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Chapter 10

Fractional Quantum Hall States of Bosons:

Properties and Prospects for Experimental Realization

N. R. Cooper
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University of Cambridge, Cambridge CB3 0HE, United Kingdom

nrc25@cam.ac.uk

An overview is given of experimental settings in which one can expect to observe
fractional quantum Hall states of bosons. The focus is placed on ultracold atomic
gases, and the regimes most likely to allow the realization of fractional quantum
Hall states. The means by which Landau levels, or other topological energy
bands, can be generated for cold atoms are summarized. The current theoretical
understanding of the likely many-body phases is then presented, focusing on the
models that are most readily studied experimentally. The chapter concludes by
making contact with other physical platforms where bosonic fractional quantum
Hall states are expected to appear: in quantum magnets, engineered qubit arrays
and polariton systems.
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1. Introduction

To date all experimental realizations of fractional quantum Hall (FQH) states have

been for electrons. The FQH effect was first discovered in modulated-doped gallium

arsenide quantum wells,1 and much of the subsequent exploration of these states

has been in similar devices. More recently, studies have progressed to graphene

structures, where new features arise, e.g. in superlattice structures.2

Despite the experimental prevalence of fermionic FQH states, the theory of the

FQH effect can be readily applied to interacting bosonic particles. Notably, the

Laughlin wave function3 describes a FQH state of bosons at filling factor ν = 1/p

when p is an even integer. Similarly, all other model wave functions of fractional

quantum Hall states can be converted between fermionic and bosonic variants. It

is natural to ask where bosonic FQH states might be found in nature.

In an insightful early contribution, Kalmeyer and Laughlin proposed that the

Laughlin state of bosons might describe the ground state of the spin-1/2 Heisenberg

antiferromagnet on a triangular lattice.4 Although subsequent work has shown this

not to be the case for that model, the Laughlin state of bosons is believed to describe

the ground state of quantum magnets on other frustrated lattices. The relevance

of the Laughlin state, and other FQH states, for quantum magnets and related

systems will be discussed further below.

The development of the field of ultracold atomic gases has allowed the explo-

ration of quantum many body phases of bosonic and fermionic atoms in a variety

of novel settings.5 These hold the promise of realizing FQH states for both bosonic

and fermionic species. In typical settings the bosonic species are more easily cooled

to regimes of quantum degeneracy, so the pursuit of bosonic FQH states is a natu-

ral goal. Theoretical work has established the conditions under which bosonic FQH

states could arise for cold gases of bosons, as well as the forms of these states, in a

variety of experimental settings under active investigation. While FQH states take

the same qualitative forms for bosons as for fermions, determining the nature of

the many body ground state is a delicate issue that depends on a fine balance of

energetics related to the specific physical realization. Thus, it is important to study

the bosonic models theoretically to assess which, if any, FQH states are stable in

realistic physical settings. One notable finding that we highlight below is that the

experimentally relevant models for interacting bosons have non-Abelian phases that

are more stable than their fermionic counterparts in typical electronic systems.

In Sec. 2 we give an overview of prospects of achieving FQH states for ultracold

atomic gases. We focus on bosonic particles, but comment also on fermionic atomic

gases in situations for which the cold gas realizations have qualitative differences

from conventional electronic systems. For bosonic realizations, we describe theo-

retical results indicating possible stability of non-Abelian fractional quantum Hall

phases, and also for unconventional FQH states on lattices. We conclude in Sec. 3

by describing possibilities for the achievement of FQH states of bosons in other

physical settings: in quantum spin systems, synthetic quantum spin systems and

photonic materials.
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2. Ultracold Atomic Gases

The development of techniques to trap and to cool gases of neutral atoms have

made it a routine matter to bring dilute atomic gases into regimes of quantum

degeneracy.5 Although these cold dilute gases exist only as metastable states, the

true equilibrium phases being dense crystals, the lifetimes to collapse are very long as

a result of the very low densities used, n3D ∼ 1014cm−3, which make the three-body

collisions required for collapse very rare. Such low densities imply correspondingly

low temperatures for the so-called “ultracold” regime of quantum degeneracy. For

the thermal de Broglie wavelength, λT ∼ ~/
√
MkBT (for atoms of mass M) to be

larger than the inter-particle spacing, n
−1/3
3D , requires cooling to below micro-Kelvin

temperatures for typical atomic species.

Under these ultracold conditions the thermal wavelength λT is also much larger

than the range of the inter-particle interaction, so the collisional properties are

accurately described by the s-wave scattering length as. The s-wave scattering may

then be represented by a pairwise contact repulsion V (r) = g3Dδ
3(r) with g3D =

4π~2as/M , and suitable regularization.5 For weakly interacting bosons, which form

a Bose–Einstein condensate at low temperatures, the strength of interactions is

conveniently expressed in terms of the chemical potential µ = g3Dn3D.6

Throughout this chapter we shall be concerned with quasi-two-dimensional ge-

ometries, in which the atoms are restricted to the xy-plane by a tight harmonic

confinement in the z-direction. When the energy spacing of the sub-bands of the

z confinement, ~ωz, is large compared to the chemical potential, µ, the atoms can

be approximated as occupying the lowest sub-band. The effective 2D interaction

becomes V (r) = g2Dδ
2(r) with g2D = g3D/(

√
2πaz) and az =

√
~2/Mωz. The

strength of the interaction between atoms can be widely varied by tuning close to

a scattering resonance: either a Feshbach resonance5 (involving a weakly bound

state of the two atoms); or a confinement-induced resonance7 (involving coupling

to transverse sub-band modes). The functional form of the interaction can also be

changed, notably by use of atoms (or molecules) with large magnetic (or electric)

dipole moments which allow interactions that fall as 1/r3 and that can be spatially

anisotropic.8

2.1. Landau levels and Chern bands

In order to search for FQH states of bosonic atoms, stabilized by their inter-particle

interactions, one first needs to find ways by which one can form Landau levels —

or other suitable flat-band energy spectra — for the individual atoms. To generate

Landau levels, one must confront the question of how to cause neutral atoms to

experience the orbital effects that a uniform magnetic field has on a charged particle.

This can be achieved in a variety of ways. We outline some of them here, restricting

discussions to the essential physics needed in order to understand the forms of

the relevant microscopic models. More comprehensive reviews exist for rotating

gases9,10 and for topological optical lattices.11
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2.1.1. Rotation

An intuitively simple means by which to impose an effective magnetic field on a gas

of neutral atoms is to put the gas into rotation. In a frame of reference rotating at

angular frequency Ω an atom of mass M moving at velocity v experiences a Coriolis

force 2Mv ×Ω. This has the same form as a Lorentz force qv ×B on a charge q

in magnetic field B, provided one makes the association

qB = 2MΩ . (1)

This simple classical observation can be made precise, also in its extension to the

quantum description, by noting that the transformation to the rotating frame acts

to convert the Hamiltonian in the laboratory frame H0 to

HΩ = H0 −Ω ·L , (2)

where L = r×p is the angular momentum operator.12 For a particle in an isotropic

2D harmonic trap of natural frequency ω0, the Hamiltonian in a frame rotating at

angular velocity Ω = Ωez is then

HΩ =
p2

2M
+

1

2
Mω2

0r
2 −Ω · r × p . (3)

This may be rewritten

HΩ =
(p−MΩ× r)2

2M
+

1

2
M(ω2

0 − Ω2)r2 , (4)

showing that it can be viewed as describing a 2D particle of charge q coupled to a

vector potential via qA = MΩ × r. Taking the curl recovers Eq. (1), and gives a

flux density

nφ ≡
qB

h
=

2MΩ

h
. (5)

The harmonic confinement in Eq. (4) is reduced by the centrifugal force, and

vanishes at Ω = ω0. At this special value, the Hamiltonian describes a free particle

in a uniform magnetic field, with cyclotron energy ~ωc = 2~Ω = 2~ω0 and the

effective magnetic length `B =
√

~/qB =
√
~/2Mω0. The lowest energy states are

the usual lowest Landau level wavefunctions

φm(z) ∝ zm exp(−|z|2/4) , (6)

where z = (x+ iy)/`B , and m = 0, 1, 2, . . . .

Although these wavefunctions have been derived for the fine-tuned case Ω = ω0,

in fact they are exact energy eigenstates for any rotation rate Ω. This can be un-

derstood by noting that the effect of the rotation, Eq. (2), is simply to shift the

energies of the 2D harmonic oscillator by an amount that depends on the angular

momentum about the z-axis. Since this component of angular momentum is con-

served, the energy eigenstates are unaffected by the rotation, Ω. Writing the energy

of the 2D oscillator in terms of the radial quantum number nr = 0, 1, 2, . . . and

angular momentum m = . . . ,−2,−1, 0, 1, 2, . . . , the spectrum is13

EΩ = ~ω0(2nr + |m|+ 1)−m~Ω . (7)
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This spectrum is plotted in Fig. 1 for Ω = 0 and Ω = ω0. The special point

Ω = ω0 recovers the Landau level spectrum, Fig. 1(b). For Ω < ω0 the Landau level

wavefunctions remain the same, but are shifted in energy by a residual harmonic

confinement, leading to the m-dependent term ~(ω0 − Ω)m for the orbitals in the

lowest Landau level, for which m > 0.

