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PREFACE

The material presented here is an outgrowth of a series of lectures
I gave at the University of Pennsylvania during the fall of 1962.
I have stressed the fundamentals of the microscopic theory of
superconductivity rather than attempting to give a broad survey
of the field as a whole. As a result, a number of highly interesting
and important areas are not discussed here; an example is the
application of the microscopic theory to type II (or ‘““hard”)
superconductors. The material presented here is primarily in-
tended to serve as a background for reading the literature in which
detailed applications of the microscopic theory are made to specific
problems.

A variety of formal techniques have been used in the litera-
ture to describe the pairing correlations basic to superconductivity.
For this reason I have developed a number of these techniques in
the text and it is hoped that the inelegance of this approach will
be justified by the usefulness of the material.

A brief review of the simple experimental facts and several
phenomenological theories of superconductivity is given in the first
chapter. This is followed in Chapter 2 by an account of the
original pairing theory advanced by Bardeen, Cooper, and the
author. A number of applications of this theory are worked out

XV



xvi Preface

in Chapter 3. This first portion of the book uses only the tech-
niques of quantum mechanics which are covered in a standard
graduate course on quantum theory. While the notation of
second quantization is used as a convenient shorthand, this
formalism is reviewed in the appendix.

In Chapters 4 and 5 the many-body aspects of the coupled
electron—jon system are developed with a view to treating in a
more realistic manner the effective interaction between electrons
which brings about superconductivity. In addition, the basis for
treating strong quasi-particle damping effects important in strong
coupling superconductors is developed. In Chapter 6 a discussion
of elementary excitations in normal metals is given, which lays
the ground work for the field-theoretic treatment of the super-
conducting state given in Chapter 7. There, the noninstantaneous
nature of the interaction bringing about superconductivity is
treated as well as the breakdown of the quasi-particle approxima-
tion and the resolution of this difficulty. In the final chapter the
electromagnetic properties of superconductors are treated, as well
as the collective excitations of the system.

I should like to thank Drs. P. W. Anderson, J. Bardeen,
L. P. Kadanoff, D. J. Scalapino, Y. Wada, and J. W. Wilkins for
many helpful discussions during the preparation of this manuscript.
I am also indebted to Drs. F. Bassani and J. E. Robinson, who
prepared a set of notes covering a lecture series I gave at Argonne
National Laboratory during the spring of 1961. Much of the
material in Chapters 4 and 5 and in the appendix is related to their
notes. In addition, I would like to express my sincere apprecia-
tion to Mrs. Dorothea Hofford for the speed and accuracy with
which she typed the manuscript. Finally, I should like to thank
my wife for her considerable help in preparing this book.

J. R. SCHRIEFFER

Philadelphia, Pennsylvania
July 1964



PREFACE TO THE
REVISED PRINTING

Since the first appearance of this book in 1964, the field of
superconductivity has undergone dramatic growth in scope and
level of activity. The two-volume treatise, Superconductivity,
edited by R. D. Parks, gave an account of the field at the close of
the 60s. Collections of papers describing current research on
superconductivity can be found in proceedings of conferences,
such as the International Conference on Low Temperature Phy-
sics and the Applied Superconductivity Conference.

Since 1964 many significant areas of research have devel-
oped including type II superconductivity and the Abrikosov vor-
tex lattice. This fundamental understanding led to high field
magnets having important technological applications. Josephson
tunnel junctions proved to exhibit a wide variety of interesting
phenomena which have led to a spectrum of devices of use in high
precision measurements and in computers. The long sought after
organic superconductor has been discovered, and major advances
in fabricating new superconducting materials have been made.
*He was discovered to be a spin triplet superconductor, with
many remarkable properties.

Xvii



xviii  Preface to the Revised Printing

On the theoretical side, there was early recognition that the
pairing correlations of metallic superconductors also played a
fundamental role in the structure of atomic nuclei. The theory of
superconductivity also forms the basis for understanding the
structure of neutron stars, despite their enormously high temper-
ature. Finally, the broken symmetry concept inherent in the pair-
ing theory has been helpful in setting up gauge theories of ele-
mentary particles. Possibly other developments stemming from
the pairing theory lie ahead.

This revised printing does not attempt to give an account of
the above topics since this would be impossible in a single vol-
ume. Rather, we note that the fundamentals of the theory of
superconductivity as discussed have remained unchanged over
the past two decades, and the recent developments have been
built on that theoretical foundation. Hopefully, the reader will
find the text of continuing value as an introduction to this fasci-
nating and active field.

J. ROBERT SCHRIEFFER
Santa Barbara, 1983



CHAPTER 1

INTRODUCTION

The phenomenon of superconductivity is a remarkable ex-
ample of quantum effects operating on a truly macroscopic
scale.! In a superconducting material, a finite fraction of the
electrons are in a real sense condensed into a ‘“macromolecule” (or
“superfluid ') which extends over the entire volume of the system
and is capable of motion as a whole. At zero temperature the
condensation is complete and all the electrons participate in form-
ing this superfluid, although only those electrons near the Fermi
surface have their motion appreciably affected by the conden-
sation. Asthe temperature is increased, a fraction of the electrons
evaporate from the condensate and form a weakly interacting
gas of excitations (or ‘normal fluid”’), which also extends through-
out the entire volume of the system, interpenetrating the super-
fluid.2  As the temperature approaches a critical value T', the
fraction of electrons remaining in the superfluid tends to zero and
the system undergoes a second-order phase transition from the
superconducting to the normal state. This two-fluid picture of a
superconductor is formally analogous to that which characterizes
superfluid He#, although there are important differences between
these systems.!3
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The amazing properties of superconductors (e.g., perfect
diamagnetism, zero d-c electrical resistance, etc.?) are related to
the peculiar excitation spectrum of the superfluid. As we shall
see, the superfluid can carry out potential (or irrotational) flow
with little change of its “‘internal energy” (i.e., energy associated
with forces binding the superfluid together). On the other hand,
the superfluid cannot support rotational flow. In analogy with
superfluid He*, if one tries to force the superfluid into motion
having vorticity (i.e., a nonvanishing curl of its linear momentum),
a fraction of the superfluid is necessarily converted into normal
fluid. Since the normal fluid does not take advantage of the
forces binding the superfluid together, there is in general a large
increase in energy associated with creating this vorticity. It is
reasonable, therefore, that the superfluid possesses a rigidity or
stiffness with respect to perturbations which, like the magnetic
field, tends to impart vorticity (i.e., angular momentum) to the
system. On the basis of this assumed rigidity, London?!-5 was
able to account theoretically for the perfect diamagnetism of
bulk superconductors in weak magnetic fields (the Meissner
effect®) and for the apparent lack of d-c electrical resistance, as
first observed by Kamerlingh Onnes in 1911.7

- As we shall see, the microscopic theory of superconductivity
proposed by Bardeen, Cooper, and the author® can be thought of
in terms of this sort of two-fluid picture.® In the lowest approxi-
mation the superfluid is formed from pairs of electrons which are
bound together by lattice polarization forces. The pairs greatly
overlap with each other in space, and it is the strong pair—pair
correlations in addition to correlations between mates of a pair
which are ultimately responsible for the rigidity of the super-
fluid wave function discussed above. More generally, these cor-
relations are responsible for an energy gap in the elementary
excitation spectrum of a superconductor from which many prop-
erties of the superconductor (in addition to its electromagnetic
behavior) follow as a consequence. In the theory, the normal
fluid is composed of the gas of elementary excitations of the "
system. ‘
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It is perhaps not surprising that the microscopic theory of
superconductivity followed Onnes’ remarkable discovery of this
phenomenon by almost fifty years, considering the physical and
mathematical complications of the problem. It was not until
1950 that the basic forces responsible for the condensation were
recognized, through the insight of Frohlich.® He suggested that
an effective interaction between electrons arising from their inter-
action with crystal lattice vibrations (phonons) was of primary
importance in bringing about the condensation. At this time,
independent experiments on the isotope effect in superconductors
were being carried out by Reynolds et al.}* and by Maxwell*2
which gave experimental support to Frohlich’s point of view.
Early theories of Fréhlich!® and Bardeen '3 based on a perturbation
treatment of the electron-phonon interaction ran into mathe-
matical difficulties. The significance of these difficulties was em-
phasized by Schafroth’s!* proof that the Meissner effect cannot be
obtained in any finite order of perturbation theory, beginning
with the uncoupled system. Later, Migdal*® showed that there
is no energy gap in the electronic excitation spectrum within the
perturbation theory. In the BCS theory, the electron-phonon
coupling constant g enters in the nonanalytic fashion e~/ in
agreement with Schafroth’s and Migdal’s results.

The microscopic theory explains essentially all of the general
features of superconductivity. In addition to this qualitative
explanation, it is in remarkably good quantitative agreement
with experiment considering the crudeness of the approximations
necessitated by our uncertainties regarding electronic and phononic
band structure, electron-phonon matrix elements, etec., in real
metals.

‘In this book we shall attempt to give an account of the under-
lying physical ideas of the theory. While some of the discussion is
couched in the language of the many-body problem, much of this
formalism is developed in the text. In general, we shall not give
a detailed discussion of the relation between theory and experi-

~ment and the reader is referred to a number of books and review
articles® 18 covering this area. We list below a few of the most
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important simple experimental facts about superconductors. One
conventionally distinguishes between the behavior of type I (or
soft) superconductors and type II (or hard) superconductors.

-1 SIMPLE EXPERIMENTAL FACTS
Electromagnetic Properties

The d-c electrical resistivity of materials in the soft super-
conducting state is zero. This fact is established to better than
one part in 10'° of the resistance of the normal state at the corre-
sponding temperature.!’ At T = 0 the resistivity of a super-
conductor ideally remains zero up to a critical frequency
hw, ~ 3.5kpT, (presumably the threshold for creating excitations
out. of the condensate). In practice, the edge of the gap is
smeared and a precursor electromagnetic absorption is observed
below the edge of the gap in certain cases. At finite tempera-
tures, there is a finite a-c resistivity for all w > 0 (presumably
because of absorption by the thermally excited normal fluid if
w < w,). For w » w,, the resistivities of the normal and super-
conducting states are essentially equal, independent of
temperature.

In 1933, Meissner and Oschenfeld® discovered that a bulk
superconductor is a perfect diamagnet. Thus the magnetic field
B penetrates only to a depth A ~ 500 A and is excluded from the
main body of the material. If one (incorrectly) argues that the
vanishing zero-frequency electrical resistance implies that there can

-be no electric field (of any frequency) in a superconductor,
Maxwell’s equation '
1¢B

VxE = -—Z —67 (l-l)
shows that the magnetic field present in the normal metal will be
“frozen in”’ when the metal becomes superconducting. This is
contrary to the Meissrer effect, which states that the field is
expelled in the superconducting phase. The point is that the
superfluid gives rise to a purely inductive impedaince which
vanishes only at zero frequency.® It is this nonzero impedance
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which permits the expulsion of B. This point is discussed further
below.

The perfect exclusion of the magnetic flux in bulk soft super-
conductors increases the free energy per unit volume of the super-
conductor by H?/875 if H is the externally applied field. Since
there is only a finite amount of energy reduction due to the con-
densation into the superconducting phase, there must be a critical
field H.(T) at which the total free energy of the superconducting
and normal states are equal. The critical field is a maximum H,
at 7' = O and falls to zero at T = T as shown in Figure 1-1. For
typical ‘““soft” superconductors like Al, Sn, In, Pb, etc., H, is of
ordera few hundred gauss. In ‘“hard’ superconductors like Nb,Sn,
superconductivity can persist to an ‘““upper”’ critical field H_, of
order 10° gauss presumably due to the magnetic flux penetrating
into the bulk of the material for H larger than a “lower” critical
field H,,.}"-'® Thus, as opposed to a soft superconductor, a perfect
Meissner effect does not exist above H,, in a hard superconductor.

0.02 lead
5 0.0
g 01
&
| 1 1 ] 1
~ ON 0.2 04 06 0.8
! (T/T.)?
-~ —0.01}
T
&
< - 0.02F
3 0
~0.03 tin
) 1 1 1 !
FIGURE I-1 The deviations of the critical field from Tuyn's law

HC(;P% = Ho[l — (T/T.)?], i.e., the prediction of the Gorter-Casimir
model.
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If one has a multiply connected superconductor, e.g., a
hollow cylinder, the flux passing through the hole cannot have
an arbitrary value, but is quantized to multiples of Ac/2e ~
4 x 1077 gauss em?  Quantization of flux in units twice this
size was predicted by London! while the experimental observation
of the effect and the establishment of the correct unit of flux
was carried out independently by Deaver and Fairbank2°® and by
Doll and Néabauer.20®

Thermodynamic Properties

In zero magnetic field, there is a second-order phase transition
at 7.2 The jump in specific heat is generally about three times
the electronic specific heat 7', in the normal state just above the
transition. In well-annealed pure specimens the width of the
transition can be as small as 10~¢ °K although this is not believed
to be the intrinsic width of the transition.?? As T'/T.— 0, the
electronic specific heat generally falls as ae~%T, presumably due
to the energy gap for creating elementary excitations. The ratio
of the energy gap 24(0) at T' = 0 to k3T, is usually of order 3.5,
the ratio being larger for stronger coupling superconductors like
Pb and Hg. A plot of the specific heat of Sn is shown in Figure
1-2. For T > T,/2, the curve is reasonably well fitted by «T3.

10

TT

1 L 1 1
1 2 3 4 5 6

FIGURE 1-2 The electronic specific heat of Sn.
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In the presence of a magnetic field the N-S-phase transition
for a bulk specimen is first order, i.e., a latent heat is involved.*

Isotope Effect

As we discussed above, the isotope effect shows that lattice
vibrations play an essential role in bringing about superconduc-
tivity. In particular, one finds that the critical field at zero
temperature H, and the transition temperature 7', vary as

T~ gz~ Hy  (e=]) (1-2)
when the isotopic mass M of the material is varied. Thus, T, and
H, are larger for lighter isotopes. If lattice vibrations were not
important in the phenomenon there is no reason why 7. should
change as neutrons are added to the nuclei since their main effect
is to change the mass of the ions. While the value « = 0.45 to
0.50 is approximately correct for many superconductors there are
a number of notable exceptions, for example Ru, Mo, NbySn, and
Os 23 which have small or vanishing isotope effects. As Garland 2*
has shown, this does not preclude the phonons from causing the
transition. Although the actual mechanism in these materials
is not firmly established at present, it is not unlikely that the
electron-phonon interaction is the appropriate mechanism even
in these exceptional cases.

Energy Gap

There are several direct ways of observing the energy gap in
the elementary excitation spectrum of superconductors.164-& As
we mentioned above, the threshold for absorbing electromagnetic
radiation gives a value for the energy gap.?®> An even simpler
method ¢ (due to Giaever) is to measure the electron tunneling
current between two films of a superconducting material separated
by a thin (~20 A) oxide layer. As T — 0, no current flows until
the applied voltage (times the electronic charge) ¥V exceeds the
energy gap 24. As the temperature is increased, a finite current
flows for ¥V < 24(T); however, a break in the curve persists for
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FIGURE 1-3 The temperature-dependent energy gap of Al as deter-
mined by electron tunneling.

V = 24(T). The temperature-dependent energy gap observed
in this way is plotted in Figure 1-3. The temperature dependence
of the energy gap can also be simply determined from the rate of
attenuation of sound waves,?” the rate of decay of nuclear
magnetization,2®-2° and the impurity-limited electronic thermal
conductivity.3® All of these methods give essentially the same
results.

Coherence Effects

If one attempts to account for the rate of electromagnetic and
acoustic absorption as well as the rate of nuclear spin relaxation
in superconductors on the basis of a simple two-fluid energy-gap
model, one quickly discovers inconsistencies. Experimentally the
rate of acoustic absorption decreases monotonically as T decreases
below 7'.,2” while the nuclear spin relaxation rate initially rises,
passing through a peak before dropping to zero at low tem-
perature.2® If one takes the same matrix elements as in the
normal state for the coupling of the excitations with phonons
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and with the nuclear spins, the two processes should have identical
temperature dependences. Therefore, at least some of these
matrix elements differ from those in the normal metal. As we
shall see, the matrix elements appropriate to the superconducting
state are linear combinations of those in the normal state.® Since
the coeffivients in the linear combination depend upon the nature
of the coupling (scalar, vector, spin), the square of the matrix
elements in the superconducting state differ for coupling the
excitations to acoustic (scalar) and electromagnetic (vector) or
nuclear magnetization (spin) variables.

-2 PHENOMENOLOGICAL THEORIES
Gorter—Casimir Model

In 1934, Gorter and Casimir? advanced a two-fluid model
along the lines which we discussed above. If x represents the
fraction of electrons which are in the ‘“normal” fluid and (1 — z)
the fraction condensed into the superfluid, they assumed the free
energy for the electrons is of the form

Fz, T) = a%fo(T) + (1 — a)f(T) (1-3)
where f, and f, were chosen to be
JalT) = - §yT? (1-4)
and
fo(T) = -B = const. (1-5)
In the normal metal the electronic free energy is just (1-4) so that
the free energy of the S- and N-phases agree when (1 — xz) — 0,
ie., at T.. The energy —pB represents the condensation energy
associated with the superfluid. By minimizing F(z, T) with

respect to x for fixed T, one finds that the fraction z of “‘normal”
electrons at a temperature 7' is given by
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From the thermodynamic relation

2
BT - pymy - £) (1)
one finds from (1-3)-(1-6) the expression
T 2
H(T) = Ho[l - (Tc) ] (1-8)

for the temperature-dependent critical field. Thus, H, is pre-
dicted to be a parabolic function of (T'/T.), in rough agreement
with experiment. In addition, the free energy gives the electronic
specific heat in the S-phase as

CulT) = 3/T(77) (1-9)

so that the relative jump in the electronic specific heat at T', is 3,
again in general agreement with experiment. This agreement is
not completely surprising since the theory was constructed in
what appears to be a rather artificial manner in order to obtain
agreement with experiment. In particular, one would expect the
exponent r to be unity rather than one-half if = represents the
fraction of electrons which are normal. Furthermore, the con-
densation energy B would be expected to increase as more pacticles
condense into the ordered phase. Nonetheless, the Gorter—
Casimir theory leads to nontrivial predictions which, when com-
bined with the London theory, are in reasonably good agreement
with experiment. Unfortunately, there is little detailed connec-
tion between the expression (1-3) and that given by the
microscopic theory.

The London Theory

In the year following Gorter and Casimir’s work, F. and H.
London advanced a phenomenological theory of the electro-
magnetic behavior of superconductors.!:3! Their scheme is
based on a two-fluid type concept with superfluid and normal
fluid densities n; and n, plus the associated velocities v, and v,.
Owing to local charge neutrality, the densities are restricted by
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ng + m, = n, where n is the average number of electrons per unit
volume. The super and normal fluid current densities are
postulated to satisfy

dJ, ne? _
i E J, = —enyvy) (1-10a)
J, = o,E I, = —en,v,) (1-10b)

The first of these equations is nothing more than F = ma applied
to a set of free particles of charge — e and density n,. Apparently
the superfluid is unaffected by the usual scattering mechanisms
which produce the finite conductivity o, associated with the normal
fluid.

The second (and most famous) equation of the London theory is

nse?
me

VxJ, = — (1-11)
This latter equation leads to the Meissner effect. One can see this
by considering the curl of one of Maxwell’s equations:

VxVxB:%Z—TVxJS (1-12)

where we have neglected the displacement current and the normal
fluid current J, since we are interested in the static Meissner
effect. On combining (1-11) and (1-12) one has
4 2 1

™ B~ B (1-13)

mc? A2

VB =

where London’s penetration depth A, is defined by

A = (m—cz) N (1-14)

47n.e?

If (1-13) is applied to a plane boundary located at = 0, the
magnetic field (parallel to the surface) decreases into the super-
conductor according to

B(z) = B(0)e~* (1-15)

Therefore the magnetic field vanishes in the bulk of the material
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and one obtains perfect diamagnetism, as required. For solu-
tions of London's equations for other geometries see London’s
book.!

