
Volume 105B, number 2,3 PHYSICS LETTERS 1 October 1981 

A NO-GO THEOREM FOR REGULARIZING CHIRAL FERMIONS 

H.B. NIELSEN 
Niels Bohr Institute and Norclita, DK 2100 Copenhagen O, Denmark 

and 

M. NINOMIYA 
Rutherford Laboratory, Chilton, Didcot, Oxon 0 X l l  OQX, England 

Received 30 June 1981 

We present a no-go theorem for regularizing chiral fermions in a general and abstract form, together with a review of 
our lattice no-go theorem for chiral fermions. 

I .  Lattice regularization [1,2] has been introduced 
to ensure the calculability of  the long-distance behav- 
iour of  gauge theory and provides a laboratory [3] for 
the investigation of  nonperturbative effects, e.g. con- 
finement. To be able to investigate QCD we should be 
able to incorporate fermions on a lattice while main- 
taining symmetry, one of  the crucial properties of  the 
strong interaction. 

It is, however, known that in the four-dimensional 
na/ve lattice Dirac fermion model there appear 15 un- 
wanted species in the long-wavelength regime (species 
doubling) [4,5], which can be avoided in some way or 
other if chiral invariance is ignored. A similar problem 
arises when we consider chiral (Weyl) fermions in order 
to construct chirally invariant QCD or the Weinberg- 
Salam weak-interaction model on a lattice. That is, in 
four-dimenions, the naive introduction of, for example, 
a left-handed Weyl field ~L with a chiral charge, e.g. 
X = - 1 ,  on a lattice leads to the appearance of  four 
right-handed species together with four left-handed 
ones in the long-wavelength regime. If  one wants to 
avoid calamities such as nonlocality or non-discrete 
charges, one is forced to let all these fermions couple 
to a (attempted) chiral gauge field. We may refer to 
this disease as the chiral doubling problem. It is un- 
avoidable. As a trivial consequence we do not obtain 
the correct Adler-Bel l -Jackiw anomaly; instead, the 
axial U(1) current is conserved because of  the cancel- 

lation of  opposite-handed species. 
Now the question is whether this disease - Chiral 

doubling (and consequently species doubling) - can 
be evaded through a modification of  the naive lattice 
action. Our answer is no, under some assumptions. 
We in fact prove the following no-go theorem for a 
general class of  lattice chiral fermion theories [6,7] : 
it is a necessary consequence of  the topological char- 
acter of  lattice theory that, when one handed Weyl 
fermion, e.g. tkL, is put on the lattice, an equal num- 
ber of  right- and left-handed Weyl fermions appears in 
the continuum limit, for a given charge combination 
of  a compact group. 

This disease is not peculiar to lattice theory, but 
some disease appears universally in all regularization 
schemes, for instance dimensional regularization. It is 
the purpose of the present article to abstract the fol- 
lowing general no-go theorem for the regularization of  
chiral fermions without specifying particular schemes: 
there does not exist a regularized chiral fermion theo- 
ry that has (1) invariance under global gauge group, 
(2) different number of  right- and left-handed species 
for given charge combinations, (3) (correct) Adler -  
Bell-Jackiw anomaly, and (4) an action billinear in 
the Weyl field. 

It should be noticed that in our lattice no-go theo- 
rem the assumption (3) of  the general no-go theorem, 
appearance of  the (proper) anomalies, is not needed. 
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So we see that our lattice and general no-go theorems 
are complementary to each other and none of  them is 
contained completely in the other one. 

The present paper is organized as follows. We shall 
start with a 1 + 1 dimensional naive chiral fermion 
model in order to illustrate the chiral doubling prob- 
lem. We shall first review our lattice no-go theorem 
for the construction of  chirally invariant QCD and 
Weinberg-Salam models on the lattice. It is instruc- 
tive to review briefly our proofs of  the theorem in or- 
der to give a perspective, although they have been 
given in detail in our previous papers [6,7]. We shall 
then next discuss some models, invented by Wilson 
[4], Susskind [5], Drell et al. [8] and ourselves [7], 
which violate some of  our assumptions. Finally we 
shall formulate a quite general and abstract no-go 
theorem. 

