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It is shown, by a homotopy theory argument, that for a general class of fermion theories on a 
Kogut-Susskind lattice an equal number of species (types) of left- and right-handed Weyl particles 
(neutrinos) necessarily appears in the continuum limit. We thus present a no-go theorem for putting 
theories of the weak interaction on a lattice. One of the most important consequences of our no-go 
theorem is that it is not possible, in strong interaction models, to solve the notorious species doubling 
problem of Dirac fermions on a lattice in a chirally invariant way. 

1. Introduction 

(a) It has b e e n  k n o w n  for some t ime that  incorpora t ion  of fe rmions  on a lattice 

leads to fur ther  fe rmionic  modes  than  those naively expected [1-3].  For  example,  a 

naive cons t ruc t ion  of a Weyl  fe rmion  ( = n e u t r i n o )  on  a K o g u t - S u s s k i n d  lattice (i.e. 

discrete space and  con t inuous  t ime) yields eight Weyl  fermions  in the low energy  

regime. To  be specific we consider  the 3 + 1 d imens iona l  naive model  of the Weyl  

equa t ion  on  a lattice which is ob ta ined  by replacing 0 in the Weyl  equa t ion  

1 
i ~ u (x ) = _ ~ O u  (x ) 

Ot t 

by differences 

i ~ t u ( x ) =  ~ 1 i=1 ~cr i {u (x  + nl) - u (x  - nl)} . (1.1) 

He re  u (x) is a t w o - c o m p o n e n t  spinor.  We  take the lattice cons tan t  to be unity,  and  ni 

deno tes  the un i t  vector  in the xl direct ion.  In  the m o m e n t u m  represen ta t ion ,  eq. (1.1) 

takes the form 

3 

i d f i (p)  = ~ th s inp~ ,  f i ( p ) .  
Ot i=1 

20 
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Fig. 1. The dispersion relation for the lattice fermion theory given by (1.1). The Pz dimension has been 
suppressed, and the drawing corresponds to Pz = O. Just one Brillouin zone is drawn. 

Since each sine function has two zeros in its dispersion relation for a period in a 

Brillouin zone in p-space, there appear eight zeros of energy o~(p) at eight momen-  

tum values, as is depicted in fig. 1. These zeros represent Weyl particles in the 

dispersion relation in the long-wavelength limit. 

It is the purpose of this article to formulate and prove a no-go theorem: the 

appearance of equally many right- and left-handed species (types) of Weyl particles 
with given quantum numbers is an unavoidable consequence of a lattice theory under 

some mild assumptions. Here species of neutrino means ue, u~ or ~,~, etc. It should be 

stressed that our no-go theorem concerns the number of species of Weyl particles, but 

says nothing about the actual number of Weyl particles in the cosmos. The latter 
number is, of course, determined from how the states are filled or unfilled. The most 

important consequence of our no-go theorem is that the weak interaction cannot be 

put on the lattice. 

Our "mild assumptions" include such important hypotheses as locality and exact 

conservation of discrete valued quantum number(s). Also, the charges are assumed 
to have a density defined from a finite region. 

In a somewhat less general (Wilson model) and less rigorous form of this no-go 
theorem has very recently been put forward by Karsten and Smit [3a]. Firstly they 
argue for it from the Adler anomaly, but that would only give a theorem still allowing 
the standard SU(3)x SU(2)x U(1) model with quarks and leptons to be put on a 
lattice. Since this will not be allowed by our theorem, the latter must be stronger. 
Secondly, they give, mainly for the Wilson model, a topological argument more 

similar to that applicable in 1 + 1 dimensions, which we shall exhibit in our next 
article [12]. 
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There  are in the literature [2, 3, 4, 4a] various ingenious ways of getting rid of some 
of the extra and at first unwanted fermions'in the low energy regime. Nobody  seems, 
however,  to have been able to get rid of all of them so that only one charged (with an 
exactly conserved quantum number)  Weyl particle remains. If, however,  no exactly 

conserved charge is required, a model with an odd number  of Weyl particles can be 
built and we shall, in fact, present  one in the successive article [12]. If one is 
interested in strong interactions and wants the Dirac particle rather  than the Weyl 
particle, there should be no unsurmountable  problem. A Dirac particle can be 
thought of as a composite  of the components  of two Weyl particles, a r ight-handed 
one and a left-handed one. 

According to our no-go theorem it is not, however,  possible* even in the strong 
interaction models,  to keep chiral invariance conserved on the scale of the 
fundamental  lattice. The important  consequence of our work is to discourage any 
attempt to construct chiral invariant lattice models for QCD. 

(b) We will consider the general class of lattice fermion theories for which the 
bilinear part  of the action for the N-componen t  complex fermion field ~b(x) is of the 

form 

S = - i  I d t ~ ( x ) t k ( x ) -  I dt ~ (k (x )H(x-y)~(y) ,  (1.2) 
x , y  

with H a hamiltonian. Interactions of quartic or higher degree in 4, are neglected. 
These interactions do not change the dispersion relation that we are interested in. We 
in fact define the number  of species of Weyl fermions so that it depends only on the 
bilinear part  of the action and the dispersion relation and not on the interaction, 
which just causes scattering processes. The kinetic term in (1.2) is not the most 

general one, since we could have 

Z ~(x)T(x-y)~b(y) .  (1.3) 
x , y  

With such a term we may risk the appearance  of the singularities (poles) in the 
dispersion relation and, thus, particles with unbounded velocity. For our argument  
we shall need only the assumption that there are no such singularities. With eq. (1.2) 

we obtain the linear equation of motion 

i $ ( x ) = K H ( x - y ) ~ ( y ) .  
Y 

(If, however,  we include a term like (1.3), the hamiltonian is effectively HIT.) 
(c) We have assumed the following three conditions on the action (1.2): 
(i) Locality of interaction, i.e. the hamiltonian satisfies H(x-y)-->O, when 

Ix -y l - - "  large, fast enough in the sense that the Fourier t ransform of H(x) has 

continuous first derivative. 