To understand the relation between London’s two equations,
we notice that the curl of (1-10a) is the time derivative of (1-11).
Therefore, outside of a constant of integration, the Meissner effect
follows from the ‘‘perfect” conductivity of the superfluid, i.e.,
(1-10a). By postulating (1-11), the Londons added the all-
important restriction that B = 0 inside the superconductor
regardless of its history, which is the essence of the Meissner effect.

If one combines the result (1-6) of the Gorter-Casimir model

for the temperature dependence of the superfluid density, with
London’s expression (1-14) for the penetration depth, one finds

A0)

T T =TTy
Thus, for T = T, A = o so that no flux is excluded at T',.
As T drops infinitesimally below 7', A decreases rapidly, thereby
establishing the Meissner effect in bulk specimens for all 7' < T.
This temperature dependence is surprisingly close to that observed
experimentally although the results of the microscopic theory are
in somewhat better agreement with experiment than is (1-17).

(1-16)

NT)

(1-17)

The fact that the supercurrents are uniquely determined by
the magnetic-field configuration (according to the Meissner effect)
guarantees that one can apply reversible thermodynamics to
quasi-static processes in superconductors, an important fact.*

If we introduce the vector potential A, the second London
equation (1-11) can be written as

2
% Vx A (1-18)
mc

Vx J, =—

As London pointed out, this equation can be satisfied by taking

nge?

J, = —
s me

A (1-19)
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if A is properly gauged. For the supercurrent to be conserved
we must require

V-A =0 (1-20)

We are, however, still free to add to A the gradient of any function
X which satisfies Laplace’s equation V2X = 0. For an isolated
simply connected body, the normal component J;, must vanish
on the surface. Therefore, 4, must also vanish on the surface.
This condition determines (VX), over the entire surface and
therefore determines X to within an additive constant (which of
course cannot contribute to A or J;). For a massive body these
conditions ensure that A = 0 in the bulk of the material. If
current is flowing through the boundaries (e.g., when a super-
conductor is an element in a circuit), the current on the boundary
uniquely specifies A. Therefore, while (1-19) does not appear to
be gauge-invariant, the theory is in fact gauge-invariant since
one is told to throw away any part of A which does not satisfy
the London gauge conditions. In this way, physical predictions
are independent of the choice of gauge.

In a multiply connected body, the restrictions

ox’

V2X' = 0 -
on

=0 (1-21)
surface

no longer require that an added gauge potential VX’ be zero.
Therefore A is not uniquely determined by the boundary condition
A, = 0, in this case. If we form the line integral of A around a

loop surrounding a hole in the multiply connected body, Stokes'’s
theorem gives

§A-dl=J.B'dS=¢ (1-22)

for the flux through the loop. If the path is taken within the
interior of the superconductor where B = 0, then V x A = 0 and
we may write A as the gradient of a scalar

A= VWX (1-23)
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While VX must be single valued, X will not be single valued in
general, since

§Av-dl=3€VX-dl=AX=<D (1-24)

where 4X is the change of X as one travels once around the hole.
By specifying the flux @ through each hole, one can uniquely
determine A, as required.

F. London’s Justification of the London Theory
F. London® pointed out that the equation (1-19)

J, = —7n—c- A (1-25)
could be deduced from first principles if one assumed that the
many-body wave function ¥ describing the superfluid is rigid
with respect to perturbations due to a transverse vector potential
(V+-A = 0). One can see this as follows. The current density
d,o in the absence of A

Jo(r) = f WAV W, — WV, W) 8(r, — 1) 3, dOr,,

2mz
(1-26)

clearly vanishes. If a weak magnetic field is applied to the
system and ¥, is unaffected to first order by this perturbation,
-the paramagnetic current (1-26) continues to vanish, while the
diamagnetic current is given by

ng 2 .
1) = = 3 AW [eew o0, - n@n e,

2
= -2 A) (1-27)
nc

in agreement with (1-25). More accurately, it is assumed that
in the long wavelength limit, the paramagnetic and diamagnetic
currents of the normal fluid exactly cancel each other (as they do
in the Landau diamagnetism of the normal state) while the para-
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magnetic current of the superfluid vanishes, leaving the dia-
magnetic supercurrent. e have suggested above that the origin
of the London *rigidity " is the energy gap in the excitation spec-
trum of the system. This somewhat imprecise statement is not
in conflict with the fact that insulators also possess an energy gap
in their excitation spectra. This follows since interband matrix
elements of the magnetic perturbation are large in this case so
that the paramagnetic current is nonzero and just cancels the
diamagnetic current (see Chapter 8).

As we shall see below, the microscopic theory reduces exactly
to the form (1-27) in the limit of fields which vary slowly in space.

On the basis of London’s quantum interpretation of the Lon-
don equations,! he concluded that the flux @ trapped through a
hole of a multiply connected superconducting body must be an
integral multiple of hcfe ~ 4 x 10~7 gauss em2. To understand
this result, consider two concentric superconducting cylinders, as
shown in Figure 1-4. Suppose that the thickness of the cylinders
is large compared to the penetration depth A and that a lux @
is trapped within the hole of the inner cylinder. Furthermore,
assume that there is no magnetic field in the region between the

outer cylinder

FIGURE 1-4 Two concentric superconducting cylinders with a flux @
trapped within the smaller cylinder. :
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inner and outer cylinders, so that the flux through the hole of the
outer cylinder is also equal to @. The inner cylinder acts only
as a shield to ensure that no magnetic field touches the physically
interesting outer cylinder. Let ¥, be the wave function for the
outer cylinder when there is no flux trapped, ® = 0. To deter-
mine the wave function ¥, in the case @ # 0, we note that the
vector potential in the outer ring is in the 8 direction and has the

value
D 10 (Do Do
400 = 5 = 275 (77) = %o(z) (-28)

Since A in the outer cylinder is the gradient of the scalar (®6/27),
it follows that ¥ and ¥, are related by the gauge transformation

Y, = e—1e® ? 9;”1‘3‘}’0 (1-29)

where 6, is the azimuthal coordinate of the jth electron. If
¥, and ¥, are to be single-valued functions of the coordinates
6,, one must have

ed
i integer (1-30)

or @ is quantized to the London values

D, = n(%) =01, +£2,...) (1-31)

To complete the argument, suppose that the inner cylinder is
made normal so that the magnetic field fills the entire hole in the
outer cylinder. Owing to the Meissner effect, the magnetic field
will penetrate only a small distance (~5.10~® e¢m) into the outer
cylinder. Therefore the above argument should continue to hold
since this small perturbation should not affect the wave function
¥ appreciably (particularly if London’s ‘‘rigidity” is effective).
On the basis of this argument London concluded that the flux
trapped through any hole in a massive specimen is quantized to
multiples of hc/e.

In 1953 Onsager®? suggested that the actual value of the
flux quantum might be one-half this value, presumably because
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of the effective charge of the entities making up the superfluid
being 2¢. In a beautiful set of experiments carried out by Deaver
and Fairbank?°* and independently by Doll and Nibauer,2°°
Onsager’s suggestion was verified. In essence the difficulty in
London’s argument is that there is another series of low-lying
states which are distinct from London’s state ¥, and cannot be
generated from the ground state ¥, by a gauge transformation.
This second series of states, first discussed by Byers and Yang,!?
leads to the quantized flux values

Qﬁn:(n+%)h—: (n=20, %1, +2,...) (1-32)
By taking the London series (1-31) and the Byers-Yang series
(1-32) together, one obtains the result suggested by Onsager

P, = n(g—g) (n

in agreement with experiment. The fact that these are the only
allowed values for @ follows from the BCS pairing theory since
other values of @ lead to an extraordinarily high energy of the
electron system and are therefore unstable. The problem of flux
quantization is discussed further in Chapter 8.

0, +1, +2,...) (1-33)

Pippard’s Nonlocal Generalization of the London Theory

The basic equations (1-10) and (1-11) of the London theory
are “‘local” in the sense that they relate the current densities and
the electromagnetic potentials at the same point in space. On
the basis of numerous experimental results, Pippard3® concluded
that these local relations must be replaced by nonlocal relations
giving the currents at a given point in space as a space average
of the field strengths taken over a region of extent £, ~ 107% cm
about the point in question. One of the most compelling argu-
ments for this generalization is that the penetration depth A
increases appreciably if a sufficient amount of impurity is intro-
duced into the material. This effect sets in when the mean free
path [ of electrons in the normal state falls below a distance &,
known as Pippard’s “‘coherence’’ length. As we shall see, £y is a
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measure of the size of the pair bound state from which the super-
fluid wave function is constructed. In the microscopic theory it
is related to the energy gap 24 by &, = hvg/nd, where v, is the
Fermi velocity. On the other hand, in the London theory A is
not expected to be appreciably affected by impurities, particularly
near T' = 0, where all of the electrons are condensed. In choosing
a form for the nonlocal relations, Pippard was guided by Chamber's
nonlocal expression,3* relating the current density and electric
field strength in the normal metal

R[R - E(r')]

e~ Rt g3y R=r-1r (1-34)
where o is the long wavelength electrical conductivity. Chamber’s
expression is a solution of Boltzmann’s transport equation if the
scattering mechanism is characterized by a mean free path I
For fields varying slowly over a mean free path I, (1-34) reduces
to Ohm’s law J = oE. With Chamber’s expression in mind,
Pippard assumed that London’s equation

1 1 ny(T)e?

Ji(r) = ~ AT A(r) AT = " m (1-35)
should be replaced by
— R[R - A(r )] o~ RIZ g3,/ _
JIi(r) = 41rfoc/lf d®r (1-36)
The effective coherence length ¢ is given by
1 1 1
S =t — 1-37
A -3

where o is an empirical constant of order unity and £, is a length
characteristic of the material. For a pure material, Pippard’s
equation reduces to London’s equation if A(r) varies slowly over
a coherence length. For an impure material, Pippard’s equation
leads to an extra factor £/¢, < 1 multiplying (1/cA) in London’s
equation in this long wavelength limit, thereby increasing the
effective penetration depth. In most cases distances of order
A « ¢ are of importance in penetration phenomena so that the full

e
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reduction §/€, is not effective. In highly impure specimens A is
of order or greater than ¢ and one has A ~ (£/l)!2

That the effective coherence length ¢ should be bounded by
the mean free path [ is certainly reasonable from a physical point
of view. It is a tribute to Pippard’s insight into the physics of
the problem that his equation is almost identical to that given
by the microscopic theory.®

A good deal of the qualitative aspects concerning the electro-
magnetic properties of superconductors can be understood on the
basis of a simple energy-gap model. Prior to the BCS theory,
Bardeen!%¢ gave a theoretical derivation of the nonlocal electro-
dynamics. He assumed that the single-particle matrix elements
of the magnetic perturbation were unaltered by the condensation
and that the single-particle excitation spectrum was altered only
by adding a constant to the excitation energy, thereby creating
an energy gap. Subsequent to the work of BCS, Ferrell, Glover,
and Tinkham?3% employed the Kramers-Kronig relation to give
quite a general discussion of how the electrodynamic behavior of
a superconductor comes about, because of its energy gap. For a
review of their arguments, the reader is referred to Tinkham’s
review article.28f

Ginsburg-Landau Theory

In 1950 Ginsburg and Landau®® proposed an extension of the
London theory which takes into account the possibility of the
superfluid density n, varying in space. They phrased the theory
in terms of an effective wave function ¥(r) which we normalize
such that the local density of condensed electrons is given by

1P|z = ") (1-38)

n
where n is the total number of electrons per unit volume. Roughly
speaking, ¥(r) corresponds to the center-of-mass wave function
of the BCS pairs. Ginsburg and Landau treated ¥(r) as an order
parameter which is to be determined at each point in space by
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minimizing the free-energy functional F (¥, T) of the system.
The problem is then one of guessing an appropriate form for F.

Suppose that f(¥, T') is the difference of free energy per unit
volume between the S- and N-phases when ¥ is uniform. Then
it is natural to include in F' the term ’

f (), T) dor (1-39)

While f(¥,T) is not known a priori, Ginsburg and Landau
determined this function for small ¥ (which is all that is needed
when T is near T,) by expanding f as a power series in |¥|2 and
retaining the first two nonvanishing terms; thus

FOE, T) = a(T)|P)> + 1b(T)|¥|* (1-40)

for |¥]2 « 1. The equilibrium value |¥,|? is determined by
minimizing f:

2
aquflg =0 = a(T) + b(T)|¥,|? (1-41)

and therefore

2 D) .
ll‘UeI - b(T) (1 42)
From (1-40) and (1-42) one finds the (zero-field) free-energy
difference per unit volume between the S- and N-phases is given
by

1a2T)  HXT
JAT) ~ fu0) = ST = —3 G == (1e4)

where we have used the thermodynamic relation between the
critical field and the N-S free-energy difference. If we use the
fact that in the London theory A%(T) ~ 1/n(T), we obtain a
second relation between a(7") and b(T):

A20) _ YD)
M) — [P(0)

a(T)
b(T)

= |P(D)|? = (1-44)
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From (1-43) and (1-44) we find

H2(T) A(T)
4 A%(0)

H2(T) M(T)
dar /\4(0)

and therefore f(¥, T) given by (1-40) can be expressed in terms of

experimentally measurable quantities.

If ¥(r) is not uniform in space, Ginsburg and Landau argue
that extra terms should be included in F which involve the rate
of change of ¥ in space. Presumably these terms would come
from (a) the kinetic energy associated with extra wiggles in the
many-body wave function describing n; and/or v, changing in
space and (b) the interaction energy density being influenced by
the variations of the superfluid density in a region surrounding
the point in question. If |¥|? varies slowly in space, it should be
sufficient to keep the leading term in |grad ¥|2. On the basis of
gauge invariance, one would expect that this term, when combined
with the effect of a vector potential A(r), would lead to a free-
energy contribution of the form

n* |k e* 2
[om=| 5 vem + £ awvio
where e* is the effective charge of the ‘“‘entities” forming the

superfluid. (As we shall see, 2n* = n, e* = 2¢, and m* = 2m,
consistent with the pairing theory.)

a(T) = —
(1-45)
o(T) =

d3r (1-46)

By minimizing the total free-energy difference

n*

FOET) = f2m*
+ Ha(T)I'JF’(r)I2 + éb(T)|'{’(r)|‘] dr + ng(_:TV a3 (1-47)

with respect to ¥(r), one finds the constitutive equation of the
Ginsburg-Landau theory
h2 ie* 2
7 | ¥+ 7 A0 ¥
HXT) ¥(T) AX(T)
4mm* N2(0) [~ 2%0)

ﬁ 2
= V¥(r) + & A(r) (r)| d®r

|‘P(r)|2] Y(r) = 0 (1-48)
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The current density is given by

36 = =R o) — R (v — i)

(1-49)

with our normalization of ¥. As in the London theory one is to
use the gauge V+A = 0. Therefore, (1-48) and (1-49) together
with Maxwell’s equation Vx Vx A = 47J/c lead to two non-
linear differential equations which determine the functions ¥(r)
and A(r).

We note that if A = 0 and ¥ is uniform in space, (1-48)
reduces to the condition
A%(T)| )2
l — ———— -
3%0) 0 (1-50)
which states that ¥ is equal to its equilibrium value (1-44), as
required. If ¥ is perturbed slightly from its equilibrium value
at some point, say r = 0, then the linearized Ginsburg-Landau
equation

K2V2 - HXT)MX(T) ¢
for the deviation ¥(r) leads to
e-Tid
~ (1-52)

Thus the perturbation dies away exponentially, with the charac-
teristic length

_ [ m*R2 M2 A(0) ¢o
[7n*H£(T)] NT) ~ [T = T|T ™

(1-53)

where the last estimate uses the microscopic theory to relate
H, and ¢,. We see that even though the relation between J
and A is approximated by a local expression, the Ginsburg—
Landau theory definitely includes nonlocal effects and the co-
herence length appears in a natural way.
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Gor’kov?3” has given a derivation of the Ginsburg-Landau
theory starting from the microscopic theory. He finds that the
GL wave function ¥is proportional to the local value of the energy-
gap parameter 4. His derivation is outlined in Chapter 8.

The GL theory is particularly useful in calculations where one
cannot treat the magnetic field by perturbation theory. Typical
examples of such situations include thin films in strong magnetic
fields, N-S phase boundaries, the intermediate state, etc. One
can give a simple derivation of flux quantization on the basis
of the current equation (1-49), and one finds the flux quantum
to be hcfe*. The experimentally observed value hc/2e leads to
the value e* = 2¢, as mentioned above. The GL theory has
recently played an important role in explaining the magnetic
behavior of so-called ‘“hard’ superconductors, which are particu-
larly interesting materials, due to their high critical fields (~ 10°
gauss). The fundamental theoretical work in this area is due to
Abrikosov,!” who established the vortex picture to account for
this new magnetic behavior. Each vortex carries one quantum
of flux.

Unfortunately, the original Ginsburg-Landau theory is re-
stricted to the temperature range (T, — T')/T. « 1, although it ~
has recently been extended to all temperatures under suitable
conditions by Werthamer and by Tewordt.3®



CHAPTER 2

THE PAIRING THEORY OF
SUPER CONDUCTIVITY

In analogy with a free electron gas, normal ()) metals exhibit a
single-particle excitation spectrum which, in the limit of a large
system, is a continuum starting at zero energy. The degeneracy
associated with this spectrum leads to the linear temperature
dependence of the electronic specific heat near 0°K, and to the
large electrical and thermal conductivities of these materials. In
the superconducting (S) phase, the single-particle excitation is
radically - different from that of normal metals. In super-
conductors a minimum energy 24, called the energy gap, is required
to make a single-particle excitation from the ground state.

2-1 PHYSICAL NATURE OF THE SUPERCONDUCTING
STATE

This qualitative difference in the excitation spectra is paral-
leled by a qualitative difference in the wave functions of the N-
and S-phases of metals. In the N-phase, the probability that
two single-particle states ¢ and j are simultaneously occupied

24



The Pairing Theory of Superconductivity =~ 25

is a smoothly varying function of the quantum numbers 2 and j.
For example, in a pure single crystal, the expectation value

Py = (N|neymye | N (2-1)

is'a smoothly varying function of k and k' (so long as one does not
cross the Fermi surface in varying k or k’). Here |NV) represents
a typical state in the normal phase and n,, is the operator which
measures the number of electrons in k ¢, ete. (see the Appendix).
In the superconducting phase,® the corresponding probability

Py = {S|ngqme S (2-2)
is also a smoothly varying function of k and k’ except when k
and k' are related by the *‘pairing” condition. This condition
states that for a given state k, there exists a single mate k such
that the probability P,;S is larger than Py, by a finite amount,
for all states k' in the vicinity of k. This singular behavior of
the two-particle correlation function, which has been stressed by
Yang,%® is no doubt the sort of picture F. London had in mind
when he suggested that superconductivity is due to a condensation
of the electrons in momentum space.! When proper account is
taken of residual interactions conventionally neglected in the
description of the normal state, these ‘‘pairing correlations”
leading to superconductivity emerge in a natural manner. Above
the superconducting transition temperature, the pairing correla-
tions are broken up by thermal fluctuations and play no important
role in the normal phase.

It is essential to realize at the outset that the lowering in
energy of the S-phase due to interactions between mates (say
k1 and k) of a given pair depends critically on the choice of
mates (k' 4 and k’ | ) for other pairs. In fact, the energy gap and
most of the observed properties of the superconducting phase
would be absent were it not for strong correlations between the
pairs. The reason for the simple BCS model working so well is
that in real metals these pair—pair correlations are almost entirely
due to Pauli principle restrictions rather than correlations due to
true dynamical interactions between the pairs. This fact allows
one to treat the system in lowest-order as if dynamical interactions
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existed only between mates of a pair. The pair-pair correlations
would then be accounted for by working out this reduced problem
consistently with Fermi-Dirac statistics so as to include the crucial
Pauli principle correlations between the pairs. We shall call this
scheme the pairing (or BCS) approximation.