2. To indicate the point clearly, let us consider a 
simple example - the 1 + 1 dimensional * 1 naive 
chiral (Weyl) fermion theory coupled to a chiral gauge 
field A with the action 

s = f a t  dx{--i~L(X)@L(X ) 

+ ~L(X)[--i3 x +Al(X)] qJL(X)}, (1) 

and the equation of  motion 

i~L(X ) = [i3 x -- A l(X)] 6L(X),  (2) 

where ~L stands for a left-handed Weyl field express- 
ed in terms of  the two-component Dirac field by ~L 
= ~(1 -- 75)- For a parity-conserving theory one adds 
the term corresponding to qJR in (1) and repeats the 
same argument as for the ~L part to show chiral 
doubling and thus species doubling. We may assign a 
chirality X = - 1  to ~L by means of the definiton of 

+~ the chiral charge: Qs = f dx ~L L" 
Now go to the spatial lattice (and continuous time) 

by replacing 3x by a difference operation in eq. (2) to 
obtain 

i~L(X ) = ½i{exp[iAl(n)] ff(n + 1) 

- exp [ - iA l (n ) ]  ¢(n - 1)} ,. (3) 

*1 The proof of the lattice no-go theorem for general class of 
lattice action in 1 + 1 dimensions is found in ref. [7]. 

where n is integer and the lattice spacing is set equal to 
one. When we take the free part of  (3) the dispersion 
relation is given by 

w = - sin p .  (4) 

Since the momentum space forms a Brillouin zone we 
consider - r r  ~<p <~ rr and identify the points p = -rr  
and p = n. The dispersion relation (4) describes two 
excitations near p = 0 and p = rr in the long-wavelength 
regime, for which the chiral charges are both X = - 1  
by the definition of Qs- This assignment of X is, how- 
ever, apparently in contraction with the actual "helici- 
ty"  (which is, in fact velocity in 1 + 1 dimensions) of 
the particle near p = rr, when we define a group veloci- 
ty by 

v = oco/ap. (5) 

The species nearp = lr *2 has a velocity v = 1 and thus 
represents a right-moving particle, while the species 
near p = 0 represents a left-moving one. These corre- 
spond to the right- and left-handed species in 3 + 1 di- 
mensions. Note that both handed species have X = - 1 ,  
and then couple to one chiral gauge field A 1' There- 
fore Q5 defined above cannot be the conserved chiral 
charge. 

Another way of  seeing the point is to compute the 
axial Ward identity. We know that there should be an 
Adler-Bell-Jackiw anomaly [9] for the axial U(1) 

5 =  current J~ --~L(X)7/~ ~L(X) 
3 " J 5 ( x )  = - ( 4 r r ) - l e . v F " V ( x  ) . (6) 

In the lattice theory described by the action (2) we 
have 

0uJS(x) = 0 ,  (7) 

because the cancellation of  the anomaly terms takes 
place due to the chiral doubling of  left- and right- 
moving particles in qJL- This again means that the par- 
ticles described by ~k L with X = - 1 are left-moving 
near p = 0 and right-moving near p = n. 

3. We next review [6,7] our lattice no-go theorem 
by considering a general class of  lattice version of  con- 
tinuum four-dimension Weyl fermion theory, which 
contains only a left-handed field ~L coupled to the 

:~2 Momentum p of the species near p = ~r should be renormal- 
ized via Ppractical = P - ~r, in order to descr~e massless 
particles with to z = P~ar. See refs. [6,7]. 
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chiral gauge field Au(x), by the action 

S = fd4x(--i~L(X)~kL(X ) 

+ ~L(X)~[--ia -- A(x)] ~kL(X)}, (8) 

with an invariance under the transformation of  a com- 
pact group. The general class of  lattice actions, which 
will describe a would-be left-handed Weyl fermion in 
the continuum limit given by the action (8) is of  the 
form 

S = - i  f dt D ~(n)ff(n) 
n 

- f d t   (n)mn - (9) 
R,/lg 

with H a free hamiltonian * a. The gauge field is intro- 
duced via 

• r a - 1 / 2  

I(n - ra) = exp(igz=n~+ l/2 A(z) ) . (10) 

The ~b's denote N-component fermion fields and thus 
H is a N X N hermitian matrix. We have assumed (i) 
exact conservation of  the (chiral) charges associated 
with the invariance of  a compact group, e.g. chiral 
SU(3) X SU(3), chiral U(1) etc. in QCD, or chiral 
SU(2) × U(1) in the standard Weinberg-Salam model. 
The second assumption is (ii) locality of  the interac- 
tion, H(n) ~ 0 (sufficiently fast) as In I -+ oo. It should 
be noted that assumption (i) indicates that a dispersion 
relation for the free hamiltonian H, w = co(p), is as- 
signed to a certain charge combination. The second as- 
sumption (ii) insists on the continuity of  the disper- 
sion relation and thus forbids any singularity. 