* See, as examples of non-chirally invariant ways [2, 3, 4a]. 
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(ii) Translational invariance on the lattice (invariance under group translations by 

an integer number  of lattice constants). 
(iii) Hermitici ty of the N x N matrix hamiltonian H (reality of S). 

In m o m e n t u m  space the field takes the form 

1 ~ e_ip.XO(x). 

Since the m o m e n t u m  p is only unique modulo 2~'n (n : set of integers) the indepen- 
dent field variables are only those inside the Brillouin zone with an interval, e.g. 

-rr<~pi<~Tr, ( i = 1 , 2 , 3 ) .  

We should here mention the work of Drell, Weinstein and Yankielowicz [4]. Their  
method of discretizing the fermion theory is to replace V~, by p,,, i.e. 

~,(x)-~ p~TIt,). 

This may introduce a non-local interaction and violate our assumption (i). 
The assumptions made for the charges Q (lepton number,  say) of the theory are 

the following: 
(i) Exact  conservation of Q, even at scales where the Iattice cutoff is relevant. 

Charge conservation means that the energy and momen tum eigenstates are also 

charge eigenstates. 
(ii) Q is locally defined, i.e. 

O = Z / ° ( x ) .  
x 

The charge density ]°(x) is a function of the field variables tp(y) related to y within a 
bounded distance from x. 

(iii) Q is quantized. This is, for instance, the case if it generates an abelian closed 
subgroup of a compact  group. 

(iv) We also assume that Q is bilinear in the fermion field qs(x). 

(d) It appears  to be one of the important  features of weak interactions and of the 
standard Weinberg-Sa lam model in particular, that right- and left-handed particles 

do not have the same hypercharge. In fact, in this way, parity and charge conjugation 
are broken in weak interaction processes. In the Weinberg-Salam model it is the 
different quantum number  for right- and left-handed particles that prohibits masses 
for fermions modulo the Higgs mechanism. So if nature were indeed built on a lattice 
it should be possible to realize Weyl fermions with different quantum numbers  for 
left- and r ight-handed ones. As we shall show, this is, however,  just what cannot be 
done. 

Thus we are faced with the following dilemma: we must give up either the idea that 
nature is based on a fundamental  lattice cutoff, or some of our mild (helping) 
assumptions, or weak interaction phenomenology,  i.e. the usual understanding of 
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parity violation. The last possibility seems unacceptable indeed since the theory of 
weak interactions is well established on this point. As concerns the second possibility, 
we may be able to generalize our no-go theorem to an amorphous lattice. We hope to 
eliminate the assumption of locality of charge density and replace it by the assump- 
tion that the gauge field is coupled via the charge. Such generalizations will be 
presented in one of our forthcoming papers.  

(e) In discussing the quantum numbers  of the individual Weyl particles we mean a 
kind of chiral charge for the composite Dirac particles. The chiral charge* is, of 
course, defined as the difference in the number  of right- and left-handed Weyl 
fermions present  in the universe and has nothing to do with the number  of species of 
Weyl fermions. Since a particle and its antiparticle have opposite quantum numbers,  
we should not consider the sector of opposite charge. Doing so would count 
the antiparticles of the particle once again. So we use the notation that we count 
only left-handed particles, letting the r ight-handed ones be represented by their 
antiparticles. Thus, our no-go theorem says that there are equal numbers of 
species of left-handed particles with one set of quantum numbers and with the 
opposite set. 

If we have a chiral charge Ochiral, we  can consider the dispersion relation for those 
fermions with, say, Ochiral = --1. This would correspond to left-handed particles and 
antiparticles of the r ight-handed particles of Ochi~al = 1. Since this dispersion relation 
contains only left-handed particles, this is against our no-go theorem. We can 
(somewhat imprecisely but still correctly) restate our no-go theorem: there are no 
quant i zed  conserved chiral charges on a lattice. So we cannot  introduce chirally 

coupled (weak)  gauge fields. 
(f) The ingredients of our proof  are mainly topological** in character. In fact 

we have two topological arguments:  
(i) Intuitive topological formulation. This proof  will be relegated to the 

subsequent paper  [12]. 
(ii) Algebraic topology. The argument  considers mappings from closed surfaces 

homeopmorph ic  to the surface $2 of a sphere imbedded in the Brillouin zone into the 
space CP N-1. The space CP N-1 consists of rays of states superposed from the N 

fundamental  fermion components .  These mappings are classified into homotopy  
classes making up the group zr2(CpN-1), which is isomorphic to the additive group of 
integers Z. We shall show that the classes corresponding to mappings from small $2 
spheres surrounding each degeneracy point in momen tum space, which represents 
one species of Weyl particle, e.g. re, v ,  or v~ etc. are ±1, depending on the 
handedness of the neutrinos in question. Then it is shown that the sum of the classes 
must be zero, i.e. the unit e lement  of zr2(CP/~ 1). Our  no-go theorem follows from 

this sum rule. 

* In refs. [4-6] chiral charge on a lattice is considered. 
** A good textbook on topology is ref. [7] and for an excellent review of homotopy theory see ref. [8]. 
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Both arguments  (i) and (ii) are concerned with the topology in momen tum space. It 

is crucial that the space of  momen ta  i.e. the Brillouin zone, m a k e s  up a torus 

S1 × S1 × S1.  

