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An intuitive topological proof is given of the no-go theorem for putting Weyl fermions in 
weak interaction on a lattice, or for constructing chiral invariant lattice QCD, which was proved by 
a homotopy theory argument in our preceding paper (Absence I). This theorem hangs on the 
existence of the charge (e.g. fermion number), and thus on the complex-field formulation and on 
locality. If we relax the assumptions for the no-go theorem, for instance the existence of the charge, 
and thus use the real-field formulation, we can construct a model that has only one two-component 
field. We can assign this model an only approximately conserved charge. 

I. Introduction 

We have shown, in our recent paper (referred to as Absence I) [1], a no-go 
theorem for putting weak interactions on a lattice, which states that there appears an 
equal number of species of left- and fight-handed Weyl particles for a general class 
of lattice fermion theories for each combination of quantum numbers (charges). 

Essentially the same theorem, but less complete (only for simple models) and less 
rigorous has been known as a trouble by Wilson [2] and Susskind [3], and recently it 
has been reformulated by Karsten and Smit [4]* in the same context as them. 

Our theorem says, for example, that if one wants to put on a lattice the 
left-handed electron neutrino r L and electron e L with weak hypercharge Y = ½ and 
the right-handed electron e a with Y--  1 according to the Weinberg-Salam model, 
there must necessarily also exist a right-handed neutrino PR and an electron e R with 

*An even stronger theorem saying that the standard SU(3) × SU(2) × U(I) model cannot be renormal- 
ized to non-perturbative accuracy unless there exist parity partners to the left coupling leptons and 
quarks is speculated by Casher (and Banks) [5]. 
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Y=½ and a left-handed electron e L with Y :  1. This, of course, contradicts the 
phenomenology of weak interactions. We have two kinds of topological argument 
for proofs of our no-go theorem, one of which was given in Absence I. There we 
used algebraic topology and the homotopy group ~r2(cpN-I). In the present article 
we will give an alternative intuitive topological proof. The crucial ingredient of these 
proofs is that the momentum space of the lattice theory is periodic, i.e. forms the 
Brillouin zone 

-~r<~pi ~<Ir, (1.1) 

where the end points Pi = - t r  and Pi = ~r are identified. Topologically Pi runs on a 
circle S I. Thus the momentum space makes up a hypertorus S 1 × S I × S~. This can 
be seen from the fact that the Fourier transform of the field ~k(n) with n integers, 

-- E e 
n 

is invariant under p ~ p  + 2~r × K for integers K. 
The important consequence of our no-go theorem in lattice QCD is that it is not 

possible to keep chiral invariance on the scale of the fundamental lattice, e.g. a scale 
of the order of the Planck length (if there is a fundamental lattice with that lattice 
constant) when we eliminate unwanted lattice fermions [2, 3] in the low-energy 
regime. 

It should be stressed that we make the important assumption of locality of the 
lattice theory. If we did not assume that, it is, according to Drell, Weinstein and 
Yankielowicz [6], possible. 

Our general class of lattice fermion theories used in Absence I is described by the 
action of the form 

s:-/fdt ¢ t)-fd, E ¢ 
X X , y  

(1.2) 

for the N-component complex fermion field ~k(x, t), 

k= (1.3) 

Here N is neither a flavor nor color component number. We have assumed the 
following three mild conditions on the action (1.2): 

(i) Locality of the interaction, i.e. H ( x ) ~ O  fast enough as [xl--, oo that its 
Fourier-transformed/-)(p) is a smooth function. Thus the eigenvalues oai(p) (i = 
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1 . . . . .  N) are smooth except in the case that two eigenvalues 0~i(p) and t0i+l(p) 
coincide. 

(ii) Translational invariance on the lattice. 
(iii) Hermiticity of the hamiltonian H. 

We make the following assumptions for the charges Q (lepton numbers, weak 
hypercharges etc.): 

(i) Q is exactly conserved even at the scale of the fundamental lattice. 
(ii) Q is locally defined. That is, it is expressed as a sum of local charge densities 

Q = ~ j ° ( x ) .  
X 

(iii) Q is quantized. 
As for Dirac particles in strong interactions, various ways of eliminating the 

unwanted fermions in the low-energy regime have been proposed. However, accord- 
ing to our no-go theorem, it is impossible to keep chiral invariance when one 
constructs lattice models for QCD avoiding species doubling or spectral multiplica- 
tion. If one drops one or some of the assumptions for our no-go theorem, then one 
can construct models of lattice QCD. Indeed, Wilson [2], Susskind [3] and Banks 
and Casher [7] have been able to construct models free of spectral multiplication by 
breaking chiral invariance on the scale of the fundamental lattice, and Drell, 
Weinstein and Yankielowicz [6] have also been able to do so by breaking the locality 
of interaction. 