(a) m0 1 2 3 4 5 6−1−2−3−4−5−6

EΩ=0

h̄ω0

(b) m0 1 2 3 4 5 6−1−2−3−4

EΩ=ω0
= E0 −mh̄ω0

2h̄ω0

Fig. 1. (a) Spectrum of the isotropic 2D harmonic oscillator, Eq. (7), of natural frequency ω0 as a

function of angular momentum quantum number m. (b) In a frame rotating at angular frequency
Ω, the spectrum is EΩ = E0 −Ω~m. For Ω = ω0 the spectrum, Eω0 = E0 −m~ω0, is the Landau

level spectrum of a charged particle in a uniform magnetic field, with cyclotron energy 2~ω0.

Experiments on atomic Bose–Einstein condensates put into rotation by mechan-

ical stirring have allowed studies of quantum degenerate bosons in regimes in which

the chemical potential µ is less than both the sub-band spacing ~ωz and the cy-

clotron energy ~ωc = 2~Ω, that is in the 2D lowest Landau level regime.14 That said,

these studies have so far been restricted to regimes of high particle density where

the gases show vortex lattices. The conditions under which FQH states can appear,

and the nature of these states, will be discussed in detail below. For now, note that

the limitation Ω ≤ ω0 restricts the flux density (5) to nφ ≤ 2Mω0/h. In turn, for

a fractional quantum Hall state with 2D particle density n2D ∼ nφ, the interaction

energy is of order µ ∼ g2Dnφ, so is restricted to µ . g2D(2Mω0/h) ∼ ~ω0(as/az).

Typical magnetic traps have a frequency scale ω0 = 2π × (10− 100)Hz, and as/az
is a small number, giving an interaction scale µ below the pico-Kelvin energy scale.

This is an extremely small temperature, much smaller than the temperatures to

which it is currently possible to cool atomic gases. The situation can be improved

by using for atoms with large as (e.g. resonant interactions), or by using very tight

traps to increase ω0, as in Ref. 15 or in quantum gas microscopes.16

2.1.2. Optically dressed states

The limitation of small flux densities achievable by rotation in typical atomic gases

has motivated the development of other ways to generate artificial magnetic fields

for cold atoms. One very powerful way to accomplish this, which plays to the

strengths of atomic gases, is through optically dressed states.17
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Optical dressing refers to the use of coherent optical fields to place the atom into

a well-defined superposition of internal levels, through the control of the amplitudes

and phases of light fields that couple these levels. For a two-level system, coherent

driving at frequency ω leads to the coupling

V̂ (t) =

(
ε1 Ω cos(ωt− φ)

Ω cos(ωt− φ) ε2

)
, (8)

with the matrix expressed in the basis formed by the two internal energy levels.

(We use hats to denote operators acting within the space of internal energy levels.)

Through a suitable time-dependent gauge transformation one can replace cos(ωt−φ)

by (1/2)[exp(−iφ)+exp(−2iωt+iφ)]. Then, provided ω is large compared to all other

relevant frequency scales, one can make the rotating wave approximation (RWA)17

by which the remaining oscillating term vanishes, to give a time-independent

coupling

V̂RWA =
ε1 + ε2

2
1̂ +

∆

2
σ̂z +

Ω

2
(cosφσ̂x + sinφσ̂y) , (9)

where ∆ = ε1 − ε2 − ~ω and σ̂i are the conventional Pauli matrices. Of course, for

this simple situation, the phase φ could also be removed by a gauge transformation.

However, we leave it to emphasize the greater generality of the form of optical

coupling: we will be interested in settings where the optical fields lead to spatially

varying parameters Ω, ∆ and φ for which one cannot, in general, choose a gauge in

which φ vanishes everywhere.

The optically dressed states are the eigenstates of this RWA coupling (9). Al-

though presented for a two-level system, these considerations can apply more gen-

erally for NI coupled internal states. Consider an atom localized in space at a

position r, and subjected to local optical fields at this point that couple these NI

levels. We denote the dressed states at this location by |nr〉 with energies En(r),

with n = 1 . . . NI. We use these states as a local basis for a general atomic state

|ψ(r)〉 =
∑
n

ψn(r)|nr〉 . (10)

Including the kinetic energy of the atom leads to the full Hamiltonian

Ĥ =
∑
n

[
p2

2M
+ En(r)

]
|nr〉〈nr| . (11)

Provided the motion of the particle is slow, in the sense that the typical kinetic

energy 〈p2〉/2M is small compared to the energy spacings En+1 − En, then to a

good approximation one can project the Hamiltonian onto states labeled by n alone

(ignoring mixing between different dressed states). The effective Hamiltonian for

this adiabatic evolution of the nth state, obtained from Hnψn = 〈nr|Hψn|nr〉, is

Hn =
(p− qA)

2

2M
+ Vn(r) , (12)
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where

qA = i~〈nr|∇nr〉 , (13)

Vn(r) = En(r) +
~2

2M

(
〈∇nr|∇nr〉 − |〈nr|∇nr〉|2

)
. (14)

Note the appearance of a gauge field (13): the Berry connection arising from the

(spatial) parallel transport of the local state |nr〉. The associated Berry phase ac-

cumulated as the atom moves in the xy-plane plays the role of the Aharonov–Bohm

phase of a charged particle moving in an effective magnetic field. The effective

Berry curvature in real space determines the flux density experienced by the parti-

cle. This approach was implemented in pioneering experiments reported in Ref. 18,

which used three internal states of rubidium-87 to generate an effective magnetic

field acting on a Bose–Einstein condensate. The scheme used in this experiment

gives a vector potential of order qA . ~/λ, with λ the optical wavelength. Conse-

quently, the total flux through a region of linear size R is limited to Nφ . ~R/λ,

and the flux density is limited to nφ . 1/(Rλ) which is small for typical systems

R� λ.

The flux densities achievable using optically dressed states can be vastly in-

creased by forming optical flux lattices,19 in which the optical fields have vortices.

The associated phase singularities cause qA to exceed ~/λ, effectively forming Dirac

strings, and allowing a magnetic flux density of order nφ ∼ NI/λ
2. An example of

an optical flux lattice for a two-state system is given by

V̂RWA(r) = V0

(
cos[r · (κ1 + κ2)] cos(r · κ1)− i cos(r · κ2)

cos(r · κ1) + i cos(r · κ2) − cos[r · (κ1 + κ2)]

)
, (15)

where κ1,2 are the two basis vectors of the lattice. Figure 2(c) shows the resulting

local flux density for the case where κ1,2 are of equal length and at 120-degrees to

each other, giving a lattice with triangular symmetry.

The local flux density is non-uniform but has a nonzero average. One thus

expects the low energy states to mimic those of the continuum Landau level. In this

lattice setting, the appropriate way to characterize these 2D energy bands is in terms

of their Chern numbers.20 Indeed, the lowest band of the above optical flux lattice

(15) is readily shown to have a Chern number of unit magnitude, |C| = 1, consistent

with that of the lowest Landau level. (This result holds true for any finite value

of the ratio V0/ER of the lattice depth, V0, to the recoil energy, ER = ~2κ2/2M ,

which sets the characteristic kinetic energy.)

The most complete understanding of optical flux lattices is achieved by consid-

ering the action of the optical fields in reciprocal space.21 In essence the optical flux

lattice involves a series of momentum exchanges κi with amplitude and phase de-

fined by the matrix elements V α
′α

κ = 〈α′, q + κ|V̂RWA|α, q〉. Here α, α′ = 1, . . . , NI

label the undressed internal states. If the optical fields are to define a periodic

lattice (as opposed to a quasi-crystal), this set of couplings must form a regular

lattice in reciprocal space. For example, Fig. 3(a) shows a generalization of the
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κ1

κ2
κ2

κ +1

θ

(a) (b)

a

a(a) (b)

(a)(b)

a

a

(c)

Fig. 2. Illustration of the optical flux lattice formed by coupling two internal atomic levels in

the manner of Eq. (15). (a) The momentum transfers κ1,2 are depicted at an angle of θ =

2π/3. (b) The spatial variation of the lowest energy dressed state nr in the real space unit
cell is illustrated: arrows denote the two components 〈nr |σ̂x,y |nr〉; contours and shading denote

〈nr |σ̂z |nr〉. These variations lead to non-trivial Berry connection in real space (13). The local
flux density, given by the curl of the real space Berry connection, is spatially varying but with

nonzero average. Adapted from Ref. 19.
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κ3 κ2G =2 κ3

−Ve2i   /Nπ

−Ve3i   /Nπ−Vei   /Nπ
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x 1/10(a)

(b)

(b)

(c)