This periodicity is the important way  in which the lattice comes into the proof. 

(g) Sect. 2 is devoted to defining the generic case of the hamiltonian. In sect. 3 we 
show how the Weyl particle comes out from the degeneracy point of the dispersion 
law in the continuum limit. Then, in sect. 4, we depict a strategy for the proof of the 

no-go theorem. Sects. 5 to 10 are devoted to giving a proof  according to this strategy. 
Finally, in sect. 11, we draw the conclusions of this paper.  

2. Gener i c  case 

Let us consider dispersion relations which look like e.g. fig. 1 [eq. (1.1)] given by 

the eigenvalue equation 

H ( p ) t ~ ( p )  = o~i (p)~(p) ,  (i = 1 . . . . .  N ) .  (2.1) 

We are interested in the types of dispersion relations that may arise f rom a generic set 
of hamiltonians. In fact, we do not need all such propert ies  for our no-go theorem to 

work, but only assume the following: 
(i) For almost all values of p there are N non-degenerate  oJi (p) which are ordered: 

,oi(p) > ~o2(p) > -  • • > o~N(p) • 

(ii) But at several separate points Pde~, only a couple of levels are degenerate,  e.g. 

toi(pcleg)  : tOi+l(pcleg)  . 

Note that the two-level degeneracy is generic but the degeneracy of three or more is 
not. The reason is as follows. Consider the case of three-level degeneracy. The 
hamiltonian which is now a 3 × 3 matrix has the general form 

8 
H(3)(P) = r, c(i3~(p)Ai +d{3)(P) 1 , 

i--I 

where A~ are Ge l l -Mann ' s  SU(3) matrices. For a three-level degeneracy the eight 
coefficients cl 3) should satisfy the eight equations c~3)(p)=0 at p =Pd~g, but, in 

reality, the parameters  to be determined are just three p. Thus these conditions are 
overdeterminant .  On the other hand, in the case of two-level degeneracy we may 
have the 2 × 2 matrix hamiltonian 

3 
H{2)(P) = Z o ' ~ c i ( p ) + d ( p ) l .  

The three parameters  ci(p) should satisfy ci(p) : 0. These are just three equations 
for three unknowns p, fixing the degenerate  m omen tum Pdeg. 

The above two propert ies  (i) and (ii) can find phenomenological  support,  provided 
that the lattice theory is to be interpreted with a " renormal iza t ion"  (or, rather,  a 
redefinition) of the momenta ,  as will be explained in sect. 3. 
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Actually we do not fully need assumptions (i) and (ii); but to be able to formulate a 
theorem about Weyl fermions, we must assume that the low energy physics is 
described by particles with the same types of degeneracy as the Weyl equation has. 
That  is, we need to assume that (by definition so to speak) each Weyl fermion 
represents two levels, being degenerate at one point but separate in a neighbourhood 
(in momentum space). 

Then we can complete the proof given below by slightly modifying the hamiltonian 
into a generic one. It should not be too difficult to see that such a slight modification 
of the hamiltonian, and thus of the dispersion law, can be made without altering the 
number and handedness of the species of Weyl particles. So non-generic cases may 
be brought back to generic ones. 

If we want a stable vacuum that is also in agreement with experiment, we should 
put O ) i ( P d e g )  = 0. (However, there is a possibility of having an unstable vacuum and 
leaving ~o~(pd~g)# 0.) The following condition is required from phenomenology for 
getting a neutrino-like relativistically invariant dispersion relation in the continuum 
limit p20 = p2: 

(iii) Zero energies in dispersion relations to i (p )=0  are always achieved at 
degeneracy points Pd~g. It should be mentioned that this is not a generic principle. 

3. Weyl particle in the continuum limit 

We may still have to consider N-component  ~b's but for the behaviour near the 
degeneracy point it is the two linear combinations of field tPi and 0i+1 that are of 
interest. We can therefore restrict ourselves to study a two-component  case here. 
The eigenvalue equation near the degeneracy point Pdeg is given by 

H ( 2 ) ( p ) u  (i)(p) = og i (p )u( i ) (p )  , 

(3.1) 
H~2)(p )u ~i+ l)(p ) = wi+ l (p  )u~i+ l)(p ) , 

with two component  u ~) and u ~÷l). The 2 x 2 matrix H~:)(p)  can be expanded in a 

Taylor series around Pdeg, 

H(2)(p  ) = WO~g(pdeg) + (p  -- Pdeg)kOra Vka 4- ( p  - - P d e g ) a  4- O((p - -  p d e g )  2) . 

Here  the constants a and V k depend on the degeneracy point. Thus the eigenvalue 
equation (3.1) becomes in the lowest order of the expansion 

( P - - P d e g ) k O ' ~ ' W ~ u ( p ) = { O J ( p ) - - O g d e g ( P d e g ) - - ( P - - P d e g ) a } u ( p )  . (3.2) 

We may define a new coordinate system the "practical momentum"  (Wpr, Ppr) by 

O)pr : w(p) - O ) d e g ( P d e g )  , 
(3.3) 

ppr = P - Pang. 
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We may call the original p the " fundamenta l  momen tum" .  On the introduction of a 

new coordinate (Po, P)  by 

Po = to - ( . D p r  --Ppra, 
(3.4) 

P, = pprk V~,  

the equation of motion (3.1) becomes 

crPu (p) = Pou (p) , (3.5) 

for small P0 and P. Then we get the usual relativistic neutrino-like dispersion relation 
P~0 = pZ in the long-wavelength limit. It should be stressed that each degeneracy 
point represents one species (type) of neutrino. 