In the present article we construct models with only one two-component fermion 
in the low-energy regime, dropping the assumption of the existence of a conserved 
charge. We thus take the fermion field ~(x) to be real. We can assign to the field 
components charges that are not conserved at the scale of the fundamental lattice, 
but approximately conserved in the low-energy regime only. Also, if one relaxes the 
assumption of a discrete spectrum for the charge, we can easily provide a counter 
example. 

In sect. 2 we consider a general class of 1 + 1 dimensional lattice fermion theories 
and give a proof of the no-go theorem in 1 + 1 dimensions. Sect. 3 is devoted to 
presenting the intuitive topological proof in 3 + 1 dimensions. In sect. 4 we give the 
real-field formulation and present an example which has only one two-component 
fermion. In sect. 5 we assign a non-conserved charge to this model. In sect. 6 we 
draw our conclusions. 

2. The 1 + 1 dimens iona l  case  

As an exercise we will consider the general class of 1 + 1 dimensional fermion 
theories on the Kogut-Susskind lattice and state an analogous theorem to the no-go 
theorem in 3 + 1 dimensions of Absence I. The analogy between these two cases is 
not precise: one of the reasons is that in 3 + 1 dimensions the antiparticle of a Weyl 
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particle must be taken as a CP-transformed one and thus has opposite helicity. In 
1 + 1 dimensions the antiparticle of a right mover (a right-moving particle) is also a 
right mover. 

We consider a general class of lattice fermion theories in 1 + 1 dimensions whose 
action is the 1 + 1 dimensional version of the 3 + 1 dimensional case (1.2). We thus 
take ~k to be a complex N-component field in order to keep generality. We are 
interested in the 1 + 1 dimensional generic case analogous to that considered in sect. 
2 of Absence I in 3 + 1 dimension. 

For a generic (or one may equally well think of a random) hamiltonian in 1 + 1 
dimensions there are no degeneracies of the energy levels at all. In fact, in order to 
have just two-level degeneracy [say ~oi(p) and 0:i+l(p) ], three parameters must be 
restricted in the hamiltonian H(p ) .  But since there is only one p, this can not be 
done for a generic hamiltonian. 

It is generic, however, that the wave-packet velocity, 

d~°i p=pr v, = -d--~- p , (2.1) 

is non-zero at the Fermi energy. Here a Fermi "surface" Pc, which is a point in 1 + 1 
dimension, satisfies ~0i(pe) = 0 since it is natural to take the Fermi energy to be zero. 
(A generic dispersion relation is shown in fig. 1.) So in such a generic theory 
low-energy excitations of the vacuum are such that fermion states with p close to a Pr 
are excited. So for the particles relevant at low energy one finds 

. doo i P=Pf o~i(p)=(p-pr)--~p + O ( ( p - p , ) 2 ) .  (2.2) 

i I 

I \ c /  / ~ ' ", P 
' N -1-1- / I " 

I [ - -  

I I 

BRILLOUIN- ZONE 

Fig. 1. Typical dispersion laws for 1 + 1 dimensional (complex) lattice Weyl fermion field theory. Each 
curve is dosed since end points should be identified. Each of the crossing points a - f  is a Fermi "surface" 

which represents one species of Weyl fermion. 
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When 

dw. 
I 

dp P’Pr 

>o (-q, 

the particle at this crossing point with the oi = 0 line is called a right (left) mover. It 
should be noted that the antiparticles have the same velocities as the corresponding 
particles. Assuming locality, wi( p) is analytic in p except for degeneracy points 
(which will be absent in the generic case) and a smooth curve wi( p) is defined in q-p 

space. The crucial point is that, for a lattice theory, p is defined modulo 277 (in units 
of the inverse lattice constant) and thus runs on a circle S,. So the curve is indeed 
closed and topologically it is a circle S,. Obviously such curves must cross equally 
many times from q(p)<0 to q(p)>0 as they cross from q(p)>0 to w,(p)<O. 

We can give an orientation to the curve such that it is along the increasing direction 
of p. Thus the curve going up through wi = 0 means the existence of a right-mover 
and that going down is a left-mover. Topologically there must be the same number 
of upgoings and downgoings for the closed curve. Therefore there appear equally 
many right and left movers in the low-energy regime. 