For a translationally invariant system, we shall see that the
pairing (k +, —k | ) of Bloch states leads to the lowest energy of
the system. Supercurrent-carrying states are generated by trans-
lating this state of the system by an amount q/2 in k-space. The
pairing would then be (k + q/24, —k + q/2 | ) and the electrons
would have a net drift velocity v, = fiq/2m. More generally,
corresponding to each physical system and each state of that
system there is a choice of pairing of single-particle states which
minimizes the energy (or free energy, at finite temperature). For
example, in a superconductor with nonmagnetic impurities present
one should pair one-electron states g, which include the impurity
scattering potential, as Anderson*° first pointed out. He showed
that one should pair a state ¢, and its time-reversed mate
@,* to form the ground state of the system in this case. For
a uniform hollow cylinder in the absence of a magnetic field,
one would pair the state (n, m, k) with its time-reversed partner
(n, —m, —k), where n and m are the radial and azimuthal
quantum numbers, respectively, and k is the wave number for
motion along the axis of the cylinder. In the presence of a
magnetic field, the best pairing depends on the thickness of
the cylinder and the strength of the field. For a thickness
d » X (the penetration depth) one would pair (n, m + v, k) with
(n, —=m + v, k) or (n, m + v, k) with (n, —m + v + 1, k) depend-
ing on whether the flux trapped in the hole is an even or odd
‘multiple of the flux quantum hc/2e, that is, vhc/e or (v + %)hce.
As we shall see, these are the only allowed values of the flux
trapped within a thick-walled superconducting cylinder. We shall
study in detail these various possible pairings in later chapters
when we apply the basic theory to physical problems.

While the above ‘“pairing” approximation gives a good
account of the single-particle excitation spectrum, there exist
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collective modes, such as the plasmons, arising from residual inter-
actions neglected within this approximation. In addition there
may be small momentum exciton-like collective modes which lie
within the gap. For larger momentum, the exciton states rise
above the gap edge and pass into the continuum, thereby becoming
heavily damped. The nature of the collective states and their
effect on system properties is discussed in Chapter 8.

Also neglected within the simplest pairing approximation are
damping effects. In the strong-coupling superconductors, such
as lead and mercury, it is essential to include these effects on the
same footing as the pairing correlations to obtain a reasonable
description of these ‘‘bad actors.”

The above discussion suggests that the excited states of a
superconductor can be represented by a two-fluid model, one for
the condensed electrons and one for the excitations. As we
mentioned in the introduction, phenomenological two-fluid models
(most notably the Gorter—Casimir model? and the Ginsburg-
Landau model®f) have played an extremely important role in
laying the ground work for our present understanding of super-
conductivity. While there are important differences between the
predictions of the pairing theory and the earlier two-fluid models,
the theories share the basic idea that the superfluid electrons
(i.e., the strongly correlated pairs in our case) can be described
by a local density p,(r) and a local flow velocity v(r). The
excited electrons then form an interpenetrating normal fluid
which in local thermal equilibrium can be described by the local
quantities p,(r) and v,(r). As we shall see, the superfluid can
only carry out potential flow, that is curl v(r) = 0, a condition
emphasized by F. London.! (No such restriction holds for the
normal fluid.) Many of the observed properties of superconduc-
tors can be understood in terms of a two-fluid model having a
temperature-dependent energy gap for creating normal fluid
(excitations) from the superfluid component.1%¢ As we shall see,
one can often interpret the results of the microscopic theory in
terms of such a model.?
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2-2 THE ONE-PAIR PROBLEM

To understand the origin and consequence of pairing corre-
lations, it is helpful to consider the problem, first studied by
Cooper,*! of a pair of electrons interacting above a noninteracting
Fermi sea of electrons via a velocity-dependent nonretarded two-
body potential V. Thus, all but two of the electrons are assumed
to be noninteracting. The background electrons enter the total
problem only through the Pauli principle by blocking states below
the Fermi surface from participating in the remaining two-particle
problem. If we measure the kinetic energy e, relative to its
value at the Fermi surface, only states with ¢, > 0 are available
to the interacting pair of electrons. Since the system is assumed
to be translationally invariant and one neglects spin-dependent
forces, the center-of-mass momentum 7%q of the pair and the total
spin § are constants of motion. The orbital wave function of the
pair can then be written as

P(ry, r2) = pq(ple’® (2-3)
where the relative and center-of-mass coordinates are defined
by ¢ =r, — r, and R = (r; 4 r;)/2, respectively. The relative
coordinate wave function is symmetric for the singlet spin state
(S = 0) and antisymmetric for the triplet states (S = 1). In
the limit q¢ — 0 the relative coordinate problem is spherically
symmetric so that ¢(p) is an eigenfunction of angular momentum
and can be labeled by the angular momentum quantum numbers
! and m. For q # 0, the component of angular momentum
along q and parity remain good quantum numbers but ! is no
longer sharp.

For simplicity, we first consider the zero momentum states
q = 0, so that ¢ can be expanded as

Y(ry, 1)) = p(p) = 2 @e® P = > ae ek (2-4)
k 3

In (2-4), the sum is restricted to the available states (¢, > 0).
Since the factors e®'" and e~™'*2 can be thought of as single-
particle states of momentum k and —k, we see that the pair wave
function is a superposition of configurations in each of which a
definite pair state (k, —k) is occupied.
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To find the zero-spin eigenstates of the pair, we write
Schrodinger’s equation as

(W — Hy)p = Vi (2-5a)
and from (2-4) one has
(W - 2¢)ax = > Vigeay (2-5b)
<
where the matrix element V. is defined by
Viee = <k, —k|V|K', =k (2-6)

In Figure 2-1 a typical scattering process caused by V is
illustrated. .

While the Schrodinger equation (2-5b) cannot be analytically
solved in general, the solution is immediate if V. is taken to be
a factorizable potential V.. = Awg.*w,. More generally, if the
system is isotropic Vy can be expanded into its partial wave
components

® 1
Vi = Z Vi(lk|, [k')) Y ™(2) Y, ™(8y) (2-7)

1=0 m= -1

-k

FIGURE 2-1 A typical transition occurring in Cooper’s problem in
which one pair of electrons interacts above a quiescent Fermi sea. The
center-of-mass momentum of the pair is chosen to be zero in this
drawing.
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and the ([, m) eigenstates of the pair can be determined if ¥, is
taken to be factorizable,

Vi(lk|, [K']) = Apohwe.t* (2-8)
In this case we have from (2-5b)
(Wim — 2¢0)a, = Auwy! Z wy-*a, (2-9a)
&
where
A = Ym () (2-9b)
Equation (2-9a) can be written as

Aw,'C

= Pk 9.
ak I'V‘m - 2€k (-, loa)
where the constant C is defined as
C = Z w,-t*a,. (2-10b)
&

By substituting (2-10a) into the definition (2-10b) one obtains
the equation

1 =X Z |w,c'|_2 Wl—_ﬂ; = \O(W,,) (2-11)
determining the energy eigenvalues 1W,,. If we work in a large
but finite box the single-particle energies ¢, form a discrete set
so that when I¥ passes from below to above 2¢,, @(I) jumps
from — oo to 0. As W moves toward the next higher value of
2¢,, (W) again approaches — oo and jumps to + o as W passes
through this higher value. . The function @(W) is shown sche-
matically in Figure 2-2. As I passes through the origin to
negative values (i.e., the region of bound states) @(I¥) increases
from — oo to zero as shown. The eigenvalues W, are given
by the intersections of @(I/) with the constant function 1/A;,
as shown for both positive (repulsive) and negative (attractive)
A While the eigenvalues in the continuum are trapped between
the unperturbed energies 2¢, and approach the unperturbed
energies as the size of the box goes to infinity, a state is bound
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split off from the continuum for an attractive l-wave potential,
as shown in the figure. For the simple case

1 O<eg<w
_’ = k ¢ 2‘123»
Lk {0 otherwise ( )

and A, < 0, the binding energy |W,,| of the pair in the split-off
state is given by

1 N0) []W,ml + ch]
— = lo (2-12b)
DR L

or

2w,

5 (2-12¢)
oxp [N(O)IM] -

We have assumed the density of states N(e,) is slowly varying
in the interval 0 < ¢, < w, and have approximated it by N(0),
the density of single-electron states of one-spin orientation,
evaluated at the Fermi surface. From (2-12c) one has for weak
coupling [N(0)| | « 1]

[ Wi =

2
7 ~ - )
I" lmI = 2wc exp [ N(O)ll\[l] (2 138.)
while for strong coupling [N (0)|A;| > 1] one obtains
[ Win| = N(0)|A]w, (2-13b)

D(Iv)
1/A, > 0 \ \ l

1A <0 . 0

(R
bound state)\

FIGURE 2-2 A plot of the function @(1¥") [see (2-11)] which determines
the eigenenergies in Cooper’s one-pair problem. For a repulsive
interaction (A; > 0), all states are trapped in the contihuum, while for
an attractive interaction, a bound state is split off.

..__
=\
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From (5-13a) we see that the binding energy is an extremely
sensitive function of the coupling strength for weak coupling;
however, a bound state exists for arbitrarily weak coupling so
long as the potential is attractive near the Fermi surface. This
important result was discovered by Cooper,*! who suggested that
the instability of the normal phase, because of pairs of electrons
entering this type of bound state, was associated with the occur-
rence of the superconducting phase.

Earlier work of Schafroth, Blatt, and Butler (SBB)*? is
closely related to Cooper’s discussion. Schafroth 3 had suggested
that the superconducting state might correspond to a Bose-
Einstein condensation of pairs of electrons into localized bound
states. An attempt to develop a theory along these lines was
made by SBB using what they call the quasi-chemical equilibrium
approach for evaluating the partition function of the system.
Owing to mathematical difficulties, they were not able to carry
out calculations based on their general formulation for any model
which exhibited superconducting properties. For a qualitative
picture they suggested a model with localized pairs such that the
size of the pair bound state is small compared to the average
spacing between pairs. The bound pairs would presumably be
capable of translational motion relative to the other pairs and
one would obtain a continuum of Bose-Einstein excitations above
the ground state without an energy gap, in contrast with the
pairing theory. If the pairs were indeed well separated they could
be treated as independent and Cooper’s discussion would be
appropriate. It should be pointed out, however, that, subsequent
to the work of Bardeen, Cooper, and the author, Blatt and
Matsubara extended the Bose condensation approach to give the
results of the pairing theory.

Actual superconductors differ in a fundamental manner from
a bound pair model in which the pairs are either well separated in
space and/or weakly interacting. As we shall see below, there
are on the average about one million bound pairs which have their
centers of mass falling within the extent of a given pair function.
Thus, rather than weakly overlapping pairs, one has just thereverse
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limit, very strongly overlapping pairs. As we mentioned above,
it is surprising that one can meaningfully treat such a system in
zero order by including only dynamical interactions between mates
of a pair and neglect all but the Pauli principle restrictions when
treating interactions between the pairs. It is intended that the
discussion below and in the following chapters will help clarify
this point.

Returning to the one-pair problem of Cooper, it is interesting
to see how the energy of the bound state varies with the center-
of-mass momentum %q. If we assume only the s-wave ([ = 0)
part of V is important (as appears to be the case except for the
crystalline anisotropy effects), one finds that the binding energy
W(q) satisfies
1

ql — €kiqi2 T €k-gq/2

1= |X Z L4 (2-14)

where |k + /2] and |k — q/2| are required to be greater than kg,
and the sum is to be cut off at ¢, = w,. For small q one finds

vph
Wl = || - 24 (2-15)

where

|Wo| = 2w,

o< [ -

asabove. Thus, the pair energy increases linearly with the center-
of-mass momentum in the limit q — 0, rather than as ¢2, as one
might expect. As Cooper pointed out, the drift of the pair with
respect to the noninteracting Fermi sea strongly reduces the
binding energy. of the pair due to the reduced density of low-
energy states available to the pair. This effect dominates the
¢? increase of kinetic energy for small q.
If [W,| is imagined to be of order kT, (2-15) shows that the
pair would have lost most of its binding energy when
g~ Lha—i‘ ~ E—T:lc,', ~ 10% kg ~ 10*cm 1 (2-16)

This number is roughly numerically equal to the reciprocal of
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Pippard’s coherence length £, ~ 107%cm,38 about which we
shall have more to say. If one calculates the pair function ¢(p)
from (2-4) and (2-10a) one finds the size of the bound state is of
order {;. Thus, one would be required to have an extremely small
density of bound pairs if an isolated pair model were to be appro-
priate. In fact, the density would be so small that the predicted
N-S energy difference at zero temperature would be many orders
of magnitude too smali to agree with experiment.

Thus far 'we have considered only the singlet spin state of the
bound pair. If there is a strong attractive odd ! potential, the
triplet state will have the largest binding energy and one might
expect the pairing in the superconducting state to be in a triplet
state. There is no experimental evidence to support other than
singlet pairing at present.

In closing this section we emphasize that the single-pair
model exhibits a continuous spectrum above the ground state,
without an energy gap.

2-3 LANDAU’'S THEORY OF A FERMI LIQUID

Looking back at Cooper’s argument, one might raise several
objections to the conclusion that the bound state in the two-
particle problem has anything to do with the occurrence of super-
conductivity. For example, one knows that Coulomb and
phonon interactions between electrons in the normal state lead
to a correlation energy of order one electron-volt per electron,**
compared with the negligibly small binding energy W ~ 10~% ev
of a bound pair. Is it not possible that the strong correlations
between all the electrons in the normal state will necessarily
lead to fluctuations which break up the weakly bound state of a
given pair of electrons? In addition, even if such a bound state
could exist in a metal, would not the strong overlap of the pairs
required to fit the observed condensation energy lead to inter-
actions which would destroy the concept of bound pairs?

In answering the first objection, it is important to recognize
that Landau's theory of a Fermi liquid *° gives a good account of
the low-lying single-particle excitations of the normal state. In
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this theory, the excited states of a normal metal are placed in
one-to-one correspondence with those of a free-electron gas. In
Landau’s theory, one asserts that the essential effect of the inter-
actions between the electrons in the normal state of a metal is
to shift the effective mass of an electron (now called a *‘quasi-
particle’’) by an amount which is observed to be of order 10 to 50
per cent. An important feature of the theory is that a quasi-
particle, as opposed to a ‘“bare’’ electron, is a stable excitation in
the immediate vicinity of the Fermi surface (at sufficiently low
temperature). There is, however, a coupling between quasi-
particles which arises from interactions neglected within this Fermi
liquid approximation. This residual coupling leads to super-
conductivity.

The basis for Landau’s theory has been extensively investi-
gated and one knows that the theory is correct in all orders of
perturbation theory*® starting from the noninteracting system.
The theory no doubt has a wider range of validity than that of the
perturbation series itself, although its exact limitations are not
known at present. Empirically, Landau’s theory works very well
in the normal state.

The remarkably small energy difference between the normal
and superconducting states of a metal (10-8 ev per electron)
strongly suggests that there is only a subtle shift of the electron—
electron correlations between the two states. Since Landau’s
theory gives a good account of the normal state, it is reasonable to
use the complete set of wave functions given by this theory as a
basis for constructing the wave functions of the superconducting
state. This procedure is particularly appealing because the super-
conducting wave functions primarily involve normal state con-
figurations in which quasi-particle excitations are present only
near the I'ermi surface. However, these are just the configurations
which are best described by the Landau theory. Therefore,
Cooper’s result is to be understood in the sense that his two-
particle problem is actually a two-quasi-particle problem.

A difficulty with the above approach is that one knows little
about the interaction between quasi-particles in the normal phase
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from an experimental point of view. While the quasi-particle’s
effective mass involves the forward scattering amplitude of two
quasi-particles, the effective mass also involves band-structure
effects which are difficult to estimate accurately. More important
is the fact that one needs the interaction for finite momentum and
energy transfer so that one is forced to estimate the interaction
theoretically. While this problem is not completely settled at
present, it appears that one understands the essential features of
the interaction, the remaining complications arising primarily
from detailed crystalline effects (see Chapter 7).

In regard to the second objection mentioned above, it is true
that the simple picture of bound pairs of electrons forming the
ground state of the superconductor is impaired by their great over-
lap. Nevertheless there remains the strongly correlated occupancy -
of a given quasi-particle state (say k 4 ) with its mate (say —k|)
as in Cooper’s problem. Interactions between quasi-particles
which tend to break up this correlated occupancy are presumably
already included in Landau’s description of the normal state.
Thus a simplified model in which one includes pairing correlations
between otherwise noninteracting quasi-particles is not at the
outset an unreasonable starting point. It is this point of view
Bardeen, Cooper, and the author took in constructing the micro-
scopic theory of superconductivity.

2-4 THE PAIRING APPROXIMATION

We saw above that for a translationally invariant normal
system carrying no current, the q = 0 pair state is the most un-
stable, in the sense that it is the pair with the largest binding
energy W. In Chapter 7 a time-dependent treatment of the
normal state instability is given and one finds the greatest growth
Tate is for q = 0 pairs, in agreement with Cooper’s result. Thus it
is natural to solve the reduced problem in which interactions are
considered only between electrons of opposite momentum. One
hopes that the resolution of the strongest instability will modify
the system so as to remove the q # 0 pair instabilities as well.
This is exactly what happens. We restrict our attention to
pairing electrons of opposite spin orientation.
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We shall use the formalism of second quantization to describe
the interacting electron system; this scheme is reviewed in the
Appendix. The creation and destruction operators for electrons
of wavevector k and z-component of spin s (4 or | ) are denoted
by c.* and c,, respectively. They satisfy the usual Fermi
anticommutation rules. The Hamiltonian for the reduced problem
of the q = 0 pairs is

Heq = Z €ys + Z V iy * by (2-17)

ks kK
where the pairing matrix element V., is given by
Vi = <K', —E'|V|k, —k> (2-18)
and the operator b,* creates a pair of electrons in the single-
particle states k¢ and —k |, that is,

bt = clgt+c—kl * (2-19)
b = C_yiCit
This type of Hamiltonian forms the basis of the theory of super-
conductivity proposed by Bardeen, Cooper, and the author.®
Further argument for concentrating on these particular inter-
actions in describing the ground state and the low-lying excited
states are given in the original paper by Bardeen, Cooper, and the
author and in a review article by Bardeen and the author.® There
it is argued, on the basis of phase-space considerations as well as
effects due to the antisymmetry of the wave functions, that the
q = 0 pair state should be macroscopically occupied in cases
where the superfluid momentum density is zero (although v, need
not be zero in the presence of magnetic fields). We expect the
matrix element V., to be predominantly negative near the Fermi
surface for superconductivity to occur. ~As we shall see in Chapter
7, this attraction is due to the ions overscreening the Coulomb
repulsion, thereby reversing the sign of the effective interaction.
While (2-17) is written in terms of bare single-particle operators
¢y, the reduced Hamiltonian can be formally viewed as a model
Hamiltonian describing residual interactions (V,.,) between the
-quasi-particles in the normal phase as discussed above. Since the
pairing correlations constitute a fractional change of only ~10-8
in the total correlation energy of a metal, it is clear that this more
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liberal interpretation of H 4 must be adopted. When the quasi-
particle picture of the normal phase excitations is insufficient, as in
lead and mercury, other techniques must be used in treating the
superconducting phase (see Chapters 6 and 7). Note that the
form of H_.4 depends upon the choice of pairing, as discussed in
Section 2-1.

Since the pairing interaction maintains the pairing condition,
it follows that the eigenstates of H, 4 can be labeled by those
states k, s which are occupied, their mates —k, —s being
unoccupied. This labeling of states leads to a one-to-one corre-
spondence of the eigenstates of H 4 with the eigenstates of a
noninteracting Fermi gas (or the normal state). As we shall see,
if excitations happen to be in states k4 and —k/ , special care
must be taken so that these configurations are properly orthogonal
to the ground-state wave function.