I

22

Fig. 3. Generalization of the triangular optical flux lattice for two internal states, Fig. 2, to sit-
uations in which NI internal states are coupled. (a) The action of the optical fields on the atoms

can be represented by a lattice in reciprocal space: the sites are labeled by the undressed inter-

nal states α = 1, 2, . . . NI and the displacements represent momentum transfers. The (complex)
amplitude linking two sites α, α′ of this lattice with momentum transfer κ represents the matrix

element V α
′α

κ = 〈α′, q+κ|V̂RWA|α, q〉. Here, the reciprocal space unit cell has an area that scales

with the number of internal states NI. (b) The resulting energy bands can be made to closely
approximate Landau levels, appearing as narrow peaks in the density of states (DoS), here shown

for NI = 4 internal states. (c) For a related model, in which the phases on all the optical couplings

are doubled, the lowest energy band has Chern number C = 2, but still has narrow width in energy.
Reproduced from Ref. 21.

triangular optical flux lattice to NI internal states. Note the expanded BZ, with

area that scales with the number of internal states NI. A similar picture is helpful

in understanding strongly correlated phases on topological lattices.22

The momentum space picture allows flexible design of optical lattices: (i) with

low-energy bands that closely approximate uniform Landau levels, having near uni-

form Berry curvature in reciprocal space, e.g. Fig. 3(b); (ii) in situations in which

there is vanishing net flux through the real space unit cell, yet the lowest energy
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band has non-zero Chern number, albeit with lattice effects that cause strong varia-

tions in the Berry curvature; (iii) with a lowest energy band that has Chern number

with magnitude larger than unity, Fig. 3(c). Quite generally, one finds that the low

energy bands are topological for a wide range of lattice depth, both for weak lattices

V0/ER � 1 where the bands can be viewed in a “nearly-free electron” approach and

for V0/ER � 1 where a tight-binding model is suitable. The ratio of the band width

to band gap is typically minimized for intermediate lattice depths, V0/ER ∼ 1, and

can be made very small. For example, the lowest band of Fig. 3(b) has a width

. 0.005ER which is about 200 times less than the gap to the next energy band.

The practical implementation of these methods requires careful choice of internal

levels and of the light fields causing the optical coupling.23 This is particularly

true for cases using NI > 2 internal levels, since (electric dipole) selection rules

impose important restrictions on the allowed couplings. For example, a practical

method by which one can form optical flux lattices using the NI = 3 spin states

of rubidium-87 involves radio-frequency dressing of the atomic levels into three

non-uniformly spaced states, which are then coupled by two-photon transitions

in a complex light field involving nine frequency components.24 Quite generally,

the optical flux lattices operate at high flux densities, nφ ∼ NI/λ
2 ∼ NIκ

2. The

interaction energy scale for fractional quantum Hall states with n2D ∼ nφ can be

relatively large, i.e. µ = g2Dn2D ∼ (as/az)NIER, with the recoil energy of order

ER/h ∼ 3kHz. Moreover, owing to the very narrow energy bands (with width a

small fraction of ER), this interaction energy can be made large compared to the

bandwidth even for modest values of as/az, leading to the possibility of strongly

correlated phases.24

2.1.3. Tight-binding lattices

In the previous sections we have considered atoms that are moving continuously

in real space, and subjected to relatively weak external potentials that are used

to introduce effective magnetic fields. We were driven towards considering atoms

in optical flux lattices, for which the optimal properties arise for relatively shallow

lattices V0 ∼ ER.

Here we consider lattices in the limit in which the potential is sufficiently deep

V0 & ER that the low-energy bands can be viewed within a tight-binding descrip-

tion. This leads to the connection to tight-binding models that are familiar from

solid state systems. In order to construct topological bands, with non-zero Chern

number, one needs to break time-reversal symmetry in the tight-binding model.

Thus, the goal of the methods described here is to generate inter-site tunnelling

matrix elements with non-zero Peierls phase factors, corresponding to the gener-

ation of (local) orbital magnetic fields which break this symmetry. For simplicity

we shall focus on settings in which the potentials are scalar and the atoms have no

internal spin degrees of freedom. However, the ideas presented here can be married

with spin-changing processes.25,26 Indeed a recent experiment has realized a Chern

band using the techniques of Sec. 2.1.2 within a tight-binding regime.27
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The methods used to generate topological Chern bands in such tight-binding

settings all fall in the class of “Floquet” systems, in which the Hamiltonian is made

to vary in time in a periodic matter.28 When the period T is sufficiently short,

such that ~ω = h/T is much larger than other relevant energy scales in the system,

the time evolution at long times can be understood in term of the effective Floquet

Hamiltonian, Heff . This is defined by the evolution operator over one period, given

by the time-ordered integral T exp[− i
~
∫ t0+T

t0
H(t′)dt′] ≡ exp(−iHeffT/~). The

methods used fall into two broad categories, depending on whether the frequency

ω ≡ 2π/T of the time-varying part of the Hamiltonian is resonant or non-resonant

with transitions in the spectrum of the static part of the Hamiltonian.

Non-resonant modulation. For non-resonant modulation, and at frequencies

that are sufficiently large, the effective Floquet Hamiltonian can be constructed

through the application of the Magnus expansion.28 This expresses the Floquet

Hamiltonian as a power law series in 1/ω, with a leading term that is the time-

averaged Hamiltonian. An important example of this approach is provided by

circular shaking of a honeycomb lattice,29 in which the lattice is displaced byR(t) =

R0(cosωt, sinωt). In the frame of reference that moves with the lattice, the shaking

appears as a force F (t) = −MR̈(t), and the Hamiltonian may be written

H(t) = −J0

∑
〈i,j〉

b†i bj − F (t) ·
∑
i

rib
†
i bi , (16)

where the sites i are arranged on a honeycomb lattice at positions ri, and 〈i, j〉
denotes the sum over all nearest neighbor pairs. The effective Hamiltonian is equiv-

alent to the tight-binding model of graphene subjected to circularly polarized ra-

diation.30 Applying the Magnus expansion up to first order in 1/ω leads to an

effective Floquet Hamiltonian in which there is a correction to the nearest-neighbor

tunnelling amplitude, J0 → J , and the appearance of a second-neighbor tunnelling

with an imaginary amplitude11

Heff = −J
∑
〈i,j〉

b†i bj − iJ ′
∑
〈〈k,l〉〉

b†kbl . (17)

This directly realizes the Haldane model,31 in which time-reversal symmetry is

broken by second-neighbor tunnellings (here denoted by double angled brackets).

Since the Peierls phase factor generated for second neighbor coupling is ϕ = π/2 the

model is in a regime suitable for the formation of topological bands. This approach

was implemented for fermionic atoms in the experiments of Ref. 29, and evidence

of the non-zero Berry curvature of the bands was obtained from measurements of

the anomalous velocity.

Resonant modulation. A very flexible way in which to imprint tunnelling ma-

trix elements with non-zero Peierls phase factors is to use resonant modulation, or

photon-assisted tunnelling.25 The method is based on taking a static Hamiltonian
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in which neighboring lattice sites are offset in energy by an amount ∆ that is much

larger than the inter-site tunnelling matrix element. For example, a strong linear

potential gradient in a one-dimensional lattice leads to

H1D
0 = −J0

∑
j

(
b†jbj+1 + b†j+1bj

)
+
∑
j

∆jb†jbj . (18)

For ∆� J0 the energy eigenstates are strongly localized at individual lattice sites.

Inter-site motion between two neighboring sites is restored by adding a potential

difference between the sites that varies at the resonant frequency ω = ∆/~. For

such resonant coupling, one can apply the RWA, provided the frequency ω is large

compared to all other relevant frequency scales, to give a resulting time-independent

Hamiltonian. The phase of the resulting tunnelling matrix element can vary in space

if there are spatial variations in the relative phases of the modulating potentials. In

practice this can be achieved by a two-photon process, with ∆ the beat frequency

between two light beams, which generate a running wave potential, H1D(t) = H1D
0 +

V0

∑
j cos(∆t/~ + jϕ). The resulting phase of the modulation varies in space in a

linear manner

H1D
RWA = −J

∑
j

(
eiϕjb†jbj+1 + e−iϕjb†j+1bj

)
, (19)

with J ∼ J0(V0/∆).11 Extending this to a 2D model, in which every row along x

is described by the above hopping and in which hopping along y occurs naturally

with (real) amplitude J leads to a realization of the (isotropic) Harper–Hofstadter

model:32 hopping on a square lattice with nφ = ϕ/2π flux quanta in each plaquette.

This leads to the spectrum of the Hofstadter butterfly,33 with a complex set of

energy bands which have, in general, non-zero Chern numbers,20 Fig. 4.

Using this, and related, techniques of resonant modulation, the Harper–

Hofstadter model has been implemented in experiments with flux nφ = 1/434,35

and with nφ = 1/2.36 Recent experiments have studied the motion of small num-

bers of particles on a Harper–Hofstadter lattice in a quantum gas microscope with

single site resolution.37 Characteristic energy scales are set by the intersite coupling

J , and the onsite interaction energy, U , which can readily be in a strong coupling

regime U � J .

2.2. Many-body phases

In the preceding section we have described ways in which cold atoms can be made

to experience effective magnetic fields, leading to the formation of Landau levels

or other topological energy bands. We now turn to discuss the many-body phases

of interacting bosons that occupy these single-particle states. We separate the

discussion into two parts: first for interacting bosons in continuum Landau levels

associated with a uniform magnetic field, as generated by rotation in a harmonic

trap; second for situations in which the atoms experience a periodic lattice potential.