Now we have made a " renormal iza t ion"  of momenta  by eq. (3.3) to get eq. (3.5). 
This means that the m o m e n t u m  concept ppr used by physicists, who may not care for 
the lattice theory, deviates by an additive constant Pdeg from the one that is obtained 
by the Fourier t ransform of x on the lattice. In fact, we should subtract the 
m o m e n t u m  Pd~g in (3.3). If wi(Pdeg) # 0 (this is the generic situation) we should also 
" renormal ize"  the energy of a Weyl particle by the prescription in eq. (3.3). 

Our  philosophy corresponds to the assumption that the Dirac particles in nature 
are built up f rom Weyl components  with different momentum.  So the Higgs-like 
mechanism, to make  mass terms, would have to break the conservation of the 
fundamental  m o m e n t u m  p and conserve p -Po~g. 

The spin of the field u (p) is to be determined.  Eq. (3.5) for u(p) is invariant under 
rotations generated by J = r × P + ½or with the definition r = iO/OP since [J, ~rP] = 0. 

• 1 The spin of u is ~cr. The state with P0 > 0 (upper cone) has ¢rp > 0 which means + 1 
helicity in the (P0, P)  coordinate system. 

To end this section we investigate the relations of the coordinate systems between 

(P0, P) and (O~pr, Ppr). Let us take a convention that coordinate (Wpr, Ppr) is right- 
handed. In the p-coordinate system we take a basis vector (ex, e2, e3) with el  

corresponding to (Px, Py, P:) = (1, 0, 0), e2 to (Px, Py, Pz) = (0, 1, 0), and so on. Thus 

e l  ~ Ppr = V -1 

e 2  ~ p p r  = V 1 

and so on. These are basis vectors for the Ppr coordinate system. Now we compute  the 
handedness of the p coordinate system, that is, given by 

e3" (e l  × ea) = det ((el)ppr, (e2)ppr, (e3)p~r) 

= det ( V - l ) .  (3.7) 
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Here  the external product × is defined in the usual way in Ppr space and the subscript 
in (ea)vpr denotes the el vector in Ppr space, (3.6). The sign of det V in (3.7) indicates 
the handedness of the P coordinate system: if det V > 0 (<0) it is right (left) handed. 

4. Strategy of the proof 

The eigenvalue equation 

m ( p ) [ o . ) i ( p )  ) = (.oi(p)[o.)i(p)) , (i = 1 . . . . .  N ) ,  (4.1) 

determines a ray in an N-dimensional  complex space for each value of the momen- 
tum p except for the cases toi(p) = tOi+l(p) or toi(p) = tOi-l(p). Thus p determines a 
point in the complex projective space CP N-1. In the generic case the ith and (i + 1)th 
levels are degenerate at points in the Brillouin zone space. The crucial property of 
]toi(p)) for our proof is periodicity. The idea of the proof is the following: 

(i) Draw an infinitesimal $2 sphere around each degeneracy point (sect. 5) and 
consider maps determined by I~(p)) from the $2 spheres into CP N 1 (sect. 6). 
Calculate 7rz(CP N 1) and show that these maps correspond to the elements +1 of Z 
which depend on the handedness of the particles corresponding to the degeneracy 
points in question (sect. 7). (We use the notation that S~ stands for a topological space 
homeomorphic  to the sphere in an n + 1 dimensional euclidean space.) 

(if) Consider the map determined by Io~(p)) from the whole surface of the 
Brillouin zone box homeomorphic  to an $2 sphere into CP N-1 (sect. 8) and show that 
it belongs to the unit element in 7r2(CP N 1) (sect. 9). 

(iii) Prove that the class of map of (if) is the sum of the classes of eigenray map from 
the small $2 spheres mentioned under point (i). 

(iv) The consistency of the two expressions for the element 7r2(CP N-l) requires 
that 

Nr(i, i + l ) - N r ( i - 1 ,  i )=  Ne(i, i + l ) - N e ( i - 1 ,  i) (4.2) 

(sect. 10), where, e.g. Nr(i, j) denotes the number of right-handed degeneracy points 
between levels i and j. If i denotes the lowest energy level above the Fermi (or Dirac) 
sea and i + 1 the highest level in the sea, the number of right-handed species of Weyl 
particles thus equals Nr(i, i + 1). 

For points (i) and (if) we will compute explicitly the integers in Z isomorphic 
to "rr2(CP N 1) by making use of the following explicit isomorphism o f  "h-2(fP N-l) 

to Z [7]: 

o A 
¢r2(cpN_l) < i, 7r2(S2N-1, $1) , ¢r1($1) , Z .  (4.3) 

The homeomorphisms j . ,  a and A are naturally defined and we shall give the 
definitions below (sect. 5). In fact, they turn out to be isomorphisms. 
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5. ~2(CP N-x) for the degeneracy point 

Consider the infinitesimal $2 sphere around a" degeneracy point in the Brillouin 
zone space. The mapping 

f:  S2-* CP N-1 (5.1) 

determines the homotopy class [f], an element in ~r2(CpN-1). The function f is 
determined by the given H and the / th  level. That  is, for 

p • S 2 ,  
(5.2) 

$2 = {pllpl = e (infinitesimal)}, 

f is given by 

f ( p )  = { Z l c o i ( p ) ) l Z  • C\{0}}. (5.3) 

Now there is an isomorphism between zrz(CP N-a) and the relative homotopy group 
~rz(SzN-~, Sx) [7]. The elements of the latter are homotopy classes of functions of the 
type 

g: E2, Sl  -~ $ 2 N - 1 , 5 1  , (5.4) 

w h e r e  E2 is the disk 

E2 = {x • REIx 2 ~< 1}, 

and the circle Sx appearing on the left-hand side of the arrow in (5.4) is the 
circumference of E2, i.e. 