It is clear that if V is attractive, the ground state of H .4 has
no pair state (k4, —k | ) occupied by a single electron. 1In this
case the operator n,; + n_,, can be replaced by 2b,* b, that is,
twice the pair occupation number. The reduced Hamiltonian is
then

H.° = Z 2e,b Ty + Z Vb * by (2-20)
K k&

It might be argued that eigenstates of H_4° follow immediately
by forming new operators B, which are linear combinations of the
b,'s such that H 4 is of the form Y, €,B,*B,. This argument is
incorrect. If theoperators b, and b,* described true Bose particles
(rather than pairs of fermions) the B,’s and B,*’s would also
describe Bose particles and the ground state would be formed by
placing all the bosons in the lowest state. Rather, one finds by
direct calculation the commutation relations

[by, b *]1 =0 for k # k' (2-21a)
B, b "1 =1 — ey + n_yy) for k = k’ (2-21b)
and i

[bk’ bk'] =0= [bk+’ bk'+] (2-210)

These are not of the form required by Bose-Einstein statistics.
The factor (n,; + n_y;) in (2-21b) represents the effect of the
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Pauli principle acting on the individual electrons forming the pair.
Perhaps it is simplest to view the “ pairon’’ operators b, and b, *
as satisfying Bose-Einstein statistics for k # k" and satisfying the
Pauli principle b,*2 = 0 = b2 fork = k'. Itisthe latter relation
which ruins a simple Bose gas picture.’

In attempting to find a variational estimate of the ground-
state energy and wave function of H .4, the author tried to adapt
the intermediate coupling approximation of Tomonaga, familiar
in the coupled meson-nucleon problem and the polaron
problem.%8-4% In these problems one assumes that successive
bosons (mesons or phonons) are emitted into the same orbital state
(about the proton or the electron, respectively). The form of the
orbital state ¢ and the weight 4, of the N/2 boson state are then
determined by minimizing the system energy. Lee, Low, and
Pines*%® simplified the procedure for the polaron by assuming
what is equivalent to a parameterized form for the weights 4,.
Their wave function, after a canonical transformation has been
made to eliminate the electron’s coordinate from the problem, is

|¢0>a n eyk(ak* +a_ ,‘)|0> (2_22)
k

where the a*’s are phonon creation operators. The function g,
is essentially the Fourier transform of the orbital wave function ¢
of the phonons surrounding the electron.

The application of this physical idea to superconductivity is
complicated by several features. First, the ‘“pairon’ operators
do not truly satisfy Bose statistics and, second, the number of
electrons is a definite number N in our system, rather than being
a probability distribution |4|% of finite width about the value
N,y. The author tried to describe the ground state of H .4 by

[hover [ T e [0y = [T (1 + gibi*)|0) (2-23)
k k

where we have used the fact that b,*2 = 0 in expanding out the

exponential. The normalization integral is easily seen to be

ooy = H (r+ |9k|2) (2-24)

k
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so that
1 bt

o> = TT oy |0 (2-25)
is a properly normalized state. By expanding out the infinite
product one sees that |f,> has a nonvanishing amplitude for all
even numbers of electrons, 0, 2, 4,.... However, by choosing g,
appropriately the mean number of particles described by |¢,)> can
be adjusted to be the required number ¥,. Asin the grand canon-
ical ensemble, one can show that the width of the distribution is
of order N,'? so that particle number fluctuations cause no
difficulty in a large system.

Since we want to minimize the ground-state energy subject
to. the constraint

<¢0|Noﬁ|l)[l0> = <‘.l‘o| ;7Lks|¢0> =N, (2-26)

we use the Lagrange multiplier scheme and minimize
W = 3<¢'OlHred — pNop|ho) = 0 (2-27)

On combining (2-20) and (2-27) one finds the quanﬁity to be
minimized is®

W=> 2e — pud + D Vit Ve (2-28)
k k. Kk’
where u, and v, are defined by
1
= 2-29
e (1 + g®)'2 (2-292)
and
S/ S 2-29b
TN (2200
thus _
w? + v2=1 (2-29¢)

We have assumed phases are chosen so that V., and g, are real
quantities. On minimizing W one finds

1 —_
W = (1 o “) (2-30a)

1 € — U
2 _ _ Kk -
vl = 3 (1 z, ) (2-30b)
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and

UV, =

—k 2-30
oF, (2-30c)
where £, is defined by

E, = +[(ex — p)* + 4512 (2-30d)
As we shall see, E, turns out to be the energy required to create a
quasi-particle of momentum k in the superconducting state. The
“energy-gap’’ parameter 4, satisfies the integral equation

4,
b= = 3 Ve g (2-30¢)
One must simultaneously solve (2-30e) and the constraint condition
<¢’0|Nop|¢’o> =2 Z v? = Ny (2-31)
K

to determine 4, and p.  If the single-particle energy e, is measured
relative to the Fermi energy in the normal state, p is just the shift
of the chemical potential between the normal and superconducting
states. For a system possessing particle-hole symmetry in the
vicinity of the Fermi surface, one finds p = 0. In general, this is
an excellent approximation and we shall assume p = 0 in solving
for 4,. Once the energy-gap equation (2-30e) is solved, one can
obtain the energy difference Wy, — Wy between the N- and S-
states by inserting the expressions for u, and v, back into (2-28).
An explicit solution of (2-30e) is easily obtained if V,,. is approxi-
mated by the s-wave potential

Ve = {— V<0 _for |e| and |e| < w, (2-32)

0 otherwise

so that V,,. is attractive-in a shell of width 2w, centered at the
Fermi surface. In this case one finds

_ [4, for |e| < w,
A = {0 otherwise (2-33)
where
w, 1
4, = — T = 2w, exXp [__(O)_V] (2-34)

sinh [W]
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The right-hand equality holds in the weak-coupling limit
N(0)V Z }. By substituting this result into the expression for
the ground-state energy (2-28) and subtracting the ground-state
energy of the normal phase (i.e., the unperturbed Fermi sea in
this model) one finds the condensation energy

1 2
Wy — W5 = 3 N(0) 442 = 2N(0)w, 2 exp [—_’EO)—V] (2-35)
Since thermodynamics* gives the relation
IVN - IVS = —8_77‘— (2‘36)

where H, is the critical magnetic field for destroying super-
conductivity at zero temperature, we find

Hy = 2[xN(0)]*2 4, (2-37)

By using experimental values of N(0) and 4, one finds values of
H, which are in reasonably good agreement with experiment.®: 6

We note that the condensation energy (2-35) is not an
analytic function of the coupling constant N(0)V so that a
perturbation treatment starting from the normal phase could not
give this result unless one sums an infinite number of graphs of a
selected class.5°

. Returning to the ground-state wave function (2-23), we
would expect on the basis of the Tomonaga scheme that the
projection of |¢;,> onto the N-particle space would lead to a
function (in the coordinate representation) of the form

{71y 813 Ty 895+ - - Ty Sw|hod> = Yon
= A p(r; — Ty)x129(f3 — Ty)xas " P(Ey-1 — Tx)xn-1,n (2-38)

The function g is the relative coordinate wave function of a pair
(the same function for all pairs) and x,; is corresponding spin
function ¢ (7) | (j). Thus within the pairing approximation all
pairs are in the same state in the ground-state wave function.
The operator & in (2-38) antisymmetrizes the entire function.
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This result, first noted by Dyson, can be obtained by taking the
inner product of |¢,) with the basis vector

[Ty, 815 Py S5+ - - Ty, Sy = i, (o s, F(rg)- - i, *(ry)|0)
and expanding the ¢*’s in terms of the creation operators ¢ *

by
gy, t(r) = D e %ng, (2-39)
k

The N-particle state (2-38) has been discussed by Blatt®!? in the
case where ¢ is a general function of r; and r,.  This generalization
corresponds to considering pairings between states other than k 4

and -k .
The orbital function ¢ in (2-38) is given by

P(p) = D, Fue™'e (2-40)
k

thus g, is the Fourier transform of ¢(p), as stated above. While
there is a formal similarity between (2-38) and the wave function
for a condensed Bose-Einstein gas of pairs of electrons with
opposite spin, the antisymmetrization operator & is all important
in real superconductors. In fact, the (unnormalized) ground
state of the noninteracting Fermi gas can be written in this form

with
1 k| <k

I = {O ikl < IC/ (2'41)
so that antisymmetrization removes the correlations between
opposite spin electrons implied by ¢ in this case. In the super-
conducting state g, differs from (2-41) only for values of k in the
immediate vicinity of the Fermi surface. This difference is
reflected in a long-range tail of ¢(p) which increases the probability
of two antiparallel spin electrons being near each other out to a
range ¢, = fivpfmr 4, ~ 10~ * em, that is, Pippard’s coherence
length. "As we mentioned above, this quasi-bound state has such
a long range in space that on the average about 108 other pairs
have their centers of mass in this region. [In this estimate
electrons deep within the Fermi sea have not been counted since
they behave essentially as if the material were in the normal
phase.] Thus an isolated pair picture has little meaning here.
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2-5 QUASI-PARTICLE EXCITATIONS

To find the excited states of the BCS reduced Hamiltonian
(2-17) we consider adding an electron to the system in the state
pt (its mate —p | being empty). The only effect of this process
is to block the pair state (pt, —pJ ) from participating in the
pairing interaction (due to the Pauli principle). Since —p| is
assumed to be empty, the electron in p + cannot be scattered out
of this state, due to the form of the pairing interaction (2-20).
Of course, residual interactions not explicitly included in H .4 will
allow this process to take place; however, these interactions appear
to have a small effect on the excitation spectrum (since they are
implicitly included’'in the quasi-particles of the normal state).

The quasi-particle energy is defined to be the total excitation
energy of the system when the extra electron is added to the sys-
tem. From (2-28) we see that by deleting the pair state (p 1,
—p{ ), the energy of the interacting pairs is increased by

—2¢,v,% — 2[ > V,k,uk,vk.]u,v,, (2-42)
.k'

To this we must add the single-particle energy e, of the added
electron. The total excitation energy is given by

(1 = 20,21 + 24,uy, (2-43)

where we have used the gap equation (2-30e) to simplify the
interaction energy term. If we use the results (2-30) for u, and
v, (with p = 0), we find the excitation energy
2 2

W = Wo = GEP,, + ‘115’,, E, (2-44)
Thus, the parameter E, defined by (2-30c) is just the energy
required to create a quasi-particle in state p4. A plotof E, vs. p
is given in Figure 2-3. The minimum energy required to add an
electron to the system is 4,, = 4y ~ 107® — 10"* ev. In prin-
ciple the chemical potential 1 should be shifted a small amount to
ensure (N> = N, + 1 in the excited state; however, this correc-
tion has negligible effect in a large system.
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Ey

ALY Ay ~ 107K,
ke ! k
FIGURE 2-3 The quasi-particle energy E, in the superconducting
state plotted as a function of the wavevector k. The energy
E,. = (&2 + 4,2)"? differs from the corresponding energy || of the
normal state only in the vicinity of the Fermi surface. The energy gap
observed in experiments which do not inject or withdraw electrons
from.the system is 2 4,, a minimum energy 4, being required to create
each quasi-particle produced in a one-electron transition. Note: All
energies are measured with respect to the Fermi energy.

In the above calculation, nothing has been said about p being
above (or below) the Fermi surface. Since the pairing interactions
smooth out the jump in the single-particle occupation numbers
{n,.> in the normal phase at the Fermi surface, as shown in Figure
2-4, there is a finite probability of being able to add an electron
to the system in a state p below the Fermi surface. The excitation
energy is positive in this case as it is for |p| > p,. Inan analogous
way one can calculate the energy required to remove an electron
in the state p{ from the ground state. One again finds the
energy E,(>0) regardless of whether |p| is greater or less than the
Fermi momentum.

Therefore, the minimum energy required to create a single-
particle-like excitation from the superconducting ground state is
24,, 4, for removing an electron from one state and 4, for placing
it in another state.

It is important to realize that the states created by adding an
electron to |yy> in state p 4 or removing an electron from state
—pl in |oy> are identical within the pairing approximation
except that the number of superfluid pairs in the two states
differs by unity. If instead of |¢oy) we work with the state |ify>
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(2-23), which represents an ensemble of ground-state wave
functions averaged over systems with --- N — 2, N, N + 2...
particles, these two states generated by c,,;* and by c_,, are
truly identical, aside from a normalization factor. This result
is established by noting that

cpl * I‘/’D>

Cor* I—I (e + veb *)|0)
k

= Uyt kl_[ (ue + veb,%)|0> (2-45a)
“p

Up| 1

and

c—pll‘/‘o> = C_p n (e + Ukbk+)|0>
I3

= =61 [] (w + b, *)|0> (2-45b)

k#p
= _vp|¢pt>
where |i,,) is the normalized one-quasi-particle state
[o1> = cor* T1 (w + by *)|0) (2-46)
k#p
4
() =
\!
N}
1N —_
kF i k
le—

" 4
~s 0
=1k
(Ep) F
FIGURE 2-4 A plot of the average occupation number (> of the
Bloch states in the superconducting state if one makes a single-particle
model for the normal state. The occupation number in the normal
state, shown hereas | for k¥ < krand Ofork > ki, is also rounded due to
normal state interactions, although a discontinuity of {n,)> presumably
remains. The " smearing" of the Fermi surface by the pairing correla-
tions occurs only over a range ~ 10~ %k about the Fermi surface.
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An important mathematical simplification occurs if one
considers the linear combination

Yor 7= et = vpe_ g, (2-47a)

of the two equivalent operators. From (2-45) we see that y,;*
applied to |o> creates the normalized state |¢,;),

pt+|¢’o> = |¢p1> (2-47b)
The orthogonal combination
Y_py = UpCopy + VpCpr” (2-48a)

when applied to |¢,> leads to the null-state vector (not to be
confused with the vacuum |0})

Y-piho> = 0 (2-48b)

The relations (2-47a) and (2-48a), and their Hermitian conjugates

Ypr = UpCpp — VpCopy ¥ (2-49a)

Yoot = " 4 Ve (2-49b)

were introduced independently by Bogoliubov 52 and by Valatin.3

These relations are known as the B-V transformation. As the

notation suggests y,,;* and y_,, * create quasi-particles in states

pt and —p/l, respectively, while y,, and y_,, destroy quasi-
particles in these states. Thus one has the relations

yot ") = |dprd (2-50a)
o o> = 1o (2-50b)

Yotlthod = 0 (2-50¢)
y-pilfhoy =0 (2-50d)

The last two relations are equivalent to the statement that |y,

is the vacuum state for quasi-particles. It follows by direct

computation that the quasi-particle operators satisfy Fermi-Dirac
statistics:

(Yos: Yo ¥} = 8pp 8o (2-51a)

(Voo vorst = {¥os "1 yes*} = 0 (2-51b)

and can be thought of as leadlng to excitations that form a weakly
interacting Fermi gas.
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It is important to remember that the y and y *’s must operate
on the ensemble-averaged states, e.g., |,>, not on the N-particle
projection of these states |¢oy>. If one thinks of y,,* as acting
on an N-particle state, it would appear that a quasi-particle is a
linear combination of a particle and a hole. This is not correct.
In the N-particle system a quasi-particle of momentum p and
spin s is nothing more than an electron definitely occupying the
state p, s with its mate —p, —s being definitely empty. In
configuration space, the N + 1 particle wave function correspond-

ing to |, is

‘l’pl(rl» S Tyt 'SN+1)
= A @'(r; — Io)x129'(r3 — T)xaa -
@' (ty_1 — Tdxn—-1.88XP (iP " Tyy1) T wer  (2-52)

where ¢'(p) is given by (2-40) with the term k = p deleted.” For
some purposes it is convenient to discuss the excitation in terms
of the empty state —p, —s and call the excitation a ““hole.”” In
other cases one prefers to concentrate on the occupied state p, s.
The wave function for the pair state (p 1, —p| ) is the same in
either case regardless of the words used to describe it. However,
one must keep in mind that the number of superfluid pairs differs
by unity in the two descriptions of the same state.

An excited state having quasi-particles in k;s;, kysy- - -k,s,
is given by

l¢k,s,.k2sz.---k,,s,,> = Y5, +)’k2s2 AR *Ykns, +|O> (2-53)

The excitation energy is Ey g, +Ey,s,+ - - Ex ;.- The Bogoliubov—
Valatin operators have the important property that the excited
state

l‘)l’pt. —pl‘> = '}'pl+'}’—pl +I‘r/’0> (2-54)

is orthogonal to the ground state. This is not true if one generates
the excitations by applying c,;*c,;* to |,>. In the original
BCS treatment these doubly excited pair states (called “‘real”
pairs as opposed to the ““virtual” pairs occurring in the ground
state) were treated separately and were represented by the factor

(0p — ub,%) (2-55)
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in the wave function. However, this is just the factor one
obtains by expressing the y*’s in (2-54) in terms of the cand ¢*’s
and simplifying the factors involving b,* in the wave function.

It has been shown by several groups®* that for H_, the
variational solutions for |¢,)> and the quasi-particle spectrum are
exact in the limit of a large system so long as the number of
excitations present is small compared to the number of electrons
participating in the pairing interactions. In the next section we
shall see how these results are generalized to finite temperature
where the latter condition is not satisfied.

2-6 LINEARIZED EQUATIONS OF MOTION

In the original work of Bardeen, Cooper, and the author a
complete discussion of the thermodynamic properties of the
superconducting state was carried out within the pairing approxi-
mation. As for T = 0, their treatment of the system described
by H, .4 is exact in-the limit of large volume. In agreement with
experiment, they obtained a second-order phase transition at T,
and an exponentially vanishing electronic specific heat for
T z 1T, For a discussion of this work and its comparison with
experiment, the reader is referred to the original BCS paper®
and to a review article by Bardeen and the author.®

Rather than repeating the BCS finite-temperature treatment,
we would like to illustrate an alternative procedure based on a
linearization of the equations of motion for the single-particle
operators c¢,;* and c_,;. The discussion follows closely a treat-
ment given by Valatin,®® and leads to results identical to those

of BCS.
To fix ideas, we begin with the reduced Hamiltonian (2-24)
Hyea = Z €xllis + Z Vi * by (2-17)
k.s’ k, Kk

(although, owing to our approximations, the scheme gives

essentially the same results if the full two-body interaction is

considered). The basic idea is to find eigenoperators, say p,*

and p,, which satisfy

[Hradr IJ-av+] = 'Qa.u'a+ (2-568.)
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and the Hermitian conjugate relation

(Hrear ] = — L5125 (2-56b)
where the 2's are positive quantities. It follows that the eigen-
operators p,* and p, create and destroy excitations of the system
since by applying the operator equation (2-56b) to the ground
state |y, of H .4 we find

[Hred' :u'a+]|l/J0> = (Hred - ”"O)I'La*-ll)l'0> = Qa["'(r+l¢0> (2'57)
Thus |,> = p,* o> is an eigenstate of H_, with excitation
energy £,. Inan analogous manner one finds that u; lowers the
energy of the system by £, from which it follows that the ground
state (or the excitation vacuum) satisfies

tolo> = 0 (2-58)
for all B. Operators which approximately satisfy (2-56) pre-
sumably give an approximate description of the excitations.
Except in extremely simple systems, the exact operators p,* can
neither be found nor are of great interest since physically interest-
ing probes (i.e., external fields, injected particles, etc.) create
complicated superpositions of such excitations (see Chapter 5).