For the most part, we shall put the emphasis on the properties of thermodynamically
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Fig. 4. Hofstadter butterfly energy spectrum of the Harper–Hofstadter model with tunnelling

energy J . For flux nφ � 1 the low energy bands recover the continuum Landau levels, each of

Chern number C = 1. For nφ close to 1/q the low energy bands each have Chern number C = q,
indicated here for C = 2 close to nφ = 1/2. Figure courtesy of G. Möller.

large systems where clear statements can be made regarding the nature of the

ground state phase, albeit through the analysis and extrapolation of the results of

numerical studies of systems of small numbers of particles.

2.2.1. Interacting bosons in the lowest Landau level

Consider a system of N (spinless) bosons in 2D with contact interactions

H =

N∑
i=1

(pi −MΩ× ri)2

2M
+ g2D

N∑
i<j=1

δ(ri − rj) . (20)

This can be achieved for a rotating gas in a trap when the rotation frequency Ω

matches the trap frequency ω0. For Ω < ω0 there is a residual harmonic potential

(1/2)M(ω2
0 − Ω2)|r|2 which provides an overall residual confinement, Eq. (4). For

clarity we omit consideration of this confinement, but note that in general it will

lead to an overall non-uniform density distribution.

In the following we describe the nature of the many-body ground states for

bosons in the lowest Landau level. Since we are dealing with contact interactions

(20), there is only one non-zero Haldane pseudo-potential38

V0 =

√
2

π

~2as
Ma2

0az
∼ ~ω0

as
az
, (21)
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the interaction energy of two particles with zero relative angular momentum. For

the most part we shall focus on the ground states of bosons with this simple contact

interaction. However, we note that longer-range interactions can be relevant for

atoms with dipolar interactions,8 which contribute to all Vm with even m.

Laughlin State. For a gas of N contact-interacting bosons, rotating at high

angular momentum in an isotropic parabolic trap, the ν = 1/2 Laughlin state

ΨL
q=2(z1, z2, . . . , zN ) ∝

N∏
i<j=1

(zi − zj)2e−
∑

i |zi|
2/4 , (22)

is the exact ground state13 at total angular momentum L = N(N − 1). This result

arises from the fact that, for this value of the angular momentum, it is the unique

bosonic wave function in the lowest Landau level that vanishes when any pair of

particles coincide. Thus, at sufficiently high rotation rate one anticipates that the

cold atomic gas will realize this fractional quantum Hall state. This expectation

is, of course, borne out in numerical calculations, not only in the disk geometry,

Eq. (22), but also in edgeless geometries of the sphere and the torus which are most

useful for determining the bulk properties. Figure 5 shows the excitation spectrum

for the ν = 1/2 state on a torus. From such studies the bulk gap for creation of

a quasi-particle/quasi-hole pair of ∆Eν=1/2 ' 0.095(5)× 2πV0 can be extracted.10

It is worth noting that the quasi-holes have exactly zero interaction energy for

the situation considered, of contact interactions. Thus the quasi-holes behave as

0 1 2 3 4 5 6

|K|
0

0.05

0.1

0.15

0.2

En
er

gy

Fig. 5. Excitation spectrum of the ν = 1/2 Laughlin state of bosons with contact repulsion.
Computed on a torus for N = 8 particles in Nφ = 16 flux quanta. The ground state (two-fold
degenerate) is at E = 0 and K = 0. Energies are measured in units of 2πV0, with V0 the Haldane
pseudo-potential, Eq. (21), and lengths in units of the magnetic length, `B .
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ideal fractionalized excitations, with vanishing interactions. Indeed, at ν < 1/2, or

equivalently L > N(N − 1), there are multiple ground states, all with vanishing

interaction energy, and with a degeneracy associated with the fractional exclusion

statistics of the Laughlin quasi-holes. We shall come back to this in connection with

their possible experimental consequences in Sec. 2.3.

That the ν = 1/2 Laughlin state is the exact ground state of a gas of bosons

in this experimentally relevant setting — contact interactions, parabolic trap and

(potentially) small numbers of particles — is a central result that underpins the

expectations that cold atomic gases can be brought to regimes in which fractional

quantum Hall physics emerges.

Vortex Lattice. It is helpful to compare the Laughlin state with the vortex lattice

phase of a superfluid that is subjected to low, or moderate, rotation rates. Since

particle velocity in a superfluid is proportional to the gradient of the phase, the curl

of the velocity field vanishes except at singular points — the vortex cores — at which

there is a delta-function contribution of strength set by the quantized circulation

κ = h/M . In a uniform setting (e.g. where a potential acts to counterbalance the

centrifugal potential) the steady state in the rotating frame consists of a lattice of

these quantized vortices, with the density of vortices, nv, set by Feynman’s condition

that the mean circulation matches that of rigid body rotation v = Ω × r, i.e.

nv(h/M) = ∇×(Ω×r) = 2Ω, that is nv = 2ΩM/h. Thus, the density of vortices in

the vortex lattice is equal to the density of flux quanta (5) of the effective magnetic

field (1) associated with the rotation. Indeed this is borne out, even for weakly

interacting bosons, in detailed numerical simulations of the vortex distribution.39

The hydrodynamic behavior of the vortex lattice in the lowest Landau level has

been studied in Refs. 40 and 41.

The mean-field vortex lattice phase treats the vortices as classical objects. Going

beyond this, to include quantum fluctuations of the vortices, shows that the vortices

have a quantum uncertainty in position which is of order the mean inter-particle

spacing ā = n−1/2 where n is the 2D density of the bosons.42 This result expresses

the very natural expectation that one cannot locate the core of the vortex to an

accuracy better than the inter-particle spacing. Applying a Lindemann criterion for

these fluctuations, one asserts that the vortex lattice is stable when the uncertainty

in vortex position is smaller than some multiple of the mean vortex spacing, n̄−1/2 <

cLn̄
−1/2
φ , or equivalently

ν ≡ n

nφ
> νc . (23)

That is, the vortex lattice can be a stable ground state at sufficiently high filling

factor.42 This is consistent with analytic results that apply in the limit ν →∞.43 A

simple evaluation of the quantum fluctuations in the vortex lattice leads to νc ' 7,42

while an alternative definition, and more detailed calculation, leads to a critical

filling factor of νc = 17.40 However, both of these estimates rely on the use of an
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unknown Lindemann parameter, cL. Direct calculations of the critical filling factor

νc have been performed using exact diagonalization for contact interacting bosons

on a toroidal geometry. These calculations indicate a transition to a ground state

with broken translational invariance, consistent with that of the triangular vortex

lattice, at νc ' 6.42 Subsequent numerical calculations showed that strong density

wave correlations persist down to ν = 2.44 Thus, the existing numerics suggest a

critical filling factor above which the vortex lattice is the ground state of νc ' 2− 6

for contact interactions in the lowest Landau level. These numerics are restricted

to very small systems, so are subject to strong finite-size effects.

Composite Fermion States. That the ground state is a vortex lattice at ν > νc
and is the Laughlin liquid at ν = 1/2 leaves open the question of what are the

phases in the range 1/2 < ν < νc. Early numerical work showed evidence for a

successful description of the many-body states in this regime in terms of composite

fermions.45 Here, the composite fermions are formed by binding each boson to a

single vortex of the many-body wave function, such that the flux density experienced

by the composite fermions is

nCF
φ = nφ − n . (24)

Treating the composite fermions as non-interacting particles, one expects an in-

compressible integer quantum Hall state of the composite fermions when p Landau

levels are filled, n/nCF
φ = ±p, leading to the Jain sequence46

ν =
p

p± 1
. (25)

In addition to the Laughlin state at ν = 1/2, numerical studies on the sphere and the

torus have shown evidence for gapped states at ν = 2/3 and ν = 3/4.42,47 However,

there appear to be significant interactions between the composite fermions, so higher

members of this sequence do not appear as ground states. Furthermore, as discussed

below, the composite fermion states at ν = 2, 3/2 do not appear to describe the

ground states of contact interacting bosons at these filling factors.

Moore–Read State. At ν = 1 a model of non-interacting composite fermions

would suggest the existence of a compressible composite Fermi liquid, analogous to

the ν = 1/2 state of fermions.48 This compressible state is the p→∞ limit of the

sequence (25). This is not found in numerics. Rather the ground state is found to

be a robust gapped FQH state. Numerical studies have established this state to

be well described by the Moore–Read Pfaffian state,49 with a particle-hole gap of

∆Eν=1 ' 0.05 × 2πV0.10,42,47 Note that this is not significantly smaller than the

gap for the ν = 1/2 Laughlin state (∆Eν=1/2 ' 0.095× 2πV0), indicating that the

Moore–Read state is of comparable robustness. Numerical evidence for the Moore–

Read state appears from the shift on the sphere, the expected three-fold degeneracy

of the ground state on the torus, and adiabatic continuity with the Moore–Read
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wavefunction which is the exact ground state of a three-body contact interaction.