$1 = {x • R21x 2 = 1}.  

S2~v-a is the space of complex N-tuples 

S2N-1 = {U • cN Ilul = = 1}, 

and Sl appearing on the right-hand side of (5.4) is a subset of proportional vectors 

Sl = {eiSuo • C N [6 • R}, 

where Uo is a fixed unit norm in the complex N-tuple, i.e. 

Uo • 82r¢- 1 • 

The isomorphism between ~rE(CP N-~) and ~r2(SzN-1, $1) is induced by the relation 

f = ~ro g .  (5 .5 )  

Here  zr is the projection 

• r: $2N-1 ~ CP N-1 , 
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i.e. ~r assigns ray in CP/~-1 to which that e lement  belongs to an element  in S2N-> The 
mapping (5.5) from g into f induces a mapping 

] * :  "/ ' / '2(52N-1, 51)  -'~ " /7"2(cpN-1)  , (5.6) 

which is defined by 

j , ( [g])  = I f ] =  [Tro g ] .  (5.7) 

In (5.5) it is understood that the infinitesimal $2 sphere is identified with the manifold 
which is obtained f rom E2 in such a way that all the points on the boundary $1 --- 0E2 
are identified into one point, e.g. the south pole S. Thus we have a one to one 
correspondence between $2/{S} and the interior IE2 of E2 

S is the point with 

~ = { x  ~Rl lx l=<  1}. 

1 
- P z  = - 1 ,  Px = Py = 0 .  (5.8) 
E 

The point on the 52 sphere is expressed in spherical coordinates (e, 0, &), with the 
restriction 0 ~< 0 ~< 7r, 0 ~< 0 ~< 2zr, by 

Px = e sin 8 cos ~b, 

Py = e sin 0 sin &, 

Pz = e cos 0. 

(5.9) 

This is unique except for the north pole N (0 = 0) and the south pole S (O = zr). In the 
coordinate system (0, 4~) the cartesian coordinate (xl, Xe) or E2 are expressed by 

0 0 
Xl = - - cos  ~b, x2 = - - s in  &. (5.10) 

77" 77" 

This representat ion is unique except for the centre 0 = O. 
The above stated identification is 

N-pole of $2 ~ centre of E2 ,  

S-pole of $2 ~ whole boundary  of E2 • 

Note that the north-pole and the centre of E2 have the same non-uniqueness in 
coordinates. Thus, except for the correspondence of the south pole to the whole 
boundary $1 = 0E2, there is a homeomorph i sm between $2 and E2. 
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6. 7e2(S2~-1, Sl) 

We now construct an explicit form of g corresponding to f. Let us choose our basis 

in the space CN so that H(p) becomes diagonal at p = P&g and expand H(p) around 

p = p&g in a Taylor series: 

i 

bi. 0 

+(P-Pdeg) . 

0 ‘bN 

+ o((p -pdepj2) * 

0 

i 

0 

u 

i+l 

0 

+ (p - Pdeg) 

i 

i+l 

'0 

0 

0 

0 

0 

* 

* 

0. 

i 

i+l 

Note that the second term is important to get the eigenvector in lowest order in 

perturbation theory. We thus may have 

UPU = lplu. (6.3) 

That is, we have the positive eigenvalue for the upper level i. 

(6.2) 

and 

Here 
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We define the function g by 

g = Io,,(p)~ (6.4) 

where p is a point on an infinitesimal sphere $2 around Pde~. We choose to put the 
following restrictions on u: 

(i) Normalization lu] = 1. This is necessary for [wi(p)) to lie on the sphere $2N-1. 
(ii) Phase convention Arg u~ = 0, i.e. 

R e u l ~ > 0 ,  I m U l = 0 .  

Under  restrictions (i) and (ii), eq. (6.3) has a unique solution. A little calculation leads 
us to the solution 

or in spherical coordinates 

Px - iPr  ) 

,/21pI(IPl =pz)  
u = x/½(1,pz/IpJ) ' 

[e  -i~ sin ½0 
(6.6) u = 1 } 

\ c o s  ~0 " 

It should be noticed that this u is not unique at 0--7r  (south pole). This phase 
ambiguity is due to our phase conventions which do not fix the phase for Ul = 0. But 
since the S-pole corresponds to $1 = OE2 there is no problem. We can make g 
continuous and thus choose g on $1 so that its value is the limiting one from an inside 

point of E2. 

We thus have constructed a representative g for the class j , ( [ / ] )  of 'rr2(S2N_l, 51) 
in the form 

g(O, 4,) = 

0 

e- '* sin ½0 

cos ½0 

0 

i 
(6.7) 

i + 1  " 

7. Helicity for the degeneracy point 

We are now equipped to find the image of [g] via the boundary mapping 0 in the 
explicit isomorphism (4.3) [7]. Since the map O is induced by the restriction to the 
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boundary $1 = 0E2, i.e. 0 = ¢r, the representative of a([g]) ~ ¢r~(S~) is simply given by 

g(¢)lsl = 
i 

(7.1) 
i + 1  

on putting 0 = zr in g of eq. (6.7). Here  

g(¢)ls, e $1 c $2t~-1 • 

The S~cS2n_I  consists of all phase possibilities for [toi(p)) at the south-pole. 
Obviously the map g[sl is a homeomorphism from $1 c E2 on to S~ c $2N-1. The 
integer assigned to the class [g[sl]e ~'~(Sa) by the isomorphism 0 mentioned in 
eq. (4.3) is by definition nothing but the winding number. The form (7.1) indicates 
that the winding number is either +1 or - 1 ,  i.e. 