It should be noticed that we “renormalize” the momentum by defining a new 
practical momentum 

Pp* =P -Pi, (2.3) 

(see sect. 3 in Absence I). The dispersion relation is then for small ppr 

doi 

wi = dp p=plpP’- 
(2.4) 

This is considered to be a relativistically invariant dispersion relation for a massless 
mover along the right or left direction. This is true only when do,/dp jpzpr is 
considered equal to the “velocity of light”. It should be noticed that the extra 
particles with pr # 0 are not described by 4(n) itself, but they are described by 

J/‘(n) = eiPfnJI( n) (2.5) 

since in the Fourier transform 

44~) =ZWiPnW 
” 

the transformation (2.3) should be done on the right-hand side. 
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3. Intuitive topological proof in 3 + 1 dimension 

Let us consider the 3 + 1 dimensional case. We will use the periodicity of 
momentum space (1.1) in our proof of the no-go theorem. We start with a review of 
how to describe the Weyl fermion in the dispersion manifold which was discussed in 
detail in sect. 3 of Absence I. 

3.1. TWO ENERGY LEVEL DEGENERACY DESCRIBES WEYL FERMION 

AS in Absence I we consider a general class of lattice fermion theories described 
by the action (1.2) for the N-component  ~k (1.3) and thus the eigenvalue equation 

H ( p ) ¢ ( p ) : 0 3 , ( p ) ~ ( p ) ,  i = 1  . . . . .  N,  (3.1) 

with N ordered eigenvalues 03~ > 03 2 > • • • > (,0 N. When two energy levels, ith and 
(i + 1)th coincide (are degenerate) at the momentum Pdeg, 

= 

as shown in fig. 2, one can expand the N X N matrix H ( p )  near the degeneracy 
point Pdeg. The relevant most general 2 × 2 hamiltonian H(2)(p) for U ( p ) ,  the 

two-component spinor describing the ith and (i + 1)th levels, is of the form 

/III(2)(P) = 03deg(Pdeg) + (p-yPdeg)b -1"- (p--Pdeg) V~o °~ Jr- O((p--p)2),  (3.2) 

with constants b and V. As in 1 + 1 dimensions, eq. (2.3), we renormalize the 
momentum by introducing a practical momentum through 

P p r  = P - -  P d e g ,  03pr : W - -  O~deg. (3.3) 

EF ~ - - - ~ ' -  p 

(1) 

Er 

(2) 
Fig. 2. The allowed Fermi surface (1), and not allowed (2). Here E F denotes a Fermi surface. 
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Thus the H<2)(p) becomes 

179 

I-I'2 ( t , ) = ( epr ) . v . ' o  + ( v - (3.4) 

We further define a new momentum by 

P0 = t%r --  ( P --Pdeg) b 

P~= ± ( e p r ) Y : .  (3.5) 

Here the sign ± depends on the sign of detV which determines the relative 
handedness of the Pvr and p coordinates. We, however, take conventionally Ppr to be 
the right-handed one. So the new Ht2)(p) becomes 

H~2)(p) = ~r v (3.6) 

and we obtain the right- or left-handed Weyl equation 

e , , u (  p ) : ± poU( v ) ,  (3.7) 

corresponding to the sign of det V. Since the constant tensor V depends on the 
degeneracy point Pdeg, whether we get a fight- or left-handed Weyl fermion also 
depends on the degeneracy point. We may call the degeneracy point a right- or 
left-handed one according to eq. (3.7). We have thus shown that each degeneracy 
point represents one species of Weyl fermion. If the Fermi energy surface lies at the 
degeneracy points of the ith and ( i +  1)th levels as depicted in fig. 2, each 
degeneracy point represents one species of Weyl particle, e.g. UL,eL,eR. 

3.2. CLOSED CURVES 

The no-go theorem was proved in Absence I by making use of the homotopy 
theory of ~r2(CPN-t). We shall present here a more intuitive topological proof. 

We make use of curves in 4-dimensional w-p space or on the 3-dimensional 
dispersion relation surface. They are defined by 

{ ( p ,  ¢ . o i ( p ) ) l ( a l ( , d i ( p )  ) : 0 } .  

Here 

( a [ w i ( p ) )  : a,~b~ i) + a2d/~2i) + . .. + a u ~ ) .  (3.8) 

The vector l a ) = ( a l ,  a2 .. . . .  au)  is an arbitrarily chosen constant in the complex 
N-dimensional vector space, which may be chosen to be the basis vector correspond- 
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ing to the field number  one. The  eq. (3.8) indeed specifies a 1-dimensional  curve in 

the generic case. This  is clear  f rom the fact that  eq. (3.8) fixes two var iables  since 

( a l ~0 i (p ) )  E C and  that  i t  is cont inuous  and  analyt ic  complex-va lued  funct ion of  p .  