Unlike electrons in the lowest Landau level at ν = 1/2, bosons in the lowest Landau

level at ν = 1 do not have an exact particle-hole symmetry. The competition

with the possible anti-Pfaffian wavefunction is resolved in favor of the Moore–Read

Pfaffian for contact interacting bosons at ν = 1. That this non-Abelian FQH state

appears so robustly in the bosonic system is a key motivation for searching for

experimental realizations of fractional quantum Hall states of bosons.

Read–Rezayi States. Even more interesting are the ground states that appear

at filling factors larger than ν = 1. Numerical studies show that the ground states of

contact interacting bosons in the lowest Landau level at ν = k/2, with k ≥ 3 integer,

resemble the Read–Rezayi states.42 For bosons these can be defined as the states

of highest filling factor in the lowest Landau level which are the exact zero energy

eigenstate of a (k + 1)-body contact interaction.50 They generalize the Laughlin

and Moore–Read states, which are respectively the k = 1 and k = 2 members of the

sequence. For N divisible by k, the states can be written as a symmetrized product

over k Laughlin states42,51

ΨRR
k (z1, z2, . . . , zN ) ∝ S

 N/k∏
i<j∈A

(zi − zj)2

N/k∏
k<l∈B

(zk − zl)2 . . .

 e−∑
i |zi|

2/4, (26)

where S denotes symmetrization over all ways in which the N particles can be

divided into sets A,B, . . . of N/k particles. The wavefunction (26) vanishes when

k + 1 particles coincide since at least two of these particles (i and j, say) must be

in the same set, and therefore the wavefunction has a factor of (zi − zj)2. Like the

Moore–Read state the Read–Rezayi states describe non-Abelian phases of matter.

However, the relevant anyons step beyond the Ising non-Abelian anyons of the

Moore–Read state to allow universal braid statistics.52

For contact interactions, the correlation lengths are large, and there are com-

peting phases with broken translational order already for ν ≥ 2. (These competing

phases include both vortex lattice and stripe/nematic phases.44) However, it has

been shown that the addition of a small degree of longer-range interaction (i.e. a

non-zero Haldane pseudo-potential V2) can improve stability.53 This is illustrated

for the k = 3 Read–Rezayi state in Fig. 6. Recall that there is a competing compos-

ite fermion state (25) at ν = 3/(3−1) = 3/2. Nevertheless, the numerical results —

in particular the four-fold ground state degeneracy — indicate that this state is not

favored compared to the k = 3 Read–Rezayi state under the conditions of Fig. 6.

In cold atom experiments, longer-range interactions may arise in atomic species

with large dipole moments.8 These longer-range interactions can also lead to

changes in the nature of the vortex lattice phases,54 and/or the appearance of

competing crystalline phases.55

Fermions. Although the focus of this chapter is on bosons, we note that there

are some aspects of the FQH state of fermionic atoms that are unconventional.
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Fig. 6. Excitation spectrum at ν = 3/2 for N = 13 bosons on the torus for non-zero range of

the interaction giving Haldane pseudo-potential ratio V2/V0 = 0.38. The near degeneracy of the
two levels at K = 0 is as expected for the k = 3 Read–Rezayi state. (There is an overall four-fold

degeneracy when translational symmetries are taken into account.) The insensitivity to boundary

conditions on the torus illustrates convergence. Reproduced from Ref. 53.

Most notable is the availability of gases of two-component fermions for which the

superfluid pairing of the fermions can be controlled: spanning the weakly attractive

“BCS” regime of Cooper pairs of size large compared to the inter-particle spacing,

to the regime of strong binding of pairs into tightly bound bosons of small size which

then form a Bose–Einstein condensate (BEC).5 This leads to interesting possibili-

ties involving the interplay between fermionic pairing and fractional quantum Hall

states. For a homogeneous gas without external magnetic field, the transition in

the form of ground state is known to be a smooth evolution between BCS and BEC

regimes. However, in the presence of a quantizing magnetic field — for which the

ground states can have character of the quantum Hall states in 2D, or layered QH

states in 3D — one can readily establish that these two limits must be separated

by a phase transition.56 This is most evident for a 2D system of two-component

fermions of density nF at flux nF
φ with filling factor νF = nF/nF

φ = 2. For weak

attractive interactions between the two components, the ground state is a νF = 2

integer quantum Hall state in which the lowest Landau level is filled for both spin

components. However, for very strong attractive interactions such that opposite

spin fermions pair into bosons with binding energy large compared to the cyclotron

energy, the system should be viewed as bosons of density nB = nF/2 experiencing

a flux density nB
φ = 2nB

φ , i.e. at filling factor νB = νF/4 = 1/2. Residual contact

repulsion between the bosons will stabilize a Laughlin state of these bosons. That

there must be a phase transition separating these two regimes is evident from the
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fact that the edge structure changes: from two modes for the integer quantum Hall

state of weakly attractive fermions at νF = 2 to the single mode of the Laughlin

state of bosons at νB = 1/2.56–58

2.2.2. Interacting bosons in topological optical lattices

A key feature of optical lattices is that they break continuous translational invari-

ance. Thus, in order that strongly correlated phases akin to FQH states appear in

these lattices, one must go beyond the paradigm of continuum Landau levels to allow

for this discrete translational invariance. That fractional quantum Hall states can

be stable in the presence of periodic density modulations was discussed in early work

on the “Hall crystal” phase, in which the density order is spontaneously formed.59

The consequences of the discrete translational invariance on the form of the Chern–

Simons field theoretical description of the Laughlin and Jain states were studied.60

More recently, this topic has gained attention in connection with the investigation

of “fractional Chern insulators”61–63 — i.e. fractional quantum Hall states formed

for particles moving in lattice models which generate bands with non-zero Chern

number, with single particle wavefunctions that can differ markedly from those of

the continuum Landau level. The optical lattices described in Sec. 2.2.2 provide

interesting examples of this physics. Similar effects have been observed for elec-

trons in superlattice structures formed in bilayer-graphene hexagonal boron-nitride

devices.2

C = 1 bands. Many of the optical lattices described above have been designed

to closely approximate the action of a uniform magnetic field on a charged particle,

and thereby to form energy bands that are similar to those of Landau levels. This

is the case for the Harper–Hofstadter model at sufficiently small flux per unit cell,

nφ, where the magnetic length is much larger than the lattice constant. It is also

the case for the optical flux lattices of Sec. 2.1.2. In such cases, one expects that

the many-body states for short-range interactions will mirror those described above

for contact-interacting bosons in the lowest Landau level — at least in regimes for

which the mean interaction strength remains sufficiently small to preclude inter-

band mixing. Although the energy bands can be similar to Landau levels, they are

not identical: the bands have some residual dispersion, and the Berry curvature of

the energy band is not uniform. Therefore it is important to test the stability of

quantum Hall states in the continuum to these settings.

The nature of the ground states of interacting bosons on the Harper–Hofstadter

model have been studied using numerical methods, both for hardcore interactions

and for contact interactions that do not mix states beyond the lowest energy single-

particle band. The results of these studies64,65 show that the ground state at filling

factor ν = 1/2 remains well-described by the Laughlin state for nφ . 0.3, as does

the composite fermion (25) state at ν = 2/3.66,67 These states are evidenced by

the presence of energy gaps, by the appropriate ground state degeneracies on a

 F
ra

ct
io

na
l Q

ua
nt

um
 H

al
l E

ff
ec

ts
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

5.
23

5.
82

.1
29

 o
n 

05
/1

7/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



May 5, 2020 3:39 ws-rv961x669 BC: 11751 - Fractional Quantum Hall Effects 11751-10 page 505

Fractional Quantum Hall States of Bosons 505
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3 states

ν=1/2 (N=9) ν=1 (N=12)

~

Fig. 7. Many body excitation spectra for bosons in the lowest band of an optical flux lattice

designed to mimic the lowest Landau level, using NI = 3 hyperfine levels of rubidium-87. (a) At

ν = 1/2 (N = 9 particles in Nφ = N1N2 = 6× 3 states) the ground state is well described by the
Laughlin state, with two-fold degeneracy (b) At ν = 1 (N = 12 particles in Nφ = N1N2 = 6 × 2

states) the ground state is well described by the Moore–Read state, with three-fold degener-

acy. Energies are measured in units of g̃ER = 3
√

2π(as/az)(~2κ2/m) (with κ the characteristic
wavevector of the light forming the optical lattice), and the momentum k = α1G1/N1 +α2G2/N2

is labeled by the index, i = 1 + α1 +N1α2, with G1,2 the two smallest reciprocal lattice vectors.

Reproduced from Ref. 24.

torus, and by the many-body Chern numbers. The connection with the FQH states

of the continuum Landau levels has been explored in Ref. 68, showing how non-

uniformities of the geometry of the Bloch wave functions affect the stability of the

FQH states.