Suppose we try to find an operator which adds a quasi-
particle of momentum p and spin { to the ground state of H.4.
‘The simplest fermion operator which will add this momentum and
spin to the system is c,; *, so we try

[Hrear i t] = epcpt+ + z Vk'nbk‘*‘C-Pl (2-59)
e

In the absence of the interaction c,;* satisfies (2-56a) with the
excitation energy £, = €,. The *‘excitation’ energy is just the
energy required to add an electron to the system in state p. In
the presence of V, c,;* is no longer an eigenoperator. In fact
we must go out of the operator subspace of ¢,;* and include
products of the forms ¢*cc in constructing p,*. When this more
complicated guess for p,* is commuted with H 4, still higher
order polynomials in ¢* and ¢ appear. In most cases the series
continues on to infinite order, just as the series of equations
determining the Green’s functions, which are discussed in Chapter
5. To obtain a tractable problem we must cut off the chain at a
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certain order by approximating the commutators. Whether the
termination is meaningful clearly depends on the physics of the
problem. Fortunately, the interactions in H 4 are sufficiently
simple that one can cut off the series by including in a sense only
a linear combination of c and ¢*.

By taking matrix elements of (2-59) between the N-particle
ground state |0, N> and the N + 1 particle state |[p 1, N + 1)
with one quasi-particle present in state p {, we have

(2, — & Xp1t, N + 1lc,; |0, N>
=2 Vet N + Uyl N + 2> (e, N + 2|0 %[0, ND
K
: (2-60)

where the sum is over the eigenstates of the N + 2 particle
system. If we measure all energies relative to the chemical

potential, p = lim (Wg y,.n — Wy y)/n, where n » 1, 2, is the
n/N—0

energy required to add-a quasi-particle in p{ to |0, N). We
argue that for a large system the intermediate state sum is given
by retaining only the N + 2 particle ground state. It is not that
the matrix elements of ..+ for all other « are small compared to
the one for « = 0, but as we shall see the matrix element of
¢_,, entering the equation is small when the « # 0 matrix element
of by.* is large, and therefore the product is negligible. Thus
(2-60) becomes

(2, — &)F, = > V,,B,G, (2-61)
where y '
Fp=<pt, N+ 1e, *|0, N (2-62a)
G, =<{pt,N + 1llc_,,|0,N + 2 (2-62b)
By = <0, N + 2[b,*[0, N) (2-62¢)

Another relation between F and @ can be obtained by taking the
matrix element of (H .4, ¢_,,) between the states [0, N + 2) and
|pt, N + 1). If the intermediate state sum is again replaced
by the single term « = 0, one finds '

(2, + )G, = > V,,B,F, (2-63)
k
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where we have chosen phases so that all quantities are real. The
secular equation for (2-61) and (2-63) is

2, — ¢ 4,
=02 -2 -42=0 (2-64)
4, 2+ & ‘
where the parameter 4, is defined by
4, = - Z VipBi (2-65)

(The matrix element B, is still to be determined.) From equation
(2-64) we find the (positive) excitation energy 2, of the state
|p 4, N + 1) is given by

Q, = +(,2 + 4,2 = E, (2-66)

The negative energy root —E, corresponds to the process in
which a quasi-particle in the time-reversed state —p | is destroyed.
The eigenoperators p,* = y,;* and p; = y_,, corresponding to
the positive and negative energy solutions are of the form
yort = uypyt — vc_, BY (2-67a)
and
y_pi = UC_p + VRept (2-67Db)
The operator R* transforms a given state in an N-particle system
into the corresponding state in the N + 2 particle system; thus
R*|0,Ny = |0,N + 2) (2-68)
and
R*|k,s; N> = |k, s; N + 2
while
R|0,N + 2) = |0, N, etc.
By inserting the eigenvalues back into (2-61) or (2-63) and
requiring that the y* and y’s satisfy Fermi anticommutation
relations it follows that %, and v, are given by

1 €
2o & -69
% =3 (l + E,,) (2-692)
1 €
2 _ _ 2 -69b
Yp 2(1 E,,) (2-690)
u, = 2o (2-69c)



The Pairing Theory of Superconductivity 53

The formal similarity between these results and those of the last
section is complete if we require that |0, N) be the ground state
of the system, that is,

¥51]0, N> = 0 (2-70a)
and

Y0, Ny =0 (2-70b)

Thus, the y*’s create noninteracting fermion excitations from the
“vacuum state’ |0, N).

By inverting (2-67a), (2-67b), and their Hermitian conjugates
to solve for the c-operators in terms of the y’s, one finds from the
definition of B, (2-62¢) the relation

Bk = ukvk = (2'71)

il
2E,
On combining this result with che definition of 4, (2-65) we find
an equation determining the parameter 4,:

4,
4, = -kz V"”EEL,‘ (2-72)

which’is just the energy-gap equation (2-30e). Thus the excita-
tion energies are identical in the two approaches and the quasi-
particle operators differ only by the presence of R.5¢

As in the BCS treatment, it is straightforward to generalize
these results to finite temperature. The only change is that
instead of the ground state |0, N) appearing one has a typical
state |T', N) excited at the temperature 7. All goes through as
above except for the relation (2-71). For T # 0 one has

4y

B, = (T,N + 2[b,*|T,N) = 3L, (L= fer = fori) (2-78)
where f is the expectation value of the quasi-particle occupation
number y, *y, in the state |7, N)>. Since the quasi-particles
are essentially independent fermions (whose properties change
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slowly with temperature) f,, is given by the Fermi distribution
function

1
Ss = FE 1 (B > 0) (2-74)
and
B, = )AE:,‘ tanh =% ﬁE (2-75)

By inserting this result into (2-65) we obtain the finite-temperature
BCS gap equation

Z Vio 3 E’,‘ tanhﬁ—g— (2-76)

This finite-temperature treatment of the pairing theory is
entirely equivalent to the BCS treatment, which, as we mentioned
above, gives an exact account of the system described by the
reduced Hamiltonian (in the limit of large volume). If V., is
approximated by (2-32), 4, is again of the form (2-33) where
4,(B) satisfies

1 we d . i
N(0)F = f —————(52 T 2‘2)”2 tanh {E; (e2 + 402)112} (2-77)
A o 4, B)

As T increases from zero; 4, decreases as shown in Figure 2-5,
vanishing at the transition temperature 7'.. Thus, T is given by

1 9 de €
= ot P 2-78
NV fo € tanh I:QkBTc] (2-78)

do(T)

>

T, T

FIGURE 2-5 A plot of the temperature dependence of the energy gap
parameter 4o(T). Note that 4, vanishes with infinite slopeas 7' — T,
leading to the second-order phase transition.
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In the weak-coupling limit this gives

kgT. = 1.14w, exp [—I\—;(—(-I)WJ (2-79)
so that the ratio 24y(T = 0)/kgT. is 3.52 in this limit. While
this ratio is in reasonably good agreement with experiment for
weak-coupling superconductors,® 18 the ratio is too small to account
for the observed ratio for lead and mercury. It now appears that
temperature-dependent damping effects account for the dis-
crepancy.5?

The free energy of the superconducting state
F, =W, - TS (2-80)

can be obtained by calculating the expectation value of H.,,
with respect to the typical state |7, N) and using the standard
expression

S=—%@ZUH%f«+U—hH%U—fm (2-81)

for the entropy of the quasi-particle (normal) fluid, where f,
is given by (2-74). The energy W, is easily seen to be®

, 1 E,
W, =,2%: Ifkl[fk +3 (l - l;—‘:l) tanhé‘.—)i]

+Zd—ktanh'-3—E-5+2 D e (2-82)
£ 2K,

1Kl < kg

The bulk critical magnetic field H(7') is given by

H2
s = F\(T) = Fy(T) (2-83)

where the free energy of the normal state Fy(T) is given by
(2-80), (2-81), and (2-82) with 4, = 0. H, is plotted in Figure
2-6 for the potential (2-32). The electronic specific heat can be
calculated from

2
Ces = 2kgf° ka(l - fk)[Ekz + gddﬂ] (2-84)
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A

1.0
I - (T/Tc)z
Ha1) 8 e
H(0) g X
0.4
0.2

\

(T|T)?
FIGURE 2-6 A plot of the critical magnetic field versus temperature.

and is plotted in Figure 2-7. The jump of the electronic-specific
heat at T is due to 42 being proportional to (7. — 7') near T,
so that the derivative in (2-84) is discontinuous at 7.

The reader is referred to the literature® !¢ for a detailed
discussion of the thermodynamic properties of the system.

T
FIGURE2-7 A plot of the electronic-specific heat as a function of 7'/T.
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2-7 CONCLUDING REMARKS

Before closing this chapter we would like to make a few
remarks.

1. While there is a formal similarity between the ground
state (2-38) of H.4 and a condensed Bose-Einstein gas, the
analogy must be used with care due to the strong overlap of the
pair functions. As a result of this overlap the excitation spectrum
in real metals exhibits an energy gap rather than a continuous
spectrum characteristic of a Bose gas. If the treatment is ex-
tended to include the .interactions neglected in H,_4 and one as-
sumes all interactions to be of short range, a continuous boson
spectrum, starting at zero energy appears in the energy gap
corresponding to density fluctuations in the electron system. In
real metals these low-lying boson modes are pushed up to the
plasmon energy (~10% x 24,) due to the long-range Coulomb
interaction between electrons so that there are no low-lying
boson modes except for dressed lattice vibrations (phonons) in
cases of physical interest.5®

2. The discussion in this chapter has emphasized states for
which the momentum density of the superfluid is zero, i.e., the
pairing (4, —k}) was treated. If the Hamiltonian of the
electron system were Galilean-invariant, states with finite super-
fluid momentum could be formed by translating the zero-
momentum eigenfunction by an amount g/2 in momentum space.
The transformed wave function would be

P X ,
exp (:2_ Z q ' r;)l)l’O(rlsl’ I‘2'32) coee rNSN)
1=1

= &p(r, — ry)exp [L%z‘)] tila

iqe(ty_, + 1
X - -@(fy_y — Iy)exp [i"(—ng—-—N)J tu-1dn (2-85)

so that the ‘‘center-of-mass” wave function of a pair would go
from the q = 0 state to the plane wave state of momentum q.
For states involving mass flow of this sort, a condensed Bose gas
picture may be helpful; however, one must be cautious in using
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this picture in detailed calculations. In particular since the fixed
ions will create a magnetic field in the moving frame, the function
@ will change its form. Also, if the wavevector q varies appreci-
ahly over a coherence length £, the separation into center-of-mass
and relative coordinates is of questionable value.

3. We have concentrated on singlet spin pairing with ¢
being an s-state in the absence of crystal anisotropy. The prob-
lems of triplet spin pairing and [ # 0 orbital states have been
treated by a number of authors5® and we refer the reader to the
literature for a discussion of these questions. In addition,
pairing of states other than Bloch functions can be easily handled,
since the basic scheme does not rely on the form of the states
being paired.

4. In Section 2-2 we saw that not only the q = 0 pairs are
unstable if we consider fluctuations about the normal state, but
the ¢ # 0 pairs are also unstable. In Chapter 8 we investigate
the stability of the ground state |{,) given by the pairing approxi-
mation. As mentioned above, there are no unstable pair fluctu-
ations about this state. This result is due to the finite energy
required to create from the superfluid the quasi-particles which
one tries to bind together by the residual interactions.

5. In Section 2-6 we stated that the matrix element
(o, N + 2|b,*|0, N) is large not only for the N + 2 particle
ground state |0, N + 2) but that there is another state « giving
a large matrix element. Specifically, the two-quasi-particle state
k4, —k|,N + 2) gives

1
[, =k 4, N + 2o, 10, W] = w® = 5 (1 %) (28
k
compared to the matrix element
4,

2F,
which we retained. For k on the Fermi surface, both of matrix
elements are equal to 1/(2)!/2. However, the matrix element
(pt.N + le_p]kt, =k}, N + 2> which multiplies (2-86)
in (2-60) is zero since c¢_,, does not affect the quasi-particles

<0, N+ 2]b,.*|0, NY| = ww, = (2-87)
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in k4 and —kJ}. On the other hand, the matrix element
{p?t, N + llc_,;|0, N + 2 which multiplies (2-87) in (2-60) is
equal to —v, which is 1/(2)"/2 for p on the Fermi surface. There-
fore we are justified in retaining the single term « = 0 in the
intermediate state sum.

6. While the ground-state wave function |¢,) [see (2-25)]

represents an ensemble average of ground-state wave functions
|hon, for systems having an even number of electrons,

l')l’o): Z ANI'lbON) (2-88)
N(even)

we can obtain |foy)> from |¢g) if 4, is arranged to be of the form
[4ylee. Then

[®> =NZ [Ayle™]bony (2-89)
(even)
and
[l Wow> = 55 [ o=l d (290
N v/ = 5 . 0 P

By our choice of phases (2-32) is just |,%) so that |,®) is
given by
[$0®> = [T (e + €20, b, *)|0> (2-91)
k

that is, a factor of e*® is contributed by each creation operator c¢*.
Therefore the normalized N’ particle ground state is given by

l 2n
D o= ——f e~ WN'e w, + e2*p,. b, *)[0> d 2-92
|¢'0N ZWIAN'I 0 l:[( k kY% )I > P ( )
where the amplitude of the N’ particle state is given by

1 2n . .
IAN"2 = EL e—nN'w I—I (“k2 + e2ka2) dtp (2_93)
k

The probability |Ay.|? is sharply peaked about the average
number N,, having a width® of the order of N,'2. The fact
that the average energy (yo®|Hyq|1}®) is independent of  should
not be interpreted as a degeneracy of the ground state of a physical
N particle system. Since the N — 2, N, N + 2,... particle
systems are completely independent, the average energy of these
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systems should be independent of the relative phase of their wave
functions.

For a large system, whether the physical system has an even
or an odd total number of electrons makes no difference in its
macroscopic properties; thus the wave functions above apply for
any N. The situation is distinctly different for pairing corre-
lations in atomic nuclei, where these differences lead to the well-
known even-odd effects.5!



CHAPTER 3

APPLICATIONS OF THE
PAIRING THEORY

Since the BCS theory was originally proposed, attempts to
justify the pairing correlations basic to the theory have pro-
ceeded along two lines. The first approach has been to apply
the BCS theory to a wide variety of phenomena in superconductors
and check the theoretical predictions of the pairing approximation
against experiment. The second approach has been to treat by
various approximate methods the residual interactions neglected
within the pairing scheme, hoping to show that these residual
interactions introduce no major change in the predicted properties
of the system. Both approaches have enjoyed considerable
success. Owing to the remarkably good agreement between the
pairing theory and a broad class of experimentally observed
phenomena, it would appear that the first approach has success-
fully established the validity of the pairing concept upon which
the theory is based.%- 16

3-1 JUSTIFICATION OF THE PAIRING HYPOTHESIS

In this chapter we shall follow the first approach and review
the calculation of a number of system properties within the pairing

6l
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approximation. In the few cases where a discrepancy hetween
theory and experiment exists, one can often attribute the differ-
ence to limitations of our understanding of normal state effects
(details of band structure, phonon spectra, electron-phonon inter-
actions, etc.). In Chapters 7 and 8 we take the second approach
and discuss several theoretical advances which take proper account
of retardation and damping effects. We also treat certain classes
of residual interactions, neglected within the simple pairing
approximation. Within the framework of these more elaborate
treatments the predicted system properties are essentially in
agreement with those given by the pairing model; where differ-
ences appear, the agreement between theory and experiment is
generally improved by the more elaborate treatment.

3-2 ACOUSTIC ATTENUATION RATE

While the majority of the electron—phonon interaction has
been accounted for in forming the wave functions for the normal
and superconducting states, there remains the part corresponding
to resonant phonon absorption and emission processes. These
resonant processes give rise to attenuation of acoustic waves
(dressed phonons). To calculate the time rate of change of
(N, the number of phonons of wave vector q, and polarization
Ao, we consider a typical state |I) excited at temperature 7'.52
Within the pairing approximation |I) is of the form

= [ T we|[Tearmu]lon e

k, stocc.)
where the quasi-particle operators y,,* are defined as in Section
2-6 appropriate to the temperature T' and act on states with a
fixed number of particles.- The state |0, T of N, electrons is
the vacuum state for these operators, that is,

yis(T)[0, T> = 0 for all k and s (3-2)

The average of the quasi-particle occupation numbers in a small
region 7 of k-space taken about a particular value k is given by the
Fermi distribution

1
> lyetyl > = 2 P > fe (3-3)

kinr kinr kinr
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although the occupation number v, = {I|y,*yi|I> for a given
state k, s is either one or zero for the state vector given by (3-1).
We assume the dressed electron-phonon interaction is of the
form
Hel-ph = Z gpp').(aqzl + a~q).+)cp's+cps (3'4)
PP'sA
where ¢ = p’ — p + K (see Chapter 4). We shall use the golden
rule® to calculate the transition rate (N, , > so that we need
matrix elements of H,_,, between |I) and all states |F) which
are degenerate with |I) and differ from it by having a single
particle change its state and a phonon qgA, either absorbed or
emitted. If the phonon energy-w,, ,, is smaller than the energy
gap 2 4(T), which is the case in most acoustic attenuation experi-
ments, additional quasi-particles cannot be created from the super-
fluid so that only quasi-particle scattering processes enter. The
final states are of the form

|7y = {szs+7p1s‘IQvo|I> absorption (3-5)

+ + iaal
Yous | Vpas@ag o |I>  emission

where q, = p, — p;, + K. Since H,_,, conserves the total num-
ber of electrons (as does y,*vy,), |I> and |F) both describe
states of the N, particle system. The matrix elements are
readily evaluated by transforming (3-4) to the y-representation
(i.e., make a particle conserving B-V transformation). From
(2-67) we find

Cor’ = Up¥pr T+ Yy BY (3-6a)
Cot = UpYpr + VpBy_, " (3-6b)
Copit = ugy ot = vy RY (3-6¢)
Copl = Upy_py — VpRy,* (3-6d)

Since the y’s are linear combinations of ¢’s and ¢*’s it follows that
there are two terms in H,_,, which connect |I) with a given final
state |F); in particular, the factors ¢,,;1%c, ; and ¢c_, ;*c_, ,
lead to the same quasi-particle transition. The matrix elements .
arising from these two factors must be added before squaring the
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total matrix element. Note that if one makes a single-particle
approximation for the normal state, only a single term contributes
in the normal state. This difference is characteristic of the super-
conducting state and appears in most dynamical properties of the
system. The cross terms which enter in squaring the total
matrix element are known as ‘‘coherence effects” and have
important experimental consequences, as we shall see below.
From (3-4) we see that the factors multiplying ¢, *c,; and
€_py *C. 5, are identical so that we are interested in the combina-
tion

Cortepr + Coprte_py = np, P)Myet TYor + vop Tyl
+ mp, P )NyprTy-p TR — yuy_p BY] (3-7)

where we have used the transformation (3-6). The so-called
““coherence factors” m(p, p’) and n(p, p’) are defined by

m(p, p') = upv, + vu, (3-8a)
and

n(p, p') = uplty, — VU, (3-8b)
(We shall meet two more coherence factors I and p below in dis-
cussing spin-flip processes and the electromagnetic response of the

system.) Returning to (3-5), the matrix element for phonon
absorption is given (for s = 1) by

’ <F|Hel-ph|1> = n(PL, Pz)ﬁpl 1(1 - ‘-'pgt)[Nqoi.o]uz g-p‘ p2to (3'9)

where 7, ; and #,,, are the quasi-particle occupation numbers
for the initial state and are either one or zero, as mentioned above.
Ny, 1, is the phonon occupation number for this state. The rate
of absorption of g,A, phonons is then

Waps = 27 x 2 z |gpp'lo|27L2(px P’)ﬁpt(l - ﬁp'?)ﬁqolo
np

x 8By — B, — wgy,,) (3-10)

where the sum is restricted by momentum conservation p’ =
p + qo + K. The factor of two accounts for the absorption by
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quasi-particles of both spin orientations. In a similar way one
finds the emission rate is given by

Wemiss = 27 x 2 g |¥7pp',10|2'nz(P, p,)‘-’p’t(l - ljpt)(]\'rmqaflo + 1)
X S(EP, — Ep — wQMO) (3-11)

so that the net rate of absorption is

_dNQolo — N

@ T

-8

Qo Ay

(3-12)

Qo 4o

where the acoustic attenuation rate is given by
Qgor, = 47 Z Igpp'lolznz(l’: P)pr — Vpr) 8By — Ep — wegy,)
w
(3-13)
and § is the spontaneous emission rate. When the sum is

performed, the occupation numbers can be replaced by their local
average values and one has

Ugr, = 47 Z lgpp'lolznz(p» Pl)(fp - fp') S(Ep' - EP - onl‘o)
o’
(3-14)
where p’ = p + q, + K and K is a reciprocal lattice vector. The -
spontaneous emission rate 8’ ,  is given by (3-11) with N, , = 0.