The  set of curves always passes through all the degeneracy  points ,  as can be shown 

expl ic i t ly  using the con t inuum 2-component  Weyl  equa t ion  near  the degeneracy  

points ,  or  by  the fol lowing argument .  In  fact, let I~0i(Pdeg)) and  I~0~+~(pdeg)) be 

eigenstates  at  the degeneracy po in t  Pd~g" Then one can always const ruct  a new state 

I by 

a b-~ ~ 

/ 

(a) 

I I I I / 

(b) 

Fig. 3. Three kinds of closed curves in a Brillouin zone. Remember that opposite faces of the Bfillouin 
zone are identified, so that especially the pairs of points denoted a, b and c are to be considered as only 
one point each. A typical closed curve (broken lines) in the dispersion ,0-p space are drawn in (b), where 

p~ and py dimensions are suppressed. 
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near P :  Pdeg" This is approximately equal to an eigenstate for p close to Pdeg. We can 
always choose a and/3 such that 

( a l ~ ( p ) ) =  0, 

which is condition (3.8) for the curve. 
Since the p-space forms the BriUouin zone (1.1) and the curves continuously pass 

through all the degeneracy points between the energy levels w i and wi+ 1, such a curve 
must be closed or consists of a number of closed curves as illustrated in fig. 3. 

If the curves have an orientation, such closed curves must pass equally many times 
upward and downward between the two energy levels to~ and ¢oi+ 1 through all the 
degeneracy points. 

3.3. ORIENTATION OF THE CURVE 

We are now going to give an orientation assignment to the curve and show that, 
when the curve crosses the level w - - 0  between levels w i and wi+ 1 upward (or 
downward), the crossing p o i n t ( =  degeneracy point) is a right- (or left-) handed 
degeneracy point. 

The eigenstate determined by the eq. (3.1) is unique modulo a phase factor if we 
impose the normalization condition ( w i ( p ) [ w i ( p ) ) =  1. We can choose the phase of 
I~0~(p)) to be analytic in a simply connected region which should not include the 
degeneracy points. An orientation of the curves is assigned by means of the phase 
rotation of ( a [ % ( p ) )  on a small circle S 1 around the curve (3.8). We choose the 
convention such that an increase of phase on S t should form a right-handed screw 
together with the oriented curve when we take a right-handed coordinate convention 
for P. 

Let us, as an example, consider the case that the curve is along Pz > 0 on the 
upper cone P0 > 0 near the right-handed degeneracy point. Thus the two-component 
field U satisfies the eq. 

p ,V( p ) : e o V (  p ) . (3.9) 

We draw a circle S I with radius R around the point on the curve at a distance d from 
the degeneracy point as depicted in fig. 4 and take R << d. The point Q on S 1 is given 

S1 /<a lu>  :0 

deg. pt. Pz 

Fig. 4. The curve (3.8) along thepz direction is described in the text. 
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by 

Px = R cos ~, 

py -- Rsin ~, 

p z = d .  (3.10) 

The normalized eigenvector U of (3.9) is solved in the limit R/d << 1: 

eiO • 

Since we obtain U = ( 0  ) 

( a I = (0,1). Thus we have on S 1, 

(3.11) 

on the curve R = 0 ,  the constant vector (a  I must be 

(al~i)= ~---~e '0. (3.12) 

tO 

_ R  e - i e \  

Rleie/ 

> Pz 

/ R e~e\ ) 
(a) 

(- ~ e - i ° /  

(b) 

Fig. 5. This figure illustrates that around a "degeneracy point" all the curves of the type (3.8) are 
oriented away on one level and inward on the other one. The case illustrated in (a) is a right-handed 
particle (i.e. positive helicity) degeneracy point satisfying the right-handed Weyl equation, while the holes 
in the lower level would be left-handed. The case of a left-handed particle degeneracy satisfying 

left-handed Weyl equation is illustrated in (b). 
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According to the orientation convention the curve is oriented in the positive Pz 
direction because it forms a right-handed screw. Computing the case of P0 > 0 and 
Pz < 0 cone, etc., we obtain fig. 5a for the right-handed degeneracy point. The case of 
the left-handed degeneracy point is depicted in fig. 5b. As we see in fig. 5 the curve 
continues through the degeneracy points conserving the orientation. It is noticed that 
the orientation determined in this way becomes the same all along the curve. The 
important fact is that the curve must be oriented away from the degeneracy point on 
the level sheet with right-handed particles (i.e. with positive helicity), while the curve 
must be inward oriented on the level with left-handed particles. 