The optical flux lattices, described in Sec. 2.1.2, allow the formation of bands

that closely approximate Landau levels. The Laughlin (ν = 1/2) and Moore–Read

(ν = 1) states were studied in detail for the model of Fig. 3(a) for NI = 3, 4,

and were shown to have similar stability to that found in the continuum Landau

levels.69 Focusing on settings in which the bands closely mimic Landau levels,

but with an eye on specific practical implementation for the NI = 3 spin states

of rubidium-87, a scheme similar to that illustrated in Fig. 3(a) was proposed.24

This scheme sacrifices uniformity of the Berry curvature of the band to simplify the

experimental implementation. The resulting energy bands can still be made very

narrow. However, they are of non-zero width and so sufficiently strong interactions

are needed to prevent formation of a Bose–Einstein condensate in the lowest energy

band minimum (or superposition of degenerate minima). At strong interactions one

finds the appearance of a robust Laughlin state at ν = 1/2 and a robust Moore–

Read phase at ν = 1, much as in continuum Landau levels. These studies show

good prospects for finding the FQH states of bosons of continuum Landau levels

within the setting of optical lattices, where densities and interaction energies can

be large.

Much is known concerning the interacting ground states in other flat-band mod-

els with topological bands.61,63 Typically such models are formulated as tight-

binding models with further neighbor couplings introduced to reduce the bandwidth,

and are therefore less readily implemented in cold atom systems. It is interesting to

note that, by careful choice of these further neighbor couplings, the wavefunctions

 F
ra

ct
io

na
l Q

ua
nt

um
 H

al
l E

ff
ec

ts
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

5.
23

5.
82

.1
29

 o
n 

05
/1

7/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



May 5, 2020 3:39 ws-rv961x669 BC: 11751 - Fractional Quantum Hall Effects 11751-10 page 506

506 N. R. Cooper

can be made identical to those of the continuum Landau level,70 allowing the de-

velopment of a model in which a discretized version of the Laughlin wavefunction71

is the exact many-body ground state.

C 6= 1 bands. The optical lattices described above also provide settings in which

the lowest energy band differs qualitatively from a continuum Landau level, by

having a Chern number that is not of unit magnitude, |C| 6= 1. For example, as

discussed in more detail below, such cases arise for the Harper–Hofstadter model

with nφ close to 1/q, for which the lowest energy band has Chern number |C| =

q. For interacting bosons occupying this lowest energy band, one can anticipate

strongly correlated phases provided the interaction energy is large compared to the

bandwidth. How do these states, formed in Chern bands with |C| 6= 1 relate to

fractional quantum Hall states in continuum Landau levels? Remarkably one can

gain understanding in this setting by adapting ideas of composite fermion theory

to this lattice setting.

The extension of the mean-field composite fermion theory of the continuum

Landau levels to the lattice was described in Ref. 60, and explored numerically for

contact interacting bosons in Refs. 66, 67 and 72. For bosonic particles, one may

form composite fermions by attaching a single vortex. As in the continuum theory,

the effective flux density is nCF
φ = nφ−n, Eq. (24). For n and nφ of small magnitude,

the relevant single-particle states are approximate continuum Landau levels both for

nφ and for nCF
φ . The resulting many-body states recover the continuum composite

fermion states described above, with bosonic Jain sequence Eq. (25). However, when

either n or nφ is of order unity, such that the lattice structure becomes significant,

then nCF
φ may not be small and the levels that the composite fermions fill can have

different character to those of the continuum Landau level.

We illustrate the general approach here by the specific example of the Harper–

Hofstadter model at flux nφ close to 1/q with q being an integer. In each of these

cases, there appears a series of narrow low energy bands in the spectrum which are

well separated from each other in energy. For q = 1 this condition is equivalent to

nφ being close to zero and these narrow bands are the usual Landau levels. These

continuum Landau levels and the low energy bands associated with proximity to

nφ = 1/2 are illustrated in Fig. 4.

The low-lying bands of the Harper–Hofstadter model close to nφ = 1/q have

Chern number C of magnitude |q|. One way to see this is to use a result of Wannier73

who showed that the number of states per plaquette for each of these bands is

ns = |qnφ − 1|. By considering one such band to be filled by non-interacting

fermions, such that n = ns, and using the Středa formula74

σxy = e

(
∂n

∂B

)
µ

=
e2

h

(
∂ns
∂nφ

)
µ

= ±q e
2

h
for nφ ≷ 1/q (27)

one deduces that the Chern number of the band is C = |q|. Alternatively, one

can consider the sequence nφ = α/[|C|α − sgn(C)] with integer α, which converges
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to nφ = 1/|C| at large α. Solving the Diophantine equation of Thouless et al.20

at these flux densities to determine the Hall conductance of the low energy bands

shows that they each have Chern number C.72

Consider the lowest such band occupied with a density n of repulsively interact-

ing bosons. Given that the band consists of ns states per unit area, it is natural

to define the filling per state by νs ≡ n/ns. We use the subscript s to emphasize

that this is the filling per state rather than per flux quantum, ν = n/nφ. (For

models that realize bands that closely approximate Landau levels, then νs = ν.)

Now consider forming composite fermions by attaching a single vortex, such that a

density n of composite fermions experience a resulting flux density nCF
φ = nφ − n.

If also nCF
φ ' 1/|C|, which always applies for low densities n � 1, these compos-

ite fermions will experience low energy |C| bands of the same form as the original

bosons. The number of states per unit area is nCF
s = |CnCF

φ − 1| = |C(nφ − n)− 1|.
Treating the composite fermions as non-interacting, one would expect an incom-

pressible state when p bands are filled, n = ±pnCF
s , leading to the lattice composite

fermion sequence72

νs ≡
n

ns
=

p

pC ± 1
. (28)

This generalizes the Jain sequence (25) for conventional Landau levels to the case

of topological bands with |C| 6= 1. Numerical exact diagonalizations show evidence

for the existence of these states for C = 266,72 and C = 3.72 The same reasoning

leads to candidate fermionic states in bands at νs = p
2pC±1 ;72 evidence for such a

state in a C = 2 band has been found in experimental studies of modulated bilayer

graphene.2

An interesting case appears for C = 2 and p = 1, for which there is a composite

fermion state with νs = p/(2p − 1) = 1. This state is a bosonic integer quantum

Hall (BIQH) state. It has no fractionalized excitations (i.e. it has a non-degenerate

ground state on a torus) so has short-range entanglement. It is therefore an example

of a symmetry-protected topological phase of bosons,75 the symmetry being the

U(1) symmetry associated with conservation of particle number. Consistent with

general arguments76 this state has even value of the quantized Hall conductance,

σxy = 2e2/h. Numerical results show evidence for the stability of this phase for

bosons with contact interactions in the Harper–Hofstadter model.66,67,72

Optical flux lattices, described in Sec. 2.1.2, can also be designed for which the

real space magnetic field vanishes, yet the Chern number is nonzero, or in which

the Chern number has magnitude larger than unity.21 The strongly correlated

phases of models in which the lowest band has C = 2 were studied in Refs. 69

and 77. It was shown that various fractional Chern insulator states can appear.

These include so-called “color-entangled” states, at fillings νs = 1/(1 + C) at least

for C = 2 and C = 3.69 These states are related to the fractional quantum Hall

states of multi-component quantum Hall systems proposed by Halperin,78 with C
internal components79 albeit in a setting without SU(C) symmetry. However, they

differ in detailed structure. These differences can be exposed in finite-size systems,
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using an extended zone construction of the form of Fig. 3(a), for which a band of

Chern number C has a number of states that is not divisible by C. Thus, the band

cannot be viewed as consisting of C copies of a band with unit Chern number, so

does not have a natural description in terms of C internal components. Still, the

color-entangled fractional Chern insulator states can be well defined even in this

case.22

2.3. Experimental consequences

There remain experimental challenges in realizing FQH states for atomic gases.

However, these appear to be technical, and there are rapid ongoing improvements

in capabilities which encourage one to believe that they can be overcome. The

theoretical studies provide strong motivations to continue this search, in particular

to have experimental access to non-Abelian phases, such as the Moore–Read state

at ν = 1 for contact interacting bosons, and to explore FQH states that are stabi-

lized by the lattice including the predicted νs = 1 symmetry-protected topological

phase of bosons. It is therefore important to consider what are the experimental

observables that could be used to probe and to characterize these phases.

The observables that can be accessed in cold gases are rather different to those

that are commonly used in electronic systems. In the following we list some of the

most natural observables for cold gases.

Equation of State. The confinement of atomic gases in harmonic traps typically

leads to inhomogeneous particle density across the sample. This can cause diffi-

culties in the interpretation of measured properties that are averaged across the

sample. However, it can be a useful feature for extracting the equation of state of

the system if local measurements are made. Specifically, if the trapping potential

V (r) is sufficiently shallow that the local density varies slowly on the microscopic

correlation length, then one may take the mean local particle density at a position r

to represent the equilibrium density for a local chemical potential µ(r) = µ−V (r).