The expression for « simplifies if we assume that g depends
only on the momentum transfer (i.e., q, for normal processes).
For |qo| small compared to kz only normal processes enter the
sum with appreciable weight, so that « is given by

&€ = 4,4,

crors = 2nlfugnl? 3 (1 + ZE N, £y
’ x 8(B, — E, — wg,,,) (3-15)
where p’ = p + q,, and the relation
) 1 €, — 4,4,
n3(p, p) = (UpUp — Vv,)? = -(1 + —"—”——"—L) 3-16
PP P"p 2 EpEp' ( )

has been used. Since the speed of sound is small compared to
the Fermi velocity, ~ 10~ 3v, in typical cases, energy and momen-
tum conservation require that q, be essentially tangent to the
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FIGURE 3-1 Coordinate system with q, chosen as the polar axis and
P=pP+4q.

Fermi surface for those states p which contribute to (3-15). For
spherical energy surfaces, only those states near the Fermi surface
lying near the equatorial plane (perpendicular to q,) enter the
problem. If we approximate the energy contours of the Bloch
states by spheres with the effective mass m*, the sum in (3-15)
can be expressed as '

P fpz dp du dgp— o fde,, de,  (3-17)
A (27) (27)2{qq|

where qq is the polar axis as shown in Figure 3-1. The €., term
in the coherence factor vanishes upon integration since the re-
maining factors in the integral are even in ¢, and ¢,;5* thus
(3-15) reduces to

1 m*2
%god0 = ‘ Qalol ]q '

4,4,
x [dey dey (1 = FFE)fy = 1) 8By = B, = i)
- p'

2 m*2 3-18
= lgw.,P,q—, G

E' 42
f dE 42)1/2 (Efz 42)1/2 (1 - E_m-’)
x [f(B) - E')]

IIZ
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where £’ = E + w,,,, and we have taken 4 to be independent of
p. For most experiments w, , <« 4 so that we may set £ = £’
in (3-18) except in the Fermi factor and obtain

2 m*2 [ of
= lg!lo"o|2|_qo—l 4 dE(—gE)wqolo

|Gaons |2 % f(4)
m |90]

This expression applies to the normal state if we set 4 = 0, so
that the ratio of the acoustic attenuation rates in the S- and N-
phases at the temperature 7' is

(3-19)

as(T)  f(4) 2

= = (3-20)
ay(T 0 AT
’.’( ) fO) exp[——kij)] +1

Therefore the temperature-dependent energy gap can be obtained

1.0

0.8~

0.6
as(T)

ap(T) .

0.4}-

1 I I
0 0.2 0.4 0.6 0.8 1.0
TT,

FIGURE 3-2 The longitudinal acoustic-attenuation coefficient in the
superconducting state relative to that in the normal state compared
with the result of the simple pairing theory.
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from og/ay. In Figure 3-2 the theoretical ratio is compared
with experimental results for longitudinal phonons in tin and
indium.273- 85 The rapid drop near 7' reflects the rapid decrease
in the number of excitations as the energy gap opens up below
T,. We also note that the large density-of-states factors

EE’
(E? — 4%)'2(E'2 — 42)172

are cancelled by the coherence factor (1 — 42/E?) in (3-18) for
wq, 1, < 4 so that only the Fermi factors enter the attenuation
rate in this limit.

The energy bands and the gap parameter are anisotropic in
‘real metals so that ag/ey measures a complicated average of 4
over the regions discussed above. Variations of the averaged
gap of the order of 10 per cent have been observed in smgle
crystals as g, is rotated relative to the crystal axes.?’

1.0
0.8}
discontinuity
0.6
as(T)
an(T)
0.4}
0.21-
T/T.
1 ] ] '
0 0.2 0.4 0.6 0.8 1.0

FIGURE 3-3 The relative acoustic-attenuation coefficient for trans-
verse waves in tin as measured by Bohm and Morse.
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In the above discussion it was tacitly assumed that the
electron-phonon matrix element is the same in the N- and S-
phases. Although this is most likely true for purely longitudinal
phonons,®® this assumption is incorrect for transverse phonons.
A transverse phonon sets up transverse electromagnetic fields in
addition to crystal potential effects.2’® 67 While the screening
of the crystal potential is essentially the same in the N- and S-
states, the Meissner effect drastically reduces the electromagnetic
coupling between the transverse phonons and the electrons.
Thus, one expects an essentially discontinuous drop of the trans-
verse acoustic attenuation rate upon entering the superconducting
state at 7. due to the Meissner effect eliminating the electro-
magnetic coupling. The remaining coupling should be accurately
treated by the above analysis and one indeed finds this to be the
case, as shown in Figure 3-3.67°

3-3 NUCLEAR-SPIN RELAXATION RATE

The above calculation of the acoustic attenuation rate is
easily modified to account for the relaxation rate of oriented
nuclear spins due to their hyperfine coupling to the valence elec-
trons. The interaction for a given nuclear spin I is of the form

Hyps=Ad Z A *a L (Crr * Okt — €y )
ek
+ ey Yoy + L oceyte] (3-21)

where @, is proportional to the amplitude of the Bloch function
x«(r) at the nuclear site in question, so that a_, = a,* and
I, =1, +1,% To calculate the rate at which a given nucleus
decreases its z-component of spin we observe that the Zeeman and
hyperfine energies are in general small compared to the energy
gap so that only quasi-particle spin-flip processes enter. We
consider a typical initial state |/} excited at the temperature T,
as in"the preceding section, and notice that the final states are of
the form

P Yoat “¥o i | nuclear spin flips down (3-22a)
‘ Yoot ¥pa1 |1 nuclear spin flips up (3-22b)
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As before, H,.g contains two terms which connect |7T') and a
given final state; for the final state (3-22a) one has the terms

Al _(ap,*ap, ¢, cpy + a_p *a_p0_p 1% c p))
= AI__a<p2*ap‘(szt+Cpll + C_plr+c_p21) (3'23)
By transforming to the y-representation these terms become
Al-apz*a'p,[l(p, , pz)()’pzt +'yp,1 + v-p I+7—p21)
+ p(pl’pZ)(y921+y—P11+‘R - YPIIY“921R+)] (3-24)
where the coherence factors [ and p are defined by
Upy, P2) = p, Uy, + V5,7,
‘ p(pl’ Pz) = uvaﬂz - vpnupz
“The nuclear spin-flip-down matrix element is then
Aapz*apll(pli P2)p 1 (1 — 95, ) J)ps (3-26)

where the last factor gives the nuclear matrix element. The
transition rate for flipping down the nuclear spins is proportional
to

Waown = 2m|A|? Z |am|2|a'pz|2l2(l’1’ p2)
Py.P2 .
X fpl(l‘ - fpz) B(E,J2 - Em - w)N, (3-27)

Thus the rate of decay of the z-component of nuclear magnetiza-
tion is proportional to

1 4, 4
ag = 27|A|? a 4—(l-l-——p—li)
s I I Pg’zl pll 2 EPxEﬂz
x fp.u = fo,) (B, — B, — w) (3-28)
if we neglect crystalline anisotropy, since I%(p,, p,) is given by

1 +4, 4
12(py, p2) = 3 (1 + GP'EPZE, 7 21 pz)
Py P2

and the term in e’ vanishes on integration as above. If 4 is

independent of p near the Fermi surface, (3-28) can be written

for w « 4 as

ag = 4m|d|?|a|*N?3(0)

" J‘“’ [1 + 42 ] E(E + w)k;T(—98f|0E)dE
E(E + w)| (E? = 22)2[(E + w)? — 47172

(3-25)

(3-29)

(3-30)
a4
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so that the ratio of the relaxation rates in the S- and N-phases is

a5 (7 [E(E + w) + 4%)(~0f[0B)dE

ay ), [E2 = 2] (E + w)? — 472 (3-31)

If wis set equal to zero in the (3-31) the integral is logarithmically
singular at the lower limit. If w is calculated from the Zeeman
energy, Hebel and Slichter2® found the ratio increased to about
10 before falling to zero as T'— 0. Experimentally they found
the ratio increases to about 2 in aluminum so that gap ani-
sotropy and spacial inhomogeneity may well be the limiting
feature. Perhaps the most interesting and important feature of

3.0

X Hebel-Slichter

w
Dt

e Redficld-Anderson

as(T)
(l,\'( T) 1.5

e = 00T,

| l |
0 0.2 0.4 0.6 0.8 1.0

/T,

FIGURE 3-4 (a) Ratio of the nuclear-spin relaxation rates in the normal
and superconducting states in aluminum. Solid curve calculated by
L. C. Hebel for a smeared energy gap. (b) The nuclear relaxation time
T, of superconducting aluminum. The solid curves are based on the
pairing theory with the density of states smeared by folding the density
of states with a square function of width 2d and height (2d)-1. The
dotted and solid curves were calculated with 2 4(0)/k,T'. = 3.52 and
3.25, respectively, the latter value being that found by Biondi and
Garfunkel from microwave experiments.
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the ratio ag/ay for spin relaxation rate is its predicted rise as T
drops below T, as shown in Figure 3-4. This result is distinctly
different from the result for the acoustic attenuation rate. The
only difference in the predicted rates for the two types of processes
is that the coherence factor n2 appears in the acoustic case while
I2 appears in the spin relaxation case. As we mentioned, the
anomalously small matrix element for quasi-particles near the
Fermi surface being scattered by phonons exactly cancels out
the large density of quasi-particle states in this vicinity. On the
other hand, the quasi-particles are coupled to the nuclear spins
with essentially the -same strength as single particles in the
normal state so that the large density of quasi-particle states near
the Fermi surface leads to an increased relaxation rate. Of
‘course, at low enough temperatures few quasi-particles are excited
so that the relaxation rate goes to zero as 7' — 0. It is clear that
a simple energy-gap form of a two-fluid model could not account
for the sharp drop in the acoustic attenuation rate near T, and
simultaneously a rapid rise of the nuclear-spin relaxation rate.
It is interesting to note that the beautiful experiments of Hebel
and Slichter were being carried out during the period when the
BCS theory was being formulated, and that their experiments
gave one of the first substantiations of the detailed nature of the
pairing correlations which are basic to the theory.

3-4 ELECTROMAGNETIC ABSORPTION

Another example of resonant energy absorption is the real
part of the electrical conductivity o, in a thin film. If we de-
seribe the electromagnetic field by the vector potential

A(r, t) = Agel@r-eb 4 ce. (3-32)
the first-order coupling is of the form

Hyt) = —= f i) - A, 1) dor

C

e =1
2me & Ay - (2P + Q)cpiqtcpe ™'t + Heeo (3-33)
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As above, there are two terms in a given sum which lead to the
same quasi-particle transition; for example, the combination

Cort Cpt = CoprTCopy = UP, PNyt TYpr — Yopi TY-p)

= P D)yt Ty-p T B+ ypy i BT) (3-34)
enters here due to (2k + q) =~ —(2k + q) as k> —(k + q) and
(k + q) > —k. The first terms on the right-hand side of (3-34)
lead to quasi-particle scattering and contribute at T' # 0 while
the last terms lead to creation or destruction of two quasi-particles.
They contribute only if w > 24.

For simplicity we consider only T = 0 so that absorption
occurs only for w > 24. By calculating the rate of photon
absorption just as we did for phonon absorption, one finds

o 1 o4 [B(w — E) — 4%]dE
= - 4 (E2 — A2)1’2[(w _ E)2 _ 42]1/2
Mattis and Bardeen ®® have carried out the integral in terms of the

complete elliptic integrals £ and K and find the ratio of the
conductivities in the S- and N-phases is

215 (1 + 1)E(1 — x) - 31{(1 — x) (3-36)

a1y x 1 +z z \l+z=z
where x = w/24 > 1. A plot of the theoretical ratio is shown in
Figure 3-5 and is in quite good agreement with experiment.
For general w and temperature, the integrals must be done
numerically. For w « 24, o shows a rise as T' decreases below
T., as in the case of nuclear spin relaxation, followed by the low-
temperature exponential drop. For w > kT./2, the ratio no
longer shows a peak. Several cases have been worked out by
Miller.” Note: At the time of the first printing of this volume, it
had been reported that a precursor absorption (w/24 ~0.85) was
observed at low temperature.”"""? Subsequent measurements and
improved processing of the data showed that the precursor was
an artifact. Collective modes which were proposed to account for

the precursor gave too weak an absorption to agree with experi-
ment (see Ch. 8).

(3-35)

01N w
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FIGURE 3-5 The frequency dependence of a,/o, and ay/c, at 7' = 0
as calculated by Tinkham from the work of Mattis and Bardeen.

3-5 PHYSICAL ORIGIN OF THE COHERENCE
FACTORS

Aside from the coherence factors, one might have guessed
the results of this chapter.on the basis of a simple single-particle
energy-gap model for the superconductor. The physical origin
of the coherence factors is, however, fairly simple.

- Suppose we are interested in a process in which a quasi-
particle is scattered from an initial state, say k 1, to a final state,
say k' 1, by absorbing a boson (a phonon or photon) of momentum
k' — k. For simplicity we assume there are no quasi-particles
in the states —k |, k' 1, and —k’'} initially. (The argument is
easily generalized to include excitations in these states.)

As we saw in Chapter 2, a quasi-particle in k4 (and none in
—k | ) corresponds to an electron definitely occupying the Bloch
state k4 (i.e., with unit probability) and the mate state —k
being definitely empty. The pair state (k'4, —k'} ), with no
quasi-particles in it, has a probability amplitude u,. of k' } and
—k'} being empty, and an amplitude .. of these states being
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simultaneously occupied. Since u,.2 + v,.2 = 1, there is zero
amplitude for other possible occupancies of this pair state. There-
fore, the initial state of the system can be viewed as having an

ke o k'} ke o k'}
d [} L] o

-k (a) k4 —‘k'l (b) "k¢
amplitude wu,. amplitude v,

k 4o K} k4o, 2 k' }

o o —
kY (o) —ki -k (d)_ki

amplitude w, amplitude v

k4 k'1 kie k’T

o [} ®
—k"‘ (e) —k¥ —k'¢ (f) —k*
amplitude u, amplitude v,

FIGURE 3-6 (a) and (b) The two configurations entering the wave func-
tion for a state with a quasi-particlein £4. (c) and (d) The two config-
urations entering the wave function for the state with a quasi-particle
in k1, showing how a)-—¢) and b) — f) when the electrons couple
to a field which does not flip the electronic spin (acoustic or electromag-
netic fields are examples). (e) and (f) The two configurations entering
for a state with a quasi-particle in —&’ ), showing how u«)—¢) and
b) — f)when the electrons couple to a field which flips the electronic spin
(the hyperfine coupling involved in nuclear spin relaxation is an example).
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amplitude u,. for the single-particle occupancy shown in Figure
3-6a and an amplitude v,. for that shown in Figure 3-6b. For
clarity we do not show how states other than the four mentioned
above are occupied.

In analogy, the final state has k' { definitely occupied and
—k’| definitely empty, while there is an amplitude u, that k }
and —k| are empty, and v, that these states are occupied, as
shown in Figure 3-6¢ and 3-6d.

The interaction Hamiltonian, being a one-body operator, can
at most change the state of one electron. Consider the operator
cep Yoy : it transforms the portion of the initial state shown in
Figure 3-6a into the portion of the final state shown in 3-6c, as
indicated by the solid line. The probability amplitude for this
process is clearly u,u,.. In addition, the operator c_,;*c_,.,
transforms the portion of the initial state shown in Figure 3-6b into
the final-state configuration illustrated in 3-6d. The amplitude
for this process is — v,v,., the minus sign arising from the fact that
when the operator is applied to the state shown in 3-6b it produces
the negative of that in 3-6d because of the ordering of the operators
which describe the two states, as one can easily verify. Now if
the coefficients of ¢,.;%c,y and c_y, *c_,, in the interaction
-Hamiltonian are identical (including sign), the overall amplitude
for the quasi-particle transition is wu,. — v, = m(k, k') as in
acoustic attenuation due to scattering of quasi-particles. Al-
ternatively, if the coefficients in the Hamiltonian are equal in
magnitude but opposite in sign, one obtains the total amplitude
ey + v = Ik, k), as in electromagnetic absorption by the
excitations.

In the case of spin flip, as for the nuclear spin-relaxation
problem, the corresponding final state would be a quasi-particle
in —k’| with the configurations shown in Figure 3-6e and f.
In this case the operator c_,., *c;; transforms 3-6a into 3-6e
with amplitude w,,. while ¢_,, ¢,y transforms 3-6b into 3-6f
with amplitude v,v,.. Since the coefficients of these operators
are identical in the hyperfine interaction, the [-coherence factor
enters here.
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When two quasi-particles are created in k{ and -k’
from the superfluid with no quasi-particles present initially, one
has the unique final-state configuration shown in Figure 3-7a.
The only configurations in the initial state which are connected
to this final state by a one-body operator are shown in Figure
3-7b and c, which are transformed into 3-7a by ¢ *c,; and
C_py TC_y, with amplitudes u,v,. and wu,v,, respectively. For
acoustic attenuation (i.e., coefficients of the same sign) one has
the total amplitude u,v,. + w,v, = m(k, k’), while for electro-
magnetic absorption (opposite signs) one has wu,v,. — u, v, =
p(k, k'), in agreement with the results above. The spin-flip pair-
creation process follows in an analogous manner.

. From the above discussion it is clear that there are in general
only two terms in the ¢, c* representation of a one-body operator
which contribute to a given quasi-particle process and that the
contribution due to each term can be understood by these simple
pictures. Notice that the number of particles is explicitly

kt ok’
’ b >
-k} @ -kl
amplitude 1
kto k't k4 pk'}
o 5 J
et _ K _
Ky —k } (0 K
amplitude wu,,. amplitude u.v,

FIGURE 3-7 (a) The only configuration entering a state with quasi-
particles in k{1 and —%"|. (b) A configuration which is connected to
that in (a) by a spin-independent one-body operator. (c) The only
state other than that shown in (b) connected to that shown in (a).
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conserved between the initial- and final-state configurations,
although the number of particles in single-particle states other than
(kt, —kJ})and (k't, -k’ ) depend upon which configuration
of these states one is considering. For example, the number of
electrons not shown in Figure 3-6a is two larger than that shown
in 3-6b since the total number of electrons in each configuration
is exactly N,.

3-6 ELECTRON TUNNELING

The three examples discussed above, acoustic and electro-
magnetic absorption and nuclear spin relaxation, all involve
transitions between states of the N, particle system. The
problem of electron tunneling between two metals which are
separated by an insulating layer involves transitions between N,
and N, + n particle states of each metal. In his pioneering ex-
periments, Giaever 26 observed that at sufficiently low temperature
no current flowed between a normal metal and a superconducting
metal separated by a thin oxide layer, unless the applied voltage
V (multiplied by the electronic charge) exceeded the energy-gap
parameter 4 of the superconductor. One might intuitively expect
this result on the basis of an energy-gap model. On the other
hand, one might argue that if two electrons tunneled simultane-
ously, they could be bound together by pairing correlations once
they entered the superconductor and no excitation energy would
be required, suggesting that a current flow is possible even for
very small voltages. Clearly, as the oxide thickness vanishes,
this situation would obtain. However, for thick layers one might
expect a very small probability for two electrons to tunnel simul-
taneously so that in this case little current would flow until the
one-particle threshold voltage is reached. That this is not the
case was pointed out by Josephson,®® who showed that the super-
fluid pair tunneling rate is of the same order of magnitude as the
single-particle tunneling rate. We shall discuss two-particle pro-
cesses below and concentrate on one-particle processes for the
moment.