Finally the oriented curve in fig. 3 is closed and thus must go equally many times 
upward and downward through all the degeneracy points 09i(Pdeg)--~ tOi+ l (Pdeg)= 0 
between the two energy levels toi(p) and o~g+ l( P)- When the Dirac sea (to~ +1 level) is 
filled and the Fermi surface lies at the degeneracy point w = 0 there appear equally 
many species of right- and left-handed Weyl fermions. This concludes the proof of 
our no-go theorem. 

4. Real-field formulation 

We have considered in sect. 3 and in Absence I, the case of the complex-field 
formulation assuming the existence of a conserved charge at all scale lengths. If we 
abandon this assumption we are led to use a real-field formulation. In this case there 
is double counting of the particles in the p representation in the Brillouin zone. Thus 
our no-go theorem may not hold. In fact we shall give an example of a lattice 
fermion theory with only one two-component fermion. 

The reality condition of the fermion field is 

~p*(x) = ~p(x), (4.1) 

where the asterisk denotes complex conjugation, if we consider the N-component 
fields ~k(x) as Grassmann numbers, and hermitian conjugation, if we consider a 
second-quantized field ~k(x). In momentum space eq. (4.1) becomes 

~ * ( - p )  = ~  ( p ) .  (4.2) 

It should be stressed that ~(p)  is an independent variable only over one half of the 
Brillouin zone -~r <~Pi ~< qr (i--- 1,2, 3). In order that the time development 

i¢ (x) = ~ HR(x --y)~( y) (4.3) 
y 

does not violate (4.2), the N × N matrix HR(x ) must be purely imaginary: 

H~(x) + HR(x)=O. (4.4) 
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Under a Fourier transformation (4.4) becomes 

~ ( p )  : - ~ ( - p ) ,  (4.5) 

while the equation of motion (4.3) becomes 

~ (p) =,%(p)~; (p). 

It is easily seen that the real-field formulation is more general than the complex 
one. Any theory with a complex field ff can, in fact, be reformulated in terms of real 
fields Re~ and Im¢. When the N-component field ~k is complex, we can thus 
introduce a 2N-component column vector 

(Re (x) 
Im~k(x) ) (4.6) 

which obeys the equation of motion 

Here 

-~ I m ¢ ( p )  - / t c ( P )  Im~k(p) " 

&(P): ~/(~(p) +~,(_p)) 
½i( fI(p) +/-l*(--p)) 
~(~(p)-- ~'*(--p)) 

and/-)(p) is a Fourier transform of the N × N hamiltonian contained in the action 
(1.1). One may remark tha t / t c (P)  is of the special form 

H c ( p ) = ( - B A  AB)' (4.7) 

where A and B are N × N matrices. This form (4.7) is not a consequence of the 
real-field condition (4.5). Thus there is indeed a restriction (4.7) for the complex-field 
formulation (4.6). 

The most general theory is obtained using the real-field formulation. In fact, if we 
impose fermion number conservation on a real-field formulation by requiring 
invariance under the 0(2) = U(1) symmetry 

¢1(x) 

I~ 2 N'( X ) 

-, ( IcosO IsinO/ 
-IsinO IcosO] 

~l(x) 

~2N'(x) 
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where I is an N × N unit matrix, we are led to a complex-field hamiltonian. Thus, we 
in general lose fermion number conservation in the real-field formulation. 

The example which we shall construct has two realfermion fields if(x): 

: ) q,(x) 

In order to have one two-component fermion we must have two degeneracy points 
which are connected by the symmetry 

(co,p) - - , ( - c o , - p ) .  (4.8) 

We assume codeg = 0 (see sect. 2 of Absence I). We may take the hamiltonian of the 

form 

/-IR(p) =A(P)ax + B(p)oy + C(p)%, (4.9) 

for simplicity. Hermiticity requires A, B and C to be real. The condition for the 
real-field formalism 

requires then that 

A ( - p )  = - A ( p ) ,  B(-p)  = B ( p ) ,  C(--p) : -C(p) .  (4.10) 

Note that HR(P) is periodic under 

pi--,pi+2~r, ( i =  1,2,3). 

