtict €k+q))]
= o (80 + kg + &) = O(V + €k — Ert))
2§k+q

(5.78)

The imaginary part of polarization is
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2 Eilhtq — ERERtq — A

e 8€k+g 8€]€_2
San(0:V) = 3972 2 35, o, [
k} v

(6(w + &k + Ektg) + 0(w — & — Ekrg)) (5.79)
Erhtq

We consider to calculate optical conductance for isotropic s-wave superconductors

2,,2

_ mevE , E E’ — A2 ,
Ro(w) = "IN (0)/ dE/ v/ A2 EE, S(w—E— B

Then we consider to derive optical ratio of normal state metal and superconductor

§R(an(:) hw/ \/EZ W\—/(fi)—]?;

— A2

(5.80)

(5.81)

—2A
We notice the we can let £ = LQ)QJ to simplify (5.81) into Elliptic integralc

VE2 — A2\/(w— E)? — A2 [(E +A)E-A)(w-E+A)w-E-A)°

_w—2A WH2A + (w—2A)z (w+2A) — (w—2A)z w—2A
=— (1+2) ; 5 s (1-2x)

— (32— 47) -t - a®s)

w — 2A
w+ 2A

where o =

—2A —(w—-2A 2
2 2 2
Hence, the Eq(5.81) could be simplified into

(03

3%(Us(w)> _w=2A [11-L42(1-0%?)

We consider two limits

o's(w) — _ —
;unl% (gn(w)) =2FE(0) —2K(0)=0
s os(w) — —
?}Hr%)éR (Gn(w)) =E(1)=1

hw 0 \/(1—1'2)(1—@2;32) - (l_y)(l_ f_i)K (1__y) +(1+y)E(1__y)

(5.82)

(5.85)

The behaviour of (5.81) is plotted in Figure(5.3).
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Figure 5.3: The conductance start response from 2A. If the frequency is infinite, optical conductance at super-
conductivity region is equal to normal state.
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