The foundation for a. Hamiltonian formulation of the tunnel-
ing problem was laid by Bardeen” and refined by Cohen,
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Falicov, and Phillips,”® and more recently by Prange.’® In this
approach, one describes the system by an effective Hamiltonian
H=H + H, + H; (3-37)
where H, and H, are the full many-body Hamiltonians for the
left and right metals in the absence of tunneling, and H; is a
one-body operator which transfers electrons between the two
metals,
Hy = 3 {Tpeced *o' + Hoel (3-38)
kk's
Bardeen has shown that T',,. is given by the matrix element
of the current density at center of the oxide taken between single-
particle states which decay exponentially as one moves into the
oxide layer. Harrison™ has evaluated 7', within the WKB
approximation and finds

| S PR z,
| T |? = — "r ""l exp [—2f k,(x) (lx] (3-39)
A% piTpy 2
where p, is the one-dimensional density of states for motion

normal to the barrier which has boundaries of 2, and z,.

To calculate the tunneling current,’ 7 we begin with the
zero-temperature case and treat A, by first-order time-dependent
perturbation theory. The rate of transferring electrons from ! to
r is

Wiy = 27 Z |(a1|<ﬁrl z Tkk'ck'sr+cksl|01>|0r>|2 S(Ea + €5 — V)
a,f kk's
(3-40)

if the electrons decrease their potential energy by ¥V in moving
from [ to r due to the applied bias. In (3-40) the state vectors
are the exact many-body eigenstates of H, and H,, that is,

H,[a,) = Ealat>
Hr'Br) = eﬁlﬁr)

-and the energies ¢, and ¢; are measured relative to the ground-
state energies in ! and r, respectively. At zero temperature
electrons cannot tunnel in the. reverse direction due to energy

(3-41)
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conservation. From (3-40) one can readily see that the current
density is proportional to

(V) f N (BN, NV — E)dE (3-42)
where °
Ne'(B) = 5 [<Bile |01 8es = E)
B8
~ ,(0) f " deup Pk, E) (3-43a)
and )
NT—'(E) = kz |<°‘1|Ck|01>|2 a(fa — E)
~ N,(0) f " dewp (k. B) (3-43b)

The spectral weight functions p‘*? and p' = are discussed in Section
5-7 and are related to the one-electron Green’s function @ by

POk, w) = -;lr Im Gk, o) 30 (3-44a)

Ok, w) = 1-1;Im Gk, —w) @30 (3-44b)

(See Chapter 5.) Thus a knowledge of G(k, w) for each metal
- suffices to determine the tunneling current. We note that in
deriving (3-42) we have assumed 7', = const. in an energy
region V(«Ey) about the Fermi surface, which is a very good
approximation for voltages of interest in investigating the super-
conductor aspects of the tunneling characteristic.

Theeffective tunneling density of states for a superconducting
metal can be calculated in the pairing approximation with a non-
retarded two-body potential directly from the definition (3-43).
By using the particle conserving B-V transformation (3-6) we
find

Ny, (B) = Z [{pleks *[0D]? 8(E, — E)

~ N(0) f de,uw,2 S(E, — E) (3-45)
dEk
=NO\gE, |5, - &
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where we have used the fact that if a given ¢, makes the argu-
ment of the delta function vanish, so does ¢, = —¢, so that
2 + .2 = 1. This simple manner in which the coherence
factors vanish in the expression for the tunneling current was first
pointed out by Cohen, Falicov, and Phillips.”® It is interesting to
note that N, is just the density of quasi-particle states which
we used earlier in this chapter, as one would have guessed on the
basis of a simple energy-gap model without coherence effects.

In a similar manner one finds for a nonretarded pairing
potential model

N,_(E) = N(0) f: 0,2 8(E, — E) de,
de,

dE,

where the coherence factors »,2 vanishes in the result just as %2
did in N,.

As we shall see in Chapter 7, the expressions (3-45) and (3-46)
are incorrect in real metals due to the strong retardation effects
associated with the phonon interaction between electrons. There
one finds the simple result

= N(0) = Ny, (E) (3-46)

Ey=E

N:.(E) = N(0) Re {ﬁw} (3-47)

as opposed to N(0)(E — } d4?%/dE)/[E? — 4%(E)]*'2, which follows
from (3-46).

Returning to expression (3-42) for I(V) we find for tunneling
between a normal and a superconducting metal that

dlgjdv v
dfj/dV = Re {[W:-—Az—("’)-]-ll_z} (3-48)

if we use (3-47), where I5 and I, are the currents flowing
when the superconductor is in the S- or N-state, respectively.
Therefore, the tunneling experiment can give detailed information
about the energy dependence of the gap parameter.

The finite-temperature tunneling current can be treated in an
analogous manner if one includes a thermodynamic average over
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initial states rather than using |0, >|0,>, and further one includes
currents from I to r and r to 1.787® The tunneling current can
then be expressed in terms of the spectral weight functions for the
thermodynamic Green’s functions. In the simple case of a non-
retarded two-body pairing potential, the expression reduces to the
golden rule result for a simple energy-gap model without coherence
effects, as for T' = 0. A typical /-V characteristic for tunneling
between a normal and a superconducting metal is shown in Figure
3-8 for several temperatures for an energy independent 4. Experi-
mental curves are in general agreement with theory although small
deviations exist, some of which we shall discuss below.

A pictorial view of the one-particle tunneling process between
a normal and a superconducting metal is illustrated in Figure
3-9a and b. In 3-9a, an electron in k41, beneath the Fermi
surface in the normal metal tunnels through the oxide to state
k' 4 above the Fermi surface in the superconductor. In the pro-
cess a hole is left behind in [ giving an excitation energy ¢, = |¢]
for this metal. In addition, a quasi-particle is placed in k'4$
giving an excitation energy e¢; = E,. = (.2 + 4,.2)Y2 for the

1)

| Va0
0 0.5 1.0 1.5 2.0

FIGURE 3-8 The tunneling current I between a normal and a super-
conducting metal as a function of the applied voltage V' (multiplied by
the electronic charge).
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superconductor. This process can go only if the pair state
(k"4 — k'|) is initially empty; this occurs with the probability
u,.2. Energy is conserved if |¢,| + E,. = V. Another energy-
conserving process shown in Figure 3-9b is identical to that shown
in 3-9a, except for the quasi-particle being placed in a state k" 4
beneath the Fermi surface. For 4 = constant, the two states are
related by €. = —e,-, as we saw above. The probability that
(k” ¢, —k”} ) is initially empty is %,.2 = v,.2 so that the total
probability for the process to go is .2 + v,.2 = 1, as far as the
Pauli principle restrictions are concerned. The tunneling current
is then given by summing only over states above (or below) the
Fermi surface in the superconductor and replacing the coherence
factor by unity, as we saw above.

normal metal

normal metal

E!
B superconductor
€al-————— R~
w! kKke |
S S

(b)

Figure 3-9 (a) and (b) Two final states for a given initially occupied .
state k1. These processes enter the expression for the single-particle
tunneling rate between a normal and a superconducting metal.
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Ekl
E,

7y k_jk;\‘_( IV A

FE L.

#r k” kF k’
Figure 3-10 (a) and (b) Processes analogous to those in Figure 3-9,
however the tunneling is between superconductors here.

A semiconductor model of the excitations in the super-
conductor is often helpful for discussing tunneling phenomena.
However, the model must be used with caution since states ‘“‘above
the energy gap’ in this model are really linear combinations of
quasi-particle states above and below the Fermi surface, i.e., as
are k' 4 and k” 1 in our example. The reader is referred to the
work of Bardeen”* for further details on the semiconductor point
of view.79- 80

Single-particle tunneling between two superconductors can be
understood by similar diagrams, as shown in Figure 3-10. An
“electron from k 4 in ! can tunnel to either k’ 4 or k” 4 as before,
or an electron in k4 can tunnel to the same final states, where
€ = —e¢g. Since 92 and v2 = w, 2 are the probabilities that
(k+, -k} )and (k4, =k ) are initially occupied, we see that
the total probability that an electron is available for tunneling is
w2 + v2 = 1. Thus the coherence factors drop out in both the
initial final states if sums are restricted to be above (or below)
the Fermi surface. Notice that the current begins at V = 4, + 4,
in this case at 7' = 0. ,

We turn now to the superfluid pair tunneling process proposed
by Josephson.83 He points out that in the absence of an applied
voltage a tunnel current can flow between two superconductors if
a superfluid pair is transferred from one side of the junction to the
other without creation of quasi-particles on either side. A simple
derivation of Josephson’s effect, due to Josephson®® and to
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Anderson®! makes the physics of the situation quite clear. In
the absence of both an applied potential across the barrier and the
tunneling Hamiltonian, no energy is required to transfer v super-
fluid pairs from one side of the barrier to the other. If the state
with v pairs transferred from left to right (relative to a standard
state) is denoted by @,, the ‘“tight-binding approximation” for
the exact eigenstates in the presence of the tunneling operator is

= D e P, (3-49)

The canonical momentum « plays the role of the wave number £ in
band theory. Since H; can only transfer one electron between
the materials, the coupling between the @,’s is second order in
T and one finds for the energy shift due to H; of the eigenstates
(VJHAP|\ P R

——2cosa (3-50)

e = (PP ~ 2

where H;'® is the second-order tunneling Hamiltonian given
by

1
H? =H H 3-51
T T E — HO T ( )
and

= 4|<¢v+1'H‘1‘(2)l¢v>| (3'52)

To find the current, note that the rate of transfer of pairs is

d dE,

<u> <dﬁ, > = (sin o) (3-53a)

where the average is taken in a wave-packet state formed from
the ¥,’s, in complete analogy with the tight-binding approach
to the one-electron theory of metals. In the absence of an
applied bias, the momentum ha (canonically conjugate to the
pair number v) is a constant of motion; however, for ¥V # 0 one

has

=2V (3-53b)
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From (3-53a) and (3-53b) it follows that the rate at which electrons
flow across the barrier is

2 d{v . 2Vt
d\t 2 _ J,sin = + a (3-54)

J({t) = =

so that an alternating current of frequency 2V/h = 483.6 Mc/sec/
pvolt is expected to flow for V # 0, while for ¥V = 0, a steady
current is expected, according to (3-53a). The d-c effect has been
observed by Rowell and Anderson.?® As Josephson pointed out,83
the current is sharply reduced when a magnetic field is applied
to the junction of such a strength that a multiple of the flux
quantum occurs in the junction. This effect has been observed
by Rowell.88 The a—c effect has been observed by Shapiro.86¢

 Tunneling experiments by Burstein and Taylor8! show that
in many cases an excess current between two superconductors at
low reduced temperature begins at an applied bias 4, or 4,, that

E,!

. superfluid

superflind

(b)
FIGURE 3-11 (a) and (b) Processes contributing to the two-particle
tunneling mechanism which leads to current onsets at 4, and 4,.
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is, below the one-particle threshold 4, + 4,. Wilkins and the
author® have proposed a two-particle tunneling mechanism in-
volving the superfluid electrons to explain the phenomenon.
Their processes, illustrated in Figure 3-11a and b involve a second-
order matrix element in which a pair of superfluid electrons in !
is withdrawn without creating excitations in /, and the electrons
tunnel to r, where they occupy quasi-particle states. This pro-
cess is shown in 3-11a and gives a current onset at 4, + V. A
second process shown in 3-11b involves removing two superfluid
electrons from ! but leaving two extra quasi-particles behind.
The two electrons tunnel to r, where they recombine to enter the
superfluid, thereby creating no excitations in r. This process has
an onset at 4, = V. The processes give a polarity-independent,
temperature-insensitive excess current, as observed. To fit the
magnitude of the observed currents one must assume the oxide
films are patchy, having a small fraction of thin regions so that the
fourth-order matrix element |7'|* which appears in the two-
particle tunneling rate does not lead to a drastic reduction of the
excess current relative to the single-particle rate which involves
|T|2. The oxide thicknesses and the ratio of the areas of thick
and thin regions required to obtain agreement with experiment
do not appear to be unreasonable, considering the imperfect
nature of the oxide films.

3-7 OTHER APPLICATIONS OF THE PAIRING
' THEORY

In this chapter only a few of the simplest applications of the
pairing theory have been discussed. In Chapter 8 we shall discuss
the electromagnetic properties of superconductors, i.e., the Meiss-
ner effect, the persistence of supercurrents, magnetic flux quanti-
zation, etc., as well as the paramagnetic spin susceptibility and the
resultant Knight shift. Further support for the pairing theory
comes from the distinctly different effects magnetic and nonmag-
netic impurities have on the energy gap. As Anderson showed,
nonmagnetic impurities do not smear the gap edge as one might
intuitively expect; on the contrary, nonmagnetic impurities remove
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the crystalline anisotrophy of the gap and thereby effectively
sharpen the observed energy gap. In Anderson’s discussion the
time-reversal invariance of the impurity scattering potential plays
an essential role. Abrikosov and Gor’kov have discussed the
case of magnetic impurities. Owing to the lack of time-reversal
invariance, they find a broadening of the gap edge.. As the
impurity concentration is increased to a critical value (~ 19,) the
energy gap vanishes, although the density of states is smaller
than that in the normal phase near the Fermi-surface. For a
small range of concentration above this critical value, the material
exhibits ‘“gapless’ superconductivity. This effect was discovered
experimentally by Reif and Woolf in tunneling experiments.

The reader isreferred to the literature® !¢ for a discussion of
numerous other applications which give further empirical support .
for the theory, e.g., thermal conductivity, boundary effects and
small specimens, type II superconductors, etc. In general the
agreement between theory and experiment is remarkably good, as
mentioned above, considering the simplicity of the models used in
applying the basic ideas of the pairing theory. ‘



CHAPTER 4

ELECTRON-ION SYSTEM

As we have seen above, many of the observed properties of super-
conductors can be explained on the basis of a model in which an
attractive velocity-dependent potential acts between pairs of
quasi-particles of the normal metal. However, from the isotope
effect 11+ 12 and from electron-tunneling current anomalies®7- 88 we
know that the electron—phonon interaction plays an essential
role in bringing about superconductivity in most (if not all)
superconductors.

4-1 THE ELECTRON-ION HAMILTONIAN

To obtain a more complete understanding of superconduc-
tivity, we should study the full electron—ion system and show how
the results of the simplified model discussed in Chapters 2 and 3
emerge from “first principles.” In particular, one would hope
to be able to (a) explain the isotope effect; (b) determine why
certain metals are superconductors and others are not; (c¢) isolate
those parameters which determine the transition temperature;
"(d) check the basic nature of the pairing interaction by explaining
the observed tunneling density-of-states anomalies. In addition,
one would like to account for the observed deviations from the

89
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empirical “‘law of corresponding states.” This ‘“‘law’’ states that
all superconductors have identical properties when these proper-
ties are expressed in reduced units; e.g., the critical field curve
H (T)/H,is a universal function of the reduced temperature T/7T,
etc. Although it is not possible to reach all of these goals at
present, the basic theoretical framework which is required to
treat many-body effects in real metals is developing rapidly. It
is likely that the above questions will be resolved in the foreseeable
future.

In our discussion we concentrate on a simplified model of a
metal in which ions, with their core electrons rigidly attached,
interact with a sea of conduction electrons. Of course, the ions
interact among themselves, as do the conduction electrons. Thus
we assume that the core electrons adiabatically follow the vibrating
nuclei but are otherwise unexcited. While our approximation
neglects core polarization, this effect presumably has a minor
influence on the dynamics of the conduction electrons in most
superconductors because of the large energy required to excite
the cores. Core polarization may well play a more important
role in determining the ion-ion interaction; however, this effect
can be included approximately in the ion-ion potential.

For simplicity we shall also neglect spin-orbit interactions,
although as we shall see later they have been invoked as a possible
explanation for the nonvanishing Knight shift observed in the
superconducting state.®®-%° The hyperfine and electron spin-
spin interactions will also be neglected for the moment; the former
were treated as a perturbation when we considered nuclear-spin
relaxation processes (see Chapter 3).

It is particularly convenient to omit for the moment the
magnelic interaction between conduction electrons due to their
orbital motion. This interaction is exceedingly important in
understanding superconductivity because it leads to the Meissner
effect. The reason that the omission is not damaging at the
outset is that in the absence of external fields (and/or net currents
in the material) the magnetic forces between electrons almost
exactly cancel each other and therefore lead to weak effects.
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When external fields and/or net currents exist there is a coherent
addition of the fluctuating magnetic fields between electrons; the
resultant field can be conveniently treated within a self-consistent
field approximation and fluctuations about the average field again
neglected. We shall adopt this view in treating the magnetic
properties of superconductors in Chapter 8.

The Hamiltonian of the conduction electron-ion system is
then

+ 3 Z W(R,, R,) + Z U, R,) (4-1)

v#EY

where r, is the position of the ith conduction electron, and R, the
position of the vth ion whose equilibrium position is at R,°>. The
index v labels both the cell n and the site « in this cell at which
R, is located. For a crystal with one atom per unit cell the label
o« is superfluous and the ions will be labeled by n. The first
two terms in (4-1) represent the kinetic energy of the conduction
electrons and the Coulomb interactions between them. The
third and fourth terms give the kinetic energy of the ions and
the ion-ion interaction. The last term in (4-1), representing the
conduction electron-ion interaction, is in general nondiagonal
in the electron coordinate representation because of exchange
interactions between vhe conduction and core electrons.

We work with a system of unit volume and use periodic
boundary conditions. Our basic approach is to cast this compli-
cated many-body Hamiltonian into a form which will allow us to
use well-known techniques of quantum field theory. There, one
traditionally begins with a set of ‘“‘bare’” particles and through
a consistent treatment of the coupling between these particles
one derives a set of ‘‘dressed”” particles in terms of which proper-
ties of the physical system can be described. The richness of
various approximation procedures and the relative ease of cal-
culation make this approach highly attractive. An introduction
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to field-theoretic techniques in the many-body problem ! is given
in Chapters 5 and 6.

The “bare” particles in our case will be of two types: single
electrons occupving Bloch states, and quantized vibrations of the
ionic lattice. The coupling between these excitations causes
drastic changes in the system which cannot be treated by elemen-
tary perturbation theory. Nevertheless, the methods of quantum
field theory are sufficiently powerful to allow us to understand
the origin of the superconducting state and make detailed theo-
retical predictions regarding its properties.

4-2 BARE PHONONS

We introduce bare-phonon coordinates @, , of wavevector q
and polarization A which describe the deviations &R, of the ions
from their equilibrium positions R,%. This is done by performing
the canonical transformation

1
R, = Rnuo + W‘Z)T,E ZAQMGM(a)e'q‘RMO (4-2)
c a.

The @'s are normal coordinates of the vibrating jon system when
the ion—ion interaction is treated within the harmonic approxi-
mation. This procedure is discussed in detail by Peierls.®2 In
(4-2), N. is the number of unit cells per unit volume and A/, the
total ionic mass within a unit cell. The polarization vectors
€, 1(«) are determined by solving the above normal-mode problem.
It is convenient te normalize these vectors by requiring

> M |eu(a)]? = M, (4-3)

For one atom per unit cell, this reduces to |e, ,| = 1. The
normalization condition and an orthogonality condition for the
€’s can be written as
2 Megou(@) - €_qrfa) = M8, (4-4)
a

The wavevectors q are restricted to the first Brillouin zone
(which contains N, points). Since the density of states in g-space
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of phonons with a given polarization is 1/(2m)%, we shall often
replace sums over q by integrals through the relation

1

q

The number o, of independent polarizations (i.e., branches in
the phonon spectrum) is three times the number of ions per unit
cell, so that the total number of phonon modes is equal to the
number of degrees of freedom of the ionic lattice, as expected.
There also exists a completeness relation of the form

Z eq).(a) * e—ql(a')e'q'(n"“o—R"'a'O) = Bnn’ aua' (4'6)
q.2 ' .