Thus A, B and C may be thought of as Fourier series in p. We should bear in mind 
that a degeneracy point p -- Pdeg Occurs when 

A(Pdeg ) = B(Pdeg ) = C(Pdeg ) ~" 0. (4.1 1) 

Since we are looking for an example with a single neutrino and, since we have to 
count only half the Brillouin zone, we must have two degeneracy points Pacg, and 
Pdeg2 where 

Pde~, = --Pdo~2" (4.12) 

Let us choose a simple example. We may take 

A(p) =asinpx, C(p) = cs inp z. (4.13) 
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There are four lines for which A and C in (4.13) are zero when thought  of as 

imbedded in a Brillouin zone. See fig. 6. They are given by  

(1) px=pz=O, 

(2) px=¢,  pz=O, 

(3) px=O, p~=¢, 

(4) p~=p~=¢. (4.14) 

Line (4) is an identification of  four parallel edges of  the Brillouin zone. Next  we 

choose the zero surface for B ( p )  as an approximate sphere with center p = 0 which 
intersects with only (1). We choose 

B ( j , )  = b(cospx + cosp ,  + cos p~) - ~. (4.15) 

The parameters b and x are adjusted to satisfy B ( p  = 0 ) >  0 and B < 0 when any of  

the components  o f p  equals ±rr. We can arrange this by  taking b > 0 and 3b > K > b. 

In this way we get just two degeneracy points at 

Pdeg = (0,  ± lPy  laeg,0) • (4.16) 

Here IPy Id¢g is determined from 

bc°slpy [a¢, + 2b - x = O, 

i.e. 

x - 2 b  
[Py Ideg = arccos-----~-- (4.17) 

I Py 

I I\~" I ! / I 

Fig. 6. The curves in the Brillouin zone along which two of the three coefficient functions A(p), B(p) 
and C(p) are zero. At the degeneracy points they are all three zero. They are here denoted by Pdeg" 
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The hamiltonian (4.9) can now be written down: 

f f lR(p)  = aOxsinpx + boy(COspx + cOSpy + cosp~) + co~sinpz - roy. (4.18) 

The dispersion relation derived from (4.18) is depicted in fig. 7. 
The x-representation is given by 

i-l (xl= d3p e'VXtZlR(p). 
(2~) ~ 

The non-zero components of this H ( x )  for special values of x are: 

- 1  
~(1,o ,o)  =--2-Fao~ + ~6o~, 

1 
H~(--  1,0,0) = 2---~ao~ +½boy, 

~ ( o ,  1,o) = ½b~, 

~ (0, - 1,0) = "boy, 

- 1  
~ ( o , o ,  1) =-~-Fco~ + ½bo~, 

1 ~ ( 0 , 0 , -  1) = ~/c~,~ + ½6o~, 

HR(0,0,0 ) = --KOy. (4.19) 

)~ 

Fig. 7. The dispersion law of the hamiltonian (4.18) given in the text. 
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We can trivially construct the lagrangian corresponding to (4.19). The Schr6dinger 
equation is given by (4.3), 

~ ( x , , X z , X 3 )  = (½ao x -½iboy)q~(x, - 1,x2,x3) 

+ (--½ao x -½iboy)¢(x ,  + 1 , x z , x , )  

-½ib(~b(x, ,x  2 + 1,x,)  + ~p(x,,x 2 - l , x , ) }  

-}- (½CO z - - ½ i b o y ) ~ ( X l , X 2 , X  3 --  1) 

-~ ( - - ½ e f t  z - - ½ i b O y ) ~ ( X l , X 2 , X  3 "~- l)  

+ iroy~b(x l, x2, x3). 

This leads to the lagrangian 

L = ]~ iqk(x)qJ (x)  - ~ t+(x)Hrt(X --y)q~(x - y ) ,  
x y 

(4.20) 

where t~p(x) denotes the transpose, HR(y ) is given by (4.19), and the remaining 
values of HR(y) are zero. 

An especially nice model (with real fields) showing precisely one Weyl-type 
particle was presented to us by the referee. It is given by the action 

S :  ½ X ~ o ~ ( ~ + #  - ~ b x _ e ) - i 7 / X  e"t~(~ff+# + Lk,~-# -- 2~ff)~ff +h.c .  
X X,~ 

Here/2 is a unit vector in the direction/z. The spinor indices a, fl runs through 1,2. 
The first term provides the usual type of species multiplication. It is the most naive 
model, but the terms with coefficient 7/gives a Majorana particle type mass to the 
species doublers. One may imagine both a Kogut-Susskind lattice and a Wilson type 
lattice version of this model. 

An important achievement of this model is that it contrary to the first presented 
real-field model having a single Weyl particle this last one has retained symmetry 
under discrete 90 ° rotations. 

5. Assignment of non-conserved charges 

We have constructed in sect. 4 a lattice model which describes only one two- 
component fermion in the low-energy regime. The hamiltonian (4.18) of this model 
does not, of course, satisfy condition (4.7) for the complex-field formulation. Thus, it 
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is impossible to assign conserved charges to this model. We can, however, assign 
locally defined but only approximately conserved charges Q(p). 