Under these assumptions the topological character 
of  the Brillouin zone manifold of  momentum space 
- a torus S 1 X S 1 X S 1 - leads us to our no-go theo- 
rem in two ways as shown in some detail in our previ- 

.3 One can take a kinetic term of the form 

-i f dt ~ ~(n)T(n-m)qJ(m). 
n~m 

This gives an effective hamiltonian H/T, which produces 
non-local singularities in the dispersion relation as was 
pointed out in ref. [6]. 

ous papers [6,7]. One is by an algebraic topology ar- 
gument: a one-to-one correspondence is made between 
the helicity of  the Weyl fermion and the element of  
the homotopy group I I2(cpN-1  ). On the other hand, 
the sum of the homotopy classes is zero because of  
the periodicity of  the Brillouin zone. This means that 
there must be an equal number of  right- and left- 
handed species of  Weyl fermi0ns in theories of  the 
general class of  actions (9). Notice that both these 
handed species couple to one chiral gauge field A # .  

This proof is found in ref. [6]. The second proof given 
in ref. [7] is more intuitive and understandable even if 
one does not have any knowledge of  the mathematics 
of a topological manifold. 

One of  the consequences of  our no-go theorem is 
that, if one wants to put the Weinberg-Salam model 
on the lattice - e.g. u L and e L with Y = - 1  coupled 
to W~ via the interaction ~LTueLW~ + ~LTUVLW~ -- 
one obtains additional v R and e R with Y = - 1  and 
they couple to W~ via 9RYueRW~ + ~RTUVRW~, This 
means that the parity violating theory cannot be con- 
structed, which contradicts weak-interaction phenom- 
enology. It should be noted that the charge Y = - 1  
turns out to be assigned to both VL, e L and VR, e R 
and thus it cannot be the chiral charge. 

A~ for QCD, we add the term for the right-handed 
Weyl field fiR in (8) given by 

fd4x (X) R (X) 

--~R (X)~[--i O-- A(x)] ~R(X)} (1 1) 

and the corresponding lattice version of  (11) in (9). 
Repeating the same argument as that for the action 
(9) of  ~bL(X ) we show chiral doubling in ~R" There- 
fore in the lattice version of  chirally invariant QCD 
described by the continuum action (9) + (11) species 
doubling occurs. All species, of  course, couple to }he 
gauge field A u. It should be noted that all species are 
distinct. We stress that a conserved chiral charge does 
not exist. We thus conclude that there is no chiral in- 
variant resolution of  the species doubling problem and 
hence that it is impossible to construct chirally invari- 
ant QCD on the lattice. 

Let us now turn to models of  lattice QCD which 
violate some of  our assumptions. The Wilson [4] strat- 
egy is to put a generalized mass term in the action in 
order to prevent species doubling and thus breaks chiral 
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invariance explicitly. One can easily adjust mass param- 
eters in order to obtain the correct anomaly as was 
shown explicitly by Karsten and Smit [10]. Another 
interesting model due to Susskind [5], is to put each 
component of  the fermion field on its own series of  
sites. The discrete chiral symmetry given by 

exp(iPi)3'5 ~ survives in the low-momentum regime 
Pi ~ 0, although the continuous chiral symmetry is ab- 
sent simply because the particle and antiparticle are 
on different sites. A serious problem lies in the fact 
that the group of  this single link translation is non- 
compact, so that the (chiral) charge is not quantized. 
Although the chirally invariant theory can be con- 
structed by sacrificing locality of  the interaction, i.e. 
H in (9), as has been done by Drell et al. [8], this in- 
troduces discontinuities in the dispersion relations 
and therefore some particles carry infinite velocity ,4. 
We constructed a model [7] that contains only one 
two-component field in the continuum limit by aban- 
doning conservation of  charge, which is conserved ap- 
proximately toward the long.wavelength regime. 

4. We now come to the main point of  this article. 
It is worthwhile to formulate a quite general no-go 
theorem for regularizing chiral fermions without re- 
ferring to specific regularization methods * s  The no- 
go theorem states that it is not possible to construct 
a regularized theory of  chiral fermions that satisfies 
the following four properties: 

(1) There is invariance at least under the global 
part of  the gauge group. 

(2) The numbers of  right- and left-handed species 
of  Weyl fermions are different for a given combina- 
tion of  charges. Here by charges we mean generators 
of the global subgroup of the local gauge group. 

(3) The theory has the (correct) Adler-Bel l -Jackiw 
anomaly. We therefore exclude such models as the non- 
local ones of  Drell et al. [8]. In such a model singula- 
rities due to nonlocal interactions give rise to a non- 
zero contribution to the axial Ward identity. 