It is conventional to call the three branches, which in the
long wavelength limit have all ions in a unit cell moving in phase,
acoustic branches. The remaining branches are called optical.
If the wave vector q is along certain symmetry directions in
the crystal, the polarization vectors €, , are either parallel (for
longitudinal phonons) or perpendicular (for transverse phonons)
to q. In general, the polarization vectors bear no simple relation
to q although one continues to speak of longitudinal and transverse
phonons, keeping the same designation of a given branch as q
moves away from a symmetry direction.

While the transverse acoustic modes tend to zero frequency as
q — 0, the longitudinal modes tend to the ionic-plasma frequency
2, = (4nN _2.2e?[M )2 due to the long-range nature of the
Coulomb force.®® We know that in real solids the frequency of a
longitudinal acoustic sound wave is proportional to ¢ and vanishes
as g — 0; clearly, the difference comes from the conduction electrons
responding to the electric field set up by the ionic oscillations and
screening out the long-range force. In our scheme, the screening
is due to the electron-phonon and electron-electron interactions.
The main point is that, while the shift in the phonon frequency
is large (from 2, — ~ 0), the problem is simply treated by standard
field-theoretic techniques. Of course, simpler methods could be
used for this problem (for example, the Thomas—Fermi approxi-
mation or a time-independent self-consistent field approach);



94  Theory of Superconductivity

however, these methods are not general enough to treat super-
conductivity. By working out simple problems with the more
elaborate scheme we shall be better able to understand how to
approach the problem of superconductivity.

To complete the dynamics of the bare phonons, the momen-
tum part of the canonical transformation (4-2) is given by

M\ .
Pna = (L\' ) Z qu’.e-q).(c‘)e_‘q.R“ (4-7)
¢ 9.2

where I1, , is the phonon momentum. It follows from the canoni-
cal commutation relations for the ion variables,

h
[Pras Ryo] = 7 8nn Bga- 1 (4-8a)
[an Pn‘a'] = [an R’n'a'] =0 (4-8b)

that the phonon variables also satisfy canonical commutation
relations

i3
[Hq).r Qos] = ;t aqq' 8 (4-9a)
[Hq).l Hq').'] = [Qq).’ Qq').'] = 0 (4'9b)

In (4-8a), 1 is the unit tensor. As we shall see, the fact that
phonons are bosons has nothing to do with the spin of the indi-
vidual ions. This is clear since we have treated the ions as being
distinguishable by localizing them near lattice sites. The Bose
character of a phonon simply reflects the quantum-mechanical
commutation rules applied to the individual ions.

With the aid of above relations it is straightforward to trans-
form the ionic kinetic energy plus the ion-ion interaction (treated
to second order in 8R) into phonon coordinates. One finds

P2 1 1
z 21{1 + b} Z H’V- v =3 Z {qu+nq). + Qq).ZQqA+Qq;,} + const.
v v % “q.2
(4-10)

where 2, , is the normal-mode frequency and the constant term
is the energy of the ion system when the ions are located on
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their equilibrium sites. We introduce bare-phonon creation and
destruction operators a, ,* and a, , by

k 1/2
Qq). = (5?2-——) (a“ + a_q,1+) (4-113)
=3¢qa

and

<

12
HM B l'(ﬁ'(j‘l") (@™ — a_q) (4-11b)

The formalism of second quantization, which deals with these
operators, is discussed in the Appendix. It follows from (4-9)
that the a's satisfy Bose commutation relations:

(@qs @ga*] = 840 Sur (4-12a)
(@i aga] = [agi*, agr*] =0 (4-12b)
The bare-phonon Hamiltonian (4-10) then becomes
Hyy, = ZAﬁqu(N“ + 1) (4-13)
q.

where N, , = a, ,*a, , is the phonon number operator and we
have dropped the constant term in (4-10). H,, will be one of the
two terms in our zeroth-order Hamiltonian for the system.

The anharmonic terms neglected in (4-10) presumably have
little effect on superconductivity since the volume change between
the V- and S-states is small.? Also, since the transition tempera-
ture 7', is small compared to the Debye temperature, the amplitude
of the -ionic vibration is expected to be small below T, as our
approximation requires.

4-3 BARE ELECTRONS
We would like to introduce a set of one-electron eigenstates
xx to describe the bare conduction electrons; however, a difficulty
arises. If we introduce a one-body potential U, and require that
X« satisfies the Schrodinger equation

p2
[_,— + Uo]x;.- = Xk (4-14)

then the states y, are not in general orthogonal to the core states.
Even if we arrange U, so that the ‘“conduction band "’ solutions of
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(4-14) are orthogonal to the core states when the ions are in their
equilibrium positions, the orthogonality is not maintained when
the ions vibrate. A partial solution to this difficulty has been
given by Wilkins,®¢ using the pseudo-potential method of Kleinman
and Phillips. This work was generalized to the many-body
problem in the work of Bassani, Robinson, Goodman, and the
author,®® who treat the case of rigid cores described within the one-
electron approximation. We shall not discuss this treatment here
because of the mathematical complications necessary to carry
through the analysis. It suffices to say that an auxiliary wave
field describing the conduction electrons can be introduced in
such a manner that the conduction and core states are properly
orthogonal even if the cores vibrate. The equations of motion
of this auxiliary wave field are the same as for the original wave
field except for a redefinition of the potentials involved. Since
these potentials are difficult to estimate from first principles at
present, we shall simply disregard the above complication and
proceed using the one-electron states (4-14) as the bare conduction
electron states.

To make the states y, precise, we must define U,. In order
that the electrons are not scattered by the lattice when no phonons
are present, U, should include the electron—ion interaction with the
ions fixed on their equilibrium positions. Since the ion system
has a large positive charge, this leads to a very large negative
potential acting on a conduction electron. Since the Coulomb
interactions with the remaining conduction electrons cancel most
of this interaction, we include in U, the potential due to the re-
maining conduction electrons occupying a standard configuration.
This configuration could be a uniform distribution of electronic
charge or the distribution given by treating the conduction elec-
trons within the Hartree-Fock approximation. Of course the
better one does in choosing U, the less there is to take into account
as coupling between the bare particles. In any event, U, should
be chosen to have the periodicity of the lattice (although it may not
be diagonal in the coordinate representation) so that Bloch’s
theorem %8 holds

xelf + 2) = e®ay,(r) (4-15)
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where a is any translation under which the crystal lattice is in-
variant. This relation defines the ‘‘crystal momentum” %k of
the state in question. While y, is an eigenfunction of crystal
momentum, it is not in general an eigenfunction of physical
momentum (i.e., a plane wave), since it can be represented as a
linear combination of plane waves of wave vectors k + K,. The
vectors K, are reciprocal lattice vectors defined by

K,+a = 27 x integer (4-16)

where a is an arbitrary allowed translation of the lattice. These
reciprocal lattice vectors play an important role in the theory
of solids since crystal momentum is conserved mod iK, in dynami-
cal processes, and it is crystal rather than physical momentum we
shall usually encounter.

While the curves of ¢ versus k are fairly simple for alkali
metals, the situation becomes quite involved for polyvalent
metals. The reader is referred to Ziman’s book % for a discussion
of theoretical and experimental results in this rapidly developing
field. The over-all picture is greatly simplified if the energy states
are represented in an extended zone scheme as one does for a
free electron, rather than folding the curves back into the first
Brillouin zone. In many cases one finds that a large fraction of
the energy surfaces resemble the free-electron case except for
discontinuities of the energy as one crosses zone boundaries.
Since a major part of our calculations will emphasize states near
the Fermi surface and since in general a small fraction of the Fermi
surface which is effective lies near zone boundaries, one hopes
that an effective mass approximation will adequately represent
the gross features of the band structure. We shall often make this
approximation to simplify the mathematics although the approxi-
mation is not essential.

We shall use the formalism of second quantization to treat
the conduction electrons; this scheme is reviewed in the Appendix.
The creation and destruction operators for an electron in state
k with z-component of spin s are defined to be ¢, ;* and ¢,
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respectively. These operators satisfy Fermi anticommutation
relations:

{Ckm ck’s'+} = akk' 85 (4-17a)
{Chss Crosr) = {Chst e *} = 0 (4-17b)

The bare electron Hamiltonian is then

H, = Z €xMys (4-18)
k.s
where N, = ¢, *c,, is the electron number operator for state
k,s. We work in an extended zone scheme with the k-sum
running over all but the core states.

The spin-orbit interaction in the periodic lattice could be
included in (4-18) by working with spin-orbitals rather than the
orbital functions y,. The electron—phonon interaction would
then contain spin-flip terms. We shall neglect these complications
for the moment.

Thus, the total zero-order Hamiltonian is the sum of the bare-
particle energies,

Hy = ey + D hQ,(Ny, + 1) (4-19)
q,A

k.s

4-4 BARE ELECTRON-PHONON INTERACTION

We included in H, the interaction of the electrons with the
ions in their equilibrium positions. The difference between this
potential and the full electron-ion potential remains as a pertur-
bation (along with several other terms). It turns out that it is
sufficient for most purposes to expand this difference in powers of
.the ionic displacements 8R,, and retain only the leading term.
Thus, the bare electron-phonon interaction is of the conventional
form for a boson-fermion coupling, that is, linear in the boson
field, bilinear in the fermion field.

A reliable first-principles calculation of the coupling is not
possible at present for most superconductors, since one requires
accurate one-electron wave functions as well as reliable ionic
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potentials. Unfortunately, the most reliable calculations of the
interaction are for small-momentum transfers; the phase space
for these processes is small and they contribute little in bringing
about superconductivity. It is rather the large-momentum
transfers (of order the Fermi momentum %kz) which are important,
but their coupling is difficult to estimate accurately since, in
this case, one is sampling short-range details of the core potential
rather than the Coulomb tail. In addition, details of the Bloch
functions near the cores become important for these processes
and it is in this vicinity that a free-electron approximation for y,
is poorest. In practice one can carry through calculations without
specifying details of the electron-phonon matrix elements and
replace certain averages of these matrix elements by parameters
to be determined from electrical resistivity, thermal conductivity,
superconducting transition temperature, etc.

We can make a few general statements about the coupling.
The perturbing potential acting on the ¢th electron is

Z (U, -0, = —Z R, - V,U,,

1 o
= — Ty arine €a(v) - V.U et Ry
(N M, )2 ,,ZA Qas Z ()

where we have used (4-2) and have denoted U(r,, R,) by U, , as
well as U(r,, R,%) by U, ,°. For given values of q and A the matrix
element of this potential between bare electron states k and k' is

Qas
TN M) £

(4-20)

> K|VUL k) - €gu(v)et™° (4-21)

If we introduce a cell location R,° and the relative position
<° such that

R..° = R,° + po° (4-22)
we can reduce the matrix element to

N2 ) _
—qu(ﬁg) Z CE'[VU k) * egila)e™ Pa’ Z Ok -k, q + K,
c a Kn

(4-23)
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In the reduction we used Bloch’s-theorem (4-15) plus the fact that
U, , depends only on the relative separation between the electron
and ion. In (4-23) U, . refers to ions in the unit cell located at
the origin, i.e., at.R,®> = 0, and K, is a reciprocal lattice vector.
We see from (4-23) that the electron—-phonon interaction conserves
momentum mod %K, as mentioned above. The number of scripts
in (4-23) is somewhat confusing so that we introduce the
abbreviation

AN, \12 , o
e'r = — (m) RZ K| ViU o]k + €ga(a)er e (4-24)

Since q is restricted to the first zone we use the convention that
if the momentum transfer k' — k falls outside the first zone we
shall use the corresponding reduced wave vector for q and suppress
K. We note that ‘

Trker = Jrea™® (4-25)
Going over to the second-quantization language for electrons, the
bare electron—phonon interaction becomes

Hopn = D Grka®Pk -k, 1Cks Cis (4-26)
3 SR

where the phonon field amplitude is defined by
Par = Gga + Qgi” (4-27)

As we mentioned above, despite a large amount of good work, our
first-principles understanding of the matrix elements g, . , is in
a rough state at present. Ziman®® gives a detailed discussion of
all but the most recent work.

An oversimplified but useful model of a solid consists of
smearing the ions out into a continuous charged “jelly”; in the
absence of vibrations the jelly is taken to be uniform so that the
Bloch functions degenerate into simple plane waves. The bare
phonons are quantized vibrations of the jelly. In this “jellium”
model, the bare electron-phonon interaction is easily calculated
and one finds for longitudinal phonons®?

. 4e? (ﬁZc%Vc) 1/2

Joe = 90 =~ \5p 77,

(4-28)
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where Z.e is the total ionic charge per unit cell and 2, =
(4mN.Z %/ M )'"? is the ionic plasma frequency. In the long
wavelength limit (@ — 0), where the model is presumably reason-
able, the coupling of the electrons to bare longitudinal phonons is
singular. The singularity is clearly due to the long-range Cou-
lomb force. When screening is taken into account, the dressed
interaction vanishes as q — 0, again showing the importance of
screening in metals. We note the relation
29,2 4me?

EQ,  ¢*

(4-29)

holds for longitudinal phonons in jellium. This relation has
significance in superconductivity since the left-hand side turns
out to be related to the bare electron-electron interaction resulting
from the exchange of virtual phonons. The equality (4-29) states
that the phonon attraction is exactly cancelled by the Coulomb re-
pulsion if the electrons scatter without changing their energy (i.e.,
the net interaction vanishes in the static limit). This result is
peculiar to jellium; however, the relative scale of the phonon and
Coulomb interactions in real metals is roughly set by (4-29).

The jellium model has the added simplicity that the electrons
and transverse phonons are uncoupled since their interaction is
proportional to q * €,,, which vanishes in this case.

Actual metals are considerably more complicated than
jellium since. transverse phonons play a strong role in umklapp
processes ®® (transitions in which.the momentum transfer k' — k
lies outside of the first Brillouin zone). Transverse phonons can
also enter normal (non-umklapp) processes if the electronic energy
contours in k-space are not spherical or if q is not in a symmetry
direction. Also, there is an electromagnetic coupling between
the transverse phonons and the electrons.®” In addition, the
bare longitudinal matrix elements are certainly more complicated
than (4-28) since they will reflect crystalline anisotropy as well as
details of the core potential and the behavior of the Bloch functions
near the cores. The reader is referred to Ziman’s book for further
details about the electron-phonon interaction in real metals. It
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appears that the orthogonalized plane wave method will prove to
be very useful in gaining insight into this difficult problem.%4- 97. %8

4-5 THE ELECTRON-PHONON HAMILTONIAN

To complete the program of expressing the electron-ion
Hamiltonian (4-1) in terms of bare electron and phonon operators
we must include the Coulomb interaction between conduction
electrons. - As shown in the Appendix, this can be expressed in
second-quantization language as

Hyo=1% z Ck, k4| Vlkn k2>ckus+ck4s'+ck2$‘ckls (4-30)

ky-"kq,5. 8

where the Coulomb matrix element is given by

. n_ € . ,
Ckg, ky| V|ky, ky) = kaa*(r)x,“*(r ) ir___r_'l Xiey (F)Xi, (1) A1 @1

(4-31)

It follows from Bloch's theorem (4-15) that the Coulomb inter-
action conserves crystal-momentum mod reciprocal-lattice vector
K; thus the matrix element vanishes unless

k, + ks = k; + k, + K (4-32)

The final term in H is the difference between the one-body potential
U, introduced in defining the Bloch functions [see (4-14)], and the
interaction U, ,° of the electrons with the ions fixed on their
equilibrium positions. This contribution is

Hf, = z <k + K|i]|k>ck+}{.s+cks (4-33)
k.K.s
where
ﬁ = Z U",O h UO (4-34)

The full electron—phonon Hamiltonian is then
H=H, + Hy+ Hypn + Hyo + Hy (4-35)

The system is a complicated one from a field-theoretic point of
view since it involves the interaction of a Bose field with a self-
coupled Fermi field, and, as we shall see, the coupling constants
are not small. In the next chapter we shall discuss how field-
theoretic methods can be applied to this system.



CHAPTER 5

FIELD-THEORETIC
METHODS IN THE
MANY-BODY PROBLEM

We shall introduce field-theoretic methods in the many-body
problem by discussing three well-known ‘‘pictures’” or represen-
tations used in discussing quantum mechanical problems.

5-1 THE SCHRODINGER, HEISENBERG, AND
INTERACTION PICTURES ’

In elementary discussions of quantum mechanics one usually
works in the *‘Schrédinger picture” in which the dynamical
variables are taken to be time independent so that the wave
function contains the time dependence of the problem. In this
picture, the wave function ¥s(t) satisfies

iﬁ%st“) — HOW() (5-1)

While .the dynamical variables are independent of time, the
Hamiltonian may contain an explicit time dependence because
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of an external field acting on the system; (5-1) includes this possi-
bility. If we consider an isolated system, H is independent of
time and an exact solution of (5-1) is given by

l{ls(t) — e—ill(l-lo)/hgls(to) (5_2)

It is convenient for many purposes to make a unitary transforma-
tion to the ‘‘ Heisenberg picture’ in which the wave function ¥,
is time independent and the time dependence of the problem is
transferred to the operators. If we choose phases so that the
wave functions ¥ and ¥, are identical at a time f,, these functions
are related by

:l},“(t) = ']UH = eiH“_lo)/h'{Is(!») (5_3)

Thus the unitary operator factors out the time dependence of ¥s.
In order that all observable quantities (i.e., matrix elements) be
unaltered by the transformation, the operators © in the two
pictures must be related by

Oyt) = eI~ L)RQ (t)g = IHL )R (5-4)

The Hamiltonian H(p, ¢) has the same form in each picture
although the time dependence of the p’s and ¢’s which express H
differ according to (5-4). From (5-4) it follows that the time
dependence of a Heisenberg operator is given by
d0,(1) 20 4(0)

ih A

where the partial derivative accounts for any time dependence of
the operator Og(¢).

For the purpose of perturbation expansions it is often con-
venient to write the Hamiltonian as

H=H,+ H (5-6)
and define an interaction picture through the relations
Wi(t) = etHot = tIMW(t) (5-7a)

and
Ol(t) — eiHo“'"o)/“@s(t)e'iHo("'lo)M (5_7b)
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If H' vanishes, the Heisenberg and interaction pictures are
identical. In the presence of H', the time dependence of the
operator O, is given by the zero-order Hamiltonian H,, and the
wave function ¥, is time-dependent solely due to the perturbation
H’'. We shall choose H, so that the time dependence of the
operators O, is very simple; this allows one to construct a simple
set of rules for treating H' in a perturbation series corresponding
to Feynman diagrams.

By inserting (5-7a) into Schrodinger’s equation (5-1) we find

L O (¢ ,
zﬁ—a+) = H/()¥,(t) (5-8)
where H,' is the perturbing Hamiltonian expressed in the inter-

action picture,
H,/(t) = etHolt=todn [ g = tHo(t=to)in (5-9)

From now on we shall work with units such that & = 1.

5-2 THE GREEN'S FUNCTION APPROACH

In the many-body problem we are ultimately interested in pre-
dicting such quantities as the thermodynamic and mechanical
properties of the system as well as nonequilibrium properties such
as electrical and thermal conductivities, and absorption of quanta
of external fields. It is clear that we cannot determine these
quantities by solving for the exact many-body eigenfunctions
except for extremely simple systems; even if these functions were
available they would be hopelessly complicated unless expressed
in a form suitable for calculatinga particular property of the system.
One would prefer to work with dynamical quantities which are
more closely related to experiment and contain less information
than the full wave functions. One would then approximate
these dynamical quantities directly rather than working with the
¥’s. Quantities which satisfy these conditions are the Green’s
functions of quantum field theory.!:2® The one-electron Green’s
function gives information about the spin and charge densities
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and the momentum distribution of the electrons as well as in-
formation about the excita<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>