Making in situ measurements of the expectation value of n(r) (over repeated exper-

iments) then allows one to deduce the equation of state n(µ). This “local density

approximation” has been put to use in an accurate determination of the equation of

state of strongly interacting atomic gases.80 The incompressible character of frac-

tional quantum Hall states should appear clearly in such measurements, as a form

of “wedding cake” density distribution, with plateaus in the density at quantum

Hall states for sufficiently low temperatures.81

Local correlations. Rather than constructing the expectation value of the par-

ticle density through averaging over repeated images, analysis of each individual

image can be made. Each image provides the positions of all of the particles (up to

uncertainties from noise and imaging resolution), so contains significant informa-

tion on the local two-particle (or multi-particle) correlations. For rapidly rotating
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cases in harmonic traps, the images taken after release of the trap and expansion

of the gas give a scaled-up view of the local correlations before expansion.82 For

cold atomic gases formed in “quantum gas microscopes” such images can be taken

even in situ — with atomic resolution and high fidelity.16,37 Quantum gas micro-

scopes could also be used to measure correlation functions that can uncover and

characterize the gapless edge modes of FQH states.67 The spatial average of the

local two-particle correlation function 〈n(r)n(r)〉 can also be obtained by the use

of photo-association to convert pairs of atoms in close proximity to molecules.15

Transport. Although cold atomic gases are not readily attached to sources and

sinks of atomic currents, there are ways in which they can be used to measure

transport properties. The use of light beams to shape the cloud into two (large)

reservoirs, coupled by a mesoscopic region, has allowed studies of two-point trans-

port properties, including thermo-electrical transport, albeit not yet for systems

involving topological bands or phases.83 The bulk transport of a weakly interact-

ing gas of bosons subjected to the Harper–Hofstadter model at flux nφ = 1/4 was

studied via the motion of the centre of mass of the cloud, allowing a measurement

of the Chern number of the lowest band.84 Using a sum rule, the zero frequency

Hall conductivity can be related to the integral over frequencies of the dissipative

circular dichroism.85 This has recently been used to measure the Hall conductivity

of non-interacting fermions in the lowest band of the Haldane model.86

Spectroscopic probes. Cold atomic gases lend themselves naturally to spectro-

scopic probes. Bragg spectroscopy, namely a two-photon Bragg scattering process,

can be performed with high energy resolution, and with wavevector transfers of

order of the inverse optical wavelength, which itself is of order the inverse particle

spacing, thereby accessing the full range of relevant momenta.87 This has been used

to measure the (gapless) collective modes of a Bose–Einstein condensate,88 and the

static and dynamic structure factors of strongly interacting phases of fermions.89

This provides a natural way to probe the (gapped) collective modes of FQH states,

such as the roton branch of Fig. 5. Observations of the collective modes of finite-size

systems are sensitive to the equation of state of the gas,90 and could be used to

probe the edge structure of FQH states.91

Fractionalization. The high degree of control and the potential for precision

measurements on cold atomic gases holds promise of finding new ways to probe and

detect the particle fractionalization within FQH states of atoms. Precision spec-

troscopy of rotating atomic clusters has been shown to provide a means to detect

Haldane exclusion statistics of quasi-hole excitations.92 Removing one atom from a

finite-size ν = 1/2 Laughlin droplet of bosons leaves the system in an excited state

involving two quasi-holes; a count of the number of spectral lines reveals the exclu-

sion statistics of these particles. Although more challenging, it is also possible to
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envisage means by which to detect braiding statistics.93,94 An interesting proposal

is to introduce additional “impurity” atoms to which anyons of the background

FQH state bind, and which may be separately addressed and controlled.95–98

Preparation methods. In considering all of these potential experimental ob-

servables, an important concern is the means of preparing the system close to its

ground state. Typically, in situ cooling is unavailable for cold atoms in the com-

plex settings for which the FQH states might arise, so the natural approach is to

consider adiabatic paths from a more easily prepared many-body ground state to

the FQH state. Such trajectories involve a quantum phase transition — from a

short-range entangled phase to the FQH state with genuine topological order — so

true adiabaticity is only possible in small finite systems.67,99,100 Theoretical studies

have explored the optimal adiabatic paths for small systems99,101–103 and the use

of dissipative methods.104 If such methods are not available, for large systems one

can hope that non-adiabatic effects on crossing the transition into the topologically

ordered phase are not too destructive, as in the phase transition between Mott

insulator and superfluid phases of strongly interacting lattice bosons.105

3. Other Experimental Settings

In Sec. 2 we considered FQH states of bosons formed in ultracold atomic gases.

There are a wide variety of other forms of system in which bosonic degrees of free-

dom can move, without displacing the underlying atoms: a set of localized atoms or

molecules (e.g. on a crystalline lattice) can support local spin-flips or other internal

excitation which move as bosons through the static lattice; alternatively, the elec-

tromagnetic field itself provides a medium through which photons can propagate.

In the following we provide an overview of systems in which these bosonic degrees

of freedom may form FQH states. For further details, in particular of the topolog-

ical bands of single-particle excitations in artificial photonic systems, we refer the

interested reader to Refs. 106 and 107.

3.1. Quantum magnets

A quantum magnet consisting of spin-1/2 degrees of freedom can be readily mapped

to a model of hard-core bosons. We take the presence/absence of a boson on a given

lattice site r to represent a spin projection szr = ±1/2, such that the number of

bosons on site r is b†rbr = szr + 1/2, and define the boson creation and annihilation

operators by b†r = s+
r , br = s−r . These lead to the commutation relation [br, b

†
r′ ] =

δr,r′(1− 2b†rbr) which is consistent with the hardcore constraint (br)2 = (b†r)2 = 0.

Writing the Heisenberg antiferromagnet in terms of these hardcore bosons

HAF = J
∑
〈r,r′〉

sr · sr′ = J
∑
〈r,r′〉

[
1

2

(
b†rbr′ + b†r′br

)
+ nrnr′

]
+ const. (29)
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shows that it corresponds to both nearest-neighbor tunnelling and nearest-neighbor

density interactions. Conservation of the total spin Sz ≡ ∑r s
z
r is equivalent to

conservation of the total number of bosons. Similarly an external field Bz that

couples to Sz plays the role of a chemical potential.

Kalmeyer and Laughlin4 proposed that the groundstate of the spin-1/2 Heisen-

berg antiferromagnet on the triangular lattice might be a gapped spin-liquid state

which is described by the q = 2 Laughlin state of bosons (22). That this model

is classically frustrated motivates a description in terms of a quantum spin liquid.

They investigated this phase of matter using variational studies. Taking N bosons

at sites {r1, r2, . . . rN}, the spin wave function considered is

|ΨKL〉 ∝
∑

{r1,r2,...,rN}

ΨL
q=2(r1, r2, . . . , rN )

N∏
n=1

b†rn |vac〉 (30)

where ΨL
q=2 is the Laughlin wavefunction (22) with zi = (xi + iyi)/` and |vac〉 =

| ↓〉1 ⊗ | ↓〉2 . . . | ↓〉N . The wavefunction satisfies the hardcore constraint since

ΨL
2 ({ri}) vanishes when any two of its arguments coincide. Choosing N to be

one half of the total number of sites of the triangular lattice, corresponding to a

state with vanishing total spin component Sz = 0, and 4π`2 =
√

3a2
0 (with a0

the nearest neighbor spacing), Kalmeyer and Laughlin determined the variational

energy of this state for the Heisenberg Hamiltonian, Eq. (29), and found it to

be within 10% of other competing states. They argued for adiabatic continuity

between this fractional quantum Hall wavefunction and the true ground state of

the Heisenberg antiferromagnet. However, subsequent studies have shown that the

ground state of this model is qualitatively distinct: it is magnetically ordered,108,109

with correlations similar to those of the ground state of the classical antiferromagnet

on this lattice.

Nevertheless, the Kalmeyer–Laughlin state remains a viable quantum spin-liquid

phase which may appear in other models. Indeed, numerical studies of a frustrated

Heisenberg model on the Kagomé lattice, with third-neighbor coupling, show evi-

dence that the ground state spontaneously breaks time-reversal symmetry. It be-

haves as a gapped chiral spin liquid110 with qualitative features of topological order

(ground state degeneracy on a torus, and entanglement spectrum) that match those

of the Kalmeyer–Laughlin state.4 Such a phase has also been identified, through

similar characteristics, for a Kagomé lattice model derived from the low energy

limit of the Hubbard model in the presence of an orbital magnetic flux.111 This flux

explicitly breaks time-reversal symmetry and leads to the appearance of a chiral

three-spin interaction that stabilizes the Kalmeyer–Laughlin phase.

Certain quantum magnets have been found to exhibit plateaus in the magne-

tization Sz as a function of external applied field Bz. In the boson picture, this

corresponds to the mean boson density having plateaus as a function of chemical po-

tential, i.e. incompressibility. Treating the bosons within a mean field Chern–Simons

description, of the same form as the composite fermion construction described above
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on the Harper–Hofstadter model, has been shown to reproduce the observed mag-

netization plateaus of the spin-1/2 antiferromagnetic on the Sutherland–Shastry112

and Kagomé113 lattices.