(4) The action is bilinear in the Weyl field. 

,4 The renormalization procedure of the nonlocal singulari- 
ties is argued by Rabin in ref. [ 11 ]. 

*s A similar statement for the specific methods for specific 
models as our general no-go theorem can be found in the 
literature in many places, e.g. refs. [10] and [12]. A simi- 
lar argument was given by Englert [ 13 ]. 

For simplicity think of the theory of  a Weyl fer- 
mion coupled to the abelian gauge field (or abelian 
part of  the non-abelian gauge theory). The proof of 
the no-go theorem is quite simple and goes as follows. 
Properties (1) and (4) ensure the existence of  some 
conserved quantum number, e.g. number of  Weyl fer- 
talons and the conserved Noether current given by 

J(Qi=ai)(x)= ~ ~(a)(x)3'u ~ co(x) , (12) 

with(Qi=ai) 
and 

= o .  ( 1 3 )  

Here the qJ(a) are the chiral fermions, (Qi = ai) de- 
notes the charge combination (Q1 = al ,  Q2 = a2 ..... 
Qn = an) and the sum runs over all Weyl fields qj(a) 
with charges Qi = ai. On the other hand according to 
(2) the numbers of  right- and left-handed species are 
different for at least one charge combination (Qi = ai), 
NR (Q i = ai) ~ NL (Q i = ai). One thus finds for the 
anomaly: 

OuJ(uQi =ai)(x) = [NR (Qi = ai) - NL (Qi = ai) ] 

n n 

X ! ~ ( ~  giaiFO~)t~ ~ gkak*F(k)~v),  (14) 
32~rz \ i=1 ~" l \ k = l  

where the g /denote  the coupling constants associated 
with the charges a i. The result (12) is apparently in 
contradiction with (11). Therefore the assumption of  
the existence of  the regularization satisfying (1 ) - (4 )  
cannot be maintained. 

The lattice regularization of  the chiral fermions 
considered in sections 1 -3  described by the action 
(9) satisfies the properties (1), (2) and (4) of  the gen- 
eral no-go theorem, but we did not assume (3), appear- 
ance of  the proper anomalies. Instead, we assumed lo- 
cality of  interaction. 

Finally let us sketch the familiar regularization 
schemes. The Pauli-Villars method breaks global in- 
variance [property (1)] by introducing a regulator 
mass. In dimensional regularization there are two pos- 
sibilities for construction of  75 [ 14]. One of  the defi- 
nitions (3'[172 ... T4+e]) gives a vanishing triangle dia- 
gram. The other one (3'[1727374]) breaks global in- 
variance. 

Our conclusions may be summarized as follows: ac- 
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cording to the general no-go theorem presented in this 
article, if  we assume, as our prejudice, the existence 
of  a fundamental  cutoff  (a cutoff  given by  the gods) 
in a gauge invariant regularization, we are in crisis, 
since we are forced to have mirror particles *6. Having 
mirror particles seems unnatural and one is led to ask: 
why should the right-handed component  of  the mirror 
particles not combine with the left-handed component  
of  the ordinary particles, e.g. through the bare mass 
term? The non-appearance of  mirror particles means 
that such a supposition is in contradiction with the 
series of  seemingly healthy prejudices listed as assump- 
tions for our general no-go theorem * 7. The way out  
of  the crisis might be to have a fundamental  cutoff  in 
a gauge non-invariant form. This is, however, not at- 
tractive according to Veltman *8 

We may perhaps compare the problem of  finding 
a regularizable theory of  weak interactions with the 
apparent contradictions which Einstein had to resolve 
in postulating relativity: there the position was that 
there did not  exist a theory,  consistent with experi- 
ment,  that satisfied both the principle of  relativity and 
the concept of  absolute simultaneity. Thus Einstein 
had to give up at least one presupposition, which 
seemed reasonable at that t ime. 

Now it is up to the reader to play the role of  Ein- 
stein and find out which of Our prejudices has to be 
sacrificed: do we have to give up the compactness of  
the gauge group of the Weinberg-Salam model? Or 

¢6 By mirror particles we mean fermions coupled through 
their right-handed currents. 

*7 Banks and Casher [ 15] even suspected that the theory for 
weak interactions is not renormalizable unless it contains 
mirror fermions. 

¢8 His argument [16] is that it is troublesome to have gauge 
non-invariance at high energies because it produces a huge 
photon-photon cross section, since the diagrams are high- 
ly divergent in high powers of the cutoff. 

do we have to introduce a supergravity theory in which 
the supersymmetries make regularization superfluous? 
Or do we need some completely new idea? 
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