It should be stressed that if we do not require that the charge be locally defined, it 
is extremely easy to define a conserved charge since we could assign Q(p) the value 
+ 1 for some values of the momentum p and - 1 for the opposite p value if we have 
real fields. In this way one could easily assign Q ( p ) - - + 1  to the states in the 
neighborhood of the degeneracy point at Pdeg2 say. One might then either leave the 
charge undefined outside such regions in p space or let Q(p) have discontinuities as 
a function of p meaning the charge not being locally defined. 

If we, however, want the charge to be locally defined and at the same time 
quantized, there must for all values of the momentum p in the Brillouin zone exist 
equally many eigenstates with a given charge eigenvalue. To a model with only one 
Weyl particle we can then only assign an approximately conserved charge. That is, 
however, possible: in fact, we shall show that in the case where we modify the model 
of sect. 4 with two real components (~k~,~2) into a four-component model 
(if1, ~k2, ~k3, ~b4), the modified model looks like that of the complex-field formulation 
(4.6) with non-conserved charges, but the hamiltonian does not satisfy the condition 
for the complex-field formulation (4.7) with conserved charges (i.e., is not complex 
linear). In fact, we want here to construct a model in which charges are not conserved 
but are approximately conserved in the low-energy regime only. 

There should be only two degeneracy points, given by (4.16), which are connected 
by the symmetry (4.8) in order to describe one Weyl fermion in the low-energy 

(~kl) s h o u l d b e t h e s a m e a s i n f i g .  2and  region. Thus the dispersion relation for ~k2 

/ I ~3/~ should have no degeneracy points. Therefore, the field components ~k3 that for 
/ 

and ~k4 may be chosen to have flat dispersion relations as depicted in fig. 8. The 
hamiltonian for 

• 

may be written, e.g., 

/~(p)  = (/-IR ( P)O oyO) , (5.1) 

where/~R(P) is the 2 × 2 matrix hamiltonian for I~l and if2 given by (4.18). The eq. 
(5.1) satisfies the reality condition for the field ~(p). The charges Q(p) that we will 
construct have the following properties: The charges Q(p) are not conserved, i.e. 
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I "t# 

Fig. 8. The dispersion law for our model with four-component field with the assignment of non-conserved 
charges denoted by + 's and - 's .  Over most of the dispersion relation we assign no definite charge, but a 

superposition. 

[ / t ( p ) ,  (~( p)] v ~ 0 except for the low-energy regime. Thus the eigenstates of n ( p )  are 
mixed states of the eigenstates of (~(p). In the low-energy regime (~(p) is conserved 
and we can assign definite charges to each component  of tp(p). 

In lattice fermion theories we should renormalize or shift the momentum by 

Ppr ----- P -- Pdeg, 

where p is the original fundamental momentum and Ppr denotes the practical 
momentum as discussed in sect. 3 of Absence I. Thus, low energy means Ppr small, 
i.e. p ~Pdeg" We assign charges to each field components of ~, in fig. 5 near the 
degeneracy points p ~Pdeg (i.e. for p - P d e g  small on the scale of the lattice). Taking 



H.B. Nielsen, M. Ninomiya / Absence of neutrinos on a lattice ( I I )  191 

the basis (~blff3~k2~k4) T, the charge operator Q ( p )  should satisfy 

q;,(p) q;l(p) 
q:3(p) +1  o 

= - 1  ~3(P)  
Q(P) q;~(p) +1 ~ ( p )  , nea~p :p~ .  

~4(P) 0 --1 tff4(p) 
(5.2) 

Notice that here we formulated Q ( p )  with the order of the fields ~i(P) in the 
columns permuted a bit. Eq. (5.2) should be true near the degeneracy point with 

pdo~ = (0, +lpy fdo~,0), 

say. For the reflected degeneracy point with 

Pdog ---- (0, -- IPy Idol,0), 

we should instead have (5.2) with an extra minus sign on the right-hand side. This 
may be seen from eq. (5.4) or by noting that the degeneracy point reflected by (4.8) 
describes the CP antiparticles which have opposite charge. 

The charge operator is now searched for in the form 

q;,(P) ~,(P) 
4'3(p) ( n(P)~r O ) ~3(p) (5.3) 

Q(P)  q72(t, ) = o ,,(,,,),, ~2(p) 
q;,(p) q;,(p) 

The reality condition of the field reads for the charge matrix 

0 ( P )  = - 0 * ( - P )  (5.4) 

and the eigenvalues of Q ( p )  are -+ 1, i.e. 

I , , (p) l - -  1. (5.5) 

We must take n(p )  real. Since the reality condition (5.4) is to be satisfied at p = 0, 

( n ( p  = 0)~)*  = - ( n ( p  = 0 )~ ) .  