A o 0 o j , l ( [ f ] ) =  + 1 .  

When det V7 > 0 at a degeneracy point, the coordinate system P is right-handed. 
Then this integer is - 1 .  This means that there are left-handed Weyl fermions 
described by the states in the ith (upper) level. If det V7 < 0 the coordinate system P 
is right-handed. Thus, one should correct the form of g(~r, ¢)  by changing Px to -Px  
and we obtain 

g(¢)lsl  = 
i 

i + 1  " 

The integer assigned to this is +1. 
So far we have considered the case of the positive eigenvalue of the upper level i 

given by eq. (6.3). Replacing this by 

~r/'u = -IpLu,  

for the lower level i + 1 has the same effect as switching P to - P  in eq. (6.3). This is 
also equivalent to changing the coordinate system from right- to left-handed, and has 
the same effect as the sign change of det ( V~ ). Thus, we conclude the following list of 
¢r2 (CP N-l) integer elements. These correspond to the infinitesimal $2 spheres 
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Here 

51 

Fig. 2. The box on this figure illustrates the Brillouin zone. Four parallel edges are drawn heavily. They 
are mapped into a single curve in C P  N-x  and the curve is indeed a closed one. 

around the degeneracy points. These spheres are oriented by a r ight-handed 
coordinate system of P for the eigenray of the ith level. 

degeneracy of level i with i + 1 

positive helicity of i } - 1 e lement  

and negative one of i + 1 (7.2) 

negative one of i 
+ 1 

J and positive one of i + 1 
m 

8. ~2(CP N-~) for Brillouin zone suriace 

We shall show that the map  fBs f rom the surface of the Brillouin zone $2 (box 
surface) (fig. 2) into CP N-l ,  which is determined f rom the eigenrays [~oi(p)), belongs 
to the homotopy  class corresponding to zero by the isomorphism A o 3 o]~ 1 of 
zr2(CP s - l )  with Z. The crucial proper ty  of this map  belonging to a class correspond- 

ing to zero is the p er i od i c i t y  of Itoi(p)). The ith eigenrays on each of the six faces in 
fig. 2 are identical to those on the opposite faces. On the three sets of four parallel 
edges [to~(p)) are the same. Also at the eight corners [to~(p)) are the same. 

The strategy of the proof  is the following: 
(i) A continuous deformat ion into )~d Of the map fBs allows us to replace it by one 

that maps all the 12 edges and the 8 corners into a single point. 
(ii) Using this deformed map fd, it is shown to be a sum of six terms (elements) 

which split up into 3 pairs. 
(iii) The sum of the terms in each pair is shown to be zero. Thus the sum of all 6 

terms (elements) is zero. 
In order  to per form the deformat ion ment ioned in (i), let us first consider how the 

Brillouin zone surface $2 is imbedded in C P  N - 1  by the map  fBs determined from 
[wi(p)). Periodicity implies that each of the six faces of the Brillouin zone surface is 
mapped  byfBs into the same piece of surface in CP N-1 as the opposite faces. Further,  
the three sets of four parallel edges of the Brillouin zone cube are mapped  byfBs into 
only one closed curve each, depicted in fig. 3. The resulting three curves in CP N-1 are 
closed since periodicity guarantees that all 8 corners of the cube are mapped  by/~Bs 
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Fig. 3. The images of the three sets of four parallel edges. 

into a single point in CP N-1. It would be natural to use this point as a base point, i.e. 
we restrict our attention to maps mapping the south-pole of $2 into this point. 

Since CP N-1 is simply connected, we are guaranteed the existence of a way of 
deforming each of the three closed curves into the single point which is the image of 
the corners by the map fBs. The reader must convince himself that this deformation 
of fBs restricted to the edges can be extended to a deformation of fBs itself. By 
imagining the image of fBs as a rubber sheet in C P  N - l ,  this is intuitively possible 
without spoiling the periodicity inherited by fBs- Thus, we have seen that fBs is 
homotopic to a deformed mapping fd which maps all the edges into a single point (the 
base point). 

9. The unit e lement  of w2(CP N-t) 

The next step of the proof, (ii), is trivial if we remember  the definition of the group 
composition of~r2. Let us split the surface $2 of the Brillouin zone cube into two parts 
as is shown in fig. 4a: the first one is just a single face and second one consists of all five 
other  faces. Restriction of the previously constructed deformed map fd to these two 
parts defines the two maps Ta and fs. Since "rr2(CP N - l )  is abelian we denote the group 
composition law additively and thus we have 

Eft] = ELl + (9. I) 

The first map ?a, corresponding to the first part of the $2 cube, is a mapping into 
C P  N-1  from a bag made out of one face by identifying all pairs of edges as is 
illustrated in fig. 5, i.e. 

fa: $2 surface of the bag in fig. 5 -~ CP N-1 . 

L . . . . . .  a 

(a) (b) 

Fig. 4. The split of the surface of the Brillouin zone into a single face (a) and all five other faces illustrated 
in (b). Here the cross denotes the point into which surface a is contracted. 
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Fig. 5. The single face is homeomorphic to a bag. The cross in the bag denotes the point with which all 
pairs of edges are identified. 

T h e  second one  is 

f5:S2 surface in fig. 4b-~ CP N-1 . 

