Chapter 13

Kosterilitz-Thouless transition

13.1 Algebraic order in the 2D XY model

The XY model is described by classical hamiltonian
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In the low temperature, the anglae difference is very small . We expand hamiltonian (13.1) into
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13.1.1 Average magnetization

We calculate the average magnetization of hamiltonian (13.2)
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We use the path integral to calculate (13.3)
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Combing with (13.3),13.4), the momentum has UV and IR cutoff , nmaly &k € [T, 7].
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13.1.2 Correlation length

The correaltion function is defined as
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By the same way , we use path integral to calculate the correlation function
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In virtue of complex field 6y, we split it into imaginary part and real part

0 = ay + 1Bk (138)

Hence, the Eq(13.7) turns into
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We consider summation on the bracket
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On the ultraviolet region , the Bessel function Jy(kr) tends to zero. The (13.10) could be approximated
into !

kBT rm
log — 13.11
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The behaviour of correlation function of (13.6) admits power law decay

kgT

G(r) ~ (i)_nm (1) =5 (13.12)

In the low temperature , the correlation function admits long range behaviour. At the high temperature
, the correlation length have exponential decay behaviour . The ferromagnetic order would be destroyed into
disorder phase. We can make hypothesis that the system undergoes phase transition.

13.1.3 Vortices and entropy

Vortices are topological defects of filed (r) satisfy Laplace equation V2(r) = 0 . The nontrial solution of two
dimensional Laplace equation is vortex solution.

55 Vo(r) - dt = 2mn (13.13)

1Firstly, you should make integral (13.10) into dimensionless integral
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where n is the inding number . Can proliferation of vortex destroy ferromagnetic order? Now we will give
the argument bases on free enenrgy . Lst’s estimate the single voretex energy.

J [ A S ok S
g0 = E/d rVo(r)-dl = 5/0 dH/a Tdr—m]n logg (13.14)
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We can put single vortex into system with (%) ways . The entropy could be derived with Boltzmann
entropy
L
S = 2kplog — (13.15)
a

Hence, the free energy to creation of single isolated vortex is

L
AF = AE —TAS = (nJn* — 2kpT) log - (13.16)

e T < ”—2‘] . The creation of single vortex isn’t favorable . The system tend to form vortex -anti-vortex
bounded state to keep in netral.

o T > =L The isolated vortex tend to proliferate.

13.2 Columb gas analogy

To proceed renoramlization group analysis, we should write down the partittion function . It’s know to us that
gradient field has no curl . We decompose the 6 into regular part and singular part.

VO = oy + s (13.17)

The regular part is free from curl . However , the singular part will contribute votrtex integral . For
example, we can take § = ¥, then this field correpsonds to vortex with winding number one. The singular field
satisifes to

yéve(r) ~dl = /d2r2 -V x (ds) = 27n (13.18)

We can make ansat that

V Xty = 27727745(7‘ —71i)2 (13.19)
We can set iy =V X 92,

Vxis =V x(2¢) =V x 2 (13.20)
We substitute it into (13.19)

V) = —27 Z o(r —ry) (13.21)

The solution v could be derived as
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wz—Znilog\r—ri | (13.22)

In the Columb gas language , the physical meaning of 1 is just scalar potential genrated by charge density

Znié(r — 7).

The continuum halmitoian could be written into regular field ¢ and singular field

H = —g /er (Vo +V x (12))? = —g /d% (V§)? +2Ve -V x (¥2) + (V x (¥2))?) (13.23)

The first term on the (13.23) is just spin wave part, which could integrate out by gaussian integral. The
second term could be written into total partial , which is vanishing on the boundary.

/d2rV¢ SV x (Y2) = /d2rV¢ (Vi x 2) = /d%z«- (Vo x Vi)
:/dQTEijaid)aj’L/J
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Hence, the hamiltonian will simplified into

H= —% /d2r (V2 + V) (13.25)

We make partial integral for the singular part
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i<j

The partition function could be obtained as

dpl dl‘2 2mJ Z n;n; log|ri—r;

Z = /D[ % [ d*r(Vo(r)? Z i //H 4
:mZMJH
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1<j

V2rmkpTa?

where yg is the dimensionless characteristic quantity yg = N

13.2.1 RG flow equation

We use the perturbative treatement to this sytem . We consider two chargeds at position s,s’. Our effective
hamiltonian is the average of external charge

eHeff(’r'—’r‘/) — <€_2J7T log\r—r'\> (1328)

Let;s use the partition function (13.27) to write down the effective hamiltonian
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r';s,s') is the interaction between external charge and the single dipole.

where the D(r,

D(r,r';s,8')=log|s—r|—log|s—7"|+log|s —r"|—log|s —r]|

(

Figure 13.1: The interaction between the external charge and dipole

(13.29)

13.30)

n this short note, we will introduce central coordinate X =
the interaction term D(r,7'; s, s).

s+s/
2
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(13.31)
We substitute the (13.31) into (13.30)

x

5 Vxlog| X —1'|

D(r,r';s,8) =x-Vx (log | X —r| —log | X —1"])

and relative coordinate xs — S6/ to expand

(13.32)
We expand the e2ImD(rr"ss:5") 4 second order

st 1
2 mPrrtss) — 1 4 9 Jnx - Vy (log | X —r | —log | X — |)—|—§(2J7rx-vx (log| X —r | —log | X — 1" |))°

(13.33)
The integral measurement could be expressed by varibales X,z as [ d?sd?s’ = Ik d?xd?>X. We subtitute
the (13.33) into (13.29)
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Let’s analyze the trems on the (13.34)
- X - X
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We calculate the last part integral
2
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Hence, the integral (13.36) turns into
exp(—2Jmlog |r — 1" |) <1 4 y(z)/dsds’efz"” logSS,H””D(T”J;S’S')) = exp(—2Jmlog | r — 1" |)
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1
We use the lattice cut-off to revise the divergent integral
We could write down the K.y, from the (13.38)
oo
Keg = K — 413 K?y2 / daa®~ 27K (13.39)
1
To be convenient , we use the K1
K= 1 L ~ K1 4 dn?y? /OO daa®=2K (13.40)
o K1 —Ar?Ky} [ doad—2mK ° /i .

e Scalex : 1—b
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b o
Ky = (Kl + 47r2yg/ dxx32”K> + 47r2y(2)/b doa® 2K (13.41)
1

e Rescale the z : z — x/b

1
K™ ' = K" +4n’ys [ daa® 2% gy =077y, (13.42)
1/b

We choose the infinitesimal renormalization parameter b = €'

1 1 5.0 [ 3-2rK 1 32477TK1
K" =K " +4r yO/I/bdx:r TR =K+ 4w ik ,
1767(477rK)l
:K71 4 3~2
L Crpmy
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=K' 44n%5k = = 47342 (13.44)

dl

Now, we have derive the RG equation. To simplify problem, we focus on the behaviour of fixed point. The
RG equation (13.43) tells us that K = % is fixed point, which gives the critical temperature

T = gJ/kB (13.45)

This result is meeted with vortice argument (13.16). We introduce new varibales t = 5 — K 1 2 to study
the behviour near fixed point.

dt = 473y?
ly 4 (13.46)
da - r
The Eq(??) tells us conserve quantity
d o 4,2
2The variable ¢ is small quantity, 2 — 7K = 2+27f/2 ~ %t +0(t?)
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