These examples draw close connections between standard FQH states of bosons

and possible ground states of spin-1/2 quantum magnets. However they constitute

a subset of a much broader class of quantum spin liquids114 that is conceptually

linked to fractional quantum Hall states. The deeper connections arise from the

existence of topological order and associated fractionalized quasi-particles with any-

onic statistics. A notable example is provided by the Kitaev honeycomb model,115

describing a spin-1/2 lattice model in which the interactions between nearest neigh-

bors are of XX, YY or ZZ type depending on the direction of the bond. This model

is exactly solvable in terms of free Majorana fermions. In the presence of a mag-

netic field, which opens a gap it behaves as a chiral spin liquid with non-Abelian

anyons. Recent studies of α-Ru-Cl3 show the appearance of a plateau of the thermal

Hall conductivity which is consistent with thermal transport by a Majorana edge

mode.116,117

3.2. Engineered qubit arrays

There are now many experimental systems consisting of arrays of engineered two-

level quantum systems which provide a class of many-body systems that are equiv-

alent to spin-1/2 quantum magnets. The only difference from Sec. 3.1 is that the

two-level quantum systems are designed and artificially constructed rather than

provided by nature.

Atom or molecule arrays. Atoms or molecules subjected to deep optical lat-

tices or strong optical tweezers can be formed into ordered arrays in which the po-

sitional degrees of freedom are frozen out. The internal excitations of these frozen

atoms/molecules can provide a set of “spin” degrees of freedom. (These involve elec-

tronic/spin excitations for atoms and also ro-vibrational excitations for molecules.)

The resulting two-level quantum systems can have very large coherence times, and

can be coupled by dipolar interactions with timescales large compared to intrinsic

decoherence times (e.g. from spontaneous emission). Experiments have shown co-

herent dynamics of coupled two-level systems, and evidence of strong (hardcore)

interactions.118,119 Theoretical proposals have shown how artificial magnetic fields

can be imprinted for the motion of spins in two-dimensional arrays, leading to the

possibility of forming FQH states: for rotational states of polar molecules120 and

for internal states of atoms in highly excited “Rydberg” states.121

Superconducting qubits. Circuit QED devices, based on superconducting

structures, provide one of the leading approaches to generating engineered ar-

rays of two-level quantum systems.122 The two-level systems have splittings in

the microwave frequency regime, so have negligible spontaneous emission, and are
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readily controlled and coupled by resonant superconducting circuits. An experi-

mental demonstration has been given of the basic elements required to break time-

reversal symmetry and to imprint Peierls phase factors on the coupling between the

qubits in a single three-site plaquette.123 This follows the same approach as used

in cold atoms,34,36 described in Sec. 2.1.3, based on site-to-site detuning and re-

establishing tunnelling by photon-assisted tunnelling through which Peierls phase

factors can be imprinted. It has also been shown theoretically how time-reversal

symmetry can be broken in such settings by coupling the qubits by resonator junc-

tions made of passive elements subjected to static electric and magnetic fields.124

A related, passive, scheme has been proposed based on the use of MW cavities with

embedded magnetic materials. Such a MW resonator, designed to be described by

the nφ = 1/4 Harper–Hofstadter model, has been constructed and the (topological)

energy bands for photons measured.125

Topological Optical Resonators. Approaches similar to those of circuit QED

have been pursued for two-level systems that operate in the optical domain. Much

progress has been made in understanding how Chern bands can be generated for

photonic structures operating in the optical frequency domain,126 and there has

been recent progress in various experimental settings.107,127,128 Typically, such sys-

tems preserve time-reversal symmetry, for example, providing bands with opposite

Chern numbers for the two polarizations of the light field. They also typically op-

erate in regimes where interactions between photons are weak. However, strong

interactions could, in principle, be introduced, for example, by embedding two-level

atoms.129

3.3. Continuum polaritons

One way to ensure that there are strong interactions between photons is to em-

bed them in a medium in which there is strong coupling such that the appropriate

excitation is a polariton: an excitation that has both photon and matter compo-

nents. Such polaritons can be formed in electronic materials, in which the matter

component is an exciton, or in cold atomic gases, in which the matter component

is an electronic excitation. The matter components of these polaritons can interact

strongly. In both cases, the formation of a coherent polaritonic quasi-particle with

long lifetime requires the photon to be held in an optical cavity, reducing its rate

of loss.

Analogous to the effect of rotation on an atomic gas, one can engineer an artificial

magnetic field for polaritons by rotating the medium through which the light is

propagating.130 This leads to a Landau level spectrum, as in Sec. 2.1.1, and has

been shown to allow the formation of a Laughlin state of the polaritons. By coupling

to highly-lying “Rydberg” levels of the atoms, the interactions can be made to be

very strong and of tunable blockade radius, leading to models that show competing

crystalline phases.55
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Another way in which one can impose rotation on the polariton is to keep the

medium stationary and to cause the optical field to rotate, by the use of a cavity that

has a twisted character, such that repeated round-trip passage of rays of light within

the cavity cause a rotation of the point of intersection of the ray with the medium.

This can also be usefully viewed within a Floquet framework, the periodicity set by

the time interval between successive transits of the central plane of the cavity.131

The formation of Landau levels for the cavity modes has been demonstrated in

experiment.132 Theory has shown that, in the presence of a medium in which the

light forms polaritons, the associated strong interactions provide ways to prepare

the Laughlin state, and to allow measurements of exchange statistics.133

4. Concluding Remarks

We have summarized a range of physical settings in which one expects there to

appear fractional quantum Hall states of bosons. Although no such state has yet

been realized in experiment, this may soon change given the rapid technical advances

in the relevant research areas. For bosons within continuum Landau levels, a key

result is that the Laughlin state is the exact ground state for the naturally occurring

form of two-body contact interactions. Numerical studies indicate stable and robust

Moore–Read and Read–Rezayi states, offering the prospect that these systems may

allow experimental investigation of non-Abelian phases.

Many of the proposed physical realizations bring in physics that is uncommon in

electronic systems. Cold atomic gases could allow for the study of the interplay of

strong-pairing superconductivity and FQH physics. Achieving FQH states at high

particle density in cold gases naturally leads to lattice-based models, and can allow

for novel FQH states that exist only on lattices, notably in bands with Chern number

|C| > 1. FQH states of optical photons/polaritons typically involve particle loss,

so operation requires pumping and dissipation,134,135 also bringing novel features

compared to the equilibrium situations typically considered for electronic materials.

Theoretical analyses have identified many novel experimental settings in which

FQH states of bosons could appear. These theories have been guided by the existing

understanding of FQH systems, which has been built on experimental discoveries in

electronic systems. It is clear that much remains to be understood about strongly

interacting quantum many body systems. The new physical settings for bosonic

matter are sufficiently different from electronic systems that existing theories may

be inadequate to understand all of their features, and the experimental explo-

rations have the scope to uncover qualitatively new phenomena that were previously

unexpected.
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Heisenberg model, Phys. Rev. Lett. 82, 3899–3902 (1999).

109. S. R. White and A. L. Chernyshev, Neél order in square and triangular lattice Heisen-
berg models, Phys. Rev. Lett. 99, 127004 (2007).

 F
ra

ct
io

na
l Q

ua
nt

um
 H

al
l E

ff
ec

ts
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

5.
23

5.
82

.1
29

 o
n 

05
/1

7/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



May 5, 2020 3:39 ws-rv961x669 BC: 11751 - Fractional Quantum Hall Effects 11751-10 page 520

520 N. R. Cooper

110. Y.-C. He, D. N. Sheng, and Y. Chen, Chiral spin liquid in a frustrated anisotropic
Kagome Heisenberg model, Phys. Rev. Lett. 112, 137202 (2014).

111. B. Bauer, L. Cincio, B. P. Keller, M. Dolfi, G. Vidal, S. Trebst, and A. W. W. Ludwig,
Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator, Nat.
Commun. 5, 5137 (2014).

112. G. Misguich, T. Jolicoeur, and S. M. Girvin, Magnetization plateaus of SrCu2(BO3)2

from a Chern–Simons theory, Phys. Rev. Lett. 87, 097203 (2001).
113. K. Kumar, K. Sun, and E. Fradkin, Chern–Simons theory of magnetization plateaus

of the spin- 1
2

quantum XXZ Heisenberg model on the Kagome lattice, Phys. Rev. B.
90, 174409 (2014).

114. L. Savary and L. Balents, Quantum spin liquids: A review, Rep. Prog. Phys. 80(1),
016502 (2017).

115. A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321(1), 2–111
(2006).

116. Y. Kasahara, K. Sugii, T. Ohnishi, M. Shimozawa, M. Yamashita, N. Kurita,
H. Tanaka, J. Nasu, Y. Motome, T. Shibauchi, and Y. Matsuda, Unusual thermal
Hall effect in a Kitaev spin liquid candidate α-RuCl3, Phys. Rev. Lett. 120, 217205
(2018).

117. Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma, K. Sugii, N. Kurita,
H. Tanaka, J. Nasu, Y. Motome, T. Shibauchi, and Y. Matsuda, Majorana quanti-
zation and half-integer thermal quantum Hall effect in a Kitaev spin liquid, Nature.
559(7713), 227–231 (2018).

118. H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres,
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