Next  we split fs  into fb and  ~4, 

rA]=rf~l+[A], 
and so on. W e  here  again split the  second pa r t  of  fig. 4b into third and four th  par ts  
dep ic ted  in fig. 6. Finally,  we have  a decompos i t i on  

[f~] = ILl + [i,] + [~b]+ [P~]+ [L]+ [i0], 

where  each  of the  six t e rms  cor responds  to a face. W e  deno te  by/~a and fa the 

mapp ings  co r respond ing  to each  face a and  its ant i face ~, as shown in fig. 7. 
S tep  (iii). On  the surfaces  a and  ~ the or ien ta t ions  are  oppos i te  due  to periodici ty.  

T h e r e f o r e  f ,  and fa are  re la ted  to each  o the r  by  a reflection,  i.e. 

f,=L.~, 
where  

~: S2--~ S2. 

$2 is a face and  s c is a ref lect ion in a big circle on $2: 

i f , ]  = - [ A ]  

Similar  re la t ions  hold for  b and b, c and  ~. So f rom eq. (9.2) 

[f~]=o. 
Since [fd] is, of course ,  the s ame  class as [fBs], we conclude 

[ p ~ ] : o .  

(9.3) 

(9.4) 

Fig. 6. The split of the surface in fig. 4b into a single face b and all four other faces. 
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~ [  x~ ,  i I~'S"/~ ~ ~. ;'L~/,. ,, . . . . . . .  (I 

Q 

Fig. 7. Illustration of opposite faces. 
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10. Result 

The surface of the Brillouin zone $2 sphere considered in sect. 4 includes the 
infinitesimal S2's around the degeneracy points. We deform all infinitesimal $2 
spheres to have a common base point. By the group composition law of ~r2 we 
decompose 

[fas] = Y. [~1 (10.1) 
s 

where f / deno te s  the mapping/~: infinitesimal $2 -* CP N-1 and where ] runs over all 
infinitesimal $2 spheres. Since we have proved that the left-hand side of (10.1) is zero 
[eq. (9.4)], eq. (10.1) gives 

Z[D.]=0. 
# 

That is to say, from eq. (7.2) the sum of the terms +1 or - 1  corresponding to the 
degeneracy points for the / th  and (i + 1)th or (i - 1)th levels are zero. Thus we obtain 

eq. (4.2)] 

N, ( i ,  i + 1) - N r ( i  - 1, i) = Ne ( i ,  i + 1) - N e ( i  - 1, i) . (4.2) 

Here,  e.g., Nr( i ,  i + 1) is the number  of degeneracy points of the levels i and i + 1 for 
which the upper ith has positive helicity. 

We want, in fact, to show that 

N~(i  - 1, i) = N e ( i  - 1, i) (10.2) 

by induction using eq. (4.2). Now for the highest level i = 1, we have trivially 

Nr(0, 1) = Ne(O,  1) = 0 ,  

because there is simply no level number i = 0. Assuming that the eq. (10.2) is true for 
i - 1, we find from eq. (4.2) that 

Nr( i ,  i + 1) = Ne( i ,  i + 1). (10.3) 

Especially, this equation is true for the number of i for which level i is unfilled while 
level i + 1 is filled. 

Since in this case each degeneracy point between ith and (i + 1)th levels represents 
one species of Weyl particle (neutrinos), eq. (10.3) states our no-go theorem: there 
appear  equal numbers of species of left- and right-handed Weyl particles. 



38 H.B. Nielsen, M. Ninomiya / Absence o f  neutrinos on a lattice 

11. Discussions 

(a) It is easy to generalize our theorem to the case of many conserved charges Q 
(lepton number) associated with the fermion fields. Here we assumed that these Q's  
are represented by bilinear form in 4/ 

O = Y / o ( X ) ,  
x 

where 

]o(X) = ~ t~(x)Q(x - y)4/(y) • 
Y 

For each combination of charges we have a separate class of fermion fields. There can 

be no transition from one such class to another, and to the approximation of a linear 

equation of motion there is no connection between these classes at all. Each class is 
therefore to be considered as a separate system of fermions. We can thus apply our 

no-go theorem to each class. This generalization is very worrisome. In fact, it 

threatens any hope of putting weak interactions on a lattice as we already discussed in 
sect. l(d). 

(b) In fact, were it not for the spontaneously broken gauge symmetries of the weak 

interaction, there would be no mass terms for any of the known fermions in the 

standard Weinberg-Salam model. It is precisely because of the different quantum 

numbers for different handed Weyl particles that mass terms are forbidden. That is, 
unless there are mass terms, no pair of handed Weyl particles can be combined into 

an ordinary Dirac four-component  massive fermion. In discussing our no-go 

theorem we talked about the number of species of Weyl particles, i.e. neutrino-like 

particles. However,  in nature many fermions--perhaps all, even neutr inos--may 

have masses. Massive fermions can be described as Weyl particles in the following 
two ways: 

(i) one handed particle pairs up with the same handed one to become a Majorana 
fermion, or 

(ii) one handed particle pairs up with the opposite handed one to become a Dirac 
particle. 

These can precisely be done according to our no-go theorem. 

In the case of (ii) there must be one right-handed and one left-handed Weyl 
particle and a mass term in the hamiltonian in order to cause a transition from one to 
the other. The alternative statement of our no-go theorem is that there are no 
quantized chiral charges due to the possible mass terms. For a low energy observer it 
is natural to redefine the momentum by the prescription (3.3). The subtraction 

constants tod.g and Pdeg in (3.3) may be different for different Weyl particles in one 
pair. The conservation of the "fundamental"  momentum p (i.e. the momentum 

before subtraction of Pdeg) may exclude a mass term. We must say here that we do not 
know in detail how a necessary mass term comes about via the spontaneous 
breakdown of the "fundamental"  momentum and this mass problem is an open 
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question. Also, unless we know the mass term, the chiral charge is ill-defined. 
However ,  we do not know if the appropriate  spontaneous breakdown of the 
" fundamenta l "  m o m e n t u m  is unnatural,  but it should at least be possible. 