Here n ( p  = 0) should be of the form 

n( p = O) = (0, , y (  p = 0),0).  (5.6) 
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Near the degeneracy point p =Pdeg the charge (}(p) is approximately conserved, so 
that 

(5.7) n(p)~r= nz% atp  :Pdeg. 

As a solution to these two conditions (5.6) and (5.7) we may take the form 

= (O,cos py,sin py), (5.8) 

provided we choose b and K such that IPy Ides = ½or from (4.17). So we should choose 
K=2b.  

The charge operator (5.3) then becomes 

+~(t,) 
+~(p) 
~:(t,) 
~,(p) 

:(o,:, o 
o(p)) 

+~(p) 
+~(p) 
~:(t,) (5.9) 

where 

0<,, ) 
= OyCOSpy + ozsinpy. 

6. Conclusion 

We have given intuitive topological proofs of the no-go theorem in 1 + 1 (sect. 2) 
and 3 + 1 (sect. 3) dimensions. The no-go theorem for putting weak interactions on a 
lattice is stated as follows: in the general class of lattice fermion theories the 
appearance of an equal number of species of right- and left-handed Weyl particles is 
an unavoidable consequence of a lattice structure. The consequent no-go theorem for 
lattice QCD of strong interactions is that chiral invariance cannot be preserved. This 
no-go theorem holds under the following five main assumptions. The action of the 
lattice fermion theory should satisfy (1) locality of the interaction and (2) transla- 
tional invariance. For the charge Q (lepton number, weak hypercharge etc,) we make 
the assumptions: (3) conservation of Q on the scale of the fundamental cutoff, (4) 
quantized Q and (5) locality of Q, i.e. a sum of the local charge density. 
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If one relaxes one or some of the assumptions one can construct a lattice fermion 
theory with only one two-component field. Indeed, in sects. 4 and 5 we explicitly 
constructed an example with one two-component charged fermion in the low-energy 
regime. The charge of this model is not conserved, but is approximately conserved in 
the continuum limit. 

The strong interaction models for lattice QCD invented by Wilson [2], Susskind 
[3] and Banks and Casher [7] break chiral invariance in order to avoid spectral 
multiplication. Drell, Weinstein and Yankielowicz [6] were able to construct a 
chirally invariant lattice QCD model, but it breaks locality of the interaction. 

We also owe the reader an example showing that the assumption of a quantized 
charge (i.e. a charge with a discrete set of eigenvalues) is essential. This is, however, 
rather easily provided since we can, for example, take the two real fermion field 
model built up in sect. 4 and assign a charge to it described in momentum 
representation by 

Q ( p )  = 1 sin py. 

Here 1 is the 2 X 2 unit matrix and Q(p), of course, is defined by the total charge 
operator: 

""~" d3P3 

where ~(p)  is the second quantized, here two component, momentum representation 
field. This charge matrix Q(p)  obeys the condition (5.4) for consistency with the 
reality of ~(x). Further, it is local because, as a polynomial in eiPe, it corresponds to 
a finite number of hopping terms. In fact, it corresponds in x representation to the 
matrix Q ( x )  which is non-zero only for two values of x, and for those we have 

Q(0,1,0) -- - 1 1  
2i ' 

1 
Q ( 0 , - 1 , 0 )  = y i  1 . 

The abelian charge defined this way obeys all the requirements except that it has a 
continuous spectrum. However, we have achieved a lattice model with only one 
charged Weyl fermion. So our theorem is not true unless under the assumption of a 
quantized charge spectrum. In the low-energy regime this "counter example" has an 
approximate quantization of the charge since it there only takes the values 

K--2b 
--+ sin do~ I = ---- sinarccos b 
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Our no-go theorem is a threat to a previous work on dynamical stability of local 

gauge symmetry by ourselves and Foerster [8]. We argued there that gauge invari- 
ance could be obtained in a natural, dynamically stable way. Actually we put it in by 
definition, at the same time introducing a new variable ft. In this way gauge 

invariance becomes exact. Our no-go theorem, however, makes it difficult to see how 
fermions in a weak interaction theory can be imbedded. 

Finally we would like to express the expectations of Banks and Casher that results 
similar to ours can be obtained even without the assumption of a lattice. I t  may 
therefore also be hoped that one can examine the possibilities of allowing for less 
and less lattice-like regularizations. For instance, one might as first steps think of 
generalizations to 

(i) an amorphous lattice (i.e. no translational invariance); 
(ii) a Presnajder-type of cutoff (a regularization in which the lattice torus Brillouin 

zone is replaced by some other momentum space manifold). 
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