(c) It is of interest to note that our theorem prevents any problem with the Adler, 

Bel l -Jackiw anomaly [10] in a trivial manneri there simply are no anomalies since 
they are cancelled between oppositely handed particles. But, of course, it should be 
r emembered  that in the correct theory of weak interactions anomaly-f ree  conditions 
are not satisfied in such a trivial manner .  

(d) There  may be a possibility of evading our no-go theorem by abandoning the 
helping assumptions described in sect. l(c) in the following ways: 

(i) Taking Q to be unquantized may not be a proper  way, since Q then does 
not go into a compact  group generating a closed subgroup. One would thus have 
to claim that the guage group of the standard model  is a low energy approxim- 
ation only. It would be a serious complication contrary to the suggestion from 
phenomenology.  

(ii) Giving up locality of charge. This will be the subject of our forthcoming paper  
[12] as was ment ioned at the end of sect. 1 (d). In that work we still need continuity of 
the fermion dispersion relation and thus cannot give up locality for the free fermion 
hamiltonian. If we did that we would allow the Drell, Weinstein and Yankielowicz 
model  [4] as a counter  example to our no-go theorem. Tom Banks has pointed out to 
Foerster  how our theorem could be circumvented if the locality of fermion dispersion 
relation is not required. Then one can let the light velocity of one or more neutrinos go 
to infinity so that the light-cone steepens and effectively disappears. 

(e) We have throughout  this article discussed the Kogut-Susskind lattice. Can our 
results be taken over  to the Wilson lattice [11]? Yes, if we understand it as a theory 
with a spatial lattice and discrete imaginary time. In fact, we can construct an 
opera tor  e - n  which gives the development  by one lattice unit along the imaginary 
time. Here  H can be considered as the hamiltonian. In our dicussion of the 
Kogut-Susskind lattice we only used the existence of such a hamiltonian. 

Had  we, however,  wanted a lattice theory with a discrete real t ime we would 
instead have constructed an opera tor  e -'H. Thus H is only unique modulo 2~r, and so 
energy would be defined modulos 2zr. The concept that one energy is lower than 
another  then loses its meaning. This would make  the question of how to fill a Dirac 
sea more  delicate and may complicate the argument.  However ,  this case of discrete 
real t ime seems not to be popular  and we shall not go into it further. 

(f) In concluding the paper  we would like to mention the following point which 
will be investigated in our succeeding paper  [12]: 

In the present  article we have considered the case where the fermion field ~b(x) is 
complex. A real field formulation for ~b(x) may open the possibility of describing a 
larger class of physical systems. In fact there exist lattice models  with only one 
two-component  fermion in the real field formulation, which cannot be described as a 
complex field. We shall illustrate this counter  example to our no-go theorem.  But, if 
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we have a conserved non-zero charge, the charged fermions can be formulated in 
terms of complex fields. 

It is a pleasure to thank very strongly D. Foerster, who participated in our early 
stage of this work, but was on vacation during a large part of the production time of 
the article. We are grateful for discussions between D. Foerster and T. Banks on the 
infinite velocity of Weyl particles. M. Peskin played an important role in stimulating 
this work and we benefitted from several helpful discussions with him. We thank 
K. Johnson for encouragement. For discussions on topology we are grateful to 
B. Duurhus and B. Felsager. We acknowledge helpful discussions with S. Chadha in 
connection with the generic degeneracy. We also thank P. Scharbach for useful 
discussions at a late stage. On of us (H.B.N.) acknowledges discussions with 
H. Hellsten ( at an early stage) and J. Greensite (at a late stage). One of us (M.N.) 
wants to acknowledge the extremely kind hospitality he has received during his stay 
at the Niels Bohr Institute and discussions with all members of high energy theory 
group at Rutherford and Appleton Laboratories. We are grateful to P. Scharbach for 
his extremely hard work on correcting our terrible English. 

References 

[1] J. Kogut and L. Susskind, Phys. Rev. D l l  (1975) 395 
[2] L. Susskind, Phys. Rev. D16 (1977) 3031 
[3] K.G. Wilson, Erice lecture notes (1975). 

[3a] L.H. Karsten and J. Smit, Nucl. Phys. B183 (1981) 103 
[4] S.D. Drell, M. Weinstein and S. Yankielowicz, Phys. Rev. D14 (1976) 487 

[4a] T. Banks and A. Casher, Nucl. Phys. B169 (1980) 103 
[5] V. Baluni and J.F. Willemsen, Phys. Rev. D13 (1976) 3342 
[6] M. Peskin, Corneli University preprints CLNS-395, -396 (1976) unpublished 
[7] N. Steenrod, The topology of fibre bundles (Princeton University Press) 
[8] B. Felsager, Homotopy theory, in Lecture on topological invariants in the theory of classical fields. 

Niels Bohr Institute report (1977) unpublished 
[9] H.B. Nielsen, Dual strings, Catastrophe theory programme, in Fundamentals of quark models, 

p. 528, Proc. 17th Scottish Universities Summer School in Physics 1976, ed. I.M. Barbour and A.T. 
Davies 

[10] S. Adler, Phys. Rev. 177 (1969) 2426; 
J.S. Bell and R. Jackiw, Nuovo Cim. 60A (1969) 47 

[11] K.G. Wilson, Phys. Rev. D10 (1974) 2445 
[12] H.B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice II, Niels Bohr Inst. preprint, 

NBI-HE-81-1 (1980) 


